
he
p-

la
t/9

40
30

17
   

15
 M

ar
 1

99
4

BI-TP-94/06NBI-HE-94-15February 1994SIMPLICIAL QUANTUM GRAVITYON A COMPUTERS. Bilke, Z. Burda 1,2Fakult�at f�ur Physik Universit�at Bielefeld,Postfach 10 01 31, Bielefeld 33501, GermanyJ. Jurkiewicz 2The Niels Bohr Institute, Blegdemsvej 17,DK-2100 Copenhagen �, DenmarkAbstractWe describe a method of Monte{Carlo simulations of simplicial quantum gravity coupledto matter �elds. We concentrate mainly on the problem of implementing e�ectivelythe random, dynamical triangulation and building in a detailed{balance condition intothe elementary transformations of the triangulation. We propose a method of auto{tuning the parameters needed to balance simulations of the canonical ensemble. Thismethod allows us to prepare a whole set of jobs and therefore is very useful in systematicdetermining the phase diagram in the two dimensional coupling space. It is of particularimportance when the jobs are run on a parallel machine.1A fellow of the Alexander von Humboldt Foundation.2Permanent address: Institute of Physics, Jagellonian University, ul. Reymonta 4, PL-30 059,Krak�ow 16, Poland



PROGRAM SUMMARYTitle of program:GRAVZ2, AUTOTUNEProgram obtainable from:bilke@physw.uni-bielefeld.deComputer:PARAGON XP/S 10, portable to othercomputersOperating system:OSF/1Programming language used:FORTRANHigh speed storage required:Typical 400 Bytes / Simplex.Peripherals used:writes data and the last lattice con�gura-tion to disk. If required reads in old dataand a con�guration to continue a run fromthe disk. For a lattice with 4000 simplicesthe average size of a con�guration �le is 1.5Mbyte.No. of lines in the program:6000 (together with supporting software).Keywords:Dynamical triangulation, quantum gravity,

Z2 gauge model.Nature of the physical problem:Four dimensional dynamically triangulatedrandom surfaces as a regularization ofquantum gravity coupled to matter �elds.Method of solution:The program uses a standard dynamicalMonte{Carlo scheme to produce con�gu-rations distributed according to the Gibbsmeasure of a discretized version of the Ein-stein Hilbert action with an additional termfor a matter �eld. The geometry is updatedby means of a set of elementary transfor-mations basded on Alexander moves, er-godic in the space of triangulations with�xed topology. A geometrical update isperformed alternating with a heat{bath forthe matter sector.Typical running times:The time required for one update stronglydepends on the coupling constants. More-over it grows nonlinearly with a lattice size.In the critical region the time required toupdate the lattice including the matter sec-tor is typically 150�s and 500�s per ac-cepted move for a lattice with 4000 and8000 simplices, respectively.1



1. IntroductionThe dynamical triangulation method has recently attracted great interest [1]-[12]. Itwas proposed as a regularization of gravity based on the discretization of a Euclideanpath integral formulation [2]-[3]. In this method, the integration over the metric �eldsof the original continuum formulation is substituted by a sum over simplicial complexes,called simplicial manifolds or dynamical triangulations. The method was originally for-mulated, and very successfully used, in two dimensions [1], where the sum over thedynamical triangulations were shown to reproduce perfectly the measure of integrationsover geometries. An additional feature of the method is that it permits to study non-perturbative problems. All this suggested to extend the method to higher dimensionalgravity and ask the question about the existence of a continuum limit. In four dimensionsa critical point of simplicial gravity was found. The transition is probably second orderat this point. This opens a possibility to formulate a continuum theory independent ofthe regularization. At present it is not yet clear whether this transition corresponds toa nonperturbative point of quantum gravity. The main di�culty lies in the fact that thevalue of the average curvature in the regularized version does not scale to zero at thecritical point. This implies that the curvature underlying theory blows up when the ultraviolet cut-o� approaches zero. It is believed, however, that by adding an appropriateterm to the action one can shift the average curvature to zero. The curvature squareterms proposed very long ago in the continuum approach, were also studied numericallyfor simplicial gravity [7],[8]. The most interesting region, namely the region of large cou-plings, seems however not to be available to Monte{Carlo simulations, because in thisregion the acceptance rate of the changes proposed by the algorithm is too low. Anotherway to generate nontrivial terms in a gravity action is to couple covariantly matter �eldsto it. By integrating matter out, one generates new terms in the e�ective gravity action.If the matter sector is critical, the interactions are long-ranged and they can contributenontrivially to the e�ective gravity action modifying also the critical properties of thegravity sector. For example in the Ising model on a two dimensional random lattice thegravity entropy exponent 
 changes when the spin �eld becomes critical. The presentpaper is devoted to the basic features of the algorithm and the implementation used2



