
Gustaf Westerlund

TRITA-NA-E03160

Performance Critical Multiplayer Game
Development for the mophun Gaming Platform

NADA

Numerisk analys och datalogi Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, Sweden

Gustaf Westerlund

TRITA-NA-E03160

Master’s Thesis in Computer Science (20 credits)
at the School of Electrical Engineering,
Royal Institute of Technology year 2003

Supervisor at Nada was Lars Engebretsen
Examiner was Johan Håstad

Performance Critical Multiplayer Game
Development for the mophun Gaming Platform

Disclaimer

This thesis is submitted in accordance with the requirements for the

Master’s degree (civilingenjör) in Electrical Engineering at the Department

of Numerical Analysis and Computer Science at the Royal Institute of

Technology of Sweden. It is substantially the result of my own work except

where explicitly indicated in the text. The thesis may be freely copied and

distributed provided the source is explicitly acknowledged.

Abstract

Performance critical multiplayer game development for the mophun™

gaming platform

Games development for mobile devices is associated with several specific

limitations. To study these, I designed and implemented a game slightly

based on Tetris®. The hardware resources in mobile devices are always

severely restricted making performance the primary goal. The new virtual

machine mophun, optimised for games, is to prefer to J2ME, due to the

greater performance of mophun. The software design requires a pragmatic

view, due to the performance limitations, and object oriented design must

therefore give way. Some features of object oriented programming can

however be used, for instance the destructor functionality.

Sammanfattning

Utveckling av ett tidskritiskt fleranvändarspel för den mobila

spelplatformen mophun™

För att undersöka begränsningarna vid spelutveckling för mobila enheter,

designade och utvecklade jag ett spel som påminner om Tetris®.

Hårdvaruresurserna i mobila enheter är alltid mycket begränsade, vilket gör

prestanda till det högst prioriterade målet. Den nya virtuella maskinen

mophun, optimerad för spel, är att föredra framför J2ME, på grund av den

överlägsna prestandan. Mjukvarudesignen kräver ett pragmatiskt synsätt, på

grund av prestandabegränsningarna, och objektorienterad design kan därför

inte användas i sin helhet. Vissa delar av objektorienterad programmering

kan däremot användas, t.ex. destruktor-funktionaliteten.

Preface

This Master’s thesis treats an attempt to create a multiplayer game using a

mobile virtual machine called mophun™. It was mainly possible due to the

great generosity of Synergenix Interactive AB just outside Stockholm. They

have embraced me and even though they are struggling with a new product

and limited venture capital they have found the time and commitment to

assist me with all the help I needed to finish this thesis. Above all I would

like to extend a great thanks to Anders “Scary” Johansson, Johan Andersen

and of course my magnanimous supervisor Harald Walden. At KTH and

Nada, Lars Engebretsen has been a great help in understanding all the

formal requirements and he has also been very busy with the red ink, thank

you kindly! When you read this I will probably have a great cause to thank

Prof. Johan Håstad who hopefully will have had the benevolence to pass my

Master’s project. I would also like to thank him for connecting me with my

Nada supervisor Lars Engebretsen and for helping me start the Master’s

project up. Finally I would like to thank Kerstin Frenckner who has guided

me through the labyrinth of paperwork needed for a Master’s project.

Stockholm 2003,

Gustaf Westerlund

Table of contents

1 Introduction... 1
1.1 PROJECT OVERVIEW...1
1.2 ORGANISATION OF THIS THESIS ..3

2 Mobile gaming - background & techniques.. 5
2.1 RELATED WORK..5
2.2 A REAL-TIME GAME..5
2.3 NATIVE PROGRAMS & VIRTUAL MACHINES ..8
2.4 THE MOPHUN™ VIRTUAL MACHINE ..11
2.5 OTHER MOBILE VIRTUAL MACHINES...12
2.6 GENERAL PACKAGE RADIO SERVICE (GPRS) ..14
2.7 A GENERIC MULTIPLAYER SERVER ...15
2.8 HOW ARE MOBILE GAMES PLAYED?..17

3 Design ... 18
3.1 PERFORMANCE EVALUATION OF MOPHUN ..18
3.2 CHOICE OF GAME..21
3.3 LITERATURE REVIEW..23
3.4 OBJECT ORIENTED DESIGN...25
3.5 PRAGMATIC DESIGN...25

4 Implementation ... 28
4.1 PROGRAMMING ..28
4.2 EVALUATION..29
4.3 POST-OPTIMISATION...29

5 Results and the future.. 32
5.1 RESULTS...32
5.2 THE FUTURE ...32
5.3 RESULTS FROM A SIMILAR PROJECT..33

6 References ... 35

Appendix .. 37
A.1 OFFICE/REFERENCE BENCHMARKING DATASET...37
A.2 FIELD TEST BENCHMARKING DATASETS...38
A.3 INTERVIEW WITH ERIK STACKENLAND..40

 1

1 Introduction

1.1 Project Overview
The gaming industry is one of the most rapidly growing industries in the

world as is the mobile phone industry; only China has about 1 million new

mobile phone users every month according to Kathrine Hogseth at Ericsson.

Games for mobile platforms in general and multiplayer games in particular

have a possibility of becoming a great new market. Development of

software for mobile devices is quite different from software development in

general and games software is quite different from normal software, making

games development for mobile devices very different from normal software

development. Mobile devices have very limited access to processing power,

partly due to hardware restrictions and partly to the fact that other more

important processes use a lot of the processing time. Since consumers pay

for games there is also a very limited possibility of updating the software in

the mobile device; this is, however, quite similar to the game consoles

(Playstation 2, XBOX etc.). Games differ from normal software by the fact

that games are usually real-time applications.

These limitations must be taken into consideration when choosing the game

concept on which to make a game. The popular game Quake is practically

impossible to develop on contemporary mobile devices, due to the

limitations on processing power. There are also other restricting limitations

when developing multiplayer games that use the mobile telephone network

for connecting the players.

The network communication between two mobile telephones uses the

contemporary second generation mobile telecommunication which is very

different from network communication between computers on the internet.

The throughput (bandwidth) and round-trip time (the time it takes to send a

packet to the other node and back) are severely limited. This requires special

 2

consideration when designing a game in order for the gameplay to not be

too greatly impeded.

On the game console market native programs that communicate directly

with the hardware are common. This approach gives near-optimal use of the

hardware and is feasible only when the devices’ hardware is static.

On the PC-game market, a modified version of native games are used,

where the games do not directly communicate with the hardware. Rather,

they use vendor-supplied dynamically linked libraries with a well defined

application programming interface, to access the hardware. This impedes

performance slightly but enables the hardware to be modified to a certain

extent without modifying the software.

On mobile telephones the hardware of two models are practically never the

same, restricting the use of native programs to one model at a time.

Moreover, each mobile phone vendor releases a number of phones each

year. Hence, it is not feasible to develop native applications for mobile

phones; therefore virtual machines are used. The most common one is

currently (autumn 2003) Sun’s J2ME. This virtual machine, however, is not

optimised for games but for software in general. The more recent virtual

machine mophun™ has been developed for the sole purpose of running

games. The performance of mophun compared to J2ME has been measured

in several benchmark tests; they all show mophun to be faster, in some

cases, several orders of magnitudes faster. Development for mophun is

however restricted to assembly language or C/C++ whereas J2ME only uses

Java, which has shorter development time and higher stability.

It has been shown that in order to develop stable software, lower the

development time, facilitate maintenance and enable many programmers to

work in parallel, object oriented analysis, design and programming, should

be used. Ideally this should also be used when developing games for mobile

devices but due to the severe performance limitations a more pragmatic

stance is needed. Strict object oriented design is not advisable due to the

 3

increased overhead in execution time and program size. Instead a more

practical view of the design is required, taking the better of the two worlds

of imperative programming and object oriented programming, while

constantly having the project’s main goals in mind: a compact and fast

executable. This was the manner in which the method was chosen.

