
IBM COBOL for MVS & VM
IBM COBOL Set for AIX
IBM VisualAge COBOL IBM

Language Reference

 SC26-4769-04

IBM COBOL for MVS & VM
IBM COBOL Set for AIX
IBM VisualAge COBOL IBM

Language Reference

 SC26-4769-04

 Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page x.

Fifth Edition (November 1998, softcopy only)

This edition applies to:

IBM COBOL for MVS & VM Version 1 Release 2 Modification 2 (Program Number 5688-197)
IBM COBOL Set for AIX Release 1 (Program Number 5765-548)
IBM VisualAge COBOL Version 2.2 (Program Number 5639-B92)

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition also applies to:

IBM COBOL for OS/390 & VM Version 2 Release 1 Modification 1 (Program Number 5648-A25)

When using this edition for IBM COBOL for OS/390 & VM, treat references to MVS as if they were references to
OS/390.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

Editions marked “softcopy only” cannot be ordered as printed publications. For information about obtaining these edi-
tions, see “Softcopy Publications for IBM COBOL” on page 576.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . x
Programming Interface Information . x
Trademarks . xi

About This Book . xii
IBM Extensions . xii
Obsolete Language Elements . xii
How to Read the Syntax Diagrams . xiii
DBCS Notation . xv
Acknowledgment . xvi

Summary of Changes . xvii
| Fifth Edition (November 1998, Softcopy Only) xvii

Fourth Edition (April 1998) . xvii
Third Edition (July 1996, Softcopy Only) . xviii
Second Edition (October 1995) . xviii

Extensions for Object-Oriented COBOL (MVS, AIX, and OS/2 Only) xviii
Extensions for Interoperability (MVS, VM, AIX, and OS/2) xix
Support for COBOL on AIX and OS/2 . xix

Part 1. COBOL Language Structure . 1

Characters . 2
Character-Strings . 3
Figurative Constants . 8
Special Registers . 10
Literals . 20
Separators . 28

Sections and Paragraphs . 30
Statements and Clauses . 30

Reference Format . 32
Sequence Number Area . 32
Indicator Area . 32
Area A . 33
Area B . 34
Area A or Area B . 37

Scope of Names . 39
Types of Names . 39
External and Internal Resources . 42
Resolution of Names . 43

 Copyright IBM Corp. 1991, 1998 iii

Millennium Language Extensions and Date Fields
Millennium Language Extensions Syntax
Terms and Concepts

COBOL Class Definition Structure

COBOL Method Definition Structure

CLASS-ID Paragraph
METHOD-ID Paragraph

REPOSITORY Paragraph

Referencing Data Names, Copy Libraries, and Procedure Division Names . 44
Uniqueness of Reference . 44

Transfer of Control . 56

. 58
. 58

. 59

Part 2. COBOL Source Unit Structure . 63

COBOL Program Structure . 64
Nested Programs . 66

. 69

. 71

Part 3. Identification Division . 73

Identification Division . 74
PROGRAM-ID Paragraph . 77

 . 79
 . 81

Optional Paragraphs . 83

Part 4. Environment Division . 85

Configuration Section . 86
SOURCE-COMPUTER Paragraph . 87
OBJECT-COMPUTER Paragraph . 88
SPECIAL-NAMES Paragraph . 89
ALPHABET Clause . 92
SYMBOLIC CHARACTERS Clause . 95
CLASS Clause . 95
CURRENCY SIGN Clause . 96

 . 98

Input-Output Section . 100
FILE-CONTROL Paragraph . 102
SELECT Clause . 106
ASSIGN Clause . 106
RESERVE Clause . 110
ORGANIZATION Clause . 111
PADDING CHARACTER Clause . 114
RECORD DELIMITER Clause . 114

iv COBOL Language Reference

PASSWORD Clause
LOCK MODE Clause (OS/2 VSAM Files Only)

APPLY WRITE-ONLY Clause

Local-Storage Section

RECORDING MODE Clause

DATE FORMAT Clause

ACCESS MODE Clause . 115
RECORD KEY Clause . 117
ALTERNATE RECORD KEY Clause . 118
RELATIVE KEY Clause . 119

 . 120
. 120

FILE STATUS Clause . 122
I-O-CONTROL Paragraph . 124
RERUN Clause . 125
SAME AREA Clause . 127
SAME RECORD AREA Clause . 127
SAME SORT AREA Clause . 128
SAME SORT-MERGE AREA Clause . 129
MULTIPLE FILE TAPE Clause . 129

. 129

Part 5. Data Division . 131

Data Division Overview . 132
File Section . 133
Working-Storage Section . 133

 . 135
Linkage Section . 135
Data Types . 136
Data Relationships . 137

Data Division—File Description Entries . 144
File Section . 147
EXTERNAL Clause . 148
GLOBAL Clause . 149
BLOCK CONTAINS Clause . 149
RECORD Clause . 151
LABEL RECORDS Clause . 154
VALUE OF Clause . 155
DATA RECORDS Clause . 155
LINAGE Clause . 155

. 157
CODE-SET Clause . 159

Data Division—Data Description Entry . 161
Format 1 . 161
Format 2 . 162
Format 3 . 162
Level-Numbers . 162
BLANK WHEN ZERO Clause . 164

. 164
EXTERNAL Clause . 170
GLOBAL Clause . 170

Contents v

Requirements for a Method Procedure Division

ENTRY Statement

EXIT METHOD Statement

GOBACK Statement

INVOKE Statement

JUSTIFIED Clause . 171
OCCURS Clause . 172
PICTURE Clause . 178
REDEFINES Clause . 195
RENAMES Clause . 198
SIGN Clause . 200
SYNCHRONIZED Clause . 202
USAGE Clause . 209
VALUE Clause . 217

Part 6. Procedure Division . 223

Procedure Division Structure . 225
. 226

The Procedure Division Header . 227
Declaratives . 230
Procedures . 231
Arithmetic Expressions . 233
Conditional Expressions . 239
Statement Categories . 261
Statement Operations . 264

Procedure Division Statements . 277
ACCEPT Statement . 277
ADD Statement . 282
ALTER Statement . 285
CALL Statement . 287
CANCEL Statement . 294
CLOSE Statement . 296
COMPUTE Statement . 300
CONTINUE Statement . 302
DELETE Statement . 303
DISPLAY Statement . 305
DIVIDE Statement . 309

 . 312
EVALUATE Statement . 313
EXIT Statement . 317

. 318
EXIT PROGRAM Statement . 319

 . 320
GO TO Statement . 321
IF Statement . 323
INITIALIZE Statement . 325
INSPECT Statement . 328

 . 337
MERGE Statement . 345
MOVE Statement . 352
MULTIPLY Statement . 357

vi COBOL Language Reference

DATE-TO-YYYYMMDD
DATEVAL

DAY-TO-YYYYDDD

OPEN Statement . 359
PERFORM Statement . 365
READ Statement . 376
RELEASE Statement . 385
RETURN Statement . 387
REWRITE Statement . 389
SEARCH Statement . 393
SET Statement . 400
SORT Statement . 407
START Statement . 415
STOP Statement . 418
STRING Statement . 420
SUBTRACT Statement . 425
UNSTRING Statement . 428
WRITE Statement . 436

Part 7. Intrinsic Functions . 445

Intrinsic Functions . 447
Specifying a Function . 447
Function Definitions . 454
ACOS . 458
ANNUITY . 459
ASIN . 460
ATAN . 461
CHAR . 462
COS . 463
CURRENT-DATE . 464
DATE-OF-INTEGER . 466

 . 467
 . 468

DAY-OF-INTEGER . 470
 . 471

FACTORIAL . 472
INTEGER . 473
INTEGER-OF-DATE . 474
INTEGER-OF-DAY . 475
INTEGER-PART . 476
LENGTH . 477
LOG . 478
LOG10 . 479
LOWER-CASE . 480
MAX . 481
MEAN . 482
MEDIAN . 483
MIDRANGE . 484
MIN . 485
MOD . 486

Contents vii

UNDATE

YEAR-TO-YYYY
YEARWINDOW

BASIS Statement
CBL (PROCESS) Statement
*CONTROL (*CBL) Statement

DELETE Statement
EJECT Statement

INSERT Statement
READY or RESET TRACE Statement

SERVICE LABEL Statement
SERVICE RELOAD Statement
SKIP1/2/3 Statements
TITLE Statement

Compiler Directives
CALLINTERFACE

NUMVAL . 487
NUMVAL-C . 488
ORD . 490
ORD-MAX . 491
ORD-MIN . 492
PRESENT-VALUE . 493
RANDOM . 494
RANGE . 495
REM . 496
REVERSE . 497
SIN . 498
SQRT . 499
STANDARD-DEVIATION . 500
SUM . 501
TAN . 502

 . 503
UPPER-CASE . 504
VARIANCE . 505
WHEN-COMPILED . 506

 . 508
 . 509

Part 8. Compiler-Directing Statements . 511

Compiler-Directing Statement . 512
 . 512

. 513
. 514

COPY Statement . 516
 . 523

 . 524
ENTER Statement . 524

 . 525
. 526

REPLACE Statement . 527
. 530

. 531
 . 531

 . 532
USE Statement . 533

 . 539
 . 539

Appendixes . 543

Appendix A. Compiler Limits . 544

viii COBOL Language Reference

Appendix B. EBCDIC and ASCII Collating Sequences 548
EBCDIC Collating Sequence . 548
US English ASCII Code Page (ISO 646) . 551

Appendix C. Source Language Debugging 555
Coding Debugging Lines . 555
Coding Debugging Sections . 555
DEBUG-ITEM Special Register . 556
Activate Compile-Time Switch . 556
Activate Object-Time Switch . 556

Appendix D. Reserved Words . 558

Appendix E. ASCII Considerations for MVS and VM 565
Environment Division . 565
Data Division . 567
Procedure Division . 567

Appendix F. Locale Considerations (Workstation Only) 568

Appendix G. Summary of Language Difference: Host COBOL and
Workstation COBOL . 569

Appendix H. Industry Specifications . 571
Standard Terminology . 573

Bibliography . 574

Glossary . 577

Index . 600

Contents ix

Notices

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evalu-
ation and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

IBM Corporation, HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This Language Reference documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of COBOL for MVS & VM, COBOL
Set for AIX, and VisualAge COBOL.

x Copyright IBM Corp. 1991, 1998

Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation in
the United States, or other countries, or both:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of
others.

AD/Cycle
Advanced Function Printing
AFP
AIX
AIX/6000
BookManager
CICS
CICS/ESA
COBOL/370
DATABASE 2
DB2
DFSORT
IBM

IMS/ESA
Language Environment
MVS
Operating System/2
OS/2
OS/390
Print Services Facility
SOM
SOMobjects
VisualAge
VM/ESA

Notices xi

IBM extensions in text are shown this way.

About This Book

This book presents the syntax of COBOL for MVS & VM, COBOL Set for AIX, and
VisualAge COBOL (collectively referred to in this book as IBM COBOL). To indicate
platform-specific information, this book use the following methods:

� Prefix the text with platform-specific indicators (for example, Under AIX, OS/2, and
Windows...)

� Add parenthetical qualifications (for example, (Workstation only))

� Prefix the text with icons. This book uses the following icons:

 Informs you of information specific to COBOL for MVS & VM.

 Informs you of information specific to COBOL Set for AIX and
VisualAge COBOL (under OS/2 and Windows).

 Informs you of information specific to COBOL Set for AIX.

 Informs you of information specific to VisualAge COBOL, under OS/2
only.

Note: This book documents extensions for object-oriented COBOL. Object-oriented
COBOL is not supported on VM.

Use this book in conjunction with the IBM COBOL Programming Guide for your plat-
form.

 IBM Extensions
IBM extensions generally add to language element rules or restrictions. In the hard-
copy, published book, IBM extensions appear in gray ink. For example:

IBM extensions are not indicated in the appendixes, glossary, or index.

Obsolete Language Elements
Obsolete language elements are COBOL 85 Standard language elements that will be
deleted from the next revision of the Standard. (This does not imply that these ele-
ments will be eliminated from a future release of an IBM COBOL compiler.)

xii Copyright IBM Corp. 1991, 1998

The language elements that will be deleted from the next revision of the COBOL 85
Standard are:

 � ALTER statement
 � AUTHOR paragraph
 � Comment entry
� DATA RECORDS clause

 � DATE-COMPILED paragraph
 � DATE-WRITTEN paragraph
� DEBUG-ITEM special register

 � Debugging sections
 � ENTER statement
� GO TO without a specified procedure name

 � INSTALLATION paragraph
� LABEL RECORDS clause
� MEMORY SIZE clause
� MULTIPLE FILE TAPE clause

 � REVERSED phrase
 � SECURITY paragraph
 � SEGMENT-LIMIT
 � SEGMENTATION
 � STOP statement
� USE FOR DEBUGGING declarative
� VALUE OF clause
� The figurative constant ALL literal, when associated with a numeric or numeric-

edited item and with a length greater than one

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The 55─── symbol indicates the beginning of a syntax diagram.

The ───5 symbol indicates that the syntax diagram is continued on the next line.

The 5─── symbol indicates that the syntax diagram is continued from the previous
line.

The ───5% symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the 5───
symbol and end with the ───5 symbol.

� Required items appear on the horizontal line (the main path).

 Format
55──STATEMENT──required item───5%

� Optional items appear below the main path.

About This Book xiii

 Format
55──STATEMENT─ ──┬ ┬─────────────── ──5%
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

 Format
55──STATEMENT─ ──┬ ┬─required choice 1─ ──────────────────────────────────────5%

└ ┘─required choice 2─

If choosing one of the items is optional, the entire stack appears below the main
path.

 Format
55──STATEMENT─ ──┬ ┬─────────────────── ──────────────────────────────────────5%

├ ┤─optional choice 1─
└ ┘─optional choice 2─

� An arrow returning to the left above the main line indicates an item that can be
repeated.

 Format
 ┌ ┐───────────────────
55──STATEMENT─ ───6 ┴─repeatable item─ ──5%

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

� Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

xiv COBOL Language Reference

arithmetic-expression-1

The gray text indicates that arithmetic-expression-1 is an IBM extension. This operand is
optional.

 Format
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────────
55──STATEMENT───(1) ──┬ ┬─identifier-1───(2) ───6 ┴──┬ ┬────────────── ───(4) ───6 ┴ ─TO──identifier-3─ ──┬ ┬───────── ──5

└ ┘─literal-1────── └ ┘─┤ item 1 ├───(3) └ ┘─ROUNDED─

5─ ───(5) ──┬ ┬── ──┬ ┬───────────────── ───────────────────────5%
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─ └ ┘─END-STATEMENT───(6)

 └ ┘─ON─

item 1:
├─ ──┬ ┬─identifier-2────────────── ───┤
 ├ ┤─literal-2─────────────────
 └ ┘─ ───(7)

Notes:
1 The STATEMENT key word must be specified and coded as shown.
2 This operand is required. Either identifier-1 or literal-1 must be coded.
3 The item 1 fragment is optional; it can be coded or not, as required by the application. If item 1

is coded, it can be repeated with each entry separated by one or more COBOL separators.
Entry selections allowed for this fragment are described at the bottom of the diagram.

4 The operand identifier-3 and associated TO key word are required and can be repeated with
one or more COBOL separators separating each entry. Each entry can be assigned the key
word ROUNDED.

5 The ON SIZE ERROR phrase with associated imperative-statement-1 are optional. If the ON
SIZE ERROR phrase is coded, the key word ON is optional.

6 The END-STATEMENT key word can be coded to end the statement. It is not a required
delimiter.

7

 DBCS Notation
 Double-Byte Character Strings (DBCS) in literals, comments, and user-

defined words are delimited by shift-out and shift-in characters. In this manual, the
shift-out delimiter is represented pictorially by the < character, and the shift-in character
is represented pictorially by the > character. The EBCDIC codes for the shift-out and
shift-in delimiters are X'0E' and X'0F', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

Double-byte characters are represented in this form: D1D2D3. EBCDIC characters in
double-byte form are represented in this form:.A.B.C . The dots separating the letters
represent the hexadecimal value X'42'.

 Under AIX, OS/2, and Windows, you do not delimit DBCS character
strings by shift-in or shift-out characters.

About This Book xv

 Acknowledgment
The following extract from Government Printing Office Form Number 1965-0795689 is
presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and specifica-
tions in whole or in part, using ideas taken from this report as the basis for an
instruction manual or for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as part of the introduc-
tion to the document. Those using a short passage, as in a book review, are
requested to mention COBOL in acknowledgment of the source, but need not
quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contrib-
utor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data
Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

xvi COBOL Language Reference

� Extensions to support the Euro currency sign in numeric-edited data items. These
extensions introduce a PICTURE SYMBOL phrase to the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division. The
PICTURE SYMBOL phrase allows a PICTURE clause currency symbol to repre-
sent a currency sign value that is different from the currency symbol, and not
restricted to a single character. For example, the currency symbol '$' could be
used to represent a code point for the Euro currency sign, or the characters
'EUR'. The extensions also allow multiple currency symbols and currency sign
values to be defined. For details, see “CURRENCY SIGN Clause” on page 96.

� Enhancements to the millennium language extensions:

– Additional date patterns for the DATE FORMAT clause, including “year-last”
dates.

– DATE FORMAT for binary numeric items.

– Relaxation of the USING/RETURNING parameter rules for windowed date
fields.

– Allow signed numeric date fields.

– Special semantics for “trigger” and “limit” date values. For more
information, see “Semantics of Windowed Date Fields” on page 165.

� New sub-option TRIG/NOTRIG of the DATEPROC compiler option, to enable or
disable trigger and limit processing.

� The millennium language extensions, enabling compiler-assisted date processing
for dates containing 2-digit and 4-digit years.

 Requires IBM VisualAge COBOL Millennium Language Extensions for
MVS & VM (program number 5654-MLE) to be installed with your compiler.

For information on the millennium language extensions, see “Millennium Language
Extensions and Date Fields” on page 58.

� New language elements in support of the millennium language extensions:

– DATE FORMAT clause in data description entries
 – Intrinsic functions:

Summary of Changes

Major changes to the COBOL for MVS & VM, COBOL Set for AIX, and VisualAge
COBOL languages are listed below, according to the edition in which they first
appeared. Changes to the language since the previous edition of this book are marked
by a vertical bar in the left margin.

| Fifth Edition (November 1998, Softcopy Only)
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|
|

|
|

Fourth Edition (April 1998)

 Copyright IBM Corp. 1991, 1998 xvii

 - DATEVAL
 - UNDATE
 - YEARWINDOW

� New compiler options in support of the millennium language extensions:

 – DATEPROC/NODATEPROC
 – YEARWINDOW

� New compiler option, ANALYZE, to check the syntax of imbedded SQL and CICS
statements.

� New date intrinsic functions to cover the recommendation in the Working Draft for
Proposed Revision of ISO 1989:1985 Programming Language COBOL:

 – DATE-TO-YYYYMMDD
 – DAY-TO-YYYYDDD
 – YEAR-TO-YYYY

� Extension of the ACCEPT statement to cover the recommendation in the Working
Draft for Proposed Revision of ISO 1989:1985 Programming Language COBOL:

– ACCEPT FROM DATE YYYYMMDD
– ACCEPT FROM DAY YYYYDDD

Extensions for Object-Oriented COBOL (MVS, AIX, and OS/2 Only)
The following extensions to the COBOL language enable object-oriented COBOL pro-
gramming:

� CLASS IDENTIFICATION DIVISION
� CLASS ENVIRONMENT DIVISION
� CLASS DATA DIVISION
� CLASS PROCEDURE DIVISION
� METHOD IDENTIFICATION DIVISION
� METHOD ENVIRONMENT DIVISION
� METHOD DATA DIVISION
� METHOD PROCEDURE DIVISION
� USAGE OBJECT REFERENCE clause
� EXIT statement extension

 � INVOKE statement
� SET statement extension

Third Edition (July 1996, Softcopy Only)
No changes to the IBM COBOL language were made in this edition.

Second Edition (October 1995)
The following changes were made to the IBM COBOL for MVS & VM (formerly named
IBM SAA AD/Cycle COBOL/370) language:

xviii COBOL Language Reference

Extensions for Interoperability (MVS, VM, AIX, and OS/2)
The following extensions to the COBOL language enable improved interoperability
between COBOL and C, SOM, and Language Environment:

� CALL ... RETURNING for invocation of functions
 � CALL procedure-pointer
� SET procedure-pointer to function pointer

 � OMITTED arguments
 � Recursion
� Null-terminated literal strings
� BY VALUE arguments on CALL and INVOKE (both identifiers and literals)
� BY VALUE and BY REFERENCE declarations for parameters on the PROCE-

DURE DIVISION and ENTRY USING statements
� PROCEDURE DIVISION RETURNING phrase for specifying a return value from a

program, method, or C function.
� Long and mixed-case program names

Support for COBOL on AIX and OS/2
For details on language differences, see Appendix G, “Summary of Language Differ-
ence: Host COBOL and Workstation COBOL” on page 569.

Summary of Changes xix

xx COBOL Language Reference

Millennium Language Extensions and Date Fields
Millennium Language Extensions Syntax
Terms and Concepts

Part 1. COBOL Language Structure

Characters . 2
Character-Strings . 3
Figurative Constants . 8
Special Registers . 10
Literals . 20
Separators . 28

Sections and Paragraphs . 30
Statements and Clauses . 30

Reference Format . 32
Sequence Number Area . 32
Indicator Area . 32
Area A . 33
Area B . 34
Area A or Area B . 37

Scope of Names . 39
Types of Names . 39
External and Internal Resources . 42
Resolution of Names . 43

Referencing Data Names, Copy Libraries, and Procedure Division Names . 44
Uniqueness of Reference . 44

Transfer of Control . 56

. 58
. 58

. 59

 Copyright IBM Corp. 1991, 1998 1

In some cases, the basic character set is extended with the national character set. The
national character set support includes the Double-Byte Character Set (DBCS) and,
additionally for AIX, the Extended Unix** Code (EUC) code page.

Double-byte characters, as the name implies, occupy two adjacent bytes to represent 1
character. A character string containing DBCS characters is called a DBCS character-
string .

 For AIX, characters from the EUC code page can be from one to four bytes
long.

DBCS and EUC characters are valid characters in certain COBOL character-strings.
For details, see “COBOL Words with Multi-Byte Characters” on page 4 and “DBCS
Literals” on page 25.

Characters

 Characters

The most basic and indivisible unit of the COBOL language is the character . The IBM
COBOL character set includes the letters of the alphabet, digits, and special characters.
The complete set of characters that form the IBM COBOL character set is shown in
Table 1 on page 3.

The basic IBM COBOL language is restricted to the character set shown in Table 1 on
page 3, but the content of nonnumeric literals, comment lines, comment entries, and
data can include any of the characters from the character set of the computer.

Individual characters are joined to form character-strings , separators , and text
words .

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A character-
string is delimited by separators.

A separator is a string of one or two contiguous characters used to delimit character
strings. Separators are described in detail under “Separators” on page 28.

A text word is a character or a sequence of contiguous characters between character
positions 8 and 72 inclusive on a line in a COBOL library, source program, or in
pseudo-text. For more information on pseudo-text, see “Pseudo-Text” on page 38.

2 Copyright IBM Corp. 1991, 1998

' Apostrophe

 DBCS
 DBCS/EUC

Character-Strings

Table 1. Characters—Meanings

Character Meaning

␣
+
–
*
/
=
$
,
;
.
"
(
)
>
<
:

A–Z
a–z
0–9

Space
Plus sign
Minus sign or Hyphen
Asterisk
Slant, Solidus, Stroke, or Slash
Equal sign
Currency sign
Comma
Semicolon
Decimal point or Period
Quotation mark
Left parenthesis
Right parenthesis
Greater than
Less than
Colon

Alphabet (uppercase)
Alphabet (lowercase)
Numeric characters

 Character-Strings
You can use EBCDIC and/or character strings under MVS and VM or ASCII
and/or character-strings under AIX, OS/2, and Windows to form the fol-
lowing:

 � COBOL words
 � Literals
� PICTURE character-strings (EBCDIC or ASCII character-strings only)

 � Comment text

COBOL Words with Single-Byte Characters
A COBOL word is a character-string of not more than 30 characters that forms a user-
defined word, a system-name, or a reserved word. Except for arithmetic operators and
relation characters, each character of a COBOL word is selected from the following:

� A through Z
� a through z
� 0 through 9

 � - (hyphen)

The hyphen cannot appear as the first or last character in such words. All user-defined
words (except for section-names, paragraph-names, segment-numbers, and level-
numbers) must contain at least one alphabetic character. Segment numbers and level
numbers need not be unique; a given specification of a segment-number or level-
number can be identical to any other segment-number or level-number. Each lower-

Part 1. COBOL Language Structure 3

COBOL Words with Multi-Byte Characters
DBCS/EUC characters must conform to the normal COBOL rules for user-defined
words. The following are the rules for forming user-defined words from multi-byte char-
acters:

Table 2 (Page 1 of 2). Rules for Forming User-Defined Words from Multi-Byte Characters

Rule MVS and VM AIX, OS/2, and Windows

Use of
Shift-Out
Shift-In Char-
acters

DBCS user-defined words begin with a
shift-out character and end with a shift-in
character.

Not required

Value Range DBCS user-defined words can contain charac-
ters whose values range from X'41' to
X'FE' for both bytes.

Valid value ranges for multi-byte characters
depend on the specific code page being used.

Containing
Characters

DBCS user-defined words can contain only
double-byte characters, and must contain at
least one non-EBCDIC character. (Double-
byte EBCDIC characters are represented by
X'42' in the first byte.) Single-byte charac-
ters are not allowed in a DBCS word.

DBCS user-defined words can contain both
double-byte EBCDIC and double-byte non
EBCDIC characters. The only double-byte
EBCDIC characters allowed are: A - Z, a - z,
0 - 9, and the hyphen (-). The hyphen cannot
appear as the first or last character.

A user-defined word can consist of both single-
byte or multiple-byte (including double-byte)
characters. If a character exists in both single-
byte and multiple-byte forms, its single-byte and
multi-byte representations are not equivalent.

Continuation
Rules

Words cannot be continued across lines. Words cannot be continued across lines.

Uppercase /
Lowercase
Letters

Equivalent Not equivalent

Character-Strings

case letter is considered to be equivalent to its corresponding uppercase letter, except
in nonnumeric literals.

Within a source program the following rules apply for all COBOL words with single-byte
characters:

� A reserved word cannot be used as a user-defined word or as a system-name.

� The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

4 COBOL Language Reference

Table 2 (Page 2 of 2). Rules for Forming User-Defined Words from Multi-Byte Characters

Rule MVS and VM AIX, OS/2, and Windows

Maximum
Length

14 characters 15 characters for a DBCS code page

For AIX only:

� 7 characters for EUC code page
IBM_eucTW

� 10 characters for EUC code pages,
IBM_eucJP, IBM_eucKR, and IBM_eucCN

Multi-Byte Characters Allowed?
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Method-name No
Yes

Object-oriented class-name No
Yes
Yes
No
Yes
Yes
Yes
No

 or class definition,
or method,

Character-Strings

 User-Defined Words
The following sets of user-defined words are supported:

Alphabet-name
Class-name
Condition-name
Data-name
File-name
Index-name
Level-numbers: 01–49, 66, 77, 88
Library-name

Mnemonic-name

Paragraph-name
Priority-numbers: 00–99
Program-name
Record-name
Section-name
Symbolic-character
Text-name

For level-numbers and priority numbers, each word must be a 1-digit or 2-digit integer.

Within a given source program but excluding any contained program
 each user-defined word (except level-numbers and priority-numbers) can

belong to only one of these sets. Each user-defined word within a set must be unique,
except as specified in “Referencing Data Names, Copy Libraries, and Procedure Divi-
sion Names” on page 44.

The following types of user-defined words can be referenced by statements and entries
in that program in which the user-defined word is declared:

 � Paragraph-name
 � Section-name

Part 1. COBOL Language Structure 5

 � External class-name

 Under MVS and VM, the only DBCS character string system-name allowed
is computer-name.

 Under AIX, OS/2, and Windows, multi-byte characters are allowed for
system-name.

Character-Strings

The following types of user-defined words can be referenced by any COBOL program,
provided that the compiling system supports the associated library or other system, and
the entities referenced are known to that system:

 � Library-name
 � Text-name

The following types of names, when they are declared within a Configuration Section,
can be referenced by statements and entries either in that program which contains a
Configuration Section or in any program contained within that program:

 � Alphabet-name
 � Class-name
 � Condition-name
 � Mnemonic-name
 � Symbolic-character

The function of each user-defined word is described in the clause or statement in which
it appears.

 System-Names
A system-name is a character string that has a specific meaning to the system. There
are three types of system-names:

 � Computer-name
 � Language-name
 � Implementor-name

There are three types of implementor-names:

 � Environment-name

 � Assignment-name

The meaning of each system-name is described with the format in which it appears.

 Function-Names
A function-name specifies the mechanism provided to determine the value of an
intrinsic function. The same word, in a different context, can appear in a program as a
user-defined word or a system-name. For a list of function-names and their definitions,
see Table 52 on page 455.

6 COBOL Language Reference

Information on selecting an alternate reserved word table can be found in the IBM
COBOL Programming Guide for your platform.

� Special object identifiers

Special Object Identifiers
COBOL provides two special object identifiers, SELF and SUPER, used in a
method Procedure Division:

SELF
A special object identifier you can use in the Procedure Division of a method.
SELF refers to the object instance used to invoke the currently-executing
method. You can specify SELF only in source program positions that are
explicitly listed in the syntax diagrams.

SUPER
A special object identifier you can use in the Procedure Division of a method
only as the object identifier in an INVOKE statement. When used in this way,

Character-Strings

 Reserved Words
A reserved word is a character-string with a predefined meaning in a COBOL source
program. IBM COBOL reserved words are listed in Appendix D, “Reserved Words” on
page 558.

There are six types of reserved words:

 � Keywords
 � Optional words
 � Figurative constants
� Special character words

 � Special registers

Keywords
Keywords are reserved words that are required within a given clause, entry, or
statement. Within each format, such words appear in uppercase on the main path.

Optional Words
Optional words are reserved words that can be included in the format of a clause,
entry, or statement in order to improve readability. They have no effect on the
execution of the program.

Figurative Constants
See “Figurative Constants” on page 8.

Special Character Words
There are two types of special characters , which are only recognized as special
characters when represented in single-byte.

� Arithmetic operators: + - / * **

See “Arithmetic Expressions” on page 233.

� Relational operators : < > = <= >=

See “Conditional Expressions” on page 239.

Part 1. COBOL Language Structure 7

SUPER refers to the object instance used to invoke the currently-executing
method. The resolution of the method to be invoked ignores any methods
declared in the class definition of the currently-executing method and methods
defined in any class derived from that class. Thus, the method invoked is
inherited from an ancestor class.

 if the QUOTE compiler option is in effect
or
� The apostrophe character ('), if the APOST compiler option is in effect

 or an apostrophe

Figurative Constants

Special Registers
See “Special Registers” on page 10.

 Figurative Constants
Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are:

ZERO/ZEROS/ZEROES
Represents the numeric value zero (0), or one or more occurrences of the nonnu-
meric character zero (0), depending on context.

When the context cannot be determined, a nonnumeric zero is used.

SPACE/SPACES
Represents one or more blanks or spaces. SPACE is treated as a nonnumeric
literal.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'FF'; for other collating sequences, the actual character used
depends on the collating sequence indicated by the locale. For more information
on locale, see Appendix F, “Locale Considerations (Workstation Only)” on
page 568. HIGH-VALUE is treated as a nonnumeric literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest ordinal
position in the collating sequence used. For the EBCDIC collating sequence, the
character is X'00'; for other collating sequences, the actual character used
depends on the collating sequence. LOW-VALUE is treated as a nonnumeric
literal.

QUOTE/QUOTES
Represents one or more occurrences of:

� The quotation mark character ("),

QUOTE or QUOTES cannot be used in place of a quotation mark
to enclose a nonnumeric literal.

ALL literal
Represents one or more occurrences of the string of characters composing the
literal. The literal must be either a nonnumeric literal or a figurative constant other

8 COBOL Language Reference

 INVOKE,

 Under AIX, OS/2, and Windows, you cannot specify the SYMBOLIC
CHARACTER clause if a DBCS or EUC code page is indicated by the locale
setting. For more information on locale, see Appendix F, “Locale Considerations
(Workstation Only)” on page 568.

NULL/NULLS
Represents a value used to indicate that data items defined with USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT REFER-
ENCE, or the ADDRESS OF special register do not contain a valid address. NULL
can be used only where explicitly allowed in the syntax format. NULL has the
value of zero.

 INVOKE,

Figurative Constants

than the ALL literal. When a figurative constant, other than the ALL literal is used,
the word ALL is redundant and is used for readability only. The figurative constant
ALL literal must not be used with the CALL, INSPECT, STOP, or
STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the symbolic-
character in the SYMBOLIC CHARACTERS clause of the SPECIAL-NAMES para-
graph.

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE, and
QUOTE can be used interchangeably. For example, if data-name-1 is a 5-character
data item, each of the following statements will fill data-name-1 with five spaces:

 MOVE SPACE TO DATA-NAME-1
 MOVE SPACES TO DATA-NAME-1

MOVE ALL SPACES TO DATA-NAME-1

You can use a figurative constant wherever “literal” appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax diagram,
only the figurative constant ZERO (ZEROS, ZEROES) can be used. Figurative con-
stants are not allowed as function arguments except in an arithmetic expression, where
they are arguments to a function.

The length of a figurative constant depends on the context of the program. The fol-
lowing rules apply:

� When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

� When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, STOP, STRING, or
UNSTRING statement), the length of the character-string is 1 character.

Part 1. COBOL Language Structure 9

 or INVOKE of a method,

� Programs that possess the RECURSIVE attribute
� Programs compiled with the THREAD option (Workstation only)

 or
method

� ADDRESS OF (for each record in the Linkage Section)
 � RETURN-CODE
 � SORT-CONTROL
 � SORT-CORE-SIZE
 � SORT-FILE-SIZE
 � SORT-MESSAGE
 � SORT-MODE-SIZE
 � SORT-RETURN
 � TALLY

 or INVOKE

 ADDRESS OF
The ADDRESS OF special register exists for each record (01 or 77) in the Linkage
Section, except for those records that redefine each other. In such cases, the
ADDRESS OF special register is similarly redefined.

The ADDRESS OF special register is implicitly defined USAGE IS POINTER.

Special Registers

 Special Registers
Special registers are reserved words that name storage areas generated by the com-
piler. Their primary use is to store information produced through specific COBOL fea-
tures. Each such storage area has a fixed name, and must not be defined within the
program.

Unless otherwise explicitly restricted, a special register can be used wherever a data-
name or identifier having the same definition as the implicit definition of the special reg-
ister, (which is specified later in this section).

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see “Qualification” on page 44.)

For the first CALL to a program the compiler initializes the
special register fields to their initial values.