for simulating models of this type. The results and detailed description of the modelsthemselves are presented elsewhere [8]-[10].2. The modelThe simplicial manifold (or triangulation) is constructed from equilateral 4d simplices,which we will call pentahedra, by identifying pairs of neighboring pentahedra whichshare a four dimensional face. A pentahedron has 5 vertices, 10 links, 10 trianglesand 5 tetrahedra. The nearest neighborhood of a point on the triangulation, formedby pentahedra meeting there, has the topology of a 4d ball, which means that thetriangulation is locally homomorphic to R4. This imposes some relations between thenumbers of simplices on the triangulation, known in the general case as the Dehn{Sommerville relations. In four dimensions they have the form :5N4 = 2N3; 5N4 � 4N3 + 3N2 � 2N1 = 0 (1)where N4; N3; N2; N1; N0 denote the numbers of pentahedra, tetrahedra, triangles, linksand points of the triangulation, respectively. Additionally the numbers of (sub)simplicesare related by the Euler formula :N4 �N3 +N2 �N1 +N0 = � (2)where � is the Euler characteristic of the manifold. Altogether, for manifolds with �xedtopology, and this is the case in our considerations, these three relations between the �venumbersNi leave two of them, say N4 and N2, independent. They completely specify thesize of a simplicial manifold. The �rst one, N4, is the 4d volume of a manifold, the otherone, N2, is the total de�cit angle of triangles on the manifold. The average curvature :hRi / N2=N4 � 2:097:: A collection of manifolds with a �xed number of (sub)simplicesis called the micro{canonical ensemble. Denote the number of states (triangulations) byN (N2; N4). Summing over all possible N2 leads to the canonical ensemble with the 4dvolume, N4, �xed : Z(�2; N4) =XT e�2N2(T ) =XN2 N (N2; N4)e�2N2 (3)3



The weight for a triangulation T , namely k2N2(T ), is naturally provided by a discreteversion of the Einstein{Hilbert term, that is for a �xed volume proportional to N2. Itis also possible to consider the grand-canonical ensemble by letting the volume 
uctuatecontrolled by the cosmological term :Z(�2; �4) = XT2T e��4N4+�2N2 =XN2 N (N2; N4)e��4N4+�2N2 (4)All three ensembles are equivalent to each other, in the sense that they are related byLegendre transforms. This observation can, however, hardly be used numerically, becauseto make the transformation one should know the behavior of the partition function inthe whole range of parameters. Therefore, beforehand one should decide which ensembleto simulate. Most of the physically interesting questions are simple to formulate in thecanonical ensemble. By means of �nite size analysis one can study signals related to thephase transition and determine its order. In the frame of the canonical simulations onecan also try to extract some information about the number of states N (N2; N4) fromthe baby universes distribution or the sum rules. In this respect it gives some insightinto the behavior of N (N2; N4), while for microcanonical simulations it is not possibleto compare numbers of states for di�erent N2 and N4.To discuss the matter sector let us come back to the microcanonical ensemble. Thenumber of states N depends only on N2 and N4. One can, however, imagine that ona surface there are some excitations which depend on some invariant characteristic ofthe triangulation which is neither N4 nor N2. As an example consider the average of acertain power, �, of the order of a triangle ho(t)�i. By the order of subsimplex we meanthe number of simplices, which share this subsimplex. One can control these excitationsby introducing an additional coupling to the action. In fact, some of such couplings arevery well motivated since they correspond to the higher derivative action used in thecontinuum formulation of 4d gravity. With the new term in the action, the weight of atriangulation explicitly depends on ho(t)�i, or say generally on a certain characteristic,cT , of the triangulation N (N2; N4; cT ). It is believed that this kind of coupling can curethe problems encountered in formulating continuum limit of simplicial gravity. One canintroduce the coupling to the model by hand, as it was done in case of curvature square4



term in [7], or dynamically by introducing a new �eld covariantly coupled to gravity. Ifone integrates out the matter �eld one gets an e�ective weight for a triangulation T :Neff (N2; N4; cT ) = Xmatter on T eS(matter) (5)A few models of this type have been already studied [8]-[10]. Because the presentedalgorithm is very general and can be used to any matter �eld with a local action thefollowing description of the algorithm does not assume any speci�c form of the actionfor the matter sector. To be speci�c, while presenting implementation, we will, however,refer to the Z2 gauge model [10], with the action S(�) = ��Pt2T o(t)f���gt, whereo(t) is the order of a triangle t and ��� is the product of three Z2 link variables lying onthe edges of t. The order of a triangle, o(t) plays the role of a two dimensional volumedual to the triangle, which multiplied by the area of the triangle gives the 4d volumethe plaquette f���gt is associated to. This factor o(t) assures that the matter �eld iscoupled covariantly to gravity [13]. An important feature of this action is that it couplesthe matter �eld directly to the local manifold curvature, represented by the order of atriangle. A closer motivation to study this kind of models and the results are presentedin [8]-[10] .3. The method of simulationSimplicial quantum gravity is simulated by means of a Markov chain in the space of fourdimensional simplicial manifolds. The chain has a stationary distribution equal to theGibbs measure de�ned in (3). This is achieved by requiring that the chain is ergodicand that he Markov probabilities ful�ll a detailed{balance condition. A set of local,topology preserving transformations ergodic in the grand canonical ensemble is knownfor a very long time. They are called the Alexander moves [15]. Though they are ergodic,they cannot be directly applied to Monte Carlo simulations in an e�cient way becausein the physically interesting region of coupling constants they have low acceptance [11].Therefore the Markov chain looses its mobility in the space of triangulations. Another setof more practical moves (transformations), which turned out to have higher acceptance5



