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Abstract. Traitor tracing schemes constitute a useful tool
against piracy in the context of digital content distribution.
They are encryption schemes that can be employed by content
providers that wish to deliver content to an exclusive set of
users. Each user holds a decryption key that is fingerprinted
and bound to his identity. When a pirate decoder is discovered,
it is possible to trace the identities of the users that contributed
to its construction. In most settings, both the user population
and the set of content providers are dynamic, thus scalable user
management and scalable provider management are crucial.
Previous work on public-key traitor tracing did not address the
dynamic scenario thoroughly: no efficient scalable public-key
traitor tracing scheme has been proposed, in which the pop-
ulations of providers and users can change dynamically over
time without incurring substantial penalty in terms of system
performance and management complexity. To address these
issues, we introduce a formal model for Scalable Public-Key
Traitor Tracing, and present the first construction of such a
scheme. Our model mandates for deterministic traitor tracing
and unlimited number of efficient provider and user manage-
ment operations. We present a formal adversarial model for
our system and we prove our construction secure, against both
adversaries that attempt to cheat the provider and user man-
agement mechanism, and adversaries that attempt to cheat the
traitor tracing mechanism.

Keywords: Digital Content Distribution – Traitor Tracing –
Scalability – Broadcast Encryption – Multicast

1 Introduction

1.1 Motivation

An important application of global networking is digital con-
tent distribution. In a typical scenario (e.g., Pay-TV) the en-
tities that are active are the content providers and the users
that subscribe to services and receive the content. In addi-
tion, the security manager is the entity in the system that
manages providers and users and is responsible for enforc-
ing various operational rules. For digital content distribution

services to remain economically viable in the long run, it is
important to design distribution schemes with certain basic
properties: (1) strong content-protection – to ensure that only
current subscribers have access to the distributed content; (2)
traitor-traceability – to counter illegal content reception; (3)
transmission efficiency – to optimize the bandwith utilization
of the communication medium; and (4) scalability – to sup-
port many content providers and a large, dynamically changing
population of subscribers. Next, we elaborate on these prop-
erties.

1.1.1 Content-protection

Exclusive reception of the digital content can be achieved by
employing a multi-user encryption scheme in conjunction with
a subscription-based model of service. In this setting only cur-
rently subscribed users are able to recover the content success-
fully. From a security viewpoint, the challenge here is similar
to regular encryption systems: to make sure that at any given
moment the active subscriber population can access the con-
tent whereas outsiders who eavesdrop on the communication
medium are incapable of recovering the plaintext content.

1.1.2 Traitor-traceability

Even if an ideally secure content protection mechanism can be
realized, it cannot prevent each subscriber from illicitly share
its secret information with non-members. More generally, a
group of subscribers (the traitors) can collude to construct an
illegal decryption device (a pirate decoder), which can then be
distributed on the black market. We would like to have a mech-
anism by which misbehaving pirates get caught. One effective
such mechanism is provided by the notion of a traitor tracing
scheme. A traitor tracing scheme is a multi-recipient encryp-
tion system that can be used for digital content distribution,
with the property that the decryption key of each user is fin-
gerprinted. When a pirate decoder is discovered, the security
manager can employ a traitor tracing algorithm to uncover the
identities of the traitors. The corresponding decryption keys
could then be revoked, thus making the pirate decoder useless.
Therefore, a traitor tracing scheme deters subscribers of a dis-
tribution system from leaking their keys, by the mere fact that
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the identity of the leaking entities (traitors) can be revealed.
It is also a powerful tool against unauthorized access to the
content since it allows the uncovering of compromised de-
cryption keys and thus their removal from the system. Ideally,
one would like an algorithm able to recover the traitors’ identi-
ties by just probing the pirate decoder in a black-box fashion.
However, the inherent hardness of this problem [19] poses
limitations on the efficiency attainable with this approach, so
that some traitor tracing mechanisms operate under the as-
sumption that it is possible to extract the actual decryption
key that enables the pirate decoder to unscramble the content
(non-black-box traceability). We will consider both variants
in this work.

1.1.3 Transmission efficiency

For efficiency reasons, the distribution scheme should send as
few ciphertexts as possible while allowing all the legitimate
receivers to recover the plaintext content. Also, the amount
of users’ storage and decryption time should be as small as
possible. In an efficient system the above parameters must be
independent of the total number of user management oper-
ations (user additions and removals) as well as of the total
number of users.

1.1.4 Scalability

In the context of digital content distribution, scalability has
two facets: server-side and client-side.

Server-side scalability deals with the property that allows
the population of content providers to change dynamically.
Each content provider in this setting needs access to the en-
cryption mechanism (so that it can scramble content) and ac-
cess to the distribution channel. Access to the distribution
channel can be handled directly using access control mech-
anisms that are negotiated between the manager of the com-
munication medium and the joining content provider, and we
will not focus on this aspect in this work; note that in some
cases the distribution channel may be a service entirely sep-
arated from the subscription service, e.g., when the Internet
is used for distribution. On the other hand, access to the en-
cryption mechanism suggests that each content provider needs
to have the encryption keys that allow all users of the sys-
tem to get its content. If the content providers are few and
closely connected to the security manager, then one may as-
sume that the encryption keys (and perhaps the decryption
keys as well) are shared among the providers and the security
manager. But this scenario does not scale, since when there
are many providers, the amount of keys each user has to store
can become prohibitively large (thus violating transmission
efficiency property). Therefore, there is a need for providers
to use the same key information. If symmetric key methods
are being used, a corruption of one provider among the large
(sub)-group of providers immediately compromises the con-
tent of all providers in that (sub)-group, violating the content
protection property. Thus, due to the fact that we deal with a
large set of providers and cannot trust all of them, we need an
encryption mechanism whose security is not degraded when
senders are compromised. This leads to the need of employing
public-key cryptography for server-side scalability.

Client-side scalability deals with the fact that we have a
user populaion that is changing dynamically due to the service
subscription model and security constraints. To allow for a
scalable management of user accounts, keys should be easy to
generate and revoke. Adversaries that control some user keys
that are revoked should be incapable of reading content. We
obviously need mechanisms to identify misbehaving users to
allow the piracy-deterrence property while the population is
dynamically changing.

The goal of this work is to investigate systems that incor-
porate the above basic properties.

1.2 Related work

There are two primitives that are relevant to the present work:
broadcast encryption, introduced by Fiat and Naor, [12] and
traitor tracing, introduced by Chor et al. [6]. Broadcast en-
cryption deals with the problem of transmitting protected con-
tent to a population of users so that an arbitrary (chosen) subset
of them can be barred from each transmission. Traitor-tracing,
on the other hand, deals with the problem of transmitting pro-
tected content to a population of users so that each decryption
key is fingerprinted and bound to the identity of the user. In
order to achieve a tracing and revoking functionality, traitor-
tracing and broadcast encryption may be employed simulta-
neously as they can be coupled in the following producer-
consumer pair: the traitor-tracing algorithm produces a set of
corrupted users and the broadcast encryption algorithm re-
ceives this as input and bars these users from future transmis-
sions.

Since we are interested in achieving both the tracing and
the revoking functionalities simultaneously, in the remaining
of this subsection we will consider traitor-tracing as a base
property and will describe how previous work managed to
couple revocation (from broadcast schemes) with traceability
methods.

The original traitor tracing schemes of Chor et al. [6] em-
ployed a probabilistic design: each user possesses a differ-
ent subset of a set of keys and tracing is achieved using the
properties of the key assignment. These results were later im-
plemented with concrete combinatorial designs by [27]. Both
these schemes do not possess a “Remove-user” operation.
This issue was later considered in [14, 17, 23], who investi-
gated the combination of traitor tracing schemes with efficient
revocation methods. These previous schemes did not consider
a scalable, long-lived setting and were rather unsuitable for
the public-key setting.

A different line of work that employed algebraic (rather
than combinatorial) techniques in order to achieve traceabil-
ity allowed for efficient public-key traitor tracing schemes
in [3,21] (the latter introduced a public-key scheme with de-
terministic traceability) and in [20]; these schemes did not
consider revocation of keys. The combination of revocation
and traceability functionalities was considered in the work of
Naor and Pinkas [25], which described several schemes in the
symmetric-key setting and a public-key scheme.

The work of [25] is the most relevant to our current in-
vestigation and motivated it. In particular, revocation method
number 2 of [25] provides a tracing and revoking functionality
that achieves client-side scalability but it is not a public-key
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system and thus it is not server-side scalable; in particular, dis-
tribution of content in these schemes relies on shared keys (i.e.,
a private-key encryption setting). In [25] a pubic-key variation
is presented as well, nevertheless it is only for a limited num-
ber of revocations (proportional to the size of the public-key)
and thus it is not cient-side scalable.

Public-key traitor tracing schemes with comparable revo-
cation capabilities as the scheme in [25] (bounded number
of revocations) were also designed in [28] and [8, 9]. In all
these schemes the bound on the number of revocations is pro-
portional to the ciphertext size of the system. We remark that
the scheme of [8] allows for an unlimited number of revoca-
tions, but does not have transmission efficiency as the size of
ciphertexts grows with the number of revocations.

We note that client-side scalability was recognized as an
important issue and was considered in the context of long-lived
broadcast encryption in [15]. This scheme does not operate in
a server-scalable environment and its main goal is analyzing
the cost of rekeying in the course of the life time of the system.
Finally, scalable revoking can also be achieved in the context
of multicast refresh-key [5,29]. Note that these schemes, how-
ever, do not intend to provide traitor tracing functionalities.

Regarding the nature of traceability of the present work,
the condition proven in [19] regarding black-box tracebil-
ity cannot be satisfied efficiently in our setting and thus our
scheme cannot support black-box traceability in an efficient
manner. This problem is inherent to all algebraic schemes like
ours and those in [3,21,25]. Thus, the best we can hope for is
either efficient non-black-box traceability or black-box con-
firmation (first proposed in [3]), which is an algorithm for the
black-box model that may take time exponential in the number
of traitors, but it is applicable to numerous practical scenarios.
Our scheme efficiently supports both of them.

An interesting aspect is the issue of “statefulness” of the
receivers in a digital content broadcast scheme. A receiver
that maintains a state needs to be online and observe all the
transmissions of the security manager. On the other hand, a
stateless receiver may arbitrarily go off-line and then recon-
nect to the system without having to synchronize any infor-
mation with previous transmissions. Statefulness affects the
revocation capability of a scheme. Previous work on revoca-
tion and traceability was consistent with the stateless receiver
scenario [8,9,17,18,23,25,28]. Nevertheless, efficient long-
lived system seems to require some degree of statefulness,
cf. [14]. The present work takes a hybrid approach similar to
that of revocation method 2 of [25] (which is in the private-key
setting): receivers do not maintain state across various system
operations, nevertheless, the system changes phases or periods
across which a receiver should maintain state.

As a final note, we remark that scalable traitor tracing and
revoking addresses a somewhat different problem than dy-
namic traitor tracing (introduced in [13]). This latter concept
deals with a specific functionality of the traitor tracing proce-
dure (called “dynamic”), and does not deal with dynamically
changing provider and user populations (despite the name).
In particular, dynamic traitor tracing deals with the setting of
pirate rebroadcast and the capability to trace pirates by ob-
serving the rebroadcasted data – an interesting scenario that
requires robust watermarking techniques, but that we do not
consider in this work.

1.3 Our results

Given the state of the art, we notice a lack of models and sys-
tems where all the properties that constitute a scalable public-
key traitor tracing scheme are achieved simultaneously. The
study of such a scheme is the undertaking of the present work
and our results and approach are outlined in this subsection.
An earlier version of this work appeared in [10]; the present
work presents detailed modeling of the primitive suggested in
this earlier paper, contains all proofs and corrects a flaw in the
original construction.

In this work, we introduce the first model of a scalable
public-key traitor tracing scheme where an unlimited number
of users can be added and removed efficiently from the sys-
tem. Being based on public-key techniques, the scheme sup-
ports any number of content providers broadcasting over the
same infrastructure. Based on the DDH assumption, we then
present a concrete scheme meeting these requirements, while
preserving the confidentiality of the broadcast from revoked
users in the adaptive chosen-plaintext sense. Addition of new
users does not affect the keys of users already in the system.
Unlimited number of user removals is achieved by dividing the
lifetime of the system into periods: within a period, a bounded
number of user removals can be executed. When an a priori
specified threshold is reached, a fresh period is started with
a New-period operation. For efficiency, such operation does
not require private channels between the system manager and
the users, and its complexity is independent of the number of
users in the system. Within a period, users are not required to
maintain state and are stateless. With every New-period op-
eration each user needs to update its private-key information
by employing an efficient key-update operation that depends
on a security parameter.

The renewal of periods is influenced by the “proactive
security model” of Ostrovsky and Yung [26], where informa-
tion is updated by the manager. Unlike the proactive model,
though, each period has a different key, which is reminiscent
of the “key insulated” model of security of Dodis et al. [11].

In a scalable scheme, adversaries can introduce adversa-
rially-controlled users in the system, they can observe the mod-
ifications to the global public key that occur during the run-
time operation of the scheme and potentially take advantage
of them. We consider two types of adversaries, the ones that
attempt to defeat the content protection and user-management
mechanism of the system and the ones that try to elude the
traceability capability. Since the adversarial goal is distinct in
these two cases, we consider the following classification of
the two adversaries:

• Window adversary: the adversary obtains the encryption-
key as well as some secret keys that are subsequently re-
voked; the adversary remains active and observes the re-
vocation of other users of the system (in fact we allow
the adversary to adaptively select which users should be
revoked an unbounded number of times). Moreover, the
adversary is allowed to control arbitrarily many content
providers and select the content that is scrambled by the
system, except for the challenge broadcast. We show that
our construction is secure against window adversaries as
long as they are fully revoked in a “window” of the sys-
tem’s operation that has a certain length (specified as a
system parameter).
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• Traceability adversary: the adversary, as before, obtains
some secret keys and constructs a pirate decryption device,
employing the secret user-key information (we allow the
adversary to adaptively select the identities of the traitors).
We show that our construction is secure against this type
of adversaries in the non-black-box traitor tracing model.
Our traitor tracing algorithm is deterministic and recovers
the identities of all traitors (i.e., those who contributed
to the pirate-key construction). Furthermore, our scheme
supports the black-box confirmation method of [3], that
even allows a form of traceability in the black-box traitor
tracing model.

The advantage of our scalable public-key traitor tracing
scheme over previous results comes from the fact that any ad-
versary against the content protection mechanism that is fully
revoked in the specified window of the system’s operation
will, in fact, “expire.” An expired adversary will be incapable
of intercepting the scrambled content (in the semantic secu-
rity sense) even if it remains active in the system after being
revoked. It is the capability of our scheme to expire adver-
saries that allows for the enhanced functionality of an unlim-
ited number of revocations. None of the previous public-key
traitor tracing schemes with revocation capability [8,9,25,28]
possessed this crucial property. Indeed, in all previous public-
key schemes, if an adversary, after being revoked, could con-
tinue to observe the system operations and cause more user
revocations, then she would be able to “revive” her revoked
key information and use it to intercept the scrambled content
again.

2 The scalable public-key tracing and revoking model

In the scalable public-key traitor tracing model, the lifetime of
the system is divided into periods.A period is an administrative
unit managed based on the system activity and (possibly) on
time passing.

A scalable scheme is comprised of the following basic
procedures:

• Setup. An initialization procedure that is executed by the
security manager. It takes as input a security parameter
1k and a saturation limit 1v that is an upper bound to the
number of users that can be removed within a period. It
generates a master secret key MSK along with a public
key PK. The security manager keeps MSK secret and
publishes PK.
• Add-user. It is a key-generation procedure executed by

the security manager. It takes as input the master secret
key MSK and the identity i of the new user, and results
in a personalized secret key SKi which is securely com-
municated to user i.

