
Abstract. Repeated play in games by simple adaptive agents is investigated.
The agents use Q-learning, a special form of reinforcement learning, to direct
learning of behavioral strategies in a number of 2! 2 games. The agents are
able effectively to maximize the total wealth extracted. This often leads to
Pareto optimal outcomes. When the rewards signals are sufficiently clear,
Pareto optimal outcomes will largely be achieved. The effect can select Pareto
outcomes that are not Nash equilibria and it can select Pareto optimal
outcomes among Nash equilibria.
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1 Background

Contexts of strategic interaction (CSIs) appear in nearly every social
situation. They are characterized by interdependent decision making: two or
more agents have choices to make and the rewards an individual receives in
consequence of its choices depend, at least in part, on the choices made by
other agents. Such contexts, when abstracted and formalized in certain ways,
are the subject of game theory, which seeks to ‘‘solve’’—predict and explain
the outcomes of—games (i.e., of CSIs abstracted and formalized in certain
stylized fashions).
Any solution theory for CSIs (or games) must make and rely upon two

kinds of assumptions:

1. SR (Strategic Regime) assumptions. There are assumptions about the
representation and structure of the CSI (or game), including the rules of
play and the payoffs to the players. Typically, these assumptions are
expressed as games in strategic form, games in extensive form, charac-
teristic function games, spatial games, and so on.

2. SSR assumptions. These are assumptions about the Strategy Selection
Regimes (SSRs) employed by the agents, or players, in the game. Classical
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game theory makes two kinds of SSR assumptions, which typically apply
to all players (Luce and Raiffa 1957; Shubik 1982):

a. Ideal rationality assumptions. It is normally assumed that agents are
‘rational’ and that Rational Choice Theory in some form (e.g.,
Savage’s Subjective Expected Utility theory) characterizes this kind of
(ideal) rationality. Roughly, agents are assumed to have utilities and to
be maximizers of their utilities.

b. Knowledge assumptions. It is normally assumed that agents are
omniscient with respect to the game. The agents know everything
about the game, common knowledge obtains among all the players,
and all agents have unlimited computational/ratiocination powers.

In what follows, we report on a series of experimental investigations that
examine play in games under non-standard SSR assumptions, at least as
judged by the classical game theory literature. We investigate a series of
games that are well recognized in the classical literature and that have been
extensively studied. Our game – Strategic Regime – Assumptions are
conventional, although we focus on repeated or iterated (aka: staged) games.
It is, and has always been, recognized that the classical SSR assumptions

(as we call them) are unrealistic. The original experimental work on
Prisoner’s Dilemma, among other games (Flood 1952), was motivated by
such concerns. Even so, they—and the consequences they engender—are
interesting. The assumptions often afford tractability, allowing games to be
‘solved’. Because they capture the notion of a certain plausible kind of ideal
rationality, it is interesting to determine how well they describe actual human
behavior. Even if they are inaccurate, they have value as a normative
benchmark. And given the considerable powers of human cognition and
institutions, it is not prima facie implausible that classical SSR assumptions
will often yield accurate predictions.
This is all well and good, but the story is not over. There are certain puzzles

or anomalies associated with the classical SSR assumptions. Famously in the
Prisoner’s Dilemma game, and in other games, the Nash Equilibrium (NE)
outcome is not Pareto efficient. Classical theory sees the NE as the solution
to the game, yet many observers find it anomalous and experiments with
human subjects often indicate support for these observers (Luce and Raiffa
1957; Rapoport and Guyer 1976). Further, the NE need not be unique,
posing thereby a challenge to the classical theory, which often struggles, or
has to be stretched, to predict equilibrium outcomes that seem natural and
that are reached by human subjects easily. In short, the classical theory has
often proved to be a poor—weak and inaccurate—predictor of human
behavior (Roth and Erev 1995).
Besides the well-known puzzles and anomalies, there is another category

of reasons to study games under variations of the classical SSR
assumptions. Rational Choice Theory and omniscience may be plausible
assumptions for experienced humans in certain favorable institutional
settings (e.g., well-established markets). They are often not plausible
assumptions for games played by birds, bees, monkeys up in trees,
bacteria, and other similarly less cognitively well-endowed creatures. It is,
simply put, scientifically interesting to investigate the play and outcomes in
games in which the SSR assumptions of classical game theory are relaxed
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sufficiently to be capable of describing these kinds of more limited agents.
Equally so, this is interesting from a practical, applications-oriented
perspective. Adaptive artificial agents, e.g. fielded for purposes of
electronic commerce, will inevitably resemble the lower animals more
than their creators, at least in their cognitive powers.
With these motivations principally in mind, we investigated repeated

play by simple, adaptive agents in a number of well-known games. Any
such investigation, however, faces an immediate and urgent theoretical
problem: There are indefinitely many ways to relax the classical SSR
assumptions; how does one justify a particular alternative? We choose with
a number of criteria in mind.

1. Simple. There are few ways to be ideally rational and indefinitely many
ways not to be. In examining alternatives it is wise to begin with simple
models and complexify as subsequent evidence and modeling ambition
requires.

2. New. Much has been learned about non-ideally rational agents through
studies of the replicator dynamic (see Gintis 2000, for a review). These
investigations, however, see populations as evolving, rather than individ-
ual agents adapting. The individuals are typically modeled as naked,
unchanging strategies, rather than adaptive agents, which proliferate or
go extinct during the course of continuing play. Agents in some
‘spatialized’, cellular automata-style games have been given certain
powers of state change and adaptation, but these have on the whole
been limited in scope (e.g., Epstein and Axtell 1996; Grim et al. 1998).
Experimenting with game-playing agents that are using reinforcement
learning is a comparatively under-developed area and the kinds of
experiments we report here are, we believe, original.

