
I/O Paravirtualization at the Device File Boundary

Ardalan Amiri Sani Kevin Boos Shaopu Qin Lin Zhong
Rice University

Abstract
Paravirtualization is an important I/O virtualization technol-
ogy since it uniquely provides all of the following benefits:
the ability to share the device between multiple VMs, sup-
port for legacy devices without virtualization hardware, and
high performance. However, existing paravirtualization so-
lutions have one main limitation: they only support one I/O
device class, and would require significant engineering ef-
fort to support new device classes and features. In this paper,
we present Paradice, a solution that vastly simplifies I/O par-
avirtualization by using a common paravirtualization bound-
ary for various I/O device classes: Unix device files. Using
this boundary, the paravirtual drivers simply act as a class-
agnostic indirection layer between the application and the
actual device driver.

We address two fundamental challenges: supporting
cross-VM driver memory operations without changes to ap-
plications or device drivers and providing fault and device
data isolation between guest VMs despite device driver bugs.
We implement Paradice for x86, the Xen hypervisor, and the
Linux and FreeBSD OSes. Our implementation paravirtual-
izes various GPUs, input devices, cameras, an audio device,
and an Ethernet card for the netmap framework with ~7700
LoC, of which only ~900 are device class-specific. Our mea-
surements show that Paradice achieves performance close
to native for different devices and applications including
netmap, 3D HD games, and OpenCL applications.

Categories and Subject Descriptors C.0 [Computer Sys-
tems Organization]: General—System architectures; D.4.6
[Operating Systems]: Security and Protection; D.4.8 [Oper-
ating Systems]: Performance; I.3.4 [Computer Graphics]:
Graphics Utilities—Virtual device interfaces

Keywords I/O; Virtualization; Paravirtualization; Isolation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541943

1. Introduction
Virtualization has become an important technology for com-
puters of various form factors, from servers to mobile de-
vices, because it enables hardware consolidation and secure
co-existence of multiple operating systems in one physical
machine. I/O virtualization enables virtual machines (VMs)
to use I/O devices in the physical machine, and is increas-
ingly important because modern computers have embraced
a diverse set of I/O devices, including GPU, DSP, sensors,
GPS, touchscreen, camera, video encoders and decoders,
and face detection accelerator [4].

Paravirtualization is a popular I/O virtualization tech-
nology because it uniquely provides three important bene-
fits: the ability to share the device between multiple VMs,
support for legacy devices without virtualization hardware,
and high performance. Existing paravirtualization solutions
have one main drawback: they only support one I/O de-
vice class, and would require significant engineering ef-
fort to support new device classes and features. As a result
of the required engineering effort, only network and block
devices have enjoyed good paravirtualization solutions so
far [28, 31, 33, 44]. Limited attempts have been made to par-
avirtualize other device classes, such as GPUs [27], but they
provide low performance and do not support new class fea-
tures, such as GPGPU. Significant engineering effort is an
increasingly important problem to paravirtualization in light
of the ever-increasing diversity in I/O devices.

We present Paradice (Paravirtual Device), a solution that
greatly simplifies I/O paravirtualization by using a common,
class-agnostic I/O paravirtualization boundary, device files.
Unix-like OSes employ device files to abstract most I/O de-
vices [9], including GPU, camera, input devices, and audio
devices. To leverage this boundary, Paradice creates a virtual
device file in the guest OS corresponding to the device file
of the I/O device. Guest applications issue file operations to
this virtual device file as if it were the real one. The paravir-
tual drivers act as a thin indirection layer and forward the file
operations to be executed by the actual device driver. Since
device files are common to many I/O devices, Paradice re-
duces the engineering effort to support various I/O devices.
Moreover, as we will demonstrate, Paradice maintains the
three aforementioned advantages of I/O paravirtualization.

We address two fundamental challenges: (i) the guest pro-
cess and the device drivers reside in different virtualization
domains, creating a memory barrier for executing the driver
memory operations on the guest process. Our solution to this
problem is to redirect and execute the memory operations
efficiently in the hypervisor without any changes to the de-
vice drivers or applications. (ii) malicious applications can
exploit device driver bugs [25, 29] through the device file
interface to compromise the machine that hosts the device
driver [1, 2]. Our solution to this problem is a suite of tech-
niques that provide fault and device data isolation between
the VMs that share a device. Paradice guarantees fault iso-
lation even with unmodified device drivers. However, it re-
quires modest changes to the device driver for device data
isolation (i.e., ~400 LoC for the Linux Radeon GPU driver).

We present a prototype implementation of Paradice for
the x86 architecture, the Xen hypervisor, and the Linux and
FreeBSD OSes. Our prototype currently supports five impor-
tant classes of I/O devices with about 7700 LoC, of which
about 900 are specific to device classes: GPU, input device,
camera, audio device, and Ethernet for the netmap frame-
work [43]. Approximately 400 lines of this class-specific
code are for device data isolation for GPU. We note that
GPU has not previously been amenable to virtualization
due to its functional and implementation complexity. Yet,
Paradice easily virtualizes GPUs of various makes and mod-
els with full functionality and close-to-native performance.

Paradice supports cross-OS I/O paravirtualization. For
example, our current implementation virtualizes I/O devices
for a FreeBSD guest VM using Linux device drivers. Hence,
Paradice is useful for driver reuse between these OSes too,
for example, to reuse Linux GPU drivers on FreeBSD, which
typically does not support the latest GPU drivers.

We report a comprehensive evaluation of Paradice and
show that it: (i) requires low development effort to sup-
port various I/O devices, shares the device between multiple
guest VMs, and supports legacy devices; (ii) achieves close-
to-native performance for various devices and applications,
both for Linux and FreeBSD VMs; and (iii) provides fault
and device data isolation without incurring noticeable per-
formance degradation.

2. Background
2.1 I/O Stack
Figure 1(a) shows a simplified I/O stack in a Unix-like OS.
The kernel exports device files to the user space through a
special filesystem, devfs (the /dev directory). A process
thread issues file operations by calling the right system calls
on the device file. These system calls are handled by the ker-
nel, which invokes the file operation handlers implemented
by the device driver. The commonly used file operations are
read, write, poll, ioctl, and mmap.

When servicing a file operation, the device driver often
needs to perform memory operations on the process mem-

ory. There are two types of memory operations: copying a
kernel buffer to/from the process memory, which are mainly
used by the read, write, and ioctl file operations, and
mapping a system or device memory page into the process
address space, which is mainly used by the mmap file opera-
tion and its supporting page fault handler.

Instead of using the poll file operation, a process can re-
quest to be notified when events happen, e.g., where there is
a mouse movement. Linux employs the fasync file opera-
tion for setting up the asynchronous notification. When there
is an event, the process is notified with a signal.

To correctly access an I/O device, an application may
need to know the exact make, model or functional capabili-
ties of the device. For example, the X Server needs to know
the GPU make in order to load the correct libraries. As such,
the kernel collects this information and exports it to the user
space, e.g., through the /sys directory in Linux, and through
the /dev/pci file in FreeBSD.

The I/O stack explained here is used for most I/O de-
vices in Unix-like OSes. Famous exceptions are network
and block devices, which have their own class-specific I/O
stacks. See §8 for more details.

2.2 I/O Paravirtualization
An I/O paravirtualization solution uses a pair of drivers: a
frontend driver in the guest VM and a backend driver in the
same domain as the main device driver, e.g., the Xen driver
domain [28]. The frontend and backend drivers cooperate
to enable guest VM applications to use the I/O device. For
example, the paravirtual network drivers exchanges packets
that the applications need to send or receive [28, 44]. We
refer to the boundary in the I/O stack that the paravirtual
drivers are located at as the paravirtualization boundary.