rate, was suggested in [12]. In four dimensions there are �ve di�erent moves in thisset. They are de�ned as follows. Let us enumerate the moves by the index i whichruns from 0 to 4. The i-th move substitutes a i-dimensional simplex shared by (5 � i)pentahedra by a (5 � i)-dimensional simplex shared by i pentahedra, in such a waythat the pentahedra after the move have the same 3d-boundary as the original ones hadbefore. It is convenient to represent the moves schematically. The move 0 substitutes apoint (0 dimensional simplex), denoted by 6, shared by 5 pentahedra on the left handside of (6) by one pentahedron :12346 + 12356 + 12456 + 13456 + 23456 $ 12345 (6)where 1, 2, 3, 4 and 5 stand for di�erent points. When read from the right to left, thescheme (6) represents move 4. Notice that the 3d-boundary of pentahedra is the samebefore and after the move and consists of the 3d-simplices : 1234, 1235, 1245, 1345 and2345.Similarly the set of the moves 1,3 is :12345 + 12346 + 12356 + 12456 $ 13456 + 23456 (7)The move 1 starts with the link 12 common to four pentahedra and ends up with thetetrahedron 3456 common to two pentahedra. The move 3 does the opposite.The move 2 is self{dual :12456 + 13456 + 23456 $ 12345 + 12346 + 12356 (8)and it 
ips the triangle common for three pentahedra.In all moves six points and six pentahedra are involved. One can easily check thatthey always form the 4d surface of a 5d sphere. Therefore, each move can be treated assubstitution of a part of the sphere (found on a simplicial manifold) by its supplement.This assures that a topology of simplicial manifold is preserved by the move. Becauseboth sets of simplices of the triangulation have the same boundary, a substitution isalways possible. But not all changes of the triangulation proposed by a move can be ac-cepted. The requirement that a triangulation is locally homomorphic to R4, imposes the6



restriction to accept only those moves, which create only essentially new (sub)simplices,not yet present on the triangulation. For example, a move that would produce a linkbetween vertices already joined by another link is rejected. More generally, a move whichwould lead to any double connection on a lattice is rejected.The set of moves described above is equivalent to the Alexander moves in the sensethat each move can be obtained by a certain sequence of the Alexander moves, and viceversa. This proves their ergodicity in the grand{canonical ensemble.Let us now describe more precisely how to build in a detailed{balance condition intothe Markov probabilities. In some respects the situation di�ers from that in standardMC simulations of �eld{theoretical models on a regular lattice.Firstly, the proposals for each pair of mutually inverse moves 0,4 (eq. 6) or 1,3 (eq.7) are not the same in both directions. To see the consequence of this, suppose that fora certain con�guration A we want to perform a move i and balance it with the inversetransition using move (4 � i), from the con�guration B obtained from A. Denote thetransition probabilities by P(A! B) and P(B ! A), respectively. A transition from Ato B is realized by two following steps. First, we pick up a i{dimensional simplex sharedby (5�i) 4d simplices on A with a probability 1=ni(A), and afterwards, at this particularsimplex, we perform move i with a move probability, Pi(A ! B). This probability isrelated to the transition probability by : P(A! B) = 1=ni(A) Pi(A! B). The detailedbalance condition for the move probability reads :e�S(A)ni(A) Pi(A! B) = e�S(B)n4�i(B)P4�i(B ! A); i = 0; : : : 4: (9)which in fact is three independent sets of equations. We would like to emphasize thedi�erence between the move probabilities Pi which is a probability of performing anoperation (6{8) at a speci�c place on a lattice and the transition probabilities. Thisdi�erence is usually absent in standard MC simulations of systems on �xed lattices sincethe balanced transitions are symmetric and the combinatorial prefactor of the type 1=niis the same on both the sides of a detailed{balance equation. Note, that for the selfdual canonical move (8) the prefactor can be dropped in (9), because a move 2 does notchange the number n2. If one wants to associate a physical meaning to the combinatorial7



prefactors 1=ni in the detailed balance condition, one can say that they re
ect a purelygeometrical change of the number of states between di�erent canonical ensembles andthey enter the equations (9) to balance the entropy change coming from the integrationmeasure of the geometry sector.The changes are grand{canonical, with the consequence that the number of degreesof freedom for the matter �eld varies. When performing grand{canonical moves (6-8)one has to create or erase matter �eld variables. The detailed balance equations leave afreedom how for a given con�guration a new one can be proposed and how to choose themove probabilities. The simplest way of ful�lling the detailed balance condition (9) is toassign new �eld variables at random with a uniform distribution on the cartesian productof symmetry groups for each created matter degree of freedom and accept a change withthe Metropolis probability. The drawback of this procedure is that as a consequence ofrandom choice of �elds the acceptance rate is very low, especially for moves 0,4 (eq. 6),where ten new links are created or deleted simultaneously. Signi�cant improvement canbe achieved by proposing new �elds with a probability dictated by the Gibbs measure :�i(sB) = e�S(sB)PsB e�S(sB) (10)where sB is a �eld con�guration that can be obtained from A by performing move ion a speci�c place on the lattice. The sum in the denominator runs over all thesecon�gurations. The main di�culty to apply directly a heat bath procedure is that theanalogous denominator for the probability of con�gurations sA that can be obtained bythe inverse move in the same place of the lattice : �(4�i)(sA) = e�S(sA)=PsA e�S(sA) di�ersfrom that for sB, because moves i and (4� i) create di�erent sublattices and matter �eldsubspaces. Therefore �'s cannot directly be used as heat{bath probabilities. We proposeto split the transition into two steps. The �rst step is to accept or reject a change ofgeometry regardless of the values of the new matter �elds on the new sublattice createdin a move. Therefore its probability does not depend on the new �eld con�guration onthe new sublattice created by the move, but only on the shape of this new sublattice,and on the �elds in the vicinity of the place where move is performed. We denotethe probability of this step by pi(tA ! tB). The letter t (for triangulation) is used to8