In the following cases:

� For subsequent CALLs to a CANCELed program
� Programs that possess the INITIAL attribute

The following special registers are reset to their initial value on each program
 entry:

In all other cases, the special registers will not be reset; they will be unchanged from
the value contained on the previous CALL .

You can specify an alphanumeric special register in a function wherever an alphanu-
meric argument to a function is allowed, unless specifically prohibited.

10 COBOL Language Reference

You can specify the ADDRESS OF special register as an argument to the LENGTH
function. If the ADDRESS OF special register is used as the argument to the LENGTH
function, the result will always be 4, independent of the argument specified for
ADDRESS OF.

A function-identifier is not allowed as the operand of the ADDRESS OF special register.

Special Registers

 DEBUG-ITEM
The DEBUG-ITEM special register provides information for a debugging declarative pro-
cedure about the conditions causing debugging section execution.

DEBUG-ITEM has the following implicit description:

ð1 DEBUG-ITEM.
ð2 DEBUG-LINE PICTURE IS X(6).
ð2 FILLER PICTURE IS X VALUE SPACE.
ð2 DEBUG-NAME PICTURE IS X(3ð).
ð2 FILLER PICTURE IS X VALUE SPACE.
ð2 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
ð2 FILLER PICTURE IS X VALUE SPACE.
ð2 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
ð2 FILLER PICTURE IS X VALUE SPACE.
ð2 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
ð2 FILLER PICTURE IS X VALUE SPACE.
ð2 DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the move
were an alphanumeric-to-alphanumeric elementary move without conversion of data
from one form of internal representation to another.

After updating, each field contains:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated sequence
number, depending on the compiler option chosen) that caused execution of the
debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word “OF.”

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
If the DEBUG-NAME is subscripted or indexed, the occurrence number of each
level is entered in the respective DEBUG-SUB-n. If the item is not subscripted or
indexed, these fields remain as spaces. You must not reference the DEBUG-ITEM
special register if your program uses more than three levels of subscripting or
indexing.

Part 1. COBOL Language Structure 11

 LENGTH OF
The LENGTH OF special register contains the number of bytes used by an identifier.

LENGTH OF creates an implicit special register whose content is equal to the current
byte length of the data item referenced by the identifier.

Note: For DBCS data items, each character occupies 2 bytes of storage.

LENGTH OF can be used in the Procedure Division anywhere a numeric data item
having the same definition as the implied definition of the LENGTH OF special register
can be used. The LENGTH OF special register has the implicit definition:

USAGE IS BINARY PICTURE 9(9)

If the data item referenced by the identifier contains the GLOBAL clause, the LENGTH
OF special register is a global data item.

Special Registers

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in Table 3 on page 12.

Table 3. DEBUG-ITEM Subfield Contents

Cause of Debug-
ging Section Exe-
cution

Statement Referred to
in DEBUG-LINE

Contents of
DEBUG-NAME

Contents of
DEBUG-CONTENTS

procedure-name-1
ALTER reference

ALTER statement procedure-name-1 procedure-name-n
in TO PROCEED
TO phrase

GO TO procedure-
name-n

GO TO statement procedure-name-n spaces

procedure-name-n
in SORT/MERGE
input/output proce-
dure

SORT/MERGE statement procedure-name-n “SORT INPUT”
“SORT OUTPUT”
“MERGE OUTPUT”
(as applicable)

PERFORM state-
ment transfer of
control

This PERFORM state-
ment

procedure-name-n “PERFORM LOOP”

procedure-name-n
in a USE procedure

Statement causing USE
procedure execution

procedure-name-n “USE
PROCEDURE”

Implicit transfer from
previous sequential
procedure

Previous statement exe-
cuted in previous
sequential procedure *

procedure-name-n “FALL THROUGH”

First execution of
first nondeclarative
procedure

Line number of first non-
declarative procedure-
name

first nondeclar-
ative procedure

“START
PROGRAM”

Note:

* If this procedure is preceded by a section header, and control is passed through the section
header, the statement number refers to the section header.

12 COBOL Language Reference

The LENGTH OF special register can appear within either the starting character posi-
tion or the length expressions of a reference modification specification. However, the
LENGTH OF special register cannot be applied to any operand that is reference-
modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special register is
allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH function,
the result is always 4, independent of the argument specified for LENGTH OF.

LENGTH OF can not be either of the following:

� A receiving data item
 � A subscript

When the LENGTH OF special register is used as a parameter in a CALL statement,
the parameter must be a BY CONTENT parameter.

When a table element is specified, the LENGTH OF special register contains the
length, in bytes, of one occurrence. When referring to a table element, it need not be
subscripted.

A value is returned for any identifier whose length can be determined, even if the area
referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with the
LENGTH OF phrase, for example:

MOVE LENGTH OF A TO B
DISPLAY LENGTH OF A, A
ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through the
intrinsic function LENGTH (See “LENGTH” on page 477). LENGTH supports nonnu-
meric literals in addition to data names.

Special Registers

 LINAGE-COUNTER
A separate LINAGE-COUNTER special register is generated for each FD entry con-
taining a LINAGE clause. When more than one is generated, you must qualify each
reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is one of the fol-
lowing:

� If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

� If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item with
the same number of digits as that integer.

Part 1. COBOL Language Structure 13

 RETURN-CODE
The RETURN-CODE special register can be used to pass a return code to the calling
program or operating system when the current COBOL program ends. When a COBOL
program ends:

� If control returns to the operating system, the value of the RETURN-CODE special
register is passed to the operating system as a user return code. The supported
user return code values are determined by the operating system, and might not
include the full range of RETURN-CODE special register values. For
information on user return code values under AIX, see the IBM COBOL Set for AIX
Programming Guide.

� If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to the
value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:

ð1 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

The following are examples of how to set the RETURN-CODE special register:

COMPUTE RETURN-CODE = 8

or

MOVE 8 to RETURN-CODE.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Special Registers

For more information, see “LINAGE Clause” on page 155.

The value in LINAGE-COUNTER at any given time is the line number at which the
device is positioned within the current page. LINAGE-COUNTER can be referred to in
Procedure Division statements; it must not be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated file is
executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this file.
(See “WRITE Statement” on page 436.)

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If the
file description entry for a sequential file contains the LINAGE clause and the GLOBAL
clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer argument
to a function is allowed.

|
|
|

|
|
|
|
|
|

|
|
|
|

|

14 COBOL Language Reference

Note: The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL...RETURNING. For more information, see
“INVOKE Statement” on page 337 or “CALL Statement” on page 287.

You can specify the RETURN-CODE special register in a function wherever an integer
argument is allowed.

The RETURN-CODE special register will not contain return code information:

� On the host, from a service call for a Language Environment callable service. For
more information, see the IBM COBOL for MVS & VM Programming Guide and
Language Environment Programming Guide.

� On the workstation, from a date/time callable service. For more information, see
the IBM COBOL Programming Guide for your platform.

SHIFT-OUT and SHIFT-IN
 The SHIFT-OUT and SHIFT-IN special registers are supported; however,

the code pages for AIX, OS/2, and Windows do not recognize them as delimiters for
double-byte characters.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as alphanumeric
data items of the format:

ð1 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"ðE"
ð1 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"ðF"

These special registers represent shift-out and shift-in control characters without the
use of unprintable characters.

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function wherever
an alphanumeric argument is allowed.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when defining DBCS user-defined
words and when specifying DBCS literals.

Following is an example of how SHIFT-OUT and SHIFT-IN might be used:

Special Registers

Part 1. COBOL Language Structure 15

DATA DIVISION.
WORKING-STORAGE.

ð1 DBCSGRP.
 ð5 SO PIC X.

ð5 DBCSITEM PIC G(3) USAGE DISPLAY-1
 ð5 SI PIC X.

...

PROCEDURE DIVISION.

MOVE SHIFT-OUT TO SO
MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI

 DISPLAY DBCSGRP

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 SORT-CONTROL
The SORT-CONTROL special register is the name of an alphanumeric data item.

 Under AIX, OS/2, and Windows, it is implicitly defined as:

ð1 SORT-CONTROL GLOBAL PICTURE X(16ð) VALUE "file name".

Where "file name" is the file name used by SMARTSort as the source for additional
sort/merge options.

 Under MVS and VM it is implicitly defined as:

ð1 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD"

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

Under MVS, you can provide a DD statement for the data set identified by the
SORT-CONTROL special register, and COBOL for MVS & VM will attempt to open the
data set at execution time. Any error will be diagnosed with an informational message.

You can specify the SORT-CONTROL special register in a function wherever an alpha-
numeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

Note that the sort control file takes precedence over the SORT special registers.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Special Registers

16 COBOL Language Reference

For further information, see the IBM COBOL Programming Guide for your platform.

 SORT-CORE-SIZE
The SORT-CORE-SIZE special register is the name of a binary data item that you can
use to specify the number of bytes of storage available to the sort utility. It has the
implicit definition:

ð1 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

 Under AIX, OS/2, and Windows, the amount of storage indicated in the
SORT-CORE-SIZE special register does not include memory areas required by COBOL
library functions not related to the SORT or MERGE function. It also does not include
fixed amount of memory areas (modules, control blocks, fixed size work areas) required
for the sort and merge implementation.

 Under MVS and CMS, SORT-CORE-SIZE can be used in place of the
MAINSIZE or RESINV control statements in the sort control file.

The 'MAINSIZE=' option control statement key word is equivalent to
SORT-CORE-SIZE with a positive value.

The 'RESINV=' option control statement key word is equivalent to
SORT-CORE-SIZE with a negative value.

The 'MAINSIZE=MAX' option control statement key word is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 SORT-FILE-SIZE
The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1. It has
the implicit definition:

ð1 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO

 Under AIX, OS/2, and Windows, references to the SORT-FILE-SIZE
special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

 Under MVS and CMS, SORT-FILE-SIZE is equivalent to the 'FILSZ=Ennn'
control statement in the sort control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Special Registers

Part 1. COBOL Language Structure 17

 SORT-MESSAGE
The SORT-MESSAGE special register is the name of an alphanumeric data item that is
available to both sort and merge programs.

 Under AIX, OS/2, and Windows, references to the SORT-MESSAGE
special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

 Under MVS and CMS, it has the implicit definition:

ð1 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT"

You can use the SORT-MESSAGE special register to specify the ddname of a data set
that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on the
'MSGDDN=' control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an alpha-
numeric argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 SORT-MODE-SIZE
The SORT-MODE-SIZE special register is the name of a binary data item that you can
use to specify the length of variable-length records that occur most frequently. It has
the implicit definition:

ð1 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO

 Under AIX, OS/2, and Windows, references to the SORT-MODE-SIZE
special register are resolved by the compiler; however, the value in the special register
has no impact for the execution of a SORT or MERGE statement.

 SORT-MODE-SIZE is equivalent to the 'SMS=' control statement in the
sort control file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 SORT-RETURN
The SORT-RETURN special register is the name of a binary data item and is available
to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:

ð1 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO

Special Registers

18 COBOL Language Reference

It contains a return code of 0 (successful) or 16 (unsuccessful) at the completion of a
sort/merge operation. If the sort/merge is unsuccessful and there is no reference to this
special register anywhere in the program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are proc-
essed. The operation is terminated on the next input or output function for the SORT
or MERGE operation.

You can specify the SORT-RETURN special register in a function wherever an integer
argument is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 TALLY
The TALLY special register is the name of a binary data item with the following defi-
nition:

ð1 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer argument
is allowed.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

 WHEN-COMPILED
The WHEN-COMPILED special register contains the date at the start of the compila-
tion. WHEN-COMPILED is an alphanumeric data item with the implicit definition:

ð1 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

The WHEN-COMPILED special register has the format:

MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 27 April 1995, WHEN-COMPILED
would contain the value 04/27/9514.04.00.

WHEN-COMPILED can only be used as the sending field in a MOVE statement.

WHEN-COMPILED special register data cannot be reference-modified.

When used in nested programs, this special register is implicitly defined in the outer-
most program.

Special Registers

Part 1. COBOL Language Structure 19

Note: The compilation date and time is also accessible via the date/time intrinsic func-
tion WHEN-COMPILED (See “WHEN-COMPILED” on page 506). That function sup-
ports 4-digit year values, and provides additional information.

 DBCS,

As an IBM extension, you can use apostrophes as the literal delimiters instead of
quotes (independent of the APOST/QUOTE compiler option). An embedded apos-
trophe must be represented by a pair of apostrophes (''). For example,

'THIS ISN''T WRONG'

'THIS IS RIGHT'

Table 4 on page 21 lists when nonnumeric literals with double-byte or multiple-byte
characters cannot be used.

Literals

 Literals
A literal is a character-string whose value is specified either by the characters of which
it is composed, or by the use of a figurative constant. (See “Figurative Constants” on
page 8.) The literal types are nonnumeric , and numeric .

 Nonnumeric Literals
A nonnumeric literal is a character string enclosed in quotation marks ("), and can
contain any allowable character from the character set of the computer. The maximum
length of a nonnumeric literal is 160 characters.

The enclosing quotation marks are excluded from the literal when the program is com-
piled. An embedded quotation mark must be represented by a pair of quotation marks
(""). For example,

"THIS ISN""T WRONG"

The delimiter character used as the opening delimiter for a literal must be used as the
closing delimiter for that literal. For example,

"THIS IS RIGHT"
'THIS IS WRONG"

Any punctuation characters included within a nonnumeric literal are part of the value of
the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories are
described in “Classes and Categories of Data” on page 140.)

20 COBOL Language Reference

 Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte DBCS or EUC characters as alphanumeric literals (such as to initialize
display fields). However, COBOL semantics applied to literals that contain both multi-
byte and single-byte characters are not sensitive to the length (in bytes) of the indi-
vidual characters.

The rule of formation for mixed literals are as follows:

� A nonnumeric literal (whether it contains any multi-byte characters or not) is delim-
ited by either an opening and closing " or an opening and closing '. The " or '
must be represented as a single-byte character.

� Nonnumeric literals containing a multi-byte character cannot be continued. The
maximum length of a nonnumeric literal with multi-byte characters is limited only by
the available positions in Area B on a single source line.

 Under MVS and VM, with the DBCS compiler option, the characters X'0E'
and X'0F' in a nonnumeric literal will be recognized as shift codes for DBCS charac-
ters. That is, the characters between paired shift codes will be recognized as DBCS
characters. Unlike a nonnumeric literal compiled under the NODBCS option, additional
syntax rules apply to DBCS characters in a nonnumeric literal.

Table 4. When Multi-Byte Characters are not Allowed in Nonnumeric Literals

MVS and VM AIX, OS/2, and Windows

As a literal in the following:

ALPHABET clause
ASSIGN clause
CALL statement program-id
CANCEL statement
CLASS clause
CURRENCY SIGN clause
END METHOD header
END PROGRAM header
ENTRY statement
METHOD-ID paragraph
PADDING CHARACTER clause
PROGRAM-ID paragraph
RERUN clause
STOP statement

As a literal in the following:

ALPHABET clause
ASSIGN clause
CLASS clause
CURRENCY SIGN clause
END METHOD header
METHOD-ID paragraph
PADDING CHARACTER clause
RERUN clause
STOP statement

BASIS statement (basis-name)

COPY statement (text-name)

COPY statement (library-name)

Literals

Part 1. COBOL Language Structure 21

These nonnumeric literals with double-byte characters have the following format:

Nonnumeric Literals with Double-Byte Characters

"EBCDIC–data<D1D2>EBCDIC–data"

" The opening and closing delimiter (Alternatively, you can use apostrophes (') as
delimiters.)

< Represents the shift-out control character (X'0E')

> Represents the shift-in control character (X'0F')

Shift-out and shift-in control characters are part of the literal and must be paired with
zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for EBCDIC parts of the literal follow the rules for nonnumeric literals.
The syntax rules for DBCS parts of the literal follow the rules for DBCS literals. The
move and comparison rules for nonnumeric literals with double-byte characters are the
same as those for any nonnumeric literal.

The length of a nonnumeric literal with double-byte characters is its byte length,
including the shift control characters. The maximum length is limited by the available
space on one line in Area B. A nonnumeric literal with double-byte characters cannot
be continued.

A nonnumeric literal with double-byte characters is of the alphanumeric category.

Under COBOL for MVS & VM, COBOL statements process nonnumeric literals with
double-byte characters without sensitivity to the shift codes and character codes. The
use of statements that operate on a byte-to-byte basis (for example, STRING and
UNSTRING) can result in strings that are not valid mixtures of EBCDIC and double-byte
characters. You must be certain that the statements use DBCS characters. See IBM
COBOL for MVS & VM Programming Guide for more information on using nonnumeric
literals and data items with double-byte characters in statements that operate on a byte-
by-byte basis.

Hexadecimal notation can be used for nonnumeric literals. This hexadecimal notation
has the following format:

Hexadecimal Notation Format for Nonnumeric Literals

X"hexadecimal–digits"

X" The opening delimiter for hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

Literals

22 COBOL Language Reference

" The closing delimiter for the hexadecimal notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

Hexadecimal digits can be characters in the range '0' to '9', 'a' to 'f', and 'A' to
'F', inclusive. Two hexadecimal digits represent a single character in the
EBCDIC/ASCII character set. An even number of hexadecimal digits must be specified.
The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any nonnumeric literal. The opening
delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation of
nonnumeric literals.

The compiler will convert the hexadecimal literal into a normal nonnumeric literal.
Hexadecimal notation for nonnumeric literals can be used anywhere nonnumeric literals
can appear.

The padding character for hexadecimal notation of nonnumeric literals is the blank
(X'40' for MVS and VM) or (X'20' for AIX, OS/2, and Windows).

Nonnumeric literals can be null-terminated, with the following format:

Format for Null-Terminated Nonnumeric Literals

Z"ddddd"

Z" The opening delimiter for null-terminated notation of a nonnumeric literal. (Alterna-
tively, you can use apostrophes (') as delimiters.)

" The closing delimiter for a null-terminated notation of a nonnumeric literal. (Alter-
natively, you can use apostrophes (') as delimiters.)

Null-terminated nonnumeric literals can be from 0 to 159 characters. You can specify
any character except X'00', which is the null string automatically appended to the end
of the literal. The length of the literal includes the terminating null character.

Null-terminated literals can be used anywhere a nonnumeric literal can be specified and
have the normal semantics of nonnumeric literals.

Both characters of the opening delimiter for null-terminated literals (Z" or Z') must be on
the same source line.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns the
number of characters in the literal prior to but not including the terminating null. (The
LENGTH special register does not support literal operands.)

Null-terminated literals are not supported in “ALL literal” constructions.

Literals

Part 1. COBOL Language Structure 23

 or floating-point

Rules for Floating-point Literal Values:
� A floating-point literal is written in the form:

55─ ──┬ ┬─── ─mantissa E─ ──┬ ┬─── ─exponent──5%
 ├ ┤─+─ ├ ┤─+─
 └ ┘─-─ └ ┘─-─

� The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

� The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

� The exponent is represented by an E followed by an optional sign and 1 or 2 digits.

� Under MVS and VM, the magnitude of a floating-point literal value
must fall between 0.54E-78 and 0.72E+76. For values outside of this range, an
E-level diagnostic will be produced and the value will be replaced by either 0 or
0.72E+76, respectively.

� Under AIX, OS/2, and Windows, the magnitude of a floating-point
literal value must fall between:

– 32-bit representation—1.175(10-38) to 3.403(1038)

– 64-bit representation—2.225(10-308) to 1.798(10308)

Every numeric literal is in the numeric data category. (Data categories are described
under “Classes and Categories of Data” on page 140.)

Literals

 Numeric Literals
A numeric literal is a character-string whose characters are selected from the digits 0
through 9, a sign character (+ or -), and the decimal point. If the literal contains no
decimal point, it is an integer. (In this manual, the word integer appearing in a format
represents a numeric literal of nonzero value that contains no sign and no decimal
point; any other restrictions are included with the description of the format.) The fol-
lowing rules apply:

� One through 18 digits are allowed.

� Only one sign character is allowed. If included, it must be the leftmost character of
the literal. If the literal is unsigned, it is a positive value.

� Only one decimal point is allowed. If a decimal point is included, it is treated as an
assumed decimal point (that is, as not taking up a character position in the literal).
The decimal point can appear anywhere within the literal except as the rightmost
character.

The value of a numeric literal is the algebraic quantity expressed by the characters in
the literal. The size of a numeric literal in standard data format characters is equal to
the number of digits specified by the user.

Numeric literals can be fixed-point numbers.

24 COBOL Language Reference

 DBCS Literals
Table 5 lists the formats and rules for DBCS literals. You can use either quotes or
apostrophes for the opening and closing delimiters.

Table 5. Format and Rules for Forming DBCS Literals

Rules MVS and VM AIX, OS/2, and Windows

Format G"<D1D2D3>"
N"<D1D2D3>"

G"D1D2D3"
N"D1D2D3"

G" N" Opening delimiters. They must be followed
immediately by a shift-out control character.

For N-literals, when embedded
quotes/apostrophes are specified as part of
DBCS characters in a DBCS literal, a single
embedded DBCS quote/apostrophe is repres-
ented by 2 DBCS quotes/apostrophes. If a
single embedded DBCS quote/apostrophe is
found, an E-level compiler message will be
issued and a second embedded DBCS
quote/apostrophe will be assumed.

Opening delimiters.

< Represents the shift-out control character
(X'0E')

N/A

> Represents the shift-in control character
(X'0F')

N/A

" The closing delimiter. They must appear
immediately after the shift-in control char-
acter.

Single-byte quotation marks or apostrophes
can appear as part of DBCS characters in a
DBCS literal between the shift-out and shift-in
control characters.

The closing delimiter.

Character
Range

X'00' to X'FF' for both bytes, except for
X'0F7F' (or X'0F7D' if using apostrophes
as the opening and closing delimiters).

Any double-byte character in a DBCS code
page.

Maximum
Length

28 Characters N/A

Continuation
Rules

Cannot be continued across lines. Cannot be continued across lines.

Literals

Part 1. COBOL Language Structure 25

When DBCS Literals are Allowed
DBCS literals are allowed in the following:

 � Data Division

– In the VALUE clause of DBCS data description entries. If you specify a DBCS
literal in a VALUE clause for a data item, the length of the literal must not
exceed the size indicated by the data item's PICTURE clause. Explicitly or
implicitly defining a DBCS data item as USAGE DISPLAY-1 specifies that the
data item is to be stored in character form, one character to each 2 bytes.

– In the VALUE OF clause of file description entries.

 � Procedure Division

– As the sending item when a DBCS or group item is the receiving item.

– In a relation condition when the comparand is a DBCS or group item.

– As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or ALL
DBCS literal. These are the only figurative constants that can be DBCS
literals. (The value of a DBCS space is X'4040'.)

When DBCS Literals are Not Allowed
DBCS literals are not allowed in the following:

 � Non-Procedure Division

 – ALPHABET clause
 – ASSIGN clause
 – CLASS clause

– CURRENCY SIGN clause
– END METHOD header
– END PROGRAM header

 – METHOD-ID paragraph
– PADDING CHARACTER clause

 – PROGRAM-ID paragraph
 – RERUN clause

 � Procedure Division

– CALL statement (program-name)
 – CANCEL statement
 – ENTRY statement
 – INVOKE statement

– SET procedure-pointer to ENTRY literal
 – STOP statement

� As a file assignment name

� As a function argument

� As a basis-name in a BASIS statement

� As a text-name or library-name in a COPY statement

Literals

26 COBOL Language Reference

Character-strings that form comments can contain:

� Under MVS and VM, DBCS characters or a combination of DBCS and
EBCDIC characters.

� Under AIX, OS/2, and Windows any character from the code page
in effect.

Multiple comment lines containing DBCS/EUC strings are allowed. The embedding of
DBCS/EUC characters in a comment line must be done on a line-by-line basis.
DBCS/EUC words cannot be continued to a following line. No syntax checking for valid
DBCS/EUC strings is provided in comment lines.

Literals

 PICTURE Character-Strings
A PICTURE character-string is composed of the currency symbol and certain combi-
nations of characters in the COBOL character set. PICTURE character-strings are
delimited only by the separator space, separator comma, separator semicolon, or sepa-
rator period.

A chart of PICTURE clause symbols appears in Table 12 on page 180.

 Comments
A comment is a character-string that can contain any combination of characters from
the character set of the computer. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry (Identification Division)
This form is described under “Optional Paragraphs” on page 83.

Comment line (Any division)
This form is described under “Comment Lines” on page 37.

Part 1. COBOL Language Structure 27

'␣ Apostrophe
X" Opening delimiter for a nonnumeric literal
Z" Opening delimiter for a null-terminated nonnumeric literal
N" Opening delimiter for a DBCS literal
G" Opening delimiter for a DBCS literal

Separators

 Separators
A separator is a string of one or more contiguous characters as shown in Table 6.

Table 6. Separator Characters

Separator Meaning

␣ Space
,␣ Comma
.␣ Period
;␣ Semicolon
(Left parenthesis
) Right parenthesis
: Colon
"␣ Quotation marks

== Pseudo-text delimiter

Rules for Separators
In the following description, {} enclose each separator. Anywhere a space is used as a
separator, or as part of a separator, more than one space can be used.

 The IBM COBOL character set does not include a tab character (ASCII
code 9). You cannot use the tab character as a separator in IBM COBOL.

Space { ␣}
A space can immediately precede or follow any separator except:

� The opening pseudo-text delimiter, where the preceding space is required.

� Within quotation marks. Spaces between quotation marks are considered part
of the nonnumeric literal; they are not considered separators.

Period {. ␣}, Comma {, ␣}, Semicolon {; ␣}
A separator comma is composed of a comma followed by a space; a separator
period is composed of a period followed by a space; a separator semicolon is com-
posed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence, or as
shown in formats. The separator comma and separator semicolon can be used
anywhere the separator space is used.

� In the Identification Division , each paragraph must end with a separator
period.

� In the Environment Division , the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL paragraphs

28 COBOL Language Reference

Apostrophes { '} ... {'}
An opening apostrophe must be immediately preceded by a space or a left paren-
thesis. A closing apostrophe must be immediately followed by a separator (space,
comma, semicolon, period, or right parenthesis). Apostrophes must appear as bal-
anced pairs. They delimit nonnumeric literals, except when the literal is continued
(see “Continuation Lines” on page 35).

Separators

must each end with a separator period. In the FILE-CONTROL paragraph,
each File-Control entry must end with a separator period.

� In the Data Division , File (FD), Sort/Merge file (SD), and data description
entries must each end with a separator period.

� In the Procedure Division , separator commas or separator semicolons can
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses { (} ... {) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left and
right parentheses. They delimit subscripts, a list of function arguments, reference-
modifiers, arithmetic expressions, or conditions.

Colon { : }
The colon is a separator and is required when shown in general formats.

Quotation marks { "} . . . {"}
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a sepa-
rator (space, comma, semicolon, period, right parenthesis, or pseudo-text delim-
iter). Quotation marks must appear as balanced pairs. They delimit nonnumeric
literals, except when the literal is continued (see “Continuation Lines” on page 35).

Pseudo-text delimiters { ␣==} . . . {==␣}
An opening pseudo-text delimiter must be immediately preceded by a space. A
closing pseudo-text delimiter must be immediately followed by a separator (space,
comma, semicolon, or period). Pseudo-text delimiters must appear as balanced
pairs. They delimit pseudo-text. (See “COPY Statement” on page 516.)

Note: Any punctuation character included in a PICTURE character-string, a comment
character-string, or a nonnumeric literal is not considered as a punctuation character,
but rather as part of the character-string or literal.

Part 1. COBOL Language Structure 29

Statement and Clauses

Sections and Paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. For more information on sections, paragraphs, and statements, see
“Procedures” on page 231.

Statements and Clauses
Unless the associated rules explicitly state otherwise, each required clause or state-
ment must be written in the sequence shown in its format. If optional clauses or state-
ments are used, they must be written in the sequence shown in their formats. These
rules are true even for clauses and statements treated as comments.

The grammatical hierarchy follows this form:

 � Identification Division
 Paragraphs

 Entries
 Clauses

 � Environment Division
 Sections

 Paragraphs
 Entries
 Clauses
 Phrases

 � Data Division
 Sections

 Entries
 Clauses
 Phrases

 � Procedure Division
 Sections

 Paragraphs
 Sentences
 Statements
 Phrases

 Entries
An entry is a series of clauses ending with a separator period. Entries are constructed
in the Identification, Environment, and Data Divisions.

 Clauses
A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the Identification, Environment, and
Data Divisions.

30 Copyright IBM Corp. 1991, 1998

Statement and Clauses

 Sentences
A sentence is a sequence of one or more statements, ending with a separator period.
Sentences are constructed in the Procedure Division.

 Statements
A statement is a valid combination of a COBOL verb and its operands. It specifies an
action to be taken by the object program. Statements are constructed in the Procedure
Division. For descriptions of the different types of statements, see:

� “Imperative Statements” on page 261
� “Conditional Statements” on page 262
� “Scope of Names” on page 39
� “Compiler-Directing Statement” on page 512

 Phrases
Each clause or statement in the program can be subdivided into smaller units called
phrases .

Part 1. COBOL Language Structure 31

Indicator Area

 Reference Format

COBOL programs must be written in the COBOL reference format. Figure 1 shows
the reference format for a COBOL source line.

│ │ │ │ │
│ │ │ │ │
│ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 1ð │ 11 │ 12 │ 13 │ ... │ 71 │ 72 │
│ │ │ │ │ │
└──Sequence Number Area──┘ 6 └────Area A───────┴─────────Area B──────────┘
 Indicator Area

Figure 1. Reference Format for COBOL Source Line

The following areas are described below in terms of a 72-character line:

Sequence Number Area
Columns 1 through 6

Indicator Area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

Sequence Number Area
The sequence number area may be used to label a source statement line. The content
of this area may consist of any character in the character set of the computer.

 Indicator Area
Use the indicator area to specify:

� The continuation of words or nonnumeric literals from the previous line onto the
current line

� The treatment of text as documentation
 � Debugging lines

See “Continuation Lines” on page 35, “Comment Lines” on page 37, and “Debugging
Lines” on page 38.

The indicator area can be used for source listing formatting. A slash (“/”) placed in the
indicator column will cause the compiler to start a new page for the source listing, and
the corresponding source record to be treated as a comment. The effect may be
dependent on the LINECOUNT compiler option. For information on the LINECOUNT
compiler option, see the IBM COBOL Programming Guide for your platform.

32 Copyright IBM Corp. 1991, 1998

 end class, and end method

Area A

 Area A
The following items must begin in Area A:

 � Division header
 � Section header
� Paragraph header or paragraph name
� Level indicator or level-number (01 and 77)
� DECLARATIVES and END DECLARATIVES
� End program, header

 Division Header
A division header is a combination of words, followed by a separator period, that indi-
cates the beginning of a division:

 IDENTIFICATION DIVISION.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a Procedure Division
header) must be immediately followed by a separator period. Except for the USING
phrase, no text may appear on the same line.

 Section Header
In the Environment and Procedure Divisions, a section header indicates the beginning
of a series of paragraphs; for example:

 INPUT-OUTPUT SECTION.

In the Data Division, a section header indicates the beginning of an entry; for example:

 FILE SECTION.

 LINKAGE SECTION.

 WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph Header or Paragraph Name
A paragraph header or paragraph name indicates the beginning of a paragraph.

In the Environment Division, a paragraph consists of a paragraph header followed by
one or more entries. For example:

 OBJECT-COMPUTER. computer-name

In the Procedure Division, a paragraph consists of a paragraph-name followed by one
or more sentences.

Part 1. COBOL Language Structure 33

End Class, and End Method

 class definition, or method definition.

END CLASS CLASS-NAME.
END METHOD METHOD-NAME.

For Classes
Class-name must be identical to the class-name of the corresponding CLASS-ID
paragraph.

For Methods
Method-name must be identical to the method-name of the corresponding
METHOD-ID paragraph.

Area B

Level Indicator (FD and SD) or Level-Number (01 and 77)
A level indicator can be either FD or SD. It must begin in Area A and be followed by a
space. (See “File Section” on page 147.) A level-number that must begin in Area A is
a 1- or 2-digit integer with a value of 01 or 77. It must be followed by a space or
separator period.

DECLARATIVES and END DECLARATIVES
DECLARATIVES and END DECLARATIVES are key words that begin and end the
declaratives part of the source program.

In the Procedure Division, each of the key words DECLARATIVES and END DECLAR-
ATIVES must begin in Area A and be followed immediately by a separator period; no
other text may appear on the same line. After the key words END DECLARATIVES, no
text may appear before the following section header. (See “Declaratives” on
page 230.)

End Program, Headers
The “end” headers are a combination of words, followed by a separator period, that
indicate the end of a COBOL source program,
For example:

END PROGRAM PROGRAM-NAME.

For Programs
Program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost program
that contains no nested programs and is not followed by another batch program,
must end with an END PROGRAM header.

 Area B
The following items must begin in Area B:

� Entries, sentences, statements, clauses
 � Continuation lines

34 COBOL Language Reference

DBCS literals and user-defined words containing multi-byte characters cannot be con-
tinued.

Both characters making up the opening delimiter must be on the same line for the:

� Hexadecimal notation of a nonnumeric literal (X" or X')
� Hexadecimal notation of a null-terminated nonnumeric literal (Z" or Z')

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in Area B, the continuation line may start with a single quotation mark. This will
result in two consecutive nonnumeric literals instead of one continued nonnumeric
literal.

Area B

Entries, Sentences, Statements, Clauses
The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is not a
comment line. Successive sentences or entries either begin in Area B of the same line
as the preceding sentence or entry or in Area B of the next nonblank line that is not a
comment line.

Within an entry or sentence, successive lines in Area B may have the same format, or
may be indented to clarify program logic. The output listing is indented only if the input
statements are indented. Indentation does not affect the meaning of the program. The
programmer can choose the amount of indentation, subject only to the restrictions on
the width of Area B. See also “Sections and Paragraphs” on page 30.

 Continuation Lines
Any sentence, entry, clause, or phrase that requires more than one line can be con-
tinued in Area B of the next line that is neither a comment line nor a blank line. The
line being continued is a continued line ; the succeeding lines are continuation lines .
Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character of
the preceding line is assumed to be followed by a space.

If there is a hyphen in the indicator area of a line, the first nonblank character of this
continuation line immediately follows the last nonblank character of the continued line
without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation mark, all
spaces at the end of the continued line (through column 72) are considered to be part
of the literal. The continuation line must contain a hyphen in the indicator area, and the
first nonblank character must be a quotation mark. The continuation of the literal
begins with the character immediately following the quotation mark.

If the last character on the continued line of a nonnumeric literal is a single quotation
mark in column 72, the continuation line must start with two consecutive quotation
marks. This will result in a single quotation mark as part of the value of the nonnumeric
literal.

Part 1. COBOL Language Structure 35

Area B

Both characters making up the pseudo-text delimiter separator “==” must be on the
same line.