2.3 Memory Virtualization
The hypervisor virtualizes the physical memory for the
VMs. While memory virtualization was traditionally im-
plemented entirely in software, i.e., the shadow page table
technique [35], recent generations of micro-architecture pro-
vide hardware support for memory virtualization, e.g., the
Intel Extended Page Table (EPT). In this case, the hard-
ware Memory Management Unit (MMU) performs two lev-
els of address translation from guest virtual addresses to
guest physical addresses and then to system physical ad-
dresses. The guest page tables store the first translation and
are maintained by the guest OS. The EPTs store the second
translation and are maintained by the hypervisor.

3. Paradice Design
3.1 Architectural Design Choices
Design choice 1: device files as the paravirtualization
boundary. Our key observation in this work is that Unix-like
OSes abstract most I/O devices with device files, which can
be used as a common paravirtulization boundary. With this

CVD frontendCVD frontend

I/O Device

Process

File
Ops

Kernel
User Space

Existing
Paravirt.

Boundary

Paradice
Boundary

Process

Device Driver

I/O Device

Device File
(/dev/dri/card0)

Hypervisor

Guest VM

Host
Mach.

Hypercalls Interrupts Shared
Memory Page

Inter-domain
Interrupt

(a) (b) (c)

Hypervisor API for
 memory operations

(d)

Guest VM 1 Guest VM 2

Protected
Memory
Region 1

Native Machine

File
Ops

Kernel
User Space

Device File
(/dev/dri/card0)

CVD backend

Kernel

File
Ops

CVD frontendCVD frontend

Process

Guest VM

File
Ops

Kernel
User Space

Device File
(/dev/dri/card0)

Device Driver

I/O Device
(assigned to Driver VM)

Device File
(/dev/dri/card0)

CVD backend

Kernel

Supervisor
Mode

Supervisor
ModeHypervisor

CVD frontend CVD frontend

Supervisor
ModeHypervisor

Protected
Memory
Region 2

File
Ops

Device Driver

I/O Device
(assigned to Driver VM)

Device File
(/dev/dri/card0)

CVD backend

KernelFile
Ops

Driver VM

Driver
VM

Device Driver

Device File
(/dev/dri/card0)

Figure 1. (a) The simplified I/O stack in a Unix-like OS. (b) Devirtualization’s design, our previous work that also paravir-
tualizes I/O devices at the device file boundary. This design can be abused by a malicious guest VM to compromise the host
machine, and hence the hypervisor and other guest VMs. (c) Paradice’s design, which sandboxes the device and its driver in
a driver VM and performs strict runtime checks on requested memory operations for fault isolation. (d) Device data isolation,
enforced by the hypervisor, which creates non-overlapping protected memory regions for each guest VM’s data and enforces
appropriate access permissions to these regions. Each protected region includes part of driver VM system memory and device
memory.

boundary, the paravirtual drivers simply act as an indirection
layer between the application and the actual device driver.

In order to paravirtualize I/O devices at the device file
boundary, we create a virtual device file inside the guest VM
that mirrors the actual device file. Applications in the guest
VM issue file operations to this virtual device file as if it
were the real one. The paravirtual drivers, i.e., the Common
Virtual Driver (CVD) frontend and backend, deliver these
operations to the actual device file to be executed by the
device driver.

Figure 1(b) shows a simple design for using the device file
boundary for paravirtualization with a Type II (i.e., hosted)
hypervisor. In this design, the device driver, device file, and
also the hypervisor reside in supervisor mode. The CVD
frontend and backend are in the guest VM and in the host
OS, respectively. We used this design in our previous work,
called devirtualization [20]. However, devirtualization’s de-
sign does not provide isolation between guest VMs. As de-
vice drivers run in the host OS, which executes in supervisor
mode, a malicious guest VM application can use the driver
bugs to compromise (i.e., crash, gain root access in, or exe-
cute malicious code in) the whole system including the hy-
pervisor and other guest VMs. This important flaw led us to
the design of Paradice, described below.

Design choice 2: device and driver sandboxing and
strict runtime checks of driver memory operations for
fault isolation. Paradice solves the flaw in devirtualization’s
design by sandboxing the device and its driver in a sepa-
rate VM, called the driver VM, using device assignment [19,
24, 30, 39]. This design uses a Type I (i.e., bare-metal) hy-
pervisor, as shown in Figure 1(c). For device assignment,
the hypervisor maps the device registers and memory to the
driver VM and restricts the device DMA addresses to the
driver VM memory using the hardware I/O Memory Man-
agement Unit (IOMMU). The CVD frontend and backend
use shared memory pages and inter-VM interrupts to com-
municate, e.g., for forwarding the file operations.

Executing driver memory operations (§2.1) in Paradice
introduces new challenges since the device driver and the
guest process reside in different VMs with isolated mem-
ory. As a solution, we implement the two types of memory
operations efficiently in the hypervisor and provide an API
for the driver VM to request them. Further, to support un-
modified drivers, we provide wrapper stubs in the driver VM
kernel that intercept the driver’s kernel function invocations
for memory operations and redirect them to the hypervisor
through the aforementioned API.

In Paradice’s design, a malicious guest VM can still com-
promise the driver VM through the device file interface.
Therefore, we perform strict runtime checks on the memory
operations requested by the driver VM in order to guarantee
that the compromised driver VM cannot be abused to pol-
lute other guest VMs. For the checks, the CVD frontend in
the guest VM identifies and declares the legitimate memory
operations to the hypervisor before forwarding a file opera-
tion to the backend. §4.1 explains this issue in more detail.

Design choice 3: hypervisor-enforced access permis-
sions for device data isolation. Applications exchange data
with I/O devices. Device data isolation requires such data
to be accessible only to the guest VM that owns the data
but not to any other guest VMs. We enforce device data iso-
lation in the hypervisor by allocating non-overlapping pro-
tected memory regions on the driver VM memory and on the
device memory for each guest VM’s data and assigning ap-
propriate access permissions to these regions (Figure 1(d)).
§4.2 elaborates on this technique.

Unmodified device drivers cannot normally function cor-
rectly in the presence of the hypervisor-enforced device data
isolation. In §5.3, we explain how we added only ~400 LoC
to the complex Linux Radeon GPU driver for this purpose.
Unlike all other Paradice components, device data isolation
is not generic. However, many of the techniques we de-
veloped for the Radeon GPU driver apply to other device
drivers as well.

3.2 Key Benefits of Paradice Design
3.2.1 One Paravirtual Driver, Many I/O Devices
The key benefit of Paradice is that it requires a single pair
of paravirtual drivers, i.e., the CVD frontend and backend,
and very small class-specific code to support many differ-
ent device classes. In contrast, prior solutions employ class-
specific paravirtual drivers. Moreover, Paradice supports all
features of an I/O device class since it simply adds an in-
direction layer between applications and device drivers. In
contrast, prior solutions only support a limited set of features
and require more engineering effort to support new ones.

3.2.2 Compatibility between Different OSes
The device file interface is compatible across various Unix-
like OSes; therefore Paradice can support guest VMs run-
ning different versions of Unix-like OSes in one physical
machine, all sharing the same driver VM. We investigated
the file operations interface in FreeBSD and many versions
of Linux and observed the following: (i) the file operations
that are mainly used by device drivers (§2.1) exist in both
Linux and FreeBSD and have similar semantics; (ii) these
file operations have been part of Linux since the early days
and have seen almost no changes in the past couple of years,
i.e., from Linux 2.6.35 (2010) to 3.2.0 (2012). §5.1 discusses
our deployment of a Linux driver VM, a FreeBSD guest VM,
and a Linux guest VM running a different major version of

Linux. In order to use a device driver, applications might re-
quire appropriate libraries, e.g., the Direct Rendering Man-
ager (DRM) libraries for graphics. These libraries are usu-
ally available for different Unix-like OSes. If not, porting the
library from another OS is possible since Unix-like OSes are
mostly source code compatible.

