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Mathematics education in the Netherlands:

A guided tour1

Marja van den Heuvel-Panhuizen
Freudenthal Institute, Utrecht University, the Netherlands

1 Introduction

This paper addresses mathematics education in the Netherlands and provides a guided tour 
through the main aspects of the Dutch approach to mathematics education. The title of the paper 
also refers to the guidance aspects of mathematics education, the role of the teacher and of the 
curriculum. The tour will focus on the number strand in primary school mathematics. The two 
main questions to be dealt with are:
1. How is arithmetic taught in primary school in the Netherlands?
2. What contains the Dutch arithmetic curriculum?

Figure 1: The cover of the ‘How the Dutch do arithmetic’ report 

About fifteen years ago, the first question was also investigated in a study called ‘How the 
Dutch do arithmetic’2 (see Figure 1) (Van den Heuvel-Panhuizen and Goffree, 1986). 

1 An earlier version of this paper was presented at the Research Conference on ‘Teaching 
Arithmetic in England and the Netherlands’ (Homerton College, University of Cambridge, 26-
27 March 1999). A shortened version of this paper is published in Anghileri (2001); see Van den 
Heuvel-Panhuizen (2001).

Bibliographic reference: Van den Heuvel-Panhuizen, M. (2000). Mathematics education in the 
Netherlands: A guided tour. Freudenthal Institute Cd-rom for ICME9. Utrecht: Utrecht University.



2 

Compared to the prevailing approach to educational research in those days, this was a fairly 
unconventional study. The teachers were asked to describe their mathematics teaching on one 
particular day and their written reports had a free format. The teachers could address whatever 
they thought important with regard to their mathematics teaching on that day. Each teacher was 
also free to choose the topic for the mathematics lessons on that day.3 In total 160 reports were 
analyzed. The teachers’ reports gave a thorough overview of classroom practice. The way in 
which the research findings were reported was also unconventional: the results were presented 
by means of classroom vignettes. Examples from the teachers’ reports were used to provide an 
image of mathematics teaching in practice. Moreover, annotations to the research findings were 
put in the margins of each page. Comments, explanations and alternatives were given to the 
events in the classrooms. The annotations aimed to stimulate readers to reflect on their own 
teaching and on mathematics education in general.

The Dutch landscape of mathematics education has changed significantly compared to fifteen 
years ago4 and the findings of that study are no longer valid. Nonetheless, there are good reasons 
for mentioning this study. Firstly, it was an effective investigation that could be carried out 
easily and it produced usable practical information. Such studies can offer a good overview of 
what is going on in classrooms. Secondly, teachers’ annotated reports can be useful in the 
reform process and in the implementation of a new approach. They can elicit reflection and 
discussion on education at a practical and a theoretical level.

The main reason for referring to this study, however, is the ‘warning’ it provided. The analysis 
of the data showed a broad diversity in classroom practices. In addition, the analysis also 
revealed a discrepancy between the ideas about teaching methods on paper — the teaching 
theory so to speak — and what was happening in the classroom, or at least what was reported 
to be happening in the classroom.5 This evidence must be kept in mind during the guided tour, 
which will not take the readers into classrooms and provide them with a sample of Dutch 
classroom practice, but rather introduce them to the theoretical framework of teaching 
mathematics and the teaching activities in tune with these ideas. 

Of course, this guided tour cannot offer a thorough overview of the Dutch approach to 
mathematics education. It is too complex and moreover — and this might be a surprise — the 

2 In Dutch the title is: ‘Zo rekent Nederland.’
3 Of course, the teachers will show themselves in the best light. This, however, is usually 

forbidden in educational research. In general, the sample of classroom activities should be 
representative; but can this ever be achieved? Instead of striving for this, the study accurately 
mirrored what is attainable in classroom practice from the perspective of the teachers. By taking 
this point of view, the investigation showed where possible improvements might start.

4 Compared to the present, there was greater emphasis on links to reality fifteen years ago. In 
general, the focus was more on horizontal mathematization than on vertical mathematization.

5 The MORE study also revealed this discrepancy (see Gravemeijer, Van den Heuvel-Panhuizen, 
Van Donselaar, Ruesink, Streefland, Vermeulen, Te Woerd, and Van der Ploeg, 1993).



3

difficulty is that there is no unified Dutch approach. Instead, there are some common ideas about 
the basic what-and-how of teaching mathematics. These ideas have been developed over the 
past thirty years and the accumulation and repeated revision of these ideas has resulted in what 
is now called ‘Realistic Mathematics Education’ (RME). During this period, emphasis has been 
placed on differing aspects6 of the theoretical framework guiding Dutch research and 
developmental work in the field of mathematics education.7 Along with this diversity, the 
theoretical framework itself is subject to a constant process of renewal. Inherent to RME, with 
its basic idea of mathematics as a human activity, is the concept that it can never be considered 
as a fixed or finished theory of mathematics education. RME is seen as ‘work in progress’ (Van 
den Heuvel-Panhuizen, 1998). The different accentuations are the impetus for this continuing 
development.

Apart from these national activities, much was also learned from what was happening abroad. 
RME is not an isolated development and has a lot in common with other reform movements in 
mathematics. This means that in RME you will certainly recognize similarities with your own 
ideas on teaching and learning mathematics. There may also be some dissimilarities. Again, it 
is worthwhile reflecting on these differences to search for clues for further improvement in the 
what-and-how of mathematics education.

2 RME: The Dutch approach to mathematics education

History and basic philosophy 
The development of what is now known as RME started around 1970. The foundations were 
laid by Freudenthal and his colleagues at the former IOWO, the oldest predecessor of the 
Freudenthal Institute. The actual impulse for the reform movement was the inception, in 1968, 
of the Wiskobas project, initiated by Wijdeveld and Goffree. The project’s first merit was that 
Dutch mathematics education was not affected by the New Math movement. The present form 
of RME has been mostly determined by Freudenthal’s (1977) view on mathematics. He felt 
mathematics must be connected to reality, stay close to children’s experience and be relevant to 
society, in order to be of human value. Instead of seeing mathematics as a subject to be 
transmitted, Freudenthal stressed the idea of mathematics as a human activity. Mathematics 
lessons should give students the ‘guided’ opportunity to ‘re-invent’ mathematics by doing it. 
This means that in mathematics education, the focal point should not be on mathematics as a 
closed system but on the activity, on the process of mathematization (Freudenthal, 1968).