To continue a literal such that the continued lines and the continuation lines are part of
one literal:

� Code a hyphen in the indicator area of each continuation line.

� Do not terminate the continued lines with a single quotation mark followed by a
space.

� Code the literal value using all columns of the continued lines, up to and including
column 72.

� Code a quotation mark before the first character of the literal on each continuation
line.

� Terminate the last continuation line with a single quotation mark followed by a
space.

Given the following examples, the number and size of literals created are as follows:

� Literal 000001 is interpreted as one literal that is 120 bytes long. Each character
between the starting quotation mark and up to and including column 72 of con-
tinued lines are counted as part of the literal.

� Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at the
end of each continued line are counted as part of the literal because the continued
lines do not end with a quotation mark.

� Literal 000010 is interpreted as three separate literals, each having a length of 50,
50, and 20, respectively. The quotation mark with the following space terminates
the continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for non-
level 88 data items.

36 COBOL Language Reference

Comment lines are permitted to appear before the Identification Division, but they must
follow any control cards (for example, PROCESS or CBL).

Note: Comments intermixed with control cards could nullify some of the control cards
and cause them to be diagnosed as errors.

Area A or Area B

 Example
|...+.\..1....+....2....+....3....+....4....+....5....+....6....+....7..
ððððð1 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

ððððð5 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK
 - "LLLLLLLLLLMMMMMMMMMM"

ðððð1ð "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"
 - "GGGGGGGGGGHHHHHHHHHHIIIIIIIIIIJJJJJJJJJJKKKKKKKKKK"
 - "LLLLLLLLLLMMMMMMMMMM"

Note: To code a continued literal where the length of each continued segment of the
literal is less than the length of Area-B, adjust the starting column such that the last
character of the continued segment is in column 72.

Area A or Area B
The following items may begin in either Area A or Area B:

 � Level-numbers
 � Comment lines
 � Compiler-directing statements
 � Debugging lines
 � Pseudo-text

 Level-Numbers
A level-number that may begin in Area A or B is a 1- or 2-digit integer with a value of
02 through 49; 66, or 88. A level-number that must begin in Area A is a 1- or 2-digit
integer with a value of 01 or 77. It must be followed by a space or a separator period.
For more information, see “Level-Numbers” on page 162.

 Comment Lines
A comment line is any line with an asterisk (*) or slash (/) in the indicator area (column
7) of the line. The comment may be written anywhere in Area A and Area B of that
line, and may consist of any combination of characters from the character set of the
computer. A comment line may be placed anywhere in the program following the Iden-
tification Division header.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or a
slash (/) in the indicator area.

Part 1. COBOL Language Structure 37

As an IBM extension BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT,
INSERT, SKIP1/2/3, and TITLE can also start in Area A or Area B.

Compiler Directives (Workstation Only)
Compiler directives can start only in Area B. Currently, the only compiler directive is
CALLINTERFACE.

Area A or Area B

An asterisk (*) comment line is printed on the next available line in the output listing.
The effect may be dependent on the LINECOUNT compiler option. See “LINECOUNT”
compiler option in the IBM COBOL Programming Guide for your platform. A slash (/)
comment line is printed on the first line of the next page, and the current page of the
output listing is ejected.

The compiler treats a comment line as documentation, and does not check it syntac-
tically.

 Compiler-Directing Statements
Most compiler-directing statements may start in either Area A or Area B, including
COPY and REPLACE.

 Debugging Lines
A debugging line is any line with a 'D' (or 'd') in the indicator area of the line.
Debugging lines can be written in the Environment Division (after the
OBJECT-COMPUTER paragraph), the Data Division, and the Procedure Division. If a
debugging line contains only spaces in Area A and Area B, it is considered a blank line.

See “WITH DEBUGGING MODE” on page 87.

 Pseudo-Text
The character-strings and separators comprising pseudo-text may start in either Area
A or Area B. If, however, there is a hyphen in the indicator area (column 7) of a line
which follows the opening pseudo-text delimiter, Area A of the line must be blank, and
the rules for continuation lines apply to the formation of text words.

 Blank Lines
A blank line contains nothing but spaces from column 7 through column 72. A blank
line may appear anywhere in a program.

38 COBOL Language Reference

For Classes and Methods
Names declared in a class definition are global to all the methods contained in that
class definition. All names declared in methods are implicitly local.

Scope of Names

Scope of Names

A COBOL resource is any resource in a COBOL program that is referenced via a user-
defined word. You can use names to identify COBOL resources. This section
describes COBOL names and their scope. It explains the range of where the names
can be referenced and the range of their usability and accessibility.

Types of Names
In addition to identifying a resource, a name can have global or local attributes. Some
names are always global, some names are always local, and some names are either
local or global depending on specifications in the program in which the names are
declared.

For Programs
A global name can be used to refer to the resource with which it is associated
both:

� From within the program in which the global name is declared

� From within any other program that is contained in the program that declares
the global name

You use the GLOBAL clause in the data description entry to indicate that a name
is global. For more information on using the GLOBAL clause, see “GLOBAL
Clause” on page 170.

A local name can be used only to refer to the resource with which it is associated
from within the program in which the local name is declared.

By default, if a data-name, a file-name, a record-name, or a condition-name decla-
ration in a data description entry does not include the GLOBAL clause, the name is
local.

Note: Specific rules sometimes prohibit specifying the GLOBAL clause for certain data
description, file description, or record description entries.

The following list indicates the names you can use and whether the name can be local
or global:

data-name
Data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that declares the data-name, or in another entry to which that data
description entry is subordinate.

 Copyright IBM Corp. 1991, 1998 39

method-name
Method-name assigns a name to a method. A method-name is neither local nor
global.

Scope of Names

file-name
File-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name.

record-name
Record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record description
that declares the record-name, or in the case of record description entries in the
File Section, if the GLOBAL clause is specified in the file description entry for the
file name associated with the record description entry.

condition-name
Condition-name associates a value with a conditional variable.

A condition-name that is declared in a data description entry is global if that entry is
subordinate to another entry that specifies the GLOBAL clause.

A condition-name that is declared within the Configuration Section is always global.

program-name
Program-name assigns a name to a program, either external or internal (nested).
For more information, see “Conventions for Program-Names” on page 66.

A program-name is neither local nor global. For more information, see “Con-
ventions for Program-Names” on page 66.

section-name
Section-name assigns a name to a section in the Procedure Division.

A section-name is always local.

paragraph-name
Paragraph-name assigns a name to a paragraph in the Procedure Division.

A paragraph-name is always local.

basis-name
Basis-names are treated consistently as defined for text-names without the library-
name qualification.

library-name
 Under MVS and VM, library-name specifies the COBOL library that the

compiler uses for a given source program compilation.

A library-name is external to the program and can be referenced by any COBOL
program if the compiler system supports the associated library and the entities ref-
erenced are known to that system.

 Under AIX, OS/2, and Windows, a library-name is used to identify the
path for the library text.

40 COBOL Language Reference

object-oriented class-name
Object-oriented class-name assigns a name to a class, subclass, or metaclass. An
object-oriented class-name is always global.

object-oriented class Working-Storage
Object-oriented class Working-Storage data items are always global to the methods
contained in the class definition. They are accessible from any contained method.

Scope of Names

If you specify library-name with a literal, it is treated as the actual path name. If you
specify library-name with a user-defined word, the name is used as an environment
variable and the value of the environment variable is used for the path names(s) to
locate the COPY text. For details on path names, see “COPY Statement” on
page 516.

text-name

 Under MVS and VM, text-name assigns a name to library text. A text-
name is external to the program and can be referenced by any COBOL program if
the compiler system supports the associated library and the entities referenced are
known to that system.

 Under AIX, OS/2, and Windows, a text-name is used to identify the
file for the COPY text. For details, see “COPY Statement” on page 516.

alphabet-name
Alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

An alphabet-name is always global.

class-name
Class-name assigns a name to the proposition in the SPECIAL-NAMES paragraph
of the Environment Division for which a truth value can be defined.

A class-name is always global.

mnemonic-name
Mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
Symbolic-character specifies a user-defined figurative constant.

A symbolic-name is always global.

index-name
Index-name assigns a name to an index associated with a specific table.

If a data item possessing the GLOBAL attribute includes a table accessed with an
index, that index also possesses the GLOBAL attribute. In addition, the scope of
that index-name is identical to the scope of the data-name that includes the table.

Scope of Names 41

 or method

 or method
 or method

 or methods

 or method

 or method

 or methods

 or method

 or methods

or method or method

 or method

External and Internal Resources

External and Internal Resources
Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored. The
storage associated with a data item or a file connector can be external or internal to
the program in which the resource is declared.

A data item or file connector is external if the storage associated with that resource is
associated with the run unit rather than with any particular program within
the run unit. An external resource can be referenced by any program in the
run unit that describes the resource. References to an external resource from different
programs using separate descriptions of the resource are always to the
same resource. In a run unit, there is only one representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program that describes the resource.

External and internal resources can have either global or local names.

A data record described in the Working-Storage Section is given the external attribute
by the presence of the EXTERNAL clause in its data description entry. Any data item
described by a data description entry subordinate to an entry describing an external
record also attains the external attribute. If a record or data item does not have the
external attribute, it is part of the internal data of the program in which it is
described.

Two programs in a run unit can reference the same file connector in the
following circumstances:

� An external file connector can be referenced from any program that
describes that file connector.

� If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program, or in any program that directly or indirectly contains the con-
taining program.

Two programs in a run unit can reference common data in the following
circumstances:

� The data content of an external data record can be referenced from any program
 provided that program has described that data record.

� If a program is contained within another program, both programs can refer to data
possessing the global attribute either in the program or in any program that directly
or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records, are
always internal to the program describing the file-name. If the EXTERNAL

42 COBOL Language Reference

 (note, these rules
also apply to classes and contained methods)

Resolution of Names

clause is included in the file description entry, the data records and the data items
attain the external attribute.

Resolution of Names
When a program, program B, is directly contained within another program, program A,
both programs can define a condition-name, a data-name, a file-name, or a record-
name using the same user-defined word. When such a duplicated name is referenced
in program B, the following steps determine the referenced resource

:

1. The referenced resource is identified from the set of all names which are defined in
program B and all global names defined in program A and in any programs which
directly or indirectly contain program A. Using this set of names, the normal rules
for qualification and any other rules for uniqueness of reference are applied until
one or more resource is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one of them can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following applies:

� If the name is declared in program B, the resource in program B is the refer-
enced resource.

� If the name is not declared in program B, the referenced resource is:

– The resource in program A if the name is declared in program A.

– The resource in the containing program if the name is declared in the
program containing program A.

This rule is applied to further containing programs until a valid resource is
found.

Scope of Names 43

Uniqueness of Reference

Referencing Data Names, Copy Libraries, and Procedure Division
Names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit. This section contains the rules for quali-
fication and for explicit and implicit data references.

Uniqueness of Reference
Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference which uniquely identifies that resource. To
ensure uniqueness of reference, a user-defined name can be qualified, subscripted, or
reference-modified.

When the same name has been assigned in separate programs to two or more occur-
rences of a resource of a given type, and when qualification by itself does not allow the
references in one of those programs to differentiate between the identically named
resources, then certain conventions that limit the scope of names apply. The con-
ventions ensure that the resource identified is that described in the program containing
the reference. For more information on resolving program-names, see “Resolution of
Names” on page 43.

Unless otherwise specified by the rules for a statement, any subscripts and reference
modification are evaluated only once as the first step in executing that statement.

 Qualification
A name can be made unique if it exists within a hierarchy of names by specifying one
or more higher-level names in the hierarchy. The higher-level names are called qual-
ifiers , and the process by which such names are made unique is called qualification .

Qualification is specified by placing one or more phrases after a user-specified name,
with each phrase made up of the word IN or OF followed by a qualifier (IN and OF are
logically equivalent).

In any hierarchy, the data name associated with the highest level must be unique if it is
referenced, and cannot be qualified.

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

� EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
� EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary

44 Copyright IBM Corp. 1991, 1998

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed (for DBCS
items).

These same rules apply to classes and their contained methods.

 as an
IBM extension, text-name-1 need not be qualified each time it is referenced; a qualifica-
tion of SYSLIB is assumed.

Uniqueness of Reference

 Qualification Rules
The rules for qualifying a name are:

� A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

� Each qualifier must be of a higher level than the name it qualifies, and must be
within the same hierarchy.

� If there is more than one combination of qualifiers that ensures uniqueness, then
any of these combinations can be used.

Data Attribute Specification
Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data attri-
bute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted and the
symbol N is not specified in the PICTURE clause, the default is USAGE DISPLAY,
which is the implicit data attribute.

If, however, you specify USAGE DISPLAY in COBOL coding, it becomes an
explicit data attribute.

 Identical Names
When programs are directly or indirectly contained within other programs, each program
can use identical user-defined words to name resources. With identically-named
resources, a program will reference the resource which that program describes rather
than the same-named resource described in another program, even when it is a dif-
ferent type of user-defined word.

References to COPY Libraries
 Format
55──text-name-1─ ──┬ ┬──────────────────────── ───────────────────────────────────5%
 └ ┘ ──┬ ┬─IN─ ─library-name-1─
 └ ┘─OF─

If more than one COBOL library is available to the compiler during compilation,

For rules on referencing COPY libraries, see “COPY Statement” on page 516.

Part 1. COBOL Language Structure 45

Uniqueness of Reference

References to Procedure Division Names
 Format 1

55──paragraph-name-1─ ──┬ ┬──────────────────────── ──────────────────────────────5%
 └ ┘ ──┬ ┬─IN─ ─section-name-1─
 └ ┘─OF─

 Format 2
55──section-name-1───5%

Procedure Division names that are explicitly referenced in a program must be unique
within a section. A section-name, described under “Procedures” on page 231, is the
highest and only qualifier available for a paragraph-name and must be unique if refer-
enced.

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to within the section in
which it appears. A paragraph-name or section-name appearing in a program cannot
be referenced from any other program.

References to Data Division Names

Simple Data Reference
The most basic method of referencing data items in a COBOL program is simple data
reference , which is data-name-1 without qualification, subscripting, or reference modifi-
cation. Simple data reference is used to reference a single elementary or group item.

 Format
55──data-name-1──5%

data-name-1
Can be any data description entry.

Data-name-1 must be unique in a program.

 Identifier
When used in a syntax diagram in this manual, the term identifier refers to a valid
combination of a data-name or function-identifier with its qualifiers, subscripts, and
reference-modifiers as required for uniqueness of reference. Rules for identifiers asso-
ciated with a format can, however, specifically prohibit qualification, subscripting, or
reference-modification.

The term data-name refers to a name that must not be qualified, subscripted, or refer-
ence modified, unless specifically permitted by the rules for the format.

� For a description of qualification, see “Qualification” on page 44.

46 COBOL Language Reference

Uniqueness of Reference

� For a description of subscripting, see “Subscripting” on page 49.
� For a description of reference modification, see “Reference Modification” on

page 52.

 Format 1
 ┌ ┐───────────────────────────
55─ ─data-name-1─ ───6 ┴──┬ ┬───────────────────── ──┬ ┬───────────────────── ──────────5
 └ ┘ ──┬ ┬─IN─ ─data-name-2─ └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─ └ ┘─OF─

 ┌ ┐───────────────────────
5─ ───6 ┴──┬ ┬───────────────── ───5
 └ ┘─(──subscript──)─

5─ ──┬ ┬── ─────────────────────────5%
 └ ┘─(─ ──leftmost-character-position: ──┬ ┬──────── ─)─
 └ ┘─length─

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

 Format 1
 ┌ ┐───────────────────────────
55─ ──┬ ┬─condition-name-1─ ───6 ┴──┬ ┬───────────────────── ──────────────────────────5
 └ ┘─data-name-1────── └ ┘ ──┬ ┬─IN─ ─data-name-2─
 └ ┘─OF─

5─ ──┬ ┬───────────────────── ──5%
 └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─

 Format 2
55──LINAGE-COUNTER─ ──┬ ┬───────────────────── ───────────────────────────────────5%
 └ ┘ ──┬ ┬─IN─ ─file-name-2─
 └ ┘─OF─

data-name-1, data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in that program containing the
Configuration Section or in a program contained within that program.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

Must be unique within this program.

Part 1. COBOL Language Structure 47

Uniqueness of Reference

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description entry
containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by the FD or SD entry in the Data Division. File-name-2 must
be unique within this program.

Duplication of data-names must not occur in those places where the data-name cannot
be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose level-
number is 01 that includes the EXTERNAL clause must not be the same data-name
specified for any other data description entry that includes the EXTERNAL clause.

In the same Data Division, the data description entries for any two data items for which
the same data-name is specified must not include the GLOBAL clause.

Data Division names that are explicitly referenced must either be uniquely defined or
made unique through qualification. Unreferenced data items need not be uniquely
defined. The highest level in a data hierarchy must be uniquely named, if referenced.
This is a data item associated with a level indicator (FD or SD in the File Section) or
with a level-number 01. Data items associated with level-numbers 02 through 49 are
successively lower levels of the hierarchy.

 Condition-name

Format 1 (Data Division)
 ┌ ┐───────────────────────────
55─ ─condition-name-1─ ───6 ┴──┬ ┬───────────────────── ──┬ ┬───────────────────── ─────5
 └ ┘ ──┬ ┬─IN─ ─data-name-1─ └ ┘ ──┬ ┬─IN─ ─file-name-1─
 └ ┘─OF─ └ ┘─OF─

5─ ──┬ ┬───────────────────── ──5%
 │ │┌ ┐─────────────
 └ ┘ ─(─ ───6 ┴─subscript─ ─)─

Format 2 (Special-Names Paragraph)
 ┌ ┐───────────────────────────────
55─ ─condition-name-1─ ───6 ┴──┬ ┬───────────────────────── ─────────────────────────5%
 └ ┘ ──┬ ┬─IN─ ─mnemonic-name-1─
 └ ┘─OF─

condition-name-1
Can be referenced by statements and entries either in the program containing the
definition of condition-name-1, or in a program contained within that program.

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names con-
ventions by themselves ensure uniqueness of reference.

48 COBOL Language Reference

Uniqueness of Reference

If qualification is used to make a condition-name unique, the associated conditional
variable may be used as the first qualifier. If qualification is used, the hierarchy of
names associated with the conditional variable itself must be used to make the
condition-name unique.

If references to a conditional variable require subscripting, reference to any of its
condition-names also requires the same combination of subscripting.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

mnemonic-name-1
For information on acceptable values for mnemonic-name-1, see
“SPECIAL-NAMES Paragraph” on page 89.

 Subscripting
Subscripting is a method of providing table references through the use of subscripts.
A subscript is a positive integer whose value specifies the occurrence number of a
table element.

 Format
 ┌ ┐───────────────────────────
55─ ──┬ ┬─condition-name-1─ ───6 ┴──┬ ┬───────────────────── ──────────────────────────5
 └ ┘─data-name-1────── └ ┘ ──┬ ┬─IN─ ─data-name-2─
 └ ┘─OF─

 ┌ ┐──
5─ ──┬ ┬───────────────────── ─(─ ───6 ┴──┬ ┬─integer-1────────────────────────── ─)───5%
 └ ┘ ──┬ ┬─IN─ ─file-name-1─ ├ ┤─ALL────────────────────────────────
 └ ┘─OF─ ├ ┤ ─data-name-3─ ──┬ ┬────────────────── ─
 │ │└ ┘ ──┬ ┬─+─ ─integer-2─
 │ │└ ┘─-─
 └ ┘ ─index-name-1─ ──┬ ┬──────────────────
 └ ┘ ──┬ ┬─+─ ─integer-3─
 └ ┘─-─

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS clause or
must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

Part 1. COBOL Language Structure 49

Data-name-3 cannot be a windowed date field.

Uniqueness of Reference

data-name-2, file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being refer-
enced which contains an INDEXED BY phrase specifying that name.

integer-2, integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any quali-
fication for the name of the table element. The number of subscripts in such a refer-
ence must equal the number of dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS clause in the hier-
archy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of successively
less inclusive dimensions of the data organization. If a multi-dimensional table is
thought of as a series of nested tables and the most inclusive or outermost table in the
nest is considered to be the major table with the innermost or least inclusive table being
the minor table, the subscripts are written from left to right in the order major, interme-
diate, and minor.

For example, if TABLE-THREE is defined as:

ð1 TABLE-THREE.
ð5 ELEMENT-ONE OCCURS 3 TIMES.

1ð ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:

ELEMENT-THREE (2 2 1)

Subscripted references may also be reference modified. See the third example on
page 54. A reference to an item must not be subscripted unless the item is a table
element or an item or condition-name associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

� In a USE FOR DEBUGGING statement
� As the subject of a SEARCH statement
� In a REDEFINES clause
� In the KEY is phrase of an OCCURS clause

50 COBOL Language Reference

As an IBM extension, an index-name can be used to reference any table. However,
the table element length of the table being referenced and of the table that the index-
name is associated with should match. Otherwise, the reference will not be to the
same table element in each table, and you might get run-time errors.

Uniqueness of Reference

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum number
of occurrences of the item as specified in the OCCURS clause.

Subscripting Using Data-Names
When a data-name is used to represent a subscript, it can be used to reference items
within different tables. These tables need not have elements of the same size. The
same data-name can appear as the only subscript with one item and as one of two or
more subscripts with another item. A data-name subscript can be qualified; it cannot
be subscripted or indexed. For example, valid subscripted references to TABLE-THREE
— assuming that SUB1, SUB2, and SUB3 are all items subordinate to SUBSCRIPT-ITEM —
include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting Using Index-Names (Indexing)
Indexing allows such operations as table searching and manipulating specific items. To
use indexing you associate one or more index-names with an item whose data
description entry contains an OCCURS clause. An index associated with an index-
name acts as a subscript, and its value corresponds to an occurrence number for the
item to which the index-name is associated.

The INDEXED BY phrase, by which the index-name is identified and associated with its
table, is an optional part of the OCCURS clause. There is no separate entry to
describe the index associated with index-name. At run time, the contents of the index
corresponds to an occurrence number for that specific dimension of the table with
which the index is associated.

The initial value of an index at run time is undefined, and the index must be initialized
before it is used as a subscript. An initial value is assigned to an index with one of the
following:

� The PERFORM statement with the VARYING phrase
� The SEARCH statement with the ALL phrase
� The SET statement

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated with
that table.

Part 1. COBOL Language Structure 51

As an IBM extension, the integer can be positively signed.

 or DISPLAY-1

Data-name-1 cannot be a windowed
date field.

The evaluation of leftmost-character-position must not result in a windowed date
field.

Uniqueness of Reference

Data that is arranged in the form of a table is often searched. The SEARCH statement
provides facilities for producing serial and non-serial searches. It is used to search for a
table element that satisfies a specific condition and to adjust the value of the associated
index to indicate that table element.

To be valid during execution, an index value must correspond to a table element occur-
rence of neither less than one, nor greater than the highest permissible occurrence
number.

For more information on index-names, see “INDEXED BY Phrase” on page 175.

 Relative Subscripting
In relative subscripting , the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and an unsigned integer
literal.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or down
by the value of the integer. The use of relative indexing does not cause the program to
alter the value of the index.

 Reference Modification
Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

 Format
55─ ──┬ ┬─data-name-1─── ────────────────────5
 └ ┘ ─FUNCTION──function-name-1─ ──┬ ┬──────────────────────
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───6 ┴─argument-1─ ─)─

5──(─ ──leftmost-character-position: ──┬ ┬──────── ─)──────────────────────────────5%
 └ ┘─length─

data-name-1
Must reference a data item whose usage is DISPLAY .

Data-name-1 can be qualified or subscripted.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-position
must result in a positive nonzero integer that is less than or equal to the number of
characters in the data item referenced by data-name-1.

52 COBOL Language Reference

When data-name-1 is a DISPLAY-1 data
item, reference modification refers to the starting position and length of the data
item being referenced in characters, not bytes.

The evaluation of length must not result in a windowed date field.

If data-name-1 is an expanded date field, then the result of reference modification is a
non-date.

If the category of data-name-1 is external floating-point, the unique data item has the
class and category alphanumeric.

Uniqueness of Reference

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must be
less than or equal to the number of characters in data-name-1. If length is omitted,
than the length used will be equal to the number of characters in data-name-1 plus
one minus leftmost-character-position.

The evaluation of length must
result in a positive nonzero integer.

Unless otherwise specified, reference modification is allowed anywhere an identifier ref-
erencing an alphanumeric data item is permitted.

Each character of data-name-1 is assigned an ordinal number incrementing by one
from the leftmost position to the rightmost position. The leftmost position is assigned
the ordinal number one. If the data description entry for data-name-1 contains a SIGN
IS SEPARATE clause, the sign position is assigned an ordinal number within that data
item.

If data-name-1 is described as numeric, numeric-edited, alphabetic, or alphanumeric-
edited, it is operated upon for purposes of reference modification as if it were redefined
as an alphanumeric data item of the same size as the data item referenced by
data-name-1.

Reference modification creates a unique data item which is a subset of data-name-1 or
by function-name-1 and its arguments, if any. This unique data item is considered an
elementary data item without the JUSTIFIED clause.

When a function is reference-modified, the unique data item has the class and category
of alphanumeric. When data-name-1 is reference-modified, the unique data item has
the same class and category as that defined for the data item referenced by
data-name-1; however, if the category of data-name-1 is numeric, numeric-edited, or
alphanumeric-edited, the unique data item has the class and category alphanumeric.

If length is not specified, the unique data item created extends from and includes the
character identified by leftmost-character-position up to and including the rightmost
character of the data item referenced by data-name-1.

Part 1. COBOL Language Structure 53

Uniqueness of Reference

Evaluation of Operands
Reference modification for an operand is evaluated as follows:

� If subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscript.

� If subscripting is not specified for the operand, the reference modification is evalu-
ated at the time subscripting would be evaluated if subscripts had been specified.

Reference Modification Examples
The following statement transfers the first 10 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(1ð).

...

MOVE WHOLE-NAME(1:1ð) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced by
WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME PIC X(15).

...

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third occurrence
of TAB to the variable SUFFIX.

ð1 TABLE-1.
ð2 TAB OCCURS 1ð TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).
...

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

 Function-Identifier
A function-identifier is a syntactically correct sequence of character strings and separa-
tors that uniquely references the data item resulting from the evaluation of a function.

 Format
55──FUNCTION──function-name-1─ ──┬ ┬────────────────────── ────────────────────────5
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───6 ┴─argument-1─ ─)─

5─ ──┬ ┬──────────────────── ───5%
 └ ┘─reference-modifier─

54 COBOL Language Reference

Uniqueness of Reference

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see “Intrinsic Functions” on page 447.

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

reference-modifier
May be specified only for functions of the category alphanumeric

A function-identifier that makes reference to an alphanumeric function may be specified
anywhere that an identifier is permitted and where references to functions are not spe-
cifically prohibited, except as follows:

� As a receiving operand of any statement

� Where a data item is required to have particular characteristics (such as class and
category, size, sign, and permissible values) and the evaluation of the function
according to its definition and the particular arguments specified would not have
these characteristics.

A function-identifier that makes reference to an integer or numeric function may be
used wherever an arithmetic expression is allowed.

Part 1. COBOL Language Structure 55

Transfer of Control

Transfer of Control

In the Procedure Division, unless there is an explicit control transfer or there is no next
executable statement, program flow transfers control from statement to statement in the
order in which the statements are written. (See Note below.) This normal program flow
is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of
a procedure branching statement. The following examples show implicit transfers of
control, overriding statement-to-statement transfer of control:

� After execution of the last statement of a procedure being executed under control
of another COBOL statement, control implicitly transfers. (COBOL statements that
control procedure execution are, for example: MERGE, PERFORM, SORT, and
USE.) Further, if a paragraph is being executed under the control of a PERFORM
statement which causes iterative execution, and that paragraph is the first para-
graph in the range of that PERFORM statement, an implicit transfer of control
occurs between the control mechanism associated with that PERFORM statement
and the first statement in that paragraph for each iterative execution of the para-
graph.

� During SORT or MERGE statement execution, control is implicitly transferred to an
input or output procedure.

� During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

� At the end of execution of any declarative procedure, control is implicitly transferred
back to the control mechanism associated with the statement that caused its exe-
cution.

COBOL also provides explicit control transfers through the execution of any procedure
branching, program call, or conditional statement. (Lists of procedure branching and
conditional statements are contained in “Statement Categories” on page 261.)

Note: The term “next executable statement” refers to the next COBOL statement to
which control is transferred, according to the rules given above. There is no next exe-
cutable statement under these circumstances:

� When the program contains no Procedure Division

� Following the last statement in a declarative section when the paragraph in which it
appears is not being executed under the control of some other COBOL statement

� Following the last statement in a program or method when the paragraph in which
it appears is not being executed under the control of some other COBOL statement
in that program

� Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this

56 Copyright IBM Corp. 1991, 1998

� Following a GOBACK statement that transfers control outside the COBOL program

� Following an EXIT METHOD statement that transfers control outside the COBOL
method

 or end method

Similarly, if control reaches the end of the Procedure Division of a method, and there is
no next executable statement, an implicit EXIT METHOD statement is executed.

Transfer of Control

last statement of the declarative section is not also the last statement of the proce-
dure that is the exit of the active PERFORM statement

� Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

� The end program header

When there is no next executable statement and control is not transferred outside the
COBOL program, the program flow of control is undefined unless the program exe-
cution is in the nondeclarative procedures portion of a program under control of a CALL
statement, in which case an implicit EXIT PROGRAM statement is executed.

Part 1. COBOL Language Structure 57

Millennium Language Extensions and Date Fields

Millennium Language Extensions and Date Fields

Many applications use 2 digits rather than 4 digits to represent the year in date fields,
and assume that these values represent years from 1900 to 1999. This compact date
format works well for the 1900s, but it does not work for the year 2000 and beyond
because these applications interpret “00” as 1900 rather than 2000, producing incorrect
results.

The millennium language extensions are designed to allow applications that use 2-digit
years to continue performing correctly in the year 2000 and beyond, with minimal mod-
ification to existing code. This is achieved using a technique known as windowing,
which removes the assumption that all 2-digit year fields represent years from 1900 to
1999. Instead, windowing enables 2-digit year fields to represent years within any
100-year range, known as a century window .

For example, if a 2-digit year field contains the value 15, many applications would inter-
pret the year as 1915. However, with a century window of 1960–2059, the year would
be interpreted as 2015.

The millennium language extensions provide support for the most common operations
on date fields: comparisons, moving and storing, incrementing and decrementing. This
support is limited to date fields of certain formats; for details, see “DATE FORMAT
Clause” on page 164.

For information on supported operations and restrictions when using date fields, see
“Restrictions On Using Date Fields” on page 166.

Millennium Language Extensions Syntax
The millennium language extensions introduce the following language elements to IBM
COBOL:

� The DATE FORMAT clause in data description entries, which defines data items
as date fields.

� The following intrinsic functions:

DATEVAL Converts a non-date to a date field.

UNDATE Converts a date field to a non-date.

YEARWINDOW Returns the first year of the century window specified by the
YEARWINDOW compiler option.

For details on using the millennium language extensions in applications, see the IBM
COBOL Programming Guide for your platform, or the IBM COBOL Millennium Lan-
guage Extensions Guide.

58 Copyright IBM Corp. 1991, 1998

Millennium Language Extensions and Date Fields

Note: The millennium language extensions have no effect unless:

� IBM VisualAge COBOL Millennium Language Extensions for
MVS & VM (program number 5654-MLE) is installed with your compiler.

� Your COBOL program is compiled using the DATEPROC compiler option
(with the century window specified by the YEARWINDOW compiler option).

Terms and Concepts
This book uses the following terms when referring to the millennium language exten-
sions.

 Date Field
A date field can be any of the following:

� A data item whose data description entry includes a DATE FORMAT clause.

� A value returned by one of the following intrinsic functions:

 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DATEVAL
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY
 YEARWINDOW

� The conceptual data items DATE, DATE YYYYMMDD, DAY, and DAY YYYYDDD
of the ACCEPT statement.

� The result of certain arithmetic operations (for details, see “Arithmetic with Date
Fields” on page 235).

The term date field refers to both expanded date fields and windowed date fields .

Windowed Date Field
A windowed date field is a date field that contains a windowed year . A windowed year
consists of 2 digits, representing a year within the century window.

Part 1. COBOL Language Structure 59

Millennium Language Extensions and Date Fields

Expanded Date Field
An expanded date field is a date field that contains an expanded year . An expanded
year consists of 4 digits.

Note: The main use of expanded date fields is to provide correct results when these
are used in combination with windowed date fields; for example, where migration to
4-digit year dates is not complete. If all the dates in an application use 4-digit years,
there is no need to use the millennium language extensions.

Year-Last Date Field
A year-last date field is a date field whose DATE FORMAT clause specifies one or
more Xs preceding the YY or YYYY. Year-last date fields are supported in a limited
number of operations, typically involving another date with the same (year-last) date
format, or a non-date.

 Date Format
Date format refers to the date pattern of a date field, specified either:

� Explicitly, by the DATE FORMAT clause or DATEVAL intrinsic function argument-2

or

� Implicitly, by statements and intrinsic functions that return date fields (for details,
see “Date Field” on page 59)

Compatible Date Field
The meaning of the term compatible , when applied to date fields, depends on the
COBOL division in which the usage occurs:

Data Division
Two date fields are compatible if they have identical USAGE and meet at
least one of the following conditions:

� They have the same date format

� Both are windowed date fields, where one consists only of a windowed
year, DATE FORMAT YY

� Both are expanded date fields, where one consists only of an
expanded year, DATE FORMAT YYYY

� One has DATE FORMAT YYXXXX, the other, YYXX

� One has DATE FORMAT YYYYXXXX, the other, YYYYXX

A windowed date field can be subordinate to an expanded date group data
item. The two date fields are compatible if the subordinate date field has
USAGE DISPLAY, starts two bytes after the start of the group expanded
date field, and the two fields meet at least one of the following conditions:

� The subordinate date field has a DATE FORMAT pattern with the
same number of Xs as the DATE FORMAT pattern of the group date
field.

� The subordinate date field has DATE FORMAT YY.

|
|
|
|
|

|
|
|
|

|
|
|

|

60 COBOL Language Reference

Millennium Language Extensions and Date Fields

� The group date field has DATE FORMAT YYYYXXXX and the subordi-
nate date field has DATE FORMAT YYXX.