• Encryption. A public encryption algorithm E that takes as
input the public key PK and a plaintext M , and outputs
a ciphertext C, to be distributed to the user population
through an insecure broadcast channel.
• Decryption. A deterministic algorithm D that takes as

input the secret key SKi of some user i and a ciphertext
C, and outputs the corresponding plaintext or ⊥.
• Remove-user. A procedure that given a public key PK,

the identity of a user i and the corresponding secret key

SKi, results in a public key PK ′ so that, for all messages
M ,E(PK ′,M) should be “incomprehensible” for the user
holding the revoked secret key SKi, while non-removed
users should be capable of decrypting it. If the saturation
limit has been reached, then a New-period operation has
to be executed before removing user i.
• New-period. A procedure executed by the security man-

ager to initiate a fresh period when the saturation limit
is reached (a reactive change), or when a certain time-
limit is reached (a proactive change). It takes as input the
master secret key MSK and the current public key PK,
and results in a new public key PK ′ and a special reset
message to be transmitted over an authenticated but oth-
erwise insecure broadcast channel. Active subscribers can
interpret such reset message and update their secret key
accordingly; users removed in previous periods, instead,
are prevented from doing do by the security properties of
the scheme (cf. Sect. 5).
• Tracing. Given the master secret key MSK, the current

public key PK and access (either black-box or non-black-
box, cf. Sect. 6) to a pirate decoder, this procedure iden-
tifies (at least) one of the traitor users whose keys were
employed to construct the pirate decoder.

2.1 Scalability objectives

A scalable scheme should satisfy the following requirements:

• Efficient addition of unlimited number of users throughout
the scheme’s lifetime. Specifically, the Add-user opera-
tion should have (i) communication independent of the
size of the user population, and (ii) it should not involve
the existing users of the system in any way.
• Efficient revocation of the decryption capabilities of a set

of users within a period, provided that the number of users
to be removed is below the saturation limit. Specifically,
Remove-user should have time complexity independent
of the total number of active users in the system, and should
only affect the public key of the system.
• Efficient introduction of a new period. The communica-

tion overhead for changing a period should be indepen-
dent of the total number of active users in the system and
it should not require private communication channels be-
tween the security manager and the active users (but con-
trary to Remove-user it will require from users to modify
their secret keys – as a result, in our model users are state-
less within a period and stateful across periods).
• Efficient traitor tracing of a pirate decoder. Specifically,

the tracing procedure should be polynomial-time in the
number of users and the number of traitors.

2.2 Formal modeling of scalable schemes

A scalable public-key traitor tracing scheme should provide
two basic functionalities: on one hand, the system should be
capable of revoking the decryption capabilities of “bad” users;
on the other hand, it should be capable of identifying users that
participate in the construction of pirate decoders. We formally
model the security of revocation and tracing in Sect. 5 and
Sect. 6, respectively.
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3 Preliminaries

Throughout the paper, k will denote a security parameter; let
q be a k-bit prime number and let G be a cyclic group of order
q. We assume that G is the (multiplicative) subgroup of order
q of Z

∗
p, where q | (p−1) and p is a large prime. Alternatively,

one can take as group G the (additive) group of points of an
elliptic curve over a finite field.

Definition 1. Consider the uniform distribution over the fol-
lowing sets:

R
.= {〈g, g′, u, u′〉 | g, g′, u, u′ ∈ G}

D
.= {〈g, g′, u, u′〉 | g, g′, u, u′ ∈ G, logg u = logg′ u′}.

For every 0/1-valued probabilistic polynomial-time algorithm
A and for all k ∈ Z≥0 , define the DDH advantage of A
against G at k as:

AdvDDHG,A(k) .=
∣∣∣Pr[τ = 1 | ρ R← R; τ R← A(1k, ρ)]−

Pr[τ = 1 | ρ R← D; τ R← A(1k, ρ)]
∣∣∣

where the probability is over the random coins of A and the
random choice of ρ from R and D, respectively.

Definition 2. Let AdvDDHG(k) .= maxAAdvDDHG,A(k),
where the max is over all probabilistic, polynomial-time 0/1-
valued algorithms A.

Assumption 1 (Decisional Diffie-Hellman Assumption)
The Decisional Diffie-Hellman (DDH) assumption for G as-
serts that the function AdvDDHG(k) is negligible in k.

In the following, we will also need a (weaker) assumption
about the hardness of computing discrete logarithms in G.

Definition 3. For every probabilistic polynomial-time algo-
rithm A and for all k ∈ Z≥0 , define the DLog advantage of
A against G at k as:

AdvDLogG,A(k) .= Pr[w′ = w | g, g′ R← G;w ← logg g
′;

w′ ← A(1k, g, g′)]

where the probability is over the random coins of A and the
random choice of g, g′ from G.

Definition 4. Let AdvDLogG(k) .= maxAAdvDLogG,A(k),
where the max is over all probabilistic, polynomial-time al-
gorithms A.

Assumption 2 (Discrete Logarithm Assumption)
The Discrete Logarithm (DLog) assumption for G asserts that
the function AdvDLogG(k) is negligible in k.

3.1 Discrete logarithm representations

Let g be a generator of G and let h0, h1, . . . , hv be elements
of G such that

hj = grj

with j = 0, . . . , v and r0, . . . , rv ∈ Zq. For a certain element
y
.= gb of G, a representation of y with respect to the base

h0, . . . , hv is a (v + 1)-vector

δ
.= 〈δ0, . . . , δv〉

such that:

y =
v∏

�=1

hδ�

�

or equivalently δ · r = b where “·” denotes the inner product
of two vectors modulo q.

It is well known (e.g., see [4]) that obtaining representa-
tions of a given y with respect to some base h0, . . . , hv is as
hard as the discrete logarithm problem over G. Furthermore, it
was shown in Lemma 3.2 of [3] that if some adversary is given
m < v random representations of some ywith respect to some
base, then any additional representation that can be obtained
has to be a “convex combination” of the given representations
(a convex combination of the vectors δ1, . . . , δm is a vector∑m

�=1 µ�δ� with
∑m

�=1 µ� = 1). However, our scheme makes
use of a particular family of discrete logarithm representations,
introduced below. In Sect. 6 we will see how Lemma 3.2 of [3]
can be modified accordingly.

3.2 Leap-vectors

We introduce a new family of discrete logarithm representa-
tions, called leap-vectors. In what follows, Z

v
q [x] denotes the

set of v-degree polynomials over Zq and Z
<v
q [x] denotes the

ring of polynomials over Zq with degree less than v.

Definition 5. Given z1, . . . , zv ∈ Zq and P (x) ∈ Z
v
q [x], the

setLP
z1,...,zv

of leap-vectors with respect toP (·) and the values
z1, . . . , zv , consists of all vectors α ∈ Z

v+1
q for which it holds

that:
P (0) = α · 〈1, P (z1), . . . , P (zv)〉. (1)

In other words, a leap-vector with respect to P (·) and
z1, . . . , zv , is a representation of gP (0) with respect to the
base

g, gP (z1), . . . , gP (zv).

Given any leap-vector α := 〈α0, . . . , αv〉 with respect to
some values z1, . . . , zv , it is possible to derive the equation

α0 =

(
1−

v∑
�=1

α�

)
a0 +

v∑
j=1

(
v∑

�=1

zj
�α�

)
aj

over the coefficients of the polynomial

P (x) := a0 + a1x+ . . .+ avx
v.

If one possesses a point 〈xi, P (xi)〉 of the polynomial
P (·), it is possible to generate a leap-vector for the values
z1, . . . , zv (provided that xi �∈ {z1, . . . , zv}) using Lagrange
interpolation.

Definition 6. Given distinct xi, z1, . . . , zv ∈ Zq, and P (·) ∈
Z

v
q [x], define the leap-vector νxi,P

z1,...,zv
associated to the point

〈xi, P (xi)〉 with respect to P (·) and z1, . . . , zv as:

νxi,P
z1,...,zv

.= 〈λ(i)
0 P (xi), λ

(i)
1 , . . . , λ(i)

v 〉 (2)
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where

λ
(i)
0

.=
v∏

j=1

xi

xi − zj
(3)

and, for � = 1, . . . , v,

λ
(i)
�

.=
z�

z� − xi

v∏
j = 1
j �= �

z�

z� − zj
. (4)

An important property of leap-vectors is the following:

Proposition 1. Given a polynomial P (·) ∈ Z
v
q [x] and the val-

ues z1, . . . , zv ∈ Zq, knowledge of a leap-vector α∈LP
z1,...,zv

implies knowledge of a linear equation on the coefficients of
P (·), linearly independent from the linear equations defined
using 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉.

Proof. Define

π
.= (P (z1), P (z2), . . . , P (zv), α0)T .

The constraint on the coefficients a0, a1, . . . , av of the poly-
nomial P (·) arising from points 〈z1, P (z1)〉, . . ., 〈zv, P (zv)〉
and the equation associated to the leap-vector α, can be rep-
resented as:

π = M · a
where

a
.= (a0, a1, . . . , av)T

and

M .=




1 z1 . . . zv
1

1 z2 . . . zv
2

...
...

...
...

1 zv . . . zv
v

1−
∑v

j=1 αj −
∑v

j=1 αjzj . . . −
∑v

j=1 αjz
v
j




Notice that matrix M above is obtained from a Vander-
monde matrix by adding a linear combination of the first v
rows to the last one. Since every Vandermonde matrix has full
rank, it follows that M has full rank, too. Hence, the equation
defined by the leap-vector α is linearly independent to the
equations defined by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉.

��

As a result, the possession of a leap-vector implies some
knowledge about the polynomial P (·) beyond what is implied
by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. In other words, a
leap-vector is the necessary information needed to leap from
the values P (z1), . . . , P (zv) to the value P (0).

4 The scheme

Here we present our scheme and show that it is a correct public-
key system (i.e., that the public-key information allows anyone
to encrypt and that a holder of one of the private-key repre-
sentations can apply the decryption algorithm to recover the
plaintext).

Setup. The description of a cyclic multiplicative group G
of order q is generated. Then, two random generators g, g′ ∈ G

and two random polynomialsA(·), B(·) ∈ Z
v
q [x] are selected.

The parameter v will be also referred to as the saturation limit,
whereasm = 	 v

2 
will be the maximum traitor collusion size.
Define

A(x) := a0 + a1x+ . . .+ avx
v

B(x) := b0 + b1x+ . . .+ bvx
v.

The master secret key is

MSK := (A(·), B(·))

and the system’s public key is

PK := 〈g, g′, gA(0)g′B(0), 〈�, gA(�)g′B(�)〉v�=1〉

where indices 1, . . . , v are used as place-holders. The security
manager initiates a new period by publishing PK, and setting
the saturation level L to 0. L is a system variable known to
the security manager.

Add-user. When a new user i requests to join the system,
the security manager transmits (over a private channel) the
tuple SKi := 〈xi, A(xi), B(xi)〉 to user i, where

xi
R← Zq xi �∈ {1, . . . , v} ∪ U .

The setU is the user-registry containing all values xi that were
selected in previous executions of the Add-user procedure.
Subsequently, the security manager records the value xi as
associated to user i and adds xi to U .

Encryption. The sender obtains the current public key of
the system

PK := 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉

(where y = gA(0)g′B(0) and h� = gA(z�)g′B(z�), for some
identity z�, � = 1, . . ., v) and then employs the encryption func-
tion E that, given the public key PK and a plaintext M ∈ G,

selects a random r
R← Zq and sets the corresponding ciphertext

to be:

ψ
.= 〈gr, g′r, yrM, 〈z1, hr

1〉, . . . , 〈zv, h
r
v〉〉.

Decryption. The decryption algorithm D takes as input a
secret key SKi = 〈xi, A(xi), B(xi)〉 and a ciphertext

ψ = 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉.

D first computes the leap-vectors

νA,i
.= νxi,A

z1,...,zv
νB,i

.= νxi,B
z1,...,zv

associated to the points 〈xi, A(xi)〉 and 〈xi, B(xi)〉 with re-
spect to the values z1, . . . , zv . Observe that, by Definition 6
(Eqs. (2) and (4)), νA,i and νB,i agree on all components ex-
cept for the first: denoting with (νA,i)� (respectively (νB,i)�)
the entry in νA,i (respectively νB,i) indexed by �, it holds that
νi,�

.= (νA,i)� = (νB,i)�, for � = 1, . . . , v.
The decryption algorithm returns:

D(ψ) .=
u′′

u(νA,i)0u′(νB,i)0
∏v

�=1 u
νi,�

�
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If ψ is a properly formed ciphertext, i.e.

ψ = 〈gr, g′r, yrM, 〈z1, hr
1〉, . . . , 〈zv, h

r
v〉〉

then, due to the properties of the leap-vector representation
(Eq. (1)), we have:

D(ψ) =
grA(0)g′rB(0)M

gr(νA,i)0g′r(νB,i)0
∏v

�=1 g
rνi,�A(z�)g′rνi,�B(z�)

= M

Remove-user. Let i1, . . . , ik be the identities of the users
to be removed, so that L + k ≤ v. Suppose that the current
public key is PK = 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉. The re-
vocation procedure uses the user-registry U to retrieve the
values xi1 , . . . , xik

and modifies the current public key PK
as:

PK :=〈g, g′, y, 〈z1, h1〉, . . . , 〈zL, hL〉,
〈xi1 , g

A(xi1 )g′B(xi1 )〉, . . . , 〈xik
, gA(xik

)g′B(xik
)〉,

〈zL+k+1, hL+k+1〉, . . . , 〈zv, hv〉〉.

Finally, the saturation level is increased to L := L+ k.
New-period. When a Remove-user operation is invoked

such that the resulting saturation level L would “overflow”
the saturation limit v, the security manager starts a new pe-
riod. First, the security manager broadcasts a special message
change period (signed, but not encrypted). Note that we as-
sume that change period is digitally signed by the security
manager so that no third parties can maliciously initiate the
New-period operation.

Let enc : Zq → G be an easily invertible encoding that
translates a number from {0, . . . , q − 1} into an element of
G. If G is the subgroup of Z

∗
p of oder q = p−1

2 , then enc

can be implemented as follows: enc(a) .= (a + 1)2 mod p.
It is easy to see that enc(a) ∈ G for any a ∈ Zq: this is
because G is the subgroup of quadratic residues modulo p.
The encoding function enc can be easily inverted as follows:
given b := enc(a), compute the two square roots ρ1, ρ2 of a
modulo p and define enc−1(b) = min{ρ1, ρ2}−1 where min
treats ρ1, ρ2 as integers in {0, . . . , p− 1}.

The security manager selects d0, . . . , dv, e0, . . . , ev uni-
formly at random from Zq and transmits the reset message

ψreset := 〈E(PK, enc(d0)), . . . , E(PK, enc(dv)),
E(PK, enc(e0)), . . . , E(PK, enc(ev))〉

where PK is the current public key of the system. Let D(·)
be the polynomial defined by d0, . . . , dv and let E(·) be the
polynomial defined by e0, . . . , ev: namely,

D(x) = d0 + d1x+ . . .+ dvx
v

E(x) = e0 + e1x+ . . .+ evx
v.

At this point, the security manager resets the saturation level
L := 0, updates the two secret polynomials to be:

Anew(·) := A(·) +D(·) (mod q)
Bnew(·) := B(·) + E(·) (mod q)

and modifies the public key PK as follows:

PKnew := 〈g, g′, gAnew(0)g′Bnew(0), 〈�, gAnew(�)g′Bnew(�)〉v�=1〉.

