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Abstract. This paper presents the Real-Time Event Detection Service using Data
Service Middleware (DSWare). DSWare provides data-centric and group-based ser-
vices for sensor networks. The real-time event service handles unreliability of indi-
vidual sensor reports, correlation among different sensor observations, and inherent
real-time characteristics of events. The event service supports confidence functions
which are designed based on data semantics, including relative importance of sub-
events and historical patterns. When the failure rate is high, the event service enables
partial detection of critical events to be reported in a timely manner. It can also be
applied to differentiate between the occurrences of events and false alarms.
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1. Introduction

Sensor networks are large-scale wireless networks that consist of nu-
merous sensor and actuator nodes used to monitor and interact with
physical environments (Estrin, 1999)(Hill, 2000). From one perspec-
tive sensor networks are similar to distributed database systems. They
store environmental data on distributed nodes and respond to aperiodic
and long-lived periodic queries (Bonnet, 2000)(Jaikaeo, 2000)(Madden,
2002). Data interest can be pre-registered to the sensor network so
that the corresponding data is collected and transmitted only when
needed. These specified interests are similar to views in traditional
databases because they filter the data according to the application’s
data semantics and shield the overwhelming volume of raw data from
applications (Bonnet, 2001)(Shen, 2001).

Sensor networks also have inherent real-time properties. The envi-
ronment that sensor networks interact with is usually dynamic and
volatile. The sensor data usually has an absolute validity interval of
time after which the data values may not be consistent with the real
environment. Transmitting and processing “stale” data wastes com-
munication resources and can result in wrong decisions based on the
reported out-of-date data. Besides data freshness, often the data must
also be sent to the destination by a deadline. To date, not much research
has been performed on real-time data services in sensor networks.

Despite their similarity to conventional distributed real-time data-
bases, sensor networks differ in the following important ways. First, in-
dividual sensors are small in size and have limited computing resources,
while they also must operate for long periods of time in an unattended
fashion. This makes power conservation an important concern in pro-
longing the lifetime of the system. In current sensor networks, the major
source of power consumption is communication. To reduce unnecessary
data transmission from each node, data collection and transmission in
sensor networks are always initiated by subscriptions or queries. Sec-
ond, any individual sensor is not reliable. Sensors can be damaged or die
after consuming the energy in the battery. The wireless communication
medium is also unreliable. Packets can collide or be lost. Because of
these issues we must build trust on a group of sensor nodes instead of
any single node. Previous research emphasizes reliable transmission of
important data or control packets at the lower levels, but less emphasis
is on the reliability on data semantics at the higher level (Ratnasamy,
2002). Third, the large amount of sensed data produced in sensor
networks necessitates in-network processing. If all raw data is sent to
base stations for further processing, the volume and burstiness of the
traffic may cause many collisions and contribute to significant power
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loss. To minimize unnecessary data transmission, intermediate nodes or
nearby nodes work together to filter and aggregate data before the data
arrives at the destination. Fourth, sensor networks can interact with the
environment by both sensing and actuating. When certain conditions
are met, actuators can initiate an action on the environment. Since
such actions are difficult to undo, reducing false alarms is crucial in
certain applications.

The remainder of this paper is organized as follows: In section 2, we
present related work. In section 3, we give an overview of the problem
and in section 4, we present the design of Data Service Middleware
(DSWare) and some major components of DSWare. DSWare is a spe-
cialized layer that integrates various real-time data services for sensor
networks and provides a database-like abstraction to applications. In
section 5 we present a detailed description of the event detection mech-
anism. Event detection is one of the most important data services in
sensor networks because it is a way to “dig” meaningful information out
of the huge volume of data produced. It aims to find the “right data”
at the “right place” and ensure the data is sent at the “right time”.
Event Detection Services in DSWare associate a confidence value with
each decision it makes based on a pre-specified confidence function. It
incorporates the unreliability of sensor behavior, the correlation among
different factors, and reduces false alarms by utilizing data semantics.
Section 6 presents the performance evaluation of the event detection
mechanism. We conclude the paper in Section 7.