emphasize that this probability only depends on the subtriangulation and not on the�elds on it. After a change of a triangulation tA ! tB is accepted, new �elds accordingto the distribution �i are assigned. Altogether we can write the probability of this moveas P (A! B) = p(tA ! tB)�i(sB). Inserting this into the detailed balance condition (9)and summing both sides over sA and sB one gets the equation :PsA e�S(sA)ni(A) pi(tA ! tB) = PsB e�S(sB)n4�i(B) p4�i(tB ! tA); (11)which is ful�lled by :pi(tA ! tB) = minn1; ni(tA)n4�i(tB)PsB e�S(sB)PsA e�S(sA) o i = 0; : : : ; 4: (12)The last equation is one of many solutions of (11). It essentially means that the change oftriangulation is done by a Metropolis algorithm that includes besides the factor �2�N2��4�N4 coming from the change of geometrical part of the action also the ratio of thevolumes of the �eld con�gurations created by the moves.So far we have described the grand canonical algorithm. In principle, it can alsobe used in canonical simulations in the following way. The grand canonical algorithmgenerates, among di�erent volumes, samples of a certain volume N04 . These samplescan be used in simulations of a canonical ensemble for the volume N04 . Because thevolume of the canonical system is �xed, the coupling �4 is a free variable and can betuned to make the distribution of volumes concentrated around N04 . Unfortunately,this distribution is very broad, and therefore the algorithm spends most of the timeon volumes di�erent from N04 . Moreover, the volume 
uctuations are sometimes toolarge for the size limits imposed by the computer implementation. The situation can beimproved by adding to the action a potential that controls volume 
uctuations [14]. Thesimplest potential of this type has the form : V (N4) = �jN4�N04 j�. A typical choice for� is 1 or 2. For N4 = N04 , the potential vanishes, so it does not change the action for thecanonical ensemble. By tuning � one can suppress the volume 
uctuations, and makethe volume distribution narrower. The canonical ensemble is not a�ected by the shapeof this distribution. But for too large values of � this can spoil ergodicity. In particular,9



for the limiting case of very large �, the volume 
uctuations are completely suppressedand only moves 3 (eq. 8) can be executed. The value of � should be chosen to balancebetween the two con
icts coming from the mobility (ergodicity) of the algorithm and thenarrow volume distribution. We found experimentally that below a certain value of �,which is of order of 0:2 for � = 1, measurements of physical quantities do not depend onthis value. Further lowering of � changes only the range of 
uctuations in the volume,the acceptance rate and the autocorrelation times.The potential modi�es the transition probability p(tA ! tB) by an additional prefac-tor eV (N4;A)�V (N4;B). In the case of � = 1, which we use in our simulations, it is equal toe���N4 above or below N04 , respectively, which alternatively means that we change thecoupling �4 to be �4 � � for volumes greater or smaller than N04 .4. ImplementationWhile implementing a simplicial manifold on a computer, one should take two thingsinto account. An implementation must uniquely specify the manifold, and it shouldgive the possibility to reconstruct basic information about the neighborhood of each(sub)simplex. Among di�erent implementations one can imagine two extreme ones,which we call minimal and maximal coding. In the former case one keeps only minimalinformation, namely for each pentahedron on the lattice one keeps addresses of the 5neighboring pentahedra and the 5 points at its vertices. In case of the maximal codingone keeps for each (sub)simplex the number and the addresses of all (sub)simplicesemerging from it. The main di�erence between these two approaches becomes clear, ifone considers in more detail the elementary moves. In the �rst part of a move one has topick up a (sub)simplex on the lattice, look for a double connection and then determine theaction needed to evaluate the Metropolis probability. This part is done much faster in themaximal coding because the information about neighboring simplices is easily available.In the minimal coding one has to recover this information by going many times throughthe list of all simplices on the lattice to �nd out if a given (sub)simplex speci�ed bypoints, is a (sub)simplex on the lattice. This procedure is very time consuming.The second part of a move is to apply the geometrical update, unless it was rejected10