3. Theoretically motivated. Reinforcement learning as it has developed as a
field of computational study has been directly and intendedly modeled on
learning theories from psychology, where there is an extensive supporting
literature. This important class of learning model is a natural first choice
for modeling agents in games, because it appears to apply broadly to
other areas of learning, because its theoretical properties have been well
investigated, and because it has achieved a wide scope of application in
multiple domains.

4. Adaptive. Agents should be responsive to their environments and be able
to learn effective modes of play.

5. Exploring. Agents should be able actively to probe their environments and
undertake exploration in the service of adaptation; agents face the
exploration-exploitation tradeoff and engage in both.

In addition, the SSRs should be realizable in sense that they specify definite
procedures that simple agents could actually undertake. It is here, perhaps,
that the present approach, which we label algorithmic game theory, differs
most markedly from classical game theory and its assumption of ideal
rationality, irrespective of realizability constraints.
We turn now to a discussion of the elements of reinforcement learning

needed as background for our experiments.
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2 Reinforcement learning

2.1 Simple Q-learning

Our experimental agents used a simple form of Q-learning, itself a variety of
reinforcement learning. Detailed description of Q-learning is easily found in
the open literature (e.g., Watkins 1989; Watkins and Dayan 1992; Sutton and
Barto 1998). We limit ourselves here to a minimal summary for the purposes
at hand.
The Q-learning algorithm works by estimating the values of state-action

pairs. The value Q(s, a) is defined to be the expected discounted sum of
future payoffs obtained by taking action a in state s and following an optimal
policy thereafter. Once these values have been learned, the optimal action
from any state is the one with the highest Q-value. The standard procedure
for Q-learning is as follows. Assume that Q(s, a) is represented by a lookup
table containing a value for every possible state-action pair, and that the
table entries are initialized to arbitrary values. Then the procedure for
estimating Q(s, a) is to repeat the following loop until a termination
criterion is met:

1. Given the current state s choose an action a. This will result in receipt of
an immediate reward r, and transition to a next state s’. (We discuss below
the policy used by the agent to pick particular actions, called the
exploration strategy.)

2. Update Q(s, a) according to the following equation:

Qðs; aÞ ¼ Qðs; aÞ þ a½r þ cmax
b

Qðs0; bÞ ' Qðs; aÞ( ð1Þ

where a is the learning rate parameter and Qðs; aÞ on the left is the new,
updated value of Qðs; aÞ.
In the context of repeated games, a reinforcement learning (Q-learning)

player explores the environment (its opponent and the game structure) by
taking some risk in choosing actions that might not be optimal, as
estimated in step 1. In step 2 the action that leads to higher reward will
strengthen the Q-value for that state-action pair. The above procedure is
guaranteed to converge to the correct Q-values for stationary Markov
decision processes.
In practice, the exploration policy in step 1 (i.e., the action-picking policy)

is usually chosen so that it will ensure sufficient exploration while still
favoring actions with higher value estimates in given state. A variety of
methods may be used. A simple method is to behave greedily most of the
time, but with small probability, e, choose an available action at random
from those that do not have the highest Q value. For obvious reasons, this
action selection method is called e-greedy (see Sutton and Barto, 1995).
Softmax is another commonly used action selection method. Here again,
actions with higher values are more likely to be chosen in given state. The
most common form for the probability of choosing action a is

eQtðaÞ=s
Pn

b¼1 eQtðbÞ=s
ð2Þ
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where s is a positive parameter and decreases over time. It is typically called
the temperature, by analogy with annealing. In the limit as s ! 0, Softmax
action selection becomes greedy action selection. In our experiment we
investigated both e-greedy and Softmax action selection.

2.2 Implementation of Q-learning for 2 by 2 games

A Q-learning agent does not require a model of its environment and can be
used on-line. Therefore, it is quite suited for repeated games against an
unknown co-player (especially an adaptive, exploring co-player). Here, we
will focus on certain repeated 2 by 2 games, in which there are two players
each having two possible plays/actions at each stage of the game. It is natural
to represent the state of play, for a given player, as the outcome of the
previous game played. We say in this case that the player has memory length
of one. The number of states for a 2 by 2 game is thus 4 and for each state
there are two actions (the pure strategies) from which the player can choose
for current game. We also conducted the experiments for the case that
players have memory length of two (the number of states will be 16) and
obtained broadly similar results. The immediate reward a player gets is
specified by the payoff matrix.
For the Softmax action selection method, we set the decreasing rate of the

parameter s as follows.

s ¼ T )Hn ð3Þ
T is a proportionality constant, n is the number of games played so far. Q,
called the annealing factor, is a positive constant that is less than 1. In the
implementation, when n becomes large enough, s is close to zero and the
player stops exploring. We use Softmax, but in order to avoid cessation of
exploration, our agents start using e-greedy exploration once the Softmax
progresses to a point (discussed below) after which exploration is minimal.