2. Related Work

There are many ongoing middleware research projects in the area of
sensor networks, such as Cougar, Rutgers Dataman, SINA, SCADDS,
Smart-msgs, and some virtual-machine-like designs (Cougar Project,
2000)(Dataman Project, 1999)(SCADDS Project, 1999)(Smart Mes-
sage Project, 2000)(Bonnet, 2001)(Feng, 2002)(Mattern, 2002)(Shen,
2001). COUGER and SINA are two typical data-centric middleware
designs which have goals that are similar to our design goal of providing
data services. In COUGER, sensor data is viewed as tables and query
execution plans are developed and possibly optimized in th middleware.
Our work on DSWare is more tailored to sensor networks, including
supporting group-based decision, reliable data-centric storage, and im-
plementing other approaches to improve the performance of real-time
execution, reliability of aggregated results and reduction of communica-
tion. SINA is a cluster-based middleware design which focuses on the
cooperation among sensors to conduct a task. Its extensive SQL-like
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primitives can be used to issue queries in sensor networks. However,
it does not provide schemes to hide the faulty nature of both sensor
operations and wireless communication. In SINA it is the application
layer that must provide robustness and reliability for data services.
In DSWare, the real-time scheduling component and built-in real-time
features of other service components make DSWare more suitable than
SINA for real-time applications in ad hoc wireless sensor networks.

Multisensor data fusion research focuses on solutions that fuse data
from multiple sensors to provide more accurate estimation of the envi-
ronment (Jayasimha, 1991)(Qi, 2001). In mobile-agent-based data fu-
sion approaches, software that aggregates sensor information are packed
and dispatched as mobile agents to “hot” areas (e.g., the area where an
event occurred) and work independently there. The software migrates
among sensors in a cluster, collects observations, then infers the real
situation (Qi, 2001). This approach and our group-based approach both
make use of consensus among a number of nearby sensors of the same
type to increase the reliability of a single observation. The mobile-
agent-based approach, however, leverages on the migration traffic of
mobile agents and their appropriate processing at each sensor node in
its routes. For instance, if a node in the route inserts wrong data or
refuses to forward the mobile agents, the aggregation and subsequent
analysis are untrustful. Our approach does not have such limitations:
malfunctioning of individual nodes does not infect the entire group.

A fuzzy modelling approach is sometimes used for data fusion in
sensor networks. It is used to model the uncertainty in sensor failures
and faulty observations (Samarasooriya, 2000). This approach is useful
in modelling the sensor error rates due to equipment wear and ag-
gregating local decisions from multiple sensors that measure the same
type of data. Some optimal decision schemes focus on the fusion of
asynchronously arriving decisions (Chang, 1994)(Samarasooriya, 1996).
E. Bosse et. al. presented a modelling and simulation approach for a
real-time algorithm in multi-source data fusion systems (Bosse, 2000).
These data fusion schemes are suitable for increasing the accuracy of
decisions, but require extensive computing resources. In our approach
to event detection, the computation in fusion nodes is small.

Dempster-Shafer evidential theory is also applied to incorporate
uncertainty into decisions in some sensor fusion research (Murphy,
1999). This scheme uses Belief and Plausibility functions to describe
the reliability feature of each source and uses a normalized Demp-
ster’s combination rule to integrate decisions from different sources.
Our confidence function is similar to Dempster-Shafer method except
that we place the evidence in both temporal and spatial spectrums to

TSJournalSubmission.tex; 9/09/2003; 13:48; p.5



6

Network Layer


Application Layer


DSWare Layer


Routing


MAC Layer


Figure 1. Software Architecture in Sensor Networks

Event Detection


Data Storage


Data

Subscription


Group

Management


Data Caching


Scheduling


Figure 2. Framework of DSWare

take the real-time validity intervals of data and possible contexts into
consideration.