Upon receiving the signed change period message, user i en-
ters a wait-mode. When the user receives the reset message
ψreset, he decrypts all ciphertexts, decodes the coefficients
d0, . . . , dv, e0, . . . , ev using enc−1 and forms the polynomi-
als D(·), E(·). Then, the user modifies his secret key SKi to
be the new tuple

SKi := 〈xi, A(xi) +D(xi), B(xi) + E(xi)〉.

Intuitively, this is secure because a revoked user i will not
be able to decrypt any of the ciphertext in the reset message.
Therefore, the secret polynomials in the (updated) master se-
cret key will look completely random to user i and his secret
key will become useless. A formal security analysis is pre-
sented in Sect. 5.

Remark. We notice that the efficiency of the New-period oper-
ation can be improved by using hybrid encryption. In particu-
lar, instead of computing and sending 2v+2 ciphertexts under
the current public-key (which incurs a cost ofO(v2) in terms of
communication), the security manager may pick a random ses-
sion key k, use it to encrypt the 2v+2 coefficients via a secure
one-time symmetric-key encryption scheme, and broadcast
the resulting ciphertext together with E(PK, enc′(k)) (where
enc′ is a suitable encoding of session keys into elements of G).
Each non-revoked user will then be able to recover the coeffi-
cients d0, . . ., dv , e0, . . ., ev from such reset message by first
recovering the session key k from the public-key ciphertext
E(PK, enc′(k)), and then using k to decrypt the symmetric-
key ciphertext. This will drop the communication cost toO(v).
We omit the details.

5 Dealing with revocation

5.1 Model for revocation

The public-key traitor tracing scheme described in Sect. 4
withstands a more powerful type of attack than what has been
considered so far in previous related work [8, 9, 25, 28]. In
our attack scenario, the adversary A is allowed not only to
join the system up to a bounded number of times v (equal to
the saturation level, which is fixed as a system parameter),
but also to observe and even actively affect the evolution of
the system, by specifying which users should be revoked and
their relative order in the sequence of revocations. Notice that
this type of adversary defeats all previous public-key traitor
tracing schemes with fixed ciphertext size [9,25,28].

More formally, in our model the adversary interleaves, in
any adaptively-chosen order, two types of queries:

• Join query: it models the subscription to the system of a
user controlled by the adversary. To reply to such query, a
variant of the Add-user operation is executed, in which the
adversary is allowed to specify the identity for which she
will get the decryption key, (whereas in a regular Add-user
operation, the security manager would assign a random
identity to the new user). Thus, the Join query models a
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more powerful adversary that could control the random
choice of the security manager. Notice that, after a Join
query, the adversary obtains a valid secret key capable of
recovering subsequent encrypted broadcasts.
• Revoke query: it models the revocation of a user from the

system. To reply to such query, a Remove-user operation
is performed and A is given the new public key that re-
sults after the invalidation of the key corresponding to the
revoked user.

The main constraint that the above attack scenario imposes on
the adversary’s behavior is that A can make at most v Join
queries; no restriction is placed on the number of Revoke
queries. Whenever A has finished collecting the amount of
information she thinks she needs to maximize her chances
of winning the game, the corrupted users are revoked, the
adversary outputs a pair of messages and receives back the
encryption of either one with equal probability.

Note that proving security under this attack scenario does
not mean that a real-world implementation of our scheme
would withstand only adversaries corrupting up to v users;
rather, it provides provable security against adversaries con-
trolling an unlimited number of users, as long as no more
than v users are ever corrupted in a row, without the security
manager discovering them and revoking their decryption keys
within a single period.

To fully appreciate the novelty of the attack scenario pro-
posed above, recall that in the adversarial model that has
been considered in previous work on public-key traitor trac-
ing [8, 9, 25, 28], the only functionality conceded to A was
to obtain the secret key of a user which was also simultane-
ously revoked from the system. In our model, such capability,
usually called corruption, is split into two distinct operations.
This clearly allows the adversary to mount more powerful at-
tacks, and does indeed more closely model the reality, since
the security manager does not always find out about “bad”
users immediately. Moreover, keeping the Join and Revoke
operations distinct, allows us to impose on the adversary the
(minimal) restriction of obtaining at most v secret keys, with-
out bounding the number of Revoke queries. This constitutes
a major novelty of our adversarial model: previous work re-
quired both the number of revoked users and the number of
compromised secret keys (tied together by the definition of
corruption query) to be bounded by v.

Clearly, for the challenge to the adversary not to be trivial,
all the secret keys that A obtains through Join queries must
have been rendered useless by corresponding subsequent Re-
voke queries. We model this necessary constraint by requiring
that before asking for her challenge,A enters a wait-mode dur-
ing which all the (at most v) users she corrupted are revoked
within a window of consecutive revocations that should not
get interrupted by a New-period operation.

It is interesting to point here some technical similarities
of the window adversary model to a (lunch-time) Chosen Ci-
phertext Attack (CCA1). In particular, in a lunch-time attack
the adversary, prior to obtaining the challenge, can query a
decryption oracle to obtain decryptions of chosen ciphertexts;
in the security proof, this introduces the technical challenge
of simulating such decryption oracle. In the case of a window-
adversary, the adversary can query the Join oracle to obtain
valid decryption keys (that will be revoked afterwards). From

a technical viewpoint, simulating the Join oracle is a techni-
cal challenge of similar nature to the task of simulating the
decryption oracle of a CCA1 attacker. Indeed, in our security
proof and system design we take advantage of techniques that
were developed for dealing with CCA1 attacks.

5.1.1 Formal model for window adversary

We formalize the above attack scenario in terms of the window
adversary attack game Gv

win(1
k), played between a challenger

and the adversary A. The game consists of three stages, de-
noted respectively fst, snd and trd. To enable coordination
between the three stages, at the end of each stageA is allowed
to output a piece of state information (via the variable aux),
which will be given as input to the next stage.

The first stage (fst) is a learning stage, in which the adver-
sary is allowed to obtain the secret keys of at most v users and
to make the system evolve via Revoke queries. At the end of
this stage, all the corrupted users get revoked.

The second stage (snd) is a choosing stage, in which A
picks two messages M0, M1 that she deems she will be able
to distinguish in the ciphertext form.

In the third stage (trd), A receives a challenge ciphertext
ψ∗, which consists of the encryption of either M0 or M1 with
equal probability. The game ends with A outputting her best
guess to whether M0 or M1 was encrypted.

1. Let 〈PK,MSK〉 R← Setup(1k)
2. Let L := 0, Corr := ∅
3. Let state := 〈L,PK,MSK,Corr〉
4. aux

R← AJoin(state,·),Revoke(1,state,·)(fst, state.PK)
5. If L+ |Corr| > v then exit

6. For all xj ∈ Corr do aux
R← aux||Revoke(0, state, xj)

7. 〈aux,M0,M1〉
R←ARevoke(1,state,·)(snd, aux, state.PK)

8. ψ∗ R← E(state.PK,Mσ∗), where σ∗ R← {0, 1}
9. σ

R← ARevoke(state,·)(trd, aux, state.PK,ψ∗)
10. Output Success if and only if σ = σ∗

The two oracles employed above are defined as follows:

Join(state, x) :
(i) parse state as 〈L,PK,MSK,Corr〉
(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉
(iii) parse MSK as (A(·), B(·))
(iv) if x ∈ {1, . . . , v}, then exit
(v) set Corr := Corr ∪ {x} and return (A(x), B(x))

Revoke(isOracle, state, x) :
(i) parse state as 〈L,PK,MSK,Corr〉
(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉
(iii) parse MSK as (A(·), B(·))
(iv) if isOracle = 1 and x ∈ Corr, then exit
(v) if L = v then a New-period operation is executed
and state is updated accordingly (i.e., L is reset to 0,
state.MSK is modified by adding the randomizing poly-
nomials and state.PK changes correspondingly)
(vi) set L := L+ 1
(vii) update state.PK by replacing the pair 〈zL, hL〉with
〈x, gA(x)g′B(x)〉
(viii) output state.PK; if step (v) caused a New-period
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operation, then also output the corresponding reset mes-
sage ψreset

Few points in the above formalization are worth of com-
ment. First, without loss of generality, we assume that the
adversary never corrupts the same user twice, as there is no
extra information to be gained. We also assume that A never
revokes the users it corrupts, as they get explicitly revoked at
step 6. of the attack game.

Second, note that the test at step 5. is needed to enforce
the window constraint: just testing |Corr| > v would not have
been enough to ensure that in step 6. we can revoke all the
corrupted users within the same period.

Finally, note that the code for Revoke is used both as an
oracle toA (steps 4. and 7.) and as a subroutine for the attack
game (step 6.). To distinguish these two cases, we use the
boolean variable isOracle.

Definition 7. Define A’s advantage as

AdvA(k) .=| Pr(σ = σ∗)− 1/2 |

where the probability is over all the randomness introduced
by the window attack game.

A public-key traitor tracing scheme is secure against win-
dow adversaries if for any PPT adversary A, AdvA(k) is
negligible in k .

5.2 Security of revocation

We now formally prove that the scalable public-key traitor
tracing scheme described in Sect. 4 is secure against window
adversaries (as defined above). In the security proof, we will
follow the same structural approach used in [9], first advo-
cated in [7]. Starting from the actual attack scenario, we con-
sider a sequence of hypothetical games, all defined over the
same probability space. In each game, the adversary’s view is
obtained in different ways, but its distribution is still indistin-
guishable among the games.

The security of our scheme relies on the DDH assumption
(Assumption 1) as shown below in Theorem 1.

Theorem 1. Under the decisional Diffie-Hellman Assumption
for G, the scheme presented above is secure against window
adversaries.

Proof. We define a sequence of “indistinguishable” games
G0,G1, . . ., all operating over the same underlying probabil-
ity space. Starting from the actual adversarial game G0

.=
Gv

win(1
k), we incrementally make slight modifications to the

behavior of the oracles, thus changing the way the adversary’s
view is computed, while maintaining the views’ distributions
indistinguishable among the games. In the last game, it will be
clear that the adversary has (at most) a negligible advantage;
by the indistinguishability of any two consecutive games, it
will follow that also in the original game the adversary’s ad-
vantage is negligible. Recall that in each game Gj , the goal of
adversaryA is to output σ ∈ {0, 1} which is her best guess to
the bit σ∗ used at step 7. of the attack game Gv

win(1
k) to create

the challenge ciphertext ψ∗: let Tj be the event that σ = σ∗
in game Gj (i.e., the event that the game ends with Success as

output). Without loss of generality, in the following we assume
that the adversary corrupts exactly v users during the attack
game.

Game G0. Define G0 to be the original game Gv
win(1

k).

Game G1. Define the “special” New-period operation to be
the first one to be caused by the Revoke oracle at step 7. of
the attack game. Depending on the adversary’s strategy, such
“special” New-period operation may not occur at all.

Game G1 is identical to game G0, except that in G1 the
reset message output by the “special” New-period operation
contains 2v+ 2 encryptions of random elements of Zq, rather
than encryptions of the coefficients of the randomizing polyno-
mials. This modification suggests that the secret polynomials
which are contained in state.MSK at the beginning of the
period initiated by the “special” New-period operation are to-
tally random, even given all the information in the adversary’s
view.

In Lemma 2 (whose proof is given below), we show that
the chances of adversary A winning game G1 cannot be sig-
nificantly better than her chances of winning game G0: more
precisely,∣∣Pr[T1]− Pr[T0]

∣∣ ≤ (4v + 4) AdvDDHG(k). (5)

Game G2. To turn game G1 into game G2, step 8. of the attack
game is modified as follows:

8′. ψ∗ ← E(state.PK,M),where M
R← G, σ∗ R← {0, 1}

Because of this change, the challenge ciphertext ψ∗ no longer
contains σ∗, nor does any other information in the adversary’s
view; therefore,

Pr[T2] =
1
2
. (6)

In Lemma 3, proven below, we show that the adversary
has almost the same chances to guess σ∗ in game G1 and G2:
more precisely,∣∣Pr[T2]− Pr[T1]

∣∣ ≤ 2 AdvDDHG(k). (7)

Combining Eqs. (5), (6), and (7) together, adversary A’s
advantage can be bounded as:

AdvA(k) ≤ (4v + 6) AdvDDHG(k).

��

The core of the proof of Theorem 1 is in the two lemmas
that follow, Lemma 2 and Lemma 3.

5.2.1 Overview of the proof technique

Throughout the paper, we make extensive use of a technical
lemma, stated and proved as Lemma 9 in [7]. For ease of
reference, we report it verbatim below.

Lemma 1. Let k,n be integers with 1 ≤ k ≤ n, and let K
be a finite field. Consider a probability space with random
variables α ∈ Kn×1,β = (β1, . . . , βk)T ∈ Kk×1,γ ∈
Kk×1, and M ∈ Kk×n, such that α is uniformly distributed
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overKn,β = Mα+γ, and for 1 ≤ i ≤ k, the first ith rows of
M and γ are determined by β1, . . . , βi−1. Then, conditioning
on any fixed values of β1, . . . , βk−1 such that the resulting
matrix M has rank k, the value of βk is uniformly distributed
over K in the resulting conditional probability space.

Our use of this technical lemma is quite uniform across the
proofs to follow. In all cases, our main aim will be to prove
that some quantity rand ∈ Zq looks uniformly random to the
adversary, despite all the other information in the adversary’s
view. At a high level, our approach is organized in the follow-
ing steps.

First, we consider all the randomness underlying a specific
execution of the attack game. This will include, for instance,
the random coins of the adversary, the randomness used in cre-
ating the challenge, etc. We then partition all the randomness
in two parts: a quantity V and a vector α, such that condition-
ing on any fixed value of V , α is still distributed uniformly
at random in the appropriate vector space (which usually will
have Zq as support).

Second, we consider another vector β, whose last entry
is rand, with the property that fixing a value for V and β
also fixes the value of α, and thus all the information of the
entire game (which in particular includes the information in
the adversary’s view).

Third, we define a matrix M (and possibly a vector γ)
describing the constraints binding vector α to vector β, thus
obtaining a matrix equation of the form:

β = M ·α + γ.

Finally, we make sure that the preconditions of Lemma 1
are fulfilled; it will follow that the last entry of β (which is the
quantity of interest rand), is distributed uniformly at random
in Zq, even conditioning on fixed values of V and of all the
other entries of β, or equivalently, conditioning on all the other
information in the adversary’s view.

5.2.2 Notation

In what follows, we refer to the period initiated by the tth
New-period operation as the tth period. Also, for notational
convenience, we denote withDt(·) andEt(·) the randomizing
polynomials chosen during the tth New-period operation and
with dt

0, . . . , d
t
v and et

0, . . . , e
t
v the corresponding coefficients.

In some cases, it will be convenient to denote these 2v + 2
coefficients with a uniform notation; for this reason, for j =
1, . . . , 2v + 2, we additionally define ctj as follows:

ctj
.=

{
dt

j−1 if j ∈ {1, . . . , v + 1}
ej−v−2 if j ∈ {v + 2, . . . , 2v + 2}

Moreover, letAt(·) andBt(·) be the values of the secret poly-
nomials after the changes due to the tth New-period opera-
tion. In other words, the system starts with period number 0,
A0(·) and B0(·) are the polynomials initially output by the
Setup algorithm and

At(·) .= At−1(·) +Dt(·) Bt(·) .= Bt−1(·) + Et(·). (8)

Also define

Dt1,t2(·) .=
t2∑

t=t1

Dt(·) Et1,t2(·) .=
t2∑

t=t1

Et(·). (9)

5.2.3 Proofs of lemmata

Lemma 2.
∣∣Pr[T1]− Pr[T0]

∣∣ ≤ (4v + 4) AdvDDHG(k).