6 One difference in emphasis is, for instance, that some representatives of RME put more 
emphasis on constructive learning and some put more on the point of view of re-constructive 
teaching. 

7 For more about development and research related to RME, see the paper by Koeno Gravemeijer 
presented at this conference. 
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Later on, Treffers (1978, 1987) explicitly formulated the idea of two types of mathematization 
in an educational context; he distinguished ‘horizontal’ and ‘vertical’ mathematization. In broad 
terms, these two types can be understood as follows. In horizontal mathematization, the students 
come up with mathematical tools which can help to organize and solve a problem set in a real-
life situation. Vertical mathematization is the process of reorganization within the mathematical 
system itself, for instance, finding shortcuts and discovering connections between concepts and 
strategies and then applying these discoveries. Thus horizontal mathematization involves going 
from the world of life into the world of symbols, while vertical mathematization means moving 
within the world of symbols (see also Freudenthal, 1991). Although this distinction seems to be 
free from ambiguity, Freudenthal stated that it does not mean that the difference between these 
two worlds is clear cut. He also stressed that these two forms of mathematization are of equal 
value. Furthermore, one must keep in mind that mathematization can occur at different levels 
of understanding. 

Misunderstanding of ‘realistic’
Despite this clear statement about horizontal and vertical mathematization, RME became 
known as ‘real-world mathematics education.’ This was especially true outside the Netherlands, 
but the same interpretation can also be found within the Netherlands. It must be acknowledged 
that the name ‘Realistic Mathematics Education’ is somewhat confusing in this respect.

The reason, however, why the Dutch reform of mathematics education was called ‘realistic’ is 
not just because of its connection with the real world, but is related to the emphasis that RME 
puts on offering the students problem situations which they can imagine. The Dutch translation 
of ‘to imagine’ is ‘zich REALISEren.’ It is this emphasis on making something real in your 
mind, that gave RME its name. For the problems presented to the students, this means that the 
context can be one from the real world but this is not always necessary. The fantasy world of 
fairy tales and even the formal world of mathematics can provide suitable contexts for a 
problem, as long as they are real in the student’s mind.

3 How the Dutch try to teach arithmetic in primary school 

RME reflects a certain view on mathematics as a subject, on how children learn mathematics 
and on how mathematics should be taught (Van den Heuvel-Panhuizen, 1996). These views can 
be characterized by the following six principles.8 Some of them originate more from the point 

8 This list of principles is an adapted version of the five tenets of the framework for the RME 
instruction theory distinguished by Treffers (1987): ‘phenomenological exploration by means of 
contexts’, ‘bridging by vertical instruments’, ‘pupils’ own constructions and productions’, 
‘interactive instruction’, and ‘intertwining of learning strands.’ The first three principles 
described in this section have significant consequences for RME assessment (see Van den 
Heuvel-Panhuizen, 1996).



5

of view of learning and some are more closely connected to the teaching perspective. The list 
below is a mix of principles each reflecting a part of the identity of RME. 

1. Activity principle
The idea of mathematization clearly refers to the concept of mathematics as an activity which, 
according to Freudenthal (1971, 1973), can best be learned by doing (see also Treffers, 1978, 
1987). The students, instead of being receivers of ready-made mathematics, are treated as active 
participants in the educational process, in which they develop all sorts of mathematical tools and 
insights by themselves. According to Freudenthal (1973), using scientifically structured 
curricula, in which students are confronted with ready-made mathematics, is an ‘anti-didactic 
inversion.’ It is based on the false assumption that the results of mathematical thinking, placed 
in a subject-matter framework, can be transferred directly to the students.
The activity principle means that students are confronted with problem situations in which, for 
instance, they can produce fractions and gradually develop an algorithmic way of multiplication 
and division, based on an informal way of working. In relation to this principle, ‘own 
productions’ play an important role in RME.

2. Reality principle
As in most approaches to mathematics education, RME aims at enabling students to apply 
mathematics. The overall goal of mathematics education is that students must be able to use 
their mathematical understanding and tools to solve problems. This implies that they must learn 
‘mathematics so as to be useful’ (see Freudenthal, 1968).
In RME, however, this reality principle is not only recognizable at the end of the learning 
process in the area of application, reality is also conceived as a source for learning mathematics. 
Just as mathematics arose from the mathematization of reality, so must learning mathematics 
also originate in mathematizing reality. Even in the early years of RME it was emphasized that 
if children learn mathematics in an isolated fashion, divorced from their experiences, it will 
quickly be forgotten and the children will not be able to apply it (Freudenthal, 1971, 1973, 
1968). Rather than beginning with certain abstractions or definitions to be applied later, one 
must start with rich contexts demanding mathematical organization or, in other words, contexts 
that can be mathematized (Freudenthal, 1979, 1968). Thus, while working on context problems, 
the students can develop mathematical tools and understanding. 

3. Level principle
Learning mathematics means that students pass through various levels of understanding: from 
the ability to invent informal context-related solutions, to the creation of various levels of short 
cuts and schematizations, to the acquisition of insight into the underlying principles and the 
discernment of even broader relationships. The condition for arriving at the next level is the 
ability to reflect on the activities conducted. This reflection can be elicited by interaction.
Models serve as an important device for bridging this gap between informal, context-related 
mathematics and more formal mathematics. First, the students develop strategies closely 
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connected to the context. Later on, certain aspects of the context situation can become more 
general, which means that the context more or less acquires the character of a model and as such 
can give support for solving other, but related, problems. Eventually, the models give the 
students access to more formal mathematical knowledge. In order to fulfil the bridging function 
between the informal and formal levels, models have to shift from a ‘model of’ a particular 
situation to a ‘model for’ all kinds of other, but equivalent, situations.9 

Figure 2: At the bus stop (from Streefland, 1996, p. 15 and 16)
.

Figure 3: Two number sentences (from Streefland, 1996, p. 17)

The bus context10 is an example from ‘daily life’ that can evolve to a more general and formal 

level. In the beginning, an illustration is used to describe the changes at the bus stop (see 

Figure 2). Later on the bus context becomes a ‘model for’ understanding all kinds of number 

9 It was Streefland who, in 1985, detected the shift in models as a crucial mechanism in the growth 
of understanding. Later on, this idea of a shift from the ‘model of’ to the ‘model for’ became a 
significant element within RME thinking about progress in students’ understanding of 
mathematics (see Streefland, 1991; Treffers, 1991; Gravemeijer, 1994; Van den Heuvel-
Panhuizen, 1995). 