With this as a starting point I designed a game remotely based on the classic

game of Tetris®. This game was also implemented to an alpha stage where

it was run and tested on two mobile telephones. Some post optimisation was

done and was very successful due to the fact that the optimisation was done

in the correct part of the code. This was the code that was run often, and it

was easily found with the help of the work done during the design. I then

executed a test of where the processing time was used and it showed that

most of the processing power was used for waiting for the graphics-bus to

get ready, in other word, a hardware limitation, in other word, further

optimisation was futile. Even though the strict object oriented programming

paradigms were not used, I had great use of some of the object oriented

features, such as the destructor functionality which made sure the program

released its acquired resources properly.

To obtain further insight regarding the process of developing games on

mobile phones I interviewed a member of a development team that

developed a game on the same platform (mophun) but whose game design

differed greatly from mine. Essentially, the interview showed that we agreed

on most points.

1.2 Organisation of this thesis
The remainder of this thesis is organised into four main chapters. This

chapter aims at giving a general overview of this thesis and the project.

Chapter 2 is focused on the background and techniques of mobile

telephones and games. It attempts to describe a real-time game (2.2), a

normal game, is and what restrictions it sets. The concept of native

programs and virtual machines are treated (2.3), and the virtual machine

mophun is treated particularly (2.4). Other large techniques used for games

 4

in mobile devices, are also described (2.5). To get a brief understanding of

mobile communication using GPRS, it is treated in short (2.6). Since the

game developed is a multiplayer game that uses a generic multiplayer

server, the details are described (2.7). Chapter 2 ends with a short discussion

on how mobile games are played (2.8).

Chapter 3, deals with the game design and the reasons for the chosen design.

It treats an evaluation conducted on the platform that was used to get an

understanding of what performance limitations existed (3.1). This was the

base for the choice of game described (3.2). The programming design was

chosen carefully after a close review of a piece of literature (3.3). The

programming design choices are detailed in the following sections (3.4,

3.5).

Chapter 4 describes the implementation work (4.1) and evaluation of the

implementation (4.2), also including a part on the post-implementation

optimisation (4.3).

Chapter 5 attempts to draw a few conclusions from the previous work on the

project (5.1) and dwells into the future of mobile gaming (5.2). Finally the

conclusions from a similar project are compared to mine (5.3).

 5

2 Mobile gaming - background & techniques

2.1 Related work
The mophun™ platform is quite novel and so is the possibility of writing

more complex games than a simple version of Snake on a mobile telephone

(can be found on most Nokia mobile telephones). Hence there is very little

published material. In essence a mobile telephone is a real-time embedded

system but the similarities in the relevant problems more or less end there

since most software developers of embedded systems have a tight

connection with the hardware design. That is not the case when developing

a game for mophun™. Nothing that closely relates to the subject has been

found in the literature.

2.2 A real-time game
Most games are real-time applications. The difference between real-time

applications and non-real-time applications are that the former have the

limitation of having to perform all operations within a strict time-frame. For

computer games in general, at least 25 frames per second is required (more

is usually preferred). A frame is a picture that is similar to a frame on an old

9mm-film-reel. A television has a frame-rate of 25 frames/seconds.

A simplified view of a computer is that it can only perform a certain amount

of instructions per second. This limits the number of instructions that can be

processed during each frame. The mophun virtual machine does not have a

limitation of how many frames can be displayed per second, but the mobile

telephone Sony Ericsson T300 has a limitation of 13 frames per second. A

game that uses a lot of processor power might have less than 13 frames per

second but that usually impedes game play, making the game seem “jerky”

or “shaky”. The higher the frame-rate, the smoother movement in the game

will be.

 6

The working of the video architecture is very hardware dependent but a

“normal” (not event based) game still has a more or less generic main loop,

indicated in Figure 1. This loop should not take more time than 1/(required

frame-rate) seconds. For instance, the T300 has a maximum frame-rate of

13 frames per second which would require the main loop to not exceed 77

milliseconds. The main loop is seldom static in its time allocation but it is

enough that a large majority of the frames are under the requirement as long

as the tops in processor usage are widely spread.

Event based games are mostly found on Object Oriented platforms (Java,

C#, Visual Basic etc.) and differ from “normal” games by the fact that as

soon as any kind of input has been done (an event has been triggered), a

new thread will execute a specific function. I will not describe such games

in further details.

The “buffer” referred to in Figure 1 is a workspace that having the same

memory characteristics as the video memory. The buffer is used during the

processing for changing the contents of the next screen update. When all

processing is done, the video memory is updated according to the hardware.

There are mainly two methods of updating the video memory: pointer

change and memory copy. Which method is used depends on the hardware.

Read inputs
(keyboard,
joysticks
etc.)

Process
inputs and
update the
screen buffer

“Flip Screen”, move the
video data from the buffer
to the video memory.

Figure 1. A typical main loop of a game (not event based).

The sequence can be different between the parts.

 7

The difference is mainly in the implementation of the hardware: when using

pointer change, the data is copied to the video memory by the hardware

using Direct Memory Access (DMA) or using interrupts. Especially when

using DMA, the processor does not have to handle the copying. The

problem with using pointer change is that control is lost of when the

copying is done. On the T300, memory copy is used due to the fact that the

video bus is very slow and when utilising it fully the maximum frames per

second is 13. On a TV, which has a raster beam, each new frame is shown

every 1/25 s. There is a short time in-between the drawing of two frames

Pointer change

 BP
All changes during the game
processes have been in MA 1

Memory Area 2Memory Area 1

VMP BP

Pointers have been changed and
the hardware (perhaps using
DMA) reads the video memory
according to the VMP, hence
MA1. During the next frame all
game updates will be in MA 2.

Memory copy

Work Memory Video Memory

VMP

The WM is copied byte by
byte to the VM, usually using
a slow video-bus.

BP = Buffer Pointer, VMP = Video Memory Pointer, MA = Memory Area, WM = Work
Memory (buffer in Figure 1), VM = Video Memory

Figure 2. How a flip screen is done using the methods of pointer change and
memory copy.

All changes during the game
processes have been in WM.
The video memory is write-
only.

 8

and when using a raster based technology, all copying has to be done during

this short interval. When this technique is used, pointer-change is a lot more

common, since timing the copying of the buffer to the video memory has to

be very exact, and is therefore handled by the hardware (although it is not

always used).

The LCD screen has not got a synchronised raster-beam and can be updated

at any time, in a more asynchronous way. This is the main reason for the

T300 using memory copying instead of pointer change so that the maximum

frame rate can be achieved. In other words a frame rate of 12 frames per

second can be achieved which would be very hard to get with a synchro-

nised technology due to the fact that if the raster hardware had a normal

hardware updating frequency of 13 frames per second, then a software that

can only achieve 12 frames per second, might just get 6 frames per second

due to an error in phasing. The mophun platform handles all this through the

API and on another hardware platform; the other method of pointer change

might be used. It is of no main concern to a programmer since it can not be

altered.

2.3 Native programs & virtual machines
This chapter will attempt to show the differences between native programs

and programs that run on a virtual machine.

2.3.1 Native programs

The most common manner in which games are developed for consoles in

general and mobile phones before virtual machines is that each game is

written exclusively for each hardware platform. This is in the context of

virtual machines called native programs. Native programs have the huge

advantage of being able to use the hardware to one hundred percent;

however they also have one major disadvantage, lack of portability. When a

game is developed for a hardware platform all the unique characteristics of

the hardware has to be taken into account. For instance, to be able to display

graphics on the display, a certain part of the memory is used, to be able to

play a beep, a couple of values might be written to specific addresses of the

 9

memory. The implication of all this is that the program can be run on only

one specific hardware setup. If for instance, one of the addresses that had to

be written to in order to play a beep is different on another hardware

platform, then the program has to be fixed for this change. The result is that

the porting of an application developed for one platform to another usually

requires a huge amount of work. Due to the fact that parts of the code have

to be changed, a new code branch has to be made for each model,

complicating maintenance and distribution. This has not even taken into

account the fact that each processor has a unique way of interpreting the

binary code into instructions which means that a specific compiler has to be

used for each platform. Another restriction is also that the hardware

developer (i.e., Sony Ericsson) might also restrict which parties can write

programs to be run natively, due to the security hazard of native programs,

they might be viruses or other malignant programs.