3.2.3 Concurrent Device Access by Multiple Guests
If supported by the device driver, Paradice allows for mul-
tiple guest VMs to concurrently use the device because the
device file interface allows multiple processes to issue file
operations simultaneously. In this case, the same CVD back-
end supports requests from CVD frontends of all guest VMs.
Some device drivers, e.g., the Linux GPU drivers, can handle
concurrency, but some others, e.g., the Linux camera drivers,
only allow one process at a time. §5.1 discusses the issue of
concurrency for different classes of devices.

4. Isolation between Guest VMs
Device drivers are buggy [25, 29], and these bugs can be
used by malicious applications to compromise the machine,
either virtual or physical, that hosts the driver [1, 2]. Com-
promising a machine refers to crashing, gaining root access
in, or executing malicious code inside the machine. This sec-
tion elaborates on how we provide fault and device data iso-
lation between guest VMs despite such driver bugs.

4.1 Fault Isolation
Fault isolation requires that a malicious guest VM cannot
compromise other guest VMs. To provide fault isolation, we
must prevent guest VMs from access to unauthorized and
sensitive parts of the system memory, e.g., the hypervisor’s
memory or other guest VMs’ memory. We employ two tech-
niques to achieve this. First, to protect the hypervisor, we
sandbox the device driver and the device inside the driver
VM, resulting in the design of Paradice as was explained in
§3.1. With this design, a malicious guest VM can compro-
mise the driver VM, but not the hypervisor. Therefore, in
the rest of the discussion, we assume that the driver VM is
controlled by a malicious guest VM and cannot be trusted.
This leads us to the second technique. To protect other guest
VMs, we employ strict runtime checks in the hypervisor to
validate the memory operations requested by the driver VM,
making sure that they cannot be abused by the compromised
driver VM to compromise other guest VMs, e.g., by asking
the hypervisor to copy data to some sensitive memory loca-
tion inside a guest VM kernel.

For validation, the CVD frontend identifies the legitimate
memory operations of each file operation and declares them
to the hypervisor using a grant table before forwarding the
file operation to the backend. The legitimate memory opera-
tions can be easily identified in the CVD frontend by using
the file operation’s input arguments. For example, the read

file operation requires the driver to copy some data to the

process memory, and the read input arguments include the
start address and size of the user space buffer that the driver
needs to write to. However, the input arguments are not al-
ways enough for ioctl.

To identify the memory operations of an ioctl, we use
two techniques. First, we use the ioctl input arguments, if
possible. The arguments of an ioctl include a command
number and an untyped pointer. The device driver may exe-
cute different memory operations based on the value of these
two arguments. The most common ioctl memory opera-
tions are to copy a command-specific data structure from
the process memory to the kernel memory and vice-versa.
Fortunately, device drivers often use OS-provided macros to
generate ioctl command numbers, which embed the size
of these data structures and the direction of the copy into it.
Moreover, the ioctl untyped pointer holds the address of
this data structure in the process memory. Therefore in these
cases, the CVD frontend simply parses the command num-
ber and uses it along with the value of the untyped pointer
to determine the arguments of the memory operations. We
have successfully tested this approach with the UVC camera
driver and the majority of ioctl commands in Radeon GPU
driver.

However, this approach is not applicable if the driver per-
forms memory operations other than simple copying of a
data structure, or if the driver does not use the OS-provided
macros. For example, for some Radeon driver ioctl com-
mands, the driver performs nested copies, in which the data
from one copy operation is used as the input arguments for
the next one. Therefore, we provide a second solution that
can identify such memory operations. For this solution, we
develop a static analysis tool that analyzes the unmodified
driver and extracts a simplified part of its ioctl handler.
This code extract has no external dependencies and can even
be executed without the presence of the actual device. We
then execute this code offline and generate the arguments
of legitimate memory operations in the form of static en-
tries in a source file that is included in the CVD frontend.
Given an ioctl command, the CVD frontend can look up
these entries to find the legitimate operations. However, of-
fline execution is impossible for some memory operations,
such as the nested copies mentioned above. In this case, the
CVD frontend identifies the memory operation arguments
just-in-time by executing the extracted code at runtime. Our
tool correctly analyzes the Radeon GPU driver. It detects
instances of nested copies in 14 ioctl commands in the
Radeon driver. For these commands, it automatically gen-
erates about 760 lines of extracted code from the driver that
are added to the source file used by the CVD frontend.

The memory operations executed by the driver for each
ioctl command rarely change across driver updates be-
cause any such changes can break application compatibil-
ity. Therefore, the existing code and entries in the source file
generated by our tool do not need to be updated with every

driver update. However, newer ioctl commands might be
added to a driver, which then need to be analyzed by our tool.
Our investigation of Radeon drivers of Linux kernel 2.6.35
and 3.2.0 confirms this arguments as the memory operations
of common ioctl commands are identical in both drivers,
while the latter has four new ioctl commands.

4.2 Device Data Isolation
Guest VM processes exchange data with the I/O device. De-
vice data isolation requires such data to be isolated and not
accessible to other guest VMs. Processes’ data may either be
on the device memory, or on the driver VM system memory,
which can be accessed by the device through DMA. Isolat-
ing these data is challenging since the driver VM is com-
promised, and hence the malicious VM has full access to
driver VM system memory and to the device memory. We
enforce device data isolation in the hypervisor by protecting
the device memory and part of the driver VM system mem-
ory from the driver VM for hosting the guest VMs’ data. We
then split the protected memory into non-overlapping mem-
ory regions for each guest VM’s data, and then assign ap-
propriate access permissions to these regions, as illustrated
in Figure 1(d). The CPU code in the driver VM, including
the device driver, does not have permission to read these
memory regions. Each guest VM has access to its own mem-
ory region only (through the memory operations executed by
the hypervisor), and the device has access permission to one
memory region at a time.

This set of access permissions prevents a malicious guest
VM from stealing the data of another guest VM because it
stops the following attacks: first, the malicious VM cannot
use the hypervisor API to access the data buffers allocated
for other VMs because the hypervisor prohibits that. Second,
the malicious VM cannot use the compromised driver VM
to read the data buffer, because the driver VM does not
have read permission to the memory regions. Finally, the
malicious VM cannot program the device to copy the buffer
outside a memory region because the device can only access
one memory regions at a time.

When adding device data isolation support to a driver, we
need to determine which guest VM’s data buffers are sensi-
tive and need to be protected. For example for GPU, we pro-
tected all the raw data that guest VMs share with the GPU in-
cluding the graphics textures and GPGPU input data. Some
data that are moved from the guest applications to driver VM
are not sensitive and do not need to be protected. For exam-
ple, most ioctl data structures are mainly instructions for
the driver and do not contain raw application data. After de-
termining the sensitive data, we use the hypervisor to protect
them. It is then important to make sure that the driver does
not try to read the data, otherwise the driver VM crashes.
Indeed, we observed that all the sensitive data that we de-
termined for the GPU were never read by the driver. They
were only accessed by the device itself or by the process,
making it easy to add device data isolation. In case a driver

normally reads the sensitive data, it needs to be modified to
avoid that access in order to be compatible with device data
isolation in Paradice. Finally, we need a policy to tell the
hypervisor which data buffers to protect. We observed that
most applications typically use mmap to move sensitive data
buffers to/from the device mainly because it provides bet-
ter performance compared to copying. For example with the
Radeon driver, applications only use mmap to move graphics
textures and GPGPU input data to the device. As a result,
we currently use a simple policy in the hypervisor to enforce
isolation for mapped buffers only. More sophisticated poli-
cies that enforce isolation for other sensitive data, that are
for example copied from the guest VM to the driver VM, are
also possible.