3 Experiments

3.1 Motivation

Repeated 2 by 2 games are the simplest of settings for strategic interactions
and are a good starting point to investigate how outcomes arise under a
regime of exploring rationality versus the ideal rationality of classical game
theory. The Definitely Iterated Prisoner’s Dilemma, involving a fixed number
of iterations of the underlying game, is a useful example. Classical game
theory, using a backwards induction argument, predicts that both players
will defect on each play (Luce and Raiffa 1957). If, on the other hand, a
player accepts the risk of cooperating, hoping perhaps to induce cooperation
later from its counter-player, it is entirely possible that both players discover
the benefits of mutual cooperation. Even if both players suffer losses early
on, subsequent sustained mutual cooperation may well reward exploration at
the early stages.
Motivated by this intuition, we selected 8 games and parameterized their

payoffs. The players are modeled as Q-learners in each repeated game. In 5 of
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the games the Pareto optimal (socially superior, i.e., maximal in the sum of
its payoffs) outcome does not coincide with a Nash Equilibrium. The
remaining 3 games, which we included to address the multi-equilibrium
selection issue, each have two pure-strategy NEs.

3.2 The games and the parameterization

We parameterized each of our 8 games via a single parameter, d, in their
payoff matrices. In the payoff matrices below, the first number is the payoff
to the row player and the second is the payoff to the column player. We mark
the Nash Equilibria with # and the Pareto efficient outcomes with). Pareto
optimal (socially superior) outcomes are labeled with)). C and D are the
actions or pure strategies that players can take on any single round of play.
The row player always comes first in our notation. Thus, CD means that the
row player chose pure strategy C and column player chose pure strategy D.
So there are four possible outcomes of one round of play: CC, CD, DC, and
DD.
The first two games are versions of Prisoner’s Dilemma (PD). The value of

d ranges from 0 to 3. When its value is 2 (see Table 1), it corresponds to the
most common payoff matrix in the Prisoner’s Dilemma literature.
While the Prisoner’s Dilemma, in its usual form, is a symmetric game (see

Tables 1 and 2), the following three games, adapted from Rapoport and
Guyer (1976), are asymmetric. The value of d ranges from 0 to 3 in our
experiments with these games. Note that as in Prisoner’s Dilemma, in Games
#47, #48, and #57 (Tables 3–5) the Nash Equilibrium does not coincide with
the Pareto optimal outcome.
For games with two NE, the central question is which equilibrium (if any)

is most likely to be selected as the outcome. We choose three examples from
this class of game. The game of Stag Hunt has a Pareto optimal solution as
one of its NE. The game of Chicken and the game of Battle of Sexes are
coordination games. In Battle of the Sexes the two coordination outcomes
(CC and DD) are NEs and are Pareto optimal. In Chicken, the coordination
outcomes (CD and DC) may or may not be NEs, depending on d. The value
of d ranges in our experiments from 0 to 3 for Stag Hunt and Bottle of sexes.
For Chicken, the range is from 0 to 2.

Table 1. Prisoner’s Dilemma, Pattern 1

C D

C (3, 3)** (0, 3 + d)*
D (3 + d, 0)* (3 ) d, 3 ) d)#

Table 2. Prisoner’s Dilemma, Pattern 2

C D

C (3, 3))) (0, 3 + d))

D (3 + d, 0)) (d, d)#
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3.3 Settings for the experiments

We set the parameters for Q-learning as follows. Learning rate, a ¼ 0:2 and
discount factor, c ¼ 0:95. We ran the experiment with both Softmax action
selection and e-greedy action selection. For Softmax action selection, T is set
to 5 and the annealing factor H ¼ 0:9999. When s is less than 0.01, we began
using e-greedy action section. We set e to 0.01. We note that these parameter
values are typical and resemble those used by other studies (e.g., Sandholm
and Crites 1995). Also, our results are robust to changes in these settings.
Each game was iterated 200,000 times in order to give the players enough

time to explore and learn. For each setting of the payoff parameter d, we ran
the repeated game 100 times. We recorded the frequencies of the four
outcomes (CC, CD, DC and DD) every 100 iterations. The numbers usually
become stable within 50,000 iterations, so we took frequencies of the
outcomes in the last 100 iterations over the 200,000 iterations to report,
unless noted otherwise.
The summary of results tables, below, all share a similar layout. In the

middle column is the payoff parameter d. On its left are the results for
e-greedy action selection. The results for Softmax action selection are on the
right. Again, the numbers are frequencies of the four outcomes (CC, CD, DC
and DD) in the last 100 iterations, averaged over 100 runs.

3.4 Results

It is generally recognized as disturbing or at least anomalous when classical
game theory predicts that a Pareto inferior Nash Equilibrium will be the
outcome, rather than a Pareto optimal solution (Flood 1952; Luce and
Raiffa 1957; and ever since). This is exactly what happens in our first five
games, in which the unique subgame perfect Nash Equilibrium is never the

Table 3. Game #47

C D

C (0.2, 0.3)# 0.3 + d, 0.1)

D 0.1, 0.2 (0.2 + d, 0.3 + d)))

Table 4. Game #48

C D

C (0.2, 0.2)# (0.3 + d, 0.1))

D (0.1, 0.3) (0.2 + d, 0.3 + d)))

Table 5. Game #57

C D

C (0.2, 0.3)# (0.3 + d, 0.2))

D (0.1, 0.1) (0.2 + d, 0.3 + d)))
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Pareto optimal (or even a Pareto efficient!) outcome. Will the outcomes be
different if agents use adaptive, exploring SSRs, such as reinforcement
learning? More specifically, can players learn to achieve a Pareto optimal
solution that is not a Nash Equilibrium? Among competing NEs, will players
find the Pareto efficient outcome? Our results indicate a broadly positive
answer to these questions.
Consider Table 9, ‘‘Summary of Results for Prisoner’s Dilemma, Pattern