3. Data Service Middleware (DSWare)

A data service middleware can avoid re-implementing the common
data service part of various applications. We develop a Data Service
Middleware (DSWare) Layer that exists between the application layer
and the network layer. This middleware provides a data service ab-
straction to applications, as depicted in Fig. 1. In this architecture,
routing is separated from both DSWare and the network layer since
the group management and scheduling components in DSWare can
be used to enhance the power-awareness and real-time-awareness of
routing protocols. Fig. 2 demonstrates the architecture of DSWare.
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3.1. Data Storage

Data-centric storage is an implementation of a data storage service
(Ratnasamy, 2002). Data that describes different occurrences of some
type of activity can be mapped to certain locations so that future
queries for this type of data do not require being flooded to the whole
network. The Data Storage Component in DSWare provides similar
mechanisms to store information according to its semantics with effi-
cient data lookup and supports robustness during node failures. Cor-
related data can be stored in geographically adjacent regions to enable
possible aggregation and in-network processing.

− Data Lookup

We use two levels of hashing functions to map data to physical
storage nodes. Each type of data has its unique identifier (e.g,
the activity name string and the object’s privilege profile) and
it is used as key for the first level hashing function. The first
level hash function maps the key to a logical storage node in the
overlay network. At this level, storage nodes establish a hierarchy.
In DSWare, we have one more hashing procedure to map a single
logical node to multiple physical nodes. When a base station sends
queries for this data, the information is fetched from one of these
physical locations. Future designs need to consider how to map
related data to geographically adjacent locations to promote data
aggregation and in-network processing.

− Robustness

Data stored in an individual node can be lost due to disaster, node
damages, energy shortage, and other reasons. If we map a certain
type of data to an individual node, when this activity occurs,
lots of event data is sent to this node during a short period. The
burst of traffic will lead to high collision and power consumption
in the storage vicinity and indirectly decrease the reliability and
availability of the storage node. In DSWare, data is replicated in
multiple physical nodes that can be mapped to a single logical
node. Queries are directed to any of these nodes to avoid high
traffic collision and heavy load pushed on a single storage node.
Load is balanced among the set of physical nodes and the lifetime
of an individual node is prolonged. The consistency among these
nodes is a key issue for a data storage component. To avoid peak
time traffic, we choose “weak consistency” among the nodes. Most
of the data on these nodes are identical except a small portion
of the newest data. This new data is eventually propagated to the
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other peer nodes. The size of the portion of data that is inconsistent
is bounded and the nodes perform the replica updates when their
own work load is low.

3.2. Data caching

The Data Caching Service provides multiple copies of the data most
requested. This data is spread out over the routing path to reduce
communication, increase availability and accelerate query execution
(Bhattacharya, 2003). It uses a simplified feedback control scheme to
dynamically decide whether to place copies of the data around the
frequently queried nodes.

There is a tradeoff between the query response time and mainte-
nance overhead of data copies. A node can use the total number of
queries routed through itself, the proportion of periodic queries, av-
erage response time from the data source, the number of copies that
already exist in the neighborhood and other observations as inputs to
the controller at a node and the controller determines whether to keep
a copy. The data caching service in DSWare monitors current usages
of the copies and determines whether to increase or reduce the number
of copies and whether to move some copies to another location by
exchanging information in the neighborhood.

3.3. Group Management

The Group Management component controls the cooperation among
sensor nodes in order to accomplish a more global objective. There are
several reasons why group management is important. First, normally
functioning sensors within a geographic area provide similar sensor
values. A value that most nodes in a group agree on should have higher
confidence, than a value that is in dispute or varies widely. Second,
based on the similar observations by nearby sensors in a sufficiently
dense area, we can recognize the nodes that keep reporting erroneous
results. We may discard the suspicious nodes in later coordination
and computations to provide more reliable measurements. Third, some
tasks require cooperation of multiple sensors. Movement and speed
approximations require more than one sensor to combine their obser-
vations to calculate the direction and velocity. Finally, when a region
has adequate density of sensors, a portion of them can be put into sleep
mode to save energy.