Next, we explain how the hypervisor enforces the access
permissions. Access permissions for the driver VM are en-
forced by removing the EPT read permission for the pro-
tected memory regions. This technique is adequate since
both the system and the device memory need to be mapped
by EPTs in order to be accessible to the driver VM.

System memory access permissions for the device are
enforced using the IOMMU. Normally with device assign-
ment, the hypervisor programs the IOMMU to allow the de-
vice to DMA to all physical addresses in the driver VM. For
device data isolation, the hypervisor does not initially cre-
ate any mappings in the IOMMU. The IOMMU mappings
are added per request from the device driver. When asking
to add a page to the IOMMU, the driver needs to attach the
corresponding memory region ID. The hypervisor maintains
a list of which pages have been mapped in IOMMU for each
region. Whenever the device needs to work with the data of
one guest VM, the driver asks the hypervisor to switch to the
corresponding memory region. When switching the region,
the hypervisor unmaps all the pages of the previous region
from the IOMMU and maps the pages of the new region.

Enforcing device memory access permissions for the de-
vice requires device-specific solutions. For the Radeon Ever-
green series (including the HD 6450), we leveraged the GPU
memory controller, which has two registers that set the lower
and upper bounds of device memory accessible to the GPU
cores. The hypervisor takes full control of the GPU memory
controller registers and does not map them into the driver
VM, so that it can enforce the accessible device memory for
the GPU at any time. If the GPU tries to access memory out-
side these bounds, it will not succeed. Note that this solution
partitions and shares the GPU memory between guest VMs
and can affect the performance of guest applications that re-
quire more memory than their share.

5. Implementation
We implement Paradice for the Xen hypervisor, 32-bit x86
architecture with Physical Address Extension (PAE), and
Linux and FreeBSD OSes. The implementation is modular
and can be revised to support other hypervisors, architec-

Class

Class-
spec.
code
(LoC)

Device Name Driver Name

GPU 92

Disc. ATI Radeon HD 6450 DRM/Radeon
Disc. ATI Radeon HD 4650 DRM/Radeon
Int. ATI Mobility Radeon X1300(*) DRM/Radeon
Int. Intel Mobile GM965/GL960(*) DRM/i915

Input 58 Dell USB Mouse evdev/usbmouse
Dell USB Keyboard evdev/usbkbd

Camera 43 Logitech HD Pro Webcam C920 V4L2/UVC
Logitech QuickCam Pro 9000 V4L2/UVC

Audio 37 Intel Panther Point HD Audio Cont. PCM/snd-hda-intel
Ethernet 21 Intel Gigabit Adapter netmap/e1000e

Table 1. I/O devices paravirtualized by our Paradice proto-
type with very small class-specific code. For correct compar-
ison, we do not include the code for device data isolation and
graphics sharing. Those can be found in Table 2. (*) marks
the devices that we have tested only with our previous sys-
tem design, devirtualization (§3.1). We include them here to
show that the device file boundary is applicable to various
device makes and models.

tures, and Unix-like OSes. It virtualizes various GPUs, input
devices (such as keyboard and mouse), cameras, a speaker,
and an Ethernet card for netmap, all with about 7700 LoC,
of which only about 900 LoC are specific to device classes.
Moreover, around 400 lines of this class-specific code are
for device data isolation for GPU. Table 1 shows the list of
devices that we have paravirtualized with Paradice. Table 2
breaks down the Paradice code structure. We use CLOC [3]
(v1.56) for counting code. We do not count comments or de-
bugging code.

5.1 Paradice Architecture Details
Common Virtual Driver (CVD): The CVD frontend and
backend constitute a large portion of the implementation
consist of two parts each. The first part implements the in-
terface to the hypervisor, e.g., invoking the hypervisor API
in the backend, or sharing a grant table with the hypervisor
in the frontend. The second part interacts with the OS ker-
nel only, e.g., by invoking the device driver’s file operation
handlers in the backend, or by handling (and forwarding) the
file operations in the frontend.

The CVD frontend and backend use shared memory
pages and inter-VM interrupts to communicate. The fron-
tend puts the file operation arguments in a shared page, and
uses an interrupt to inform the backend to read them. The
backend communicates the return values of the file oper-
ation in a similar way. Because interrupts have noticeable
latency (§6.1.1), CVD supports a polling mode for high-
performance applications such as netmap. In this mode, the
frontend and backend both poll the shared page for 200µs
before they go to sleep to wait for interrupts. The polling
period is chosen empirically and is not currently optimized.
Moreover, for asynchronous notifications (§2.1), the CVD
backend uses similar techniques to send a message to the
frontend, e.g., when the keyboard is pressed.

Type Total LoC Platform Component LoC

Generic 6833

Linux

CVD:
- frontend 1553
- backend 1950
- shared 378
Linux kernel wrapper stubs 198
Virtual PCI module 285
- Supporting kernel code 50

FreeBSD

FreeBSD CVD frontend:
- New code (approx.) 451
- From Linux CVD (approx.) 758
(not calculated in the total)
- Supporting kernel code 15
Virtual PCI module 74
- Supporting kernel code 29

Xen Paradice API 1349
Clang Driver ioctl analyzer 501

Class-
specific 825

Linux

Device info modules:
- GPU 92
- input device 58
- camera 43
- audio device 37
- Ethernet (netmap) 21
Graphics sharing code 145
- Supporting DRM driver code 15
Data isol. for Radeon driver 382

FreeBSD Device info modules:
- Ethernet (netmap) 32

Table 2. Paradice code breakdown.

The CVD frontend uses a grant table to declare the legiti-
mate memory operations to the hypervisor (§4.1). The grant
table is a single memory page shared between the frontend
VM and the hypervisor. After storing the operations in the
table, the CVD frontend generates a grant reference number
and forwards it to the backend along with the file operation.
The backend then needs to attach the reference to every re-
quest for the memory operations of that file operation. The
reference number acts as an index and helps the hypervisor
validate the operation with minimal overhead.

The CVD backend puts new file operations on a wait-
queue to be executed. We use separate wait-queues for each
guest VM. We also set the maximum number of queued op-
erations for each wait-queue to 100 to prevent malicious
guest VMs from causing denial-of-service problems by is-
suing too many file operations. We can modify this cap for
different queues for better load balancing or enforcing prior-
ities between guest VMs.

Device Info Modules: As mentioned in §2.1, applica-
tions may need some information about the device before
they can use it. In Paradice, we extract device information
and export it to the guest VM by providing a small kernel
module for the guest OS to load. Developing these modules
is easy because they are small, simple, and not performance-
sensitive. For example, the device info module for GPU has
about 100 LoC, and mainly provides the device PCI configu-
ration information, such as the manufacturer and device ID.
We also developed modules to create or reuse a virtual PCI
bus in the guest for Paradice devices.

Device File Interface Compatibility: Paradice supports
guest VMs using different versions of Unix-like OSes in one
physical machine. For example, we have successfully de-
ployed Paradice with a Linux driver VM, a FreeBSD guest

VM and a Linux guest VM running a different major version
of Linux (versions 2.6.35 and 3.2.0). To support a different
version of Linux, we added only 14 LoC to the CVD to up-
date the list of all possible file operations based on the new
kernel (although none of the new file operations are used by
the device drivers we tested). To support FreeBSD, we re-
developed the CVD frontend with about 450 new LoC and
about 760 LoC from the Linux CVD frontend implementa-
tion. To support mmap and its page fault handler, we added
about 12 LoC to the FreeBSD kernel to pass the virtual ad-
dress range to the CVD frontend, since these addresses are
needed by the Linux device driver and by the Paradice hy-
pervisor API.

