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Abstract. We introduce a new technique of SampleSearch-SIR to generate ran-
dom solutions of a Boolean satisfiability problem from a uniform distribution
over the solutions. Our technique operates in two phases. In the first phase, it
uses a recently proposed SampleSearch scheme to generate approximately ran-
dom solutions from the satisfiability problem and then in the second phase it
uses the Sampling Importance Resampling (SIR) principle to reduce the approx-
imation error introduced by SampleSearch. The use of SIR guarantees conver-
gence (in the limit) that none of the current state-of-the-art schemes have. Our
empirical results demonstrate the superior performance and better convergence
of SampleSearch-SIR as compared to state-of-the-art schemes.

1 Introduction

In this paper, we present a new algorithm to solve the solution sampling task which is the
task of generating solutions from a uniform distribution over the solutions of a Boolean
satisfiability problem. As pointed out in [15, 2, 6], the sampling task has wide range of
applications in fields such as Verification, probabilistic reasoning and Distributed AI.

The problem of test program generation in the functional verification domain, for
example, can be modeled as a random sampling task. The main vehicle for verification
of large and complex hardware designs is simulation of a large number of random test
programs [1]. These large hardware designs can be modeled as Boolean satisfiability
problems in which case the test programs are its solutions. Typically, the number of
solutions of the modeled program could be as large as101000 and the typical number of
selected test programs are in the range of103 or 104. Naturally, the best test generator
is the one that would uniformly sample the space of test programs which translates to
solving the random sampling task.

Theoretically, the random sampling task is closely related to the#P-Complete prob-
lem of counting the number of solutions of a satisfiability problem. In fact, it is known
[7] that if one can sample uniformly from the set of solutions then one can design a
highly accurate method for counting solutions. Conversely [2], one can also design a
highly efficient method for sampling solutions from an exact counting algorithm.

The principle that algorithms for counting can be used for sampling was exploited in
[2] in which the authors show how an exact counting algorithm like Bucket (Variable)
Elimination can be used to solve the random sampling task. The Bucket elimination
algorithm, however, is exponential in a graph parameter called treewidth and is imprac-
tical when the treewidth is large. Therefore, in order to make their random sampling



algorithms practical, [2, 5] propose to use approximate solution counters based on Mini-
bucket Elimination and Generalized Belief propagation instead of Bucket Elimination.
Empirical results in [2, 5] show that the proposed approximate sampling schemes work
quite well on loosely constrained SAT instances.

However, [5] point out that earlier schemes may fail to generate even a single so-
lution for some hard SAT instances. The problem is that both Mini-bucket Elimination
and Generalized Belief Propagation achieve only bounded consistency and therefore
many inconsistencies are not detected. Consequently, a large number of samples gen-
erated from the output of Mini-bucket elimination and Generalized Belief Propagation
are not solutions. Obviously, these non-solutions are irrelevant to the random sampling
task and are effectively thrown away or rejected (the rejection problem) .

In [5], the authors circumvent the rejection problem by systematically searching for
a solution when a sample is rejected instead of returning with a non-solution yielding
the SampleSearch scheme. SampleSearch is basically a randomized backtracking pro-
cedure whose value selection is guided by sampling from the output of Mini-bucket
Elimination or Generalized Belief Propagation. The experimental study in [5] showed
that SampleSearch is quite competitive with state-of-the-art solution samplers.

In spite of the good empirical performance of SampleSearch, it has a fundamental
shortcoming. For any sampling procedure, one expects that increasing the number of
samples reduces the sampling error. However, SampleSearch does not have any such
guarantees of convergence (even in the limit). In fact, in a recent work [4] which ex-
plores the use of SampleSearch for solution counting, we prove that the distribution
over the solutions generated using SampleSearch would converge to thebacktrack-free
distribution. Because the backtrack-free distribution is different from the uniform dis-
tribution over the solutions, the use of SampleSearch seems to be problematic.

In this paper, we propose to circumvent this problem by using the Sampling Impor-
tance Resampling (SIR) principle yielding the SampleSearch-SIR scheme. Unlike pure
SampleSearch, SampleSearch-SIR guarantees [13, 10] that as the number of samples
increases, the expected sampling error goes to zero. We will explore various improve-
ments to the pure SIR scheme such as (a) sampling without replacement [3] and (b)
Improved SIR [12].