Proof. Recall that G1 differs from G0 only in the way the reset
message is computed for the “special” New-period operation:
hence, if the adversary’s strategy does not cause any New-
period operation to occur during step 7. of the attack game,
the two games are identical, so that in fact Pr[T1] = Pr[T0],
and the lemma immediately follows.

We now discuss the case in which the “special” New-
period operation takes place: in particular, let t̂ be the pe-
riod initiated by this operation and Dt̂(·) and E t̂(·) be the
randomizing polynomials used in such New-period opera-
tion. We then consider the sequence of 2v + 3 hybrid games
G0,0, . . . ,G0,2v+2, where G0,i is defined as G0, except that
the first i ciphertexts in the “special” reset message contain
random values rather than coefficients of the randomizing
polynomials Dt̂(·) and E t̂(·). In other words, G0,0 ≡ G0,
G0,2v+2 ≡ G1 and two consecutive hybrid games G0,i and
G0,i+1 differ only in that the (i+ 1)th ciphertext of the “spe-
cial” reset message contains the (i+ 1)th coefficient in game
G0,i, whereas it contains a random value in game G0,i+1.
Then, to prove the lemma it suffices to show that for all
i = 0, . . . , 2v + 1 it holds:∣∣Pr[T0,i+1]− Pr[T0,i]

∣∣ ≤ 2 AdvDDHG(k). (10)

To this aim, fix i and consider the additional games G0
0,i ≡

G0,i, G1
0,i, G2

0,i, G3
0,i, G4

0,i ≡ G0,i+1, defined as follows:

Game G1
0,i. It operates as G0

0,i, except that the (i + 1)th ci-
phertext in the “special” reset message is computed as:

〈u, u′, u′′, 〈z�, u
At̂−1(z�)u′Bt̂−1(z�)〉v�=1〉

where u
.= gr, u′ .= g′r, u′′ .= uAt̂−1(0) u′Bt̂−1(0)enc(ct̂i+1),

r
R← Zq and ct̂i+1 is either the (i + 1)th coefficient of the

randomizing polynomial Dt̂(·) (if 0 ≤ i ≤ v) or the (i− v)th
coefficient of E t̂(·) (if v + 1 ≤ i ≤ 2v + 1). Since such
modification is just a syntactic change, it holds:

Pr[T 1
0,i] = Pr[T 0

0,i]. (11)

Game G2
0,i. To turn game G1

0,i into game G2
0,i we make an-

other change to the way in which the (i + 1)th ciphertext in
the “special” reset message is computed. Namely, the value u′

is now computed as u′ .= g′r′
, for a random r′ ∈ Zq such that

r′ �= r. In other words, in game G2
0,i the values u and u′ are

nearly independent (being subject only to r �= r′), whereas in
game G1

0,i they are obtained using the same value r. Therefore,
using a standard reduction argument, any difference in behav-
ior between games G1

0,i and G2
0,i can be used to distinguish

Diffie-Hellman tuples from totally random tuples. Hence,∣∣Pr[T 2
0,i]− Pr[T 1

0,i]
∣∣ ≤ AdvDDHG(k). (12)

Note that for simplicity here (and throughout the rest of the
paper) we omit the negligible additive term that is caused by
the negligibly-rare event r = r′.
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Game G3
0,i. To define game G3

0,i, we again modify the (i +
1)th ciphertext in the “special” reset message: specifically, the
value u′′ is now computed as gr′′

, for a random r′′ ∈ Zq.
We want to show that this modification does not alter the

behavior of adversary A or, more precisely, that Pr[T 3
0,i] =

Pr[T 2
0,i]. To this aim, we first consider all the random variables

affecting the adversary’s view, and then we show that they are
distributed according to the same joint distribution in both
games.

Let t̄ be the total number of New-period operations that
occur during the entire game, and for t = 1, . . . , t̄, let ct1,
. . ., ct2v+2 be the coefficients of the randomizing polynomials
Dt(·) and Et(·) used in the tth New-period operation. For
t = 1, . . . , t̄, t �= t̂, and j = 1, . . . , 2v + 2, let rt

j be the
randomness used to encrypt (the encoding of) coefficient ctj
in the tth reset message.

As for the “special” reset message (i.e., the one corre-
sponding to t = t̂), recall that in both game G2

0,i and game
G3

0,i the first i ciphertexts consists of just random values s1,
. . ., si ∈ G, rather than (the encoding of) the corresponding
coefficients ct̂1, . . ., ct̂i. Coefficients ct̂i+2, . . ., ct̂2v+2, instead,

are regularly encrypted under the public key PK t̂−1 in both
games: let rt̂

j be the randomness used in such encryptions,
for j = i + 2, . . . , 2v + 2. The ciphertext corresponding to
coefficient ci+1 in the “special” reset message constitutes the
only difference between the adversary’s view in game G2

0,i

and G3
0,i. In particular, such encryption is defined in terms of

the values r, r′ and r′′: r and r′ are randomly chosen from
Zq in both games, whereas r′′ is computed differently in the
two games. For the sake of clarity, we will denote with [r′′]2
and [r′′]3 the value of such quantity in game G2

0,i and G3
0,i,

respectively. Notice that [r′′]2 is a linear combination of r, r′
(and other quantities), whereas [r′′]3 is uniformly distributed
in Zq, independently of anything else.

Define

W
.=
(
{ctj , rt

j}2v+2
j = 1
t �= t̂

, {ct̂j , sj , r
t̂
j}ij=1, {ct̂j , rt̂

j}2v+2
j=i+1, r, r

′
)

and consider the quantity

V
.= (Coins, w, σ∗, r∗,W )

where Coins represents the coin tosses of A, w
.= logg g

′,
σ∗ is the random bit chosen by the challenger in step 8. of
the attack game and r∗ is the randomness used to create the
challenge ψ∗.

The remaining randomness used during the attack game
consists of the 2v + 2 coefficients of the polynomials A0(·),
B0(·) and can be represented by a vector α uniformly dis-
tributed in Z

(2v+2)×1
q :

α
.= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(2v+2)×1
q defined as:

β
.= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′)T

where X0
.= A0(0) + wB0(0), X�

.= A0(�) + wB0(�) and
A�

.= A0(x�) for � = 1, . . . , v, and r′′ .= logg u
′′.

It is clear by inspection that all the information in the
adversary’s view is completely determined by V and β. In
particular, the initial public key PK0 is fixed by β and w;
the secret keys of the corrupted users are determined by the
choice of β, Coins andw; the “special” reset message is fixed
by PK0, Coins, r′′ and all the randomness in W ; and the re-
sulting public key PK t̂ only depends on PK0 and W . Thus,
if the distribution of V and β is the same in both games G2

0,i

and G3
0,i, it will follow that Pr[T 3

0,i] = Pr[T 2
0,i]. Since the

definition of r′′ is the only difference between game G2
0,i and

G3
0,i, and in G3

0,i the value of [r′′]3 is chosen uniformly from
Zq, independently of anything else, it suffices to show that the
distribution of [r′′]2, conditioned on V and the first 2v + 1
entries of β, is also uniform in Zq.

In game G2
0,i, the quantities in V , β and α are related

according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
0,i (i.e. when the

value of the last entry is [r′′]2), γ ∈ Z
(2v+2)×1
q is the vector

γ
.=




0
0
...
0
0
...
0

rD0,t̂−1(0) + wr′E0,t̂−1(0) + logg enc(ct̂i+1)




and M ∈ Z
(2v+2)×(2v+2)
q is the matrix

M .=




1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r 0 . . . 0 wr′ 0 . . . 0




The above matrix describes all the constraints on α arising
from the information in the adversary’s view in game G2

0,i

(which, as noted above, can be described just by V and [β]2).
In other words, all other constraints on α are linear combi-
nation of the above, possibly using coefficients from V . In
particular, the constraints that the adversary can derive from
knowledge of the values B0(x�), � = 1, . . . , v (which come
from the secret keys that A got via Join queries) can be ob-
tained from the constraints corresponding to X0, X1, . . ., Xv ,
A1, . . ., Av and the value of w. As for Revoke queries, notice
that the public key PK resulting from invalidating the secret
key of an arbitrary user z during time period t, does not pro-
vide any new information about α to the adversary. Indeed,
PK only differs from the previous public key in that it con-
tains the value hz = gAt(z)g′Bt(z) which is determined by the
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quantity:

X .= At(z) + wBt(z)− (D0,t(z) + wE0,t(z))

= A0(z) + wB0(z).

Since such value is just a point of the v-degree polynomial
A0(·) +wB0(·), which is completely fixed by the values X0,
X1, . . ., Xv , it immediately follows that the constraint on α
induced by X is a linear combination of the first v+1 rows of
M. Similarly, the v values u1, . . ., uv included in the (v+1)th
ciphertext of the “special” reset message are determined by
the quantities Xz1 , . . ., Xzv where, for � = 1, . . . , v, Xz�

is
defined as:

rAt̂−1(z�)+wr′B t̂−1(z�)− (rD0,t̂−1(z�)+wr′E0,t̂−1(z�))

or equivalently

Xz�

.= rA0(z�) + wr′B0(z�).

Such values are just points of the v-degree polynomial

rA0(·) + wr′B0(·)

which is determined by A1, . . ., Av , B0(x1), . . ., B0(xv), r,
r′, w and [r′′]2. Thus, it follows that all the constraints on α
induced by Xz1 , . . ., Xzv are linear combinations of the rows
of M.

Moreover, M has rank (2v + 2), provided that r �= r′ and
w �= 0, since the corrupted users x1, . . ., xv are assumed to
be distinct.

As soon as we fix a value for V , vector γ and the first v+1
rows of matrix M are completely fixed, but α is still distributed
uniformly and independently at random in Z

(2v+2)×1
q . If we

additionally fix the value of the first (v + 1) components of
[β]2, the initial public key PK0 is fixed; it follows that the
first identity x1 thatA chooses to corrupt is also fixed and thus
the (v + 2)th row of M is determined. Fixing also a value for
A1 (which is the (v + 2)th entry of [β]2), the value of B1 is
fixed too, so that all the information on which the adversary
can base her choice of x2 is fixed, and thus the (v + 3)th row
of M is determined as well. By a similar reasoning, it follows
that fixing the first (v + i + 1) entries of [β]2 determines
the (v + i + 2)th row of M, for i = 1, . . . , v. Hence, by
Lemma 1, we can conclude that the conditional distribution of
[r′′]2, with respect to V and to all other components of [β]2,
is also uniform over Zq, from which it follows that

Pr[T 3
0,i] = Pr[T 2

0,i]. (13)

Game G4
0,i. Game G4

0,i is defined to be identical to G0,i+1.
Thus, G4

0,i differs from G3
0,i only in that the values u and u′

in the (i + 1)th ciphertext in the “special” reset message are
consistent, rather than being nearly independent, as in game
G3

0,i. Namely, the valuesu andu′ are now computed asu
.= gr

and u′ .= g′r, for the same random r ∈ Zq. It follows that any
difference in behavior between games G3

0,i and G4
0,i can be

used to distinguish Diffie-Hellman tuples from totally random
tuples. Hence,∣∣Pr[T 4

0,i]− Pr[T 3
0,i]
∣∣ ≤ AdvDDHG(k). (14)

Combining Eqs. (11), (12), (13) and (14) we get Eq. (10),
for all i = 0, . . . , 2v + 1; then, by definition of the hybrid
sequence G0,0, . . . ,G0,2v+2, the thesis follows. ��

Lemma 3.
∣∣Pr[T2]− Pr[T1]

∣∣ ≤ 2 AdvDDHG(k).

Proof. Recall that G2 differs from G1 only in the way the
challenge ciphertext ψ∗ is computed: in particular, in game
G1, ψ∗ encrypts either one of the two messages M0 and M1
chosen by the adversary, whereas in G2, ψ∗ encrypts a totally

random message M
R← G.

To reach the thesis, we consider the sequence of games
G0

1 ≡ G1, G1
1, G2

1, G3
1, G4

1 ≡ G2, defined below.

Game G1
1. It operates as G0

1, except that the challenge cipher-
text is computed as follows:

〈u∗, u′∗, u′′∗, 〈z∗
� , u

∗At∗
(z∗

� )u′∗Bt∗
(z∗

� )〉v�=1〉

where u∗ .= gr∗
, u′∗ .= g′r∗

, u′′∗ .= u∗At∗
(0)u′∗Bt∗

(0)
Mσ∗

and r∗ R← Zq. This syntactic change does not affect the adver-
sary’s view, and thus

Pr[T 1
1 ] = Pr[T 0

1 ]. (15)

Game G2
1. To turn game G1

1 into game G2
1 we make another

change to the way in which the challenge ciphertext is com-
puted. Namely, the value u′∗ is now computed as u′∗ .= g′r′∗

,
for a random r′∗ ∈ Zq such that r′∗ �= r∗. In other words, in
game G2

1 the values u∗ and u′∗ are nearly independent (be-
ing subject only to r∗ �= r′∗), whereas in game G1

1 they are
obtained using the same value r∗. Therefore, using a stan-
dard reduction argument, any difference in behavior between
games G1

1 and G2
1 can be used to distinguish Diffie-Hellman

tuples from totally random tuples. Hence,∣∣Pr[T 2
1 ]− Pr[T 1

1 ]
∣∣ ≤ AdvDDHG(k). (16)

Game G3
1. To define game G3

1, we again modify the challenge
ciphertext: specifically, the valueu′′∗ is now computed as gr′′∗

,
for a random r′′∗ ∈ Zq.

To prove that Pr[T 3
1 ] = Pr[T 2

1 ], we first consider all the
quantities that can affect event T 2

1 in game G2
1 and event T 3

1
in game G3

1, and then we show that these quantities have the
same joint distribution in both games.

Let Dt∗
(·) and Et∗

(·) be the randomizing polynomials
used in the last New-period operation before the challenge
ciphertext was created. (If no New-period occurred at all dur-
ing the attack game, then let both Dt∗

(·) and Et∗
(·) be just

the zero polynomial.)
Let t̄ be the total number of New-period operations that

occured during the entire game, and for t = 1, . . . , t̄, let ct1,
. . ., ct2v+2 be the coefficients of the randomizing polynomials
Dt(·) and Et(·) used in the tth New-period operation. For
t = 1, . . . , t̄, and j = 1, . . . , 2v+ 2, let rt

j be the randomness
used to encrypt (the encoding of) coefficient ctj in the tth reset
message.

Observe that the challenge ciphertext ψ∗ is the only value
in the adversary’s view which is computed differently in game
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G2
1 and game G3

1. In particular, such encryption is defined in
terms of the values r∗, r′∗ and r′′∗: r∗ and r′∗ are randomly
chosen from Zq in both games, whereas r′′∗ is computed dif-
ferently in the two games. For the sake of clarity, we will
denote with [r′′∗]2 and [r′′∗]3 the value of such quantity in
game G2

1 and G3
1, respectively. Notice that [r′′∗]2 is a linear

combination of r∗, r′∗ (and other quantities), whereas [r′′∗]3
is uniformly distributed in Zq, independently of anything else.

The rest of our analysis proceeds differently depending on
whether the adversary’s strategy caused the “special” New-
period operation to occur or not. The case in which no New-
period operation occurred at step 7. of the attack game is
slightly simpler, so we discuss it first.