1’’ (summarizing results for the parameterized PD game in Table 1). If d is
close to zero, the two players choose to defect most of the time. (That is, see
above, during the final 100 rounds of 200,000 iterations, they mostly play
DD. The entries in Table 9, and in similar tables report counts out of 100
rounds · 100 runs ¼ 10,000 plays.) We note, by way of explanation, that
there is not much difference in rewards between mutual defection and mutual
cooperation: 3 ) d and 3, with d small. The Pareto optimal outcome does not
appear to provide enough incentive for these players to risk cooperation. But

Table 6. Stag Hunt

C D

C (5, 5)))# (0, 3)
D (3, 0) (d, d)#

Table 7. Battle of the Sexes

C D

C (d, 3 ) d)))# (0, 0)
D (0, 0) (3 ) d, d)))#

Table 8. Chicken. 0 * d < 2. CC is )) for d £ 1. CD and DC are )) for d ‡ 1

C D

C (2, 2)) (d, 2 + d))#
D (2 + d, d))# (0, 0)

Table 9. Summary of results for Prisoner’s Dilemma, Pattern 1

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

3 87 82 9828 0.05 0 106 101 9793
0 92 105 9803 0.5 0 90 94 9816
52 110 111 9727 1 1 111 111 9777
51 110 93 9746 1.25 2475 338 358 6829

1136 160 198 8506 1.5 3119 526 483 5872
1776 245 381 7598 1.75 4252 653 666 4429
3526 547 413 5514 2 789 883 869 7549
848 766 779 7607 2.5 496 2276 2368 4860
544 2313 2306 4837 2.95 539 2821 2112 4528
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as d gets larger, we see more cases of mutual cooperation. The last row in
Table 9 has an interesting interpretation: The players have incentive to
induce each other’s cooperation so as to take advantage of it by defecting.
This is always the case in Prisoner’s Dilemma, but exacerbated here (final
row of Table 9) because the temptation for defection in the presence of
cooperation is unusually large. Consequently, we see many CDs and DCs,
but less mutual cooperation (CC). Notice that CC is maximized and DD
minimized somewhere in the range of [1.75, 2] for d. (Softmax and e-greedy
results are, here and elsewhere, in essential agreement.) When d is low the
benefit of mutual cooperation is too low for the agents to find the Pareto
optimal outcome. When d is very high, so is the benefit of defection in the
face of cooperation, and again the agents fail to cooperate jointly. In the
middle, particularly in the [1.75, 2] range, the benefits of mutual cooperation
are high enough and the temptation to defection is low enough that
substantial cooperation occurs.
Further insight is available by considering Table 10, the Wealth Extraction

Report for Table 9. The Total Wealth Extracted (WE) by an agent is simply
the number of points it obtained in playing a game. Table 10 presents the
Total WE for the row chooser in PD, Pattern 1. (Results are similar for the
column chooser; this is a symmetric game played by identically endowed
agents.) WE-Q:Pmax is the ratio (quotient, Q) of (a) Total WE and (b) 100
iterations · 100 runs · Pmax, the maximum number of points row chooser
could get from outcomes on the Pareto frontier. Pmax ¼ (3 + d) and is
realized when DC is played. WE-Q:Pgmax is the ratio of (a) Total WE and
(b) 100 iterations · 100 runs · Pgmax, the maximum number of points row
chooser could get from outcomes on the Pareto frontier whose total rewards
are maximal (among Pareto efficient outcomes). Here, Pgmax ¼ 3 and is
realized when CC is played. WE-Q:Pgmax might be called the ‘‘wealth
extraction quotient for socially optimal outcomes.’’ Each of these measures
declines as d increases. Our agents have progressively more difficulty
extracting available wealth. This hardly seems surprising, for at d ¼ 0.05 the
game is hardly a PD at all and the reward 3 for mutual cooperation is a
paltry improvement over the ‘penalty’ for mutual defection, 2.95. As delta
increases, however, strategy selection becomes more and more of a dilemma
and the agents become less and less successful in extracting wealth from the
system. Note that these trends are more or less monotonic (see Table 10),

Table 10. Row chooser’s total wealth extracted in Prisoner’s Dilemma, Pattern 1

Softmax (DC) (CC)

delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax

0.05 29197 3.05 0.957 3 0.973
0.50 24869 3.50 0.711 3 0.829
1.00 20001 4.00 0.500 3 0.667
1.25 20897 4.25 0.492 3 0.697
1.50 20339 4.50 0.452 3 0.678
1.75 21456 4.75 0.452 3 0.715
2.00 14261 5.00 0.285 3 0.475
2.50 16942 5.50 0.308 3 0.565
2.95 14410 5.95 0.242 3 0.480
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while the actual outcomes change rather dramatically (see Table 9). From
the perspective of classical game theory, changes in delta should not matter.
Each of these games is a PD and should produce identical outcomes, all DD.
Note that had the players played DD uniformly when delta ¼ 2.95, the row
(and similarly the column) player would have extracted a total wealth of
10,000 · 0.05 ¼ 500. In this light, extracting 14,410 is a considerable
achievement.
Consider now the parameterized family of Prisoner’s Dilemma Pattern 2

games (see Table 2). Here, the players stand to lose almost nothing by trying
to cooperate when d is close to zero. Exploration seems to help players reach
the superior (‘‘socially superior’’) Pareto optimal outcome (CC) and as we
can see from Table 11, mutual cooperation happens 94% of time. Consider
the scenario with d close to 3. Note first, there is not much incentive to shift
from the Nash equilibrium (DD) to the socially superior Pareto outcome
(CC), since there is not much difference in payoffs; second, the danger of
being exploited by the other player and getting zero payoff is much higher.
Indeed, the players learn to defect most of the time (98%).
The Wealth Extraction Report, Table 12, for Pattern 2 corresponds to