If the hardware of several platforms is very similar and the performance

requirements greatly outweigh the time and money put into a development

project, then it might be feasible to develop something in native code. On

the console market (Playstation 2, X-Box, etc.), more or less all games are

native. The reason for this is that there is very little need for portability and

the consoles do not support any kind of virtual machine in general. All the

hardware for the consoles is very well known and very thoroughly specified

in developer reference manuals. Consoles are also not replaced by the user

at such a frequency as mobile telephones. If a game has been bought, the

user will usually want it to work on future telephones as well, hence a large

need for portability.

The modern PC uses native programs with a twist. Since PCs have different

graphic cards, sound cards etc. it is not feasible to directly address the

specific hardware since it would require each software developer to include

a special version of the program for each hardware setup. Therefore the

operating system has inserted an interface layer between the hardware and

the specific software. Instead of directly addressing the hardware, the

software calls functions in dynamically linked libraries (DLL). Theses

 10

library files are supplied by the hardware manufacturer and it is in these

libraries that the direct hardware calls are. This standard in Microsoft

Windows is called DirectX with different sub-standards called Direct3D,

DirectSound, among others. Please refer to Figure 3 for a detailed

description.

2.3.2 Virtual machines

The concept of virtual machines has been around since the 1970:s (The

language Pascal ran the so called p-code on a virtual machine [2]) and it

attempts to solve the problem that different processors have different

instructions and hence can not run the same program files. The solution is

that instead of compiling a program to run directly on the hardware it is

compiled to something called “byte code” that runs on a virtual computer or

virtual machine. This virtual machine is very strictly defined and is then

implemented on each hardware platform. The virtual machine program

follows the strict definitions of how the byte code should be interpreted and

attempts to run it.

Computer Hardware

Graphics, Sound, etc.

Computer Hardware

Graphics, Sound, etc.

Game software Game software

Native – direct hardware access Native – dynamically linked

DirectX

Figure 3: The difference between directly accessing the hardware and using intermediate
functions to abstract the hardware. The Game software – DirectX connection is supplied
in windows, and the connection DirectX – Computer Hardware, is supplied by the
hardware developer.

 11

2.4 The mophun™ Virtual Machine
The mophun™ platform is owned by Synergenix Interactive AB, a Swedish

company that was founded in 1999. The creators of the company had

noticed that the idea of a hardware independent gaming platform was

desired by the mobile telephone producers. SUN had marketed their answer

J2ME to a great extent. It was, in essence, a lightweight version of their

fully fletched Java virtual machine. However Java has some inherent

limitations and the two most important are that you cannot have a direct

memory access and that it is made for all software applications and not for

games in particular. mophun™ allows a developer to write assembly code

directly to the virtual machine or write code in C or C++ which can be

compiled with a modified version of the GNU C/C++ compiler gcc. The

mophun API has full support for memory allocation functions, such as

malloc() and free(). This solves the first problem with J2ME. mophun

also includes an API (Application Programming Interface) that is created for

the sole purpose of making games. That solves the latter problem.

To be able to create a truly hardware independent platform, all hardware

specifics have to be removed and interfaced through a standardised API.

The mophun™ API supplies this through several straightforward function

libraries. It mainly covers input and output of the system and also a few

portable data types, a stream library and a library for cooperative multi-

tasking. There is also a special “Capabilities” library for testing what the

current systems capabilities are.

The game part of the mophun API has several functions for handling sprites,

or small pictures used in games, tiles, small pictures used to build repetitive

background, and other functions to facilitate game development and

handling of graphics which commonly is the most demanding part of games

programming.

For further details on the mophun API please refer to the “mophun™ API

Reference Guide” which can be found at www.mophun.com.

 12

The mophun platform is developed for each platform independently and it is

currently found in Sony Ericsson T300, T310, T610 (Spring 2003) and can

be downloaded to mobile telephones with the operating system Symbian

(Nokia N-Gage, Sony Ericsson P800 and many others).

2.5 Other mobile virtual machines

2.5.1 J2ME

Java 2 Micro Edition, J2ME, is more or less the industry standard

concerning virtual machines for mobile devices. It is in essence a stripped

down version of Java 2 (Sun Microsystems) and uses Java syntax. The main

advantage of J2ME is that it is found in so many devices and the greatest

disadvantage is its performance capabilities. These are mainly inherent in

the language and are very difficult to by pass (ref. 2.6.2 ExEn). Concerning

the development of games, it is extremely inferior to mophun mainly due to

the fact that it has no game API and its poor game performance.

On low-end platforms, like the Sony Ericsson T300, J2ME is not an option

but mophun is. No third party benchmarking to compare the virtual

machines has been found but on the web-forum at

www.wirelessgamingreview.com in the discussion on industry hash, some

extraordinary figures are mentioned by several of the discussion contri-

butors. It is stated that on a 600 Mhz PC the mophun virtual machine is

some 150 times as fast as the J2ME virtual machine. In this discussion

Antony Hartley at Synergenix (Tony Heartley in the forum) states that the

current mophun virtual machine (1.1) can process 100 KIPS (Kilo Instruc-

tions Per Second) on a T300 with an 8 bit RISC-processor running at 12

MHz. In a short interview with Hartley, he states that the Siemens SL45

which has a 16 bit RISC-processor (he points out that the information – 32

bit – he submitted on the forum, was erroneous) running at about 16 MHz,

in other words a lot quicker hardware, still can not get the J2ME virtual

machine to exceed 20 KIPS. In other word the mophun virtual machine is at

least 5 times quicker (if both devices had the same hardware performance)

 13

than J2ME and probably more in the range of 10-20 times faster. A just

comparison between the virtual machines will be difficult to conduct since

each implementation is highly unique and many mobile devices have

several processors and complex memory management routines.

It is also important to point out that this is an instruction-per-second

comparison and it might not always be correct since the complexity of each

instruction varies between different architectures. This comparison is also a

bit misleading when comparing the virtual machines for games since games

rely heavily on graphics and the virtual machines handle this differently and

the device hardware is very unique.

2.5.2 ExEn

ExEn, Execution Engine, developed by In-Fusio, is in essence a J2ME

virtual machine with a game API. Due to this, ExEn is significantly faster

than J2ME when games are concerned. Since it is so similar to J2ME, an

exact performance test is not applicable but according a review of the virtual

machines [3], it can be up to 30 times faster. This review, however, clearly

states that ExEn is inferior in performance to mophun. Again, it is very

difficult to conduct a just test and each implementation will still be unique

hence limiting the use of such a test and no official test has been found.

2.5.3 WGE

This chapter deals with the platform WGE. All information has been

gathered from websites on the subject [4][5].

WGE or Wireless Graphics Engine is only partly a virtual engine. It is

developed by the company TTPCom and is capable of running both Java

and native code. Hence it is in essence two parts, a Java virtual machine and

an environment set up to be able to run pseudo-portable native code. The

native part of the WGE platform has tried to move the hardware specific

calls from direct memory calls to standardised API-library calls, in the same

way the DirectX works in Windows. A couple of libraries that access all the

hardware are included in the platform and all applications running on it

 14

dynamically link the function calls in these libraries to create some sort of

portability without sacrificing performance too much.

This removes the problem of unique memory addresses for each platform

but still does not solve the problem of the different interpretations of the

binary code by the processors. TTPCom has created a work-around for this

by requiring that all platforms that want to use WGE must have a certain

processor.

There is a very limited amount of information available on the technical

details of WGE since it has a very small market share. Due to the fact that it

is able to run native programs it is one of the fastest technologies available.

2.6 General Package Radio Service (GPRS)
The GPRS extension of the Global System for Mobile communications

(GSM) has been called the 2.5:th generation mobile telephone system. It is

an addition to the existing GSM mobile telephone system and enables the

telephone to communicate with the internet using packet based traffic, as

opposed to the circuit-switched based normal GSM traffic using a modem.

The main advantage is that the user only pays for the amount of data

transmitted or received and not for the time connected. It is therefore more

adapted to the characteristics of for instance WAP (Wireless Application

Protocol) and mail which has very bursty traffic.