10 It was Streefland who, in 1985, detected the shift in models as a crucial mechanism in the growth 
of understanding. Later on, this idea of a shift from the ‘model of’ to the ‘model for’ became a 
significant element within RME thinking about progress in students’ understanding of 
mathematics (see Streefland, 1991; Treffers, 1991; Gravemeijer, 1994; Van den Heuvel-
Panhuizen, 1995). 
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sentences, and then the students can go far beyond the real bus context. They can even use the 

model for backwards reasoning (see the last two sentences in Figure 3).
An important requirement for having models functioning in this way is that they are rooted in 
concrete situations and that they are also flexible enough to be useful in higher levels of 
mathematical activities. This means that the models will provide the students with a foothold 
during the process of vertical mathematization, without obstructing the path back to the source.

The strength of the level principle is that it guides growth in mathematical understanding and 
that it gives the curriculum a longitudinal coherency. This long-term perspective is 
characteristic of RME. There is a strong focus on the relation between what has been learned 
earlier and what will be learned later. A powerful example of such a ‘longitudinal’ model is the 
number line. It begins in first grade as (a) a beaded necklace on which the students can practice 
all kind of counting activities. In higher grades, this chain of beads successively becomes (b) an 
empty number line for supporting additions and subtractions11, (c) a double number line for 
supporting problems on ratios, and (d) a fraction/percentage bar for supporting working with 
fractions and percentages (see Figure 4).

Figure 4: Different ways the number line can appear

4. Inter-twinement principle
It is also characteristic of RME that mathematics, as a school subject, is not split into distinctive 

11 See the paper presented at this conference by Julie Menne about her ‘Jumping ahead’ program 
for under-achievers in the early grades. 

a

b

c

d
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learning strands. From a deeper mathematical perspective, the chapters within mathematics 
cannot be separated. Moreover, solving rich context problems often means that you have to 
apply a broad range of mathematical tools and understandings. For instance, if children have to 
estimate the size of the flag, pictured in Figure 5, this estimation involves not only 
measurements but also ratio and geometry. 

Figure 5: Flag problem

In the same way, the mirror activity in Figure 6 clearly shows how geometry and early 
arithmetic can go together.

Figure 6: Mirroring and counting
(from Treffers, Van den Heuvel-Panhuizen, and Buys (Eds.), 1999)

The strength of the inter-twinement principle is that it renders coherency to the curriculum. This 
principle involves not only the mutual relationship between the different chapters of 
mathematics but can also be found in the different parts of one chapter. In the number strand, 
for instance, topics like number sense, mental arithmetic, estimation and algorithms are closely 
related; this issue is considered in more detail in a later section.

5. Interaction principle
Within RME, the learning of mathematics is considered as a social activity. Education should 
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offer students opportunities to share their strategies and inventions with each other. By listening 
to what others find out and discussing these findings, the students can get ideas for improving 
their strategies. Moreover, the interaction can evoke reflection, which enables the students to 
reach a higher level of understanding. 
The significance of the interaction principle implies that whole-class teaching plays an 
important role in the RME approach to mathematics education. However, this does not mean 
that the whole class is proceeding collectively and that every student is following the same track 
and is reaching the same level of development at the same moment. On the contrary, within 
RME, children are considered as individuals, each following an individual learning path. This 
view on learning often results in pleads for splitting up classes into small groups of students 
each following their own learning trajectories. In RME, however, there is a strong preference 
for keeping the class together as a unit of organization12 and for adapting the education to the 
different ability levels of the students instead. This can be done by means of providing the 
students with problems which can be solved on different levels of understanding. 

6. Guidance principle
One of Freudenthal’s (1991) key principles for mathematics education is that it should give 
students a ‘guided’ opportunity to ‘re-invent’ mathematics. This implies that, in RME, both the 
teachers and the educational programs have a crucial role in how students acquire knowledge. 
They steer the learning process, but not in a fixed way by demonstrating what the students have 
to learn. This would be in conflict with the activity principle and would lead to pseudo-
understanding. Instead, the students need room to construct mathematical insights and tools by 
themselves. In order to reach this desired state, the teachers have to provide the students with a 
learning environment in which the constructing process can emerge. One requirement is that 
teachers must be able to foresee where and how they can anticipate the students’ understandings 
and skills that are just coming into view in the distance (see also Streefland, 1985). Educational 
programs should contain scenarios which have the potential to work as a lever in shifting 
students’ understanding. It is important for these scenarios that they always hold the perspective 
of the long-term teaching/learning trajectory based on the desired goals. Without this 
perspective, it is not possible to guide the students’ learning.
Whereas on the micro-didactic level RME has a lot in common with the constructivistic 
approach to mathematics education, on the macro-didactic level of the curriculum some major 
differences between the two become apparent. As a matter of fact, the constructivistic approach 
does not have a macro-didactic level in which decisions are made about the goals for education 
and the teaching/learning trajectories which need to be covered in order to reach these goals. In 
contrast with RME, the constructivistic approach is more a learning theory than a theory of 
education. The guidance principle leads to the curriculum ideas of RME. 

12 Within the structure of keeping the group together, a variety of teaching methods can be applied: 
ranging from whole-class teaching, to group work to individual work.
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4 What are the determinants of the Dutch mathematics curriculum?

Unlike many other countries, at primary school level the Netherlands does not have a 
centralized decision making regarding curriculum syllabi, text books or examinations (see 
Mullis et al., 1997). None of these need approval by the Dutch government. For instance, the 
schools can decide which textbook series they use. They can even develop their own 
curriculum. In general, what is taught in primary schools is, for the greater part, the 
responsibility of teachers and school teams and the teachers are fairly free in their teaching. To 
give some more examples, teachers have a key to the school building, they are allowed to make 
changes in their timetable without asking the director of the school (who often teaches a class 
too), and, as a last example, the teacher’s advice at the end of primary school, rather than a test, 
is the most important criterion for allocating a student to a particular level of secondary 
education.