Based on the different reasons discussed above, there are different
ways to formulate a group. For most tasks, groups are formed as the
query is sent out and dissolved when the query is expired or the task
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is accomplished. In this case, the group formulation criterion is sent
to the queried area first. Nodes decide whether to join this group by
checking whether they match the criterion. Some groups are relatively
stable after formulation, such as those measuring temperature. Some
groups are more dynamic, such as the groups tracking the movement
of a vehicle (Blum, 2003). For a dynamic group, changed criterion is
broadcast persistently in a small area whose center is the current group.
Hence, nodes can join and leave the group when the target moves. There
are other groups designed for geographically stable goals. These groups
are not sensitive to tasks, so they can be formulated during system
deployment or when explicitly specified by the applications.

3.4. Event Detection

In the event detection service, events are pre-registered according to
the specific application. Event detection is a common and important
service in sensor networks. We present a detailed protocol for event
detection in section 4.

3.5. Data Subscription

As a type of data dissemination service, Data Subscription queries are
very common in sensor networks. These queries have their own char-
acteristics, including relatively fixed data feeding paths, stable traffic
loads for nodes on the paths, and possible merges of multiple data
feeding paths. For example, a base station embedded in a policeman’s
PDA sends a subscription request to the sensor network : “Show me
the traffic status at the crossing of Ivy Road and Alderman Road and
keep providing the traffic information every 3 minutes for the next
two hours (query duration).” In this case, the base station subscribes
to the data of node A for duration D (two hours) and rate R (1 per
3 minutes). When several base stations subscribe for the data from
the same node at different rates, the Data Subscription Service places
copies of the data at some intermediate nodes to minimize the total
amount of communication. It changes the data feeding paths when
necessary, as shown in Fig. 3. The protocol for data subscription and
its performance results are presented in (Kim, 2003).

3.6. Scheduling

The Scheduling component is a special component because it provides
the scheduling service for all components in DSWare. Two most im-
portant scheduling options are energy-aware and real-time scheduling.
By default, we apply a real-time scheduling mechanism (e.g., EDF,
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Figure 3. When there are multiple subscribers (node 1 and node 2) for the data at
node 0, the Data Subscription Service detects the proximity of the two paths and
merges these two paths by placing a copy of the data at node 5 and lets node 5 send
data to the two subscribers during each requesting interval.

EDDF, with or without admission control) as the main scheduling
scheme because most queries in sensor networks are inherently real-
time tasks. We can also apply the energy-aware mechanism when we
have already met the requirements of real-time scheduling. Applications
can specify the actual scheduling schema in the sensor networks based
on the most important concerns.

4. Event Detection Services

In this section, we present the event detection services of DSWare. We
first discuss some of the key concepts of the event detection services,
including event hierarchy, confidence, and time semantics, followed by
implementation issues.

4.1. Event Hierarchy

An observation is the low-level output of a sensing device during a
sensing interval. It is a measurement of the environment. An event is
an activity that can be detected in the environment and is of interest
to the application.

We group events into two different types: atomic events and com-
pound events. An atomic event refers to an event that can be deter-
mined merely based on an observation of a sensor. Suppose we have
registered the following events:

High temperature event represents the observation that the tem-
perature is higher than a specified threshold.

Light event represents an occurrence of a sharp change in the light
intensity.
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Acoustic event represents the occurrence of an unusual sound match-
ing a certain signature.

Explosion event might be defined as the three events above are re-
ported in the same region within a specified time interval.

In this example, whether a high temperature event occurs or not
can be determined from an observation of a single temperature sensor.
Such event is an atomic event.

A compound event can not be detected directly from observations;
instead, it must be inferred from detections of other atomic or com-
pound events (i.e. sub-events of this compound event). In the example
above, the explosion event is a compound event. High temperature,
light and acoustic events are sub-events of the explosion event.