Procedure Division
Two date fields are compatible if they have the same date format except
for the year part, which may be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is compatible with:

� Another windowed date field with DATE FORMAT YYXXX

� An expanded date field with DATE FORMAT YYYYXXX

 Non-Date
A non-date can be any of the following:

� A data item whose date description entry does not include the DATE FORMAT
clause

� A date field that has been converted using the UNDATE function

 � A literal

� A reference-modified date field

� The result of certain arithmetic operations that may include date field operands; for
example, the difference between two compatible date fields

 Century Window
A century window is a 100-year interval within which any 2-digit year is unique. There
are several types of century window available to COBOL programmers:

1. For windowed date fields, it is specified by the YEARWINDOW compiler option

2. For windowing intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For Language Environment callable services, it is specified in CEESCEN

|
|

Part 1. COBOL Language Structure 61

Millennium Language Extensions and Date Fields

62 COBOL Language Reference

COBOL Class Definition Structure

COBOL Method Definition Structure

Part 2. COBOL Source Unit Structure

COBOL Program Structure . 64
Nested Programs . 66

. 69

. 71

 Copyright IBM Corp. 1991, 1998 63

COBOL Program Structure

COBOL Program Structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested Programs
A nested program is a program that is contained in another program. These con-
tained programs can reference some of the resources of the programs that contain
them. If program B is contained in program A, it is directly contained if there is no
program contained in program A that also contains program B. Program B is indi-
rectly contained in program A if there exists a program contained in program A
that also contains program contained and containing programs, see B. For more
information on nested programs, see “Nested Programs” on page 66 and the IBM
COBOL Programming Guide for your platform.

Object Program
An object program is a set or group of executable machine language instructions
and other material designed to interact with data to provide problem solutions. An
object program is generally the machine language result of the operation of a
COBOL compiler on a source program.

Run Unit
A run unit is one or more object programs that interact with one another and that
function at object time as an entity to provide problem solutions.

Sibling program
Sibling programs are programs that are directly contained by the same program.

With the exception of the COPY and REPLACE statements and the end program
header, the statements, entries, paragraphs, and sections of a COBOL source program
are grouped into the following four divisions:

 � Identification Division
 � Environment Division
 � Data Division
 � Procedure Division

The end of a COBOL source program is indicated by the END PROGRAM header. If
there are no nested programs, the absence of additional source program lines also indi-
cates the end of a COBOL program.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL source program.

64 Copyright IBM Corp. 1991, 1998

ID

RECURSIVE

ID

This separator period is optional as an IBM extension.

Program-name can be a nonnumeric literal, but cannot be a figurative constant.
The content of the literal must follow the rules for formation of program names.
Any lowercase letters in this literal will be folded to uppercase.

COBOL Program Structure

Format—COBOL Source Program
55─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1)─program-name-1──────────────────────────────────5
 └ ┘ ─ ─────────────

5─ ──┬ ┬──────────────────────────────────── ─.───(1) ──┬ ┬───────────────────────────────── ──────────────5
 └ ┘ ──┬ ┬──── ──┬ ┬─ ─ ──┬ ┬───────── └ ┘─identification-division-content─
 └ ┘─IS─ └ ┘─INITIAL─── └ ┘─PROGRAM─

5─ ──┬ ┬─── ───────────────────────────────────────5
 └ ┘ ─ENVIRONMENT DIVISION.──environment-division-content─

5─ ──┬ ┬─────────────────────────────────────── ───5
 └ ┘ ─DATA DIVISION.──data-division-content─

5─ ──┬ ┬─── ───5
 └ ┘ ─PROCEDURE DIVISION.──procedure-division-content─

5─ ──┬ ┬─── ──────────────────────────5%
 └ ┘ ──┬ ┬─────────────────────────────── ─END PROGRAM──program-name-1.─
 │ │┌ ┐─────────────────────────────
 └ ┘───6 ┴─┤ nested source program ├─

nested source program:
├─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1)─program-name-2───────────────────────────────────5
 └ ┘ ─ ─────────────

5─ ──┬ ┬── ─.───(1) ──┬ ┬───────────────────────────────── ────5
 └ ┘ ──┬ ┬──── ──┬ ┬ ─COMMON─ ──┬ ┬───────── ──┬ ┬───────── └ ┘─identification-division-content─
 └ ┘─IS─ │ │└ ┘─INITIAL─ └ ┘─PROGRAM─
 └ ┘ ─INITIAL─ ──┬ ┬────────
 └ ┘─COMMON─

5─ ──┬ ┬─── ───────────────────────────────────────5
 └ ┘ ─ENVIRONMENT DIVISION.──environment-division-content─

5─ ──┬ ┬─────────────────────────────────────── ───5
 └ ┘ ─DATA DIVISION.──data-division-content─

5─ ──┬ ┬─── ──┬ ┬─────────────────────────────── ────────5
 └ ┘ ─PROCEDURE DIVISION.──procedure-division-content─ │ │┌ ┐─────────────────────────────
 └ ┘───6 ┴─| nested source program |─

5──END PROGRAM──program-name-2.───┤

Note:
1

A sequence of separate COBOL programs can also be input to the compiler. Following
is the format for the entries and statements that constitute a sequence of source pro-
grams (batch compile).

Format—Sequence of COBOL Source Programs
 ┌ ┐────────────────────────
55─ ───6 ┴─COBOL-source-program─ ──5%

END PROGRAM program-name
An end program header separates each program in the sequence of programs.
The program-name must conform to the rules for forming a user-defined word. It
must be identical to a program-name declared in a preceding PROGRAM-ID para-
graph.

Part 2. COBOL Source Unit Structure 65

COBOL Program Structure

An end program header is optional for the last program in the sequence only if that
program does not contain any nested-source-programs.

 Nested Programs
A COBOL program can contain other COBOL programs, which in turn can contain still
other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

A COBOL program may contain other COBOL programs. The contained (or nested)
programs may themselves contain yet other programs. A contained program may be
directly or indirectly contained within another program. Figure 2 describes a nested
program structure with directly and indirectly contained programs.

 ┌──────────Id Division.
X is the outermost program │ Program─Id. X.
and directly contains X1 and ─────────5│ Procedure Division.
X2, and indirectly contains │ Display "I'm in X"
X11 and X12 │ Call "X1"
 │ Call "X2"
 │ Stop Run.
 │ ┌──────Id Division.

X1 is directly contained │ │ Program─Id. X1.
in X and directly ─────────│─5│ Procedure Division.
contains X11 and X12 │ │ Display "I'm in X1"

 │ │ Call "X11"
 │ │ Call "X12"
 │ │ Exit Program.

│ │ ┌───Id Division.
X11 is directly │ │ │ Program─Id. X11.
contained in X1 ────────│──│─5│ Procedure Division.
and indirectly │ │ │ Display "I'm in X11"
contained in X │ │ │ Exit Program.

│ │ └───End Program X11.
│ │ ┌───Id Division.

X12 is directly │ │ │ Program─Id. X12.
contained in X1 ────────│──│─5│ Procedure Division.
and indirectly │ │ │ Display "I'm in X12"
contained in X │ │ │ Exit Program.

│ │ └───End Program X12.
│ └──────End Program X1.

 │ ┌──────Id Division.
 │ │ Program─Id. X2.

X2 is directly ───────────────────│─5│ Procedure Division.
contained in X │ │ Display "I'm in X2"

 │ │ Exit Program.
│ └──────End Program X2.
└─────────End Program X.

Figure 2. Nested program structure with directly and indirectly contained programs

Conventions for Program-Names
The program-name of a program is specified in the PROGRAM-ID paragraph of the
program's Identification Division. A program-name can be referenced only by the CALL
statement, the CANCEL statement, the SET statement, or the END PROGRAM header.

66 COBOL Language Reference

COBOL Program Structure

Names of programs constituting a run unit are not necessarily unique, but when two
programs in a run unit are identically named, at least one of the programs must be
directly or indirectly contained within another separately compiled program that does not
contain the other of those two programs.

A separately compiled program and all of its directly and indirectly contained programs
must have unique program-names within that separately compiled program.

Rules for Program-Names
The following rules regulate the scope of a program-name:

� If the program-name is that of a program which does not possess the COMMON
attribute, and which is directly contained within another program, that program-
name can be referenced only by statements included in that containing program.

� If the program-name is that of a program which does possess the COMMON attri-
bute, and which is directly contained within another program, that program-name
can be referenced only by statements included in that containing program and any
programs directly or indirectly contained within that containing program, except that
program possessing the COMMON attribute and any programs contained within it.

� If the program-name is that of a program which is separately compiled, that
program-name can be referenced by statements included in any other program in
the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

– If one of two programs having the same name as that specified in the CALL
statement is directly contained within the program that includes the CALL
statement, that program is called.

– If one of two programs having the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes
the CALL statement, that common program is called unless the calling
program is contained within that common program.

– Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is contained
within another program. For this discussion, we will say that Program-A contains
Program-B and Program-C, Program-C contains Program-D and Program-F, and
Program-D contains Program-E.

Part 2. COBOL Source Unit Structure 67

COBOL Program Structure

 ┌──┐
 │ Program-A │
 │ ┌─────────────────────────────────┐ │
 │ │ Program-B │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ └─────────────────────────────────┘ │
 │ │
 │ │
 │ ┌─────────────────────────────────┐ │
 │ │ Program-C │ │
 │ │ ┌──────────────────────────┐ │ │
 │ │ │ Program-D │ │ │
 │ │ │ │ │ │
 │ │ │ ┌─────────────────────┐ │ │ │
 │ │ │ │ Program-E │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │
 │ │ │ └─────────────────────┘ │ │ │
 │ │ └──────────────────────────┘ │ │
 │ │ ┌──────────────────────────┐ │ │
 │ │ │ Program-F │ │ │
 │ │ │ │ │ │
 │ │ └──────────────────────────┘ │ │
 │ └─────────────────────────────────┘ │
 └──┘

If Program-D does not possess the COMMON attribute, then Program-D can only be
referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be referenced
by Program-C since it contains Program-D and by any programs contained in
Program-C except for programs contained in Program-D. In other words, if Program-D
possesses the COMMON attribute, Program-D can be referenced in Program-C and
Program-F but not by statements in Program-E, Program-A or Program-B.

68 COBOL Language Reference

COBOL Class Definition

COBOL Class Definition Structure

A COBOL class definition describes a class or a metaclass. A class definition consti-
tutes a compilation unit.

Class
The entity that defines common behavior and implementation for zero, one, or
more objects. The objects that share the same implementation are considered to
be objects of the same class.

Method
Procedural code that defines one of the operations supported by an object, and
that is executed by an INVOKE statement on that object.

Instance Data
Data defining the state of an object. The instance data introduced by a class is
defined in the Working-Storage Section of the Data Division of the class definition.
The state of an object also includes the state of the instance variables introduced
by bases classes that are inherited by the current class. A separate copy of the
instance data is created for each object instance.

Subclass
A class that inherits methods and instance data from another class. When two
classes in an inheritance relationship are considered together, the subclass is the
inheritor or inheriting class; the super-class is the inheritee or inherited class.

Metaclass
A special type of class whose instances are called class-objects. Class-objects are
the run-time objects that represent SOM classes. Any class descended from
SOMClass is a metaclass.

With the exception of the COPY and REPLACE statements and the END CLASS
header, the statements, entries, paragraphs, and sections of a COBOL class definition
are grouped into the following four divisions:

 � Identification Division
� Environment Division (Configuration Section only)

 � Data Division
 � Procedure Division

The end of a COBOL class definition is indicated by the END CLASS header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL class definition.

 Copyright IBM Corp. 1991, 1998 69

COBOL Class Definition

Format—COBOL Class Definition
55─ ──┬ ┬─IDENTIFICATION DIVISION.─ ── ─CLASS-ID.──class-name-1─ ─.──────────────────5
 └ ┘─ID DIVISION.─────────────

5─ ──┬ ┬───────────────────────────────── ───5
 └ ┘──identification-division-content

5─ ── ─ENVIRONMENT DIVISION.─ ─class-environment-division-content─ ─────────────────5

5─ ──┬ ┬─── ───────────────────────────5
 └ ┘── ─DATA DIVISION.─ ─class-data-division-content─

5─ ──┬ ┬── ────────────────────────5
 └ ┘── ─PROCEDURE DIVISION.─ ──┬ ┬───────────────────────
 │ │┌ ┐─────────────────────
 └ ┘───6 ┴─method-definition─

5─ ── ─END CLASS─ ─class-name-1.─ ───5%

END CLASS
Specifies the end of a class definition.

70 COBOL Language Reference

COBOL Method Definition

COBOL Method Definition Structure

A COBOL method definition describes a method. You can only specify a method defi-
nition within a class definition.

With the exception of the COPY and REPLACE statements and the END METHOD
header, the statements, entries, paragraphs, and sections of a COBOL method defi-
nition are grouped into the following four divisions:

 � Identification Division
� Environment Division (Input-Output section only)

 � Data Division
 � Procedure Division

The end of a COBOL method definition is indicated by the END METHOD header.

Following is the format for the entries and statements that constitute a separately-
compiled COBOL method definition.

Format—COBOL Method Definition
55─ ──┬ ┬─IDENTIFICATION DIVISION.─ ──┬ ┬───────────────────────────────── ──────────5
 └ ┘─ID DIVISION.───────────── └ ┘─identification-division-content─

5─ ──┬ ┬── ────────────5
 └ ┘── ─ENVIRONMENT DIVISION.─ ─method-environment-division-content─

5─ ──┬ ┬── ──────────────────────────5
 └ ┘── ─DATA DIVISION.─ ─method-data-division-content─

5─ ──┬ ┬── ────────────────────5
 └ ┘──PROCEDURE DIVISION.method-procedure-division-content

5─ ── ─END METHOD─ ─method-name-1.─ ───5%

END METHOD
Specifies the end of a method definition.

Methods defined in a class can access instance data (class Working-Storage Section
data items) introduced in the same class but not instance data introduced by a parent
class or metaclass. Therefore, instance data is always private to the class that intro-
duces it.

Methods introduced in class-name-1 must have unique names within the class defi-
nition.

 Copyright IBM Corp. 1991, 1998 71

COBOL Method Definition

72 COBOL Language Reference

CLASS-ID Paragraph
METHOD-ID Paragraph

 Part 3. Identification Division

Identification Division . 74
PROGRAM-ID Paragraph . 77

 . 79
 . 81

Optional Paragraphs . 83

 Copyright IBM Corp. 1991, 1998 73

class definition, and method definition. class, or method,
 class, or method

 or ID DIVISION

 and as an IBM extension, can appear in any
order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the Identification Division must be the CLASS-ID
paragraph.

The other paragraphs are optional, and can appear in any order.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the Identification Division must be the
METHOD-ID paragraph.

The other paragraphs are optional, and can appear in any order.

Identification Division

 Identification Division

The Identification Division must be the first division in every COBOL source program,
It names the program, and

can include the date the program, was written, the date of compilation,
and other such documentary information. The Identification Division must begin with
the words IDENTIFICATION DIVISION followed by a separator period.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the Identification Division must be the
PROGRAM-ID paragraph.

The other paragraphs are optional,

74 Copyright IBM Corp. 1991, 1998

ID

RECURSIVE

This separator period is optional as an IBM extension.

Identification Division

Format—Program Identification Division
55─ ──┬ ┬─IDENTIFICATION─ ─DIVISION.──PROGRAM-ID.───(1)─program-name──────────────────5
 └ ┘ ─ ─────────────

5─ ──┬ ┬── ─.───(1)───────────────────────5
 └ ┘ ──┬ ┬──── ──┬ ┬─ ─────────── ──┬ ┬─────────
 └ ┘─IS─ ├ ┤ ─COMMON─ ──┬ ┬───────── └ ┘─PROGRAM─
 │ │└ ┘─INITIAL─
 └ ┘ ─INITIAL─ ──┬ ┬────────
 └ ┘─COMMON─

5─ ──┬ ┬────────────────────────────────── ──5
 └ ┘ ─AUTHOR.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬── ──────────────────────────────────5
 └ ┘ ─INSTALLATION.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬── ──────────────────────────────────5
 └ ┘ ─DATE-WRITTEN.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬─── ─────────────────────────────────5
 └ ┘ ─DATE-COMPILED.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬──────────────────────────────────── ─────────────────────────────────────5%
 └ ┘ ─SECURITY.───(1) ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

Note:
1

Part 3. Identification Division 75

Format—Class Identification Division
55─ ──┬ ┬─IDENTIFICATION DIVISION─ ─CLASS-ID.──class-name-1────────────────────────5
 └ ┘─ID DIVISION─────────────

 ┌ ┐────────────────
5─ ─INHERITS─ ───6 ┴─class-name-2─ ──┬ ┬───────────────────────────────── ─.───────────5
 └ ┘ ─METACLASS─ ──┬ ┬──── ─class-name-3─
 └ ┘ ─IS─

5─ ──┬ ┬──────────────────────────────── ──5
 └ ┘ ─AUTHOR.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────────── ────────────────────────────────────5
 └ ┘ ─INSTALLATION.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────────── ────────────────────────────────────5
 └ ┘ ─DATE-WRITTEN.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬─────────────────────────────────────── ───────────────────────────────────5
 └ ┘ ─DATE-COMPILED.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────── ───────────────────────────────────────5%
 └ ┘ ─SECURITY.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

Format—Method Identification Division
55─ ──┬ ┬─IDENTIFICATION DIVISION─ ──5
 └ ┘─ID DIVISION─────────────

5──METHOD-ID.──method-name-1─ ──┬ ┬────────────────────────────── ─.───────────────5
 └ ┘ ──┬ ┬──── ──┬ ┬──────── ─OVERRIDE─
 └ ┘─IS─ └ ┘─METHOD─

5─ ──┬ ┬──────────────────────────────── ──5
 └ ┘ ─AUTHOR.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────────── ────────────────────────────────────5
 └ ┘ ─INSTALLATION.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────────── ────────────────────────────────────5
 └ ┘ ─DATE-WRITTEN.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬─────────────────────────────────────── ───────────────────────────────────5
 └ ┘ ─DATE-COMPILED.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

5─ ──┬ ┬────────────────────────────────── ───────────────────────────────────────5%
 └ ┘ ─SECURITY.─ ──┬ ┬───────────────────
 │ │┌ ┐─────────────────
 └ ┘ ───6 ┴─comment-entry─

Identification Division

76 COBOL Language Reference

 or nonnumeric literal

If program-name is a nonnumeric literal,
(other than a figurative constant), it can
include the extension characters $, #, and
@ in the outermost program only.

If program-name is a nonnumeric literal, it can be up to 160 characters in length. It cannot be
a figurative constant.

PGMNAME
(LONGMIXED)

Program-name must be specified as a
literal. It cannot be a figurative constant.

The name can be up to 160 characters in
length.

Program-name can consist of any character
in the range X'41' to X'FE'.

Program-name must be specified as a
literal. It cannot be a figurative constant.

The name can be up to 160 characters in
length.

Wherever alphabetic characters are allowed,
you can use multi-byte characters.

For information on the PGMNAME compiler option and how the compiler processes
the names, see the IBM COBOL Programming Guide for your platform.

RECURSIVE
An optional clause that allows COBOL programs to be recursively reentered.

You can specify the RECURSIVE clause only on the outermost program of a com-
pilation unit. Recursive programs cannot contain nested subprograms.

PROGRAM-ID Paragraph

 PROGRAM-ID Paragraph
The PROGRAM-ID paragraph specifies the name by which the program is known and
assigns selected program attributes to that program. It is required and must be the first
paragraph in the Identification Division.

program-name
A user-defined word that identifies your program. It must
follow the following rules of formation, depending on the setting of the PGMNAME
compiler option:

Table 7. Formation Rules for Program Names Based on PGMNAME Compiler Option

PGMNAME
Setting

Formation Rules

MVS and VM AIX, OS/2, and Windows

PGMNAME
(COMPAT)

The name can be up to 30 characters in
length.

Only the hyphen, digit, and alphabetic char-
acters are allowed in the name.

At least one character must alphabetic.

The hyphen cannot be used as the first or
last character.

Flagged with a warning message and
treated as PGMNAME(UPPER).

PGMNAME
(LONGUPPER)

If program-name is a user-defined word, it can be up to 30 characters in length.

Only the hyphen, digit, and alphabetic characters are allowed in the name.

At least one character must alphabetic.

The hyphen cannot be used as the first or last character.

Part 3. Identification Division 77

If the RECURSIVE clause is specified, program-name-1 can be recursively reen-
tered while a previous invocation is still active. If the RECURSIVE clause is not
specified, an active program cannot be recursively reentered.

The Working-Storage Section of a recursive program defines storage that is stat-
ically allocated and initialized on the first entry to a program, and is available in a
last-used state to any of the recursive invocations.

The Local-Storage Section of a recursive program (as well as a non-recursive
program) defines storage that is automatically allocated, initialized, and deallocated
on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of the
last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:

 � ALTER
� GO TO without a specified procedure name

 � RERUN
 � SEGMENTATION
� USE FOR DEBUGGING

Note: Methods are always recursive by default. The RECURSIVE clause cannot
be specified on the METHOD-ID statement.

PROGRAM-ID Paragraph

COMMON
Specifies that the program named by program-name is contained within another
program, and it can be called from siblings of the common program and programs
contained within them. The COMMON clause can be used only in nested pro-
grams. For more information on conventions for program names, see the IBM
COBOL Programming Guide for your platform.

INITIAL
Specifies that when program-name is called, program-name and any programs
contained within it are placed in their initial state.

A program is in the initial state:

� The first time the program is called in a run unit

� Every time the program is called, if it possesses the initial attribute

� The first time the program is called after the execution of a CANCEL statement
referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program

� The first time the program is called after the execution of a CALL statement
referencing a program that possesses the initial attribute, and that directly or
indirectly contains the program.

When a program is in the initial state, the following occur:

� The program's internal data contained in the Working-Storage Section are ini-
tialized. If a VALUE clause is used in the description of the data item, the

78 COBOL Language Reference

CLASS-ID Paragraph

 CLASS-ID Paragraph
The CLASS-ID paragraph specifies the name by which the class is known and assigns
selected attributes to that class. It is required and must be the first paragraph in a
class Identification Division.

class-name-1
A user-defined word that identifies the class.

If you want to use more flexible naming conventions for class-name-1, specify
class-name-1 in the REPOSITORY paragraph of the class definition. (This defines
an external class name to identify the class outside of this class definition.)

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). Class-name-1 cannot directly or indirectly inherit
from class-name-1. A class name can only appear once in the INHERITS clause.

class-name-2
The name of a class inherited by class-name-1. If class-name-2 is repeated, mul-
tiple inheritance is present. You must specify class-name-2 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

METACLASS
A clause that identifies the metaclass for class-name-1. A metaclass is a special
class whose instances are class objects. For more information on metaclasses,
see the IBM COBOL Programming Guide for your platform.

Do not specify the METACLASS clause when defining a metaclass.

Note: The INHERITS and METACLASS clauses can appear in either order in the
CLASS-ID paragraph.

class-name-3
The name of a metaclass that is responsible for creating and/or managing objects
of the class being defined. You must specify class-name-3 in the REPOSITORY
paragraph of the Configuration Section of the class definition.

data item is initialized to the defined value. If a VALUE clause is not associ-
ated with a data item, the initial value of the data item is undefined.

� Files with internal file connectors associated with the program are not in the
open mode.

� The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

� An altered GO TO statement contained in the program is set to its initial state.

For the rules governing non-unique program names, see “Rules for Program-Names”
on page 67.

Part 3. Identification Division 79

CLASS-ID Paragraph

 General Rules
Class-name-1, class-name-2, and class-name-3 must conform to the normal rules of
formation for a COBOL user-defined word, as described in “COBOL Words with Single-
Byte Characters” on page 3.

See “REPOSITORY Paragraph” on page 98 for details on:

� Class names mapping to CORBA compliant names
� Specification of external class-names with more flexible rules of formation

You can specify a sequence of class definitions and program definitions in a single
COBOL source file, forming a batch compile.

 Inheritance
Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from it. A subclass can introduce new methods
that do not exist in the parent (or ancestor) class or can override a method from the
parent class. When a subclass overrides an existing method from the parent class, it
defines a new implementation for that method, which replaces the inherited implemen-
tation.

The instance data of class-name-1 is a copy of the instance data from class-name-2
together with the data declared in the Working-Storage Section of class-name-1. Note
however, instance data is always private to the class that introduces it.

The semantics of inheritance are defined by the IBM SOM. All classes must be derived
directly or indirectly from the SOMObject class. All metaclasses must be derived
directly or indirectly from SOMClass.

 Multiple Inheritance
Multiple inheritance is when more than one class name is specified on the INHERITS
phrase. With multiple inheritance, a class might inherit the same methods and instance
data from different parents (if each of these parents have a common ancestor). In this
situation, (“diamond inheritance”) the subclass inherits only one set of method imple-
mentations and one copy of the instance data.

When a subclass inherits two methods with the same name, the two methods must
comply to the following conformance rules:

� The number of formal parameters on the Procedure Division USING phrase must
be the same for both methods.

� The presence or absence of the Procedure Division RETURNING phrase must be
consistent for the two methods.

� Corresponding parameters in the Procedure Division USING and RETURNING
phrases must satisfy the following:

– If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must have
the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and

80 COBOL Language Reference

METHOD-ID Paragraph

BLANK WHEN ZERO clauses. Note that periods and commas can be inter-
changed if using the DECIMAL POINT IS COMMA clause, and the PICTURE
clause currency symbols can differ.

– If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, the corresponding parameter must be
defined with an identical USAGE clause or USAGE IS OBJECT REFERENCE
clause.

– For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

 METHOD-ID Paragraph
The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. It is required and must be the first para-
graph in a method Identification Division.

method-name-1
A user-defined word or a nonnumeric literal that identifies the method.

The rules of formation for method-name-1 are as follows:

� If the method name is specified in the user-defined word format, then normal
COBOL rules for a user-defined word apply.

� If the method name is specified as a nonnumeric literal, then:

– The name can be up to 160 characters in length.

– The characters used in the name must be uppercase or lowercase alpha-
betic, digit, hyphen, or underscore.

– At least one character must be alphabetic.

– Hyphen cannot be used as the first or last character.

OVERRIDE
A clause that allows a subclass to override an existing method implementation
when it inherits a method from a parent class.

You must specify the OVERRIDE clause in the METHOD-ID paragraph, if
method-name-1 is overriding a method with the same name that is inherited from a
parent class.

Do not specify the OVERRIDE clause if the method is not inherited from an
ancestor class, and is being introduced by the current class definition.

|
|

Part 3. Identification Division 81

METHOD-ID Paragraph

 General Rules
1. Method names that are defined for a class must be unique. (The set of methods

"defined for a class" includes the methods introduced by the class definition and
the methods inherited from parent classes.)

Note: Method names that differ only in case are not considered unique. For
example, naming one method “SAYHELLO” and another method “sayHELLO” is
invalid.

2. Method names are processed by the compiler as follows:

� Literal-format methods names are processed in a case-sensitive manner.
However, when processing method resolution as part of INVOKE statements
or method names that are specified as user-defined words, the compiler
ignores any difference in case.

� If necessary, the compiler translates method names to conform to CORBA
requirements:

– Hyphens are translated to zero
– If the first character of the name is a digit, it is converted as follows:

- 1 through 9 are changed to A through I
- 0 is changed to J

3. If a method in class-name-1 overrides a method in class-name-2, these two
methods must satisfy the following conformance rules:

� The number of formal parameters on the Procedure Division USING phrase
must be the same for both methods.

� The presence or absence of the Procedure Division RETURNING phrase must
be consistent on the two methods.

� Corresponding parameters in the Procedure Division USING phrases must
satisfy the following:

– If a formal parameter is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the PICTURE clause currency symbols can differ.

– If a formal parameter is a COBOL elementary data item described with
USAGE IS OBJECT REFERENCE, then the corresponding parameter
must be defined with an identical USAGE IS OBJECT REFERENCE
clause.

– BY VALUE and BY REFERENCE specifications must be consistent.

|

82 COBOL Language Reference

� The identifiers specified on the Procedure Division RETURNING phrases must
satisfy the following:

– If one of the identifiers is a COBOL elementary data item not described
with USAGE IS OBJECT REFERENCE, then the corresponding identifier
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTI-
FIED, and BLANK WHEN ZERO clauses. Note that periods and commas
can be interchanged if using the DECIMAL POINT IS COMMA clause,
and the PICTURE clause currency symbols can differ.

– If the class-name-2 Procedure Division RETURNING identifier is a uni-
versal object reference, the class-name-1 Procedure Division
RETURNING identifier must be an object reference (either a universal
object reference or an object reference typed to a specific class).

Universal object references are described with USAGE OBJECT REFER-
ENCE and typed object references are described with USAGE OBJECT
REFERENCE class-name.

– If the class-name-2 Procedure Division RETURNING identifier is an object
reference typed to a specific class, the class-name-1 Procedure Division
RETURNING identifier must be an object reference typed to the same
class or a derived class.

� For the purpose of conformance checking, a fixed-length group data item is
considered to be equivalent to an elementary alphanumeric data item of the
same length.

A variable-length group conforms only to other variable-length groups that
have the same maximum length.

Optional Paragraphs

|

 Optional Paragraphs
These optional paragraphs in the Identification Division can be omitted:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of char-
acters from the character set of the computer. The comment-entry is written in Area B
on one or more lines.

Part 3. Identification Division 83

 Under AIX, OS/2, and Windows, you can include multi-byte as well as
single-byte characters in an EUC or DBCS code page in comment entries in the Iden-
tification Division of your program. Multiple lines are allowed in a comment-entry con-
taining multi-byte characters.

 Under MVS and VM, you can include DBCS character strings as comment-
entries in the Identification Division of your program. Multiple lines are allowed in a
comment-entry containing DBCS strings.

A DBCS string must be preceded by a shift-out control character and followed by a
shift-in control character. For example:

AUTHOR. <.A.U.T.H.O.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When using DBCS characters in a comment-entry contained on multiple lines, shift-out
and shift-in characters must be paired on a line.

DBCS strings are described under “Character-Strings” on page 3.

Optional Paragraphs

The paragraph name DATE-COMPILED and any comment-entry associated with it
appear in the output program listing with the current date inserted:

 DATE-COMPILED. ð4/27/95.

Comment-entries serve only as documentation; they do not affect the meaning of the
program. A hyphen in the indicator area (column 7) is not permitted in comment-
entries.

84 COBOL Language Reference

REPOSITORY Paragraph

PASSWORD Clause
LOCK MODE Clause (OS/2 VSAM Files Only)

APPLY WRITE-ONLY Clause

 Part 4. Environment Division

Configuration Section . 86
SOURCE-COMPUTER Paragraph . 87
OBJECT-COMPUTER Paragraph . 88
SPECIAL-NAMES Paragraph . 89
ALPHABET Clause . 92
SYMBOLIC CHARACTERS Clause . 95
CLASS Clause . 95
CURRENCY SIGN Clause . 96

 . 98

Input-Output Section . 100
FILE-CONTROL Paragraph . 102
SELECT Clause . 106
ASSIGN Clause . 106
RESERVE Clause . 110
ORGANIZATION Clause . 111
PADDING CHARACTER Clause . 114
RECORD DELIMITER Clause . 114
ACCESS MODE Clause . 115
RECORD KEY Clause . 117
ALTERNATE RECORD KEY Clause . 118
RELATIVE KEY Clause . 119

 . 120
. 120

FILE STATUS Clause . 122
I-O-CONTROL Paragraph . 124
RERUN Clause . 125
SAME AREA Clause . 127
SAME RECORD AREA Clause . 127
SAME SORT AREA Clause . 128
SAME SORT-MERGE AREA Clause . 129
MULTIPLE FILE TAPE Clause . 129

. 129

 Copyright IBM Corp. 1991, 1998 85

 and classes,

Class Configuration Section
Specify the Configuration Section only in the Environment Division of the outermost
program of a class definition.

Entries in a class Configuration Section apply to the entire class definition,
including all methods introduced by that class.

Method Configuration Section
The Configuration Section is not valid for method definitions.

and Classes

repository-paragraph

� Relate object-oriented class names to the class names in the SOM interface repos-
itory

Configuration Section

 Configuration Section

The Configuration Section is an optional section for programs which can
describe the computer environment on which the program is compiled and executed.

Program Configuration Section
The Configuration Section can be specified only in the Environment Division of the
outermost program of a COBOL source program.

You should not specify the Configuration Section in a program that is contained
within another program. The entries specified in the Configuration Section of a
program apply to any program contained within that program.

Format—Programs
55──CONFIGURATION SECTION.─ ──┬ ┬─────────────────────────── ──────────────────────5
 └ ┘─source-computer-paragraph─

5─ ──┬ ┬─────────────────────────── ──┬ ┬───────────────────────── ──────────────────5
 └ ┘─object-computer-paragraph─ └ ┘─special-names-paragraph─

5─ ──┬ ┬────────────────────── ───5%
 └ ┘─ ─

The Configuration Section can:

� Relate IBM-defined environment-names to user-defined mnemonic names

� Specify the collating sequence

| � Specify a currency sign value, and the currency symbol used in the PICTURE
| clause to represent the currency sign value

� Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

� Relate alphabet-names to character sets or collating sequences

 � Specify symbolic-characters

� Relate class names to sets of characters

86 Copyright IBM Corp. 1991, 1998

SOURCE-COMPUTER Paragraph

 SOURCE-COMPUTER Paragraph
The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

 Format
55──SOURCE-COMPUTER.─ ──┬ ┬── ──────5%
 └ ┘ ─computer-name─ ──┬ ┬────────────────────────── ─.─
 └ ┘ ──┬ ┬────── ─DEBUGGING MODE─
 └ ┘─WITH─

computer-name
A system-name. For example:

IBM-39ð

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source program.

A debugging line is a statement that is compiled only when the compile-time switch
is activated. Debugging lines allow you, for example, to check the value of a data-
name at certain points in a procedure.

To specify a debugging line in your program, code a 'D' in column 7 (indicator
area). You can include successive debugging lines, but each must have a 'D' in
column 7 and you cannot break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is logically deter-
mined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the Environment (after the OBJECT-COMPUTER
paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated the
same as a blank line.

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER para-
graph is syntax checked, but has no effect on the execution of the program.

Part 4. Environment Division 87

 Under MVS and VM, the PROGRAM COLLATING SEQUENCE clause is
not applied to the DBCS character set.

 Under AIX, OS/2, and Windows, the PROGRAM COLLATING
SEQUENCE clause is not allowed if the code page in effect is a DBCS or EUC code
page.

OBJECT-COMPUTER Paragraph

 OBJECT-COMPUTER Paragraph
The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

 Format
55──OBJECT-COMPUTER.──5

5─ ──┬ ┬── ─────────────5%
 └ ┘─computer-name─ ──┬ ┬─── ─┤ entry 1 ├──.─
 └ ┘ ─MEMORY─ ──┬ ┬────── ─integer─ ──┬ ┬─WORDS──────

└ ┘─SIZE─ ├ ┤─CHARACTERS─
 └ ┘─MODULES────

entry 1:
├─ ──┬ ┬─── ───────────────────────────────┤
 └ ┘ ──┬ ┬───────── ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name─
 └ ┘─PROGRAM─ └ ┘─COLLATING─ └ ┘─IS─

computer-name
A system-name. For example:

IBM-39ð

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked, but it has no effect on the execution of the
program.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program is the collating sequence associated
with the specified alphabet-name.

The collating sequence pertains to this program and any programs it might contain.

alphabet-name
The collating sequence.