Despite this freedom in educational decision making — or probably one should say thanks to 
the absence of centralized educational decision making — the mathematical topics taught in 
primary schools do not differ a lot between schools. In general, all the schools follow the same 
curriculum. This leads to the question: what determines this curriculum?

Until recently, there were three important determinants for macro-didactic tracking in Dutch 
mathematics education in primary school:
• the mathematics textbooks series
• the ‘Proeve’; a document recommending the mathematical content top be taught in primary 

school
• the key goals to be reached by the end of primary school as described by the government.

4.1 The determining role of textbooks

In the current world-wide reform of mathematics education, speaking about textbooks — not to 
mention the use of them — often elicits a negative association. In fact, many reform movements 
are aimed at getting rid of textbooks. In the Netherlands, however, the contrary is the case. Here, 
the improvement of mathematics education depends largely on new textbooks. They play a 
determining role in mathematics education. Actually, textbooks are the most important tools 
guiding the teachers’ teaching. This is true of both the content and the teaching methods, 
although with regard to the latter, the guidance provided is not sufficient to reach all teachers. 
Many studies revealed indications that the implementation of RME in classroom practice is still 
not optimal Gravemeijer et al., 1993; Van den Heuvel-Panhuizen and Vermeer, 1999).

The determining role of textbooks, however, does not mean that Dutch teachers are prisoners of 
their textbooks. As already stated, Dutch teachers are fairly free in their teaching and the schools 
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can decide which textbook series they use. Currently, about eighty percent of Dutch primary 
schools use a mathematics textbook series inspired by RME to a greater or lesser degree. 
Compared to ten or fifteen years ago this percentage has changed significantly. At that time, 
only half the schools worked with such a textbook series (De Jong, 1986). A textbook series is 
developed by commercial publishers.13 The textbook authors are independent developers of 
mathematics education, but they can use the ideas for teaching activities resulting from the 
developmental research at the Freudenthal Institute (and its predecessors) and at the SLO, the 
Dutch Institute for Curriculum Development.

4.2 The ‘Proeve’ — a domain description of primary school mathematics

An important aid in the development of textbooks is also the guidance which, since the mid-
eighties, has come from a series of publications, called the ‘Proeve.’14 Treffers is the main 
author of this series. The publications contain descriptions of the various domains within 
mathematics as a school subject. Work on the ‘Proeve’ is still going on and eventually there will 
be descriptions for all the basic number skills, written algorithms, ratios and percentages, 
fractions and decimal numbers, measurement, and geometry. Although the ‘Proeve’ is written 
in an easy style with many examples, it is not written as a series for teachers. Instead, it is 
intended as support for textbook authors, teacher educators and school advisors. On the other 
hand, many such experts on mathematics education were, and still are, significant contributors 
to the realization of this series. 

Looking back at the Dutch reform movement in mathematics education, it can be concluded that 
the reform proceeded in an interactive and informal way, without government interference. 
Instead developers and researchers, in collaboration with teacher educators, school advisors and 
teachers, worked out teaching activities and learning strands. Later on, these were included in 
textbooks.

4.3 The key goals for mathematics education

Until recently there was no real interference from the Dutch government regarding the content 
of educational programs. There was only a general law containing a list of subjects to be taught. 

13 More about one particular textbook series will be presented by Kees Buys in his workshop at this 
conference. 

14 The complete title of this series is ‘Design of a national program for mathematics education in 
primary schools’ [Proeve van een Nationaal Programma voor het reken- wiskundeonderwijs op 
de basisschool]. The first part of this series was published in 1989 (see Treffers, De Moor and 
Feijs, 1989). Note that the title refers to a ‘national program’ although there was no government 
interference. The authors liked to label this a national program in order to achieve a common 
program; in this aim they have succeeded. 
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What topics had to be taught within these subjects was almost entirely the responsibility of the 
teachers and the school teams. A few years ago, however, government policy changed and, in 
1993, the Dutch Ministry of Education came up with a list of attainment targets, called ‘Key 
Goals.’ These goals describe what students have to learn in each subject by the end of their 
primary school career (at age twelve years). For mathematics the list contains 23 goals, split into 
six domains (see Table 1). The content of the list is in agreement with the ‘Proeve’ documents 
previously mentioned.

Compared to goal descriptions and programs from other countries it is notable that some 
widespread mathematical topics are not mentioned in this list, for instance, problem solving, 
probability, combinatorics, and logic. Another striking feature of the list is that it is so simple. 
This means that the teachers have a lot of freedom in interpreting the goals. At the same time, 
however, such a list does not give much support to teachers. As a result, the list is actually a 
‘dead’ document, mostly put away in a drawer when it arrives at school. Nevertheless, this first 
list of key goals was important for Dutch mathematics education. The government’s publication 
of the list confirmed and, in a way, validated the recent changes in the Dutch curriculum. 

The predominant changes were:
• more attention was to be paid to mental arithmetic and estimation
• formal operations with fractions were no longer in the core curriculum, the students now 

only have to do operations with fractions in context situations
• geometry was officially included in the curriculum
• and also the insightful use of a calculator.

However, not all these changes have been included in the textbooks and implemented in present 
classroom practice. This is especially true for geometry and the use of a calculator.

In the years since 1993, there have been discussions about these 23 key goals (see De Wit, 
1997). Almost everybody is agreed that these goals can never be sufficient to support 
improvements in classroom practice nor to control the outcome of education. The latter is 
conceived by the government as a powerful tool for safeguarding the quality of education. For 
both purposes, the key goals were judged as failing. Simply stating goals is not enough in order 
to achieve them. For testing the outcome of education the key goals are also inappropriate. 
Many complaints were heard that the goals were not formulated precisely enough to provide 
yardsticks for testing. These arguments were heard not only for mathematics, but also for all the 
primary school subjects for which key goals had been formulated. 
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Table 1: Key goals for Dutch primary school students in mathematics

By the end of primary school, the students:

General 
abilities

1 Can count forward and backward with changing units

2 Can do addition tables and multiplication tables up to ten

3 Can do easy mental-arithmetic problems in a quick way with insight in the 
operations

4 Can estimate by determining the answer globally, also with fractions and 
decimals

5 Have insight into the structure of whole numbers and the place-value system of 
decimals

6 Can use the calculator with insight

7 Can convert simple problems which are not presented in a mathematical way 
into a mathematical problem

Written 
algorithms

8 Can apply the standard algorithms, or variations of these, to the basic 
operations, of addition, subtraction, multiplication and division in simple 
context situations

