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1. Introduction 
In calculus and engineering mathematics, there are 

many methods to solve the integral problems including 
change of variables method, integration by parts method, 
partial fractions method, trigonometric substitution 
method, and so on. In this paper, we study the following 
six types of double integrals which are not easy to obtain 
their answers using the methods mentioned above.  
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where 1 2 1 2, , ,r r θ θ  are any real numbers, and n  is any 
positive integer. We can obtain the infinite series forms of 
these double integrals using Taylor series expansions and 
integration term by term theorem; these are the major 
results of this paper (i.e., Theorems 1-3). Adams et al. [1], 
Nyblom [2], and Oster [3] provided some techniques to 
solve the integral problems. Yu [4-29], Yu and B. -H. 
Chen [30], Yu and Sheu [31], and T. -J. Chen and Yu 
[32,33,34] used complex power series method, integration 
term by term theorem, differentiation with respect to a 

parameter, Parseval’s theorem, area mean value theorem, 
and generalized Cauchy integral formula to solve some 
types of integral problems. In this paper, three examples 
are used to demonstrate the proposed calculations, and the 
manual calculations are verified using Maple. 

2. Main Results 
Some formulas and theorems used in this paper are 

introduced below. 

2.1. Euler’s Formula  

xixeix sincos += , where 1i = − , and x is any 
real number. 

2.2. DeMoivre’s Formula 
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integer, and x  is any real number. 

The followings are the Taylor series expansions of 
some analytic functions.  
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The following two formulas can be found in [[35], p 62] 
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2.6. sin( ) sin cosh cos sinha ib a b i a b+ = + , where ,a b  
are any real Numbers 

2.7. cos( ) cos cosh sin sinha ib a b i a b+ = − , where 
,a b  are any real Numbers 
An important theorem used in this study is introduced 

below, which can be found in [[36], p 269]. 

2.8. Integration Term by Term Theorem 
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Firstly, we determine the infinite series forms of the 
double integrals (1) and (2). 

Theorem 1. Suppose that 1 2 1 2, , ,r r θ θ  are real numbers, 
and n  is a positive integer. Then the double integrals:  
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and 
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Proof By Formula 2.3, we have:  
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Let iz re θ= , where ,r θ are any real numbers, then: 
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By Euler’s formula and DeMoivre’s formula, we obtain: 
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It follows that: 

 cos ( sin )r i n re eθ θ θ+⋅ ( )

0

1
!

k i k n

k
r e

k
θ

∞
+

=
= ∑ . (12) 

Using the equality of real parts of both sides of Eq. (12) 
yields: 
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Therefore, 
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On the other hand, by the equality of imaginary parts of 
both sides of Eq. (12) yields: 
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Using integration term by term theorem, we can easily 
obtain: 
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Next, the infinite series forms of the double integrals (3) 
and (4) can be obtained below. 

Theorem 2. If the assumptions are the same as 
Theorem 1, then the double integrals: 
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and 
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Proof Using Formula 2.4 yields:  
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Let iz re θ= , where ,r θ are any real numbers, then: 

 2 1

0

( 1)( ) sin( ) ( )
(2 1)!

k
i n i i k n

k
re re re

k
θ θ θ

∞
+ +

=

−
=

+∑ . (18) 

By Euler’s formula, DeMoivre’s formula, and Formula 
2.6, we obtain: 



 International Journal of Data Envelopment Analysis and *Operations Research* 18 

 
2 1 (2 1)

0

sin( cos )cosh( sin )
(cos sin )

cos( cos )sinh( sin )

( 1)
(2 1)!

k
k i k n

k

r r
n i n

i r r

r e
k

θ

θ θ
θ θ

θ θ
∞

+ + +

=

 
+ ⋅  + 

−
=

+∑
.  (19) 

Using the equality of real parts of both sides of Eq. (19) 
yields: 

 

2 1

0

cos sin( cos )cosh( sin )
sin cos( cos )sinh( sin )

( 1) cos[(2 1) ]
(2 1)!

k
k

k

n r r
n r r

r k n
k

θ θ θ
θ θ θ

θ
∞

+

=

⋅
− ⋅

−
= + +

+∑

. (20) 

Thus, 

 

2 2

1 1

2 2 2 1

1 1 0

2 2 2 1

1 10

cos sin( cos )cosh( sin )
sin cos( cos )sinh( sin )

( 1) cos[(2 1) ]
(2 1)!