PROGRAM COLLATING SEQUENCE determines the truth value of the following non-
numeric comparisons:

� Those explicitly specified in relation conditions
� Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any nonnumeric
merge or sort keys, unless the COLLATING SEQUENCE phrase is specified in the
MERGE or SORT statement.

88 COBOL Language Reference

 (multiple currency sign values and cur-
rency symbols may be specified)

Note: The clauses in the SPECIAL-NAMES paragraph can appear in any order.

SPECIAL-NAMES Paragraph

When the PROGRAM COLLATING SEQUENCE clause is omitted:

� Under MVS and VM, the EBCDIC collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

� Under AIX, OS/2, and Windows, the COLLSEQ compiler option
indicates the collating sequence used. For example, if COLLSEQ(EBCDIC) is
specified and the PROGRAM COLLATING SEQUENCE is not specified (or is
NATIVE), the EBCDIC collating sequence is applied.

SEGMENT-LIMIT IS
Certain permanent segments can be overlaid by independent segments while still
retaining the logical properties of fixed portion segments. (Fixed portion segments
are made up of fixed permanent and fixed overlayable segments.)

Priority-number
An integer ranging from 1 through 49.

When SEGMENT-LIMIT is specified:

� A fixed permanent segment is one with a priority-number less than the
priority-number specified.

� A fixed overlayable segment is one with a priority-number ranging from
that specified through 49, inclusive.

For example, if SEGMENT-LIMIT IS 25 is specified:

� Sections with priority-numbers 0 through 24 are fixed permanent seg-
ments.

� Sections with priority-numbers 25 through 49 are fixed overlayable seg-
ments.

When SEGMENT-LIMIT is omitted, all sections with priority-numbers 0 through
49 are fixed permanent segments.

Except for the PROGRAM COLLATING SEQUENCE clause, the OBJECT-COMPUTER
paragraph is syntax checked, but it has no effect on the execution of the program.

 SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph:

� Relates IBM-specified environment-names to user-defined mnemonic-names
� Relates alphabetic-names to character sets or collating sequences
� Specifies symbolic characters
� Relates class names to sets of characters

| � Specifies a currency sign value, and the currency symbol used in the PICTURE
| clause to represent the currency sign value
|

� Specifies that the functions of the comma and decimal point are to be interchanged
in PICTURE clauses and numeric literals

Part 4. Environment Division 89

PICTURE SYMBOL literal-7
WITH

This separator period must be used if any of the optional clauses are selected.

SPECIAL-NAMES Paragraph

 Format
 ┌ ┐──
55──SPECIAL-NAMES.─ ───6 ┴──┬ ┬── ─────5
 ├ ┤ ─environment-name-1─ ──┬ ┬──── ─mnemonic-name-1──────────────────────
 │ │└ ┘─IS─
 └ ┘ ─environment-name-2─ ──┬ ┬ ──┬ ┬──── ─mnemonic-name-2─ ──┬ ┬─────────────

│ │└ ┘─IS─ └ ┘─┤ entry 1 ├─
└ ┘─┤ entry 1 ├──────────────────────────────

5─ ──┬ ┬── ────────────────────5
 │ │┌ ┐──
 └ ┘ ───6 ┴ ─ALPHABET──alphabet-name-1─ ──┬ ┬──── ──┬ ┬─STANDARD-1──────────────────
 └ ┘─IS─ ├ ┤─STANDARD-2──────────────────
 ├ ┤─NATIVE──────────────────────
 ├ ┤─EBCDIC──────────────────────
 │ │┌ ┐───────────────────────────
 └ ┘───6 ┴ ─literal-1──┤ phrase 1 ├─

 ┌ ┐───
5─ ───6 ┴──┬ ┬─── ───────────────────────5
 └ ┘─SYMBOLIC─ ──┬ ┬──────────── ─┤ symbolic ├─ ──┬ ┬─────────────────────
 └ ┘─CHARACTERS─ └ ┘ ─IN──alphabet-name-2─

 ┌ ┐──
5─ ───6 ┴──┬ ┬── ────────────────5
 │ │┌ ┐───
 └ ┘ ─CLASS──class-name-1─ ──┬ ┬──── ───6 ┴ ─literal-4─ ──┬ ┬────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─literal-5─
 └ ┘─THRU────

5─ ──┬ ┬─── ───────────5
 └ ┘ ─CURRENCY─ ──┬ ┬────── ──┬ ┬──── ─literal-6─ ──┬ ┬──────────────────────────────────────

| └ ┘─SIGN─ └ ┘─IS─ └ ┘| ──┬ ┬────── ─ ── ── ─
| └ ┘─ ─

5─ ──┬ ┬────────────────────────────── ──┬ ┬───── ──5%
 └ ┘ ─DECIMAL-POINT─ ──┬ ┬──── ─COMMA─ └ ┘─.───(1)

 └ ┘─IS─

entry 1:
├─ ──┬ ┬ ─ON─ ──┬ ┬──────── ──┬ ┬──── ─condition-1─ ──┬ ┬────────────────────────────────────── ─────────────┤
 │ │└ ┘─STATUS─ └ ┘─IS─ └ ┘ ─OFF─ ──┬ ┬──────── ──┬ ┬──── ─condition-2─
 │ │└ ┘─STATUS─ └ ┘─IS─
 └ ┘ ─OFF─ ──┬ ┬──────── ──┬ ┬──── ─condition-2─ ──┬ ┬─────────────────────────────────────
 └ ┘─STATUS─ └ ┘─IS─ └ ┘ ─ON─ ──┬ ┬──────── ──┬ ┬──── ─condition-1─
 └ ┘─STATUS─ └ ┘─IS─

phrase 1:
├─ ──┬ ┬──────────────────────── ──┤
 ├ ┤ ──┬ ┬─THROUGH─ ─literal-2─
 │ │└ ┘─THRU────
 │ │┌ ┐───────────────────
 └ ┘───6 ┴ ─ALSO──literal-3─ ───

symbolic:
 ┌ ┐──
 │ │┌ ┐──────────────────────── ┌ ┐─────────────
├─ ───6 ┴ ───6 ┴─symbolic-character-1─ ──┬ ┬─ARE─ ───6 ┴─integer-1─ ──┤
 └ ┘─IS──

Note:
1

90 COBOL Language Reference

SPECIAL-NAMES Paragraph

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are:

environment-name-2
A 1-byte User Programmable Status Indicator (UPSI) switch. Valid specifications
for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for user-
defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY, and
WRITE statements. Mnemonic-name-2 can be referenced only in the SET state-
ment. Mnemonic-name-2 can qualify cond-1 or cond-2 names.

Mnemonic-names and environment-names need not be unique. If you choose a
mnemonic-name that is also an environment-name, its definition as a mnemonic-
name will take precedence over its definition as an environment-name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as year-beginning
or year-ending processing. For example, at the beginning of the Procedure Divi-
sion, an UPSI switch can be tested; if it is ON, the special branch is taken. (See
“Switch-Status Condition” on page 254.)

Table 8. Meanings of Environment Names

Environment
Name-1

Meaning Allowed In

SYSIN
SYSIPT

System logical input unit ACCEPT

SYSOUT
SYSLIST
SYSLST

System logical output unit DISPLAY

SYSPUNCH
SYSPCH

System punch device DISPLAY

CONSOLE Console ACCEPT and DISPLAY

C01–C12 Skip to channel 1 through 12, respectively WRITE ADVANCING (On
AIX, OS/2, and Windows,
with C01–C12, one line is
advanced.)

CSP Suppress spacing WRITE ADVANCING

S01–S05 Pocket select 1–5 on punch devices WRITE ADVANCING (On
AIX, OS/2, and Windows,
with S01–S05, one line is
advanced.)

AFP-5A Advanced Function Printing WRITE ADVANCING

Part 4. Environment Division 91

 Under AIX, OS/2, and Windows, you cannot specify the ALPHABET
clause if the code page in effect is a DBCS or EUC code page. For details, see
the IBM COBOL Programming Guide for your platform.

ALPHABET Clause

cond-1, cond-2
Condition-names follow the rules for user-defined names. At least one character
must be alphabetic. The value associated with the condition-name is considered to
be alphanumeric. A condition-name can be associated with the on status and/or
off status of each UPSI switch specified.

In the Procedure Division, the UPSI switch status is tested through the associated
condition-name. Each condition-name is the equivalent of a level-88 item; the
associated mnemonic-name, if specified, is considered the conditional variable and
can be used for qualification.

Condition-names specified in a containing program's SPECIAL-NAMES paragraph
can be referenced from any contained program.

 ALPHABET Clause
ALPHABET alphabet-name-1 IS

Provides a means of relating an alphabet-name to a specified character code set
or collating sequence.

It specifies a collating sequence when used in either:

� The PROGRAM COLLATING SEQUENCE clause of the
OBJECT-COMPUTER paragraph

� The COLLATING SEQUENCE phrase of the SORT or MERGE statement

It specifies a character code set when specified in either:

� The FD entry CODE-SET clause
� The SYMBOLIC CHARACTERS clause

STANDARD-1
 Under MVS and VM, specifies the ASCII character set.

 Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the
locale setting.

STANDARD-2
 Under MVS and VM, specifies the International Reference Version

of the ISO 7-bit code defined in International Standard 646, 7-bit Coded Char-
acter Set for Information Processing Interchange.

 Under AIX, OS/2, and Windows, specifies that the collating
sequence is based on the binary code values of the characters, ignoring the
locale setting.

92 COBOL Language Reference

 or EUC

ALPHABET Clause

NATIVE
Specifies the native character code set. If the alphabet-name clause is
omitted:

 Under MVS and VM, EBCDIC is assumed.

 Under AIX, OS/2, and Windows, the alphabet-name is associ-
ated with the character set (ASCII) indicated by the locale in effect.

EBCDIC
Specifies the EBCDIC character set.

literal-1
literal-2
literal-3

Specifies that the collating sequence is to be determined by the program,
according to the following rules:

� The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

� Each numeric literal specified must be an unsigned integer.

� Each numeric literal must have a value that corresponds to a valid ordinal
position within the collating sequence in effect.

Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548, lists
the ordinal number for characters in the EBCDIC and ASCII collating
sequences.

� Each character in a nonnumeric literal represents that actual character in
the character set. (If the nonnumeric literal contains more than one char-
acter, each character, starting with the leftmost, is assigned a succes-
sively ascending position within this collating sequence.)

� Any characters that are not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified characters.
The relative order within the set of these unspecified characters within the
character set remains unchanged.

� Within one alphabet-name clause, a given character must not be specified
more than once.

� Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be 1 character in length.

� When the THROUGH phrase is specified, the contiguous characters in the
native character set beginning with the character specified by literal-1 and
ending with the character specified by literal-2 are assigned successively
ascending positions in this collating sequence.

Part 4. Environment Division 93

Floating-point literals cannot be used in a user-specified collating sequence.

DBCS literals cannot be used in a user-specified collating sequence.

ALPHABET Clause

This sequence can be either ascending or descending within the original
native character set. That is, if "Z" THROUGH "A" is specified, the
ascending values, left-to-right, for the uppercase letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

� When the ALSO phrase is specified, the characters specified as literal-1,
literal-3, etc., are assigned to the same position in this collating sequence.
For example, if you specify:

"D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same position
in the collating sequence.

� When the ALSO phrase is specified and alphabet-name-1 is referenced in
a SYMBOLIC CHARACTERS clause, only literal-1 is used to represent
the character in the character set.

� The character having the highest ordinal position in this collating
sequence is associated with the figurative constant HIGH-VALUE. If more
than one character has the highest position, because of specification of
the ALSO phrase, the last character specified (or defaulted to when any
characters are not explicitly specified) is considered to be the
HIGH-VALUE character for procedural statements such as DISPLAY, or
as the sending field in a MOVE statement. (If all characters and the
ALSO phrase example given above were specified as the high-order char-
acters of this collating sequence, the HIGH-VALUE character would be
%.)

� The character having the lowest ordinal position in this collating sequence
is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position, because of specification of the ALSO
phrase, the first character specified is the LOW-VALUE character. (If the
ALSO phrase example given above were specified as the low-order char-
acters of the collating sequence, the LOW-VALUE character would be D.)

When literal-1 , literal-2 , or literal-3 is specified, the alphabet-name must not
be referred to in a CODE-SET clause (see “CODE-SET Clause” on page 159).

Literal-1 , literal-2 , and literal-3 must not specify a symbolic-character figura-
tive constant.

94 COBOL Language Reference

 Under MVS and VM, the symbolic character can be a DBCS user-
defined word.

 Under AIX, OS/2, and Windows, you cannot use the SYMBOLIC
CHARACTERS clause if the code page is DBCS or EUC.

 Under AIX, OS/2, and Windows, you cannot specify the CLASS clause if
the code page in effect is a DBCS or EUC code page.

 Under MVS and VM, the class-name in the CLASS clause can be a
DBCS user-defined word.

CLASS Clause

SYMBOLIC CHARACTERS Clause
SYMBOLIC CHARACTERS symbolic-character-1

Provides a means of specifying one or more symbolic characters.
Symbolic-character-1 is a user-defined word and must contain at least one alpha-
betic character. The same symbolic-character can appear only once in a SYM-
BOLIC CHARACTERS clause.

The internal representation of symbolic-character-1 is the internal representation of
the character that is represented in the specified character set. The following rules
apply:

� The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause. The
first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

� There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC CHARAC-
TERS clause.

� If the IN phrase is specified, integer-1 specifies the ordinal position of the char-
acter that is represented in the character set named by alphabet-name-2. This
ordinal position must exist.

� If the IN phrase is not specified, symbolic-character-1 represents the character
whose ordinal position in the native character set is specified by integer-1.

Note: Ordinal positions are numbered starting from 1.

 CLASS Clause

CLASS class-name-1 IS
Provides a means for relating a name to the specified set of characters listed in
that clause. Class-name can be referenced only in a class condition. The charac-
ters specified by the values of the literals in this clause define the exclusive set of
characters of which this class-name consists.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value that is greater than
or equal to 1 and less than or equal to the number of characters in the alphabet
specified. Each number corresponds to the ordinal position of each character in

Part 4. Environment Division 95

Cannot be specified as floating-point literals
or as DBCS literals.

 'EUR', 'FRF', 'HK$', 'HKD', or X'9F' (hexadecimal code point
in some host-based code pages for , the Euro currency sign; for more details on
programming techniques for handling the Euro, see the IBM COBOL Programming
Guide for your platform).

The SPECIAL-NAMES paragraph may contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all
other PICTURE clause symbols, currency symbols are case-sensitive: for example, 'D'
and 'd' specify different currency symbols.

 a
DBCS literal, or a null-terminated literal.

If the PICTURE SYMBOL phrase is not specified,

CURRENCY SIGN Clause

the EBCDIC or ASCII collating series.

If nonnumeric, the literal is the actual EBCDIC or ASCII character. Literal-4 and
literal-5 must not specify a symbolic-character figurative constant. If the value of
the nonnumeric literal contains multiple characters, each character in the literal is
included in the set of characters identified by class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be one
character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified, class-name
includes those characters beginning with the value of literal-4 and ending with
the value of literal-5. In addition, the characters specified by a THROUGH
phrase can specify characters in either ascending or descending order.

CURRENCY SIGN Clause
| The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
| clause character-strings contain a currency symbol. A currency symbol represents a
| currency sign value that is:

| � Inserted in such data items, when they are used as receiving items

| � Removed from such data items, when they are used as sending items for a
| numeric or numeric-edited receiver

| Typically, currency sign values identify the monetary units stored in a data item. For
| example: '$', 'F',
|
|
|

| The CURRENCY SIGN clause specifies a currency sign value and the currency symbol
| used to represent that currency sign value in a PICTURE clause.

|
|
|
|

| CURRENCY SIGN IS literal-6
| Literal-6 must be a nonnumeric literal. Literal-6 must not be a figurative constant,
|

| literal-6:

| � Specifies both a currency sign value and the currency symbol for this currency
| sign value.

| � Must be a single character.

| � Must not be any of the following:

96 COBOL Language Reference

 E, G, N,

'

� Can be one of the following lowercase alphabetic characters: f, h, i, j, k, l, m,
o, q, t, u, w, y

If the PICTURE SYMBOL phrase is specified, literal-6:

� Specifies a currency sign value. Literal-7, in the PICTURE SYMBOL phrase,
specifies the currency symbol for this currency sign value.

� May consist of one or more characters.

� Must not contain any of the following:

– Digits 0 through 9

– Special characters + - . ,

PICTURE SYMBOL literal-7
Specifies a currency symbol, which can be used in a PICTURE clause to represent
the currency sign value specified by literal-6.

Literal-7 must be a nonnumeric literal consisting of a single character. Literal-7
must not be any of the following:

� A figurative constant

� Digits 0 through 9

� Alphabetic characters A, B, C, D, E, G, N, P, R, S, V, X, Z, their lowercase
equivalents, or the space

� Special characters + - , . * / ; () " = '

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and the
NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the default
currency sign value and currency symbol. For more information about the CURRENCY
and NOCURRENCY compiler options, see the IBM COBOL Programming Guide for
your platform.

Some uses of the CURRENCY SIGN clause prevent use of the NUMVAL-C intrinsic
function. For details, see “NUMVAL-C” on page 488.

CURRENCY SIGN Clause

| – Digits 0 through 9

| – Alphabetic characters A, B, C, D, P, R, S, V, X, Z, their lower-
| case equivalents, or the space

| – Special characters + - , . * / ; () " =

|
|

|

|
|

|

|

|

|

|
|
|

|
|

|

|

|
|

|

|
|
|
|
|
|

|
|

DECIMAL-POINT IS COMMA
Exchanges the functions of the period and the comma in PICTURE character
strings and in numeric literals.

Part 4. Environment Division 97

REPOSITORY Paragraph

 REPOSITORY Paragraph
The REPOSITORY paragraph defines the names of the classes that you can use in a
class definition or program. Optionally, the REPOSITORY paragraph defines associ-
ations between class-names and external class-names.

 Format
55─ ─REPOSITORY.─ ──┬ ┬── ────5
 └ ┘ ─CLASS──class-name-1─ ──┬ ┬───────────────────────────────
 └ ┘ ──┬ ┬──── ─external-class-name-1─
 └ ┘─IS─

5──.───5%

class-name-1
A user-defined word that identifies the class.

external-class-name-1
A name that enables a COBOL program to define or access classes with names
that are defined using CORBA rules of formation. (Class names defined using
CORBA rules of formation might not be expressible as a COBOL user-defined
word, such as the case-sensitive SOM class names (SOMObject for example), or a
class implemented in C with a name containing underscores.)

You must specify external-class-name-1 as a nonnumeric literal, conforming to the
following rules of formation:

� The name must not be a figurative constant.

� The name can be up to 160 characters in length.

� The characters used in the name must be uppercase or lowercase alphabetic,
digit, or underscore.

� The leading character must be alphabetic.

 General Rules
1. All class names (whether referenced in a program, class definition, or method intro-

duced by the class) must have an entry in the REPOSITORY paragraph. (You do
not have to put the name of the class you are defining in the REPOSITORY para-
graph. Note, if you don't, the class name is stored in all uppercase in the SOM
repository.)

You can only specify a class name once in a given REPOSITORY paragraph.

2. Entries in a class REPOSITORY paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program REPOSITORY
paragraph apply globally to all nested programs contained within the program.

98 COBOL Language Reference

REPOSITORY Paragraph

Identifying and Referencing the Class
The external class-name is used to identify and reference the class outside of the
source file containing the class definition (for example, to identify the entry for the class
in the SOM Interface Repository). The external class-name is determined by using the
contents of either external-class-name-1 or class-name-1 (as specified in the REPOSI-
TORY paragraph of a class), as described below:

1. external-class-name-1—is used directly, without translations. The external class-
names are processed in a case-sensitive manner.

2. class-name-1—is used if external-class-name-1 is not specified. To create a
CORBA-compliant external name that identifies the class, class-name-1 is proc-
essed as follows:

� The name is converted to uppercase.
� Hyphens are translated to zero.
� If the first character of the name is a digit, it is converted as follows:

– 1 though 9 are changed to A through I
– 0 is changed to J

Part 4. Environment Division 99

Class Input-Output Section
The Input-Output Section is not valid for class definitions.

Method Input-Output Section
The same rules apply to program and method I-O Sections.

and Methods

If there are no files defined in the program and the INPUT-OUTPUT
SECTION is specified and no file-control-paragraph is specified, then the
FILE-CONTROL paragraph-name is optional as an IBM extension.

If there are no files defined in the program and the FILE-CONTROL
paragraph-name is specified, then the file-control-paragraph is optional as an
IBM extension.

Input-Output Section

 Input-Output Section

The Input-Output Section of the Environment Division contains two paragraphs:

 � FILE-CONTROL paragraph
 � I-O-CONTROL paragraph

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION Clause” on page 111 and “ACCESS
MODE Clause” on page 115.

Program Input-Output Section
The same rules apply to program and method I-O Sections.

Programs
 ┌ ┐────────────────────────────
55──INPUT-OUTPUT SECTION.──FILE-CONTROL.───(1) ───6 ┴─file-control-paragraph───(2) ───────5

5─ ──┬ ┬── ─────────────────────────5%
 └ ┘ ─I-O-CONTROL.─ ──┬ ┬──────────────────────────────
 │ │┌ ┐─────────────────────────
 └ ┘ ───6 ┴─i-o-control-paragraph─ ─.─

Notes:
1

2

FILE-CONTROL
The key word FILE-CONTROL names the FILE-CONTROL paragraph. This key
word can appear only once, at the beginning of the FILE-CONTROL paragraph. It
must begin in Area A, and be followed by a separator period.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator period.
See “FILE-CONTROL Paragraph” on page 102.

I-O-CONTROL
The key word I-O-CONTROL names the I-O-CONTROL paragraph.

100 Copyright IBM Corp. 1991, 1998

Input-Output Section

input-output-control-paragraph
Specifies information needed for efficient transmission of data between the external
data set and the COBOL program. The series of entries must end with a separator
period. See “I-O-CONTROL Paragraph” on page 124.

Part 4. Environment Division 101

� Line sequential file entries (Workstation only)

 Under MVS and VM, there is one exception to the rule about order. For
indexed files, the PASSWORD clause, if specified, must immediately follow the
RECORD KEY or ALTERNATE RECORD KEY data-name with which it is associated.

Line
Sequential

n/a Native Native Native

FILE-CONTROL Paragraph

 FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with an
external data set, and specifies file organization, access mode, and other information.

The following are the formats for the FILE-CONTROL paragraph:

� Sequential file entries
� Indexed file entries
� Relative file entries

Table 9 lists the different type of files available to mainframe and workstation COBOL
programs.

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed by a
separator period. It must contain one and only one entry for each file described in an
FD or SD entry in the Data Division. Within each entry, the SELECT clause must
appear first. The other clauses can appear in any order.

Table 9. Types of Files

File
Organization

Access Method
MVS and VM

File Systems

AIX OS/2 Windows

Sequential QSAM, VSAM VSAM1, STL VSAM, Btrieve,
STL

VSAM2, Btrieve,
STL

Relative VSAM VSAM1, STL VSAM, Btrieve,
STL

VSAM2, Btrieve,
STL

Indexed VSAM VSAM1, STL VSAM, Btrieve,
STL

VSAM2, Btrieve,
STL

Note:

1 On AIX, you can access the SFS file system through VSAM.

2 On Windows, only remote file access is available.

102 COBOL Language Reference

USING data-name-9

LOCK AUTOMATIC
MODE IS LOCK ON RECORD

WITH

PASSWORD data-name-6
IS

data-name-8

The USING data-name phrase of the ASSIGN clause clause is only valid under AIX, OS/2, and
Windows.

The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AIX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

FILE-CONTROL Paragraph

 Format 1—Sequential-File-Control-Entries
 ┌ ┐─────────────────────
55──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───6 ┴─assignment-name-1─ ─────────────────5
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1)─────────

5─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────────────────────── ─────────────────────5
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ──┬ ┬────────────────────── ─SEQUENTIAL─
 ├ ┤─AREA── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 └ ┘─AREAS─ └ ┘─IS─

5─ ──┬ ┬─── ───5
 └ ┘ ─PADDING─ ──┬ ┬─────────── ──┬ ┬──── ──┬ ┬─data-name-5─
 └ ┘─CHARACTER─ └ ┘─IS─ └ ┘─literal-2───

5─ ──┬ ┬─── ───5
 └ ┘ ─RECORD DELIMITER─ ──┬ ┬──── ──┬ ┬─STANDARD-1────────
 └ ┘─IS─ └ ┘─assignment-name-2─

5─ ──┬ ┬────────────────────────────────────── ──5
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ─SEQUENTIAL─
 └ ┘─MODE─ └ ┘─IS─

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─ ───(2) ──┬ ┬────── ──┬ ┬──── ─ ─ ──┬ ┬──────────────────────────
 └ ┘─ ─ └ ┘─ ─ └ ┘──┬ ┬────── ─ ─
 └ ┘─ ─

5─ ──┬ ┬─────────────────────────────── ───5
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

5─ ──┬ ┬── ─.─────────────────────────────────5%
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

Notes:
1

2

Part 4. Environment Division 103

USING data-name-9

LOCK AUTOMATIC
MODE IS LOCK ON RECORD

WITH

PASSWORD data-name-6
IS

data-name-8

PASSWORD data-name-7
IS

The USING data-name phrase of the ASSIGN clause is only valid under AIX, OS/2, and
Windows.

The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AIX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

RECORD is optional as an IBM extension.

FILE-CONTROL Paragraph

 Format 2—Indexed-File-Control-Entries
 ┌ ┐─────────────────────
55──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───6 ┴─assignment-name-1─ ─────────────────5
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1)─────────

5─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────── ─INDEXED─────────────────────────────5
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 ├ ┤─AREA── └ ┘─IS─
 └ ┘─AREAS─

5─ ──┬ ┬── ──5
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ──┬ ┬─SEQUENTIAL─
 └ ┘─MODE─ └ ┘─IS─ ├ ┤─RANDOM─────
 └ ┘─DYNAMIC────

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─ ───(2) ──┬ ┬────── ──┬ ┬──── ─ ─ ──┬ ┬──────────────────────────
 └ ┘─ ─ └ ┘─ ─ └ ┘──┬ ┬────── ─ ─
 └ ┘─ ─

5─ ─RECORD─ ──┬ ┬───── ──┬ ┬──── ─data-name-2─ ──┬ ┬─────────────────────────────── ───────────────────────5
 └ ┘─KEY─ └ ┘─IS─ └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

 ┌ ┐───────────────────
5─ ───6 ┴──┬ ┬───────────── ──┬ ┬── ─.────────────5%
 └ ┘─┤ entry 1 ├─ └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

entry 1:
├──ALTERNATE RECORD───(3) ──┬ ┬───── ──┬ ┬──── ─data-name-3─ ──┬ ┬────────────────────── ────────────────────5
 └ ┘─KEY─ └ ┘─IS─ └ ┘ ──┬ ┬────── ─DUPLICATES─
 └ ┘─WITH─

5─ ──┬ ┬─────────────────────────────── ───┤
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

Notes:
1

2

3

104 COBOL Language Reference

USING data-name-9

LOCK AUTOMATIC
MODE IS LOCK ON RECORD

WITH

PASSWORD data-name-6
IS

data-name-8

The USING data-name phrase of the ASSIGN clause is only valid under AIX, OS/2, and
Windows.

The LOCK clause is only meaningful for OS/2 VSAM files. It is treated as a comment on AIX,
Windows, and files other than VSAM on OS/2. It is invalid on MVS and VM.

Format 4—Line Sequential I-O (Workstation Only)
 ┌ ┐─────────────────────
55──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───6 ┴─assignment-name-1─ ─────────────────5
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─USING──data-name-9────────────

5─ ──┬ ┬────────────────────── ─LINE SEQUENTIAL─ ──┬ ┬────────────────────────────────────── ───────────5
 └ ┘ ─ORGANIZATION─ ──┬ ┬──── └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ─SEQUENTIAL─
 └ ┘─IS─ └ ┘─MODE─ └ ┘─IS─

5─ ──┬ ┬── ─.─────────────────────────────────5%
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─data-name-8─

FILE-CONTROL Paragraph

 Format 3—Relative-File-Control-Entries :

 ┌ ┐─────────────────────
55──SELECT─ ──┬ ┬────────── ─file-name-1─ ─ASSIGN─ ──┬ ┬ ──┬ ┬──── ───6 ┴─assignment-name-1─ ─────────────────5
 └ ┘─OPTIONAL─ │ │└ ┘─TO─
 └ ┘─ ── ───(1)─────────

5─ ──┬ ┬───────────────────────────── ──┬ ┬────────────────────── ─RELATIVE────────────────────────────5
 └ ┘ ─RESERVE──integer─ ──┬ ┬─────── └ ┘ ─ORGANIZATION─ ──┬ ┬────
 ├ ┤─AREA── └ ┘─IS─
 └ ┘─AREAS─

5─ ──┬ ┬── ──────5
 └ ┘ ─ACCESS─ ──┬ ┬────── ──┬ ┬──── ──┬ ┬ ─SEQUENTIAL─ ──┬ ┬──
 └ ┘─MODE─ └ ┘─IS─ │ │└ ┘ ─RELATIVE─ ──┬ ┬───── ──┬ ┬──── ─data-name-4─
 │ │└ ┘─KEY─ └ ┘─IS─
 └ ┘ ──┬ ┬─RANDOM── ─RELATIVE─ ──┬ ┬───── ──┬ ┬──── ─data-name-4────
 └ ┘─DYNAMIC─ └ ┘─KEY─ └ ┘─IS─

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─ ───(2) ──┬ ┬────── ──┬ ┬──── ─ ─ ──┬ ┬──────────────────────────
 └ ┘─ ─ └ ┘─ ─ └ ┘──┬ ┬────── ─ ─
 └ ┘─ ─

5─ ──┬ ┬─────────────────────────────── ───5
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

5─ ──┬ ┬── ─.─────────────────────────────────5%
 └ ┘ ──┬ ┬────── ─STATUS─ ──┬ ┬──── ─data-name-1─ ──┬ ┬─────────────
 └ ┘─FILE─ └ ┘─IS─ └ ┘ ─ ─

Notes:
1

2

Part 4. Environment Division 105

ASSIGN Clause

 SELECT Clause
The SELECT clause chooses a file in the COBOL program to be associated with an
external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode. You must
specify SELECT OPTIONAL for such input files that are not necessarily present
each time the object program is executed. For more information, see the IBM
COBOL Programming Guide for your platform.

file-name-1
Must be identified by an FD or SD entry in the Data Division. A file-name must
conform to the rules for a COBOL user-defined name, must contain at least one
alphabetic character, and must be unique within this program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can follow
the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all file
control entries in the run unit that reference this file connector must have the same
specification for the OPTIONAL phrase.

 ASSIGN Clause
The ASSIGN clause associates the program's name for a file with the external name for
the actual data file.

MVS and VM Syntax
assignment-name-1

Can be specified as a user-defined word or a nonnumeric literal. Any assignment-
name after the first is syntax checked, but it has no effect on the execution of the
program.

Assignment-name-1 has the following formats:

 Format—QSAM File
55─ ──┬ ┬───────── ──┬ ┬───── ─name───5%

└ ┘──label- └ ┘─S- ─

Format—VSAM Sequential File
55─ ──┬ ┬───────── ─AS- ──name──5%

└ ┘──label-

Format—VSAM Indexed or Relative File
55─ ──┬ ┬───────── ─name──5%

└ ┘──label-

106 COBOL Language Reference

ASSIGN Clause

label-
Documents the device and device class to which a file is assigned. If specified, it
must end with a hyphen.

S- For QSAM files, the S- (organization) field can be omitted.

AS-
For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be omitted.

name
A required field that specifies the external name for this file. Under MVS it must be
the name specified in the DD statement for this file.

The name must conform to the following rules of formation:

� If assignment-name-1 is a user-defined word:

– The name can contain from 1 - 8 characters.
– The name can contain the characters A-Z, a-z, 0-9.
– The leading character must be alphabetic.

� If assignment-name-1 is a literal:

– The name can contain from 1 - 8 characters.
– The name can contain the characters A-Z, a-z, 0-9, @, #, $.
– The leading character must be alphabetic.

For both user-defined words and literals, the compiler folds name to upper case to
form the DD name for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have a consistent specification for assignment-name-1 in the ASSIGN clause. For
QSAM files and VSAM indexed and relative files, the name specified on the first
assignment-name-1 must be identical. For VSAM sequential files, it must be specified
as AS-name.

AIX, OS/2, and Windows Syntax
assignment-name-1

Can be either a user-defined word or a literal.

User-defined word
Assignment-name-1 must follow the rules for a COBOL word. The
name component of the assignment name can be up to 30 characters
in length. A user-defined word is treated as one of the following:

� Environment variable name — At program initialization, the name
is used as an environment variable. If the environment variable
value is set, that value is treated as the system file name
optionally preceded by the file-system ID. See “Assignment Name

Part 4. Environment Division 107

USING data-name-9
Must be defined as an alphanumeric data item, and must not be subordinate to the
file description for file-name-1. The content is evaluated when OPENed to identify
the assignment name. See “Assignment Name for Data-Names and Environment
Variables” on page 109 for details.

ASSIGN Clause

for Data-Names and Environment Variables” on page 109 for
details.

� System file ID of the platform — If the environment variable indi-
cated by the name is not set, the user-defined word is treated as
the system file name, optionally preceded by the file-system ID
and a comment character string. See “Assignment Name for Non-
Environment Variables and Literals” for details.

Literal
Assignment-name-1 is treated as the actual file ID for the platform.
Assignment-name-1 must follow the rules for a COBOL literal with the
length of one to 160 characters. See “Assignment Name for Non-
Environment Variables and Literals” for details.

All characters specified within the literal delimiters are used without
any mapping.

Assignment Name for Non-Environment Variables and Literals
If a literal or non-data-name word is specified for the name, the assignment name is
processed as follows:

ASSIGNment name format
55─ ──┬ ┬────────── ──┬ ┬───────────────── ──5

└ ┘─comment-─ └ ┘─file system ID-─

5─ ──┬ ┬─system file name─ ──┬ ┬─────────────── ────────────────────────────────────5%
 │ │└ ┘─┤ alt_index ├─

└ ┘─environment variable name───────────

alt_index:
 ┌ ┐────────────────────────────────
├──(──alt-inx-file-name-1─ ───6 ┴┬ ┬──────────────────────────── ─)──────────────────┤
 └ ┘ ─,─ ──┬ ┬─────────────────────
 └ ┘─alt-inx-file-name-2─

Comment
All characters to the left of the system-file ID are treated as comments.
Comments can be hyphenated, for example, my-comment or
this-is-my-comment.

File-system ID
The first three characters of the file-system ID are used to determine the
file-system identifier. If the character string for the file-system ID is less
than three characters, then the entire character string (along with any char-
acter strings to the left of it) is treated as a comment. If you include com-

108 COBOL Language Reference

ASSIGN Clause

ments (hyphenated or not), you must include the separating hyphen
between the comment and the file-system ID.