We present empirical comparison of SampleSearch-SIR with state-of-the-art solu-
tion sampling schemes of WALKSAT [15] and pure SampleSearch [5]. We found that
SampleSearch-SIR has better performance in terms of sampling error than both WALK-
SAT and pure SampleSearch on most benchmarks. In particular, we observe that as the
time increases (or as more samples are drawn), the sampling error of SampleSearch-SIR
decreases approaching zero while the sampling error of WALKSAT and pure Sample-
Search remains almost constant.

The rest of the paper is organized as follows. In section 2, we present preliminaries
and previous work on the SampleSearch scheme. In section 3, we show how Sample-
Search can be integrated with the Sampling Importance Resampling (SIR) framework.
Empirical results are presented in section 4 and we end with a short discussion and
summary in section 5.



2 Preliminaries and Related Work

We represent sets by bold capital letters and members of a set by capital letters. An
assignment of a value to a variable is denoted by a small letter while bold small letters
indicate an assignment to a set of variables. For the rest of the paper, let|X|= n be the
propositional variables. A variable assignmentX = x, x = (x1, . . . ,xn) assigns a value
in {0,1} to each variable inX. We use the notationxi to mean the negation of a value
assignmentxi . Let F = F1∧ . . .∧Fm be a formula in conjunctive normal form (cnf)
with clausesF1, . . . ,Fm defined overX and letX = x be a variable assignment. IfX = x
satisfies all clauses ofF , thenX = x is a model or a solution ofF .

Definition 1 (The Random Sampling task).Let S= {x|x is a solution o f F} be the
set of models of formulaF. Given a uniform probability distributionP(x ∈ S) = 1/|S|
over all solutions ofF and an integerM, the random sampling task is to generateM
solutions such that each solution is generated with probability1/|S|.

2.1 Previous approaches to solve the sampling task

An obvious way to solve the random sampling task is to first generate (and store) all
solutions and then generateM samples from the stored solutions such that each solution
is sampled with equal probability (see Algorithm 1). The problem with this approach is
that there may be exponential number of solutions and it defeats the purpose of sampling
because in most applications we resort to sampling because we cannot enumerate the
entire solution search space.

Another approach developed by Dechter et al. [2] to solve the random sampling task
works as follows. The authors first show how to express the uniform distributionP(x)
over the solutions in the product form1P(x = (x1, . . . ,xn)) = ∏n

i=1Pi(xi |x1, . . . ,xi−1)
and then use the standard Monte Carlo (MC) sampler (also called logic sampling [8])
to sample from the product form ofP. In particular, given an ordering of variables
O = 〈X1, . . . ,Xn〉, the sampling task can be solved using Algorithm 2. Here, at each
step, given a partial assignment(x1, . . . ,xi−1) to the previousi−1 variables, a value is
assigned to variableXi by sampling it from the distributionPi(Xi |x1, . . . ,xi−1). Repeat-
ing this processn times generates one sample.

The probabilityPi(Xi = xi |x1, . . . ,xi−1) is equal to the ratio of the number of so-
lutions that the partial assignment(x1, . . . ,xi) participates in and the number of solu-
tions that the partial assignment(x1, . . . ,xi−1) participates in. Therefore, counting al-
gorithms can be utilized to computePi(Xi = xi |x1, . . . ,xi−1) and to this end Dechter

1 This follows from standard probability theory (see [8])

Algorithm 1 SimpleSampler (F)

1: Generate all solutions of F and store them in a setS= {x1, . . . ,xN}.
2: for i = 1 to M do
3: p = a random number between 1 andN
4: Outputxp

5: end for



Algorithm 2 Monte-Carlo Sampler (F)
1: for j = 1 to k do
2: x=φ
3: for i = 1 to n do
4: p = a random real number between 0 and1
5: IF p < Pi(Xi = 0|x) THEN x = x∪ (Xi = 0) ELSE x = x∪ (Xi = 1)
6: end for
7: Outputx
8: end for

et al. [2] utilize a variable-elimination based solution counting scheme to compute
Pi(Xi |x1, . . . ,xi−1). In this scheme, a bucket (variable) elimination algorithm is run (just
once) as a pre-processing step so thatPi(Xi |x1, . . . ,xi−1) can be computed for any par-
tial assignment(x1, . . . ,xi−1) to the previousi−1 variables by performing a (constant
time) table look-up. The time complexity of this scheme is exponential in a graph pa-
rameter called the treewidth (induced-width). Obviously, when the treewidth is large,
the variable elimination based method is impractical.