Concurrency Support: As mentioned in §3.2.3, the de-
vice file interface allows for concurrent access from multiple
processes if the driver supports it. We define the policies for
how each device is shared. For GPU for graphics, we adopt a
foreground-background model. That is, only the foreground
guest VM renders to the GPU, while others pause. We assign
each guest VM to one of the virtual terminals of the driver
VM, and the user can easily navigate between them using
simple key combinations. For input devices, we only send
notifications to the foreground guest VM. For GPU for com-
putation (GPGPU), we allow concurrent access from multi-
ple guest VMs. For camera and Ethernet card for netmap, we
only allow access from one guest VM at a time because their
drivers do not support concurrent access. Note that Paradice
will automatically support sharing of these devices too if
concurrency support is added to their drivers, as is the plan
for netmap (see [43]).

5.2 Hypervisor-Assisted Memory Operations
Hypervisor supports the two types of memory operations
needed by the device drivers. For copying to/from the pro-
cess memory, the hypervisor first translates the virtual ad-
dresses of the source and destination buffers (which belong
to different VMs) into system physical addresses and then
performs the copy. If the source or destination buffers span
more than one page, the address translation needs to be per-
formed per page since contiguous pages in the VM address
spaces are not necessarily contiguous in the system physi-
cal address space. To perform the translation, the hypervisor
first translates the VM virtual address to the VM physical
address by walking the VM’s own page tables in software. It
then translates the VM physical address to the system phys-
ical address by walking the EPTs.

For mapping a page into the process address space, the
hypervisor fixes the EPTs to map the page to an (arbitrary)
physical page in the guest physical address space, and then
fixes the guest page tables to map the guest physical page
to the requested virtual address in the guest process address
space. We can use any guest physical page address in the
mappings as long as it is not used by the guest OS. The hy-
pervisor finds unused page addresses in the guest and uses
them for this purpose. Moreover, before forwarding the mmap

operation to the backend, the CVD frontend checks the guest
page tables for the mapping address range, and creates all
missing levels except for the last one, which is later fixed
by the hypervisor. This approach provides better compati-
bility with the guest kernel than fixing all the levels of the
guest page tables in the hypervisor. Upon unmapping a pre-
viously mapped page, the hypervisor only needs to destroy
the mappings in the EPTs since the guest kernel destroys the
mappings in its own page tables before informing the device
driver of the unmap.

As mentioned in §3.1, we employ wrapper stubs in the
driver VM kernel to support unmodified device drivers. For
this purpose, we modified 13 Linux kernel functions, e.g.,
the insert pfn function, which maps a page to a process
address space. When the CVD backend invokes a thread
to execute the file operation of a guest VM, it marks the
thread by setting a flag in the thread-specific task struct

data structure. The wrapper stubs will invoke the appropriate
hypervisor API when executed in the context of a marked
thread.

5.3 Isolation between Guest VMs
Fault Isolation: As described in §4.1, we have developed a
static analysis tool to identify the legitimate memory opera-
tions of driver ioctl commands. We implemented this tool
as a standalone C++ application built upon the LLVM com-
piler infrastructure [37] and its C language frontend, Clang
[12]. Using Clang, our tool parses the driver source code into
an Abstract Syntax Tree (AST) and then analyzes the AST to
extract memory operations of interest. Our Clang tool uses
classic program slicing techniques [51] to shrink the source
code by selecting the subset of functions and statements that
affect the input arguments of a given memory operation. This
analysis is almost fully automated, requiring manual anno-
tation only when human knowledge of the code is necessary
to resolve function pointers or other external dependencies.

Device Data Isolation: As mentioned earlier, we added
~400 LoC to the Radeon driver to support the device data
isolation enforced by the hypervisor. Currently, our changes
only support the Radeon Evergreen series (including the
Radeon HD 6450 in our setup), but the code can be eas-
ily refactored to support other Radeon series as well. More-
over, our current implementation has minimal support for
switching between memory regions; improving the switch-
ing is part of our future work.

We made four sets of changes to the driver. (i) In the
driver, we explicitly ask the hypervisor to map pages in
or unmap pages from IOMMU for different memory re-
gions. For better efficiency, we allocate a pool of pages for
each memory region and map them in IOMMU in the ini-
tialization phase. The hypervisor zeros out the pages be-
fore unmapping. (ii) The driver normally creates some data
buffers on the device memory that are used by the GPU,
such as the GPU address translations buffer. We create these
buffers on all memory regions so that the GPU has access to

them regardless of the active memory region. (iii) We unmap
from the driver VM the MMIO page that contains the GPU
memory controller registers used for determining the device
memory accessible by the GPU (§4.2). If the driver needs
to read/write to other registers in the same MMIO page, it
issues a hypercall. (iv) While removing the read permissions
from EPTs of protected memory regions are enough for de-
vice data isolation, we had to remove both read and write
permissions since x86 does not support write-only permis-
sions. In rare cases, the driver needs write permissions to
some memory buffers such as the GPU address translation
buffer. If the buffer is on the system memory, we emulate
write-only permissions by making the buffer read-only to the
device through the IOMMU and giving read/write permis-
sions to the driver VM. If the buffer is on the device memory,
we require the driver VM to issue a hypercall.

For device data isolation, we need to make sure that the
driver VM cannot access the GPU memory content through
any other channels. For this purpose, we studies the regis-
ter programming interface of the Evergreen series, and con-
firmed that the driver cannot program the device to copy the
content of memory buffers to registers that are readable by
the device driver.

We faced one problem with interrupts. Some Radeon se-
ries, including the Evergreen series, use system memory in-
stead of registers to convey the interrupt reason from the de-
vice to the driver. That is, the device writes the reason for
the interrupt to this pre-allocated system buffer and then in-
terrupts the driver. However, to enforce device data isola-
tion, we cannot give the driver read permission to any system
memory buffer that can be written by the device. Therefore,
we currently disable all interrupts, except for the fence inter-
rupt needed to monitor the GPU execution, and then interpret
all interrupts as fences. The main drawback of this approach
is that we cannot support the VSync interrupts, which can be
used to cap the GPU graphics performance to a fixed number
of frames per second. As a possible solution, we are think-
ing of emulating the VSync interrupts in software. We do not
expect high overhead since VSync happens relatively rarely,
e.g., every 16ms for rendering 60 frames per second.

As a guideline for our implementation, we did not add
device-specific code to the hypervisor and implemented the
hypervisor functions in the form of a generic API. In the few
cases that device-specific information was needed, we lever-
aged the driver initialization phase to call generic hypervisor
API to achieve the required function, such as unmapping the
memory controller MMIO page from the driver VM. Since
no guest VM can communicate with the driver before the
initialization phase is over, we assume that the driver is not
malicious in this phase. We believe this approach is superior
to implementing such device-specific functions in the hyper-
visor because it minimizes the new code in the hypervisor
and improves the system reliability as a whole.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 4 16 64 256

T
X

 R
at

e
(M

P
P

S
)

Batch Size (Packets)

Native

Device-Assign.

Paradice

Paradice(FL)

Paradice(P)

Figure 2. netmap transmit rate with 64 byte packets. (FL)
indicates FreeBSD guest VM using a Linux driver VM. (P)
indicates the use of polling mode in Paradice.

 0

 50

 100

 150

 200

VBO VA DL

F
ra

m
es

 P
er

 S
ec

o
n
d

Native

Device-Assign.

Paradice

Paradice(P)

Figure 3. OpenGL benchmarks FPS. VBO, VA, and DL
stand for Vertex Buffer Objects, Vertex Arrays, and Display
Lists. (P) indicates the use of polling mode in Paradice.

6. Evaluation
Using the implementation described above, we evaluate
Paradice and show that it: (i) requires low development ef-
fort to support various I/O devices, shares the device be-
tween multiple guest VMs, and supports legacy devices;
(ii) achieves close-to-native performance for various devices
and applications, both for Linux and FreeBSD guest VMs;
and (iii) provides fault and device data isolation without in-
curring noticeable performance degradation.