Table 10 for Pattern 1. We see that our row chooser is able to extract a
roughly constant amount of wealth from the game, even as delta and
the strategy choices vary drastically. Note further that WE-Q:Pgmax is

Table 11. Summary of results for Prisoner’s Dilemma, Pattern 2

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9422 218 183 177 0.05 9334 302 285 79
9036 399 388 150 0.5 9346 294 220 140
5691 738 678 2693 1 7537 954 1267 242
3506 179 275 6040 1.25 8203 542 994 261
1181 184 116 8519 1.5 7818 767 775 640

2 98 103 9797 1.75 4685 270 422 4623
97 114 91 9698 2 1820 217 220 7743
0 100 92 9808 2.5 0 77 117 9806
2 96 94 9808 2.95 0 90 114 9796

Table 12. Row chooser’s total wealth extracted in Prisoner’s Dilemma, Pattern 2

Softmax (DC) (CC)

Delta Total WE Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax

0.05 28875 3.05 0.947 3 0.963
0.50 28878 3.50 0.825 3 0.963
1.00 27921 4.00 0.698 3 0.931
1.25 29160 4.25 0.686 3 0.972
1.50 27902 4.50 0.620 3 0.930
1.75 24150 4.75 0.508 3 0.805
2.00 22046 5.00 0.441 3 0.735
2.50 25159 5.50 0.457 3 0.839
2.95 29577 5.95 0.497 3 0.986
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approximately constant (mostly over 90%) even though the players are
mostly not playing CC at all.
We now turn to games #47, #48, and #57, which are asymmetric games

having a common feature: The row player has a dominant strategy C. Thus a
fully rational row player will never choose D. What will happen if players are
able to explore and learn? Tables 13–15 tell us that it depends on the payoffs.
If d is close to zero, the outcome will be the Nash equilibrium (CC) almost
always. As d increases, however, the incentives favoring the socially superior
Pareto outcome (CC) concomitantly increase, drawing the players away from
CC (Nash) to DD (socially superior Pareto). We note that row chooser
would prefer CD to DD, yet in all three games (see Tables 13–15) we see a
similar pattern of CD play as delta increases.
The Wealth Extraction Reports for game #47 are also useful for

understanding the row versus column power relationship in these games
(Tables 16–17). Notice that at the Nash Equilibrium (CC) total WE for row
is 2/3 of that for column. See Tables 16–17 for delta ¼ 0. As delta increases
and CC play decreases both players uniformly increase their WE. At the
same time, their WE becomes more and more equal, and by the time
delta ¼ 2 row chooser is extracting more wealth from the game than column
chooser. This occurs even though in more than 92% of the games the play is
DD and column chooser extracts more wealth than row chooser! The
difference is due to the occasional ‘defection’ by row chooser to play C.
Finally, we note that DC is neither Nash nor Pareto in these games. Our
agents play DC at a rate that is low and essentially invariant with delta. That
rate may be interpreted as a cost consequence of exploration.
Finally, it is instructive to note that when delta ¼ 3 the expected value for

column playing D is 3.3 ) 3.2p, if row plays C with probability p. Similarly
the expected value of playing C is 0.2 + 0.1p. Consequently, column should
play D so long as p < 31/33. These considerations lead us to wonder
whether our row chooser agents have not learned to be sufficiently exploitive.
They may be too generous to column chooser, although column chooser is
not without recourse. However, the fact that C and D for row chooser are so
close in value, given that column chooser plays D, may impute stability in
this stochastic, noisy, learning context. Note that in all three games CD is
more rare when delta ¼ 3 than when delta ¼ 2.

Table 13. Summary of results for Game #47

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9790 101 101 8 0 9808 94 98 0
4147 137 156 5560 0.1 9812 94 93 1
3019 123 165 6693 0.15 9799 95 104 2
2188 141 132 7539 0.2 8934 85 109 872
185 355 130 9330 0.5 730 284 208 8778
131 309 135 9425 1 120 532 138 9210
138 288 99 9475 1.5 77 471 103 9349
99 321 131 9449 2 88 441 126 9345
126 172 88 9614 3 64 366 92 9478
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In PD and games #47, #48, and #57, the Nash Equilibrium is not on the
Pareto frontier. The Stag Hunt game is thus interesting because its Pareto
optimal solution is also one of its two pure strategy NEs. But which one, or
which mixture, will be sustained remains a challenging problem for classical
game theory. A mixed strategy seems natural in this repeated game for

Table 14. Summary of results for Game #48

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9789 102 107 2 0 9787 106 105 2
3173 515 173 6139 0.1 9811 86 101 2
2832 457 207 6504 0.15 8127 256 137 1480
1227 348 141 8284 0.2 2986 755 230 6029
109 627 143 9121 0.5 143 631 146 9080
90 492 139 9279 1 79 1320 126 8475
88 318 134 9460 1.5 117 1076 128 8679
241 236 119 9404 2 62 473 126 9339
76 284 139 9501 3 64 277 128 9531