4.2. Confidence, Confidence Function and Phase

When a compound event occurs, it is possible that not all sub-events
are detected. For example, when an explosion actually occurs, only two
atomic sub-events – the high temperature and the light sub-events –
could be detected, if the sensors that detect the acoustic signals are
damaged in the explosion. We use the notion of confidence to address
this problem.

A confidence function takes whether the sub-events have been re-
ported or not as boolean parameters and produces a numeric value
of output based on the event’s semantics. The confidence is the return
value of the confidence function specified in event registration. An event
with a confidence higher than 1.0 is regarded as “confirmed”, i.e., the
sensor network is highly confident that the event actually occurred.

A confidence function specifies the relationships among sub-events
of a compound event with other factors that affect the decision such as
relative importance, sensing reliability, historic data, statistical model,
fitness of a known pattern and proximity of detections. The information
is derived from event semantics in real life. A confidence function can
be a simple linear equation or a complex statistical model. For example,
if the temperature has been continuously going up for a period of time,
combined with light sub-event, then a report of fire event carries a
higher confidence compared to the report that is based on the observa-
tions only on temperatures going up and down rapidly in a short period
of time.

In reality, an event always has its meaningful contexts, which can
be modelled using a Finite State Machine (FSM). For example, in a
residential monitoring system, morning, afternoon, and evening can be
the states of this system. We call these states phases. In each phase,
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there is a set of events that are likely to occur with meaningful context,
while other events are less likely to occur (Tremblay, 1995). Consider a
chemical factory. Dissemination of a chemical might not happen except
during a specific production phase. If all sub-events of this chemical
event are detected during a phase in which the event is very unlikely
to happen, the system could either give this event detection a low
confidence or report the possible malfunction of the sensors. Using
phases in this manner not only saves power in monitoring and event
detection, but also increases the reliability of event detection.

4.3. Real-Time Semantics

Each sub-event has an absolute validity interval (avi) associated with
it. The avi depicts the temporal consistency between the environment
and its observed measurement. Continuing the explosion example, the
temperature sub-event can have a longer avi because high temperature
usually will last for a while, while the light sub-event may not last long
because in an explosion, a sharp increase in the intensity of light would
happen only for a short period of time. It is the responsibility of the
application developer to determine the appropriate avi values.

When an event consists of more than one sub-event, the time an
aggregating node should wait for the arrivals of all these sub-events
becomes an important issue. The delay of a sub-event’s detection varies
according to sensors’ sampling period and communication delay. We
should preserve a time window to allow all possible reports of sub-events
to arrive to the aggregating node. Wireless media and unpredictable
environment in which a sensor network exists make both the loss of
messages and failures of nodes common. For this reason, we can’t risk
reporting an urgent event late. If before the timer expires the confidence
value has reached 1, the event is reported to registrants without waiting
any more. If the confidence value exceeds the min confidence value
specified in sub-event list when the timer expires, the event is reported
to registrants with this confidence value. If the confidence value hasn’t
reached the min confidence value when the timer expires, the event is
not reported.

After an event is detected, it should be sent to the registrants before
the reporting deadline. For example, we can use the Velocity Monotonic
Scheduling or SPEED protocol (He, 2003)(Lu, 2002).

4.4. Registration and Cancellation

To register an event of interest, an application submits a request in the
following SQL-like statement:
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INSERT INTO EVENT_LIST

(EVENT_ID, RANGE_TYPE, DETECTING_RANGE,

SUBEVENT_SET, REGISTRANT_SET, REPORT_DEADLINE,

DETECTION_DURATION [, SPATIAL_RESOLUTION ]

[, ACTIONS])

VALUES ()