To address the exponential blow up, Dechter et al. [2] propose to compute an ap-
proximationQi(Xi |x1, . . . ,xi−1) of Pi(Xi |x1, . . . ,xi−1) by running the mini-bucket elimi-
nation scheme instead of the bucket elimination scheme. Mini-bucket elimination (MBE)
is an approximate counting algorithm whose time (and space) complexity is exponential
in a user-specified parameteri and is therefore polynomial wheni is constant.

However, the MBE-based scheme suffers from the so-calledrejection problem. It
is known that MBE only achieves bounded level of consistency and therefore may not
make the SAT problem backtrack-free. Consequently, a sample generated from the ap-
proximationQ of P may not be a solution of the formulaF . In some cases (e.g. for
instances in the phase transition), the probability of sampling a solution from the ap-
proximationQ of P may be so small that almost all samples generated will be non-
solutions. These non-solutions are irrelevant to the solution sampling task and are ef-
fectively thrown away or rejected.

Algorithm 3 SampleSearch SS(F,Q,O)
Input: a cnf formulaF , a distributionQ and OrderingO
Output: A solutionx = (x1, . . . ,xn)
1: UnitPropagate(F)
2: IF there is an empty clause in FTHEN Return 0
3: IF all variables are assigned a valueTHEN Return 1
4: Select the earliest variableXi in O not yet assigned a value
5: p = Generate a random number between 0 and 1
6: Value Assignment:Given the partial assignment(x1, . . . ,xi−1)

IF p < Qi(Xi = 0|x1, . . . ,xi−1) THEN setxi = 0 ELSE setxi = 1.
7: ReturnSS((F ∧xi),Q,O) ∨ SS((F ∧xi),Q,O)



To circumvent the rejection problem, Gogate and Dechter [5] presented the Sample-
Search scheme. Instead of returning with a sample that is inconsistent, SampleSearch
progressively revises the inconsistent sample via DPLL-style backtracking search until
a solution is found. SampleSearch is presented as Algorithm 3. It takes as input a for-
mulaF , an orderingO= 〈X1, . . . ,Xn〉 of variables and a distributionQ= ∏n

i=1Qi(xi |x1, . . . ,xi−1).
Given a partial assignment(x1, ...,xi−1) already generated, the next variable in the or-
deringXi is selected and its valueXi = xi is sampled from the conditional distribution
Qi(xi |x1, . . . ,xi−1). Then the algorithm applies unit-propagation with the new unit clause
Xi = xi created over the formulaF . Note that the unit-propagation step is optional. Any
backtracking style search can be used, with any of the current advances. If no empty
clause is generated, then the algorithm proceeds with the next variable. Otherwise, the
algorithm triesXi = xi , performs unit propagation (or any level of constraint propaga-
tion) and either proceeds forward (if no empty clause generated) or it backtracks. On
termination, the output of SampleSearch is a solution ofF (assuming a solution exists).

Gogate and Dechter [5] showed that on most benchmarks SampleSearch is compet-
itive with another approach for solution sampling based on the WALKSAT solver [15].
In this paper, however we point out a rather negative result for SampleSearch in that
the samples generated do not converge to the uniform distribution over the solutions.
We fix this problem by exploiting the Sampling Importance Resampling (SIR) principle
yielding the SampleSearch-SIR scheme that is guaranteed to converge to the uniform
distribution.

3 The SampleSearch-SIR scheme

3.1 Convergence of SampleSearch to the wrong distribution

In a recently accepted paper [4] which explores the use of SampleSearch for count-
ing solutions, we proved that SampleSearch generates independent and identically dis-
tributed (i.i.d.) samples from the backtrack-free distribution which we define below:

Definition 2 (Backtrack-free distribution). Given a distributionQ(x)= ∏n
i=1Qi(xi |x1, . . . ,xi−1)

2, an orderingO = 〈x1, . . . ,xn〉 and a cnf formulaF, the backtrack-free distributionQF

is given byQF(x) = ∏n
i=1QF

i (xi |x1, . . . ,xi−1) whereQF
i (xi |x1, . . . ,xi−1) is defined as

follows:

1. QF
i (xi |x1, . . . ,xi−1) = 0 if (x1, . . . ,xi−1,xi) cannot be extended to a solution ofF.

2. QF
i (xi |x1, . . . ,xi−1)= 1 if (x1, . . . ,xi−1,xi) can be extended to a solution but(x1, . . . ,xi−1,xi)

cannot be extended to a solution ofF.
3. QF

i (xi |x1, . . . ,xi−1)= Qi(xi |x1, . . . ,xi−1) if both(x1, . . . ,xi−1,xi) and(x1, . . . ,xi−1,xi)
can be extended to a solution ofF.