Ratio and 
percentage

9 Can compare ratios and percentages

10 Can do simple problems on ratio

11 Have an understanding of the concept percentage and can carry out practical 
calculations with percentages presented in simple context situations

12 Understand the relation between ratios, fractions, and decimals

Fractions 13 Know that fractions and decimals can stand for several meanings

14 Can locate fractions and decimals on a number line and can convert fractions 
into decimals; also with the help of a calculator

15 Can compare, add, subtract, divide, and multiply simple fractions in simple 
context situations by means of models 

Measurement 16 Can read the time and calculate time intervals; also with the help of a calendar

17 Can do calculations with money in daily-life context situations

18 Have an insight into the relation between the most important quantities and 
corresponding units of measurement

19 Know the current units of measurement for length, area, volume, time, speed, 
weight, and temperature, and can apply these in simple context situations

20 Can read simple tables and diagrams, and produce them based on own 
investigations of simple context situations

Geometry 21 Have mastered some basic concepts with which they can organize and describe 
a space in a geometrical way

22 Can reason geometrically using building blocks, ground plans, maps, pictures, 
and data about positioning, direction, distance, and scale

23 Can explain shadow images, can compound shapes, and can devise and 
identify cut-outs of regular objects
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4.4 Blueprints of longitudinal teaching/learning trajectories
— a new factor for macro-didactic tracking

For several years it was unclear which direction would be chosen for improving the key goals: 
either providing a more detailed list of goals for each grade expressed in operationalized terms, 
or a description which supports teaching rather than pure testing. In 1997, the government 
tentatively opted for the latter and asked the Freudenthal Institute to work it out for 
mathematics. This decision resulted in the start of the TAL Project15 in September 1997. The 
purpose of this project, which the Freudenthal Institute is carrying out together with the SLO 
and CED16, is to contribute to the enhancement of classroom practice, starting with that in the 
early grades. The reason for starting in the lower grades was that, at the same time, the 
government took measures to reduce the class size in these grades. The products of the TAL 
Project might eventually become the fourth guiding factor for the macro-didactic tracking in 
Dutch primary school mathematics education. 

A trajectory blueprint on whole numbers as a start
The first focus of the project was on the development of a description of a longitudinal teaching/
learning trajectory on whole-number arithmetic. The first description for the lower grades 
(including K1, K2, and grades 1 and 2)17 was published in November 1998. The definitive 
version followed a year later (Treffers, Van den Heuvel-Panhuizen, and Buys (Eds.), 1999). 
Now the focus is on a continuation of a whole-number trajectory for the higher grades of 
primary school (including grades 3 through 6) and recently a start has been made on developing 
a teaching/learning trajectory for measurement and geometry. In the future, other strands will 
be worked out for fractions, decimals and percentages.
In the whole-number trajectory, arithmetic is interpreted in a broad sense, including number 
knowledge, number sense, mental arithmetic, estimation and algorithms. In fact the description 
is meant to give an overview of how all these number elements are related to each other, both 
in a longitudinal and in a cross-sectional way. 

A new approach to goal description as a framework to support teaching
The stepping stones that students will pass (in one way or another) on their way to reaching the 
goals at the end of primary school are crucial in the trajectory blueprints. These stepping stones 
can be seen as intermediate goals. As goals, however, they differ in many respects from the 
usual end-of-grade goal descriptions which are mostly very rigid in order to be suitable as a 
direct basis for testing. In fact, in several respects the intended blueprints of the teaching/
learning trajectories are the contrary of the goal descriptions which are traditionally supposed 

15 TAL is a Dutch abbreviation that stands for Intermediate Goals Annex Teaching/Learning 
Trajectories.

16 SLO is the Dutch Institute for Curriculum Development. CED is the school advisory center for 
the city of Rotterdam. In the near future other institutes will probably also officially participate 
in the TAL Project. 

17 These grades cover students from 4 to 8 years old.



15

to guide education. Instead of unambiguous goal descriptions in behavioral terms, the teaching/
learning trajectory provides the teachers with a more or less narrative sketch of how the learning 
process can proceed provided that a particular educational setting is realized. The description 
contains many examples, including video-taped examples on a CD-Rom, of student behavior 
and student work in connection with core activities in teaching.

Giving the teachers a pointed overview of how children’s mathematical understanding can 
develop from grades K1 through 2 (and eventually through 6) and of how education can contribute 
to this development is the main purpose of this alternative to the traditional focus on clear goals as 
the most powerful engine for enhancing classroom practice. In no way, however, are the trajectory 
blueprints meant as recipe books. They are rather intended to provide teachers with a mental 
educational map which can help them, if necessary, to make adjustments to the textbook. Another 
difference with the traditional goal description is that there is no strict pre-requisite structure. In 
addition, the learning processes are not regarded as a continuous process of small steps, nor are 
the intermediate goals considered as a check list to see how far students have got. As a matter of 
fact, such an approach neglects the discontinuities in the learning process and does not take into 
account the degree to which understanding and skill performance are determined by the context 
and how much they differ between individuals. Instead of a check list of isolated abilities, the 
trajectory blueprints try to make clear how the abilities are built up in connection with each other. 
What is learned in one stage is understood and performed on a higher level in a following stage.

The binding force of levels and their didactical use
It is this level characteristic of learning processes, which is a constitutive element of RME, that 
brings longitudinal coherency into the teaching/learning trajectory. Another crucial implication 
of this level characteristic is that students can understand something on different levels. In other 
words, they can work on the same problems without being on the same level of understanding. 
The distinction of levels in understanding, which can have different appearances for different 
sub-domains within the whole number strand, is very fruitful for working on the progress of 
children’s understanding. It offers footholds for stimulating this progress.

Levels in counting as a first example
As an example, one might consider the levels in counting18 that have been distinguished for the 
early stage of the development of number concept in kindergarten and the beginning of grade 1.
The following three levels have been identified (see Treffers, Van den Heuvel-Panhuizen, and 
Buys (Eds.), 1999):
• context-related counting
• object-connected counting
• (towards) a more formal way of counting.