Range Type and Detecting Range together specify a set of sen-
sor nodes that should be responsible for detecting this event. The
Range Type can be GROUP or AREA. The Detecting Range is the
group’s description (e.g., Group ID) or the area’s coordinates’ range. If
an application specifies an area in its registration request, one or more
groups will be established in this area. Because of the limited space,
we cannot describe different options of group formulations and their
contexts in this paper. It will be covered in a separate paper. When
an event is detected, it will be reported before the Report Deadline to
every node in the Registrant Set. If an application receives an event de-
tection report with an expired Report Deadline, it can decide whether
to ignore this “stale” report, or take it and reduce its associated con-
fidence. Detection Duration denotes the ending time for this event
detection task. After the duration time, the event’s information is void
and nodes stop detecting this event. Event information will be deleted
from this group or area. Temporary groups built for this event are
dissolved. The Spatial Resolution defines the geographical granularity
for the event’s detection. The Subevent Set defines a set of sub-events
and their timing constraints. Here we give its definition:

Subevent_Set { Time_window,

Phase_set,

Confidence_function,

Min_confidence,

(sub-event_1, avi1),

[(sub-event_2, avi2),...]}

The Time window specifies the time interval during which the sub-
events reports are collected. The Phase set identifies the phase to which
the event belongs. The Confidence function and Min confidence rep-
resent the function to be used for computing the confidence and the
minimum confidence required to report the occurrence of the sub-event,
respectively.

Let P denote the current Phase in the group or area and S denote the
set of sub-events for event E, i.e., S = (sub − event1, sub − event2...).

E is detected when the following are true:
1) P belongs to Phase set of E.
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2) For every s in S, calculate B(s): B(s) = 1 when s has been
detected and (current time - detected time) ≤ avi of s; B(s) = 0 oth-
erwise.

3) Calculate confidence = f(B(s1), B(s2), ..., ), where f is the confi-
dence function.

4) When Time window expires: if (confidence ≥ min confidence)
report the event with confidence value.

Registered events can be cancelled even before the Detection duration
is terminated by submitting a cancellation request. The format of event
cancellation is similar to that of event detection. The difference is that
it only needs to specify the event’s id instead of describing an event’s
criteria.

DELETE FROM EVENT_LIST

WHERE EVENT_ID = event_id

After an event is cancelled, the event’s information is void and nodes
stop detecting the event. Event information is deleted from the group
or area. Any groups assembled for this event are dissolved.

4.5. Discussion

In the current implementation of the event detection service, we made
some simplifications to demonstrate the main ideas on data seman-
tics, real-time constraints, and reliability of decisions. We understand
the complexity and various choices on issues including the formats
for registration and cancellation, group formation, confidence func-
tion, and spatial/temporal resolutions. In this section, we provide some
discussions on important issues in event detection services.

4.5.1. SQL-like Language in Event Detection:
As presented in Section 4.4, we use SQL-like statements for the regis-
tration and cancellation of an event. This approach provides a simple
interface for applications (Bonnet, 2001)(Madden, 2002). The syntax of
the statements is the same as standard SQL statements. So the appli-
cation can insert events to a traditional database or a sensor network
without any changes in the code. This is effective for applications that
need event detection services, without paying any special attention to
the actual type of the database and data service middleware that is
providing the service.

In some cases, this approach is unsuitable because of its parsing
overhead. After an SQL-like statement is issued, DSWare parses it,
generates an execution plan, and calls the corresponding methods to
execute the registration, execution, and cancellation. Parsing consumes
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memory and processing power. For sensor networks in which sensors are
very limited in processing and memory capacities, it might be better
to provide method signatures to applications instead of standard SQL.
However, we believe that the SQL-like approach is the right one, since
it provides the flexibility and expressiveness of SQL to cover a large
number of possible event specifications. This is the main reason why
we include an optional SQL-parser module in our DSWare.

4.5.2. Spatial and Temporal Resolutions:
Spatial resolution indicates the possible detection radius of an event. If
the size of a detection group is too small compared to this event, there
might be several groups in this event’s coverage that report this event.
The Event Detection component should be able to tell whether these
are different occurrences or just repeated reports of a same event.