in the �rst part. This part is much easier in the minimal coding because the number ofobjects to update is much less than for the maximal one. The �rst part of a move isexecuted much more frequently than the second one because many of attempted movesare rejected either by the double connection test or by the Metropolis question. Thereforein general the maximal coding is faster. The di�erence in speed is especially pronouncedwhen the acceptance rate is low. This favors maximal coding. On the other hand,memory limitations favor the minimal coding, because one can code larger lattices.4a. Local structureNone of this implementations is used in practice. We mention them to show the problemof balancing between speed and memory and to give a kind of frame of reference, whichhelps to place a speci�c implementation, by saying that it is closer to the minimal ormaximal coding. Our implementation is closer to the maximal coding. We code penta-hedra maximally, namely we hold for a pentahedron addresses to 5 points at its vertices,10 links at its edges, 10 triangles at its two dimensional faces, and the �ve neighboringpentahedra. The maximally coded pentahedra form the basis for the implementation.If, for a (sub)simplex on the lattice, we want to get the addresses of the neighboring(sub)simplices we �rst refer to a pentahedron and then through it to the addresses ofeach (sub)simplex. In other words, the philosophy of accessing addresses of neighbors isbased on the pentahedron bridge : (sub)simplex ! pentahedron ! (sub)simplex.To facilitate referring from a (sub)simplex to a pentahedron in the �rst part of the bridgewe introduced in the code matrices of pointers from (sub)simplices to pentahedra. Thenumber of pentahedra to which a (sub)simplex belongs, changes during the run. Toavoid holding a dynamical list of all pentahedra attached to the (sub)simplex, we keepthe address of only one of them. This su�ces because the other nearest pentahedra canbe sequentially found by using addresses of neighbors kept in the pentahedra themselves.In fact, we use the pentahedron bridge mainly in the �rst part of the moves (eq. 6{8),where the nearest neighborhood of a (sub)simplex is well de�ned, and therefore can beeasily reconstructed from addresses kept in the pentahedra. The sequential procedure of�nding neighboring pentahedra is more time consuming than just taking the pentahedra11



parameter( nmax=3000&, nsmax=4*nmax+2,ntmax=10*nmax+10,nlmax=5*nmax+10&, npmax=nmax+5,nt3max=3*ntmax,nt3lmax=nt3max+nlmax&, nlpmax=nlmax+npmax,nt3max1=nt3max+1&, nlmax1=nlmax+1)common /lattice/ sn(5,nsmax),st(10,nsmax),sl(10,nsmax),sp(5,nsmax)&, ts(ntmax) ,ls(nlmax) ,ps(npmax)&, tcn(ntmax),lcn(nlmax),pcn(npmax)&, tf(0:nt3lmax),tb(0:nt3max),tp(nt3max),tl(nt3max)&, lf(0:nlpmax),lb(0:nlmax),lp(nlmax),spin(nlmax)dimension lt(nlmax),pl(npmax),s(5)equivalence (tf(nt3max1),lt(1))equivalence (lf(nlmax1) ,pl(1))Table 1: Variables used to describe the random latticefrom prepared lists, but the time is paid back because one does not have to update allthe lists for the many (sub)simplices involved in a move. The next advantage is that oneavoids an additional storage of the information which is rarely used. In the program, thedata structure needed for the pentahedron bridge is represented by the �rst two lines ofthe common block lattice declaration shown in the table 1. As a naming convention,we use the letters simplex, triangle, link and point to distinguish the di�erent kinds of(sub)simplices. We used the word simplex for pentahedron to avoid the con
ict withpoint. The letters are combined in the identi�ers which have always the two{piece struc-ture xy meaning that an object x points to y. For example, the name st means that 4dsimplex points to triangle. The matrix st(10,n) holds pointers to the 10 sub-trianglesof simplex n, or ts(n) being a matrix of pointers from triangles to simplices, contains apointer to one simplex, triangle n is part of. The third line of the common block latticecontains vectors with orders of triangles, tcn, links, lcn, and points, pcn. The rangesof the arrays are controlled by the maximal numbers of 4d simplecies, nsmax, triangles,ntmax, links, nlmax and points, npmax. 12



4b. Double connectionsA direct use of the pentahedron bridge in the test for double connection would be morecomplicated than in identifying the (sub)simplices engaged in a move, because in thiscase the pentahedra, to which a (sub)simplex belongs form unknown structures, and thenumber of them can be very large.As an example consider move 3 which creates a link between the points 1 and 2 whilegoing from the right to the left hand side of the equation (7). Before accepting the movewe have to check if the link 12 already exist on the lattice. If one does it by use of thepentahedron bridge, one has to �nd all the pentahedra connected to one of those twopoints, and then check ten links, for each of them. Both steps are quite time consuming.We found it is much more e�cient to supplement the pentahedron bridge by the point! link ! point bridge which facilitates the access to neighboring points. Because thenumber of links emerging from a point changes during the run, we have to construct adynamic structure which allows us easily to insert and remove links. Denote addresses ofpoints in the bridge by p1 and p2 and assume that p1>p2. A link, which joins two pointsin the bridge, is associated with the one which has the larger address, p1. Each of thesepoints may belong to many bridges simultaneously. The pointer pl(p) holds the addressof one link, l, emerging from the point p. If no link is associated with a point p, entrypl(p) is set to zero. The other associated links are referenced with the help of a chainedlist, constructed by means of arrays lf(l) which points (forward) from a current link lto the next link associated with the same point and lb(l) which points (backwards) tothe previous link in the chain. The lf chain is zero-terminated, in lb the last link in thechain references to the point the link is associated to. The bridge is completed by thevariable lp(p) which gives the address, p2, of the second point at the end of the linkl. To check for an existing link between p1, p2 we have to visit all links in the chainstarting at pl(p1) and see if there is one entry l with lp(l)=p2. The update of the listof links emerging from a point p is done as follows. A new link in the chain is alwaysinserted at the origin of the chain. This is done by setting lb(pl(p))=l, lf(l)=pl(p),pl(p)=l. To remove a link l from the chain, we set a new bond between its neighborslf(l), lb(l) by lf(lb(l))=lf(l) and lb(lf(l))=lb(l), omitting in this way l in13