For example, take the following two assignment-name formats:

my-comment-vsam-myfile

In this example, my-comment is the comment, vsam is the file-system ID, and
myfile is the system file or environment variable name.

my-comment-am-myfile

In this example, my-comment-am is the comment, and myfile is the system
file or environment variable name.

System file name / Environment variable name
If the assignment name is not specified in the literal form and the environ-
ment variable matching the character string is found at run time, the envi-
ronment variable value is used to identify the file system and the system
file name. Otherwise, the character string is used as the system file name.

Specifying alternate indexes — The compiler normally assigns default
alternate index file names; however, you must override the default assign-
ment when:

� The file is not a local VSAM file and has different alternate index file
name specification rules. For example, an SFS file where SFS
requires an alternate index file name to start with the base file name
followed by ; followed by a character string of your choice.

� The file already exists and has alternate index files with names not
corresponding to the default alternate index file names that are
assigned by the compiler. For example, a remote MVS VSAM file or a
local VSAM file create through a different language, such as PL/I.

If specifying alternate index names, they must be specified in the same
order as the alternate record keys are specified in the source program.
You can omit alternate index names, but any other alternate index names
must correspond to the position in the file definition. The following example
shows how to specify the first and third alternate index names:

base-file-name(first-index-file-name,,third-index-file-name)

In the above example, the compiler will assign a default file name for the
second alternate index file.

Alternate index file names are ignored for file systems that do not require
separate alternate index files, such as the STL file system.

Assignment Name for Data-Names and Environment Variables
If the environment variable or data-name is specified for the assignment name, the
data-name value or the environment variable value is processed as follows:

Part 4. Environment Division 109

 Under AIX, OS/2, and Windows, the RESERVE clause is not supported
for line sequential files.

RESERVE Clause

Environment variable and data name value format
55─ ──┬ ┬───────────────── ─system file name───────────────────────────────────────5

└ ┘─file system ID-─

5─ ──┬ ┬─── ────────────5%
 │ │┌ ┐────────────────────────────────
 └ ┘ ─(──alt-inx-file-name-1─ ───6 ┴┬ ┬──────────────────────────── ─)─
 └ ┘ ─,─ ──┬ ┬─────────────────────
 └ ┘─alt-inx-file-name-2─

file-system ID If the file-system ID is specified explicitly using the environment variable
value or the data-name value, that specification for the file system over-
rides any file system specification made by the ASSIGNment name.

The environment variable value for a file is obtained when the program
containing the file is first invoked (or called) in its initial state. This value is
kept for the file for subsequent calls to the program in the last used state.

The value of the file ID specified with a data-name is obtained when the file
is OPENed. On each subsequent OPEN for the file, the value is reob-
tained.

File declarations for an external file must have the same file-system identi-
fier. If they are not, the error is caught during run time, and the application
is terminated with an error message.

system file name If there is a hyphen in the environment variable or the data name
value, the first three characters to the left of the left-most hyphen are
treated as the file-system identifier. The character string to right of the left
most hyphen is then used as the system file name (possibly including drive
and path names).

If there is no hyphen or the character string to the left of the left-most
hyphen is less than three characters long, the entire character string is
used as the system file name (possibly including drive and path names).

For information on specifying alternate indexes, see page 109.

 RESERVE Clause

It is treated as a comment for sequential, relative and indexed
files.

The RESERVE clause allows the user to specify the number of input/output buffers to
be allocated at run-time for the files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from the
DD statement when running under MVS. If none is specified, the system default is
taken.

110 COBOL Language Reference

ORGANIZATION IS LINE SEQUENTIAL (Format 4) (Workstation Only)
Under AIX, OS/2, and Windows, a predecessor-successor relationship among the
records in the file is established by the order in which records are placed in the file
when it is created or extended. A record in a LINE SEQUENTIAL file can consist
only of printable characters.

ORGANIZATION Clause

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same value for the integer specified in the RESERVE clause.

 ORGANIZATION Clause
The ORGANIZATION clause identifies the logical structure of the file. The logical struc-
ture is established at the time the file is created and cannot subsequently be changed.

You can find a discussion of the different ways in which data can be organized and of
the different access methods that you can use to retrieve the data under “File Organiza-
tion and Access Modes” on page 116.

ORGANIZATION IS SEQUENTIAL (Format 1)
A predecessor-successor relationship among the records in the file is established
by the order in which records are placed in the file when it is created or extended.

ORGANIZATION IS INDEXED (Format 2)
The position of each logical record in the file is determined by indexes created with
the file and maintained by the system. The indexes are based on embedded keys
within the file's records.

ORGANIZATION IS RELATIVE (Format 3)
The position of each logical record in the file is determined by its relative record
number.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION IS
SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external file
connector, all file control entries in the run unit that reference this file connector must
have the same organization.

 File Organization
You establish the organization of the data when you create the file. Once the file has
been created, you can expand the file, but you cannot change the organization.

 Sequential Organization
The physical order in which the records are placed in the file determines the sequence
of records. The relationships among records in the file do not change, except that the
file can be extended. Records can be fixed-length or variable-length; there are no
keys.

Part 4. Environment Division 111

Line Sequential Organization (Workstation Only)
In a line sequential file, each record contains a sequence of characters ending with a
record terminator. The terminator is not counted in the length of the record. When
records are written to the file, trailing blanks are removed.

When reading the record, characters are read one at a time into the record area until:

� The first record terminator is encountered. The record terminator is discarded and
the remainder of the record is filled with spaces.

� The entire record area is filled with characters. If the first unread character is the
record terminator, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

Records written to line sequential files must consist of USAGE...DISPLAY and/or
DISPLAY-1 data items. If external decimal data is defined with a non-separate sign,

ORGANIZATION Clause

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

 Indexed Organization
Each record in the file has one or more embedded keys (referred to as key data items);
each key is associated with an index. An index provides a logical path to the data
records, according to the contents of the associated embedded record key data items.
Indexed files must be direct-access storage files. Records can be fixed-length or
variable-length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item on the RECORD KEY clause of the FILE-CONTROL paragraph.

In addition, each record in an indexed file can contain one or more embedded alternate
key data items. Each alternate key provides another means of identifying which record
to retrieve. You tell COBOL the name of any alternate key data items on the ALTER-
NATE RECORD KEY clause of the FILE-CONTROL paragraph.

The key used for any specific input-output request is known as the key of reference .

 Relative Organization
Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record, based on its relative record number. For example, the first
record area is addressed by relative record number 1, and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed in
the file has no bearing on the record area in which they are stored, and thus on each
record's relative record number. Relative files must be direct-access files. Records can
be fixed-length or variable-length.

112 COBOL Language Reference

the sign must be in the preferred sign representation (for example, X'39' for +9 or X'79'
for -9).

For line sequential files, the native byte stream file support of the platform is used. Line
sequential files should contain only printable characters and the record terminator.

The following are not supported for line sequential files:

� APPLY WRITE ONLY clause
� BLOCK CONTAINS clause

 � CODE-SET clause
� DATA RECORDS clause
� FILE STATUS value 39 (fixed file attribute conflict)
� LABEL RECORDS clause

 � LINAGE clause
� OPEN I-O option
� PADDING CHARACTER clause
� RECORD CONTAINS 0 clause
� RECORD CONTAINS clause (format 3)
� RECORD DELIMITER clause
� RECORDING MODE clause

 � RERUN clause
 � RESERVE clause
� REVERSED phrase of OPEN statement

 � REWRITE statement
� VALUE OF clause of file description entry

 � WRITE...AT END-OF-PAGE
 � WRITE...BEFORE ADVANCING

For more details on line sequential files, see “Line Sequential Organization (Workstation
Only)” on page 112.

� APPLY WRITE ONLY clause

 � PASSWORD clause

� RECORDING MODE clause (for relative and indexed files)

ORGANIZATION Clause

Language Elements Treated as Comments (Workstation Only)
Under AIX, OS/2, and Windows for other files (sequential, relative, and indexed), the
following language elements are treated as comments:

� BLOCK CONTAINS clause
 � CLOSE....FOR REMOVAL
� CLOSE....WITH NO REWIND

 � CODE-SET clause
� DATA RECORDS clause
� LABEL RECORDS clause
� MULTIPLE FILE TAPE clause

 � OPEN...REVERSE
� PADDING CHARACTER clause

� RECORD CONTAINS 0 clause
� RECORD DELIMITER clause

Part 4. Environment Division 113

 (with the exception of the data name option for the
LABEL RECORDS, USE...AFTER...LABEL PROCEDURE, and GO TO MORE-LABELS
clauses).

 Under AIX, OS/2, and Windows, the PADDING CHARACTER clause is
not supported for line sequential files.

 Under AIX, OS/2, and Windows the RECORD DELIMITER clause is not
supported for line sequential files.

 � RERUN clause
 � RESERVE clause
� SAME AREA clause
� SAME SORT AREA clause
� SAME SORT-MERGE AREA clause
� VALUE OF clause of file description entry

No error messages are generated

PADDING CHARACTER Clause

It is treated as a comment for sequential, relative
and indexed files.

The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

data-name-5
Must be defined in the Data Division as an alphanumeric 1-character data item,
and must not be defined in the File Section. Data-name-5 can be qualified.

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-5 is specified, it must reference an external data
item.

The PADDING CHARACTER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

RECORD DELIMITER Clause

It is treated as a comment for sequential, relative
and indexed files.

The RECORD DELIMITER clause indicates the method of determining the length of a
variable-length record on an external medium. It can be specified only for variable-
length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape file.

114 COBOL Language Reference

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

Format 4—Line Sequential (Workstation Only)
 Records in the file are accessed in the sequence established

when the file is created or extended. Format 4 supports only sequential
access.

ACCESS MODE Clause

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but no compile-time or run-time
verification checking is done, and the clause has no effect on the execution of the
program.

ACCESS MODE Clause
The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified, sequen-
tial access is assumed.

ACCESS MODE IS SEQUENTIAL
Can be specified in all four formats.

Format 1—Sequential
Records in the file are accessed in the sequence established when the file is
created or extended. Format 1 supports only sequential access.

Format 2—Indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

Format 3—Relative
Records in the file are accessed in the ascending sequence of relative record
numbers of existing records in the file.

ACCESS MODE IS RANDOM
Can be specified in Formats 2 and 3 only.

Format 2—Indexed
The value placed in a record key data item specifies the record to be
accessed.

Format 3—Relative
The value placed in a relative key data item specifies the record to be
accessed.

ACCESS MODE IS DYNAMIC
Can be specified in Formats 2 and 3 only.

Part 4. Environment Division 115

Line Sequential Files
Same as for sequential files (described above).

ACCESS MODE Clause

Format 2—Indexed
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output statement used.

Format 3—Relative
Records in the file can be accessed sequentially or randomly, depending on
the form of the specific input-output request.

File Organization and Access Modes
File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic). For details on the access methods and data organization, see
Table 9 on page 102.

Note: Sequentially organized data can only be accessed sequentially; however, data
that has indexed or relative organization can be accessed with any of the three access
methods.

 Access Modes
Sequential-Access Mode

Allows reading and writing records of a file in a serial manner; the order of refer-
ence is implicitly determined by the position of a record in the file.

Random-Access Mode
Allows reading and writing records in a programmer-specified manner; the control
of successive references to the file is expressed by specifically defined keys sup-
plied by the user.

Dynamic-Access Mode
Allows the specific input-output statement to determine the access mode. There-
fore, records can be processed sequentially and/or randomly.

For EXTERNAL files, every file control entry in the run unit that is associated with that
external file must specify the same access mode. In addition, for relative file entries,
data-name-4 must reference an external data item and the RELATIVE KEY phrase in
each associated file control entry must reference that same external data item in each
case.

Relationship Between Data Organizations and Access Modes
The following lists which access modes are valid for each type of data organization.

Sequential Files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records were
originally written.

116 COBOL Language Reference

 (or optionally under AIX, OS/2, and Windows, descending order)

 (or optionally under AIX, OS/2, and Windows, descending order)

As an IBM extension, data-name-2 can be numeric, numeric-edited, alphanumeric-
edited, alphabetic, floating-point (both external and internal), or a DBCS data item.
The key is treated as an alphanumeric item for the input and output statements for
the file named in the SELECT clause. When you specify data-name-2 as a DBCS
data item, a key specified on the READ statement must also be a DBCS data item.

As an IBM extension, if the indexed file contains variable-length records,
data-name-2 need not be contained within the first “x” character positions of the

RECORD KEY Clause

Indexed Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order
of the record key value. The order of retrieval within a set of records having dupli-
cate alternate record key values is the order in which records were written into the
set.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its key(s) in the
RECORD KEY data item (and the ALTERNATE RECORD KEY data item). If a set
of records has duplicate alternate record key values, only the first record written is
available.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using appropriate forms of input-output statements.

Relative Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is the
ascending order
of the relative record numbers of all records that currently exist within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number in
the RELATIVE KEY data item; the RELATIVE KEY must not be defined within the
record description entry for this file.

In the dynamic access mode, you can change, as necessary, from sequential
access to random access, using the appropriate forms of input-output statements.

RECORD KEY Clause
The RECORD KEY clause (Format 2) specifies the data item within the record that is
the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item. It must be described as an alphanumeric item
within a record description entry associated with the file.

Data-name-2 must not reference a group item that contains a variable occurrence
data item. Data-name-2 can be qualified.

Part 4. Environment Division 117

record, where “x” equals the minimum record size specified for the file. That is,
data-name-2 can be beyond the first “x” character positions of the record, but this
is not recommended.

Data-name-2 cannot be a windowed date field.

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

As an IBM extension, data-name-3 can be a numeric, numeric-edited,
alphanumeric-edited, alphabetic, floating-point (both external and internal), or
DBCS data item. The key is treated as an alphanumeric item for the input and
output statements for the file named in the SELECT clause.

As an IBM extension, if the indexed file contains variable-length records,
data-name-3 need not be contained within the first “x” character positions of the
record, where “x” equals the minimum record size specified for the file. That is,
data-name-3 can be beyond the first “x” character positions of the record, but this
is not recommended.

Data-name-3 cannot be a windowed date field.

ALTERNATE RECORD KEY Clause

The data description of data-name-2 and its relative location within the record must
be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need only be
described in one of these record description entries. The identical character positions
referenced by data-name-2 in any one record description entry are implicitly referenced
as keys for all other record description entries of that file.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-2 with
the same relative location within the associated record.

ALTERNATE RECORD KEY Clause
The ALTERNATE RECORD KEY clause (Format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item. It must be described as an alphanu-
meric item within a record description entry associated with the file.

Data-name-3 must not reference a group item that contains a variable occurrence
data item. Data-name-3 can be qualified.

If the file has more than one record description entry, data-name-3 need be
described in only one of these record description entries. The identical character
positions referenced by data-name-3 in any one record description entry are implic-
itly referenced as keys for all other record description entries of that file.

The data description of data-name-3 and its relative location within the record must
be the same as those used when the file was defined. The number of alternate

118 COBOL Language Reference

The requirement for identical data description entries is not enforced, but the key must
have the same relative location in the records, as well as the same length.

Data-name-4 cannot be a windowed date field.

RELATIVE KEY Clause

record keys for the file must also be the same as that used when the file was
created.

The leftmost character position of data-name-3 must not be the same as the left-
most character position of the RECORD KEY or of any other ALTERNATE
RECORD KEY.

If the DUPLICATES phrase is not specified, the values contained in the ALTERNATE
RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In sequential
access, the records with duplicate keys are retrieved in the order in which they were
placed in the file. In random access, only the first record written of a series of records
with duplicate keys can be retrieved.

For EXTERNAL files, all file description entries in the run unit that are associated with
the EXTERNAL file must specify the same data description entry for data-name-3, the
same relative location within the associated record, the same number of alternate
record keys, and the same DUPLICATES phrase.

RELATIVE KEY Clause
The RELATIVE KEY clause (Format 3) identifies a data-name that specifies the relative
record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY is
not part of the record. Data-name-4 can be qualified.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify the
RELATIVE KEY clause for that file.

For EXTERNAL files, data-name-4 must reference an external data item and the
RELATIVE KEY phrase in each associated file control entry must reference that
same external data item in each case.

Part 4. Environment Division 119

LOCK MODE Clause

 PASSWORD Clause

 Under AIX, OS/2, and Windows the PASSWORD clause is treated as a
comment.

The PASSWORD clause controls access to files.

data-name-6
data-name-7

Password data items. Each must be defined in the Working-Storage Section (of the
Data Division) as an alphanumeric item. The first 8 characters are used as the
password; a shorter field is padded with blanks to 8 characters. Each password
data item must be equivalent to one that is externally defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain the valid password for this file before the file can be successfully opened.

Format 1 Considerations :

The PASSWORD clause is not valid for QSAM sequential files.

Format 2 and 3 Considerations :

When the PASSWORD clause is specified, it must immediately follow the RECORD
KEY or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files, if the file has been completely predefined to VSAM, only the PASS-
WORD data item for the RECORD KEY need contain the valid password before the file
can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic CALLs at file
creation time through a COBOL object-time subroutine), every PASSWORD data item
for this file must contain a valid password before the file can be successfully opened,
whether or not all paths to the data are used in this object program.

For EXTERNAL files, data-name-6 and data-name-7 must reference external data
items. The PASSWORD clauses in each associated file control entry must reference
the same external data items.

LOCK MODE Clause (OS/2 VSAM Files Only)
 On MVS and VM, the LOCK MODE IS AUTOMATIC clause is invalid.

 The LOCK MODE IS AUTOMATIC clause is only supported by the
VSAM file system running on OS/2.

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

120 COBOL Language Reference

LOCK MODE Clause

The LOCK MODE IS AUTOMATIC clause is treated as a comment on:

 � AIX
 � Windows
� OS/2 (with the exception of VSAM)

For OS/2 VSAM files, record locking is not supported for files that reside on an OS/2
LAN server. Files residing on OS/2 LAN servers are opened shared read or exclusive
write.

The LOCK MODE clause specifies whether a file is in exclusive or shareable mode. A
file in exclusive mode is open to one file connector only. A file in shareable mode is
available to any number of file connectors that do not require exclusive mode.

A file is in exclusive mode if the LOCK MODE clause is omitted (as long as the file is
not opened for input).

A file is in shareable mode when it is opened for input or when the LOCK MODE IS
AUTOMATIC clause is specified and is supported.

Do not specify the LOCK MODE IS AUTOMATIC clause if the file is specified in a
USING or GIVING phrase of a SORT or MERGE statement.

The WITH LOCK ON RECORD phrase is for documentation purposes only.

Other Statements Affecting Record Locking
Table 10 lists the statements that can affect record locking.

Table 10 (Page 1 of 2). Statements Affecting Record Locking

Statement Comments

CLOSE After you successfully CLOSE a file, any record and file locks held by the file
connector on the closed file are released.

DELETE You cannot DELETE a record that any other file connector has LOCKed.

OPEN If you attempt to OPEN a file that another file connector has LOCKed, the
OPEN fails and you receive a 'file locked' file status (98).

READ For files opened for INPUT, READ statements will not acquire a record lock.

If you attempt to READ a record that another file connector has LOCKed, the
READ fails and you receive a 'record locked' file status (FS 99). For a
sequential READ, the setting of the file position indicator is unaffected. For a
random READ, the setting of the file position indicator is unspecified.

When you specify the READ statement at the end of the file (when no more
records exist), the AT END condition is returned regardless of any sharing of
the file. This situation can occur if the file is opened in EXTEND mode by
another file connector.

If you OPEN the file for I-O and specify the LOCK MODE IS AUTOMATIC
clause, each record is locked as it is read and released by the next I-O state-
ment accessing the file connector.

Part 4. Environment Division 121

Table 10 (Page 2 of 2). Statements Affecting Record Locking

Statement Comments

REWRITE You cannot specify the REWRITE statement for a record that another file con-
nector has LOCKed (the file is exclusive).

If LOCK MODE IS AUTOMATIC is specified (the file is shareable), you can
use the REWRITE statement to release a record that is LOCKed.

START You cannot use the START statement to LOCK a record or to detect if a
record is LOCKed. However, the START statement will release an existing
LOCKed record if you have specified the LOCK MODE IS AUTOMATIC
clause.

WRITE If two or more file connectors add records to a file by sharing the file after
opening it in EXTEND mode, the following occurs:

� Sequential files: the records are in an unspecified order.

� Relative files: the relative key values returned are ascending but not
necessarily consecutive.

� Indexed files: the order of the alternate keys allowing for duplicates is
unspecified.

When you specify LOCK MODE IS AUTOMATIC, a successful WRITE state-
ment releases a LOCKed record.

 Local-Storage,

� A 2-character numeric data item, with explicit or implicit USAGE IS DISPLAY.
It is treated as an alphanumeric item.

Note: Data-name-1 must not contain the PICTURE symbol 'P'.

The status key data item must not be variably located; that is, the data item cannot
follow a data item containing an OCCURS DEPENDING ON clause.

data-name-8
Represents information returned from the file system. Since the definitions are
specific to the file systems and platforms, applications that depend on the specific
values in data-name-8 might not be portable across platforms.

FILE STATUS Clause

FILE STATUS Clause
The FILE STATUS clause monitors the execution of each input-output operation for the
file.

When the FILE STATUS clause is specified, the system moves a value into the status
key data item after each input-output operation that explicitly or implicitly refers to this
file. The value indicates the status of execution of the statement. (See the “Status
Key” description under “Common Processing Facilities” on page 270.)

data-name-1
The status key data item can be defined in the Working-Storage, or
Linkage sections as either of the following:

� A 2-character alphanumeric item

Data-name-1 can be qualified.

122 COBOL Language Reference

 Under MVS and VM, data-name-8 must be defined as a group item of
6 bytes in the Working-Storage or Linkage Section of the Data Division.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS, RRDS).

On MVS and VM, for VSAM files the 6-byte VSAM return code is comprised of the
following:

� The first 2 bytes of data-name-8 contain the VSAM return code in binary
notation. The value for this code is defined (by VSAM) as 0, 8, or 12.

� The next 2 bytes of data-name-8 contain the VSAM function code in binary
notation. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or 5.

� The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
notation. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the currently
defined COBOL FILE STATUS code. User identification and handling of exception
conditions are allowed at the same level as that defined by VSAM.

Function code and feedback code are set if and only if the return code is set to
nonzero. If they are referenced when the return code is set to zero, the contents
of the fields are not dependable.

Definitions of values in the return code , function code , and feedback code fields
are defined by VSAM. There are no COBOL additions, deletions, or modifications
to the VSAM definitions. For more information, see VSAM Administration: Macro
Instruction Reference.

 Under AIX, OS/2, and Windows, how you define data-name-8 is
dependent on the file system you are using.

Btrieve, STL, and Native Platform File Systems
You must define data-name-8 with PICTURE 9(6) and USAGE
DISPLAY attributes. However, you can define an additional field with
PICTURE X(n). The file system defines the feedback values, which
are converted to the six digit external decimal representation with
leading zeros, when the file systems feedback value is less than
100000. If you have defined an additional field using PICTURE X(n),
then X(n) contains additional information describing any non-zero feed-
back code. (For most programs, an 'n' value of 100 should be ade-
quate to show the complete message text. If the file is defined with a
large number of alternate keys then allow 100 bytes plus 20 bytes per
alternate key.)

VSAM File System
You must define data-name-8 with PICTURE X(n) and USAGE
DISPLAY attributes, where 'n' is 6 or greater. The PICTURE string
value represents the first 'n' bytes of the VSAM reply message struc-

FILE STATUS Clause

Part 4. Environment Division 123

ture (defined by VSAM). If the size of the reply message structure (m)
is shorter than 'n', only the first 'm' bytes contain useful information.

Note: This also applies to SFS files accessed through VSAM on AIX.

For information on VSAM file handling on the workstation, see:

� For AIX: SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment

� For OS/2: SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environ-
ment

� For Windows: SMARTdata UTILITIES User's Guide for Windows

APPLY WRITE-ONLY file-name-2
ON

ON is optional as an IBM extension.

File-name-4 is optional as an IBM extension.

 and APPLY WRITE-ONLY clause

I-O-CONTROL Paragraph

 I-O-CONTROL Paragraph
The I-O-CONTROL paragraph of the Input-Output Section specifies when checkpoints
are to be taken and the storage areas to be shared by different files. This paragraph is
optional in a COBOL program.

The key word I-O-CONTROL can appear only once, at the beginning of the paragraph.
The word I-O-CONTROL must begin in Area A, and must be followed by a separator
period.

Each clause within the paragraph can be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The I-O-CONTROL paragraph ends with a sepa-
rator period.

Sequential I-O-Control Entries
55─ ──┬ ┬─RERUN──ON───(1) ──┬ ┬─assignment-name-1─ ──┬ ┬─────── ─┤ phrase 1 ├─────────────────────── ───────5%
 │ │└ ┘─file-name-1─────── └ ┘─EVERY─
 │ │┌ ┐─────────────────
 ├ ┤ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───6 ┴─file-name-4───(2) ──────────────
 │ │└ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─
 │ │┌ ┐──
 ├ ┤ ─MULTIPLE FILE───(3) ──┬ ┬────── ──┬ ┬────────── ───6 ┴ ─file-name-5─ ──┬ ┬─────────────────────
 │ │└ ┘─TAPE─ └ ┘─CONTAINS─ └ ┘ ─POSITION──integer-2─
 │ │┌ ┐───────────────
 └ ┘ ─ ───(3) ──┬ ┬──── ───6 ┴─ ─ ──────────────────────────────────────
 └ ┘─ ─

phrase 1:
├─ ──┬ ┬─integer-1──RECORDS──── ──┬ ┬──── ─file-name-1───┤
 └ ┘ ─END─ ──┬ ┬──── ──┬ ┬─REEL─ └ ┘─OF─
 └ ┘─OF─ └ ┘─UNIT─

Notes:
1

2

3 The MULTIPLE FILE clause are not supported for MVS
VSAM files and are treated as comments on AIX, OS/2, and Windows.

124 COBOL Language Reference

ON is optional as an IBM extension.

File-name-4 is optional as an IBM extension.

Line Sequential I-O-Control Entries (Workstation Only)
 ┌ ┐───────────────
55─ ─── ─ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───6 ┴─file-name-4─ ───────────────────────5%
 └ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─

RERUN assignment-name-1
ON

File-name-4 is optional as an IBM extension.

 Under AIX, OS/2, and Windows, the RERUN clause is not supported for
line sequential files or for programs compiled with the THREAD compiler option. If you
use NOTHREAD, the RERUN clause is treated as a comment.

� In programs with the RECURSIVE attribute

RERUN Clause

Relative and Indexed I-O-Control Entries
55─ ──┬ ┬─RERUN──ON───(1) ──┬ ┬─assignment-name-1─ ──┬ ┬─────── ─┤ phrase 1 ├───────── ─────────────────────5%
 │ │└ ┘─file-name-1─────── └ ┘─EVERY─
 │ │┌ ┐─────────────────
 └ ┘ ─SAME─ ──┬ ┬──────── ──┬ ┬────── ──┬ ┬───── ─file-name-3─ ───6 ┴─file-name-4───(2)

 └ ┘─RECORD─ └ ┘─AREA─ └ ┘─FOR─

phrase 1:
├─ ─integer-1──RECORDS─ ──┬ ┬──── ─file-name-1──┤
 └ ┘─OF─

Notes:
1

2

Sort Merge I-O-Control Entries (MVS and VM Only)
55─ ──┬ ┬────────────────────────────────── ───5
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

 ┌ ┐───
5─ ───6 ┴─SAME─ ──┬ ┬─RECORD───── ──┬ ┬────── ──┬ ┬───── ─┤ phrase 1 ├─ ────────────────────────────────────5%
 ├ ┤─SORT─────── └ ┘─AREA─ └ ┘─FOR─
 └ ┘─SORT-MERGE─

phrase 1:
 ┌ ┐─────────────────
├──file-name-3─ ───6 ┴─file-name-4───(1) ──┤

Note:
1

 RERUN Clause

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint method
required for complete compliance to the COBOL 85 Standard, see IBM COBOL for
MVS & VM Programming Guide.

Do not use the RERUN clause:

� On files with the EXTERNAL attribute

Part 4. Environment Division 125

� In programs compiled with the THREAD option (Workstation only)
 � In methods

SORT/MERGE Considerations :

When the RERUN clause is specified in the I-O-CONTROL paragraph, checkpoint
records are written at logical intervals determined by the sort/merge program during
execution of each SORT or MERGE statement in the program. When it is omitted,
checkpoint records are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a program, and
it cannot be specified in contained programs. It will have a global effect on all
SORT and MERGE statements in the program unit.

RERUN Clause

file-name-1
Must be a sequentially organized file.

assignment-name-1
The external data set for the checkpoint file. It must not be the same assignment-
name as that specified in any ASSIGN clause throughout the entire program,
including contained and containing programs. For QSAM files, it has the format:

 Format—QSAM File
55─ ──┬ ┬───────── ──┬ ┬───── ─name───5%

└ ┘──label- └ ┘─S- ─

That is, it must be a QSAM file. It must reside on a tape or direct access device.
See also Appendix E, “ASCII Considerations for MVS and VM” on page 565.

VSAM and QSAM Considerations :

The file named in the RERUN clause must be a file defined in the same program
as the I-O-CONTROL paragraph, even if the file is defined as GLOBAL.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-1 that is
processed.

When multiple integer-1 RECORDS phrases are specified, no two of them can
specify the same file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for file-name-1
occurs. The terms REEL and UNIT are interchangeable.

Note: This clause is not supported. If you code it in your program, it will be
treated as a comment.

When multiple END OF REEL/UNIT phrases are specified, no two of them can
specify the same file-name-1.

126 COBOL Language Reference

SAME RECORD AREA Clause

The END OF REEL/UNIT phrase can only be used if file-name-1 is a sequentially
organized file.

SAME AREA Clause

 Under AIX, OS/2, and Windows, the SAME AREA clause is treated as a
comment.

The SAME AREA clause specifies that two or more files, that do not represent sort or
merge files, are to use the same main storage area during processing.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

� For QSAM files, the SAME clause is treated as documentation.
� For MVS VSAM files, the SAME clause is treated as if equivalent to the SAME

RECORD AREA.

More than one SAME AREA clause can be included in a program. However:

� A specific file-name must not appear in more than one SAME AREA clause.

� If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

� The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA Clause
The SAME RECORD AREA clause specifies that two or more files are to use the same
main storage area for processing the current logical record. All of the files can be open
at the same time. A logical record in the shared storage area is considered to be both
of the following:

� A logical record of each opened output file in the SAME RECORD AREA clause

� A logical record of the most recently read input file in the SAME RECORD AREA
clause.

More than one SAME RECORD AREA clause can be included in a program. However:

� A specific file-name must not appear in more than one SAME RECORD AREA
clause.

Part 4. Environment Division 127

� The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

SAME SORT AREA Clause

� If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

� The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

� If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include the
GLOBAL clause.

The files named in the SAME RECORD AREA clause need not have the same organ-
ization or access.

SAME SORT AREA Clause

 Under AIX, OS/2, and Windows, the SAME SORT AREA clause is
treated as a comment.

The SAME SORT AREA clause is syntax checked but has no effect on the execution of
the program.

file-name-3
file-name-4

Must be specified in the FILE-CONTROL paragraph of the same program.
File-name-3 and file-name-4 cannot reference an external file connector.

When the SAME SORT AREA clause is specified, at least one file-name specified must
name a sort file. Files that are not sort files can also be specified. The following rules
apply:

� More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

� If a file that is not a sort file is named in both a SAME AREA clause and in one or
more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

� Files named in a SAME SORT AREA clause need not have the same organization
or access.

� Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME AREA or SAME
RECORD AREA clause.

� During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with file-
names named in this clause must not be in the open mode.

128 COBOL Language Reference

APPLY WRITE-ONLY Clause

APPLY WRITE-ONLY Clause

 Under AIX, OS/2, and Windows, the APPLY WRITE-ONLY clause is not
supported for line sequential files. It is treated as a comment for sequential, relative
and indexed files.

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for files
that have standard sequential organization, have variable-length records, and are
blocked. If you specify this phrase, the buffer is truncated only when the space avail-
able in the buffer is smaller than the size of the next record. Otherwise, the buffer is
truncated when the space remaining in the buffer is smaller than the maximum record
size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY WRITE-ONLY
results, see the description of the AWO compiler option in the IBM COBOL Program-
ming Guide for your platform.

SAME SORT-MERGE AREA Clause

 Under AIX, OS/2, and Windows, the SAME SORT-MERGE AREA clause
is treated as a comment.

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

MULTIPLE FILE TAPE Clause

 Under AIX, OS/2, and Windows, all files are treated as a single volume
file. Any multiple volume files specified are treated as comments.

The MULTIPLE FILE TAPE clause (Format 1) specifies that two or more files share the
same physical reel of tape.

This clause is syntax checked, but it has no effect on the execution of the program.
The function is performed by the system through the LABEL parameter of the DD state-
ment.

Part 4. Environment Division 129

APPLY WRITE-ONLY Clause

130 COBOL Language Reference

Local-Storage Section

RECORDING MODE Clause

DATE FORMAT Clause

 Part 5. Data Division

Data Division Overview . 132
File Section . 133
Working-Storage Section . 133

 . 135
Linkage Section . 135
Data Types . 136
Data Relationships . 137

Data Division—File Description Entries . 144
File Section . 147
EXTERNAL Clause . 148
GLOBAL Clause . 149
BLOCK CONTAINS Clause . 149
RECORD Clause . 151
LABEL RECORDS Clause . 154
VALUE OF Clause . 155
DATA RECORDS Clause . 155
LINAGE Clause . 155

. 157
CODE-SET Clause . 159

Data Division—Data Description Entry . 161
Format 1 . 161
Format 2 . 162
Format 3 . 162
Level-Numbers . 162
BLANK WHEN ZERO Clause . 164

. 164
EXTERNAL Clause . 170
GLOBAL Clause . 170
JUSTIFIED Clause . 171
OCCURS Clause . 172
PICTURE Clause . 178
REDEFINES Clause . 195
RENAMES Clause . 198
SIGN Clause . 200
SYNCHRONIZED Clause . 202
USAGE Clause . 209
VALUE Clause . 217

 Copyright IBM Corp. 1991, 1998 131

 classes, and
methods.

 or method

Class Data Division
The Class Data Division section contains data description entries for object-
instance data. The Class Data Division contains only the Working-Storage Section.

Method Data Division
A method has two visible Data Divisions: the Class Data Division and the Method
Data Division. If the same data-name is used in both the Class Data Division and
the Method Data Division, when a method references the data-name, the data-
name in the Method Data Division takes precedence.

and Method

LOCAL-STORAGE SECTION.
record-description-entry
data-item-description-entry

 Format—Class Data Division
55─ ──┬ ┬─── ─────────────────────────5%
 │ │┌ ┐───────────────────────────────────
 └ ┘── ─WORKING-STORAGE SECTION.─ ───6 ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

Data Division Overview

Data Division Overview

This overview describes the structure of the Data Division for programs,
Each section in the Data Division has a specific logical function within a

COBOL source program and can be omitted when that logical function is not
needed. If included, the sections must be written in the order shown. The Data Divi-
sion is optional.