Temporal resolution has a similar property to spatial resolution,
except that it specifies the detection granularity in the time dimension.
Some events last much longer than the sensing interval of a sensor.
It is unnecessary for some applications to report a single occurrence
repetitively. For example, an application sets the temporal resolution
of a fire event as 10 minutes. At the beginning of the fire, the group
that detects the fire reports the fire event to the registrants. Assume
that there is some mechanism to guarantee that the registrants have
received the report, this group can ignore any subsequent occurrence of
this event’s sub-events within 10 minutes, because that is possibly the
same event. The temporal resolution is not required for every applica-
tion because some applications require the sensors to report an event’s
existence regardless of whether it is a new event or not.

5. Evaluation of Real-time Event Detection Services

For the evaluation, we have implemented the real-time event detection
services in GloMoSim(Zeng, 1998). Within a terrain of 2000 ∗ 2000m2,
which is uniformly divided into 16 groups, we placed 100 sensor nodes
to sense temperature, light or acoustics. The simulator simulates the
detection of an Explosion(E) event that consists of a high tempera-
ture atomic event(T), a light atomic event(L) and an acoustic atomic
event(A). T and A are modelled as circles whose coverage radius ex-
pands over time, denoting the actual energy expansion in a real system
(Yan, 2001). L is modelled as spatially distributed events that occur
repetitively during explosions with a very short lifetime. To simulate
the error distribution around a hazard event such as explosion, the
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failure rate of sensors decreases quadratically with the distance between
a sensor and the center of explosion.

In our experiments, explosions are randomly placed in the terrain,
with respect to their locations, occurring times and durations. Their
radius is 200m. The explosion event is registered by node 1 (at upper-
left corner of the terrain) to the entire network. In our simulation, we
assume high temperature is a more consistent indicator of an explosion
among the three sub-events and temperature sensing devices are more
robust in the physical environment. Accordingly, we specify a simplistic
confidence function as follows:

Confidence = 0.6 × B(T ) + 0.5 × B(L) + 0.4 × B(A) (1)

B(x) =1 if x is detected within time window of 15 seconds; 0 otherwise.
The weights of sub-events are consistent with our application and

experimental settings. The min confidence is set as 0.8, which means
an explosion event will be reported if the confidence is not less than
0.8. In addition, temporal resolution is set to 18 seconds, which means
that when the group leader finds out that the confidence value for a
compound event has reached the threshold, it will first check whether
it has sent the same kind of compound event report to the registrant
within the last 18 seconds. If so, the leader will consider this report as
the same one and will not report it to the registrant. In reality, the pa-
rameters for confidence function, including weights for different atomic
events, min confidence and the size of the time window come from a
specific application domain. Also, the setting of temporal resolution
depends on the application requirement.

To evaluate our event service, we use communication cost, reaction
time and total number of missing reports as the performance metrics.
For comparison, we choose a baseline which works as follows: Once a
sensor detects an atomic event, it will directly send the atomic event
report to the registrant. The registrant will use the same mechanism of
event service to decide whether there is a compound event happening.

For all the performance data, we have taken the average of 10 sim-
ulation runs and derived 95% confidence interval, denoted as vertical
lines in the figures.

5.1. Performance in Reduction of Communication

Fig 4 is the comparison between real-time event services (denoted by
the DSWARE curve in the figure) and the Baseline on the number
of messages transmitted in the network. From the figure, we can see
that the number of transmitted messages for the baseline dramatically
increases from 121 to 2439 with the number of explosions increasing.
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Figure 4. Comparison of Communication Cost

0 5 10 15 20 25
14

16

18

20

22

24

26

Number of explosions

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e(
s)

DSWARE
Baseline

Figure 5. Comparison of Reaction Time

The figure demonstrates that event detection scheme which is estab-
lished upon data and application semantics can further process and
aggregate data and thus reducing unnecessary communication without
sacrificing real-time constraints. As a result, our event detection can
save a lot of energy since the communication cost dominates the energy
consumption in sensor networks.