the chain. A problem arises for the �rst entry in the chain. Then lb refers to a pointand not to a link. We do not have to check for this situation, when we additionally usethe following memory layout:equivalence (lf(nlmax1) ,pl(1)) .The ranges of lf and pl are glued one beyond the other. If we now denote a reference toa point p in the lb chain by p+nlmax we automatically have lf(nlmax+p)=pl(p) whatwe want.In move 2 (eq. 8) one has to avoid a double triangle. We support the detectionof such situation with the help of the link ! triangle ! point bridge. In order tohave access to all triangles which are connected to a link each triangle t123 is a memberof three independent chains containing three rotated copies of triangle t123. We keepalso an inverse matrix leading from each rotated copy of the triangle back to the link,tl. The purpose of this is to have fast access to link variables while computing staplesneeded to update links in gauge �eld models. The arrays tf, tb, tp (analogous to lf,lb, lp in point-link-point bridge) represent this structure in the implementation. Thememory layout and one chain of triangles is shown in the �gurentmaxtf #1 tf #2 tf #3 LTtb #1 tb #2 tb #32 ntmax 3 ntmax
0

Figure 1: The memory layout for the link ! triangle ! point bridge. There are threeindependent copies for each triangle. 14



To complete the discussion about the tests for a double connection, we should alsodescribe how to check for an existing tetrahedron 3456 in the move 1 (eq. 7). Wepostpone this to the section 4d. when we have described the rotation of a pentahedronwhich facilitates the pentahedron bridge used in this test. Now we only mention thatthe idea is to �x triangle t345 and visit all neighboring points to check if one of them isthe point 6 needed to complete tetrahedron 3456.4c. Memory managementIn the grand canonical simulations the size of the triangulation varies in a run. Some(sub)simplices are created on the lattice, some others are erased. Erasing a (sub)simplexleaves empty entries in the statically allocated matrices which de�ne the lattice connec-tions. To trace (sub)simplices as used/unused on the current triangulation, we introducea kind of memory management in form of a sorted list of pointers to (sub)simplices.The list is mainly used to improve �nding a candidate for each move n, namely a n-dimensional (sub)simplex of order (5� n). The number of n-dimensional (sub)simplicesof order (5� n), is much less (for n � 3) than the number of all n-dimensional simplicesused in the current triangulations, which itself is less than the number of statically allo-cated n-dimensional simplices. Therefore the probability of choosing a right candidateat random from the whole list is small. The memory management allows us to make thisstep in more e�cient manner.The main ingredient for memory control is a sorted list of n-dimensional (sub)-simplicies. They are stored in the matrices is, it, il and ip providing indexing of 4dsiplicies, triangles, links and points. Let us �rst �x attention on the list of pentahedrais. The �rst nsu entries in this array contain vectors to storage cells currently used onthe lattice. The remaining entries point to di�erent unused storage cells. The variablensu contains the number of simplices, N4, currently used on the triangulation. To createa new simplex, we can use the storage cells pointed to by the �rst entry of type unused inthe index-table: is(nsu+1). When we now increase nsu by one this entry is marked asused. In the opposite case when we want to remove a simplex s from the lattice we candecrease nsu by one and thereby mark the last used entry as unused. To facilitate �nding15



common /lists/ si(0:nsmax),is(0:nsmax),ti(0:ntmax),it(0:ntmax)&, li(0:nlmax),il(0:nlmax),pi(0:npmax),ip(0:npmax)common /l_size/ nsu,ntu,nt3,nlu,nl4,npu,np5Table 2: Arrays and supporting variables used for memory managementof the entry of a given simplex s we introduce the array si(s) giving us the position iin is(i) that controls simplex s. The correct entry is marked as unused when we nowexchange the contents of is(si(s)) and is(nsu+1). The same method is applied forthe other (sub)simplices. In these cases we can improve the access to a i-dimensionalsubsimplex of order (5 � i) required for the moves by introducing a new status for astorage cell. For example in case of triangles we need to know which triangles are oforder 3. We sort the index table it(i) in the following way. The �rst nt3 entries (nt3is the number of triangles of order 3) contain the address of triangles that are used andof order 3. The next entries up to ntu are used and of di�erent order. The remainingentries are unused. The code to access a triangle of order 3 at random now ist=it(min(int(ranmar()*nt3)+1,nt3))where ranmar() is a random number on [0; 1].4d. Pentahedron rotationIn the next step of a move one needs to know the information about neighbors, namely fori-dimensional (sub)simplex belonging to the (5� i) pentahedra. In the moves, however,once one knows the address of one pentahedron, one can easily �nd the remaining ones,without referring to any list, because one knows that they are a part of the minimal 5dsphere, and therefore they form one of the structures in (eq. 6-8). In the easiest case,move 4, we have to insert a point into a simplex s12345. At the end of this procedure wewill have 5 simplices. The internal structure, creating subsimplices, neighbor relationsand so on is the same for all situations and it is hard-coded in the program. Additionallywe have only to update the list of nearest{neighbors for the surrounding pentahedra.16