Due to the nature of GPRS and the fact that it rides on top of an already

existing technology it has a huge lag of about 1.5 seconds point-to-point. In

other words, a packet sent from one phone to another will not arrive at the

other until 1.5 seconds later. This can be compared to what is said to be

acceptable lag in normal multiplayer games played on a computer. If it is a

real-time game (i.e., not turn based) lags of more than 200 ms or 0.2

seconds are regarded as far too large to be able to play. The lag on a GPRS

connection is an order of magnitude larger. To create a real-time game like

Quake or Doom with a lag of 1.5 seconds one will have to do huge amounts

of extrapolations and it will become very hard to make a game that seems

 15

just and even. This kind of lag limitation almost blocks the possibility of

making a real-time game. A turn-based game like Chess or Backgammon is

more suited, but not all people like those kinds of games.

2.7 A generic multiplayer server
Multiplayer games have been, are and will be the most popular games. At

the dawn of computer games, there were no networks so all players had to

play on the same computer. This kind of gaming is still appreciated and

consoles like the Playstation 2 and the X-Box are designed for this kind of

gaming even though not all games are for more than one player.

Games on computers have mainly been designed for one person at a time

but there are exceptions here as well. For a couple of years it has been

possible to play games on a computer connected with people all over the

world. It has been so successful that even the consoles now have the ability

to interconnect using the internet.

Mobile telephones are more or less restricted to only one user. To be able to

play a game with a friend, two telephones are required and some sort of

connection between them. In the past the most common way to play a game

on a mobile telephone with a friend has been using an infrared beam. The

problems with this are apparent. The phones have to be aligned at all times

and the distance between them cannot be too great (more than a few

decimetres).

Recently some mobile telephones have been developed that have

Bluetooth™ technology and games connecting to each-other using

Bluetooth™ won’t have the alignment limitation but will still have a

distance limitation (about 10 metres).

The latest step in this development has been to create games that use a

GPRS connection and connect with each other on the internet. Now there is

no longer a limitation on distance. However a new problem has arisen; the

 16

internet is a vast place, how can we find our friend? A solution to this is a

common game server that connects the players to each other.

Still there are problems, assume that Alice wants to play with Bob on the

game server and they manage to establish a direct connection. What would

happen if Bob was in a bus that just went into a short tunnel with no

reception? The connection would probably be lost and they would have to

reconnect, either halting the game or starting all over. If 8 players were

playing at the same time, this problem becomes even more apparent. With

no centralized infrastructure, maintaining a connection with 8 players all the

time for all 8 players is an almost impossible feat. A solution to this is a

game server that handles all the connections with the clients and distributes

the necessary data among them. To develop this server software each time a

multiplayer game is developed takes a lot of time and effort and hence the

company Terraplay Systems have developed a generic multiplayer server

that can not only run several games in parallel but several different games in

parallel.

The Terraplay system consists mainly of two logical parts: the lobby and the

gateway. In the lobby you connect to other players, either a random player

in a public session or someone special in a private session. When enough

players have joined together in the lobby, they are given a unique password

and disconnect. Then they connect to the gateway server supplying their

password as access code to the game created in the lobby after which they

are connected via the server. Each client can create objects and assign keys

to these objects. The created objects can be updated with data and each

player can subscribe to the different keys. When an object associated with a

key is changed, all subscribing parties are supplied with an object update

automatically. When all necessary objects have been created the game starts

(depending on the application). To keep the knowledge of if a player is

connected or not, it is required of the player to send a heartbeat signal on a

periodic interval. If the heartbeat signal is not received within this interval,

the client is disconnected. If a player for some reason or other is dis-

 17

connected it is possible to reconnect to the server and continue playing, if

the game supports it.

If a game requires extra server functionality, that can be provided by a client

that subscribes to keys different from the keys of the normal clients and

updates objects different to that of the normal clients.

2.8 How are mobile games played?
This chapter is not based on any official research or literature on the subject

but rather on personal experiences with mobile gaming and gaming in

general.

Today, most people living in Sweden have a mobile telephone and they

almost always bring it with them. Mobile games cannot compete with

games on consoles (i.e., PS2, XBOX) or games on PCs hence the

probability that a user will be sitting home in front of his console-equipped

television set playing games on his mobile telephone for several hours, is

quite small. It is more probable that a mobile phone owner will pick up his

telephone on the bus, in a waiting room, on a train etc. to play a game while

waiting.

It is therefore essential that a game either is short, like Tetris or Snake, or

can easily be saved and resumed at a later time, like Chess. Since the

Terraplay servers do not support long time persistent games (like a Chess

game played for several days would be) the first alternative is the only real

option for multiplayer games if a Terraplay server is going to be used.

The technology of mobile telephones also introduces limitations on the

games. A connection with a user might be broken at any time and it might

or might not be reconnected during an arbitrary time. The game has to take

this fact into account and be designed so that these limitations have a

minimal affect on the game play.

 18

3 Design

3.1 Performance evaluation of mophun
As described in Section 2.5, the mophun platform on the Sony Ericsson

T300 is very performance restricted. To be able to measure the performance

a test was conducted, both with and without other tasks being run in the

background. A program for evaluating the performance, a benchmarking

program, was created and executed on the telephone in order to conduct this

test.

3.1.1 Benchmarking program

The priorities of the parallel tasks in the telephone are set differently by the

producer of the telephone, in this case Sony Ericsson. mophun is run in

parallel with many other processes in the phone that have higher priorities.

The effect of this can be that the virtual machine varies in speed.

To be able to study this, a test program was developed. The most important

part of it was:

count = 0;

startmillis = vGetTickCount();

startmillis += 1000;

while (startmillis > vGetTickCount()){

temp = count;

 count++;

}

The function vGetTickCount() is a library function in mophun that returns

a millisecond count.

The entire piece of code above was run for 180 seconds, i.e., it was looped

180 times. The “count” variable is there just to make sure that something is

done each loop, so that the compiler would not remove it when optimising.

 19

After each loop the value of “temp” was written to a file and then reset

before it was run again. Briefly the program can be described to count how

many of the above loops (what is inside the while-loop) can be executed

during a second.

3.1.2 Office test, reference

To be able to get a reference, the program was first run in the office; the

results can be viewed in Diagram 1.

Diagram 1

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180

Time[seconds]

ite
ra

tio
ns

 p
er

 s
ec

on
d

Interesting facts to comment are that the variation is quite large (the

standard deviation is about 154) considering the telephone should not have

too many demanding tasks in the background. The average is 6129 and the

maximum value is about 4 % above this and the minimum is about 10 %

below. The entire dataset can be found in the appendix A.1.

3.1.3 Field benchmarking

To be able to measure in what magnitude performance is lost due to the

other processes in the mobile telephone, a means to activate one of these

processes was needed. A hypothesis was drawn that when a mobile

telephone switches from one base-station to another base-station, some

processing power must be needed to handle this handover. Hence a location

was found where the mobile telephone was certain to switch base-stations

(an underground escalator) and since the results were quite spectacular, the

 20

test was conducted 3 times to verify the findings. The results of the three

field-tests can be found in Diagrams 2 to 4.

Diagram 2, Field test 1

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180

Time (seconds)

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Diagram 3, field test 2

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180

Time (seconds)

Ite
ra

tio
ns

 p
er

 s
ec

on
d

Diagram 4, field test 3

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120 140 160 180

Time (seconds)

Ite
ra

tio
ns

 p
er

 s
ec

on
d

 21

Interestingly a very distinct drop of performance was noted in all 3 cases.

The drop in performance was almost as high as 50 % during a few seconds.

This was induced when only one other major task of the phone was run. If

several tasks of similar performance magnitude were to run in parallel with

a game, even worse performance losses can be expected. The datasets for

the field tests can be found in the appendix A.2.

3.2 Choice of game
As has been showed above, mophun limits what kind of games can be

created. The GPRS connection is also a major limitation and last but not

least, a game must be made that fits how users play mobile games! The time

scope of this master thesis was also taken into account.