Theorem 1. The samples generated by SampleSearch(F,Q,O) are distributed accord-
ing to the backtrack-free distributionQF .

Proof. See [4] ut
2 We assume thatQ satisfies the condition that for any partial assignment(x1, . . . ,xi) that can be

extended to a solution,Qi(xi |x1, . . . ,xi−1) > 0



Algorithm 4 SampleSearch−SIR(F,Q,O,N,M)
1: GenerateN i.i.d. samplesA = {x1, . . . ,xN} by executing SampleSearch(F,O,Q)N times.
2: Compute importance weights{w1 = 1

QF (x1) , . . . ,w
N = 1

QF (xN)} for each sample whereQF is

the backtrack-free distribution (see Definition 2). We show how to computeQF in subsection
3.4.

3: Normalize the importance weights using̃wi = wi/∑N
j=1w j

4: Re-sampling Step:GenerateM i.i.d. samples{y1, . . . ,yM} from A by sampling each sample
xi with probabilityw̃i .

Because SampleSearch generates independent and identically distributed samples
from the backtrack-free distributionQF(x), standard sampling theory [11] tells us that
the distribution over the samples would converge toQF(x) in the limit of infinite sam-
plesM and therefore the use of SampleSearch for solution sampling is problematic. In
fact, one can construct cases in which the distance between the backtrack-free distribu-
tion and the uniform distribution is arbitrarily large. Next we show how this problem
can be resolved using the Sampling Importance Resampling (SIR) principle.

3.2 Sampling Importance Resampling

The sampling importance re-sampling (SIR) [10, 13] algorithm aims at drawing random
samples from a target distributionP(x) by using a proposal distributionQ(x) such that
P(x) > 0⇒ Q(x) > 0. First, a set of independent and identically distributed random
samplesA = (x1, . . . ,xN) are drawn from a proposal distributionQ(x). Then, second,
a possibly smaller number of samplesB = (y1, . . . ,yM) are drawn fromA with sample
probabilities, proportional to the weightsw(xi) = P(xi)/Q(xi) (this step is referred to
as there-sampling step). The samples from SIR will, asN→∞, consist of independent
draws fromP [10, 13].

3.3 SampleSearch-SIR

Assume for the purpose of discussion that the backtrack-free distribution can be com-
puted (we will address the issue of computing the backtrack-free distribution in the
next subsection). We can easily incorporate SampleSearch within the SIR framework
as shown in Algorithm 4. Here, a setA = (x1, . . . ,xN) of solution samples (N > M) is
first generated using SampleSearch. Then,M samples are drawn fromA with sample
probabilities proportional to 1

QF (xi) .

Theorem 2 (Main Theorem). AsN→ ∞, the samples generated bySampleSearch−
SIRconsist of independent draws from the uniform distribution over the solutions ofF.

Proof. From, SIR theory [10], we know that SampleSearch-SIR would generate i.i.d.
samples from the uniform distributionP over the solutions ofF as N → ∞ if the
following conditions are satisfied:

– C.1 The N samples are generated i.i.d from some distributionQF (satisfied trivially
from Theorem 1).



– C.2 The M samples are generated in the re-sampling step by sampling each sample
x with probability proportional toP(x)/QF(x)

Because,P is a uniform distribution over the solutions, we have

w(x) ∝
P(x)
QF(x)

∝
1

QF(x)
(1)

Note that the M samples are generated in the re-sampling step of SampleSearch-SIR by
sampling each generated solution with probability∝ 1

QF (x) and therefore from Equation
1 we can see that conditionC.2 is also satisfied by SampleSearch-SIR. ut

Theorem 2 is useful because it basically says that with increase in the number of
initial samplesN, the samples drawn in the re-sampling step would converge to the re-
quired uniform distribution over the solutions of F. To our knowledge, the three state-of-
the-art schemes in literature for solution sampling (a) Pure SampleSearch, (b) Walksat
[15] and (c) the recently proposed XorSample scheme [6] do not have such guarantees.
In particular, SampleSearch converges to the wrong (backtrack-free) distribution while
it is not known whether both XorSample and Walksat converge and if they do converge
what distribution do they converge to. Finally, although the samples drawn from the
scheme based on bucket elimination [2] do converge to the uniform distribution over
the solutions, it is clearly not practical when the tree-width is large.