Program Data Division
The Data Division of a COBOL source program describes, in a structured manner,
all the data to be processed by the object program.

Format—Program Data Division
55──DATA DIVISION.──5

5─ ──┬ ┬─── ───────────────5
 │ │┌ ┐──
 └ ┘ ─FILE SECTION.─ ───6 ┴──┬ ┬──
 │ │┌ ┐────────────────────────────
 └ ┘ ─file-description-entry─ ───6 ┴─record-description-entry─

5─ ──┬ ┬─── ─────────────────────────────5
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─WORKING-STORAGE SECTION.─ ───6 ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

5─ ──┬ ┬─── ───────────────────────────────5
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─ ─ ───6 ┴──┬ ┬─────────────────────────────
 ├ ┤─ ────
 └ ┘─ ─

5─ ──┬ ┬─── ────────────────────────────────────5%
 │ │┌ ┐───────────────────────────────────
 └ ┘ ─LINKAGE SECTION.─ ───6 ┴──┬ ┬─────────────────────────────
 ├ ┤─record-description-entry────
 └ ┘─data-item-description-entry─

132 Copyright IBM Corp. 1991, 1998

Note: A method File Section can define EXTERNAL files only. A single run-unit level
file connector is shared by all programs and methods containing a declaration of a
given EXTERNAL file.

 or method.
 or method

 (and methods)
 and methods

Method Working-Storage
A single copy of the Working-Storage for a method is statically allocated and per-
sists in a last-used state for the duration of the run-unit. The same single copy is
used whenever the method is invoked, regardless of which object the method is
invoked upon.

If a VALUE clause is specified on a method Working-Storage data item, the data
item is initialized to the VALUE clause value on the first invocation.

Data Division Overview

 File Section
The File Section defines the structure of data files. The File Section must begin with
the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the File Section. It provides infor-
mation about the physical structure and identification of a file, and gives the record-
name(s) associated with that file. For the format and the clauses required in a file
description entry, see “Data Division—File Description Entries” on page 144.

record-description-entry
A set of data description entries (described in “Data Division—Data Description
Entry” on page 161) that describe the particular record(s) contained within a partic-
ular file.

More than one record description entry can be specified; each is an alternative
description of the same record storage area.

Data areas described in the File Section are not available for processing unless the file
containing the data area is open.

 Working-Storage Section
The Working-Storage Section describes data records that are not part of data files but
are developed and processed by a program It also describes data items
whose values are assigned in the source program and do not change during
execution of the object program.

The Working-Storage Section must begin with the section header Working-Storage
Section, followed by a separator period.

Program Working-Storage
The Working-Storage Section for programs can also describe
external data records, which are shared by programs throughout the
run-unit. All clauses that are used in record descriptions in the File Section as well
as the VALUE and EXTERNAL clauses (which might not be specified in record
description entries in the File Section) can be used in record descriptions in the
Working-Storage Section.

Part 5. Data Division 133

If the EXTERNAL attribute is specified on a data description entry in a method
Working-Storage Section, a single copy of the storage for that data item is allo-
cated once for the duration of the run-unit. That storage is shared by all programs
and methods in the run-unit containing a definition for the external data item.

Class Working-Storage
A separate copy of the Class Working-Storage data items is allocated for each
object instance and remains until that object is destroyed.

By default, Class Working-Storage data items are global to all of the methods intro-
duced by the class.

To initialize instance data (Class Working-Storage data items), you can write a
somInit method override. For an example of how to write an override method
using somInit, see Figure 3. VALUE clauses are not supported for initializing
instance data.

IDENTIFICATION DIVISION.
CLASS-ID. OOClass INHERITS SOMObject.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS SOMObject IS "SOMObject"
CLASS OOClass IS "OOClass".

DATA DIVISION.
Working-Storage Section.
ð1 instance-data PIC X(3).
PROCEDURE DIVISION.

IDENTIFICATION DIVISION.
METHOD-ID. "somInit" OVERRIDE.
PROCEDURE DIVISION.

MOVE "new" TO instance-data.
 EXIT METHOD.
END METHOD "somInit".

IDENTIFICATION DIVISION.
METHOD-ID. "MyMethod".
PROCEDURE DIVISION.

IF instance-data = "new"
 CALL "Creating"

MOVE "old" TO instance-data
 ELSE
 CALL "Existing"
 END-IF.
 EXIT METHOD.
END METHOD "MyMethod".

END CLASS OOClass.

Figure 3. Example of a somInit Method Override

Data Division Overview

134 COBOL Language Reference

Note: The data description entries for a class differ from a program and method in
that:

� You cannot specify the EXTERNAL attribute in a data description entry.
� The GLOBAL attribute has no effect.
� You can only specify the VALUE clause on condition names.

 Local-Storage Section
The Local-Storage Section defines storage that is allocated and freed on a per-
invocation basis. On each invocation, data items defined in the Local-Storage Section
are reallocated and initialized to the value assigned in their VALUE clauses. Data
items defined in the Local-Storage Section cannot specify the EXTERNAL clause.

The Local-Storage Section must begin with the header LOCAL-STORAGE SECTION
followed by a separator period.

You can specify the Local-Storage Section in recursive programs, in non-recursive pro-
grams, and in methods.

Note: Method Local-Storage content is the same as a program Local-Storage content
except that the GLOBAL attribute has no effect (since methods cannot be nested).

A separate copy of the data defined in a method Local-Storage section is created each
time the method is invoked. The storage allocated for the data is freed when the
method returns.

Data Division Overview

The Working-Storage Section contains record description entries and data description
entries for independent data items, called data item description entries .

record-description-entry
Data entries in the Working-Storage Section that bear a definite hierarchic relation-
ship to one another must be grouped into records structured by level number. See
“Data Division—Data Description Entry” on page 161 for description.

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic relation-
ship to one another need not be grouped into records, provided that they do not
need to be further subdivided. Instead, they are classified and defined as inde-
pendent elementary items. Each is defined in a separate data-item description
entry that begins with either the level number 77 or 01. See “Data Division—Data
Description Entry” on page 161 for description.

 Linkage Section
The Linkage Section describes data made available from another program or method.

record-description-entry
See “Working-Storage Section” on page 133 for description.

Part 5. Data Division 135

As an IBM extension, you can specify the GLOBAL clause in the Linkage Section.
(Note, the GLOBAL attribute has no effect for methods.)

Data Types

data-item-description-entry
See “Working-Storage Section” on page 133 for description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions, but storage within the program or method is not
reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the Linkage Section with
the following exceptions:

� You cannot specify the VALUE clause for items other than level-88 items.
� You cannot specify the EXTERNAL clause in the Linkage Section.

 Data Types
Two types of data can be processed: file data and program data.

 File Data
File data is contained in files. (See “File Section” on page 147.) A file is a collection
of data records existing on some input-output device. A file can be considered as a
group of physical records; it can also be considered as a group of logical records. The
Data Division describes the relationship between physical and logical records.

A physical record is a unit of data that is treated as an entity when moved into or out
of storage. The size of a physical record is determined by the particular input-output
device on which it is stored. The size does not necessarily have a direct relationship to
the size or content of the logical information contained in the file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely within
one physical unit of data); several logical records can be contained within one physical
record, or one logical record can extend across several physical records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the logical
record(s), labeling information, and so forth).

Record description entries describe the logical records in the file, including the cate-
gory and format of data within each field of the logical record, different values the data
might be assigned, and so forth.

After the relationship between physical and logical records has been established, only
logical records are made available to you. For this reason, a reference in this manual
to “records” means logical records, unless the term “physical records” is used.

136 COBOL Language Reference

Data Relationships

 Program Data
Program data is created by a program, instead of being read from a file.

The concept of logical records applies to program data as well as to file data. Program
data can thus be grouped into logical records, and be defined by a series of record
description entries. Items that need not be so grouped can be defined in independent
data description entries (called data item description entries).

 Data Relationships
The relationships among all data to be used in a program are defined in the Data Divi-
sion, through a system of level indicators and level-numbers.

A level indicator , with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are associ-
ated; FD is the file description level indicator and SD is the sort-merge file description
level indicator.

A level-number , with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate to)
level indicators, they can also be used independently to describe internal data or data
common to two or more programs. (See “Level-Numbers” on page 162 for level-
number rules.)

Levels of Data
After a record has been defined, it can be subdivided to provide more detailed data
references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could be:
customer name, customer address, account number, department number of sale, unit
amount of sale, dollar amount of sale, previous balance, plus other pertinent informa-
tion.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items . Thus, a record can be made up of a series of elementary
items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items can
be combined into group items . Groups themselves can be combined into a more
inclusive group that contains one or more subgroups. Thus, within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group items
into records. Special level-numbers are also used; they identify data items used for
special purposes.

Part 5. Data Division 137

Data Relationships

Levels of Data in a Record Description Entry
Each group and elementary item in a record requires a separate entry, and each must
be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive level-number
possible. A level-01 entry can be either a group item or an elementary item. It
must begin in Area A.

02–49
These level-numbers specify group and elementary items within a record. They
can begin in Area A or Area B. Less inclusive data items are assigned higher (not
necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a level-number
less than or equal to the level-number of this group is encountered.

All elementary or group items immediately subordinate to one group item must be
assigned identical level-numbers higher than the level-number of this group item.

Figure 4 on page 139 illustrates the concept. Note that all groups immediately subor-
dinate to the level-01 entry have the same level-number. Note also that elementary
items from different subgroups do not necessarily have the same level numbers, and
that elementary items can be specified at any level within the hierarchy.

138 COBOL Language Reference

Data Relationships

The COBOL record description entry
written as follows is subdivided as indicated below:

ð1 RECORD─ENTRY. %──────This entry includes───────┐
 │
ð5 GROUP─1. %──────This entry includes─────┐ │

 │ │
1ð SUBGROUP─1. %────────This entry includes───┐ │ │

│ │ │
15 ELEM─1 PIC... . │ │ │
15 ELEM─2 PIC... . 6 │ │

 │ │
1ð SUBGROUP─2. %────────This entry includes───┐ │ │

│ │ │
15 ELEM─3 PIC... . │ │ │
15 ELEM─4 PIC... . 6 6 │

 │
ð5 GROUP─2. %────────This entry includes───┐ │

 │ │
15 SUBGROUP─3. %─────────This entry includes─────┐ │ │

│ │ │
25 ELEM─5 PIC... . │ │ │
25 ELEM─6 PIC... . 6 │ │

 │ │
15 SUBGROUP─4 PIC... . This entry includes itself. 6 │

 │
ð5 ELEM─7 PIC... . This entry includes itself. 6

The storage arrangement of the record description entry is illustrated below:

│%──────────────────────────────RECORD─ENTRY──────────────────────────────5│
│ │ │ │
│%───────────GROUP─1──────────────5│%──────────────GROUP─2───────5│ │
│ │ │ │
│%──SUBGROUP─1──5│%──SUBGROUP─2───5│%────SUBGROUP─3─5│ │ │

┌───────┬────────┬────────┬────────┬────────┬────────┬────────────┬────────┐
│ELEM─1 │ ELEM─2 │ ELEM─3 │ ELEM─4 │ ELEM─5 │ ELEM─6 │ SUBGROUP─4 │ ELEM─7 │
└───────┴────────┴────────┴────────┴────────┴────────┴────────────┴────────┘

Figure 4. Levels in a Record Description

Part 5. Data Division 139

IBM COBOL accepts nonstandard level-numbers that are not identical to others at the
same level. For example, the following two record description entries are equivalent:

 ð1 EMPLOYEE-RECORD.
 ð5 EMPLOYEE-NAME.
 1ð FIRST-NAME PICTURE X(1ð).

1ð LAST-NAME PICTURE X(1ð).
 ð4 EMPLOYEE-ADDRESS.
 ð8 STREET PICTURE X(1ð).
 ð8 CITY PICTURE X(1ð).

Data Relationships

 ð1 EMPLOYEE-RECORD.
 ð5 EMPLOYEE-NAME.
 1ð FIRST-NAME PICTURE X(1ð).

1ð LAST-NAME PICTURE X(1ð).
 ð5 EMPLOYEE-ADDRESS.
 1ð STREET PICTURE X(1ð).
 1ð CITY PICTURE X(1ð).

 Special Level-Numbers
Special level-numbers identify items that do not structure a record. The special level-
numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup previ-
ously defined data items.

(For details, see “RENAMES Clause” on page 198.)

77 Identifies data item description entries — independent Working-Storage or Linkage
Section items that are not subdivisions of other items, and are not subdivided
themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of a
conditional variable. (For details, see “VALUE Clause” on page 217.)

Note: Level-77 and level-01 entries in the Working-Storage and Linkage Sections that
are referenced in the program must be given unique data-names, because neither can
be qualified. Subordinate data-names that are referenced in the program must be
either uniquely defined, or made unique through qualification. Unreferenced data-
names need not be uniquely defined.

 Indentation
Successive data description entries can begin in the same column as preceding entries,
or can be indented. Indentation is useful for documentation, but does not affect the
action of the compiler.

Classes and Categories of Data
All data used in a COBOL program can be divided into classes and categories.

Every group item belongs to the alphanumeric class, even if the subordinate elementary
items belong to another class.

140 COBOL Language Reference

Internal Floating-point

External Floating-point

DBCS

Internal Floating-point

External Floating-point

DBCS

Data Relationships

Every elementary item in a program belongs to one of the classes as well as to one of
the categories. Table 11 shows the relationship among data classes and categories.

Every data item which is a function is an elementary item, and belongs to the category
alphanumeric or numeric, and to the corresponding class; the category of each function
is determined by the definition of the function.

Table 11. Classes and Categories of Data

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric-Edited

Alphanumeric-Edited

Alphanumeric

Group Alphanumeric Alphabetic

Numeric

Numeric-Edited

Alphanumeric-Edited

Alphanumeric

 Alignment Rules
The standard alignment rules for positioning data in an elementary item depend on the
category of a receiving item (that is, an item into which the data is moved; see “Ele-
mentary Moves” on page 353).

Numeric
For such receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one
that has logical meaning but that does not exist as an actual character
in the data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified imme-
diately to the right of the field. The data is then treated according to
the preceding rule.

Part 5. Data Division 141

Internal Floating-point
A decimal point is assumed immediately to the left of the field. The data is
aligned then on the leftmost digit position following the decimal point, with
the exponent adjusted accordingly.

External Floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the item;
USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Data Relationships

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end, except when editing causes replacement
of leading zeros.

Alphanumeric, Alphanumeric-Edited, Alphabetic, DBCS
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if neces-
sary) truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified, as described in “JUSTIFIED Clause” on page 171.

 Under AIX, OS/2, and Windows, using control characters
X'00' through X'1F' within an alphanumeric literal can give unpredictable
results, which are not diagnosed by the compiler. Use hex literals instead.

Standard Data Format
COBOL makes data description as machine independent as possible. For this reason,
the properties of the data are described in relation to a standard data format rather than
a machine-oriented format.

The standard data format uses the decimal system to represent numbers, no matter
what base is used by the system, and uses all the characters of the character set of the
computer to represent nonnumeric data.

Character-String and Item Size
In your program, the size of an elementary item is determined through the number of
character positions specified in its PICTURE character-string. In storage, however, the
size is determined by the actual number of bytes the item occupies, as determined by
the combination of its PICTURE character-string and its USAGE clause.

Normally, when an arithmetic item is moved from a longer field into a shorter one, the
compiler truncates the data to the number of characters represented in the shorter
item's PICTURE character-string.

142 COBOL Language Reference

The TRUNC compiler option can affect the value of a binary numeric item. For infor-
mation on TRUNC, see the IBM COBOL Programming Guide for your platform.

Data Relationships

For example, if a sending field with PICTURE S99999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is truncated
to +45. For additional information see “USAGE Clause” on page 209.

 Signed Data
There are two categories of algebraic signs used in IBM COBOL: operational signs
and editing signs.

 Operational Signs
Operational signs are associated with signed numeric items, and indicate their algebraic
properties. The internal representation of an algebraic sign depends on the item's
USAGE clause, its SIGN clause (if present), and on the operating environment
involved. (For further details about the internal representation see “USAGE Clause” on
page 209.) Zero is considered a unique value, regardless of the operational sign. An
unsigned field is always assumed to be either positive or zero.

 Editing Signs
Editing signs are associated with numeric-edited items; editing signs are PICTURE
symbols that identify the sign of the item in edited output.

Part 5. Data Division 143

Data Division—File Description Entries

Data Division—File Description Entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the File
Section. The order in which the optional clauses follow the FD or SD entry is not
important.

144 Copyright IBM Corp. 1991, 1998

data-name-2

RECORDING mode
MODE IS

Data Division—File Description Entries

Format 1—Sequential Files
55──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ────────────────────────────────────5
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─BLOCK─ ──┬ ┬────────── ──┬ ┬─────────────── ─integer-2─ ──┬ ┬─CHARACTERS─
 └ ┘─CONTAINS─ └ ┘ ─integer-1──TO─ └ ┘─RECORDS────

5─ ──┬ ┬── ────────────────────────5
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

5─ ──┬ ┬── ──────────────────────────────────────5
 └ ┘ ─LABEL─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ──┬ ┬─STANDARD────────────
 │ │└ ┘─IS─ ├ ┤─OMITTED─────────────
 └ ┘ ─RECORDS─ ──┬ ┬───── │ │┌ ┐───────────────────
 └ ┘─ARE─ └ ┘───6 ┴──┬ ┬─────────────
 └ ┘─ ─

5─ ──┬ ┬── ──────────────────────────────────────5
 │ │┌ ┐──
 └ ┘ ─VALUE OF─ ───6 ┴ ─system-name-1─ ──┬ ┬──── ──┬ ┬─data-name-3─
 └ ┘─IS─ └ ┘─literal-1───

5─ ──┬ ┬─── ───5
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───6 ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

5─ ──┬ ┬── ──────────────────────────────────5
 └ ┘─LINAGE─ ──┬ ┬──── ──┬ ┬─data-name-5─ ──┬ ┬─────── ─┤ clause 2 ├─
 └ ┘─IS─ └ ┘─integer-8─── └ ┘─LINES─

5─ ──┬ ┬─────────────────────────────────── ──┬ ┬───────────────────────────────── ─.─────────────────5%
 └ ┘ ─ ─ ──┬ ┬────── ──┬ ┬──── ─ ─ └ ┘ ─CODE-SET─ ──┬ ┬──── ─alphabet-name─
 └ ┘─ ─ └ ┘─ ─ └ ┘─IS─

clause 1:
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ─────────────────5
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

5─ ──┬ ┬──────────── ──┤
 └ ┘─CHARACTERS─

clause 2:
├─ ──┬ ┬── ──┬ ┬─── ───5
 └ ┘ ──┬ ┬────── ─FOOTING─ ──┬ ┬──── ──┬ ┬─data-name-6─ └ ┘ ──┬ ┬─────── ──┬ ┬──── ─TOP─ ──┬ ┬─data-name-7─

└ ┘─WITH─ └ ┘─AT─ └ ┘─integer-9─── └ ┘─LINES─ └ ┘─AT─ └ ┘─integer-1ð──

5─ ──┬ ┬── ──┤
 └ ┘ ──┬ ┬─────── ──┬ ┬──── ─BOTTOM─ ──┬ ┬─data-name-8─
 └ ┘─LINES─ └ ┘─AT─ └ ┘─integer-11──

Part 5. Data Division 145

Format 3—Line Sequential Files (Workstation Only)
55──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ────────────────────────────────────5
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

5─ ──┬ ┬── ─.─────────────────────5%
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

clause 1:
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ─────────────────5
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

5─ ──┬ ┬──────────── ──┤
 └ ┘─CHARACTERS─

Data Division—File Description Entries

Format 2—Relative/Indexed Files
55──FD──file-name-1─ ──┬ ┬────────────────── ──┬ ┬──────────────── ────────────────────────────────────5
 └ ┘ ──┬ ┬──── ─EXTERNAL─ └ ┘ ──┬ ┬──── ─GLOBAL─
 └ ┘─IS─ └ ┘─IS─

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─BLOCK─ ──┬ ┬────────── ──┬ ┬─────────────── ─integer-2─ ──┬ ┬─CHARACTERS─
 └ ┘─CONTAINS─ └ ┘ ─integer-1──TO─ └ ┘─RECORDS────

5─ ──┬ ┬── ────────────────────────5
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

5─ ──┬ ┬─── ───5
 └ ┘ ─LABEL─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ──┬ ┬─STANDARD─
 │ │└ ┘─IS─ └ ┘─OMITTED──
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

5─ ──┬ ┬── ──────────────────────────────────────5
 │ │┌ ┐──
 └ ┘ ─VALUE OF─ ───6 ┴ ─system-name-1─ ──┬ ┬──── ──┬ ┬─data-name-3─
 └ ┘─IS─ └ ┘─literal-1───

5─ ──┬ ┬─── ─.──5%
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───6 ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

clause 1:
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ─────────────────5
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

5─ ──┬ ┬──────────── ──┤
 └ ┘─CHARACTERS─

146 COBOL Language Reference

BLOCK integer-2 CHARACTERS
CONTAINS integer-1 TO RECORDS

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE data-name-2

VALUE OF system-name-1 data-name-3
IS literal-1

LINAGE data-name-5
IS integer-8 LINES

CODE-SET alphabet-name
IS

FOOTING data-name-6 TOP data-name-7
WITH AT integer-9 LINES AT integer-1ð

BOTTOM data-name-8
LINES AT integer-11

File Section

Format 4—Sort/Merge Files
55──SD──file-name-1─ ──┬ ┬── ──────5
 └ ┘ ─RECORD─ ──┬ ┬ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 ├ ┤──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬────────────
 │ │└ ┘─CONTAINS─ └ ┘─CHARACTERS─
 └ ┘─┤ clause 1 ├─ ──┬ ┬──────────────────────────────── ──────
 └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

5─ ──┬ ┬─── ───5
 │ │┌ ┐───────────────
 └ ┘ ─DATA─ ──┬ ┬ ─RECORD─ ──┬ ┬──── ── ───6 ┴─data-name-4─
 │ │└ ┘─IS─
 └ ┘ ─RECORDS─ ──┬ ┬─────
 └ ┘─ARE─

5─ ──┬ ┬─── ─────────────────────────5
 └ ┘ ─ ─ ──┬ ┬────────── ──┬ ┬─────────────── ─ ─ ──┬ ┬─ ─
 └ ┘─ ─ └ ┘ ─ ── ─ └ ┘─ ────

5─ ──┬ ┬── ──5
 └ ┘ ─ ─ ──┬ ┬ ─ ─ ──┬ ┬──── ── ──┬ ┬─ ────────
 │ │└ ┘─ ─ ├ ┤─ ─────────
 └ ┘ ─ ─ ──┬ ┬───── │ │┌ ┐───────────────
 └ ┘─ ─ └ ┘───6 ┴─ ─

5─ ──┬ ┬── ──────────────────────────────────────5
 │ │┌ ┐──
 └ ┘ ─ ─ ───6 ┴ ─ ─ ──┬ ┬──── ──┬ ┬─ ─
 └ ┘─ ─ └ ┘─ ───

5─ ──┬ ┬── ──────────────────────────────────5
 └ ┘─ ─ ──┬ ┬──── ──┬ ┬─ ─ ──┬ ┬─────── ─┤ clause 2 ├─
 └ ┘─ ─ └ ┘─ ─── └ ┘─ ─

5─ ──┬ ┬───────────────────────────────── ─.──5%
 └ ┘ ─ ─ ──┬ ┬──── ─ ─
 └ ┘─ ─

clause 1:
├─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ──┬ ┬─────────────── ─────────────────5
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─ └ ┘ ─TO──integer-7─
 └ ┘─FROM─

5─ ──┬ ┬──────────── ──┤
 └ ┘─CHARACTERS─

clause 2:
├─ ──┬ ┬── ──┬ ┬─── ───5
 └ ┘ ──┬ ┬────── ─ ─ ──┬ ┬──── ──┬ ┬─ ─ └ ┘ ──┬ ┬─────── ──┬ ┬──── ─ ─ ──┬ ┬─ ─

└ ┘─ ─ └ ┘─ ─ └ ┘─ ─── └ ┘─ ─ └ ┘─ ─ └ ┘─ ──

5─ ──┬ ┬── ──┤
 └ ┘ ──┬ ┬─────── ──┬ ┬──── ─ ─ ──┬ ┬─ ─
 └ ┘─ ─ └ ┘─ ─ └ ┘─ ──

 File Section
The File Section must contain a level indicator for each input and output file:

� For all files except sort/merge, the File Section must contain an FD entry.
� For each sort or merge file, the File Section must contain an SD entry.

Part 5. Data Division 147

EXTERNAL Clause

file-name
Must follow the level indicator (FD or SD), and must be the same as that specified
in the associated SELECT clause. The file-name must adhere to the rules of for-
mation for a user-defined word; at least one character must be alphabetic. The
file-name must be unique within this program.

One or more record description entries must follow the file-name. When more than
one record description entry is specified, each entry implies a redefinition of the
same storage area.

The clauses that follow file-name are optional; they can appear in any order.

FD (Formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a separator
period.

SD (Format 4)
An SD entry must be written for each sort or merge file in the program. The last
clause in the SD entry must be immediately followed by a separator period.

The following example illustrates the File Section entries needed for a sort or
merge file:

SD SORT-FILE.

ð1 SORT-RECORD PICTURE X(8ð).

 EXTERNAL Clause
The EXTERNAL clause specifies that a file connector is external, and permits commu-
nication between two programs by the sharing of files. A file connector is external if the
storage associated with that file is associated with the run unit rather than with any
particular program within the run unit. An external file can be referenced by any
program in the run unit that describes the file. References to an external file from dif-
ferent programs using separate descriptions of the file are always to the same file. In a
run unit, there is only one representative of an external file.

In the File Section, the EXTERNAL clause can only be specified in file description
entries.

The records appearing in the file description entry need not have the same name in
corresponding external file description entries. In addition, the number of such records
need not be the same in corresponding file description entries.

Use of the EXTERNAL clause does not imply that the associated file-name is a global
name. See the IBM COBOL Programming Guide for your platform for specific informa-
tion on the use of the EXTERNAL clause.

148 COBOL Language Reference

 Under AIX, OS/2, and Windows, the BLOCK CONTAINS clause is not
supported for line sequential files.

For example, if you have a block with 10 DBCS characters, the BLOCK CONTAINS
clause should say BLOCK CONTAINS 2ð CHARACTERS.

BLOCK CONTAINS Clause

 GLOBAL Clause
The GLOBAL clause specifies that the file connector named by a file-name is a global
name. A global file-name is available to the program that declares it and to every
program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry for
that file-name. A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared or, in the case of record
description entries in the File Section, if the GLOBAL clause is specified in the file
description entry for the file-name associated with the record description entry. (See
the IBM COBOL Programming Guide for your platform for specific information on the
use of the GLOBAL clause.)

Two programs in a run unit can reference global file connectors in the following circum-
stances:

1. An external file connector can be referenced from any program that describes that
file connector.

2. If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the con-
taining program.

BLOCK CONTAINS Clause

It is treated as a comment for sequential, relative
and indexed files.

The BLOCK CONTAINS clause specifies the size of the physical records. The charac-
ters in the BLOCK CONTAINS clause reflect the number of bytes in the record.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be omitted.
When it is omitted, the compiler assumes that records are not blocked. Even if each
physical record contains only one complete logical record, coding BLOCK CONTAINS 1
RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated File Control entry
specifies a VSAM file; the concept of blocking has no meaning for VSAM files; the
clause is syntax checked, but it has no effect on the execution of the program.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of char-
acter positions and does not depend upon whether the value was specified as CHAR-
ACTERS or as RECORDS.

Part 5. Data Division 149

When running under MVS, BLOCK CONTAINS 0 can be specified for QSAM files; the
block size is determined at run time from the DD parameters or the data set label.

If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS 0 CHARACTERS clause is specified (or omitted), the block size is deter-
mined at run time from the DD parameters or the data set label of the file. For output
data sets, with either of the above conditions, the DCB used by Language Environment
will have a zero block size value. If you do not specify a block size value, the operating
system might select a System Determined Block Size (SDB). See the operating system
specifications for further information on SDB.

BLOCK CONTAINS can be omitted for SYSIN/SYSOUT files under MVS. The blocking
is determined by the operating system.

When running under CMS, BLOCK CONTAINS 0 can be specified for QSAM files; the
block size is determined at run time from the FILEDEF parameters or the data set label.
If the RECORD CONTAINS 0 CHARACTERS clause is specified, and the BLOCK
CONTAINS clause is omitted (or if the BLOCK CONTAINS 0 CHARACTERS clause is

BLOCK CONTAINS Clause

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of:

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

If only integer-2 is specified, it specifies the exact character size of the phys-
ical record. When integer-1 and integer-2 are both specified, they represent,
respectively, the minimum and maximum character sizes of the physical
record.

Integer-1 and integer-2 must include any control bytes and padding contained
in the physical record. (Logical records do not include padding.)

The CHARACTERS phrase is the default. CHARACTERS must be specified
when:

� The physical record contains padding.

� Logical records are grouped so that an inaccurate physical record size
could be implied. For example, suppose you describe a variable-length
record of 100 characters, yet each time you write a block of 4, one
50-character record is written followed by three 100-character records. If
the RECORDS phrase were specified, the compiler would calculate the
block size as 420 characters instead of the actual size, 370 characters.
(This calculation includes block and record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical record.

The compiler assumes that the block size must provide for integer-2 records of
maximum size, and provides any additional space needed for control bytes.

150 COBOL Language Reference

specified), the block size is determined at run time from the FILEDEF parameters or the
data set label of the file.

Under VM, the BLOCK CONTAINS 0 clause might cause blocked or unblocked records
to be used for an output file, depending on the FILEDEF options specified. The DCB
used by Language Environment will have a zero block size, so the FILEDEF uses the
CMS defaults. The defaults are documented in the CMS Command Reference, under
the FILEDEF command.

The BLOCK CONTAINS clause is treated as a comment under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 2ð CHARACTERS.

RECORD Clause

 RECORD Clause
When the RECORD clause is used, the record size must be specified as the number of
character positions needed to store the record internally. That is, it must specify the
number of bytes occupied internally by the characters of the record (not the number of
characters used to represent the item within the record).

The size of a record is determined according to the rules for obtaining the size of a
group item. (See “USAGE Clause” on page 209 and “SYNCHRONIZED Clause” on
page 202.)

When the RECORD clause is omitted, the compiler determines the record lengths from
the record descriptions. When one of the entries within a record description contains
an OCCURS DEPENDING ON clause, the compiler uses the maximum value of the
variable-length item to calculate the number of character positions needed to store the
record internally.

If the associated file connector is an external file connector, all file description entries in
the run unit that are associated with that file connector must specify the same
maximum number of character positions.

 Format 1
Format 1 specifies the number of character positions for fixed-length records.

 Format 1
55──RECORD─ ──┬ ┬────────── ─integer-3─ ──┬ ┬──────────── ───────────────────────────5%
 └ ┘─CONTAINS─ └ ┘─CHARACTERS─

integer-3
Must be an unsigned integer that specifies the number of character positions con-
tained in each record in the file.

Part 5. Data Division 151

However, the RECORD CONTAINS 0 CHARACTERS clause is not sup-
ported for line sequential files.

 Under MVS, the RECORD CONTAINS 0 CHARACTERS clause can be
specified for input QSAM files containing fixed-length records; the record size is
determined at object time from the DD statement parameters or the data set label.
If, at object time, the actual record is larger than the 01 record description, only the
01 record length is available. If the actual record is shorter, only the actual record
length can be referred to. Otherwise, uninitialized data or an addressing exception
can be produced.

Note: If the RECORD CONTAINS 0 clause is specified, then the SAME AREA,
SAME RECORD AREA, or APPLY WRITE-ONLY clauses cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

 Under AIX, OS/2, and Windows, the Format 2 RECORD clause is not
supported for line sequential files.

RECORD Clause

 Under AIX, OS/2, and Windows the RECORD CONTAINS clause is
valid.

It is treated as a comment for sequential, relative
and indexed files.

 Format 2
Format 2 specifies the number of character positions for either fixed-length or variable-
length records. Fixed-length records are obtained when all 01 record description entry
lengths are the same. The Format 2 RECORD CONTAINS clause is never required,
because the minimum and maximum record lengths are determined from the record
description entries.

 Format 2
55──RECORD─ ──┬ ┬────────── ─integer-4──TO──integer-5─ ──┬ ┬──────────── ────────────5%
 └ ┘─CONTAINS─ └ ┘─CHARACTERS─

integer-4
integer-5

Must be unsigned integers. Integer-4 specifies the size of the smallest data record,
and integer-5 specifies the size of the largest data record.

152 COBOL Language Reference

� Data-name-1 cannot be a windowed date field.

RECORD Clause

 Format 3
Format 3 is used to specify variable-length records.

 Format 3 :

55──RECORD─ ──┬ ┬──── ─VARYING─ ──┬ ┬──── ──┬ ┬────── ──┬ ┬───────────────────── ─────────5
 └ ┘─IS─ └ ┘─IN─ └ ┘─SIZE─ └ ┘ ──┬ ┬────── ─integer-6─
 └ ┘─FROM─

5─ ──┬ ┬─────────────── ──┬ ┬──────────── ──┬ ┬──────────────────────────────── ──────5%
 └ ┘ ─TO──integer-7─ └ ┘─CHARACTERS─ └ ┘ ─DEPENDING─ ──┬ ┬──── ─data-name-1─
 └ ┘─ON─

integer-6
Specifies the minimum number of character positions to be contained in any record
of the file. If integer-6 is not specified, the minimum number of character positions
to be contained in any record of the file is equal to the least number of character
positions described for a record in that file.

integer-7
Specifies the maximum number of character positions in any record of the file. If
integer-7 is not specified, the maximum number of character positions to be con-
tained in any record of the file is equal to the greatest number of character posi-
tions described for a record in that file.

The number of character positions associated with a record description is determined
by the sum of the number of character positions in all elementary data items (excluding
redefinitions and renamings), plus any implicit FILLER due to synchronization. If a
table is specified:

� The minimum number of table elements described in the record is used in the sum-
mation above to determine the minimum number of character positions associated
with the record description.

� The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of character positions associ-
ated with the record description.

If data-name-1 is specified:

� Data-name-1 must be an elementary unsigned integer.

� The number of character positions in the record must be placed into the data item
referenced by data-name-1 before any RELEASE, REWRITE, or WRITE statement
is executed for the file.

� The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement
or the unsuccessful execution of a READ or RETURN statement does not alter the
content of the data item referenced by data-name-1.

