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1. INTRODUCTION

Dijkstra's algorithm is called the single-source shortest path. It is also known as 
the single source shortest path problem. It computes length of the shortest 
path from the source to each of the remaining vertices in the graph.

The single source shortest path problem can be described as follows:

Let G= {V, E} be a directed weighted graph with V having the set of vertices. 
The special vertex s in V, where s is the source and let for any edge e in E, 
EdgeCost(e) be the length of edge e. All the weights in the graph should be 
non-negative.

Before  going  in  depth  about  Dijkstra’s  algorithm let’s  talk  in  detail  about 
directed-weighted graph. 

Directed graph can be defined as an ordered pair G: = (V,E) with V is a set, 
whose elements are called vertices or nodes and E is a set of ordered pairs of 
vertices, called directed edges, arcs, or arrows. Directed graphs are also known 
as digraph.

Figure: Directed graph



Directed-weighted graph is a directed graph with weight attached to each of 
the edge of the graph.

Figure: Directed-weighted graph

• Dijkstra’s –A Greedy Algorithm

Greedy algorithms use problem solving methods based on actions to see 
if  there’s  a  better  long  term strategy.  Dijkstra’s  algorithm uses  the 
greedy  approach  to  solve  the  single  source  shortest  problem.  It 
repeatedly selects from the unselected vertices,  vertex v  nearest to 
source s and declares the distance to be the actual shortest distance 
from s to v. The edges of v are then checked to see if their destination 
can be reached by v followed by the relevant outgoing edges.



2. DESCRIPTION OF THE ALGORITHM

Before going into details of the pseudo-code of the algorithm it is important to 
know how the algorithm works. Dijkstra’s algorithm works by solving the sub-
problem k,  which computes the shortest  path from the source to  vertices 
among the k closest vertices to the source. For the dijkstra’s algorithm to work 
it should be directed- weighted graph and the edges should be non-negative. If 
the edges are negative then the actual shortest path cannot be obtained.

At the kth round, there will be a set called Frontier of k vertices that will consist 
of the vertices closest to the source and the vertices that lie outside frontier 
are computed and put into New Frontier. The shortest distance obtained is 
maintained in  sDist[w].  It  holds the estimate of  the distance from s to  w. 
Dijkstra’s  algorithm finds  the  next  closest  vertex  by  maintaining  the  New 
Frontier vertices in a priority-min queue.

The algorithm works by keeping the shortest distance of vertex v from the 
source in an array, sDist. The shortest distance of the source to itself is zero. 
sDist for all other vertices is set to infinity to indicate that those vertices are 
not yet processed. After the algorithm finishes the processing of the vertices 
sDist will have the shortest distance of vertex w to s. two sets are maintained 
Frontier  and New Frontier  which helps  in  the processing of  the  algorithm. 
Frontier  has  k  vertices which are  closest  to  the  source,  will  have already 
computed shortest  distances to  these vertices,  for  paths restricted upto k 
vertices. The vertices that resides outside of Frontier is put in a set called New 
Frontier.



 

3. PSEUDO-CODE OF THE ALGORITHM

The following pseudo-code gives  a  brief  description of  the  working of  the 
Dijkstra’s algorithm. 

Procedure Dijsktra (V: set of vertices 1... n {Vertex 1 is the source}
            Adj[1…n] of adjacency lists; 

       EdgeCost(u, w): edge – cost functions;)
Var: sDist[1…n] of path costs from source (vertex 1); {sDist[j] will be equal to 
the length of the shortest path to j}

Begin:
Initialize 
{Create a virtual set Frontier to store i where sDist[i] is already fully solved}

Create empty Priority Queue New Frontier;
sDist[1]←0; {The distance to the source is zero}

forall vertices w in V – {1} do {no edges have been explored yet}
sDist[w]←∞

end for;
Fill New Frontier with vertices w in V organized by priorities sDist[w];

endInitialize; 

repeat 
v←DeleteMin{New Frontier}; {v is the new closest; sDist[v] is  already correct}
forall of the neighbors w in Adj[v] do 

if sDist[w]>sDist[v] +EdgeCost(v,w) then
sDist[w]←sDist[v] +EdgeCost(v,w)
update w in New Frontier {with new priority sDist[w]}

endif 
endfor 
until New Frontier is empty
endDijkstra;

The  algorithm illustrates  Best-First-Breadth-First-Search.  It  is  the  Best-First 
because the best vertex is New Frontier is selected to be processed next. The 
search used is Breadth-First, since New Frontier consists of vertices that can be 
tried next and these vertices are one edge away from the explored vertices.



4. EXAMPLE

The  above  algorithm  can  be  explained  and  understood  better  using  an 
example. The example will briefly explain each step that is taken and how sDist 
is calculated. 

Consider the following example:

Figure: Weighted-directed graph

The above weighted graph has 5 vertices from A-E. The value between the two 
vertices is known as the edge cost between two vertices. For example the edge 
cost between A and C is 1. Using the above graph the Dijkstra’s algorithm is 
used  to  determine the  shortest  path from the  source A  to  the  remaining 
vertices in the graph.