For the other moves the situation is somewhat more complicated. To recover thelocal structure we impose some relations on the indices a, b used in the arrays st(a,n),sl(a,n), sp(b,n), sn(b,n). The point sp(b,n) is opposite to neighbor sn(b,n).Similarly for links and triangles : a link sl(a,n) and a triangle st(a,n), for the sameindex a, are built from complementary vertices of pentahedron n. A relation betweenbetween a and b is established with the help of a list:data ((lt_p(b,a),b=1,5),a=1,10)/ 1,2, 3,4,5&, 1,3, 2,4,5.........&, 4,5, 1,2,3 /which for example means that the link a= 1 connects the points b= 1; 2. The pointsb= 3; 4; 5 are not part of this link and therefore belong to triangle a= 1. In the coding ofthe program we use the naming convention sp1p2p3p4p5 to identify a simplex consistingof points p1; � � � ; p5. Enumerating the indices does not lead to a new con�guration but itcan be interpreted as a rotation of a simplex. In the program this can be used to choosea convenient orientation.To show how this construction works consider move 0, where we have to remove apoint p6 from the lattice. First we have to identify the �ve inner simplices which areto be removed from the lattice. With the help of ps(p6) we can identify one of the 5simplices that contains p6. Denote it by s23456. Once we know the index b such thatp6=sp(b,s23456), we can easily �nd four other simplices having the point p6. They arenamely the neighbors of s23456, sn(a,s23456) for a di�erent from b. The destructionof the inner structure is hard-coded for the situation, where p6=sn(5,s23456). This isusually not the case and we use the freedom of orientation to rotate s23456 so that weencounter the hard-coded situation. This rotation and similar rotations for the othermoves are performed with the help of some precomputed lists.common /orient/ i1_k5(5),i2_k5(5),i3_k5(5),i4_k5(5)&, i2_k1(5),i3_k1(5),i4_k1(5),i5_k1(5)&, i4_k123(5,5,5),i5_k123(5,5,5)&, i_k_all(14),l(5,5),lt_p(5,10)17



In our case i1 k5(b) gives the �rst index of the rotated situation, i2 k5(b) the secondindex and so on. The other matrices are used in the other moves. The matrices i4 k123and i5 k123 give positions of two points in a rotated pentahedron for three others known.The matrix i k all gives a position of one point if all others are known. The matrixl(5,5) enumerates links.The table lt p and the rules imposed on the indices a, b is also useful for thedouble connection check of move 1, where a link l12 sharing 4 simplices is removed andreplaced by a tetrahedron 3456. In this case we have to check if this tetrahedron isalready present on the lattice. The geometric idea behind the following steps is to walkaround triangle t345 and visit all simplices attached to it. If one of these contains theremaining point p6 the move has to be rejected. We start the move by choosing a linkl12 of order 3. With the help of ls(l12)=s12345 we get one of three pentahedra towhich it belongs. It has two neighbors s2345x, s1345x opposite to points p1, p2 whichshare a triangle t345. The naming convention is that a simplex s2345x has four points2, 3, 4, 5 common to s12345 and one di�erent, symbolically denoted by x. One canidentify these two pentahedra as s1345x=sn(2,s12345), s2345x=sn(1,s12345). Thenext step is to walk in the direction of s1345x. The simplex s1345x has again twoneighbors sharing t345. They can be identi�ed as follows. First we �x the index b whichspeci�es a position of the triangle t345 in the simplex st(b, s1345x)=t345. Then,by means of the earlier described table lt p we can also recover the positions of thesetwo neighbors sn(lt p(1,b),s1345x), sn(lt p(2,b),s1345x). One of this simpliceslies in the direction we came from, so the other in the new direction. To continue ourtrip around t345 we choose the pentahedron lying in the new direction and we repeatthe whole procedure. The loop is terminated when the program encounters a simplexcontaining p6 or when the walk is complete ie when we reach the second neighbor s2345xof the starting simplex s12345.4e. Starting con�gurationTo set up a starting con�guration for a run, it is su�cient to build by hand a minimalvalid con�guration and then use move 4 to increase the lattice size to the required value18