Before we evaluate the performance of Paradice, we
demonstrate that Paradice achieves the desired properties
mentioned in §1. First, supporting new I/O devices with
Paradice is easy and only requires developing small device
info modules for new device classes (Table 2). These mod-
ules typically took us only a few person-hours each to imple-
ment. It took us a few person-weeks to add device data iso-
lation support to the Radeon driver, a very complex drivers
with ~111000 LoC in Linux 3.2. A big portion of this time
was spent on implementing the supporting hypervisor code,
therefore, we anticipate less development effort to add de-
vice data isolation to other drivers.

Second, Paradice effectively shares I/O devices between
guest VMs (§3.2.3). For example in one experiment, we ran
two guest VMs, one executing a 3D HD game and the other
one running an OpenGL application, both sharing the GPU
based on our foreground-background model (§5.1). In the
next section, we show the performance of GPU when used
by more than one VM for GPGPU computations.

Third, Paradice supports legacy devices. None of the de-
vices that we have successfully virtualized so far have hard-
ware support for virtualization.

6.1 Performance
In this section, we quantify the overhead and performance
of Paradice. We compare the performance of Paradice with
the native performance (when an application is executed na-
tively on the same hardware), as well as with the perfor-
mance of direct device assignment (when an application is
executed in a VM with direct access to the I/O device). The

performance of direct device assignment is the upper-bound
on the performance of Paradice due to our use of device as-
signment to sandbox the device and its driver.

For our experiment setup, we use a desktop with a quad-
core Intel Core i7-3770 CPU, 8GB of DDR3 memory, and
an ASRock Z77 Extreme6 motherboard. For I/O devices,
we use a Radeon HD 6450 GPU connected to a 24” Dell
LCD for both graphics and GPGPU benchmarks, Intel Giga-
bit Network Adapter for netmap, Dell mouse, Logitech HD
Pro Webcam C920, and the on-board Intel Panther Point HD
Audio Controller for speaker. We configure the VMs with
one virtual CPU and 1GB of memory. For device data isola-
tion between two guest VMs, we split the 1GB GPU mem-
ory between two memory regions, therefore, all the bench-
marks with data isolation can use a maximum of 512MB of
GPU memory. As the default configuration for Paradice, we
use the interrupts for communication, Linux guest VM and
Linux driver VM, and do not employ device data isolation.
Other configurations will be explicitly mentioned.

6.1.1 Overhead Characterization
There are two potential sources of overhead that can degrade
Paradice’s performance compared to native: the added la-
tency to forward a file operation from the application to the
driver and isolation.

We first measure the added latency using a simple no-op
file operation, where the CVD backend immediately returns
to the frontend upon receiving the operation. The average
of 1 million consecutive no-op operations shows that the
added latency is around 35µs, most of which comes from
two inter-VM interrupts. With the polling mode, this latency
is reduced to 2µs.

The overhead of isolation comes from both fault and de-
vice data isolation. The main overhead of fault isolation is
sandboxing the device and the driver. Therefore, this over-
head is equal to the performance difference between native
and direct device assignment. In all the benchmarks below,
we report the performance of direct device assignment as
well and show that it is almost identical to native; hence,

 0

 10

 20

 30

 40

 50

 60

 70

 80

800x600 1024x768 1280x10241680x1050

F
ra

m
e
s
 P

e
r

S
e
c
o
n
d

(a) Tremulous

 0

 10

 20

 30

 40

 50

 60

 70

 80

800x600 1024x768 1280x10241680x1050

Native
Device-Assign.

Paradice
Paradice(DI)

(b) OpenArena

 0

 10

 20

 30

 40

 50

 60

 70

 80

800x600 1024x768 1280x10241680x1050

(c) Nexuiz

Figure 4. 3D HD games FPS at different resolutions. (DI) indicates the use device data isolation in Paradice.

fault isolation has no noticeable overhead on our bench-
marks. The overhead of data isolation is mainly due to addi-
tional hypercalls issued by the driver. However, we show that
this overhead does not noticeably impact the GPU’s perfor-
mance either, both for graphics and computation. We have
not, however, quantified the impact of partitioning the GPU
memory for device data isolation on applications requiring
high amounts of GPU memory.

6.1.2 Ethernet Card for netmap
We evaluate the performance of netmap, a framework that
can send and receive packets at the line rate on 1 and 10 giga-
bit Ethernet cards [43]. We use the netmap packet generator
application that transmits fixed-size packets as fast as possi-
ble. In each experiment, we transmit 10 million packets and
report the transmit rate. We run two sets of experiments for
Paradice: one with Linux guest VM and Linux driver VM,
and another with FreeBSD guest VM and Linux driver VM.

Figure 2 shows that Paradice can achieve a transmit rate
close to that of native and device assignment. The figure
shows the netmap transmit rate for 64-byte packets and for
different packet batch sizes. The packet generator issues one
poll file operation per batch, therefore, increasing the batch
size improves the transmit rate as it amortizes the cost of
the poll system call and, more importantly, the cost of for-
warding the poll file operation in Paradice. When using the
polling mode, a minimum batch size of 4 allows Paradice to
achieve similar performance to native. However, with inter-
rupts, a minimum batch size of around 30 is required. The
figures also shows that both Linux and FreeBSD guest VMs
achieve similarly high performance. Moreover, our experi-
ments, not shown here, show that Paradice can maintain a
transmit rate close to native for different packet sizes.

6.1.3 GPU for Graphics
We evaluate the performance of 3D HD games and OpenGL
applications. In all evaluations, we report the standard
Frames Per Second (FPS) metric. We also disable the GPU
VSync feature, which would otherwise cap the GPU FPS to
60 (display refresh rate).

We use three 3D first-person shooter games: Tremu-
lous [8], OpenArena [15], and Nexuiz [7], which are all
widely used for GPU performance evaluation [14]. For all
games, we use the Phoronix Test Suite engine [16] (v3.6.1),
a famous test engine that automatically runs a demo of the
game for a few minutes, while stressing the GPU as much as
possible. We test the games at all possible resolutions.

We also use some OpenGL benchmarks in our experi-
ments. The benchmarks use different OpenGL API including
Vertex Buffer Objects, Vertex Arrays, and Display Lists [13,
18] to draw a full-screen teapot that consists of about 6000
polygons. In each experiment, we run the benchmark for 3
minutes and measure the average FPS.

Figures 3 and 4 show the results. There are four important
observations. First, Paradice achieves close performance to
native and device assignment for various benchmarks, in-
cluding OpenGL benchmarks and 3D HD games. Second,
Paradice (with interrupts) achieves relatively better perfor-
mance for more demanding 3D games that it does for sim-
pler OpenGL benchmarks. This is because Paradice adds
a constant overhead to the file operations regardless of the
benchmark load on the GPU. Therefore, for 3D games that
require more GPU time to render each frame, it incurs a
lower percentage drop in performance. Third, Paradice with
polling can close this gap and achieve close-to-native perfor-
mance for all the benchmarks. Finally, data isolation has no
noticeable impact on performance.

6.1.4 GPU for Computation
We evaluate the performance of OpenCL applications. We
use the Gallium Compute implementation of OpenCL [5]
and use an OpenCL program that multiplies two square ma-
trices of varying orders. We run the benchmark for different
matrix orders and measure the experiment time, i.e., the time
from when the OpenCL host code sets up the GPU to execute
the program until when it receives the resulting matrix.

Figure 5 shows the results. It shows that Paradice perfor-
mance is almost identical to native and device assignment.
Moreover, the figure shows that device data isolation has no

 0.1

 1

 10

 100

1 100 500 1000

E
x
p
er

im
en

t
T

im
e

(S
ec

o
n
d
s)

Square Martix Order

Native

Device-Assign.