3.4 ComputingQF(x)

As mentioned earlier, in this subsection we describe how to compute the backtrack-free
distributionQF (see Definition 2) that is used to weigh each sample. From Definition 2,
we can see that to compute the componentsQF

i (xi |x1, . . . ,xi−1) of QF given a (solution)
samplex = (x1, . . . ,xn), we have to determine whether(x1, . . . ,xi−1,xi) can be extended
to a solution. To that end, we can run any complete SAT solver (such as minisat [14])
on the formula(F ∧ x1∧ . . .∧ xi−1∧ xi). If the solver proves that(F ∧ x1∧ . . .∧ xi−1∧
xi) has a solution, we setQF

i (xi |x1, . . . ,xi−1) = Qi(xi |x1, . . . ,xi−1). Otherwise, we set
QF

i (xi |x1, . . . ,xi−1) = 1. Finally, onceQF
i (xi |x1, . . . ,xi−1) is computed for alli, we can

computeQF(x) usingQF(x) = ∏n
i=1QF

i (xi |x1, . . . ,xi−1).

Approximating QF(x) Since computingQF(x) requiresO(n) invocations of a com-
plete SAT solver per sample, asn gets larger, the SampleSearch-SIR scheme is likely
to be too slow. Instead, we propose to approximateQF(x) by utilizing the information
gathered by SampleSearch itself while generating the samples.

Note that to computeQF(x), we have to determine whether(x1, . . . ,xi−1,xi) can be
extended to a solution. While generating a samplex, SampleSearch may have deter-
mined that(x1, . . . ,xi−1,xi) cannot be extended to a solution for one or morei and thus,
we can build the following approximation forQF(x). If SampleSearch has itself de-
termined that(x1, . . . ,xi−1,xi) cannot be extended to a solution while generatingx, we
setAF

i (xi |x1, . . . ,xi−1) = 1, otherwise we setAF
i (xi |x1, . . . ,xi−1) = Qi(xi |x1, . . . ,xi−1).



(a) (b)

Fig. 1. (a) An example Probability (Search) Tree for the shown Formula and importance sampling
distributionQ. The leaf nodes marked with X are not solutions while the remaining leaf nodes
are solutions (b) DPLL-Traces of SampleSearch. The grounded nodes were proved inconsistent

Finally, we computeAF(x) = ∏n
i=1AF

i (xi |x1, . . . ,xi−1). However, if we use the approx-
imationAF(x) to compute sample weights within SampleSearch-SIR, the resulting al-
gorithm would not converge to the right distribution.

We can go one step further which will guarantee convergence. We can store (cache)
each solution(x1, . . . ,xn) and all partial assignments(x1, . . . ,xi) that were proved to be
inconsistent during each independent execution of SampleSearch, which we refer to as
search-traces. After executing SampleSearchN times, (i.e. once we have our required
samples) we use the stored traces to computeAF

N(x) for each sample as follows (the
approximation is indexed byN to denote dependence onN). For each partial sample
(x1, . . . ,xi) if (x1, . . . ,xi) was found to be inconsistent during any of theN executions of
SampleSearch, we setAF

Ni
(xi |x1, . . . ,xi−1) = 1, otherwise we set it toQi(xi |x1, . . . ,xi−1).

Finally, we computeAF
N(x) = ∏n

i=1AF
Ni

(xi |x1, . . . ,xi−1). Clearly, asN grows, more in-
consistencies will be discovered by SampleSearch and eventually all inconsistencies
will be discovered makingAF

N(x) equal toQF(x) i.e. limN→∞ AF
N(x) = QF(x). Conse-

quently, we can useAF
N(x) instead ofQF(x) in SampleSearch-SIR and still maintain

correctness of Theorem 2 in the limit. Namely,

Proposition 1. AsN→ ∞, the samples generated bySampleSearch−SIRwhich uses
AF

N instead ofQF to compute the sample weights would consist of independent draws
from the uniform distribution over the solutions ofF3.