Most multiplayer games, like for instance a car race or No Refuge (Section

5.3), require the players to constantly update each other with, for instance,

the current position of the players car. This is usually not a problem when

the clients are connected using a low-delay network, like the Internet or a

local area network. But when using a connection like GPRS with a high

delay, it is very complicated and some technique for overcoming or working

around this limitation is required. The problem is illustrated in Figure 4.

Figure 4. The problems with synchronisation on a high delay network: Consider two cars
moving at the same speed and same starting point (unknown to one-another). Player 1
sends his position at 1 km to player 2. When the packet arrives at Player 2, the player 2
car is at 2 km and he then thinks player 1 is at 1 km when it in reality is at 2 km.

Player 1 Player 2

1 km

2 km

Transfertime:
0.75 s

 22

This problem can partly be solved with extrapolation. This means in the

case of a car game that not only does player 1 send his position, but also his

current speed vector and the time when the packet was sent. Player 2 can

then if the transfer time is known extrapolate the position of Player 1 and as

soon as a new packet arrives, update the position and speed vector. This

introduces a new problem since if a car is in a turn its speed vector will

change all the time and the extrapolation will be inaccurate. It can be partly

solved by using more advanced extrapolations but if collisions between the

cars have to be taken into account, it is virtually impossible.

In the game of No Refuge, several players are trying to shoot each other in a

landscape using tanks. It is real-time so all action is parallel. Extrapolation

is out of the question for a game like this since the position and speed vector

of tank changes so often. The solution the developers of No Refuge have

used is slow actions sequences. The details are unknown but can be assumed

to be that when a player attempts to shoot another player the shot is sent as

soon as the button is pressed but the shot is not displayed until a hit has been

confirmed or denied by the other client. This makes for slow but accurate

game play. Due to all these problems with synchronised games, other types

of games were looked into so that asynchronous game play might be

created.

The game Tetris (www.tetris.com) was ground breaking for the game genre

of puzzle-games. Before Tetris, puzzle games had mostly been based on

real-life puzzle-games. Tetris changed this by introducing the stress factor

of real-time. Now the puzzle had to be figured out within a strict timeframe

that increased all the time! Tetris has since its first appearance on the market

1985 been sold in over 70 million copies (accordning to the tetris-website)

and numerous clones (games that are close to Tetris) and other spin-offs

have appeared and been very successful. This type of game renders the

possibility of asynchronous multiplayer gaming. Only when something like

an extra row is to be sent to a player, is a packet sent, otherwise the network

is idle (apart from keeping the connection alive). This also reduces network

 23

traffic which is a nice feature for the users who have to pay for each

kilobyte of transferred data.

Inquiries were made into the possibility of making a Tetris clone but due to

the very aggressive licensing nature of the owner of Tetris, The Tetris

Company, a remotely similar game concept was chosen. The base of the

game is that the players receive points by getting 3 or more stones of the

same colour in a line (horizontal, vertical or diagonal), the points can then

be used for purchasing “bombs” of different kinds to throw at your

opponent. The more points collected the more powerful the “bomb”. The

player that looses control first looses the game. Please see Figure 5.

This concept was documented by creating what is called a virtual

screenshot, i.e., a picture of how the game will look when it is completed.

The virtual screenshot looked like the screenshot in Figure 5.

3.3 Literature review
Contemporary software development is mainly divided into two

diametrically opposing views, one, the hacker’s way, is to create the fastest

Figure 5. Calx, gameplay description. By moving and rearranging the falling
stones, the goal is to get lines of 3 or more stones horizontally, vertically or
diagonally.When this goal is achieved the line disappears and gravity makes
the other stones fall.

Play area

Bottom
stones

Falling
stones

Current
money

This can be bought with
the current money.

 24

and most efficient program with almost unmaintainable code and large

stability problems. These programs are most often written in assembly

language or C, due to the performance aspect of these languages. The other

road, mostly adapted by large software developing companies and academic

scholars, is the strict design that emphasises maintainability, portability and

stability. A common paradigm in that context is object oriented analysis,

design and programming. The most common languages used for this is C++,

Java and recently C#. This development pattern usually impedes the

performance of the software which is an extremely vital part of game-

software. To research the performance problems of development in C++, an

appropriate piece of literature was reviewed.

A few books deal with this problem [1]. It does, however, encourage a more

pragmatic view of object-oriented design and programming based on the

overall goals of the project. It treats performance critical programming

techniques in general, not only for small embedded systems but also for

heavy loaded web servers and similar applications. As mentioned above, it

is heavily characterized by a very pragmatic view on performance critical

software development. It describes techniques from all levels of software

development, from design, down to, in great detail how the compiler

compiles the code and how the linker works. This gives the reader a greater

understanding of what performance critical programming consists of. An

example of a small detail that the book treats is the use of temporaries.

s1 = s2 + s3 + s4;

This looks better than:

s1 = s2;

s1 += s3;

s1 += s4;

but as described by Bulka and Mayhew the former must create two

temporaries. The first, containing the result of s3 + s4, and then one for the

total result which is to be assigned to s1. The later does not need any

 25

temporaries at all and is actually closer to how the same functionality would

be implemented using machine code.

The two most important points are:

1. Only use as much object oriented design and programming as you

need to satisfy the project goals. It has no end in it self.

2. 80% of time 20% of the code is run. Use most of the programming

and optimization effort on these 20%, this will result in the best

performance increase per hour optimisation programming. (Pareto’s

principle [7])

3.4 Object Oriented Design
Due to the stability advantages of object oriented analysis, design and

programming, it was primarily considered as the development design

manner. By thoroughly examining which objects exist and their interaction,

it is possible to create a UML class diagram and sometimes some other

UML-diagrams which describes user interaction or the states of software

according to Craig Larman [6]. Which diagrams are produced, depend on

the software product developed and what problems are inherent with that

product. As an example it is not necessary to create use-case diagrams of

great detail for a one-user product since user-interaction does not become

very complex.

A brief venture into creating a class diagram for Calx would quickly result

in the conclusion the a great many classes would be needed. This would

make the overhead simply due to the object oriented design, very large.

3.5 Pragmatic Design
Due to the limitations of object oriented design described above, a more

pragmatic approach was considered more rational mainly due to the know-

ledge gained from Bulka and Mayhew [1] described in section 3.3. The

initial task was to set up which priorities really exist in the project. It soon

became obvious that only one developer was going to work with the code,

 26

the entire piece of code was not going to surpass 5000 lines and when it

later would be published, there would be no possibility of updating the

product with further functionality or fixes. As more and more effort was put

into prioritizing the goals of the product it became clear that the by far most

important aspect of the product was execution speed during game play and

file size of the executable file. The tests conducted on the platform (3.1)

clearly showed that mophun™ suffers greatly from not being the highest

prioritized process of the mobile telephone. To be able to bring the best kind

of game play to the user at all times, huge amounts of free processor time

must be available to be able to counter the possible drops of execution slots

allocated to mophun. Therefore the design of Calx started with the creation

of a flow chart detailing the most common execution path (fast-path) and

then adding on all the different kind of exceptions to the fast-path. When the

flowchart, Figure 6, covered the entire game play part of Calx, the different

paths were graded so that the priorities of the different paths could easily be

seen. The plan was to create the game from the fast-path and out. By

focusing the post-optimisation using this flowchart, the goal was to put most

of the optimisation on the 20% of the code that is run 80% of the time.

Able to
Create new? Create

new

Packet
arrived?

Handle
packet

Key
Pressed?

Rotate

Send
Packet

Move
Left

Move
Right

Move
Down

Move
Down

Bottom
reached

Rows
Cleared?

Game lost,
send
packet.

What
key?

Remove
rows, inc
counter

Calx gameplay flowchart Init

Fast Path

Important Path

Low prio Path

Figure 6. The game play flowchart emphasising the priorities of the different paths.

 27

The design of the other parts of the software, menu etc., were trivial and did

not need any design.

By now two modules of the software became obvious, one module to handle

the game play and one to handle the network access. These two were made

into two separate classes. This way, one of the most usable features of OOP

was used: the destructor of an object. The class that handles the network

could be made to sign out from the multiplayer-server when the object was

destroyed. The main loop was conducted in the main global function which

also instantiated the two classes. A class diagram for these two classes is

trivial and of no interest, hence it will not be included.