Paradice

Paradice(DI)

Figure 5. OpenCL matrix multiplication benchmark results.
The x-axis shows the order of the input square matrices. (DI)
indicates the use device data isolation in Paradice.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3

E
x
p
er

im
en

t
T

im
e

(S
ec

o
n
d
s)

Number of Guest VMs

VM1

VM2

VM3

Figure 6. Guest VMs concurrently running the OpenCL
matrix multiplication benchmark on a GPU shared through
Paradice. The matrix order in this experiment is 500.

noticeable impact on performance. The reason for the high
Paradice performance is that OpenCL benchmarks issue few
file operations, and most of the experiment time is spent by
the GPU itself.

We also measure the performance of the same OpenCL
benchmark when executed from more than one guest VM
concurrently on the same GPU. For this experiment, we use
a matrix order of 500 and execute the benchmark 5 times
in a row from each guest VM simultaneously and report the
average experiment time for each guest VM. Figure 6 shows
that the experiment time increases almost linearly with the
number of guest VMs. This is because the GPU processing
time is shared between the guest VMs.

6.1.5 Mouse
We measure the latency of the mouse. Our results show
that native, direct assignment, Paradice using interrupts, and
Paradice using polling achieve about 39µs, 55µs, 296µs, and
179µs of latency, respectively, no matter how fast the mouse
moves. The extra latency of Paradice does not result in a
human-perceivable difference since the latency is well below
the 1ms latency required for input devices [17]. Much of the
latency in Paradice comes from the communication between
the CVD frontend and backend, and therefore, the polling
mode reduces the latency significantly. We note that the most
accurate way of measuring the latency of input devices is to
measure the elapsed time between when the user interacts
with the device, e.g., moves the mouse, and when this event
shows up on the screen. However, such measurement is very
difficult, especially for the mouse, which generates many
events in a short time period. Instead, we measure the time
from when the mouse event is reported to the device driver to
when the read operation issued by the application reaches
the driver.

6.1.6 Camera & Speaker
We run the GUVCview [6] camera applications in the three
highest video resolutions supported by our test camera for
MJPG output: 1280×720, 1600×896, and 1920×1080. For

all the resolutions, native, device assignment, and Paradice
achieve about 29.5 FPS.

We play the same audio file on our test speaker. Native,
device assignment, and Paradice all take the same amount of
time to finish playing the file, showing that they all achieve
similar audio rates.

7. Related Work
7.1 I/O Virtualization
Paradice is an I/O paravirtualization solution. Existing par-
avirtualization solutions [22, 27, 28, 44] only support one
device class, and require significant development effort to
support new device classes and features. In addition to par-
avirtualization, there are three main solutions for I/O virtu-
alization in whole system virtualization. Emulation [23, 47]
is known to have poor performance. Direct Device Assign-
ment [19, 24, 30, 39] provides high performance by allow-
ing the VM to directly own and access the physical devices;
however, it can only support a single VM. Paradice, in fact,
leverages device assignment in its design by assigning the
I/O device to the driver VM (§3.1), but it allows multiple
guest VMs to share the device, which is not possible with
device assignment alone. Self-virtualization [26, 42, 52] re-
quires virtualization support in the I/O device hardware, e.g.,
[10, 11], and therefore does not apply to legacy devices. Ta-
ble 3 compares different I/O virtualization solutions.

Cells [21] employs user space virtualization and virtual-
izes I/O devices in the Android OS. A virtual phone in Cells
has its own user space, but shares the kernel with other vir-
tual phones hence resulting in weaker isolation compared to
whole system virtualization targeted by Paradice.

Some solutions provide GPU framework virtualization by
remoting OpenGL [32, 36, 46] or CUDA [45] APIs. These
solutions are more limited than Paradice because they are
only applicable to those particular frameworks.

7.2 Other Related Work
Paradice allows the guest to reuse the device drivers with
a common indirection layer. It therefore provides a useful

High Low Develop. Device Legacy
Performance Effort Sharing Device

Emulation No No Yes Yes
Direct I/O Yes Yes No Yes

Self Virt. Yes Yes Yes
(limited) No

Paravirt. Yes No Yes Yes
Paradice Yes Yes Yes Yes

Table 3. Comparing I/O virtualization solutions. “Paravirt.”
indicates paravirtualization solutions other than Paradice.

way to leverage device drivers since driver development is
complicated and bug-prone [25, 48]. There have been related
efforts in reusing device drivers. LeVasseur et al. [38] exe-
cute the device driver in a separate virtual machine and allow
other guests to communicate with this VM for driver sup-
port. They demonstrate support for network and block de-
vices and use device class-specific interfaces, i.e., the trans-
lation modules, for the guest to communicate with the driver.
In contrast, Paradice supports a different set of I/O devices,
while building the virtualization boundary on device files, a
common interface for many I/O devices, thus significantly
reducing the development effort.

iKernel [50] and VirtuOS [40] run device drivers in VMs
to improve system reliability. They are therefore different
from Paradice that is designed for I/O paravirtualization. iK-
ernel forwards the file operations from the host to a driver
VM. It demonstrates support for a simple LED device, un-
like Paradice that supports sophisticated I/O devices such
as GPU. Moreover, iKernel authors do not report support
for the mmap file operation, which is used by many device
drivers.

Willman et al. [53] propose different strategies to use the
IOMMU to provide protection when VMs are given direct
access to devices with DMA capability. However, Paradice’s
use of the IOMMU to isolate the data of guest VMs shared
with I/O devices is not addressed in [53].

Plan 9 distributed system [41] uses files to share re-
sources, including I/O devices, between machines. In con-
trast, Paradice uses device files for I/O paravirtualization
for Unix-like OSes. Moreover, Plan 9 files do not support
mmap and ioctl file operations, making it difficult to sup-
port modern I/O devices such as GPUs.

8. Limitations of Current Design
Virtualization at the device file boundary is not possible if
the driver does not employ the device file interface to inter-
act with applications. Important examples include network
device drivers that employ sockets and sit below the kernel
network stack, block device drivers that sit below the ker-
nel file systems, and the device drivers that are implemented
completely in the user space. However, as we demonstrated
with netmap, Paradice can still be useful for other frame-
works using these devices.

Paradice does not currently support performance isolation
between the guest VMs that share a device. This has two im-

plications: first, Paradice does not guarantee fair and efficient
scheduling of the device between guest VMs. The solution
is to add better scheduling support to the device driver, such
as in [34]. Second, a malicious guest VM can break the de-
vice by corrupting the device driver and writing unexpected
values into the device registers. One possible solution to this
problem is to detect the broken device and restart it by sim-
ply restarting the driver VM or by using techniques such as
shadow drivers [49].

Paradice cannot currently guarantee the correct behavior
of the I/O device. Malicious guest VMs can use carefully-
designed attacks to cause incorrect performance by the de-
vice, e.g., rendering unwanted content on the screen. One
possible solution is to protect certain parts of the device pro-
gramming interface that allows us to achieve either correct
performance or no performance at all. Taking GPU as an
example, we can consider protecting the command streamer
interface to ensure that an application’s GPU commands ei-
ther execute as expected or do not execute at all.

While we demonstrated Paradice for a bare-metal hyper-
visor, it is also applicable to hosted hypervisors as long as
the driver and device can be sandboxed in a VM using the
device assignment technique.

Paradice currently requires the guest VM and the I/O de-
vice to reside in the same physical machine as it uses the
physical shared memory to execute the driver memory oper-
ations. We are currently working on a DSM-based solution
that allows the guest and driver VM to reside in separate
physical machines, which will then support the migration of
the guest VM while maintaining its access to the I/O device.

Finally, Paradice uses the Unix device file as the paravir-
tualization boundary and hence cannot support non-Unix-
like OSes, most notably, the Windows OS.