Case 1. Consider the quantity

V
.= (Coins, w, {{ctj , rt

j}2v+2
j=1 }t̄t=1, σ

∗, r∗, r′∗)

where Coins represents the coin tosses ofA,w
.= logg g

′, and
σ∗ is the random bit chosen by the challenger in step 8. of the
attack game.

The remaining randomness used during the attack game
consists of the 2v + 2 coefficients of the polynomials A0(·),
B0(·) and can be represented by a vector α uniformly dis-
tributed in Z

(2v+2)×1
q :

α
.= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(2v+2)×1
q defined as:

β
.= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′∗)T

where X0
.= A0(0) + wB0(0), X�

.= A0(�) + wB0(�) and
A�

.= A0(x�) for � = 1, . . . , v, and r′′∗ .= logg u
′′∗.

It is clear by inspection that all the information in the ad-
versary’s view is completely determined by V and β. Thus, if
the distribution of V and β is the same in both games G2

1 and
G3

1, it will follow that Pr[T 3
1 ] = Pr[T 2

1 ]. Since the definition
of r′′∗ is the only difference between game G2

1 and G3
1, and in

G3
1 the value of [r′′∗]3 is chosen uniformly from Zq, indepen-

dently of anything else, it suffices to show that the distribution
of [r′′∗]2, conditioned on V and the first 2v + 1 entries of β,
is also uniform in Zq.

In game G2
1, the quantities in V , β and α are related

according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
1 (i.e. when the

value of the last entry is [r′′∗]2), γ ∈ Z
(2v+2)×1
q is the vector

γ
.=




0
0
...
0
0
...
0

r∗D0,t∗
(0) + wr′∗E0,t∗

(0) + logg Mσ∗




and M ∈ Z
(2v+2)×(2v+2)
q is the matrix

M .=




1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r∗ 0 . . . 0 wr′∗ 0 . . . 0




The above matrix M is square, has full rank (provided that
r∗ �= r′∗ andw �= 0) and it describes all the constraints on the
(2v+2) unknowns represented by α, that can be derived from
the information in the adversary’s view in G2

1. In particular, the
fact that no New-period operation occurred during execution
of step 7. of the attack game guarantees that the identities
included in the public key PK∗ that was used to create the
challenge ciphertextψ∗ are exactly those of the users corrupted
by the adversary. Hence, the constraints on α arising from
the last v components of the challenge ciphertext ψ∗ can be
obtained as linear combination of the constraints specified by
M.

As soon as we fix a value for V , the first 2v+ 1 entries of
vector γ and the first v + 1 rows of matrix M are completely
fixed, but α is still distributed uniformly and independently at
random in Z

(2v+2)×1
q . If we additionally fix the value of the

first (v + 1) components of [β]2, the initial public key PK0

is fixed; it follows that the first identity x1 that A chooses
to corrupt is also fixed and thus the (v + 2)th row of M is
determined. Fixing also a value forA1 (which is the (v+2)th
entry of [β]2), the value of B1 is fixed too, so that all the
information on which the adversary can base her choice of
x2 is fixed, and thus the (v + 3)th row of M is determined
as well. By a similar reasoning, it follows that fixing the first
(v + �+ 1) entries of [β]2 determines the (v + �+ 2)th row
of M, for � = 1, . . . , v. In particular, fixing all the entries of
[β]2 but the last, fixes all the information that adversaryA sees
before asking for her challenge: thus, her choice ofM0,M1 is
determined, so that the last entry of γ is fixed, too. Hence, by
Lemma 1, we can conclude that the conditional distribution
of [r′′∗]2, with respect to V and to all the other components
of [β]2, is also uniform over Zq, from which it follows that

Pr[T 3
1 ] = Pr[T 2

1 ]. (17)

Case 2. We now discuss the case in which the “special” New-
period operation takes place: in particular, letDt̂(·) andE t̂(·)
be the randomizing polynomials used in such New-period
operation. Consider the quantity

V
.=
(
Coins, w, {ctj , rt

j}2v+2
j = 1
t �= t̂

, {sj , r
t̂
j}2v+2

j=1 , σ∗, r∗, r′∗
)

where Coins represents the coin tosses of A, w
.= logg g

′, σ∗
is the random bit chosen by the challenger in step 8. of the
attack game, and s1, . . ., s2v+2 are the random elements of G
that are encrypted by the “special” New-period operation in
place of the randomizing coefficients dt̂

0, dt̂
1, . . ., dt̂

v , and et̂
0,

et̂
1, . . ., et̂

v .
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α
.= (a0, a1, . . . , av, b0, b1, . . . , bv, dt̂

0, d
t̂
1, . . . , d

t̂
v, et̂

0, e
t̂
1, . . . , e

t̂
v)T

β
.= (X0, X1, . . . , Xv, X̂0, X̂1, . . . , X̂v,A1, . . . ,Av, X∗

1, . . . , X∗
v, r′′∗)T

γ
.=




0
0
...
0

D0,t̂−1(0) + wE0,t̂−1(0)
D0,t̂−1(1) + wE0,t̂−1(1)

...
D0,t̂−1(v) + wE0,t̂−1(v)

0
...
0

r∗(D0,t̂−1(z∗
1) + Dt̂+1,t∗

(z∗
1)) + wr′∗(E0,t̂−1(z∗

1) + E t̂+1,t∗
(z∗

1))
...

r∗(D0,t̂−1(z∗
v) + Dt̂+1,t∗

(z∗
v)) + wr′∗(E0,t̂−1(z∗

v) + E t̂+1,t∗
(z∗

v))
r∗(D0,t̂−1(0) + Dt̂+1,t∗

(0)) + wr′∗(E0,t̂−1(0) + E t̂+1,t∗
(0)) + logg Mσ∗




M .=




1 0 . . . 0 w 0 . . . 0 0 0 . . . 0 0 0 . . . 0
1 1 . . . 1 w w . . . w 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 v . . . vv w wv . . . wvv 0 0 . . . 0 0 0 . . . 0
1 0 . . . 0 w 0 . . . 0 1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w 1 1 . . . 1 w w . . . w

...
...

...
...

1 v . . . vv w wv . . . wvv 1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 xv . . . xv
v 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

r∗ r∗z∗
1 . . . r∗z∗v

1 wr′∗ wr′∗z∗
1 . . . wr′∗z∗v

1 r∗ r∗z∗
1 . . . r∗z∗v

1 wr′∗ wr′∗z∗
1 . . . wr′∗z∗v

1
...

...
...

...
r∗ r∗z∗

v . . . r∗z∗v
v wr′∗ wr′∗z∗

v . . . wr′∗z∗v
v r∗ r∗z∗

v . . . r∗z∗v
v wr′∗ wr′∗z∗

v . . . wr′∗z∗v
v

r∗ 0 . . . 0 wr′∗ 0 . . . 0 r∗ 0 . . . 0 wr′∗ 0 . . . 0




Fig. 1. Vectors α ∈ Z
(4v+4)×1
q , β ∈ Z

(4v+3)×1
q and γ ∈ Z

(4v+3)×1
q and the matrix M ∈ Z

(4v+3)×(4v+4)
q used in the last information-

theoretic argument of Lemma 3. Notation: r′′∗ .= logg u′′∗, X0
.= A0(0) + wB0(0), X̂0

.= At̂(0) + wB t̂(0), and for � = 1, . . . , v,

X�
.= A0(�) + wB0(�), X̂�

.= At̂(�) + wB t̂(�), A�
.= A0(x�) and X∗

�
.= r∗At∗

(z∗
� ) + wr′∗Bt∗

(z∗
� )

The remaining randomness used during the attack game
consists of these randomizing coefficients, along with the
2v+2 coefficients of the polynomialsA0(·),B0(·) and can be
represented by a vector α uniformly distributed in Z

(4v+4)×1
q ,

given in Fig. 1.
Consider the vector β ∈ Z

(4v+3)×1
q defined in Fig. 1: it is

clear by inspection that all the information in the adversary’s
view is completely determined by V and β. In particular, the
initial public key PK0 is fixed by β and w; the secret keys of
the corrupted users are determined by the choice of β, Coins
and w; the “special” reset message is fixed by PK0, Coins,
and all the randomness in V ; the resulting public key PK t̂

only depends on β and w; and the adversary’s choice of M0
and M1 is fixed by V and the first 4v + 2 entries of β.

Thus, if the distribution of V and β is the same in both
games G2

1 and G3
1, it will follow that Pr[T 3

1 ] = Pr[T 2
1 ]. Since

the definition of r′′∗ is the only difference between game G2
1

and G3
1, and in G3

1 the value of [r′′∗]3 is chosen uniformly
from Zq, independently of anything else, it suffices to show
that the distribution of [r′′∗]2, conditioned on V and the first
4v + 2 entries of β, is also uniform in Zq.

In game G2
1, the quantities in V , β and α are related

according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
1 (i.e. when

the value of the last entry is [r′′∗]2) and γ ∈ Z
(4v+3)×1
q and

M ∈ Z
(4v+3)×(4v+4)
q are defined in Fig. 1.
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The matrix M in Fig. 1 describes all the constraints on the
(4v+4) unknowns represented by α, that can be derived from
the information in the adversary’s view in game G2

1. Notice
that M includes the constraints on α arising from the last v
components of the challenge ciphertext ψ∗. Moreover, since
we are assuming that the “special” New-period operation took
place during the execution of step 7. of the attack game, and
that the adversary never revokes the users she corrupts, the
identities z∗

1 , . . ., z∗
v specified in the public key PKt∗

that is
used to create the challenge ciphertext are all different from
the identities x1, . . ., xv of the corrupted users, so that M has
full rank, provided that r∗ �= r′∗ and w �= 0.

As soon as we fix a value for V , the first 4v+ 2 entries of
vector γ and the first 2v+2 rows of matrix M are completely
fixed, but α is still distributed uniformly and independently at
random in Z

(4v+4)×1
q . If we additionally fix the value of the

first (2v+2) components of [β]2, the initial public keyPK0 is
fixed (in fact, the public key PK t̂ resulting from the “special”
New-period operation gets fixed, too); it follows that the first
identity x1 thatA chooses to corrupt is also fixed and thus the
(2v + 3)th row of M is determined. Fixing also a value for
A1 (which is the (2v + 3)th entry of [β]2), the value of B1 is
fixed too, so that all the information on which the adversary
can base her choice of x2 is fixed, and thus the (2v+4)th row
of M is determined as well. By a similar reasoning, it follows
that fixing the first (2v + � + 2) entries of [β]2 determines
the (2v + � + 3)th row of M, for � = 1, . . . , v. In particular,
fixing the first 3v + 2 entries of [β]2 fixes all the information
that adversary A sees before asking for her challenge: thus,
the identities z∗

1 , . . ., z∗
v , as well as the two messagesM0,M1

chosen by A are determined, so that all the remaining rows
of M, as well as the last entry of γ get fixed, too. Hence, by
Lemma 1, we can conclude that the conditional distribution of
[r′′∗]2, with respect to V and to all other components of [β]2,
is uniform over Zq, from which it follows that Eq. (17) holds
in this case, too.

Game G4
1. Game G4

1 is defined to be identical to G2. Thus,
G4

1 differs from G3
1 only in that the values u∗ and u′∗ in the

challenge ciphertextψ∗ are consistent, rather than being nearly
independent, as in game G3

1. Namely, the values u∗ and u′∗

are now computed as u∗ .= gr∗
and u′∗ .= g′r∗

, for the same
random r∗ ∈ Zq. It follows that any difference in behavior
between games G3

1 and G4
1 can be used to distinguish Diffie-

Hellman tuples from totally random tuples. Hence,∣∣Pr[T 4
1 ]− Pr[T 3

1 ]
∣∣ ≤ AdvDDHG(k). (18)

Combining Eqs. (15), (16), (17) and (18), the thesis fol-
lows. ��

6 Dealing with traceability

The goal of a tracing algorithm is to obtain the identity of
at least one of the pirates who colluded in creating a given
“pirate decoder” D which, as in previous work, is assumed
to be stateless. In this section we present a formal model for
traceability and two tracing algorithms that can be integrated
within the scheme described in Sect. 4.

The first method, a black-box algorithm, repeatedly calls
a black-box confirmation subroutine that, given a pirate de-
cryption device and a subset of at most m suspected users,1

checks whether the suspected set includes all the secret keys
that were used to generate the pirate device, and if so outputs
the identity of one of the traitors.

The second method, a non-black-box algorithm, receives
as input a “valid” key extracted from a pirate device which
was constructed using the keys of at most m users and deter-
ministically recovers the identities of all the traitors.

6.1 Model for traceability

The traceability adversary operates similarly to the window
adversary described in Sect. 5. Namely, after receiving the
initial public key of the system, adversary A can interleave
(in any adaptively-chosen order) up to m Join queries, upon
which A receives the secret keys of the corresponding users
(the traitors), and a polynomial number of Revoke queries.
Notice that each Revoke will change the public key, and the
adversary monitors these changes as well. Also notice that the
final set of revoked users is likely very different, and typically
disjoint from the setT of traitors.At the end,A outputs a pirate
decoder D which presumably works well (in some sense more
precisely clarified below), with the final public key PKA.

6.1.1 Formal model for traceability adversary

The above attack scenario can be formalized in terms of the
following traceability adversary attack game Gm

trt(1
k), played

between a challenger and the adversary.

1. Let 〈PK,MSK〉 := Setup(1k)
2. Let L := 0, T := ∅
3. Let state := 〈L,PK,MSK, T 〉
4. D R← AJoin(state,·),Revoke(1,state,·)(state.PK)
5. If |T | > m then exit
6. Parse state as 〈L,PKA,MSKA, T 〉
7. Output 〈D, PKA,MSKA, T 〉

The definitions of the Join and Revoke oracles is the same
as in Sect. 5.1, except that the role of the set Corr is now played
by the set T .

Definition 8. For any public keyPK, define the success prob-
ability of a decoder D as:

SuccPK(D) .= Pr[M ′ = M |M R← G;ψ∗ R← E(PK,M);

M ′ R← D(ψ∗)]

where the probability is over the random choice of M , the
randomness used to create the challenge ciphertext ψ∗ and
the coin tosses of D.

Notice that the pirate decoder D expects to receive a ci-
phertext created under the public key PKA, but the quantity

1 Recall, m denotes the collusion threshold, and should not be
confused with the revocation threshold v defined in Sect. 4; e.g., in
our schemes m = � v

2 �.
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SuccPK(D) can be defined for any public key anyway. Clearly,
if D could notice the change, then it could stop working prop-
erly: in this case we can assume that it outputs a message
M ′ �= M .

The job of the tracing algorithm is to find one or all of the
(at most)m traitors whose keys were used byA in building D.
The precise security guarantees depend on whether tracing is
black-box or not.We describe both tracing methods in Sect. 6.2
and 6.3, respectively.

6.2 Black-box tracing

In the black-box model, the tracing algorithm is only allowed
to query the pirate decoder D on a polynomial number of a
random-looking ciphertexts, and from the plain observation of
D’s input/output behavior, the tracing algorithm should suc-
cessfully identify (at least) one of the traitors.

This form of tracing is the most desirable, as it can be
applied to any stateless pirate decoder. Similarly to previous
work [3, 25, 28] though, the algorithm presented below only
achieves a weaker variant of black-box tracing, called black-
box confirmation. Informally, a black-box confirmation algo-
rithm is a subroutine that tests whether a given set Susp of
at most m suspected users does include all the traitors that
cooperated to construct a given pirate decoder D and if so, it
outputs at least one such pirate. On a pessimistic note, this
means that our tracing algorithm might have to go through all
m-element subsets of the user universe U to do full-fledged
tracing. However, we point out that: (1) in many cases a lot
of partial information about the set of corrupted users makes
the search space dramatically smaller; (2) all previous public-
key traitor tracing schemes suffer from the same problem; (3)
as observed in [19], the problem seems to be inherent to this
setting.