18 To indicate that there is no strict division between counting and calculating, in the teaching/
learning trajectory, the skill of counting is called ‘counting-and-calculating.’



16 

To explain this level distinction and to give an idea of how it can be used for making problems 
accessible to children and for eliciting shifts in ability levels, one can think of the ability of 
resultative counting up to ten. What if a child does not make any sense of the ‘how-many’ 
question (see Figure 7)? Does this mean that the child is simply not able to do resultative 
counting? 

Figure 7: How many ...?

That this is not necessarily the case may become clear if the teacher moves to a context-related 
question. This means that a context-related question is asked instead of a plain ‘how-many’ 
question, e.g.
• how old is she (while referring to the candles on a birthday cake)? (see Figure 8) and 
• how far can you jump (while referring to the dots on a dice)?
• how high is the tower (while referring to the blocks of which the tower is built)? 

:

Figure 8: How old ...?
(from Treffers, Van den Heuvel-Panhuizen, and Buys (Eds.), 1999, p.26)

In the context-related questions, the context gives meaning to the concept of number. This 
context-related counting precedes the level of the object-related counting in which the children 
can handle the direct ‘how many’ question in relation to a collection of concrete objects without 
any reference to a meaningful context. Later on, the presence of the concrete objects is also no 
longer needed to answer ‘how many’ questions. Via symbolizing, the children have reached a 
level of understanding in which they are capable of what might be called formal counting, which 
means that they can reflect upon number relations and that they can make use of this knowledge.
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Levels in calculating as a second example
With regard to the field of early calculating in grade 1 (with numbers up to 20) the following 
three levels have been identified (see Treffers, Van den Heuvel-Panhuizen, and Buys (Eds.), 
1999):
• calculating by counting (calculating 7+6 by laying down seven on-guilder coins and six one-

guilder coins and counting the total one by one)
• calculating by structuring (calculating 7+6 by laying down two five-guilder coins and three 

one-guilder coins)
• formal (and flexible) calculating (calculating 7+6 without using coins and by making use of 

ones knowledge about 6+6).
What these levels look like in classroom practice will be shown in the Restaurant lesson 
discussed in the next section (see §5.1).

In the higher grades when the students are doing calculations on a formal level, the levels 
mentioned already can be recognized in the three different calculation strategies for additions 
and subtraction up to 100: 
• the jumping strategy (this strategy is related to calculating by counting; it implies keeping 

the first number as a whole number: 87-39= .... 87-30=57; 57-7=50; 50-2=48)
• the strategy of splitting numbers in tens and ones (this strategy is related to calculating by 

structuring; it implies making use of the decimal structure: 87-39= .... 80-30=50; 7-7=0;
50-2=48)

• flexible calculating (this strategy implies making use of knowledge of number relations and 
properties of operations: 87-39= .... 87-40=47; 47+1=48).

Didactical levels 
Insight into these didactical levels provides teachers with a powerful mainstay for gaining 
access to children’s understanding and for working on shifts in understanding. After starting, for 
instance, with context-related questions (‘how old is she?’) the teacher can gradually push back 
the context and reach the object-related questions (‘how many candles are on the birthday 
cake?’). The level categories for calculations up to 20 and 100 differ remarkably from, for 
instance, levels based on problem types19 and levels based on the size of the numbers to be 
processed. They also deviate from the more general concrete–abstract distinctions in levels of 
understanding20 and from level distinctions ranging from material-based operating with 
numbers to mental procedures; with verbalizing as an intermediate state21. The ideas with which 
the TAL levels in the early grades identify most can be found in the work of Donaldson (1978) 
and Hughes (1986).22

19 The CGI problem types might be considered as an example of a level distinction based on types 
of problems.

20 Like the Piagetian levels in cognitive growth.
21 Like the levels distinguished by Gal’perin.
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So far we have discussed some of the main ideas behind the trajectory blueprints. As already 
stated, the TAL Project is only just starting work on them. It is not yet known how they will 
function in school practice and whether they can really help teachers. Inquiries made so far (De 
Goeij, Nelissen, and Van den Heuvel-Panhuizen, 1998; Groot, 1999; Slavenburg and 
Krooneman, 1999), however, give us a general feeling that they may indeed help teachers and 
that the TAL teaching/learning trajectory on whole number arithmetic for the lower primary 
grades has triggered something that in one way or another can bring not only the children but 
also Dutch mathematics education to a higher level.

The TAL team were interested to discover that making a trajectory blueprint was not only a 
matter of writing down what was already known in a popular and accessible way for teachers, 
but that the work on the trajectory also resulted in new ideas emerging about teaching 
mathematics and revisiting our current thinking about teaching. 

5 Three examples of RME classroom practice

The answer to the ‘what’ question about the Dutch arithmetic curriculum will be restricted to 
giving an impression of it based on the following three problems:
• 6 + 7 =
• 81 ÷ 6 =
• 4 × ƒ 1.98 = 

It will be clear that this selection in no way covers the complete Dutch arithmetic curriculum. It 
is just a brief overview in giant steps: one problem will be shown for the early grades, one for 
the middle grades, and one for the end grades of primary school. What these examples have in 
common is that they can all be solved on different levels and can thus be fertile soil for progress. 
They also make clear that the ‘what’ question about the Dutch arithmetic curriculum can never 
be disconnected from the ‘how.’

5.1 Restaurant

The Restaurant lesson is one of the lessons on the CD-Rom and belongs to the TAL teaching/
learning trajectory on whole numbers for the lower grades. The lesson was videotaped in a 
mixed class containing K2 and grade 1 children, aged five and six years. The teacher, Ans 
Veltman, is one of the staff members of the TAL team. She also designed the lesson, although 

22 Nevertheless there are also some significant differences between their ideas and the TAL ideas 
about levels. Donaldson, for instance, did not apply her ideas to counting and Hughes did not 
identify what is called context-related counting in TAL.
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she would disagree with this — Ans feels that her student Maureen was the developer of this 
lesson. Maureen opened a restaurant in a corner of the classroom and everybody was invited to 
have a meal. The menu card shows the children what they can order and what it costs. The prices 
are in whole guilders (see Figure 9).