 28

4 Implementation

4.1 Programming
The implementation of Calx was centred on the flow-chart in Figure 6 and

therefore naturally started with the creation of the main loop and creation of

the two classes with most of their interfacing (public) functions included

with the correct arguments and return values but with an empty definition.

This made the program compilable from an early stage which enabled early

testing of the different functionalities. In order to familiarise with the

mophun API , development of a basic menu system was first on the agenda.

No problems of greater magnitude arose during the development of the

menu system and some experience with the API was gained. This lead to it

quickly being finished and programming of the game itself began. A single

player version of the game was a natural start. Neither during this

development were there any greater problems, the few problems that did

arise were mainly due to the lack of experience of the mophun API and

could quickly be overcome with a helping hand from the programmers at

Synergenix.

This was the end of the easy ride, for when the single player version was

completed the networking part was started. The greatest problem with the

networking was that it was more or less atomic. Either all of it worked or

nothing at all. The protocol for communicating with the Terraplay server is

quite intricate and requires a lot of detailed knowledge of how it works.

After a lot of consulting with the developers at Synergenix and a lot of help

from the helpful people at Terraplay, it started working properly!

An interesting error that occurred was that the global Terraplay server used

TCP-port 80 (otherwise used for web) for connecting players (lobby) and

port 110 (otherwise used for mail) for the game play (gateway). When

running the mophun emulator, there was no problem in finding each other

 29

on the lobbyserver (using port 80) but for some reason it was impossible to

connect to the gateway. After several days of analysing the code for errors

and checking what was actually sent on the network card, Martin Stenhoff

of Terraplay finally figured out the error. I was using an anti-virus program

that checked all incoming mail. In order to do this it acted as a tunnel for all

mail traffic, i.e., all traffic on port 110. Since the data being sent on that port

when attempting to connect to the gateway server was not in any way

according to the POP3 mail protocol which is usually sent on that port, the

anti-virus program freaked out and blocked it all. Hence it was impossible to

connect to the gateway server when the anti-virus program was running. It

was quickly solved by disabling the mail protection of the anti-virus

program.

4.2 Evaluation
When the main part of the programming was completed, the game was

transferred to a mobile telephone (a T300) and tested against another. The

game worked according to plan. The delay in packet transmission was just

as it was supposed to be but was not a big problem in the game play and

could almost be seen as a feature of the game. There were still a few small

bugs but these were ignored since only an alpha-version of the game had

been specified during the specification of the Master’s project. However, the

game seemed to be a bit slower than it should be, hence there was need for

some post-optimisation. This was mainly noted by the fact that the game did

not get the desired 13 frames-a-second frame rate.

4.3 Post-optimisation
Post-optimisation of the game started by going through the functions

included in the fast-path and it became obvious that there were some

optimisations to be done in the redrawing of the screen. To be able to

describe what was done, the actions of the fast-path will first be described.

In the following section the program is assumed to be in the fast-path state,

i.e., only the most common parts of the main loop are treated. Firstly there

 30

was a check to see if any packets had arrived on the network from the other

player. In the fast-path state, nothing arrived. The second part was the

reading of the keyboard to see if anything in particular had been pressed. In

the fast-path state, nothing had being pressed. (Perhaps, depending on how

the game is played, the down-button, to increase the speed might be the

most common path, however it does not differ a lot from the no-button-

pressed version of the fast-path.) After the keyboard check, a function was

run in order to move the falling stones down one pixel. A check to see if the

bottom had been reached was executed and the fast-path state concluded

that it had not reached the bottom. Now the screen was updated. This last

part of the updating of the screen was run every cycle of the main loop even

when not in the fast-path state.

In the first version of Calx, when the screen was redrawn, the entire play

area was redrawn (see Figure 5), this is however unnecessary since the

bottom stones are not changed. The redrawing of the bottom stones

consisted of two nested for-loops which in total redrew 46 stones (no stone

in a part of the play area meant drawing a black box in order to make sure it

was cleared properly). The program was changed to only redraw the bottom

stones when the falling stones hit the bottom, i.e., it was moved out of the

fast-path.

The game was tested again and it showed a considerable improvement in

speed! In order to check if further optimisation was necessary, a timer was

added so that each the time for each part of the main loop could be clocked.

The time for the entire main loop in fast-state was about 70 ms and the

largest amount of time (more than 90%) was taken by the flip-screen

function. The other 10% was taken up by the other functionality of the main

loop. The flip-screen function has to wait for the copying from the last

screen to be finished before it can start. The program will also halt until the

flip-screen function can start the copying. The result of this is that even if

the time of the non-flip-screen functionality of the main loop was to be

doubled or tripled, a decrease in frame rate would not be probable since the

system has to wait for the last screen to be finished. Hence any further

 31

optimisation was considered fruitless and the job of developing an alpha

version of the game complete.

 32

5 Results and the future

5.1 Results
This project has been an utter success. All development has been completely

according to plans and no major holdbacks have been encountered. The

mophun virtual machine has lived up to all expectations and so has the

Terraplay multiplayer server even though it has not by far been pushed to its

limits. According to the people who have tried the game, they find it

entertaining and do not see the lag caused by the GPRS connection as a

problem at all. The game is fast paced and induces a certain amount of stress

which is just as the gameplay should be! This kind of work-around using a

game with asynchronous game play is probably one of the best work-

arounds for the huge delay. The solution used in No Refuge of slow action

sequences could have been used but would have resulted in a slower game

with impeded game play, i.e., less entertaining.

The fast-path oriented pragmatic design proved to be very successful both in

focusing the program on the important parts and in enabling time effective

optimisation. Due to the time that would be needed to rewrite the entire

programming with a true object oriented design, it was not done and hence a

comparison between the techniques can only be a qualified guess. It might

not have been a problem due to the fact that after the post-optimisation there

was quite a lot of time per frame left, but on the other hand, the time

available was quite limited, according to the tests in 3.1. However, there is

no easy and factual way of finding out without actually writing the program.

5.2 The future
Calx will be completed and made into a commercial product and it might

already be for sale when this thesis is published. It can probably be found on

the internet site www.mophungames.com where most games for the

mophun platform can be found.

 33

The virtual machine mophun is still very young and has already proved to

be technically superior to any similar technique. New versions of it have

already been released with a 3D-API and with an even faster virtual

machine. The current VM, on the T300, is mophun 1.0 and the 2.0 is said by

people at Synergenix to be at least double the speed mostly due to complex

features of the VM such as dynamic recompilation. It has been released for

the Symbian operating system in June 2003 which can be found on a

number of mobile devices such as the Sony Ericsson P800, Nokia N-Gage.

The hardware performances of these platforms are way ahead of the T300

and the games that can be developed for them are of a different dimension.

Hopefully the mophun VM with its great API and unbeatable speed will

become the market standard in a few years.

5.3 Results from a similar project
To put the above results into perspective, an interview with a developer of a

similar project was held. This chapter is based on this e-mail interview with

Erik Stackenland, a developer of the game “No Refuge”. This game is a

multiplayer real-time game that has been developed on the mophun platform

using GPRS to connect to a Terraplay server. In the game, up to 8 players

can fight each other with tanks on a large area.

The original interview is in Swedish and a translation in English can be

found in the appendix A.3. For further information on No Refuge or the

company behind it, please refer to www.mobileinteraction.com.

In coherence with the analysis of mophun and J2ME above, Stackenland

agreed that J2ME in its current form was not very well suited for games

development and spoke strongly in favour of the mophun virtual machine.

An interesting fact was also pointed out by Stackenland: lacking support for

networking in J2ME had been their main reason for moving to mophun.

This is noteworthy since Synergenix does not use this fact as a main selling

argument for mophun but rather emphases its superior performance which

was also noted by Stackenland. Stackenland continues by noting that the

 34

development of software for mophun requires more from the programmers

due to the fact that not everything is served on a silver platter.