However, we significantly improve upon previous black-
box confirmation algorithms in the following respects: (1) for-
mal modeling of the problem; (2) our algorithm allows the
adversary to adaptively corrupt players before building the pi-
rate decoder; (3) our algorithm can be successfully applied to
pirate decoders that work on at least an ε-fraction of correctly
formed messages (rather than with probability 1), where ε is
the desired threshold below which the decoder is considered
“useless” (following the “threshold tracing” approach of [24]).

Definition 9 (Black-Box Confirmation Algorithm).
A Black-Box Confirmation (BBC) algorithm is a probabilis-
tic, polynomial time oracle machine taking as oracle input
a pirate decoder D, and as regular input a public key PK,
the corresponding master secret keyMSK, and a set Susp of
suspected traitors. Its output is either a user’s identity i or the
special symbol ?.

Definition 10 (ε-Black-Box Confirmation Property).
Let A be any probabilistic, polynomial-time adversary, and
let 〈D, PKA, MSKA, T 〉 be the output resulting from the
adversary playing the traceability attack game Gm

trt(1
k) with

the challenger. A Black-Box Confirmation algorithm BBC sat-
isfies ε-Black-Box Confirmation if, for any PPT adversaryA
playing the Gm

trt(1
k) game, the following two properties hold

with all but negligible probability:

• Confirmation: whenever T ⊆ Susp, then the output of
BBCD(PKA,MSKA, Susp) is some identity i ∈ T .
• Soundness: whenever BBCD(PKA,MSKA,Susp) out-

puts i �= ?, then i ∈ T .

6.2.1 Black-box confirmation algorithm

At a high level, our black-box confirmation algorithm BBC
works as follows. Based on the current set I of suspected
users (initially set to Susp) and using the master secret key
MSKA, it modifies the public key PKA into a fake public
key PK(I). It then estimates the probability

δ(I) .= SuccPK(I)(D)

by observing the behavior of D when fed with encryptions
of the form E(PK(I),M), for random messages M . The
Chernoff bound implies that the latter estimation can be done
quickly and accurately (by computing statistics from repeated
sampling), provided δ(I) is “large enough” (specifically, at
least ε/m). Now, BBC takes any index i ∈ I , and accu-
rately estimates δ(I \ {i}). If the difference between δ(I)
and δ(I \ {i}) is “non-trivial” (specifically, at least ε/2m), it
proclaims i as a traitor. Otherwise, it sets I := I \ {i}, and re-
peats the entire procedure until I = ∅ (in which case it outputs
?).

The last main detail to be filled in is how the algorithm gen-
erates the fake public key PK(I). Recall from Sect. 4 that the
master secret keyMSKA consists of two random polynomials
over Z

v
q [x]. Let t̄ be the total number of New-period opera-

tions that occur during the entire game, and for t = 1, . . . , t̄, let
ct1, . . ., ct2v+2 be the coefficients of the randomizing polyno-
mials Dt(·) and Et(·) used in the tth New-period operation.
For t = 1, . . . , t̄, and j = 1, . . . , 2v+2, let rt

j be the random-
ness used to encrypt (the encoding of) coefficient ctj in the tth
reset message. By Eq. (8), (At̄(·), B t̄(·)) denotes the master
secret key corresponding to the public key PKA. Given the
set I , we create two polynomials A′(·) and B′(·) uniformly
distributed over Z

v
q [x] except they agree with At̄(·) and B t̄(·)

on points in I:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I.

Notice that, since |I| ≤ m ≤ v/2, this creates no problem.
We then create the public key PK(I) as if the master secret
key were MSK ′ = (A′(·), B′(·)) rather than MSKA =
(At̄(·), B t̄(·)). Specifically, we define

PK(I) .= (g, g′, y′, 〈z�, h
′
�〉v�=1).

where y′ .= gA′(0)g′B′(0), and h′
�
.= gA′(z�)g′B′(z�), for � =

1, . . . , v.

6.2.2 Correctness of black-box tracing

The correctness of the black-box tracing algorithm described
above follows from Theorem 2 and Theorem 3 stated below.
Theorem 2 implies that if the decoder was useful at the start
(i.e., SuccPKA(D) ≥ ε) and T ⊆ Susp, then the decoder
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cannot “notice” that PKA was changed to PK(Susp), i.e.
δ(Susp) � ε.2 Coupled with the obvious fact that δ(∅) is neg-
ligible (since M is encrypted with a totally random one-time
pad), we see that there must be a time when δ(I) changes by
a non-trivial amount (i.e., at least by ε/2m) when we remove
some i ∈ I . This i will then be output by our algorithm, and
since i cannot be an innocent user (by Theorem 3 below), i
must be one of the traitors. This shows the confirmation prop-
erty.

Theorem 2. Under the DDH assumption, if T ⊆ Susp and
|Susp| ≤ v, then |δ(Susp)− SuccPKA(D)| is negligible.

Proof. We again follow the structural approach of defining a
sequence of “indistinguishable” games G0,G1, . . ., all operat-
ing over the same underlying probability space. Each of these
games consists of the BBC algorithm sending a ciphertext ψ∗
to the pirate decoder D; different games only differs in the
way ψ∗ is computed. In the original game G0, the goal of the
decoder D is to output a message M ′ which is D’s best guess
at the random messageM encrypted withinψ∗; for each game
Gj , let Tj be the event that M = M ′ in Gj .

Game G0: This game defines the probability SuccPKA(D).
In this game, the BBC algorithm takes as input the public key
PKA, the corresponding master secret key MSKA and a set

Susp of suspected users; it then chooses a message M
R← G

and, using the public key PKA, encrypts it as follows:

E1. r
R← Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ← gAt̄(0)rg′Bt̄(0)rM

E5. u� ← gAt̄(z�)rg′Bt̄(z�)r, � = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that

Pr[T0] = SuccPKA(D). (19)

Game G1: Game G1 is identical to game G0, except that in
game G1 steps E4 and E5 are substituted with:

E4′. u′′ ← uAt̄(0)u′Bt̄(0)M

E5′. u� ← uAt̄(z�)u′Bt̄(z�), � = 1, . . . , v

Notice that the point of these changes is just to make explicit
any functional dependency of ψ∗ on the quantities u and u′.
Since we just made a conceptual change, it clearly holds that

Pr[T1] = Pr[T0]. (20)

Game G2: To define game G2, we make more changes to the
encryption algorithm as follows:

E1′. r
R← Zq; r′ R← Zq \ {r}

E3′. u′ ← g′r′

2 The relation � is meant to indicate that δ(Susp) is greater than
ε minus negligible terms.

Notice that while in game G1 the value u and u′ are obtained
using the same value r, in game G2 they are nearly indepen-
dent, being subject only to r �= r′. Therefore, using a standard
reduction argument, any non-negligible difference in behavior
between games G1 and G2 can be used to construct a PPT ad-
versary able to distinguish Diffie-Hellman tuples from totally
random tuples with non-negligible advantage. Hence,∣∣Pr[T2]− Pr[T1]

∣∣ ≤ AdvDDHG(k). (21)

Game G3: To turn game G2 into game G3, we consider the
set Susp and construct the public keyPK(Susp) as described
above; specifically, two random polynomials A′(·) and B′(·)
are chosen such that

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ Susp (22)

and PK(Susp) is set to be:

PK(Susp) .= 〈g, g′, gA′(0)g′B′(0), 〈z�, g
A′(z�)g′B′(z�)〉v�=1〉.

Then, we change steps E4′ and E5′ of the encryption algo-
rithm of game G2 as follows:

E4′′. u′′ ← uA′(0)u′B′(0)M

E5′′. u� ← uA′(z�)u′B′(z�), � = 1, . . . , v

Using the technique outlined in Sect. 5.2, in Lemma 4 below,
we show that

Pr[T3] = Pr[T2]. (23)

Game G4: In game G4, we “undo” the changes of game G2,
restoring lines E1′ and E3′ of the encryption oracle to their
original values:

E1′′. r
R← Zq

E3′′. u′ ← g′r

Notice that in game G4 the value u and u′ are again obtained
using the same value r, whereas in game G3 they are nearly
independent, being subject only to r �= r′. Therefore, using a
standard reduction argument, any non-negligible difference in
behavior between games G3 and G4 can be used to construct a
PPT adversary able to distinguish Diffie-Hellman tuples from
totally random tuples with non-negligible advantage. Hence,∣∣Pr[T4]− Pr[T3]

∣∣ ≤ AdvDDHG(k). (24)

Finally, observe that in G4 the encryption of the random
messageM is obtained using the public key PK(Susp): thus,
game G4 is exactly the game which defines the probability
δ(Susp) i.e.,

Pr[T4] = δ(Susp). (25)

Combining Eqs. (19), (20), (21), (23), (24) and (25), we
can conclude that A has only a negligible chance to tell
whether the message M was encrypted under the public keys
PKA or PK(Susp); more precisely:

|δ(Susp)− SuccPKA(D)| ≤ 2 AdvDDHG(k).

��
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Lemma 4. Pr[T3] = Pr[T2]

Proof. To prove the lemma, we consider all the quantities that
can affect event T2 in game G2 and event T3 in game G3, and
then we show that these quantities are distributed according
to the same joint distribution in both games.

Consider the quantity:

V
.= (CoinsA,CoinsD, w,M, r, r′, {{ctj , rt

j}2v+2
j=1 }t̄t=1)

where CoinsA denotes the coin tosses of A, CoinsD denotes
the coin tosses of D, w

.= logg g
′, M is the random message

encrypted within ψ∗, r and r′ are the random values used to
create ψ∗, and

{{ctj , rt
j}2v+2

j=1 }t̄t=1

represents all the randomness used in the t̄New-period oper-
ations that took place during the Gm

trt(1
k) attack game.

The remaining randomness used during games G2 and G3
consists of the 4v + 4 coefficients of the polynomials A0(·),
B0(·) (chosen by the Setup algorithm in step 1.of the Gm

trt(1
k)

attack game) and A′(·), B′(·) (used in game G3). This ran-
domness can be represented with the vector

α
.= (a0, a1, . . . , av, b0, b1, . . . , bv)T

which is uniformly distributed in Z
(2v+2)×1
q , and the vector

α′ .= (a′
0, a

′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)T

which is uniformly distributed in Z
(2v+2)×1
q , subject to the

constraints arising from imposing Eq. (22).
Let T = {t1, . . . , tm} be the set of traitors and set

Aj
.= At̄(xtj ) Bj

.= B t̄(xtj ), j = 1, . . . ,m.

Notice that, since T ⊆ Susp, for j = 1, . . . ,m, it holds that
Aj = A′(xtj

) and Bj = B′(xtj
).

Consider the quantity β̄ ∈ Z
(v+m+1)×1
q defined as:

β̄
.= (X0,X1, . . . ,Xv,A1, . . . ,Am)T

where X0
.= A0(0) + wB0(0), and X�

.= A0(�) + wB0(�),
for � = 1, . . . , v.

It is clear by inspection that all the information in the view
of the adversary A during the attack game Gm

trt(1
k) is com-

pletely determined by V and β̄. In particular, the initial public
keyPK0 is fixed by β̄ andw, and the secret keys of the traitors
are determined by the choice of β̄, CoinsA and w.

Besides the information in A’s view, which is completely
determined by the value of V and β̄, the only other quantity
affecting D’s behavior is the ciphertext ψ∗. This ciphertext
is computed differently in games G2 and G3: for the sake
of clarity, we will denote with [ψ∗]2 and [ψ∗]3 the value of
such quantity in game G2 and G3, respectively. We now want
to show that, conditioned on all the other information in D’s
view, [ψ∗]2 and [ψ∗]3 are distributed according to the same
distribution in the two games.

In game G2, the ciphertext [ψ∗]2 sent to the decoder is
completely determined by V , β̄ and by the v-degree poly-
nomial X t̄(·) .= rAt̄(·) + wr′B t̄(·). Similarly, in game G3,
the ciphertext [ψ∗]3 is completely determined by V , β̄ and by

the v-degree polynomial X ′(·) .= rA′(·) + wr′B′(·). More-
over, [ψ∗]2 depends on V , β̄ andX t̄(·) according to the same
functional dependence of [ψ∗]3 upon V , β̄ and X ′(·). There-
fore, to prove the lemma, it suffices to show that, condition-
ing on any fixed values of V and β̄, X t̄(·) and X ′(·) are
distributed according to the same conditional probability dis-
tribution; namely, both are random polynomials over Z

v
q [x],

subject to the constraint that their value at xtj is rAj +wr′Bj ,
for j = 1, . . . ,m.

By Lagrange interpolation, X t̄(·) can be identified with
its value at the points 0, 1, . . ., v −m, xt1 , . . ., xtm

; define

Xt̄
�
.= X t̄(�), � = 0, . . . , v −m

and
Xt̄

v−m+j
.= X t̄(xij ), j = 1, . . . ,m.

Similarly, we can also identifyX ′(·) with its value at the same
v + 1 points; define

X′
�
.= X ′(�), � = 0, . . . , v −m

and
X′

v−m+j
.= X ′(xtj

), j = 1, . . . ,m.

As noticed above, the assumption that T ⊆ Susp implies
that for j = 1, . . . ,m:

At̄(xtj ) = A′(xtj ) = Aj , B t̄(xtj ) = B′(xtj ) = Bj .

Therefore, it follows that

Xv−m+j = X′
v−m+j , j = 1, . . . ,m. (26)

It only remains to be proven that, conditioning on fixed values
of V and β̄, the tuple Xt̄

0, . . ., Xt̄
v−m and the tuple X′

0, . . .,
X′

v−m are distributed according to the same joint conditional
distribution. (Notice that fixing a value for V and β̄, immedi-
ately fixes a value for the tuple Xt̄

v−m+j , j = 1, . . .,m, which
by Eq. (26) is equal to X′

v−m+j , j = 1, . . ., m.)
Recall that, in game G3, the polynomials A′(·) and B′(·)

are chosen uniformly at random from Z
v
q [x], independently

from anything else, but subject to the constraints in Eq. (22).
It follows that the polynomial X ′(·) = rA′(·) + wr′B′(·) is
also random in Z

v
q [x], subject to the constraint that its value at

xs is
rAt̄(xs) + wr′B t̄(xs), ∀s ∈ Susp.

Therefore, conditioning on fixed values of V and β̄, the
tuple X′

0, . . . ,X
′
v−m is distributed uniformly at random in

Z
(v−m+1)×1
q . Hence, it suffices to show that, for � = 0, . . .,

v−m, the conditional distribution of Xt̄
� with respect to V , β̄

and Xt̄
0, . . . ,X

t̄
�−1 is uniform over Zq. To this aim, fix � ∈ {0,

. . ., v −m}, and consider the following matrix equation:

β� = M� ·α + γ�

where β� ∈ Z
(v+m+�+2)×1
q is the vector

β�
.= (X0,X1, . . . ,Xv,A1, . . . ,Am,X

t̄
0,X

t̄
1, . . . ,X

t̄
�)

T ,
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γ� ∈ Z
(v+m+�+2)×1
q is the vector

γ�
.=




0
0
...
0

D0,t̄(xt1)
...

D0,t̄(xtm)
rD0,t̄(0) + wr′E0,t̄(0)
rD0,t̄(1) + wr′E0,t̄(1)

...
rD0,t̄(�) + wr′E0,t̄(�)




and M� ∈ Z
(v+m+�+2)×(2v+2)
q is the matrix

M�
.=




1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1 0 0 . . . 0

...
...