Figure 9: The menu card for Maureen’s restaurant

The teacher’s purpose with this lesson is to work on a difficult addition problem bridging the 
number ten. The way she does this, however, reflects a world of freedom for the students. The 
teacher announced that two items could be chosen from the menu and asked the children what 
items they would chose and how much this would cost. In other words, it appeared as if there 
was no guidance from the teacher, but the contrary was true. By choosing a pancake and an ice 
cream, costing 7 guilders and 6 guilders, respectively, she knew in advance what problem the 
class would be working on; namely the problem of adding above ten, which she is what she 
wanted them to work on.

There is a purse with some money to pay for what is ordered and the teacher had arranged that 
the purse should contain five-guilder coins and one-guilder coins. (This again shows subtle 
guidance from the teacher.) Then the students start ordering. Niels chooses a pancake and an ice 
cream. Jules writes it up on a small blackboard. The other children shout: ‘Yeah ... me too.’ They 
agree with Niels’ choice. Then the teacher asks what this choice would cost in total. 
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Here is a summary of what the children did:
• Maureen counted 13 one-guilder coins. Six coins for the ice cream and seven coins for the 

pancake (calculating by counting) (see Figure 10).

Figure 10: Maureen’s strategy

• Thijs and Nick changed five one-guilder coins for one five-guilder coin and pay the ice 
cream with “5” and “1” and the pancake with “5” and “1” and “1”. Then they saw that the 
two fives make ten and the three ones make 13 in total (calculating by structuring) (see 
Figure 11).

Figure 11: Thijs’ strategy

Later Nick placed the coins in a row: “5”, “5”, “1”, “1”, “1”.

• Luuk came up with the following strategy: “First put three guilders out of the six to the seven 
guilders, that makes ten guilders, and three makes thirteen” (calculating by structuring and 
towards formal calculating).

• Hannah did not make use of the coins. She calculated: “6 and 6 makes 12, and 1 makes 13 
guilders. Another student came with: “7 and 7 makes 14, minus 1 makes 13” (formal and 
flexible calculating).

This Restaurant lesson makes clear that children who differ in skill and level of understanding 
can work in class on the same problem. To do this, it is necessary that problems that can be 
solved on different levels are presented to the children. The advantage for the students is that 
sharing and discussing their strategies with each other can function as a lever to raise their 
understanding. The advantage for teachers is that such problems can provide them with a cross-
section of their class’s understanding at any particular moment, and also gives them a 
longitudinal overview of the trajectory they need to go along. The cross-section of strategies at 
any moment indicates what is coming within reach in the immediate future. As such, this cross-
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section of strategies contains handles for the teacher for further instruction.

5.2 Parents’ evening

The next classroom vignette23 shows how the RME principles can contribute to growth in 
mathematical understanding. The starting point of the lesson is the exploration of a context problem 
which, and this is essential, can be solved on several levels of understanding. By discussing and 
sharing solution strategies in class, the students who first solved the problem by means of a long-
winded strategy can progress to a higher level of understanding. As a result of this process, which 
is called ‘progressive mathematization’, new mathematical concepts can be constituted.

The scene is set in a third-grade classroom. The students are eight through nine years old. The 
teacher starts with the presentation of a problem about a parents’ evening that is being 
organized. The question is about the number of tables needed to seat the parents (see Figure 12).

Figure 12: Tables problem

The students begin to work and the teacher walks around the classroom. Whenever necessary 
she gives some help. About ten minutes later she asks the students to show their work and 
explain their solutions. 

23 This classroom activity originates from Van Galen et al. (1991) (see also Van Galen and Feijs, 
1991); the present vignette was also used by De Lange in his plenary lecture at ICME 1996 in 
Seville, Spain.

‘... Tonight, there will be a parents’ evening ...
 ... The slips I received from you tell me that 81 persons will attend ...
 ... The meeting will take place in the large hall ...
 ... The parents will be seated at large tables ...
 ... Six persons can sit at each table...’

Then the teacher makes a drawing of such a table on the black board:

After doing this, the teacher asks:
‘How many tables do we need for 81 persons?”
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Badr drew as many tables as he needed to have all the parents seated (see Figure 13).

Figure 13: Badr’s work

Roy started in the same way, but after he drew two complete tables he drew two rectangles and 
put the number six in them. While he was drawing more of these rectangles he suddenly realized 
that if you have five tables, 30 parents can be seated. He continued drawing rectangles and after 
another five he wrote down 60. Then he drew another two, wrote down 72, and another one, and 
wrote down 78. He finished with a rectangle with the number 3 in it (see Figure 14).

Figure 14: Roy’s work

A third student, Abdelaziz, was even more advanced in mathematizing the problem. Although 
he also started by drawing a copy of the table that was on the blackboard, he immediately moved 
up to a more formal solution by using his knowledge about multiples of six. He wrote down 
6 × 6 = 36, doubled this number and came to 72, and then he added two more tables to the 72 
and came to the answer of 84 (see Figure 15). 
When you look at these three solutions, it is evident that some mathematization took place at 
each level, even in Badr’s work, since visualization and schematization are also powerful tools 
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for mathematizing. In the other two examples the mathematics is more visible, but not yet at the 
level that is aimed at. This problem was meant as a start for learning long division. In order to 
achieve this goal, the problem should be followed by other problems. Thus, after the class 
discussion about the different strategies had finished, the teacher presented a new problem: the 
Coffee pots problem (see Figure 16).

Figure 16: Coffee pots problem

From a mathematical point of view this problem is the same as the previous one. Instead of 
dividing by six, now, the students have to divide by seven. For these students, however, this is 
a completely different problem and it is also more difficult to make a visual presentation of it. 

Figuur 15: Abdelaziz’ work

‘... The 81 parents will be offered a cup of coffee ...
 ... ... You can fill 7 cups from one coffee pot...
... How many coffee pots will be needed?’
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Tables are easier to draw than coffee pots although Badr tried to draw them (see Figure 17). 

Figure 17: Badr’s work on the Coffee pots problem
After he drew two pots he remembered the discussion about how the answer can be found more 
quickly by multiplying. He continued using 10 × 7 = 70 followed by 70 + 11 = 81, and decided 
that 12 pots are needed. 