The example is solved as follows:

• Initial step
sDist[A]=0 ;  the value to the source itself
sDist[B]= ∞, sDist[C]= ∞, sDist[D]= ∞, sDist[E]= ∞;  the nodes not 
processed yet

• Step 1
Adj[A]={B,C}; computing the value of the adjacent vertices of the graph 
sDist[B]=4;
sDist[C]=2;



Figure: shortest path to vertices B, C from A

• Step 2
Computation from vertex C
Adj[C] = {B, D}; 
sDist[B] > sDist[C]+ EdgeCost[C,B]
   4 > 1+2 (True)
Therefore, sDist[B]=3;

sDist[D]=2;

Figure: Shortest path from B, D using C as intermediate vertex

Adj[B]={E};
sDist[E]=sDist[B]+EdgeCost[B,E]

=3+3=6;



Figure: Shortest path to E using B as intermediate vertex

Adj[D]={E};
sDist[E]=sDist[D]+EdgeCost[D,E]

=3+3=6
This is same as the initial value that was computed so sDist[E] value is 

not changed.

• Step 4
Adj[E]=0; means there is no outgoing edges from E
And no more vertices, algorithm terminated. Hence the path which 
follows the algorithm is

Figure: the path obtained using Dijkstra’s Algorithm



5. PROOF OF THE DIJKSTRA’S ALGORITHM

The proof of the algorithm can be obtained by using proof of contradiction. 
Before proceeding further with proof few facts/lemma have to be stated.

• Shortest paths are composed of shortest paths. It is based on the fact 
that if there was a shorter path than any sub-path, then the shorter path 
should replace that sub-path to make the whole path shorter.

• If s ->…-> u -> v is a shortest path from s to v, then after u is added to 
Frontier then sDist[v] = EdgeCost[s, v] and sDist[v] is not changed. It 
uses the fact that at all times sDist[v] >= EdgeCost[s, v]

The distance of the shortest path from s to u is sDist[s, u]. After computing, we 
get sDist[u] = EdgeCost[s, u] for all u. Once u is added to S, sDist[u] is 
not changed and should be EdgeCost[s, u]. 

PROOF BY CONTRADICTION

Suppose that u is the first vertex added to S for which sDist[u] != 
EdgeCost[s,u]. Note: 

• u cannot be s, because sDist = 0. 
• There must be a path from s to u. If there were not, sDist[u] would be 

infinity. 
• Since there is a path, there must be a shortest path. 

Let s -(p1)-> x -> y -(p2)-> u be the shortest path from s to u. x is within S and 
y is the first vertex not within S.



When x was inserted into S, sDist[x] = EdgeCost[s, x] (since according to the 
hypothesise u was the first vertex for which this was not true). 

Edge (x,y) was relaxed so that

sDist[y] = EdgeCost[s, y]
<= EdgeCost [s, u]
<= sDist[u]

Now both y and u were in V-S when u was chosen, so d[u] <= d[y]. Thus the two 
inequalities must be equalities,

sDist[y] = EdgeCost[s, y] = EdgeCost [s, u] = sDist[u] 

So sDist [u] = EdgeCost [s,u] contradicting hypothesis. 

Thus when each u was inserted, sDist[u] = EdgeCost[s, u]. 



6. EFFICIENCY

The complexity/efficiency can be expressed in terms of Big-O Notation. Big-O 
gives  another  way of  talking  about  the  way input  affects  the  algorithm’s 
running time. It gives an upper bound of the running time. 

In Dijkstra’s algorithm, the efficiency varies depending on |V|=n DeleteMins 
and |E| updates for priority queues that were used. 

If a Fibonacci heap was used then the complexity is O( | E | + | V | log | V | ) , 
which is the best bound. The DeleteMins operation takes O(log|V|).

If a standard binary heap  is used then the complexity is O( | E |log |E|),| E |
log |E| term comes from|E|updates for the standard heap . 

If the set used is a priority queue then the complexity is O(|E|+|V|2). O(V|2) 
term comes from |V| scans of the unordered set New Frontier to find the vertex 
with the least sDist value.

7. DIS-ADVANTAGES

The major disadvantage of the algorithm is the fact that it does a blind search 
there by consuming a lot of time waste of necessary resources. 

Another disadvantage is that it cannot handle negative edges. This leads to 
acyclic graphs and most often cannot obtain the right shortest path.



8. RELATED ALGORITHMS

• A* algorithm is a graph/tree search algorithm that finds a path from a given 
initial node to a given goal node It employs a "heuristic estimate" h(x) that 
gives an estimate of the best route that goes through that node. It visits the 
nodes in order of this heuristic estimate. It follows the approach of best first 
search.

• The  Bellman–Ford algorithm computes single-source shortest  paths in  a 
weighted digraph. It uses the same concept as that of Dijkstra’s algorithm but 
can handle negative edges as well. It has a better running time than that of 
Dijkstra’s algorithm.

• Prim’s algorithm finds a minimum spanning tree for a connected weighted 
graph. It implies that it finds a subset of edges that form a tree where the total 
weight of all the edges in the tree is minimized. it is sometimes called the DJP 
algorithm or Jarnik algorithm.

9. APPLICATIONS

• Traffic information systems use Dijkstra’s algorithm in order to track the source 
and destinations from a given particular  source and destination

• OSPF- Open Shortest Path First, used in Internet routing. It uses a link-state in 
the individual areas that make up the hierarchy. The computation is based on 
Dijkstra's algorithm which is used to calculate the shortest path tree inside 
each area of the network.
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