Table 15. Summary of results for Game #57

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9767 119 107 7 0 9764 131 105 0
1684 587 175 7554 0.1 9794 106 98 2
531 518 191 8760 0.15 9550 105 105 240
238 543 159 9060 0.2 1048 497 257 8198
126 307 121 9446 0.5 224 852 152 8772
118 520 114 9248 1 113 753 119 9015
104 526 125 9245 1.5 74 538 117 9271
66 225 102 9607 2 57 569 123 9251
123 296 116 9465 3 61 302 125 9512

Table 16. Row chooser’s total wealth extracted in Game #47

Softmax #47 (CD) (DD)
Delta Total WE

Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax

0 2000 0.30 0.667 0.20 1.000
0.1 2010 0.40 0.502 0.30 0.670
0.15 2014 0.45 0.447 0.35 0.575
0.2 2189 0.50 0.438 0.40 0.547
0.5 6539 0.80 0.817 0.70 0.934
1 11781 1.30 0.906 1.20 0.982
1.5 16767 1.80 0.931 1.70 0.986
2 21604 2.30 0.939 2.20 0.982
3 31559 3.30 0.956 3.20 0.986
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classical game theory. Table 18 shows that the outcomes of for our
reinforcement learning agents do not conform to the prediction of a mixed
strategy. Say, for example, when delta is equal to 1, the mixed strategy for
both players will be choosing action C with probability 1/3 and D with
probability 2/3. (Let p be the probability of playing C, then at
5p + 0p ¼ 3p + (1 ) p) the players are indifferent between playing C or
D. This happens at p ¼ 1/3.) We should expect to see CC with a frequency
less than 33%, while Table 15 shows CC happening at a rate of 88%.
In Stag Hunt, CC is Pareto optimal but risky, while DD is riskless (on the

down side) but Pareto dominated. As delta increases from 0 to 3.0 the risk/
reward balance increasingly favors DD. Our agents respond by favoring DD
at the expense of CC and in consequence they extract a decreasing amount of
wealth. It is as if they were operating with a risk premium, yet we know they
are not.
The remaining two games are coordination games. We are concerned not

only with which NEs are to be selected, but also with a larger question: Is the
Nash Equilibrium concept apt for describing what happens in these games?
The later concern arises as we observe different behavior in human
experiments. Rapport et al. (1976) reported a majority of subjects quickly
settling into an alternating strategy, with the outcome changing back and

Table 17. Column chooser’s total wealth extracted in Game #47

Softmax #47 (DD) (DD)
Delta Total WE

Pmax WE-Q:Pmax Pgmax WE-Q:Pgmax

0 2962 0.30 0.987 0.30 0.987
0.1 2963 0.40 0.741 0.40 0.741
0.15 2961 0.45 0.658 0.45 0.658
0.2 3136 0.50 0.627 0.50 0.627
0.5 7291 0.80 0.911 0.80 0.911
1 12076 1.30 0.929 1.30 0.929
1.5 16909 1.80 0.939 1.80 0.939
2 21577 2.30 0.938 2.30 0.938
3 31342 3.30 0.950 3.30 0.950

Table 18. Summary of results for Stag Hunt

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9390 126 122 362 0 9715 108 109 68
9546 91 108 255 0.5 9681 120 121 78
9211 112 125 552 0.75 9669 111 101 119
8864 119 110 907 1 9666 98 102 134
8634 115 132 1119 1.25 9598 139 134 129
7914 122 130 1834 1.5 9465 99 109 327
7822 122 104 1952 2 9452 126 126 296
5936 87 101 3876 2.5 8592 116 89 1203
5266 121 106 4507 3 3524 111 115 6250
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forth between the two Nash coordination points (CD and DC) when playing
the game of Chicken.
From Table 20 we can see these two NEs (and coordination points) in

Battle of the Sexes are equally likely to be the outcome in most cases since the
game is symmetric and these two outcomes are superior to other two, which
give both players a zero payoff. In the game of Chicken (Table 21) we see
that if the incentive for coordinating is too small (i.e., delta is close to zero),
the players learn to be conservative and land on the non-NE (CC) since they
cannot afford the loss resulting from DD (getting zero). As delta increases,
the game ends up more and more in one of the Nash coordination points
(CD or DC).
The Wealth Extraction Report for Chicken, Table 22, is particularly

revealing. When delta is small, play is overwhelmingly CC. CC is non-Nash
and Pareto and for delta £ 1.0 CC is socially superior Pareto. C is less risky
for both players than D (both CD and DC are Pareto and Nash outcomes),
so when delta is small it stands to reason that our agents should stick with
CC. Note in this regard that if the players exactly alternate the CD and DC
outcomes, they each will receive a payoff of 1 + delta on average. See the
column labeled ‘‘WE if Perfect Alternation’’ in Table 22. We see that when
delta < 1.0 (i.e., when CC is socially superior), CC play is preponderant and
Total WE is greater, often substantially greater, than WE if Perfect
Alternation. For delta ‡ 1.0, CD and DC are socially superior Pareto. In

Table 19. Row chooser’s total wealth extracted in Stag Hunt

Softmax Stag Hunt (CC) WE-Q:Pmax
delta Total WE Pgmax WE-Q:Pgmax

0.0 48902 5 0.978
0.5 48807 5 0.976
0.8 48737 5 0.975
1.0 48770 5 0.975
1.3 48553 5 0.971
1.5 48143 5 0.963
2.0 48230 5 0.965
2.5 46235 5 0.925
3.0 36805 5 0.736