On the question on how they handle the high delay in network traffic when

using GPRS, Stackenland referred to the use of slow action sequences. A

simplified example of this is if tanks A and B are playing and tank A wants

to shoot at tank B. The player of tank A will press the fire-button and as

soon as this is done a message is sent to player B to update B’s current

position. When A gets this position, the phone can calculate if the shot was

a hit or miss. With a RTT of 1.5 seconds, the time from when a button is

pressed to when the shot goes off will be about 1.5 seconds. This is

probably the best way to tackle the problem with a game that requires

continuous synchronisation but it has the drawback of greatly impairing

game-play by making it very slow.

On the matter of object oriented programming/analysis/design Stackenland

mentions that the overhead of object handling is notable and when all tricks

have been used to optimise performance, the disadvantages of object

oriented development outweigh the advantages. This is in accordance with

the pragmatic view of software development by Bulka and Mayhew [1].

Stackenland also emphasises an empirical and pragmatic view of

optimisation; use all the tricks you know and conduct empirical testing of

them to make sure that they really do make a difference.

 35

6 References

1.

Efficient C++, Performance Programming Techniques

Dov Bulka & David Mayhew

Copyright © 2000 by Addison Wesley Longman, Inc.

ISBN 0-201-37950-3

2.

The homepage of Prof. Niklaus Wirth, author of Pascal.

http://www.inf.ethz.ch/~wirth/ (last visited 15:th of October, 2003)

3.

The Clash of Mobile Platforms: J2ME, ExEn, Mophun and WGE

Pedro Henrique Simões Amaro

Departamento de Engenharia Informática

Universidade de Coimbra

3030 Coimbra, Portugal

pamaro@student.dei.uc.pt

http://pedroamaro.pt.vu (last visited 15:th of October, 2003)

4.

Wireless Game Engine, a Powerpoint presentation by

Brian Møller and Gaël Rosset

http://www.3gpp.org/ftp/tsg_t/WG2_Capability/TSGT2_16_SophiaAntipoli

s/Docs/T2-020084%20(WGE%20General).pdf

(last visited 15:th of October, 2003)

5.

Wireless Graphics Engine homepage at TTPCom

http://www.ttpcom.com/ttpcom/wge/index.html

(last visited 15:th of October, 2003)

 36

6.

Applying UML and Patterns

Craig Larman

Copyright ©2002 by Craig Larman

ISBN 0-13-092569-1

7.

Pareto principle

http://www.paretolaw.co.uk/principle.html

(last visited 15:th of October, 2003)

 37

Appendix

A.1 Office/Reference benchmarking dataset
6226,6005,5566,6269,5931,6244,5930,6259,6012,6309,6235,6109,6253,61

18,6282,6110,6302,6130,5915,6248,6128,6088,6356,5990,6334,6036,6019,

5812,6214,6236,6012,6300,5981,6272,6056,6223,6149,6041,6249,5843,62

45,6067,6230,6140,6347,6047,6278,6085,6196,6249,5788,6073,5960,6225,

6076,6189,6269,6054,6316,5888,6224,5818,6248,6351,6053,6258,6135,62

96,5932,6305,6005,6313,6047,6258,5660,5914,6278,5864,6362,6122,6260,

5995,6240,6224,5886,6314,5950,5887,6149,6221,6219,6123,6215,6053,61

82,6171,6273,5897,6064,5961,6086,6086,6238,6304,6145,6270,6057,6287,

6133,6224,6271,5939,6361,6075,6321,6110,6208,6322,5833,6355,5921,61

03,5823,6169,6013,6370,6081,6187,6113,6068,6294,6039,6186,5859,6153,

6248,6261,6006,6263,6085,6244,6117,6181,6246,6013,5979,5887,6217,61

20,6328,6084,6306,6001,6179,6184,6109,6309,5928,6293,5921,6227,5942,

6105,6241,6117,6269,6132,6260,6058,5860,6015,6117,6050,6250,6209,61

09,6315,5897,6249,5982

 38

A.2 Field test benchmarking datasets

A.2.1 Field test 1

6145,6088,6275,6041,6296,5869,6236,6126,6202,6116,6041,6280,6147,63

08,5829,6212,6104,6115,6281,6161,6068,6131,6147,5721,5635,6281,5934,

6206,6248,6092,6173,5944,6215,6068,6310,6074,5993,6160,5924,6181,57

86,6172,6310,5870,6278,5872,6094,5712,5562,5412,5890,4952,5200,5110,

5103,3837,3334,3649,5613,5579,5425,5623,5625,5962,6214,5975,6321,61

93,6217,6071,6128,5978,6209,6362,6162,6166,6306,6261,6098,6252,6180,

6230,6275,6009,6165,5771,6103,6205,6179,6296,6103,6309,6115,6273,61

09,6128,6338,6151,6302,6202,6273,6166,6223,6107,6221,6070,6202,6319,

5863,6148,6191,6187,6119,6275,6271,6167,6249,6211,5974,6176,6141,62

27,6203,6333,6117,6350,6156,6337,6078,6209,6203,6219,5949,6060,6278,

6027,6070,6138,6315,6083,6314,6189,6232,6321,6145,6345,6096,6175,62

88,6218,6340,6082,6251,6216,6257,6078,6212,6050,6319,6290,6166,6310,

6009,6333,6172,6186,5925,6188,6372,6120,6211,6202,6269,6250,6255,62

78,6234,6255,6201,6276

A.2.2 Field test 2

6279,6094,6365,6044,6310,6058,6251,6113,6039,6271,5951,6066,6108,62

94,6133,6221,6290,5980,6291,6148,6106,6115,6296,5886,5958,6279,6262,

5948,6286,5848,6338,5840,6345,5987,5878,5807,5747,4501,5915,6082,60

83,6258,5928,6060,5987,6182,6095,3967,5587,6285,6075,6343,6095,6339,

5521,5868,6213,5793,6171,5861,5807,6083,5839,4296,5915,5254,6137,60

07,6222,6092,6052,6303,5586,6273,5719,6304,5912,6307,6143,6275,6175,

5993,6030,5702,6275,6071,6224,6097,6178,6292,5607,6034,6198,5480,51

18,5232,5063,4944,4502,3416,3610,5506,5339,5620,5866,5953,6191,6212,

6201,6360,6102,6193,6281,6190,6339,6191,6330,6160,5887,6315,5943,63

43,5976,6259,6147,6192,6020,6059,6082,5983,6309,6193,6248,6193,6249,

6195,6292,6231,6197,6282,6131,6307,6157,6301,6164,6021,6319,6088,63

75,6147,6302,6054,6376,6006,6294,6163,6276,6128,6200,6372,6144,6330,

6182,6064,6276,5879,6279,6065,6250,6037,6269,6347,6175,6276,6148,60

93,6063,6265,6099,6128

 39

A.2.3 Field test 3

6094,6258,6140,6137,6345,5997,6271,6135,6251,6103,6199,6251,5971,62

76,6062,6256,6095,6236,6155,6234,6184,5841,6024,5920,6070,6279,6094,

6234,5952,6232,6241,5868,6216,5903,6221,5869,6346,5667,5989,5784,57

13,6243,6242,6247,6271,5522,5746,5629,5772,5274,6309,6115,6270,5948,

6228,6181,6009,6315,5966,5984,5479,6045,5776,6313,5872,6235,6064,62

10,6050,5704,5684,5721,6314,5970,6274,5859,6331,5649,5961,3949,5038,

5311,5005,4923,4784,3319,3555,5141,5627,5551,5493,5788,5632,6149,61

29,6168,6198,6174,6322,6017,6106,6256,6318,6162,6321,6122,6231,6249,

6239,6256,6144,6304,6202,6149,5998,6295,6072,5998,6225,6286,6188,62

20,6249,6172,6241,6289,6228,6220,6277,6226,6234,6114,6240,6059,6156,

6240,6090,6167,6036,6278,6182,6181,6276,6152,6378,6119,6354,6183,62

23,6313,6021,6220,6280,6290,6155,6337,6257,6289,5984,6232,6241,6126,

6216,6271,5915,6225,6312,6107,6254,6293,6240,6277,6146,6304,6116,63

38,6267,6336,6182,6270

 40

A.3 Interview with Erik Stackenland
This appendix contains the interview with Erik Stackenland of

Mobileinteraction. The first part, 8.3.1 is the original interview in Swedish,

and the second 8.3.2 is the interview translated in English.