Both the constitution of mathematical tools (the representation of the problem situation, the 
schematization, the repeated addition, the application of number fact knowledge, the way of 
keeping track of the results, and the communicating about the strategies) and Badr’s level shift 
were evoked by the problems given to students. More precisely, they were evoked by the cluster 
of problems. In a way, the context in this cluster of problems prompts them to re-invent the 
mathematics and to come to a higher level of understanding (see also Figure 20).

5.3 Buying loaves of bread

The ultimate overall goal of RME arithmetic is numeracy. Children should be able to make 
sense of numbers and numerical operations. Among other things, this implies that the children 
should be able to decide for themselves what calculation procedure is appropriate for solving a 
particular arithmetic problem. They should know when a mental calculation is adequate, when 
to use an estimate, and when it is better to do column arithmetic on paper or to use a calculator.24 
Being able to make decisions like these is one of the higher-order goals of arithmetic education 
to be reached in the higher grades of primary school. The Buying loaves of bread problem (see 
Figure 18) is very suitable for working on this goal.

24 For more about mental and written strategies, see the paper presented at this conference by 
Meindert Beishuizen.
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Figure 18: Buying loaves of bread problem

The student work in Figure 19 shows a wide variety of categories of calculation procedures 
which can be applied to solve this problem. Students A, B and C solved it in one way or another 
by column arithmetic. Students D, E and F25 used an estimation method. Within these two major 
categories, the students applied several different strategies.

25 This is the solution Adri Treffers added to the collection in his own handwriting.

Lieke is buying four loaves of bread; 
each costing ƒ 1.98.
Will one ten-guilder note be enough?
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Figure 19: Student work Buying loaves of bread problem (translation added by author)
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The need for class discussion
As in the Parents’ evening and the Restaurant problems, a class discussion about how the 
students tackled the Buying loaves of bread problem can help them to make a more suitable 
choice next time. Especially if estimates are the issue, such a discussion can help to free the 
students from their idea that their working with numbers can only be called ‘mathematics’ if 
they make precise calculations. In problems like the Buying loaves of bread no precise 
calculation is needed, an estimate will do. And on the other hand, making an estimate to solve 
this problem can open the road to smart precise calculation! Student D’s work is a good example 
of this.

Clusters of problems
In order to open the road to smart precise calculation, the global question of ‘Enough money?’ 
is followed by a more precise question like ‘How much is left or how much more do you need?’ 
As in the Parents’ evening problem, this sequence of questions can be seen as a mini-trajectory 
with the potential to work as a lever to achieve shifts in the students’ understanding. In a way, 
these clusters of problems are educational scenarios which guide the teaching and prompt the 
learning.

Figure 20: Clusters of problems as a didactical tool to evoke shifts in understanding

Coherence between calculation procedures
Apart from opening the students’ eyes to making a suitable choice for a particular calculation 
procedure, the variety of work done on the Buying loaves of bread problem (see Figure 19) also 
provides the teacher with a powerful tool for discussing how the procedures are related to each 
other with the students. The work of students C and A shows perfectly that, instead of a column 
multiplication, a repeated column addition can be applied. Actually the latter is a preliminary 
stage of the standard written algorithm for multiplication. Student B’s work even shows what 
comes before this preliminary stage: a kind of combination of horizontal arithmetic with whole-
number value (instead of processing the numbers as digits) and column arithmetic. 

This mixed procedure is a crucial element is the teaching/learning trajectory that the TAL team 
have in mind for arithmetic in the higher grades of primary school. Mental arithmetic is seen as 

buying loaves of bread

- Enough money?

- How much is left or how 

parents’ evening

- How many tables?

- How many pots of coffee? much more do you need?
- What is the precise price?
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the main branch, from which the column arithmetic branch is derived later. ‘Later’ means that, 
for instance, the standard algorithms for addition and subtraction (see Figure 21, +d and –d) are 
not on the agenda before grade 4. The algorithms for multiplication and division are not dealt 
with before grade 5. In the years before these grades, the students apply more or less shortened 
and mixed procedures based on a ‘horizontal’, whole-value way of calculating. Figure 21 shows 
how this way of calculating related to mental arithmetic gradually develops towards the 
standard algorithms. This is true at least for addition and multiplication. With regard to 
subtraction, a different track is followed. The subtraction algorithm does not arise naturally 
from the whole-value approach. Therefore, the addition algorithm might give access to the 
subtraction algorithm (see arrow in Figure 21). The most shortened standard algorithm for 
division is left out of the scheme. This algorithm no longer belongs to the core curriculum.

Figure 21: Proposed26 teaching/learning trajectory for whole number arithmetic
in the higher primary grades: from horizontal to vertical calculation

26 This scheme was developed in the early stages of work on the teaching/learning trajectory on 
whole numbers for the higher primary grades. In the meantime it has been changed somewhat. 
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Student work as a mirror of education
How this problem is solved depends on how the students have been taught. In this way the 
problem can be seen as a mirror of the teaching. You get back what you have given the students. 
In the study in which the student work shown in Figure 19 was collected, almost a half of the 
fourth and fifth graders applied a column arithmetic procedure and less than one-third of the 
students chose a global estimation (see Treffers, Streefland and De Moor, 1996). Other studies 
of such problems revealed a strong connection with the type of education and different textbook 
series yielded different results (Treffers, 1999). The students’ work makes it clear that there is 
still work to be done in the Netherlands, despite the good results found in the TIMSS study (see 
Mullis et al., 1997).

6 To conclude

The last example brings this guided tour to its end. It is hoped that the Dutch landscape of 
mathematics education is no longer the terra incognita that it might once have been before the 
reader started the tour. Dutch mathematics educators obviously have a special relation with 
landscapes. It was Freudenthal (1991) who called the last chapter in his last book ‘The 
landscape of mathematics education.’ This chapter probably inspired Treffers when he adapted 
a well-known poem by the famous Dutch poet Marsman to summarize mathematics education 
in Dutch primary schools.27 

27 This adapted poem was presented by Adri Treffers at the start of an international meeting on 
mathematics education held at Leiden University, 14-15 December 1996.

Thinking of Holland

Thinking of Holland
I see wide rivers

winding lazily through
endless low countryside

like rows of empty number lines
striping the horizon

I see multi-base
arithmetic blocks

low and lost
in the immense open space

and throughout the land
mathematics of a realistic brand

After
H. Marsman’s ‘Denkend aan Holland’ 

Adapted by 
A. Treffers, 1996
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