Example 1.Figure 1(a) shows the probability tree associated with distributionQ. Each
arc from a parent node to the child node in the probability tree is labeled with the
probability of getting the child node given the assignment on the path from the root
node to the parent node. The probability tree is also the complete search tree for the

3 Although Theorem 2 and Proposition 1 are alike, it is known [11] that for a finite sample size
the sampling error of SampleSearch-SIR which usesQF is likely to be less than SampleSearch-
SIR which usesAF

N. However, in generalAF
N requires a lot less time thanQF .



formula shown. Assume that SampleSearch has generated three traces as shown in Fig-
ure 1(b). Note that in our example, we have 3 samples but only two distinct solutions
(A=0,B=1,C=1) and (A=1,B=1,C=1). One can verify thatQF(x) of Traces 1, 2 and 3 is
0.8, 0.8 and0.06 respectively. WhileAF

3 (x) of Traces 1, 2 and 3 is0.8, 0.8 and0.036
respectively.

Finally, we summarize the time and space complexity of SampleSearch-SIR in
whichQF is replaced by the approximationAF

N in the following proposition:

Proposition 2. GivenN samples (solutions) generated by the SampleSearch scheme,
the time and space complexity of Steps (2) to (4) of Algorithm SampleSearch-SIR in
which the approximationAF

N is used instead ofQF isO(N∗n+M∗ log(N)) andO(N∗n)
respectively wheren is the number of variables.

Proof. To compute and normalize the weights1/AF
N(x) of the N samples, we require

O(N∗n) time (Steps (2) and (3)). Finally, to resampleM samples from the distribution
of the normalized weights over theN samples, we require an additionalO(M ∗ log(N))
4 time yielding a time-complexity ofO(N ∗n+ M ∗ log(N)). The space complexity of
O(N∗n) is due to the space required by the approximationAF

N to store theN samples.
ut

3.5 Extensions of basic SampleSearch-SIR

The integration of SampleSearch within the SIR framework allows using various im-
provements to the SIR framework presented in the statistics literature over the past
decade. In this subsection, we consider two such improvements: (a) sampling without
replacement and (b) Improved SIR.
Sampling without replacementThe references to SIR in the literature use sampling
with replacement in the re-sampling step i.e. the same solution sample may be drawn
twice. An exception is Gelman et al. [3] who proposed sampling without replacement
to avoid having too many replicates whenQF is a poor approximation ofP. In this sit-
uation we may have a few very large weights and many small weights which causes the
large weight samples to appear multiple times in the final set of samples. They showed
that sampling without replacement yields a more desirable intermediate approximation
somewhere between the starting (proposal)QF and target distributionP.
Improved SIR Under certain restrictions [12] prove that the convergence of SIR is
proportional toO(1/N). To speed up this convergence toO(1/N2), they propose, what
they call the Improved SIR framework. For our purposes, the only difference between
Improved SIR and the basic SIR framework is the way in which each sample is weighed
before the re-sampling step.

In case of sampling with replacement the basic SIR weighs each sample asP(x)
QF (x)

while the Improved SIR framework weighs each sample using the following equation.

w(xi) ∝
1

S−i ∗QF(xi)
where S−i =

M

∑
j=1

1
QF(x j)

− 1
QF(xi)

(2)

4 It is possible to use hashing to yield amortized complexity ofO(M). When binary search is
used the complexity isO(M ∗ log(N))



The first draw of Improved SIR without replacement is specified by the weights in
Equation 2. For the kth draw,k > 1, the probability distribution ofw is modified to:

w(xk) ∝
P(xk)

Q(xk)(S(k)−kP(xk)
Q(xk) )

where S(k) =
N

∑
j=1

P(x j)
QF(x j)

−
k−1

∑
j=1

P(x j)
QF(x j)

(3)

When Improved SIR is used in conjunction with SampleSearch, we will refer to the
resulting algorithm asSampleSearch− ISIR.

4 Experimental Evaluation

4.1 Competing Techniques

SampleSearchtakes as input a distributionQ. The performance of sampling importance
resampling algorithms is highly dependent on this choice ofQ [10, 11]. It was shown
that computingQ from the output of a generalized belief propagation scheme of It-
erative Join graph propagation (IJGP) yields good empirical performance than other
available choices [5]. Therefore, in our implementation we use the output of IJGP to
computeQ. The complexity of IJGP is time and space exponential in a parameteri
also called asi-bound. We triedi-bounds of1, 2 and3 and found that the results were
not sensitive to thei-bound used and therefore we report results fori-bound of3. The
preprocessing time for computing the proposal distribution using IJGP(i = 3) was neg-
ligible (< 1s).