Table 20. Summary of results for Battle of the Sexes

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

2641 63 4571 2725 0 2872 73 4477 2578
3842 135 1626 4397 0.1 4615 101 1732 3552
5140 102 90 4668 0.5 4772 102 162 4964
4828 107 94 4971 1 4862 88 89 4961
4122 101 109 5668 1.5 4642 85 102 5171
4983 100 97 4820 2 4623 97 87 5193
3814 111 96 5979 2.5 5139 102 99 4660
4015 1388 107 4490 2.9 4303 1794 118 3785
2653 4921 70 2356 3 2593 4776 58 2573
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the neighborhood of 1.0, play transitions from predominantly CC to
predominantly CD and DC. Note that Total WE increases uniformly with
delta (except for a slight decline in the neighborhood of delta ¼ 1.0, which we
attribute to transition-induced error). As delta ranges from 1.0 to 2.0, Total
WE closely approximates WE if Perfect Alternation. In short, the agents are
impressively effective at extracting wealth. Outcomes are Nash (for the most
part) if and only if there is not more money to be made elsewhere.
In order to see if players can learn alternating strategies, as observed in

human subject experiments, we conducted another 100 trials for these two
games with delta set to 1 and with Softmax action selection. For most of the
trials the outcomes converge (i.e., settle, Dworman et al. 1995; 1996) to one
of the Pareto superior outcomes. But we did observe patterns showing
alternating strategies for both games. These patterns are quite stable and can
recover quickly from small random disturbances. For the Battle of the Sexes,
we observed only one alternating pattern: the players playing the two Nash
Equilibria alternately, in sequence. This pattern occurred in 11 out of 100
trials. For Chicken, we observed other kinds of patterns and have
summarized their frequencies in Table 23.

Table 21. Summary of results for Chicken

e-greedy action selection d Softmax action selection

CC CD DC DD CC CD DC DD

9276 227 347 150 0 9509 165 222 104
9587 143 135 135 0.25 9119 428 320 133
9346 209 223 222 0.5 9375 220 225 180
6485 1491 1858 166 0.75 8759 424 632 185
1663 3532 4706 99 1 1339 4903 3662 96
385 4161 5342 112 1.25 158 5416 4323 103
113 4488 5274 125 1.5 115 4700 5099 86
111 4301 5504 84 1.75 100 4704 5083 113
100 4853 4953 94 2 94 4772 5044 90

Table 22. Row chooser’s total wealth extracted in Chicken

Softmax (DC) WE if Perfect

delta Total
WE

Pmax WE-Q:
Pmax

Pgmax WE-Q:
Pgmax

Alternation

0.0 19482 2.00 0.974 1.0 1.948 10000
0.3 19065 2.25 0.847 1.3 1.525 12500
0.5 19423 2.50 0.777 1.5 1.295 15000
0.8 19574 2.75 0.712 1.8 1.119 17500
1.0 18567 3.00 0.619 2.0 0.928 20000
1.3 21136 3.25 0.650 2.3 0.939 22500
1.5 25127 3.50 0.718 2.5 1.005 25000
1.8 27493 3.75 0.733 2.8 1.000 27500
2.0 29908 4.00 0.748 3.0 0.997 30000

Note: Pgmax assumes perfect alternation of CD and DC.

Simple reinforcement learning agents: Pareto beats Nash 15



At 23% (10 + 13 of 100), the proportion of alternating patterns cannot be
said to be large. Note first that we have used payoffs different from Rapport
et al. (1976) and this may influence the incentive to form alternating
strategies. Second, our players do not explicitly know about the payoff
matrix and can only learn about it implicitly through play. Finally, there
certainly are some features of human adaptive strategic behavior that are not
captured in our current Q-learning model but that are important for human
subjects to learn such alternating strategies. The main point, however, is how
irrelevant the Nash Equilibrium concept seems for describing the outcomes
of the repeated coordination games—Chicken and Battle of the Sexes—as
played by our agents.

4 Summary

Wealth extracted (WE) is the proper measure of an agent’s performance in a
game.When the game is a repeated one, it may well be to an agent’s advantage
to explore, taking different actions in essentially identical contexts. Our simple
reinforcement learning agents do exactly this. They present perhaps the
simplest case of an adaptive, exploring rationality. In utter ignorance of the
game and their co-players, they merely seek to maximize their WE by
collecting information on the consequences of their actions, and playing what
appears to be best at any given moment. This is tempered by a tendency to
explore by occasionally making what appear to be inferior moves.
Remarkably, when agents so constituted play each other and NEs are

distinct from more rewarding Pareto outcomes (Prisoner’s Dilemma, games
#47, #48, and #57, Chicken with d < 1), Pareto wins. The drive to maximize
WE succeeds. Similarly, a Pareto superior Nash Equilibrium will trump a
Pareto inferior NE (Stag Hunt). Finally, in the presence of Pareto outcomes
that are socially superior but unequally advantageous to the players, the
players learn to extract an amount of wealth close to the maximum available
(Battle of the Sexes, Chicken).
Outcomes that are neither Pareto efficient nor Nash Equilibria are rarely

settled upon. Nash outcomes give way to Pareto superior outcomes when it
pays to do so. A bit more carefully, in the case that there is one sub-game
perfect NE, these results violate that as a prediction. In the case that the
repeated games are seen as open-ended, there are (viz., the Folk Theorem) a
very large number of NEs, but there is also insufficient theory to predict
which will in fact occur. Again, our agents defy this as a prediction: They
rather effectively maximize their Total WE. To sloganize, ‘‘It’s not Nash that
drives the results of repeated play, it’s Pareto.’’