N04 . For a sphere the minimal valid con�guration is the 4 dimensional surfaces of 5dsimplex. It consists of six pentahedra glued in such a way that each two of them areneighbors. To save some work and not to �ll by hand the tables for six pentahedra westart from the invalid con�guration of only two pentahedra glued together along all their3d faces. To one of them we apply move 4. It is safe operation because it acts only insidea pentahedron without referring to its neighborhood. After correcting nearest neighborsrelations sn we get a well de�ned minimal sphere.4f. Parameter tuningTo run a job simulating canonical{ensemble for given coupling constants �; �2 one needsto tune �4, which makes the system 
uctuate around the desired canonical volume N04 .It can be done by hand by executing some updates on the lattice with a trial value for�4 and then readjusting this coupling according to the measured average volume N4.It is a question of the operator's intuition to distinguish between the usual 
uctuationand a systematic mistuning of the coupling. Additionally two frequencies f1; f2 have tobe adjusted to get roughly the same resulting acceptance for each type of move. Thefrequencies f1 and f2 are numbers between zero and one which say how often to attemptthe move 0,4 and 1,3 respectively. The frequency for the move 2 is 1 � f1 � f2. Thealgorithm for the automatic tuning is depicted in the �gure 2. It starts with an initialguess for the coupling �4 and for the frequencies f1; f2. As a �rst guess the result ofthe previous tuning procedure for the closest couplings is used. Then TRY updates areexecuted. From them the algorithm estimates the quality of the current con�guration.We use to this purpose the simple quantity qual = 1 � N4=N04 . It is compared withtwo thresholds sure, good. When the quality is better than sure , jqualj � sure, theparameter �4 is left unchanged, but the frequencies are readjusted. To prevent fromaccepting a con�guration by accident we check the stability of a con�guration. We dothis by introducing the counter SUREC which sums the number of sequential hits withsure quality. Only when SUREC is larger than a certain value secure a setup is acceptedas valid. To reduce the 
uctuation of N4, the number of updates TRY is set to a largernumber suretry. 19
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Figure 2: The autotune algorithm20



If the quality is worse than sure but better than good (sure< jqualj � good), theSECURECounter is is decreased by one (as far as the result is larger then zero). Thecoupling �4 is moderately readjusted, as a step size in this region we use 0:1 � �. Thenumber of updates for the next try is set to a value goodtry< suretry. The frequenciesf1; f2 are also readjusted.If we are outside a good-quality, �4 is tuned in relatively large steps. We use 1=3 � �as a step size. In this region, the frequencies f1; f2 are not readjusted because if �4 istoo far from the correct value �4(�; �2) the frequencies use to run to unusable values.5. The ProgramThe elementary updates are coded in the source �le MOVE.F. This package supportsthe geometric moves, update of gauge �elds, as well as creating, loading and storinga con�guration. This part is machine independent and can be compiled by almost allcompilers. The observables are coded in the part MEASURE.F. This package supportsthe commonly used observables for the gravity sector: the geodesic distances d1; d4 andthe integrated curvature correlation. All measurements are taken after a geometricupdate when the system reaches for the �rst time the desired volume N04 . The mainprogram, GRAVZ2.F, is machine-dependent and works on the PARAGONwhose MIMD-architecture allows to run independently simulations for di�erent coupling constants onthe compute-nodes of the machine. We performed our simulations on the PARAGONXP/S 10 with up to 64 nodes.The �ne tuning is done either by the interactive program HANDTUNE.F or byAUTOTUNE.F described previously. As an input, AUTOTUNE.F accepts a table :#N4 DN4 Beta k2 dk4 g:f4000 500 0.020 -0.100 0.05 1.004000 500 0.040 -0.100 0.05 1.00where N4 is the desired volume N04 , DN4 the maximal 
uctuation �N4 from this value,Beta = �, k2 = k2. dk4 stands for the additional potential � used to prevent the systemfrom going too far from N04 . g:f controls the ratio between frequencies of the geometricalupdates compared to the �eld updates. The output of AUTOTUNE.F21



#N4 DN4 Beta k2 k4 dk4 g:f f1 f24000 500 0.020 -0.100 1.374 0.05 1.00 0.066 0.3164000 500 0.040 -0.100 1.444 0.05 1.00 0.069 0.301is ready to be executed by the production front end GRAVZ2.F when the additional linecontaining general information about a production run is added at the beginning. Theformat of this line isfmeas nmeas nterm nsave nlogwhere fmeas is the number of updates between measurements, nmeas is the numberof measurements, nterm the number of updates used for thermalization, nsave is thecon�guration save frequency in measurements and nlog controls the frequency for amessage to stdout. GRAVZ2 creates a result-�le with a name of the form: rss ����� � kkkk. ss is the volume N4 expressed in Ksimplices, the beta-�eld is � � 1000and the k-�eld is k2 � 1000. The con�guration �le follows the same naming conventionwhere the `r` is replaced by `c`. If this �le exists, GRAVZ2 restarts this con�guration,otherwise it starts from the new con�guration built from the minimal sphere. A validinput �le for a 2-node job would be:5 10000 250 200 504000 500 0.020 -0.100 1.374 0.05 1.00 0.066 0.3164000 500 0.040 -0.100 1.444 0.05 1.00 0.069 0.301The program produces two result { �les r04+0020-0100, r04+0040-0100 and two con�-guration-�les c04+0020-0100, c04+0040-0100. The format of the results-�le is human-readable, as an example we present a few rows from the �le r04+0020-0100:#!NEWFILE#!DATE 2-Nov-93 21:43:26#!STPDSC n4 dn4 beta k2 k4 dk4 fg f1 f2 mes_fr#!SETUP 4000 500 0.020 -0.100 1.347 0.05 1. 0.066 0.316 5#!DTADSC <D1> <D4> N0 <N4> R^2 ssso sss#!DTABGN2.718 11.508 603 4008.0 0.1515 0.379 0.0822.663 11.171 592 4000.0 0.1561 0.401 0.0832.567 11.205 593 3992.0 0.1555 0.517 0.10522
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