1 xtm . . . xv
tm

0 0 . . . 0
r 0 . . . 0 wr′ 0 . . . 0
r r . . . r wr′ wr′ . . . wr′

...
...

r r� . . . r�v wr′ wr′� . . . wr′�v




By inspection, it is possible to see that the rows of matrix M�

are linearly independent, provided that r �= r′ and w �= 0:
thus, the rank of M� is v +m+ �+ 2. As soon as we fix V ,
vector γ� and the first v + 1 rows of M� are determined, but
α is still distributed uniformly and independently at random
in Z

(2v+2)×1
q . Similarly to the proof of Lemma 3, it is also

possible to show that fixing the first v + j entries of β̄ deter-
mines the (v+ j+1)th row of M�, for j = 1, . . . ,m; and that
moreover, fixing the first v +m + 1 entries of β̄ determines
all the remaining rows of M�.

Hence, by Lemma 1, we can conclude that the conditional
distribution of Xt̄

� with respect to (V , β̄, Xt̄
0, . . ., Xt̄

�−1) is
uniform over Zq, ∀� ∈ {0, . . . , v − m}. In other words, the
value of X t̄(·) at any point is uniformly random, subject to
the constraint

Xt̄(xtj ) = rAj + wr′Bj , ∀tj ∈ T .

Thus, (V , β̄, X t̄(·))) has the same joint distribution as (V , β̄,
X ′(·)), completing the proof. ��

We now move on to prove the soundness of the BBC algo-
rithm, showing that it can accuse an innocent user with at most
negligible probability. Informally this is true because, under
the DDH assumption it is impossible to notice if the values
A′(xi) andB′(xi) (which are unknown to the adversary since
i is assumed to be honest), were replaced by random noise
A′′(xi) andB′′(xi). Thus, the behavior of the decoder will be
the same regardless of whether PK(I) or PK(I \ {i}) was

used to encrypt the ciphertext. Since our algorithm only ac-
cuses a user iwhen a sensible change occurs in the decryption
capability of the pirate decoder, it follows that an innocent
user will be blamed with at most negligible probability.

Theorem 3. Under the DDH assumption, if |I| ≤ v and i �∈
T , then |δ(I)− δ(I \ {i})| is negligible.

Proof. Proceeding as in the proof of Theorem 2, we define a
sequence of “indistinguishable” games G0, G1, . . . : for each
game Gj , let Tj be the event that decoder D correctly decrypts
the challenge sent by the BBC algorithm in game Gj .

Game G0: This game describes the experiment which defines
the value of δ(I). In this game, the decoder D is fed with
ciphertexts obtained encrypting random messages under the
fake public key PK(I), defined as:

PK(I) = 〈g, g′, gA′(0)g′B′(0), 〈z�, g
A′(z�)g′B′(z�)〉v�=1〉

where A′(·) and B′(·) are random v-degree polynomials sub-
ject to:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I. (27)

More precisely, the BBC algorithm chooses a random message
M and encrypts it as follows:

E1. r
R← Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ← gA′(0)rg′B′(0)rM

E5. u� ← gA′(z�)rg′B′(z�)r, � = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that:

Pr[T0] = δ(I). (28)

Game G1: Game G1 is identical to game G0, except that in
game G1 steps E4 and E5 are substituted with:

E4′. u′′ ← uA′(0)u′B′(0)M

E5′. u� ← uA′(z�)u′B′(z�), � = 1, . . . , v

Notice that the point of these changes is just to make explicit
any functional dependency of ψ∗ on the quantities u and u′.
Since we just made a conceptual change, it clearly holds that

Pr[T1] = Pr[T0]. (29)

Game G2: Game G2 is identical to game G1, except that in
game G2 steps E1 and E3 are substituted with:

E1′. r
R← Zq; r′ R← Zq \ {r}

E3′. u′ ← g′r′

Notice that while in game G1 the value u and u′ are obtained
using the same value r, in game G2 they are nearly indepen-
dent, being subject only to r �= r′. Therefore, using a standard
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reduction argument, any non-negligible difference in behavior
between games G1 and G2 can be used to construct a PPT ad-
versary able to distinguish Diffie-Hellman tuples from totally
random tuples with non-negligible advantage. Hence,∣∣Pr[T2]− Pr[T1]

∣∣ ≤ AdvDDHG(k). (30)

Game G3: To turn game G2 into game G3, we consider the
set I \{i} and construct the public key PK(I \{i}): two new
random v-degree polynomials A′′(·) and B′′(·) are chosen
such that

A′′(xs) = At̄(xs) B′′(xs) = B t̄(xs), ∀s ∈ I \ {i} (31)

and PK(I \ {i}) is set to be:

〈g, g′, gA′′(0)g′B′′(0), 〈z�, g
A′′(z�)g′B′′(z�)〉v�=1〉.

Notice that, by Eqs. (27) and (31), it holds that

A′′(xs) = A′(xs) B′′(xs) = B′(xs), ∀s ∈ I \ {i}.

Finally, we change steps E4′ and E5′ of the encryption
algorithm as follows:

E4′′. u′′ ← uA′′(0)u′B′′(0)M

E5′′. u� ← uA′′(z�)u′B′′(z�), � = 1, . . . , v

Using the technique described in Sect. 5.2, in Lemma 5 below,
we show that

Pr[T3] = Pr[T2]. (32)

Game G4: In game G4, we “undo” the changes of game G2,
restoring lines E1 and E3 of the encryption oracle to their
original values:

E1′′. r
R← Zq

E3′′. u′ ← g′r

Notice that in game G4 the value u and u′ are again obtained
using the same value r, whereas in game G3 they are nearly
independent, being subject only to r �= r′. Therefore, using a
standard reduction argument, any non-negligible difference in
behavior between games G3 and G4 can be used to construct a
PPT adversary able to distinguish Diffie-Hellman tuples from
totally random tuples with non-negligible advantage. Hence,∣∣Pr[T4]− Pr[T3]

∣∣ ≤ AdvDDHG(k). (33)

In game G4, the encryption of the random message M is
obtained using the public key PK(I \ {i}): thus, game G4 is
exactly the game defining δ(I \ {i}) i.e.,

Pr[T4] = δ(I \ {i}). (34)

By Eqs. (28), (29), (30), (32), (33) and (34), we can
conclude that the adversary has only a negligible chance to
tell whether the message M was encrypted under PK(I) or
PK(I \ {i}); more precisely:

|δ(I)− δ(I \ {i})| ≤ 2 AdvDDHG(k).

��

Lemma 5. Pr[T3] = Pr[T2]

Proof. To prove the lemma, we consider all the quantities that
can affect event T2 in game G2 and event T3 in game G3, and
then we show that these quantities are distributed according
to the same joint distribution in both games.

Let m̄
.= |T ∩ I|, where T = {t1, . . . , tm} is the set

of traitors; without loss of generality assume that T ∩ I =
{t1, . . . , tm̄}. Also, set

Aj
.= At̄(xtj ) Bj

.= B t̄(xtj ), j = 1, . . . ,m.

Notice that, since i �∈ T , for 1 ≤ j ≤ m̄ it also holds that:

Aj = A′(xtj
) = A′′(xtj

) Bj = B′(xtj
) = B′′(xtj

).

Consider the quantity:

V
.= (CoinsA,CoinsD, w,M, r, r′, {{ctj , rt

j}2v+2
j=1 }t̄t=1)

where CoinsA denotes the coin tosses of A, CoinsD denotes
the coin tosses of D, w

.= logg g
′, X�

.= (A0(�) +B0(�)) for
� = 0, . . . , v, M is the random message encrypted within ψ∗,
r and r′ are the random values used to create ψ∗, and

{{ctj , rt
j}2v+2

j=1 }t̄t=1

represents all the randomness used in the t̄New-period oper-
ations that took place during the attack game Gm

trt(1
k).

The remaining randomness used during games G2 and G3
consists of the 6v + 6 coefficients of the polynomials A0(·),
B0(·) (chosen by the Setup algorithm in step 1.of the Gm

trt(1
k)

attack game),A′(·),B′(·) (used in game G2), andA′′(·),B′′(·)
(used in game G3). This randomness can be represented with
the vector

α
.= (a0, a1, . . . , av, b0, b1, . . . , bv)T

which is uniformly distributed in Z
(2v+2)×1
q , the vector

α′ .= (a′
0, a

′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)T

which is uniformly distributed in Z
(2v+2)×1
q , subject to the

constraints arising from imposing Eq. (27), and the vector

α′′ .= (a′′
0 , a

′′
1 , . . . , a

′′
v , b

′′
0 , b

′′
1 , . . . , b

′′
v)T

which is uniformly distributed in Z
(2v+2)×1
q , subject to the

constraints arising from imposing Eq. (31).
Consider the quantity β̄ ∈ Z

(v+m̄+1)×1
q defined as:

β̄
.= (X0,X1, . . . ,Xv,A1, . . . ,Am̄)T

where X0
.= A0(0) + wB0(0), and X�

.= A0(�) + wB0(�),
for � = 1, . . . , v.

It is clear by inspection that all the information in the view
of the adversary A during the attack game Gm

trt(1
k) is com-

pletely determined by V and β̄. In particular, the initial public
key PK0 is fixed by V , and the secret keys of the traitors are
determined by the choice of β̄, CoinsA and w.

Besides the information inA’s view, the only other quan-
tity affecting D’s behavior is the ciphertextψ∗. This ciphertext
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is computed differently in games G2 and G3: for the sake of
clarity, we will denote with [ψ∗]2 and [ψ∗]3 the value of such
quantity in game G2 and G3, respectively. We now want to
show that, conditioned on all the other information in D’s
view, [ψ∗]2 and [ψ∗]3 are distributed according to the same
distribution in the two games.

In game G2, the ciphertext [ψ∗]2 sent to the decoder is
completely determined by V , β̄ and by the v-degree poly-
nomial X ′ .= rA′(·) + wr′B′(·). Similarly, in game G3, the
ciphertext [ψ∗]3 is completely determined by V , β̄ and by the
v-degree polynomialX ′′(·) .= rA′′(·)+wr′B′′(·). Moreover,
[ψ∗]2 depends on V , β̄ andX ′(·) according to the same func-
tional dependence of [ψ∗]3 upon V , β̄ and X ′′(·). Therefore,
to prove the lemma, it suffices to show that, conditioning on
any fixed values of V and β̄, X ′(·) and X ′′(·) are distributed
according to the same conditional probability distribution.

Recall that, in game G2, the polynomials A′(·) and B′(·)
are chosen uniformly at random from Z

v
q [x], independently

from anything else, but subject to the constraints in Eq. (27).
It follows that the polynomial X ′(·) = rA′(·) + wr′B′(·) is
also random in Z

v
q [x], subject to the constraint that its value at

xs is
rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I.

Similarly, in game G3, the polynomials A′′(·) and B′′(·)
are chosen uniformly at random from Z

v
q [x], independently

from anything else, but subject to the constraints in (31). It
follows that the polynomial X ′′(·) = rA′′(·) + wr′B′′(·) is
also random in Z

v
q [x], subject to the constraint that its value at

xs is
rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I \ {i}.

In other words, the distributions of X ′(·) and X ′′(·) only
differ in that the value of X ′(·) at xi is fixed to be

X′
i
.= rAt̄(xi) + wr′B t̄(xi)

whereas the value of X ′′(·) at xi is a random element in Zq.
Thus, to prove thatX ′(·) andX ′′(·) have the same conditional
probability distribution with respect to V and β̄, it suffices to
show that, conditioning on any fixed values of V and β̄, the
value X′

i is distributed uniformly at random in Zq.
To this aim, consider the following matrix equation:

β = M ·α + γ

where β ∈ Z
(v+m̄+2)×1
q is the vector

β
.= (X0,X1, . . . ,Xv,A1, . . . ,Am̄,X

′
i)

T ,

γ ∈ Z
(v+m̄+2)×1
q is the vector

γ
.=




0
0
...
0

D0,t̄(xt1)
...

D0,t̄(xtm̄)
rD0,t̄(xi) + wr′E0,t̄(xi)




and M ∈ Z
(v+m̄+2)×(2v+2)
q is the matrix

M .=




1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1 0 0 . . . 0

...
...

1 xtm . . . xv
tm̄

0 0 . . . 0
r rxi . . . rx

v
i wr

′ wr′xi . . . wr
′xv

i




By inspection, it is possible to see that the rows of matrix M
are linearly independent, provided that r �= r′ and w �= 0:
thus, the rank of M is v + m̄ + 2. As soon as we fix V , vec-
tor γ and the first v + 1 rows of M are determined, but α
is still distributed uniformly and independently at random in
Z

(2v+2)×1
q . Similarly to the proof of Lemma 3, it is also pos-

sible to show that fixing the first v+ j entries of β̄ determines
the (v+ j + 1)th row of M, for j = 1, . . . , m̄; and that more-
over, fixing the first v+ m̄+ 1 entries of β̄ determines all the
remaining rows of M.

By Lemma 1, we can conclude that the conditional distri-
bution of X′

i with respect to V and β̄ is uniform over Zq. In
other words, conditioning on the information seen by the ad-
versary before receiving the challenge ψ∗, the value of X ′(·)
at xi looks random over Zq. Thus, (V , β̄, X ′(·)) has the same
joint distribution as (V , β̄, X ′′(·)), completing the proof. ��

6.3 Non-black-box tracing

In Sect. 6.3.2 we describe a non-black-box tracing algorithm
which builds on the results of [3,25], but it is tailored to our
family of representations. Then, in Sect. 6.3.3, we analyze
its security properties in the formal model for traceability of
Sect. 6.1, under a non-black-box assumption, given below as
Assumption 3. Before that, however, we develop some nota-
tion.

6.3.1 Notation

Recall that in the scheme of Sect. 4, the secret key of user xi

consists of two points A(xi), B(xi), which can be combined
with the system’s public key to obtain two leap-vectors to be
used in the decryption algorithm. More precisely, given the
current public key

PK
.= 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉,

it is possible to construct (by Definition 6) two leap-vectors

νA,i
.= νxi,A

z1,...,zv
νB,i

.= νxi,B
z1,...,zv

where (A(·), B(·)) is the master secret key corresponding to
the current public key PK. By Eqs. (2) and (4), νA,i and νB,i

agree on the last v components; thus, under the current public
key PK, user xi’s secret key can be compactly rewritten as

δi
.= 〈(νA,i)0, (νB,i)0, δ′

i〉
.= 〈λ(i)

0 A(xi), λ
(i)
0 B(xi), 〈λ(i)

1 , . . . , λ(i)
v 〉〉,
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whereλ(i)
0 ,λ(i)

1 , . . . , λ
(i)
v are the Lagrange coefficients defined

in Eqs. (3) and (4); recall that, for notational convenience, we
use superscript (i) to make explicit that a given set of Lagrange
coefficients is relative to user xi.

Notice that such vector δi is a representation of y with
respect to g, g′, h1, . . ., hv; for short, when this is the case,
in the following we will just say that δi is a valid represen-
tation of the public key PK. Also notice that any such valid
representation δ of the current public key PK would work for
decrypting messages encrypted with PK; for a generic valid
representation

δ
.= 〈γa, γb, γ1, . . . , γv〉,

we will denote with δ′ its last v entries:

δ′ .= 〈γ1, . . . , γv〉.