In a recent paper [4], we prove that Theorem 1 is correct even if we can replace the
naive DPLL search in SampleSearch with any systematic SAT solver. Same holds true
for Theorem 2 which is based on Theorem 1. Therefore, in order to increase the speed
at which solution samples are generated, we chose to replace naive DPLL search in
SampleSearch with the minisat [14] SAT solver (the winner of SAT competition 2006)
in our implementation. Also, note that in our experiments we use the approximationAF

N
to compute the sample weights.

We experimented with three versions of SampleSearch (a) pure SampleSearch which
is the same scheme as [5] denoted by SS, (b) SampleSearch with Improved SIR and with
replacement denoted by SS-ISIR-wR , (c) SampleSearch with Improved SIR and with-
out replacement denoted by SS-ISIR-woR. We also experimented with the WALKSAT
[15] solution sampling scheme whose implementation is available from the first authors
web-site5. All our experiments with WALKSAT are run with thesabestheuristic which
was shown to perform better than other heuristics [15]. Also note that we use a resam-
pling ratioM/N = 0.1 = 10%in all our experiments with the ISIR scheme (where N
is the number of initial samples generated by SampleSearch and M is the number of
re-sampled samples). The choice of the resampling ratio of 10% is arbitrary.

5 We wanted to experiment with the XorSample scheme [6]. However the implementation is not
publicly available
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Fig. 2. Time vs KL distance for circuit instances

4.2 Evaluation Criteria

We first compute the exact marginal distribution for each propositional variable using
Pe(Xi = xi) = |Sxi |/|S|whereSxi is the set of solutions that the assignmentXi = xi partic-
ipates in andS is the set of all solutions. The number of solutions for the SAT problems
were computed using RELSAT [9]. After running various sampling algorithms, we get
a set of solution samplesφ from which we compute the approximate marginal distribu-
tion: Pa(Xi = xi) = φ(xi)/|φ | whereφ(xi) is the number of solutions in the setφ with
Xi assigned the valuexi . We then compare the exact distribution with the approximate
distribution using the Kullback-Leibler distance (KLD)= Pe(xi)ln(Pe(xi)/Pa(xi)).

4.3 Results

Circuit Instances On the circuit instancesssa7552−158andssa7552−159(see Fig-
ure 2), we find that SampleSearch-ISIR based algorithms have better performance af-
ter 100s than both SampleSearch and WALKSAT. On thessa7552− 158 instance,
SampleSearch-ISIR without replacement is the best performing scheme while on the
ssa7552− 159 instance, SampleSearch-ISIR with replacement is the best performing
scheme. On the2bitmax 6 instance, SampleSearch-ISIR with replacement is slightly
better than WALKSAT. However, SampleSearch-ISIR without replacement performs
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Fig. 3. Time vs KL distance for logistics instances
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Fig. 4. Time vs KL distance for randomly generated 3-SAT instances

slightly worse than WALKSAT. Both SampleSearch-ISIR schemes clearly dominate
the pure SampleSearch scheme. On the2bitcomp5 instance, we see that both the
SampleSearch-ISIR schemes have significantly better performance than WALKSAT
and pure SampleSearch.
Logistics instancesOn the logistics instanceprob001.cn f (see Figure 3), we see that
both the SampleSearch-ISIR schemes are better than WALKSAT and pure Sample-
Search. WALKSAT performs better than pure SampleSearch scheme on this instance.
SampleSearch-ISIR scheme without replacement is the best performing scheme. On
the prob002.cn f instance, we notice that pure SampleSearch performs better than the
WALKSAT scheme. Both SampleSearch-ISIR schemes are only slightly better than the
pure SampleSearch scheme.
Randomly generated cnf instancesWe generated 100 random instances of 100-variable
and 200-variable 3-cnf problems. Figure 4 shows the any-time performance of various
schemes. Note that each point in Figure 4 is an average over 100 instances. On the 100-
variable instances, both SampleSearch-ISIR schemes are significantly better in terms of
the K-L distance than pure SampleSearch and WALKSAT. SampleSearch-ISIR with-
out replacement shows similar performance to SampleSearch-ISIR with replacement.
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Fig. 5. Time vs KL distance for SAT encoded 3-coloring instances