A.3.1 Original interview in Swedish

Fråga: Har ni utvecklat för någon annan mobil VM och om så, hur ser ni på

mophun i ljuset av den erfarenheten?

Svar: Vi har utvecklat med Java J2ME. Mophun är betyldigt snabbare och

bättre anpassat för just spel. I våra ögon är inte J2ME lämpligt för

spelutveckling, både med avseende på hastighet och möjligheter. Det är

enkelt och smidigt att arbeta med mophun.

F: När ni började utveckla ”No Refuge”, visst ni att ni skulle göra det för

mophun?

S: Nej. No Refuge började som ett WAP-spel. Uppföljaren till denna

planerades att göras i J2ME. Framförallt beroende bristande stöd för

nätverkstrafik gick vi över till mophun.

F: Om nej, vilken var den största utmaningen med mophun?

S: Resurshantering och att lära sig all tillvägagångssätt som krävs i mophun.

I Java och J2ME är mycket serverat på silverfat.

F: Hade ni undersökt möjligheterna/prestandan innan och anpassade spelet

efter det eller kodade ni allt och efteroptimerade tills det funkade?

S: Vi undersökte prestandan innan vi började och anpassade spelet för

förutsättningarna, men givetvis så har vi optimerat så mycket som möjligt

för att nå bästa möjliga resultat.

 41

F: Med facit i hand, hade ni gjort annorlunda om ni skulle ha gjort om det?

S: Som med allt nytt man håller på med, vet man bäst hur man ska göra när

man redan är färdig. Det finns saker som skulle göras på annorlunda sätt om

vi skulle göra om det.

F: Finns det något speciellt som är av intresse för andra som ni skulle ha

gjort annorlunda?

S: Nej, det är inget av speciellt intresse som vi skulle göra om nu i

efterhand. De saker som varit kritiska har vi ändrat på under utvecklingen

gång.

F: När ni började utveckla ”No Refuge”, visste ni att ni skulle göra det med

Terraplays Multiplayerteknik?

S: Ja. Det var bestämt redan vi började.

F: Hade ni mätt RTT (Round trip time, ping) för GPRS innan?

S: Nej, men vi var väl medvetna om att delayen var hög och fluktuerande.

F: Kan ni avslöja några tekniker ni använder för att gå runt problemet med

den extrema RTT:n?

S: Långsamma händelseförlopp.

F: Om ni vetat allt om mophun, Terraplay och GPRS begränsningar, när ni

skulle bestämma er för vilket spel ni skulle göra, hade ni fortfarande valt att

göra ett spel som ”No Refuge”?

S: Absolut

 42

F: Om ni fått möjligheten att ändra en sak i mophun, en sak i Terraplay och

en sak i hur GPRS fungerar, vad hade ni ändrat? (t.ex. Vi skulle ha velat att

mophun’s 3D API var klart, vi skulle vilja att man kunde vara 20000

användare i samma session på Terraplays server, vi skulle vilja att GPRS

hade en datakapacitet på 100 kbyte/s)

S: Mophun: bättre komprimering av binärfilerna.

Terraplay: Om något, mindre protokoll (färre meddelanden). (Dock kan det

väl vara så att det är omöjligt att genomföra och ändå uppnå den generalitet

de erbjuder).

Expire dates för tjänst borde kontrolleras på serversidan i stället för på

klientsidan.

GPRS: lägre delay. Större OTA [Over The Air] download size (kanske inte

direkt med GPRS att göra)

F: Objektorienterad programmering, analys och design anses av många vara

det moderna sättet att utveckla program på, vad anser ni och hur mycket av

dess metodik/metoder har ni använt under utvecklandet av No Refuge?

S: Vi håller med om att objektorienterad utveckling är att föredra generellt.

Tyvärr så innebär det också overhead jämfört med funktionell

programmering, både i avseende på binärstorlek och prestanda (tror att det

ligger på ca 10%). Vi har av de skälen valt att hålla oss till det senare (C

istället för C++).

F: Vilken enskild metod när det gäller optimering eller skapandet av snabba

program anser ni vara bäst/viktigast?(t.ex. manuellt konstruerade och

programspecifika minneshanterare, return value optimisation) Om den inte

är trivial får ni gärna beskriva den lite kort!

S: Omöjligt att svara på, vi har använt oss av alla knep vi kommit på. En sak

som vi blev förvånade över är hur mycket mer utrymme än switch-sats tar

än en if-else if-else if...

 43

A.3.2 Translation of the interview in English

Q: Have you developed software for any other mobile virtual machine [than

mophun] and if so, how do you view mophun in the light of this knowledge?

A: We have previously developed software using Java J2ME. The mophun

VM is considerably faster and better suited for developing games. In our

view, J2ME is not appropriate for games development, due to the limitations

of speed and capabilities. It is easy and straight-forward to work with

mophun.

Q: When you started developing “No Refuge”, did you know you would use

mophun?

A: No. No Refuge started out as a WAP-game. The sequel was planned for

J2ME. Mainly due to the lack of support for network traffic we moved to

mophun.

Q: If no, which was the greatest challenge with mophun?

A: Resource management and learning the workflows of mophun. In Java

and J2ME, lots of things are served on a silver platter.

Q: Did you examine the capabilities and performance of mophun before

development and adapted the game thereafter or did you just get to work

and then post-optimized?

A: We examined the performance before we started development and

adapted the game according to the limitations. Naturally we have also did

considerable post-optimised to get the best possible result.

Q: Now that the game is finished, are there things you would have done

differently?

 44

A: As with everything new, you always know best when you are already

done. There are things that we would have done differently, had we started

all over.

Q: Is there anything in particular that might be of interest for other

developers, that you did in a different manner?

A: No, there is nothing of particular interest that we would do now after the

game has been finished. The critical matters that we found were changed

during the development.

Q: When you started the development of “No Refuge”, did you know that

you would use the multiplayer technology supplied by Terraplay?

A: Yes. It was decided from the beginning.

Q: Had you measured the RTT (Round Trip Time or ping-time) of GPRS

before development?

A: No, but we were well aware of the fact that the delay was large and

fluctuating.

Q: Would it be possible for you to reveal any techniques you used to work

around this problem with the extreme RTT?

A: Slow action sequences.

Q: If you had known beforehand what you now know of the limitations of

mophun, Terraplay and GPRS, would you still have chosen to develop a

game like “No Refuge”?

A: Absolutely.

 45

Q: If you had the possibility to change one thing in mophun, one thing in the

Terraplay system and one thing in how GPRS works, what would you like

to change? (for instance: We would have liked the mophun 3D API to be

ready, we would have liked the Terraplay servers to be able to manage

20 000 concurrent users, we would like GPRS to have a throughput capacity

of 100 kbyte/s)

A: mophun: better compression of binary files.

Terraplay: If anything, smaller protocol (fewer messages). (It might very

well be impossible to do and still deliver the level of generalization it now

offers). Expire dates of a service should be controlled server-side instead of

on the client-side, as it is now.

GPRS: lower delay. Larger OTA download size (might not directly be

connected with GPRS)

Q: Object oriented programming, analysis and design is considered by many

professionals to be the best manner in which to develop software. What are

your opinions in this matter and how much of this methodology did you

apply during the development of No Refuge?

A: We agree that object oriented programming is to be generally preferred.

Sadly it has the drawback of a larger overhead in comparison to functional

programming, both in the matter of binary file size and performance (we

think it is around 10%). Due to these reasons we have chosen to stick to

later alternative (C instead of C++).

Q: Which single method concerning optimization or creation of high

performance software do you consider the best/most important? (for

instance manual construction of specific memory handlers, return value

optimisation) If it is not trivial, please describe it briefly.

A: Impossible to answer, we have used all the tricks we can think of. One

thing that we were astounded by was how much more space a switch-

statement takes in comparison to a if-else if- else if…