( 1) cos[(2 1) ]
(2 1)!

by integration term by 

r

r

kr k
r

k
k r k

r
k

n r r
drd

n r r

r k n drd
k

r k n drd
k

θ

θ

θ

θ

θ

θ

θ θ θ
θ

θ θ θ

θ θ

θ θ

∞
+

=
∞

+

=

⋅ 
 − ⋅ 

−
= + +

+

−
= + +

+

∫ ∫

∑∫ ∫

∑ ∫ ∫
( )

2 2 2 2
2 1

0
2 1

term theorem

( 1) ( )
(2 1)!(2 2)(2 1)
[sin(2 1) sin(2 1) ]

k
k k

k

r r
k k k n

k n k nθ θ

+ +∞

=

−
−

= + + + +
+ + − + +

∑

 

On the other hand, using the equality of imaginary parts 
of both sides of Eq. (19) yields: 
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By integration term by term theorem, we obtain Eq. (16). 
Finally, we determine the infinite series forms of the 

double integrals (5) and (6). 
Theorem 3 If the assumptions are the same as Theorem 

1, then the double integrals: 
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Proof By Formula 2.5, we have:  
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Using Formula 2.7 yields: 
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By the equality of real parts of both sides of Eq. (26), 
we have: 
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On the other hand, the equality of imaginary parts of 
both sides of Eq. (26) implies that: 
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Thus, using integration term by term theorem yields Eq. 
(23) holds.  

3. Examples 
In the following, for the six types of double integrals in 

this study, we provide three examples and use Theorems 
1-3 to determine their infinite series forms. In addition, 
Maple is used to calculate the approximations of some 
double integrals and their solutions for verifying our 
answers. 

Example 1. By Eq. (7), we obtain: 
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Next, we use Maple to verify the correctness of Eq. (29). 
>evalf(Doubleint(exp(r*cos(theta))*cos(4*theta+r*sin(t

heta)),r=2..3,theta=Pi/6..Pi/3),18); 
-0.109048195978862494 
>evalf(sum(1/(k!*(k+1)*(k+4))*(3^(k+1)-2^(k+1))* 

(sin((k+4)*Pi/3)- sin((k+4)*Pi/6)), k=0..infinity), 18); 
-0.10904819597886250 
Also using Eq. (8) yields: 
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>evalf(Doubleint(exp(r*cos(theta))*sin(6*theta+r*sin(t
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-8.99753972102267964 
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(cos((k+6)*Pi/4)-cos((k+6)*Pi/8)),k=0..infinity), 18); 
-8.99753972102267965 
Example 2. Using Eq. (15) yields: 
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We also use Maple to verify the correctness of Eq. (31). 
>evalf(Doubleint(cos(2*theta)*sin(r*cos(theta))*cosh(r
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On the other hand, Eq. (16) implies that: 
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>evalf(Doubleint(sin(3*theta)*sin(r*cos(theta))*cosh(r
*sin(theta))+cos(3*theta)*cos(r*cos(theta))*sinh(r*sin(the
ta)), r=4..7,theta=Pi/12..Pi/6),18); 

-1.64755306054358357 
>evalf(sum((-1)^(k+1)/((2*k+1)!*(2*k+2)*(2*k+4))* 
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cos((k+2)*Pi/6)), k=0. infinity), 18); 
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Example 3. By Eq. (22) we have: 
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Using Maple to verify the correctness of Eq. (33) as 
follows: 
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In addition, using Eq. (23) yields:  
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*sin(theta))-cos(3*theta)* sin(r*cos(theta))* sinh(r*sin 
(theta)), r=2..6,theta=3*Pi/8..5*Pi/8),18); 

-11.5671734819804792 
>evalf(sum((-1)^(k+1)/((2*k)!* (2*k+1)*(2*k+3))* 

(6^(2*k+1)-2^(2*k+1))*(cos((10*k+15)*Pi/8)-cos 
((6*k+9)*Pi/8)), k=0. infinity), 18); 

-11.5671734819804793 

4. Conclusion 
In this paper, we use Taylor series expansions and 

integration term by term theorem to solve some types of 
double integrals. In fact, the applications of the two 
methods are extensive, and can be used to easily solve 
many difficult problems; we endeavor to conduct further 
studies on related applications. In addition, Maple also 
plays a vital assistive role in problem-solving. In the 
future, we will extend the research topic to other calculus 
and engineering mathematics problems and use Maple to 
verify our answers.  
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