On the 200-variable instances, we again see that both SampleSearch-ISIR scheme are
significantly better than pure SampleSearch and WALKSAT. SampleSearch-ISIR with
replacement is slightly better than SampleSearch-ISIR without replacement.
Sat Encoded Flat 3-coloring instancesWe generated 100 random instances of 100-
vertex and 200-vertex Flat 3-coloring problem using Joseph Culberson’s generator6.
Figure 5 shows the effect of increasing time on the K-L distance on the graph color-
ing instances. Note that each point in Figure 5 is an average over 100 instances. On
the 100-vertex 3-coloring instances, we see that both SampleSearch-ISIR schemes out-
perform WALKSAT after about 20s of run-time and they are always better than pure
SampleSearch. SampleSearch-ISIR without replacement is the best performing scheme.
On the 200-vertex 3-coloring instances, we see that WALKSAT is better than both pure
SampleSearch and SampleSearch-ISIR with replacement. While SampleSearch-ISIR
without replacement dominates WALKSAT after about 20s of run-time. We speculate
that SampleSearch-ISIR without replacement is better than SampleSearch-ISIR with
replacement because there are very few samples having large weights that dominate the
set of re-sampled solutions.
Number of Samples generated by various methodsFinally, in Table 1, we compare
the time required by various algorithms to compute 100K samples. We can see that
SampleSearch is superior to WALKSAT in terms of the time required to generate 100K
samples. Note that the column titled ”Resampling” in Table 1 shows the resampling
time required by the Steps 2 through 4 of SampleSearch-SIR (see Algorithm 4). We ob-
serve that the resampling time is negligible compared with the time required to generate
the initial samples using SampleSearch.
Effect of increasing the re-sampling rateThe resampling rate (M/N) was set to 10%
for all the results reported in Figures 2-5. Because, the resampling time is negligible,
we can increase the number of samples generated by increasing the re-sampling rate.
We therefore performed experiments to determine how increasing the re-sampling rate
affects the K-L distance of the SampleSearch-ISIR scheme given constant time. For
lack of space, we report results on only two circuit instancesssa7552− 158.cn f and

6 Available at http://web.cs.ualberta.ca/∼joe/Coloring/Generators/generate.html



Table 1.Time required to generate 100K samples

Instance Variables clausesSampleSearchResampling WALKSAT
Time Time Time

Circuit
ssa-158 1363 3064 266.38 0.60 1879.70
ssa-159 1363 3032 257.20 0.60 1582.28

2bitcomp5 125 310 23.82 0.20 67.82
2bitmax6 252 766 49.20 0.20 87.44
Random

100-var-cnf 100 400 17.93 0.10 438.60
200-var-cnf 200 800 55.80 0.20 226.86
3-coloring

100-vertices 300 1117 550.66 0.40 3205.13
200-vertices 600 2456 2403.85 0.40 8620.69

Logistics
prob001 939 3785 219.97 0.40 753.01
prob002 1337 24777 1326.26 0.50 7462.69

ssa7552−159.cn f. Figure 6 shows the effect of increasing the re-sampling rate from
10% to 90% on the K-L distance when each algorithm was given the same 100s of time.
We observe that as the re-sampling rate is increased the K-L distance of SampleSearch-
ISIR without replacement increases (linearly) and eventually becomes equal to the K-L
distance of pure SampleSearch. This is because when sampling without replacement
we do not draw samples which are already drawn and therefore with increase in the
resampling rate the final set of samples in SampleSearch-ISIR would be the same as the
initial set of samples. On the other hand, the K-L distance of SampleSearch-ISIR with
replacement remains almost constant as the re-sampling rate is increased.

Therefore, in practice when Samplesearch generates N samples Samplesearch-ISIR
with replacement can generate anywhere between 10% or 100% of N samples by de-
mand, without any extra time cost or accuracy costs (if we use the with replacement
version) because the time for resampling is negligible.
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Fig. 6. Time vs KL distance for circuit instances



5 Conclusion and Summary

The paper presents a new algorithm for solving the random sampling task which is the
task of generating random, uniformly distributed solutions from a satisfiability problem.
The origin for this task is the use of satisfiability based methods in fields like functional
verification, Distributed AI and probabilistic reasoning. Our algorithm builds on a re-
cent negative result [4] where we show that the SampleSearch scheme [5] used to solve
the random sampling task converges to the wrong distribution. We, then fix this prob-
lem by integrating the SampleSearch scheme with the sampling importance re-sampling
(SIR) principle yielding the SampleSearch-SIR scheme which guarantees convergence
to the uniform distribution over the solutions. To our knowledge, the current state-of-
the-art schemes such as SampleSearch, WALKSAT [15] and XorSample [6] do not have
convergence guarantees. Our empirical evaluation suggests that the SampleSearch-SIR
scheme dominates both WALKSAT and the pure SampleSearch scheme in terms of K-L
distance on most benchmark instances.
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