5.2. Performance in Reaction Time

One of the key features of our event services is that it is suitable
for real-time applications. Events detected in sensor networks will be
reported to the registrant within a short time. In this experiment, we
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Figure 6. Comparison of Missing Reports

measured the average reaction time for both baseline and our event
service scheme, which is defined as the interval between the time that
the registrant gets the explosion event report and the actual occurrence
of the event. As shown in Fig 5, our event service can report the
explosion quickly(around 15.5 seconds). The reaction time increases
very slowly from 15.1 seconds to 16.1 seconds with the increase of the
number of explosions in the network. However, the reaction time of
the baseline increases rapidly from 15.1 seconds to 21.6 seconds. The
reason is that all sensors will directly send atomic event reports to the
registrant, which causes severe traffic congestion in the network. As a
result, the registrant has to wait for longer time to get the atomic event
reports to do the analysis. Obviously, the baseline is not suitable for
real-time applications.

5.3. Performance in Completeness

The purpose of event service is to detect user-specified events in the
environment. It is very important that all occurrences of the specific
events should be reported to the registrant. In this experiment, we
measured the number of missing reports, which is defined as the differ-
ence between the number of different explosion reports the registrant
received and the actual number of occurrences. As shown in Fig 6, the
number of missing reports using our event service is very low, around
1 or 2, while the number using the baseline reaches 4. Because there
are only 100 nodes in the experiment, which are uniformly divided
into 16 groups, there may not be enough sensors to cover the range of
explosions. That’s why our event service misses some explosion reports.
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Figure 7. Node Density’s Impact

If the nodes’ density is high enough, our event service should detect all
the user-specified events in the sensor network.

5.4. Impact of Node Density

To study the impact of node density on the performance of event ser-
vices, including communication cost, reaction time and completeness,
we placed 400 nodes in the network and kept all the parameters the
same as pervious experiments. As shown in Fig 7, the number of missing
reports is reduced to 0 for both event service of DSWare and that
of the baseline. However, the communication cost and reaction time
increase at the same time. Using the event service of DSWare, the
communication cost increases to 3900 and the reaction time increases
0.79%, when there are 15 explosions in the network composed of 400
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nodes. In comparison, the performance of the baseline, with respect
to communication cost and reaction time, becomes much worse. For
instance, when there are 15 explosions in the network, the commu-
nication cost increases to over 12000 and the reaction time increases
76.65%. According to the results of this experiment, we can see that if
the node density is very low, there will be missing reports. However,
if the node density is high, there will be a lot of energy consumed by
communication and the registrant may not be able to get the detected
report in time. It is clear that there is a tradeoff between communication
cost, reaction time and the number of missing reports for our event
service. We leave it as a future work to study the relationship and
tradeoffs. Using sensor networks of appropriate node density, our event
service can report all the user-specified events in the network to the
registrant in time without consuming a lot of energy.

6. Conclusions

A sensor network should be able to provide the abstraction of data ser-
vices to applications. However, because of the lack of basic data-centric
services in sensor networks, current applications need to implement
the entire stack of application-specific data services including group
management, query optimization, local data processing, and event de-
tection. Such a tight coupling of data services and application logic
has several disadvantages and increases the complexity of applying
sensor networks as databases in a large software system. We have
developed a data-centric service middleware in sensor networks called
DSWare. DSWare is a flexible middleware designed to hide unattractive
characteristics of sensor networks including the unreliability of indi-
vidual sensing and communication, complexity of group coordination,
and large volume of dynamic data distributed all over the networks,
to present a more general data service interface to applications. Ap-
plications are freed from complicated low level operations of sensor
networks and are able to retrieve data from sensor networks using
similar interfaces as conventional databases.

Event detection is one of the services that is most widely used in
sensor network applications. Instead of providing only simple detection
of atomic events, we have developed a middleware architecture that
accommodates the data semantics of real-life compound events and
tolerates the uncertainty and unreliability in sensor networks.

The current version of DSWare including the event detection ser-
vices is the first step to deliver a flexible and efficient data service
middleware for sensor networks. Our future work includes extending
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the event detection services to support applications for mobile event
tracking and implementing other services in DSWare.
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