Table 23. Frequencies of different patterns of outcome in the game of Chicken

The outcomes Frequency in
100 trials

Alternating between CD and DC 10
Cycle through CD-DC-CC or CD-CC-DC 13
Converge to one of the three: CC, CD or DC 76
No obvious pattern 1
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5 Discussion of related work

Reinforcement learning in games has become an active area of investigation.
A systematic treatment of the literature would require a rather lengthy review
paper of its own. Instead, we shall confine ourselves to brief discussions of
certain especially apt works. We begin with several papers describing
investigations into reinforcement learning in games by artificial agents.
Hu and Wellman (1998) essay a theoretical treatment of general-sum

games under reinforcement learning. They prove that a simple Q-learning
algorithm will converge for an agent to a Nash Equilibrium under certain
conditions, including uniqueness of the equilibrium. When these conditions
obtain the Nash equilibrium is, in effect, also Pareto optimal or dominant for
the agent.
Claus and Boutilier (1998) investigate reinforcement learning (Q-learning)

agents in coordination (aka: common interest) games. (Claus and Boutilier
refer to these as cooperative games, which are not to be confused with
cooperative game theory; the games played here are non-cooperative.) The
paper studies factors that influence the convergence to Nash equilibrium
under the setting of repeated play when using Q-learning. The empirical
results show that whether the agent learns the action values jointly or
individually may not be critical for convergence and that convergence may
not be generally obtainable for more complicated games. The paper also
proposes use of a myopic heuristic for exploration, which seems promising to
help convergence to optimal (Pareto dominant) equilibrium. However,
because the games tested in the paper are restricted to two particular
coordination games, the results are somewhat limited in scope.
Bearden (2003) examines two Stag Hunt games, one with ‘high’ risk and

one with ‘low’ using reinforcement learning and a genetic algorithm to
discover parameter values for the agents’ learning schedules. His results are
not easily comparable with ours, since his two games are effectively
parameterized differently than our series of games (as delta changes).
Broadly, however, our results are in agreement. Bearden’s ‘high’ risk game is
closest to our game with delta ¼ 2 or 2.5, while his ‘low’ risk game roughly
corresponds to our case with delta = 0.75 or 1. In both studies, there is
considerably more joint stag hunting (cooperation) in the ‘low’ risk case and
considerably more joint hare hunting in the ‘high’ risk case.
Mukherjee and Sen (2003) explore play by reinforcement learning agents in

four carefully-designed 3! 3 games, in which the ‘greedy’ (i.e., Nash)
outcome is Pareto inferior to the ‘desired’ (by the authors) outcome. Besides
the different games, the experimental treatment involves comparison of two
play revelation schemes (by one or both players) with straight reinforcement
learning. It is found, roughly, that when the ‘desired’ outcome is also a Nash
Equilibrium (NE) the revelation schemes are effective in promoting it. This
kind of investigation, in which the effects of institutions upon play are
explored, is, we think, very much in order, especially in conjunction with
further investigation of learning regimes.
Reinforcement learning, in a related sense, has become popular in

behavioral economics. A rather extensive series of results finds that
reinforcement learning models, often combined with other information,
perform well in describing human subject behavior in games. See Camerer
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(2003) for an extensive and up to date review. In part as a consequent of
the experimental results, there has been theoretical interest by economists
in reinforcement learning in games. Burgos (2002), for example, tries to
use reinforcement learning models to explain subjects’ risk attitudes, which
are one aspect of choice theory. The setting is pairwise choices between
risky prospects with the same expected value. Two models are used for the
simulation; one is from Roth and Erev (1995) and Erev and Roth (1998),
the other from Börgers and Sarin (1997, 2000). The paper demonstrates a
possible explanation of risk aversion as a side-effect of the learning regime.
This raises the important question of whether risk aversion, risk seeking,
and even individual utilities could be emergent phenomena, arising from
simple underlying learning processes.
Finally, Bendor et al. (2001) study long run outcomes when two players

repeatedly play an arbitrary finite action game using a simple reinforce-
ment learning model. The model resembles that in Erev and Roth (1998).
A distinguishing feature of the model is the adjustable aspiration level,
which is used as an adaptive reference point to evaluate payoffs.
Aspirations are adjusted across rounds (each round consists of a large
number of plays). They define and characterize what they call Pure Steady
States (either Pareto-efficient or Protected Nash equilibrium of the stage
game), and the convergence to such states is established under certain
conditions. The model limits itself to selection of particular action, thus
does not allow mixed strategy or trigger strategy such as ‘‘Tit for Tat’’ in
Prisoner’s Dilemma. In this simple, but general case, the authors prove
that ‘‘convergence to non-Nash outcomes is possible under reinforcement
learning in repeated interaction settings’’ (emphasis in original).
The results original to this paper are consistent with and complementary to

the results reported in the above papers and other extant work. Further
analytic and simulation results can only be welcomed. The experimental
technique, however, has allowed us to discover hypotheses that merit
continued investigation. In particular, our suggestion is that for agents
playing games, and learning, wealth extraction (or some variant of it) is a key
indicator for understanding system performance. Agents, we suggest,
respond to rewards, but do so imperfectly and in a noisy context. If the
reward signals are sufficiently clear, the agents will largely achieve Pareto
optimal outcomes. If the signals are less clear, the outcomes obtained
represent a balance between risk and reward. In either case, it is far from
clear what causal contribution, if any, is made by the Nash Equilibrium.
Resolution of these issues awaits much more extensive investigation.
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