9. Conclusions
We have presented Paradice, an I/O paravirtualization solu-
tion that uses a novel boundary, device files, to support many
I/O devices with low engineering effort. We are able to vir-
tualize various GPUs, input devices, cameras, an audio de-
vice, and an Ethernet card (for netmap). Our measurements
show that Paradice achieves close-to-native performance for
various benchmarks such as interactive 3D HD games. We
believe that Paradice opens a new door for I/O virtualization
across computing platforms of various form factors.

Acknowledgments
The work was supported in part by NSF Awards #0923479,
#1054693, and #1218041. The authors would like to thank
Jon Howell from Microsoft Research and Dan Wallach from
Rice University for their feedback on isolation. The authors
would also like to thank Sreekumar Nair, then at Nokia
Research, who first suggested the use of the device file
boundary and contributed significantly to the devirtualiza-
tion project [20].

References
[1] Privilege escalation using NVIDIA GPU driver bug. http:

//www.securelist.com/en/advisories/50085, .

[2] Privilege escalation using DRM/Radeon GPU driver bug.
https://lkml.org/lkml/2010/1/18/106, .

[3] CLOC. http://cloc.sourceforge.net/.

[4] OMAP4 Face Detection Module, Chapter 9 of the TRM.
http://focus.ti.com/pdfs/wtbu/OMAP4460_ES1.0_

PUBLIC_TRM_vF.zip.

[5] GalliumCompute. http://dri.freedesktop.org/wiki/

GalliumCompute/.

[6] Guvcview. http://guvcview.sourceforge.net/.

[7] Nexuiz. http://www.alientrap.org/games/nexuiz.

[8] Tremulous. http://www.tremulous.net/.

[9] Everything is a file in Unix. http://ph7spot.com/

musings/in-unix-everything-is-a-file.

[10] VGX. http://www.nvidia.com/object/vgx-

hypervisor.html.

[11] VMDq. http://www.intel.com/content/www/us/en/

network-adapters/gigabit-network-adapters/io-

acceleration-technology-vmdq.html.

[12] Clang: a C Language Family Frontend for LLVM. http:

//clang.llvm.org/.

[13] OpenGL Microbenchmarks: Display List. http://www.

songho.ca/opengl/gl_displaylist.html.

[14] GPU Benchmarking. http://www.phoronix.com/scan.

php?page=article&item=virtualbox_4_opengl&num=

2.

[15] OpenArena. http://openarena.ws/smfnews.php.

[16] Phoronix Test Suite. http://www.phoronix-test-

suite.com/.

[17] Touchscreen Latency. http://www.engadget.com/2012/

03/10/microsoft-cuts-touchscreen-lag-to-1ms/.

[18] OpenGL Microbenchmarks: Vertex Buffer Object and Vertex
Array. http://www.songho.ca/opengl/gl_vbo.html.

[19] D. Abramson. Intel Virtualization Technology for Directed
I/O. Intel Technology Journal, 10(3):179–192, 2006.

[20] A. Amiri Sani, S. Nair, L. Zhong, and Q. Jacobson. Making
I/O Virtualization Easy with Device Files. Technical Report
2013-04-13, Rice University, 2013.

[21] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells:
a Virtual Mobile Smartphone Architecture. In Proc. ACM
SOSP, 2011.

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proc. ACM SOSP, 2003.

[23] F. Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX ATC, FREENIX Track, 2005.

[24] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B. A.
Yassour. The Turtles Project: Design and Implementation of
Nested Virtualization. In Proc. USENIX OSDI, 2010.

[25] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
Empirical Study of Operating Systems Errors. In Proc. ACM
SOSP, 2001.

[26] Y. Dong, Z. Yu, and G. Rose. SR-IOV Networking in Xen:
Architecture, Design and Implementation. In Proc. USENIX
Workshop on I/O Virtualization (WIOV), 2008.

[27] M. Dowty and J. Sugerman. GPU Virtualization on VMware’s
Hosted I/O Architecture. ACM SIGOPS Operating Systems
Review, 2009.

[28] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe Hardware Access with the Xen Virtual
Machine Monitor. In Proc. Wrkshp. Operating System and
Architectural Support for the On demand IT InfraStructure
(OASIS), 2004.

[29] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP
Kernel Crash Analysis. In Proc. USENIX LISA, 2006.

[30] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
D. Tsafrir, and A. Schuster. ELI: Bare-Metal Performance for
I/O Virtualization. In Proc. ACM ASPLOS, 2012.

[31] A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and
A. Traeger. Towards Exitless and Efficient Paravirtual I/O.
In Proc. SYSTOR, 2012.

[32] J. G. Hansen. Blink: Advanced Display Multiplexing for Vir-
tualized Applications. In Proc. ACM Network and Operat-
ing System Support for Digital Audio and Video (NOSSDAV),
2007.

[33] N. HarEl, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger,
and R. Ladelsky. Efficient and Scalable Paravirtual I/O Sys-
tem. In Proc. USENIX ATC, 2013.

[34] S. Kato, K. Lakshmanan, R. R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU Scheduling for Real-time Multi-tasking En-
vironments. In Proc. USENIX ATC, 2011.

[35] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the Linux Virtual Machine Monitor. In Proc. Linux
Symposium, 2007.

[36] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. D.
Lara. VMM-Independent Graphics Acceleration. In Proc.
ACM VEE, 2007.

[37] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proc.
IEEE Int. Conf. on Code Generation and Optimization, 2004.

[38] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
Device Driver Reuse and Improved System Dependability via
Virtual Machines. In Proc. USENIX OSDI, 2004.

[39] J. Liu, W. Huang, B. Abali, and D. K. Panda. High Per-
formance VMM-Bypass I/O in Virtual Machines. In Proc.
USENIX ATC, 2006.

[40] R. Nikolaev and G. Back. VirtuOS: An Operating System with
Kernel Virtualization. In Proc. ACM SOSP, 2013.

[41] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9,
a Distributed System. In Proc. of the Spring 1991 EurOpen
Conf., 1991.

[42] H. Raj and K. Schwan. High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices. In Proc. ACM
HPDC, 2007.

[43] L. Rizzo. netmap: a Novel Framework for Fast Packet I/O. In
Proc. USENIX ATC, 2012.

[44] R. Russel. virtio: Towards a De-Facto Standard for Virtual I/O
Devices. ACM SIGOPS Operating Systems Review, 2008.

[45] L. Shi, H. Chen, and J. Sun. vCUDA: GPU Accelerated High
Performance Computing in Virtual Machines. In IEEE Int.
Symp. Parallel & Distributed Processing, 2009.

[46] C. Smowton. Secure 3D Graphics for Virtual Machines. In
Proc. ACM European Wrkshp. System Security, 2009.

[47] J. Sugerman, G. Venkitachalam, and B. H. Lim. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual Ma-
chine Monitor. In Proc. USENIX ATC, 2001.

[48] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proc. ACM
SOSP, 2003.

[49] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering Device Drivers. In Proc. USENIX OSDI, 2004.

[50] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle,
F. M. David, and R. H. Campbell. iKernel: Isolating buggy
and malicious device drivers using hardware virtualization
support. In Proc. IEEE Int. Symp. Dependable, Autonomic
and Secure Computing (DASC), 2007.

[51] M. Weiser. Program slicing. In Proc. IEEE Int. Conf. on
Software engineering.

[52] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L.
Cox, and W. Zwaenepoel. Concurrent Direct Network Access
for Virtual Machine Monitors. In Proc. IEEE High Perfor-
mance Computer Architecture (HPCA), 2007.

[53] P. Willmann, S. Rixner, and A. L. Cox. Protection Strate-
gies for Direct Access to Virtualized I/O Devices. In Proc.
USENIX ATC, 2008.