In the non-black-box model, the tracing algorithm is as-
sumed to be able of inspecting the content of a successful
pirate decoder, and to extract the secret key hidden within it.
More precisely, in designing and analyzing our non-black-box
tracing algorithm, we make the following assumption:

Assumption 3 (Non-Black-Box Assumption)
Let A be any probabilistic, polynomial-time adversary, and
let 〈D, PKA, MSKA, T 〉 be the output resulting from the
adversary playing the traceability attack game Gm

trt(1
k) with

the challenger. If D can correctly decrypt random ciphertexts
encrypted using PKA (in other words, SuccPKA(D) = 1),
then D contains a valid representation δ of PKA, and it is
possible to reverse-engineer D and extract δ.

Assumption 3 is partially supported by Proposition 1 and it
is essentially equivalent to what was previously assumed in [3].
It is also a priori much less restrictive than the non-black-box
assumption made in [25], where the non-black-box analysis
is subject to the hypothesis that the illegal key extracted from
the pirate decoder is a convex linear combination of some of
the traitors’ keys. In fact, in Lemma 6 (whose proof is given
in Sect. 6.3.3) we show that in our context, the seemingly
more restrictive assumption from [25] actually follows from
Assumption 3 and Assumption 2.

Lemma 6. Let A be any probabilistic, polynomial-time ad-
versary, and let 〈D, PKA, MSKA, T 〉 be the output result-
ing from the adversary playing the traceability attack game
Gm

trt(1
k) with the challenger. Also let T .= {t1, . . . , tm} and,

for j = 1, . . . ,m, denote with δtj
the compact representa-

tion of the secret key of user tj with respect to the public key
PKA. If the pirate decoder D output by A contains a valid
representation δ for the public key PKA, such that δ′ is not
a linear combination of δ′

t1 , . . . , δ
′
tm

, then the discrete loga-
rithm problem over G is solvable.

6.3.2 Non-black-box tracing algorithm

We present a deterministic tracing algorithm that recovers,
under Assumptions 2 and 3, the identities of the traitors that
created the pirate key. Suppose that the content of a pirate
decoder is exposed. By Assumption 3, it is possible to extract
from D a valid representation δ of the current public keyPKA.

Define {x1, . . . , xn} to be the set of all values assigned to the
users in the system (where n denotes the total number of users
in the system), and let δ1, . . . , δn be the corresponding secret
keys. Let {zi1 , . . . , ziv

} be the set of values of the revoked
users specified in the current public key.3 Remember that the
secret key of user j with respect to the current public key can
be compactly represented in the form

δj
.= 〈λ(j)

0 A(xj), λ
(j)
0 B(xj), λ

(j)
i1
, . . . , λ

(j)
iv
〉

where λ(j)
j , λ

(j)
i1
, . . . , λ

(j)
iv

are the Lagrange coefficients de-
fined in Eqs. (3) and (4). Notice that, for any polynomial
P (·) ∈ Z

v
q [x], it holds that

P (0) = λ
(j)
0 P (xj) + λ

(j)
i1
P (xi1) + . . .+ λ

(j)
iv
P (xiv ).

Consider the matrix A ∈ Z
n×v
q whose jth row is δ′

j , for j =
1, . . . , n, i.e.:

A .=


λ(1)

i1
. . . λ

(1)
iv

. . .

λ
(n)
i1

. . . λ
(n)
iv




Define the identities of the traitors to be {t1, . . . , tm} ⊆
{1, . . . , n}. By Lemma 6 and Assumption 2, δ′ must be a
linear combination of the vectors δ′

t1
, . . . , δ′

tm
obtained by

projecting the traitors’ secret keys δt1 , . . . , δtm onto the last
v components. It follows that δ′ also lies in the linear span of
δ′
1, . . . , δ

′
n. More precisely, there exists a vector ϕ of Ham-

ming weight at most m such that

δ′ = ϕ ·A. (35)

Consider the two matrices:

B .=


xi1 . . . x

v
i1

. . .
xiv . . . x

v
iv


 H .=


−λ(1)

0 x1 . . . −λ(1)
1 xv

1
. . .

−λ(n)
0 xn . . . −λ(n)

0 xv
n




It is easy to verify that A · B = H. Multiplying (35) by B, we
get

ϕ ·H = δ′′

where
δ′′ .= δ′ · B. (36)

Let C denote the linear code over Z
n
q that has H as its parity-

check matrix, i.e.

c ∈ C ⇐⇒ c ·H = 0.

Let λ1, . . . , λn be the Lagrange coefficients corresponding to
{x1, . . . , xn}; thus, for every P (·) ∈ Z

<n
q [x], it holds that

P (0) = λ1P (x1) + . . .+ λnP (xn).

In Lemma 7 (Sect. 6.3.3), we prove that C is a Generalized
Reed-Solomon Code (GRS), with distance (v + 1). For more
details about Generalized Reed-Solomon Codes, see e.g. [22].
Generalized Reed-Solomon Codes can be decoded efficiently
by the algorithm of Berlekamp and Welch [1]. This means

3 Without loss of generality we are assuming that the current sat-
uration level L is equal to v.
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that, for any e ≤ m and any vector µ ∈ Z
n
q , there exists

(at most) a unique vector ω ∈ C that disagrees with µ in at
most e positions (since C has distance (v+ 1) and m = 	 v

2 
).
Moreover, such unique vector ω ∈ C (if it exists) can be
recovered in deterministic polynomial-time. We now describe
how this can be exploited to reconstruct ϕ given δ′.

First, we compute an arbitrary vector ϑ ∈ Z
n
q that satisfies

the system of equations

ϑ ·H = δ′′. (37)

where δ′′ is defined in Eq. (36). Note that such ϑ can be found
by standard linear algebra since Eq. (37) induces a system of
v equations with n unknowns, n > v, and H contains a non-
singular minor of size v. It is easy to verify that the vector

ω
.= ϑ−ϕ

belongs to the linear code C; indeed,

ω ·H = ϑ ·H−ϕ ·H
= δ′′ − δ′′

= 0.

As a result, the vector ϑ can be expressed as ϑ = ω + ϕ.
Provided that the number of traitors is at most m, it holds

that the Hamming weight of ϕ is less than or equal to m
and as a result ϑ is an n-vector that differs in at most m
positions from the vector ω (which belongs to C): in other
words, we can view ϑ as a “partially corrupted” version of the
codeword ω. Therefore, we can recover ω from ϑ, by running
the Berlekamp-Welch decoding algorithm for GRS-codes on
input ϑ. At this point, ϕ can be computed as ϕ = ϑ− ω.

By Eq. (35), ϕ is a vector of Hamming weight at most
m, whose non-zero components correspond to the identities
of the traitors; thus, the traitors’ identities can be recovered as

{t1, . . . , tm}
.= {j ∈ {1, . . . , n} | ϕj �= 0}.

Time-Complexity.The tracing procedure has time complexity
O(n2), which can be optimized to O(n(log n)2), if matrix
operations are implemented in a more sophisticated manner,
see e.g. [2]. If the number of traitors exceeds the bound m, it
is still possible to extract candidate sets of potential traitors
using the Guruswami-Sudan algorithm [16], which performs
GRS-decoding “beyond the error-correction bound.” This will
work provided that the size of the traitor coalition is less than
or equal to n−

√
n(n− v).

6.3.3 Correctness of non-black-box tracing

Given Lemmas 6 and 7, the correctness of the non-black-box
tracing algorithm described above follows from the properties
of algebraic decoding of GRS codes. Thus, to conclude the
argument, we now move on to the proofs of these lemmas.

Proof of Lemma 6
Let g be a generator of G, and let g′ .= gw. Using adversary
A described in the attack game Gm

trt(1
k), we want to show

how to recover the value w. In performing step 1. of Gm
trt(1

k),

choose two random polynomials A0(·) and B0(·) and set the
initial public key to be

〈g, g′, gA0(0)g′B0(0), 〈�, gA0(�)g′B0(�)〉v�=1〉.

The game then proceeds as described in Sect. 6.1; in par-
ticular, let t̄ be the number of New-period operation occurring
during the entire game. Eventually, adversary A outputs a pi-
rate decoder D from which (by Assumption 3) it is possible to
extract a vector

δ = 〈γa, γb, γ1, . . . , γv〉,

which is a valid representation of the final public key PKA.
In formula,

y = gγag′γb

v∏
�=1

hγ�

� (38)

where
PKA

.= 〈g, g′, y, 〈xi�
, h�〉v�=1〉.

Considering discrete logarithms to the base g of Eq. (38), we
get:

At̄(0)+wB t̄(0)=γa+
v∑

�=1

At̄(xi�
)γ�+w

(
γb+

v∑
�=1

B t̄(xi�
)γ�

)

that can be rewritten as:

w
(
γb +

v∑
�=1

B t̄(xi�
)γ�−B t̄(0)

)
=At̄(0)−γa−

v∑
�=1

At̄(xi�
)γ�

(39)
Notice that both the right-hand side and the coefficient of

w in Eq. (39) are known, so that if such coefficient is non-zero
(or, equivalently, if the right-hand side of Eq. (39) is non-
zero), then we can successfully recover the value of w, thus
violating Assumption 2. To complete the argument, it then
suffices to show that the right-hand side of (39) is zero only
with negligible probability, or equivalently that:

Pr[γa = γ̄a] = 1/q (40)

where

γ̄a
.= At̄(0)−

v∑
�=1

At̄(xi�
).

To this aim, below we prove that, conditioning on all the other
information in A’s view, the quantity γ̄a is uniformly dis-
tributed in Zq. It will follow that A’s chances of outputting a
value γa equal to γ̄a are just 1 in q, proving Equation (39) and
thus the lemma.

To prove that γ̄a is distributed uniformly in Zq, we again
make use of Lemma 1 following the same approach described
in Sect. 5.2.

Consider the quantity

V
.= (Coins, w, {{ctj , rt

j}2v+2
j=1 }t̄t=1)

where Coins represents the coin tosses ofA,w
.= logg g

′, and
{{ctj , rt

j}2v+2
j=1 }t̄t=1 represents all the randomness used in the

t̄ New-period operations that took place during the Gm
trt(1

k)
attack game.
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The remaining randomness used during the attack game
consists of the 2v + 2 coefficients of the polynomials A0(·),
B0(·) and can be represented by a vector α uniformly dis-
tributed in Z

(2v+2)×1
q :

α
.= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(v+m+2)×1
q defined as:

β
.= (X0,X1, . . . ,Xv,A1, . . . ,Am, γ̄a)T

where X0
.= A0(0) + wB0(0), X�

.= A0(�) + wB0(�), for
� = 1. . . . , v and Aj

.= A0(tj) for j = 1, . . . ,m.
It is clear by inspection that all the information in the view

of the adversary A during the attack game Gm
trt(1

k) is com-
pletely determined by V and β. In particular, the initial public
keyPK0 is fixed by β andw, and the secret keys of the traitors
are determined by the choice of β, Coins and w.

The quantities in V , β and α are related according to the
following matrix equation:

β = M ·α + γ

where γ ∈ Z
(v+m+2)×1
q is the vector

γ
.=




0
0
...
0
0
...
0

D0,t̄(0)−
∑v

�=1D
0,t̄(xi�

)γ�




and M ∈ Z
(v+m+2)×(2v+2)
q is the matrix




1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv wwv . . . wvv

1 xt1 . . . xv
t1 0 0 . . . 0

...
...

1 xtm . . . xv
tm

0 0 . . . 0
1−
∑v

�=1γ�−
∑v

�=1γ�xi�
. . . −

∑v
�=1γ�x

v
i�

0 0 . . . 0




By inspection, it is possible to see that the first v+m+ 1
rows of M are linearly independent, provided that w �= 0. To
see that the rank of M is indeed v+m+ 2, define T ∈ Z

m×v
q

to be the minor of matrix A resulting from considering only
rows t1, . . . , tm:

T .=


λ

(t1)
i1

. . . λ
(t1)
iv

. . .

λ
(tm)
i1

. . . λ
(tm)
iv




It is possible to show that if the last row of M were in the linear
span of the first v+m+ 1 rows of M, it would follow that δ′
should belong to the linear span of the rows of T. But since,

by hypothesis, δ′ is not a linear combination of δ′
t1 , . . ., δ′

tm
,

the matrix M must have full rank.
As soon as we fix V , the first v+m+1 entries of γ and the

first v+ 1 rows of M are determined, but α is still distributed
uniformly and independently at random in Z

(2v+2)×1
q . Simi-

larly to the proof of Lemma 3, it is also possible to show that
fixing the first v+j+1 entries of β determines the (v+j+2)th
row of M, for j = 1, . . . ,m; and that moreover, fixing the first
v+m+ 1 entries of β also determines the last rows of γ and
of M.

Hence, by Lemma 1, we can conclude that the conditional
distribution of γ̄a with respect to V and to the first v+m+ 1
entries of β, is uniform over Zq. In other words, conditioning
on all the other information in A’s view, the quantity γ̄a is
uniformly distributed over Zq. Equation (39), and thus the
lemma, follows. ��
Lemma 7. Consider the Generalized Reed-Solomon code:

C′ .=
{
〈− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)〉 | P ∈ Z
<n−v
q [x]}.

It holds that
1. C = C′.
2. C is a linear code with message-rate (n − v)/n and dis-

tance v + 1.

Proof.
1. We only need to show that C′ ⊆ C. Indeed, assuming that C′
is a linear sub-space of C, since dim(C) = n− v = dim(C′),
it immediately follows that C = C′.

To prove that C′ ⊆ C, notice that if 〈c1, . . . , cn〉 ∈ C′, then
it is of the form〈

− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉

for some polynomial P (·) ∈ Z
<n−v
q [x]. We now verify that

〈c1, . . . , cn〉 belongs to C. First, notice that for � = 1, . . . , v,
multiplying 〈c1, . . . , cn〉 by the �th column of H we get

〈c1, . . . , cn〉 · 〈−λ(1)
0 x�

1, . . . ,−λ
(n)
0 x�

n〉 =
n∑

i=1

λiP (xi)x�
i .

Now observe that
n∑

i=1

λiP (xi)x�
i = 0

by the choice of λ1, . . . , λn and the facts that degree(P ) <
n − v and � ≤ v (just consider the polynomial Q(x) .=
P (x)x� ∈ Z

<n
q [x]). It follows that

〈c1, . . . , cn〉 ·H = 0.

2. Observe that a vector of Z
n−v
q can be encoded as the coeffi-

cients of a polynomial P (·) ∈ Z
<n−v
q [x]. The corresponding

codeword of C will be the vector〈
− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉
.

To see that the distance of the linear code is v + 1, observe
that any two different codewords of C can agree on at most
n−v−1 positions, or equivalently any two distinct codewords
differ on at least v + 1 positions. ��
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7 Conclusions and future work

We introduce the first public-key traitor tracing scheme where
an unlimited number of users can be efficiently added and re-
moved from the system. Our scheme enjoys both client-side
scalability, by supporting a dynamically-changing user popu-
lation, and server-side scalability, as it enables many content
providers to use a common content distribution infrastructure.

We present a formal model for scalable public-key traitor
tracing, and a thorough analysis of the revocation and tracing
properties of our scheme against adaptive adversaries.

At a technical level, our adversarial model improves over
previous modeling for public-key traitor tracing by capturing a
larger class of adversaries, endowed with greater control over
the system when compared to previous schemes. In particular,
in our model the adversary can control an a priori unbounded
number of user additions and removals. The main limitation
of our formal model is that the adversary is supposed to be
fully revoked in a “window” of the system.

We leave it as an interesting open problem to extend our
results to a more general adversarial model, where the adver-
sary is not supposed to obey the “window” constraint (while
maintaining the efficiency of the scheme).
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