� After the successful execution of a READ or RETURN statement for the file, the
contents of the data item referenced by data-name-1 indicate the number of char-
acter positions in the record just read.

Part 5. Data Division 153

 Under AIX, OS/2, and Windows, the LABEL RECORDS clause is not
supported for line sequential files.

� LABEL RECORD IS data-name

LABEL RECORDS Clause

During the execution of a RELEASE, REWRITE, or WRITE statement, the number of
character positions in the record is determined by the following conditions:

� If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

� If data-name-1 is not specified and the record does not contain a variable occur-
rence data item, by the number of character positions in the record.

� If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed position and that portion of the table described by the
number of occurrences at the time of execution of the output statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the number
of character positions in the current record that participate as the sending data items in
the implicit MOVE statement is determined by the following conditions:

� If data-name-1 is specified, by the content of the data item referenced by
data-name-1.

� If data-name-1 is not specified, by the value that would have been moved into the
data item referenced by data-name-1 had data-name-1 been specified.

LABEL RECORDS Clause

It is treated as a comment for sequential, relative and indexed files. A warning
message is issued if you use any of the following language elements:

 � USE...AFTER...LABEL PROCEDURE
� GO TO MORE-LABELS

The LABEL RECORDS clause indicates the presence or absence of labels. If it is not
specified for a file, label records for that file must conform to the system label specifica-
tions.

For VSAM files, the LABEL RECORDS clause is syntax checked, but it has no effect
on the execution of the program. COBOL label processing, therefore, is not performed.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

154 COBOL Language Reference

data-name-2
User labels are present in addition to standard labels. Data-name-2 specifies the
name of a user label record. Data-name-2 must appear as the subject of a record
description entry associated with the file.

The LABEL RECORDS clause is treated as a comment under an SD.

 Under AIX, OS/2, and Windows, the VALUE OF clause is not supported
for line sequential files.

The VALUE OF clause is treated as a comment under an SD.

 Under AIX, OS/2, and Windows, the DATA RECORDS clause is not sup-
ported for line sequential files.

As an IBM extension, the data-name need not have an 01 level number record
description with the same name associated with it.

LINAGE Clause

VALUE OF Clause

It is treated as a comment for sequential, relative and indexed
files.

The VALUE OF clause describes an item in the label records associated with this file.
The clause is syntax checked, but has no effect on the execution of the program.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section. It cannot be described with the USAGE
IS INDEX clause.

literal-1
Can be numeric or nonnumeric, or a figurative constant of category numeric or
nonnumeric.

Cannot be a floating-point literal.

DATA RECORDS Clause

It is treated as a comment for sequential, relative and
indexed files.

The DATA RECORDS clause is syntax checked, but it serves only as documentation
for the names of data records associated with this file.

data-name-4
The names of record description entries associated with this file.

 LINAGE Clause
The LINAGE clause specifies the depth of a logical page in terms of number of lines.
Optionally, it also specifies the line number at which the footing area begins, as well as
the top and bottom margins of the logical page. (The logical page and the physical
page cannot be the same size.)

Part 5. Data Division 155

 and, as an IBM
extension, EXTEND.

LINAGE Clause

The LINAGE clause is effective for sequential files opened OUTPUT

All integers must be unsigned. All data-names must be described as unsigned integer
data items.

data-name-5
integer-8

The number of lines that can be written and/or spaced on this logical page. The
area of the page that these lines represent is called the page body . The value
must be greater than zero.

WITH FOOTING AT
Integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number must be
greater than zero, and not greater than the last line of the page body. The footing
area extends between those two lines.

LINES AT TOP
Integer-10 or the value of the data item in data-name-7 specifies the number of
lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
Integer-11 or the value of the data item in data-name-8 specifies the number of
lines in the bottom margin of the logical page. The value can be zero.

Figure 5 illustrates the use of each phrase of the LINAGE clause.

┌───┐
│) & & │
│) LINES AT TOP integer-1ð (top margin) │ │
│) 6 │ │
├───┼───────┤
│ & │ │
│ │ │ │
│ │ logical │
│ page body page depth │
│ │ │ │
│ │ │ │
│ │ │ │
│ WITH FOOTING integer-9 ────────────────────┼─────────────┼───────┤
│ & │ │ │
│ footing area │ │ │
│ 6 6 │ │
│ LINAGE integer-8 ──┼───────│
│) & │ │
│) LINES AT BOTTOM integer-11 (bottom│margin) │ │
│) 6 6 │
└───┘

Figure 5. LINAGE Clause Phrases

The logical page size specified in the LINAGE clause is the sum of all values specified
in each phrase except the FOOTING phrase. If the LINES AT TOP and/or the LINES

156 COBOL Language Reference

RECORDING MODE Clause

The LINAGE clause is treated as a comment under an SD.

RECORDING MODE Clause

Under MVS and VM
The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

AT BOTTOM phrase is omitted, the assumed value for top and bottom margins is zero.
Each logical page immediately follows the preceding logical page, with no additional
spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page body
(integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page body,
first footing line, top margin, and bottom margin of the logical page for this file. See
Figure 5 on page 156 above. These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed or a
page overflow condition occurs, the values of data-name-5, data-name-6, data-name-7,
and data-name-8 if specified, are used to determine the page body, first footing line, top
margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must have:

� A LINAGE clause, if any file description entry has a LINAGE clause.

� The same corresponding values for integer-8, integer-9, integer-10, and integer-11,
if specified.

� The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8.

See “ADVANCING Phrase” on page 437 for the behavior of carriage control characters
in EXTERNAL files.

LINAGE-COUNTER Special Register
For information about the LINAGE-COUNTER Special Register, see
“LINAGE-COUNTER” on page 13.

Part 5. Data Division 157

RECORDING MODE Clause

Recording Mode F (Fixed)
All the records in a file are the same length and each is wholly contained within
one block. Blocks can contain more than one record, and there is usually a fixed
number of records for each block. In this mode, there are no record-length or
block-descriptor fields.

Recording Mode V (Variable)
The records can be either fixed-length or variable-length, and each must be wholly
contained within one block. Blocks can contain more than one record. Each data
record includes a record-length field and each block includes a block-descriptor
field. These fields are not described in the Data Division. They are each 4 bytes
long and provision is automatically made for them. These fields are not available
to you.

Recording Mode U (Fixed or Variable)
The records can be either fixed-length or variable-length. However, there is only
one record for each block. There are no record-length or block-descriptor fields.

Note: You cannot use RECORDING MODE U if you are using the BLOCK CON-
TAINS clause.

Recording Mode S (Spanned)
The records can be either fixed-length or variable-length, and can be larger than a
block. If a record is larger than the remaining space in a block, a segment of the
record is written to fill the block. The remainder of the record is stored in the next
block (or blocks, if required). Only complete records are made available to you.
Each segment of a record in a block, even if it is the entire record, includes a
segment-descriptor field, and each block includes a block-descriptor field. These
fields are not described in the Data Division; provision is automatically made for
them. These fields are not available to you.

Note: When recording mode S is used, the BLOCK CONTAINS CHARACTERS
clause must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the COBOL for MVS
& VM compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

� Use the RECORD CONTAINS integer clause (for more information, see IBM
COBOL for MVS & VM Compiler and Run-Time Migration Guide.)

� Omit the RECORD clause and make sure all level-01 records associated with
the file are the same size and none contain an OCCURS DEPENDING ON
clause.

V The compiler determines the recording mode to be V if the largest level-01 record
associated with the file is not greater than the block size specified in the BLOCK
CONTAINS clause, and you do one of the following:

� Use the RECORD IS VARYING clause

158 COBOL Language Reference

� Omit the RECORD clause and make sure all level-01 records associated with
the file are not the same size or some contain an OCCURS DEPENDING ON
clause

� Use the RECORD CONTAINS integer-1 TO integer-2 clause with integer-1 the
minimum length and integer-2 the maximum length of the level-01 records
associated with the file. The two integers must be different, with values
matching minimum and maximum length of either different length records or
record(s) with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block size is
smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE U
clause must be explicitly used.

Under AIX, OS/2, and Windows
Under AIX, OS/2, and Windows, the RECORDING MODE clause is not supported for
line sequential files. It is treated as a comment for a relative or indexed file. For record
sequential files, the RECORDING MODE clause is treated as follows:

F Record descriptions are validated as fixed. Do not specify RECORDING MODE F
if the record descriptions are variable.

V Variable length record format is assumed (even if the record descriptions are
fixed).

U Treated as a comment.

S Treated the same as V.

 Under AIX, OS/2, and Windows the CODE-SET clause is not supported
for line sequential files.

CODE-SET Clause

 CODE-SET Clause

It is treated as a comment for sequential, relative and indexed
files.

The CODE-SET clause specifies the character code used to represent data on a mag-
netic tape file. When the CODE-SET clause is specified, an alphabet-name identifies
the character code convention used to represent data on the input-output device.

Alphabet-name must be defined in the SPECIAL-NAMES paragraph as STANDARD-1
(for ASCII-encoded files), as STANDARD-2 (for ISO 7-bit encoded files), as EBCDIC
(for EBCDIC-encoded files), or as NATIVE. When NATIVE is specified, the CODE-SET
clause is syntax checked, but it has no effect on the execution of the program.

The CODE-SET clause also specifies the algorithm for converting the character codes
on the input-output medium from/to the internal EBCDIC character set.

Part 5. Data Division 159

The CODE-SET clause is treated as a comment under an SD.

CODE-SET Clause

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described with the
SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for this
file.

If the associated file connector is an external file connector, all CODE-SET clauses in
the run unit that are associated with that file connector must have the same character
set.

The CODE-SET clause is valid only for magnetic tape files.

160 COBOL Language Reference

date-format-clause

Data Division—Data Description Entry

Data Division—Data Description Entry

A data description entry specifies the characteristics of a data item.

This chapter describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data description
entry is used in this chapter to refer to data and record description entries.

Data description entries that define independent data items do not make up a record.
These are known as data item description entries .

The data description entry has three general formats. All data description entries must
end with a separator period.

 Format 1
Format 1 is used for data description entries in all Data Division sections.

 Format 1
55──level-number─ ──┬ ┬───────────── ──┬ ┬────────────────── ────────────────────────5
 ├ ┤─data-name-1─ └ ┘─redefines-clause─
 └ ┘─FILLER──────

5─ ──┬ ┬──────────────────────── ──┬ ┬───────────────── ──┬ ┬─────────────── ──────────5
 └ ┘─blank-when-zero-clause─ └ ┘─external-clause─ └ ┘─global-clause─

5─ ──┬ ┬────────────────── ──┬ ┬─────────────── ──┬ ┬──────────────── ─────────────────5
 └ ┘─justified-clause─ └ ┘─occurs-clause─ └ ┘─picture-clause─

5─ ──┬ ┬───────────── ──┬ ┬───────────────────── ──┬ ┬────────────── ──────────────────5
 └ ┘─sign-clause─ └ ┘─synchronized-clause─ └ ┘─usage-clause─

5─ ──┬ ┬────────────── ──┬ ┬──────────────────── ───────────────────────────────────5%
 └ ┘─value-clause─ └ ┘─ ─

Note: The clauses can be written in any order with two exceptions:

If data-name or FILLER is specified, it must immediately follow the level-number.

When the REDEFINES clause is specified, it must immediately follow data-name or
FILLER, if either is specified. If data-name or FILLER is not specified, the REDE-
FINES clause must immediately follow the level-number.

Level-number in Format 1 can be any number from 01–49 or 77.

A space, a separator comma, or a separator semicolon must separate clauses.

 Copyright IBM Corp. 1991, 1998 161

Level-Numbers

 Format 2
Format 2 regroups previously defined items.

 Format 2
55──66──data-name-1──renames-clause.───5%

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last data
description entry in that record.

Details are contained in “RENAMES Clause” on page 198.

 Format 3
Format 3 describes condition-names.

 Format 3
55──88──condition-name-1──value-clause.──5%

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further informa-
tion on condition-name entries can be found under “VALUE Clause” on page 217.

 Level-Numbers
The level-number specifies the hierarchy of data within a record, and identifies special-
purpose data entries. A level-number begins a data description entry, a renamed or
redefined item, or a condition-name entry. A level-number has a value taken from the
set of integers between 1 and 49, or from one of the special level-numbers, 66, 77, or
88.

 Format
55──level-number─ ──┬ ┬───────────── ───5%
 ├ ┤─data-name-1─
 └ ┘─FILLER──────

162 COBOL Language Reference

Level-Numbers

level-number
01 and 77 must begin in Area A and must be followed either by a separator period;
or by a space, followed by its associated data-name, FILLER, or appropriate data
description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be followed by a
space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed by a
space.

Single-digit level-numbers 1 through 9 can be substituted for level-numbers 01
through 09.

Successive data description entries can start in the same column as the first or
they can be indented according to the level-number. Indentation does not affect
the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any number
of spaces to the right of Area A. The extent of indentation to the right is limited
only by the width of Area B.

For more information, see “Levels of Data” on page 137

data-name
Explicitly identifies the data being described.

If specified, a data-name identifies a data item used in the program. The data-
name must be the first word following the level-number.

The data item can be changed during program execution.

Data-name must be specified for level-66 and level-88 items. It must also be spec-
ified for any entry containing the GLOBAL or EXTERNAL clause, and for record
description entries associated with file description entries having the GLOBAL or
EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The key word FILLER
is optional. If specified, FILLER must be the first word following the level-number.

The key word FILLER can be used with a conditional variable, if explicit reference
is never made to the conditional variable but only to values it can assume. FILLER
cannot be used with a condition-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING or
SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an INI-
TIALIZE statement, elementary FILLER items are ignored.

If the data-name or FILLER clause is omitted, the data item being described is treated
as though FILLER had been specified.

Part 5. Data Division 163

DATE FORMAT Clause

ZEROS
ZEROES

 � Date fields
 � DBCS items
� External or internal floating-point items
� Items described with USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or

USAGE IS OBJECT REFERENCE

DATE FORMAT Clause
The DATE FORMAT clause specifies that a data item is a windowed or expanded date
field:

Windowed date fields
Contain a windowed (2-digit) year, specified by a DATE FORMAT clause
containing YY.

Expanded date fields
Contain an expanded (4-digit) year, specified by a DATE FORMAT clause
containing YYYY.

If the NODATEPROC compiler option is in effect, the DATE FORMAT clause is syntax
checked, but has no effect on the execution of the program. NODATEPROC disables
date processing. The rules and restrictions described in this reference for the DATE
FORMAT clause and date fields apply only if the DATEPROC compiler option is in
effect.

BLANK WHEN ZERO Clause
The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces
when its value is zero.

 Format
55──BLANK─ ──┬ ┬────── ──┬ ┬─ZERO─── ───5%
 └ ┘─WHEN─ ├ ┤─ ──
 └ ┘─ ─

The BLANK WHEN ZERO clause can be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or explicitly, as
USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is specified for a
numeric item, the item is considered a numeric-edited item.

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88 items.

The BLANK WHEN ZERO clause must not be specified for the same entry as the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed for:

� Items described with the USAGE IS INDEX clause

164 COBOL Language Reference

DATE FORMAT Clause

 Format
55──DATE FORMAT─ ──┬ ┬──── ─date-pattern──5%
 └ ┘─IS─

The date-pattern is a character string, such as YYXXXX, representing a windowed or
expanded year optionally followed or preceded by one through four characters repres-
enting other parts of a date, such as the month and day:

Date-pattern string... Specifies that the data item contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit representing a
semester or quarter (1–4).

XX Two characters; for example, digits representing a
month (01–12).

XXX Three characters; for example, digits representing a
day of the year (001–366).

XXXX Four characters; for example, 2 digits representing a
month (01–12) and 2 digits representing a day of the
month (01–31).

For an introduction to date fields and related terms, see “Millennium Language Exten-
sions and Date Fields” on page 58. For details on using date fields in applications, see
the IBM COBOL Programming Guide for your platform, or the IBM COBOL Millennium
Language Extensions Guide.

Semantics of Windowed Date Fields
Windowed date fields undergo automatic expansion relative to the century window
when they are used as operands in arithmetic expressions or arithmetic statements.
However, the result of incrementing or decrementing a windowed date is still treated as
a windowed date for further computation, comparison, and storing.

When used in the following situations, windowed date fields are treated as if they were
converted to expanded date format:

� Operands in subtractions in which the other operand is an expanded date

� Operands in relation conditions

� A sending field in arithmetic or MOVE statements

The details of the conversion to expanded date format depend on whether the win-
dowed date field is numeric or alphanumeric.

Given a century window starting year of 19nn, the year part (yy) of a numeric windowed
date field is treated as if it was expanded as follows:

� If yy is less than nn, then add 2000 to yy

|
|
|

|
|

|

Part 5. Data Division 165

DATE FORMAT Clause

� If yy is equal to or greater than nn, then add 1900 to yy

For signed numeric windowed date fields, this means that there can be two representa-
tions of some years. For instance, windowed year values 99 and -01 are both treated
as 1999, since 1900 + 99 = 2000 + -01.

Alphanumeric windowed date fields are treated in a similar manner, but using a prefix
of “19” or “20” instead of adding 1900 or 2000.

For example, when used as an operand of a relation condition, a windowed date field
defined by:

ð1 DATE-FIELD DATE FORMAT YYXXXX PICTURE 9(6)
VALUE IS 45ð1ð1.

is treated as if it was an expanded date field with a value of:

� 19450101, if the century window starting year is 1945 or earlier
or
� 20450101, if the century window starting year is later than 1945

Date Trigger Values (Host Only)
 When the DATEPROC(TRIG) compiler option is in effect, expansion of win-

dowed date fields is sensitive to certain trigger or limit values in the windowed date
field.

For alphanumeric windowed date fields, these special values are LOW-VALUE,
HIGH-VALUE, and SPACE. For alphanumeric and numeric windowed date fields with
at least one X in the DATE FORMAT clause (that is, windowed date fields other than
just a windowed year), values of all zeros or all nines are also treated as triggers.

The all-zero value is intended to act as a date earlier than any valid date. The purpose
of the all-nines value is to behave like a date later than any valid date.

When a windowed date field contains a trigger in this way, it is expanded as if the
trigger value were copied to the century part of the expanded date result, rather than
inferring 19 or 20 as the century value.

This special trigger expansion is done when a windowed date field is used either as an
operand in a relation condition or as the sending field in an arithmetic or MOVE state-
ment. Trigger expansion is not done when windowed date fields are used as operands
in arithmetic expressions, but may be applied to the final windowed date result of an
arithmetic expression.

Restrictions On Using Date Fields
The following pages describe restrictions on using date fields in these contexts:

� Combining the DATE FORMAT clause with other clauses
� Group items consisting only of a date field
� Language elements that treat date fields as non-dates
� Language elements that do not accept date fields as arguments

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

166 COBOL Language Reference

DATE FORMAT Clause

For restrictions on using date fields in other contexts, see:

� “Arithmetic with Date Fields” on page 235
� “Date Fields” (in conditional expressions) on page 244
� “ADD Statement” on page 282
� “SUBTRACT Statement” on page 425
� “MOVE Statement” on page 352

Combining the DATE FORMAT Clause with Other Clauses
The only phrases of the USAGE clause that can be combined with the DATE FORMAT
clause are DISPLAY, COMPUTATIONAL (or its equivalents, COMPUTATIONAL-4 and
BINARY), and COMPUTATIONAL-3 (or its equivalent, PACKED-DECIMAL). The DATE
FORMAT clause is not allowed for USAGE COMP data items if the TRUNC(BIN) com-
piler option is in effect.

The PICTURE clause character-string must specify the same number of characters or
digits as the DATE FORMAT clause. For alphanumeric date fields, the only PICTURE
character-string symbols allowed are A, 9, and X, with at least one X. For numeric date
fields, the only PICTURE character-string symbols allowed are 9 and S.

The following clauses are not allowed for a data item defined with DATE FORMAT:

BLANK WHEN ZERO
 JUSTIFIED

SEPARATE CHARACTER phrase of the SIGN clause

The EXTERNAL clause is not allowed for a windowed date field or a group item con-
taining a windowed date field subordinate item.

Some restrictions apply when combining the following clauses with DATE FORMAT:

REDEFINES (see page 195)
VALUE (see page 217)

Group Items That Are Date Fields
If a group item is defined with a DATE FORMAT clause, then the following restrictions
apply:

� The elementary items in the group must all be USAGE DISPLAY.

� The length of the group item must be the same number of characters as the date-
pattern in the DATE FORMAT clause.

� If the group consists solely of a date field with USAGE DISPLAY, and both the
group and the single subordinate item have DATE FORMAT clauses, then the
DATE FORMAT clauses must be identical.

� If the group item contains subordinate items that subdivide the group, then the fol-
lowing restrictions apply:

1. If a named (not FILLER) subordinate item consists of exactly the year part of
the group item date field, and has a DATE FORMAT clause, then the DATE

|
|
|
|

|

|

|
|

Part 5. Data Division 167

DATE FORMAT Clause

FORMAT clause must be YY or YYYY, with the same number of year charac-
ters as the group item.

2. If the group item is a Gregorian date with a DATE FORMAT clause of
YYXXXX, YYYYXXXX, XXXXYY, or XXXXYYYY, and a named subordinate
date data item consists of the year and month part of the Gregorian date, then
its DATE FORMAT clause must be YYXX, YYYYXX, XXYY, or XXYYYY,
respectively (or, for a group date format of YYYYXXXX, a subordinate date
format of YYXX as described below).

3. A windowed date field can be subordinate to an expanded date field group
item if the subordinate item starts two characters after the group item, neither
date is in year-last format, and the date format of the subordinate item either
has no Xs, or has the same number of Xs following the Ys as the group item,
or is YYXX under a group date format of YYYYXXXX.

4. The only subordinate items that can have a DATE FORMAT clause are those
that define the year part of the group item, the windowed part of an expanded
date field group item, or the year and month part of a Gregorian date group
item, as discussed in the above restrictions.

For example, the following defines a valid group item:

 ð1 YYMMDD DATE FORMAT YYXXXX.
ð2 YYMM DATE FORMAT YYXX.
ð3 YY DATE FORMAT YY PICTURE 99.

 ð3 PICTURE 99.
 ð2 DD PICTURE 99.

Language Elements That Treat Date Fields As Non-Dates
If date fields are used in the following language elements, they are treated as non-
dates. That is, the DATE FORMAT is ignored, and the content of the date data item is
used without undergoing automatic expansion.

� In the Environment Division FILE-CONTROL paragraph:

SELECT ... ASSIGN USING data-name
SELECT ... PASSWORD IS data-name
SELECT ... FILE STATUS IS data-name

� In Data Division entries:

LABEL RECORD IS data-name
LABEL RECORDS ARE data-name
LINAGE IS data-name FOOTING data-name TOP data-name BOTTOM data-
name

� In class conditions

� In sign conditions

� In DISPLAY statements

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

168 COBOL Language Reference

DATE FORMAT Clause

Language Elements That Do Not Accept Windowed Date Fields As
Arguments
Windowed date fields cannot be used as:

� Data-names in the following formats of the Environment Division FILE-CONTROL
paragraph:

SELECT ... RECORD KEY IS
SELECT ... ALTERNATE RECORD KEY IS
SELECT ... RELATIVE KEY IS

� A data-name in the RECORD IS VARYING DEPENDING ON clause of a Data
Division File Description (FD) or Sort Description (SD) entry.

� The object of an OCCURS DEPENDING ON clause of a Data Division data defi-
nition entry.

� The key in an ASCENDING KEY or DESCENDING KEY phrase of an OCCURS
clause of a Data Division data definition entry.

� Any data-name or identifier in the following statements:

 CANCEL
GO TO ... DEPENDING ON

 INSPECT
 SET
 SORT
 STRING
 UNSTRING

� In the CALL statement, as the identifier containing the program name.

� In the INVOKE statement, as the identifier specifying the object on which the
method is invoked, or the identifier containing the method name.

� Identifiers in the TIMES and VARYING phrases of the PERFORM statement (win-
dowed date fields are allowed in the PERFORM conditions).

� An identifier in the VARYING phrase of a serial (format 1) SEARCH statement, or
any identifier in a binary (format 2) SEARCH statement (windowed date fields are
allowed in the SEARCH conditions).

� An identifier in the ADVANCING phrase of the WRITE statement.

� Arguments to intrinsic functions, except the UNDATE intrinsic function.

 Under AIX, OS/2, and Windows, windowed date fields cannot be used as
ascending or descending keys in MERGE or SORT statements.

 Under MVS and VM, windowed date fields can be used as ascending or
descending keys in MERGE and SORT statements, with some restrictions. For details,
see “MERGE Statement” on page 345 and “SORT Statement” on page 407.

|

|
|

Part 5. Data Division 169

Language Elements That Do Not Accept Date Fields As Arguments
Neither windowed date fields nor expanded date fields can be used:

� In the DIVIDE statement, except as an identifier in the GIVING or REMAINDER
clause.

� In the MULTIPLY statement, except as an identifier in the GIVING clause.

(Date fields cannot be used as operands in division or multiplication.)

 or method
 or method

 or methods

 or method

 or method

 or methods

 or method

GLOBAL Clause

 EXTERNAL Clause
The EXTERNAL clause specifies that the storage associated with a data item is associ-
ated with the run unit rather than with any particular program within the run
unit. An external data item can be referenced by any program in the run unit
that describes the data item. References to an external data item from different pro-
grams using separate descriptions of the data item are always to the same
data item. In a run unit, there is only one representative of an external data item.

The EXTERNAL clause can be specified only in data description entries whose level-
number is 01. It can only be specified on data description entries that are in the
Working-Storage Section of a program . It cannot be specified in Linkage
Section or File Section data description entries. Any data item described by a data
description entry subordinate to an entry describing an external record also attains the
EXTERNAL attribute. Indexes in an external data record do not possess the external
attribute.

The data contained in the record named by the data-name clause is external and can
be accessed and processed by any program in the run unit that describes
and, optionally, redefines it. This data is subject to the following rules:

� If two or more programs within a run unit describe the same external
data record, each record-name of the associated record description entries must be
the same and the records must define the same number of standard data format
characters. However, a program that describes an external record can
contain a data description entry including the REDEFINES clause that redefines
the complete external record, and this complete redefinition need not occur iden-
tically in other programs or methods in the run unit.

� Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

 GLOBAL Clause
The GLOBAL clause specifies that a data-name is available to every program contained
within the program that declares it, as long as the contained program does not itself
have a declaration for that name. All data-names subordinate to or condition-names or
indexes associated with a global name are global names.

170 COBOL Language Reference

 the Linkage Section, and the Local-Storage Section,

� For items described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER,
or USAGE IS OBJECT REFERENCE

� For external or internal floating-point items
� For an edited DBCS item
� For date fields

JUSTIFIED Clause

A data-name is global if the GLOBAL clause is specified either in the data description
entry by which the data-name is declared or in another entry to which that data
description entry is subordinate. The GLOBAL clause can be specified in the Working-
Storage Section, the File Section,
but only in data description entries whose level-number is 01.

In the same Data Division, the data description entries for any two data items for which
the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program which
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following circumstances:

1. The data content of an external data record can be referenced from any program
provided that program has described that data record.

2. If a program is contained within another program, both programs can refer to data
possessing the global attribute either in the containing program or in any program
that directly or indirectly contains the containing program.

 JUSTIFIED Clause
The JUSTIFIED clause overrides standard positioning rules for a receiving item of the
alphabetic or alphanumeric categories.

 Format
55─ ──┬ ┬─JUSTIFIED─ ──┬ ┬─────── ──5%
 └ ┘─JUST────── └ ┘─RIGHT─

You can only specify the JUSTIFIED clause at the elementary level. JUST is an abbre-
viation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

� For numeric, numeric-edited, or alphanumeric-edited items
� In descriptions of items described with the USAGE IS INDEX clause

� With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at the
rightmost character position in the receiving item. Also:

� If the sending item is larger than the receiving item, the leftmost characters are
truncated.

Part 5. Data Division 171

The JUSTIFIED clause can be specified for a DBCS item (except edited DBCS items).
When JUSTIFIED is specified for a receiving item, the data is aligned on the rightmost
character position. If the sending item is larger than the receiving item, extra charac-
ters are truncated on the left. If the sending item is smaller than the receiving item, any
unused positions on the left are filled with DBCS blanks.

OCCURS Clause

� If the sending item is smaller than the receiving item, the unused character posi-
tions at the left are filled with spaces.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed (see
“Alignment Rules” on page 141).

The JUSTIFIED clause does not affect initial settings, as determined by the VALUE
clause.

 OCCURS Clause
The Data Division clauses used for table handling are the OCCURS clause and
USAGE IS INDEX clause. For the USAGE IS INDEX description, see “USAGE Clause”
on page 209.

The OCCURS clause specifies tables whose elements can be referred to by indexing or
subscripting. It also eliminates the need for separate entries for repeated data items.

Formats for the OCCURS clause include fixed-length tables or variable-length tables.

The subject of an OCCURS clause is the data-name of the data item containing the
OCCURS clause. Except for the OCCURS clause itself, data description clauses used
with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is refer-
enced, it must be subscripted or indexed with the following exceptions:

� When the subject of the OCCURS clause is used as the subject of a SEARCH
statement.

� When the subject or subordinate data item is the object of the
ASCENDING/DESCENDING KEY clause.

� When the subordinate data item is the object of the REDEFINES clause.

When subscripted or indexed, the subject refers to one occurrence within the table.

When not subscripted or indexed, the subject represents the entire table.

The OCCURS clause cannot be specified in a data description entry that:

� Has a level number of 01, 66, 77, or 88.

� Describes a redefined data item. (However, a redefined item can be subordinate
to an item containing an OCCURS clause.) See “REDEFINES Clause” on
page 195.

172 COBOL Language Reference

Data-name-2 cannot be a windowed date field.

OCCURS Clause

 Fixed-Length Tables
Fixed-length tables are specified using the OCCURS clause. Because seven sub-
scripts or indexes are allowed, six nested levels and one outermost level of the Format
1 OCCURS clause are allowed. The Format 1 OCCURS clause can be specified as
subordinate to the OCCURS DEPENDING ON clause. In this way, a table of up to
seven dimensions can be specified.

Format 1—Fixed-Length Tables
55──OCCURS──integer-2─ ──┬ ┬─────── ───5
 └ ┘─TIMES─

 ┌ ┐──
5─ ───6 ┴──┬ ┬── ────────────────────5
 │ │┌ ┐───────────────
 └ ┘ ──┬ ┬─ASCENDING── ──┬ ┬───── ──┬ ┬──── ───6 ┴─data-name-2─
 └ ┘─DESCENDING─ └ ┘─KEY─ └ ┘─IS─

5─ ──┬ ┬─────────────────────────────────── ──────────────────────────────────────5%
 │ │┌ ┐────────────────
 └ ┘ ─INDEXED─ ──┬ ┬──── ───6 ┴─index-name-1─
 └ ┘─BY─

integer-2
The exact number of occurrences. Integer-2 must be greater than zero.

ASCENDING/DESCENDING KEY Phrase
Data is arranged in ascending or descending order (depending on the key word speci-
fied) according to the values contained in data-name-2. The data-names are listed in
their descending order of significance.

The order is determined by the rules for comparison of operands (see “Relation
Condition” on page 243). The ASCENDING and DESCENDING KEY data items are
used in OCCURS clauses and the SEARCH ALL statement for a binary search of the
table element.

data-name-2
Must be the name of the subject entry, or the name of an entry subordinate to the
subject entry. Data-name-2 can
be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING/DESCENDING KEY, and is the only key that can be specified for this
table element.

If data-name-2 does not name the subject entry, then data-name-2:

� Must be subordinate to the subject of the table entry itself
� Must not be subordinate to, or follow, any other entry that contains an

OCCURS clause
� Must not contain an OCCURS clause.

Data-name-2 must not have subordinate items that contain OCCURS DEPENDING
ON clauses.

Part 5. Data Division 173

� Under MVS and VM, a key can have COMPUTATIONAL-1,
COMPUTATIONAL-2, COMPUTATIONAL-3, or COMPUTATIONAL-4 usage.

� Under AIX, OS/2, and Windows, a key can have
COMPUTATIONAL-1, COMPUTATIONAL-2, COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5 usage.

� The ASCENDING/DESCENDING KEY phrase (for a SEARCH ALL statement only)
can be specified in the OCCURS clause for a DBCS item.

� If a key is specified without qualifiers and it is not a unique name, the key will be
implicitly qualified with the subject of the OCCURS clause and all qualifiers of the
OCCURS clause subject.

OCCURS Clause

When the ASCENDING/DESCENDING KEY phrase is specified, the following rules
apply:

� Keys must be listed in decreasing order of significance.

� The total number of keys for a given table element must not exceed 12.

� You must arrange the data in the table in ASCENDING or DESCENDING
sequence according to the collating sequence in use.

� A key can have DISPLAY, BINARY, PACKED-DECIMAL, or COMPUTATIONAL
usage.

� The sum of the lengths of all the keys associated with one table element must not
exceed 256.

The following example illustrates the specification of ASCENDING KEY data item:

WORKING-STORAGE SECTION.
ð1 TABLE-RECORD.
 ð5 EMPLOYEE-TABLE OCCURS 1ðð TIMES

ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

 1ð EMPLOYEE-NAME PIC X(2ð).
 1ð EMPLOYEE-NO PIC 9(6).
 1ð WAGE-RATE PIC 9999V99.

1ð WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

 15 WEEK-NO PIC 99.
 15 AUTHORIZED-ABSENCES PIC 9.
 15 UNAUTHORIZED-ABSENCES PIC 9.
 15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, while the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO within
WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending order of

174 COBOL Language Reference

A table without an INDEXED BY option can be referred to through indexing.

However, in the following cases, indexes are allocated on a per-invocation basis. Thus,
you must SET the value of the index on every entry for indexes on tables in the:

 � Local-Storage Section

� Working-Storage Section of a class definition (object instance variables)

� Linkage Section of a:

 – Method
– Program compiled with the RECURSIVE attribute
– Program compiled with the THREAD option (Workstation Only)

As an IBM extension, unreferenced index names need not be uniquely defined.

OCCURS Clause

WEEK-NO. If they are not, results of any SEARCH ALL statement will be unpredict-
able.

INDEXED BY Phrase
The INDEXED BY phrase specifies the indexes that can be used with a table. The
INDEXED BY phrase is required if indexing is used to refer a this table element. See
“Subscripting Using Index-Names (Indexing)” on page 51.

Indexes normally are allocated in static memory associated with the program containing
the table. Thus, indexes are in the last-used state when a program is reentered.

Note: Indexes specified in an External data record do not possess the external attri-
bute.

index-name-1
Must follow the rules for formation of user-defined words. At least one character
must be alphabetic.

Each index-name specifies an index to be created by the compiler for use by the
program. These index-names are not data-names, and are not identified else-
where in the COBOL program; instead, they can be regarded as private special
registers for the use of this object program only. They are not data, or part of any
data hierarchy.

In one table entry, up to 12 index-names can be specified.

If a data item possessing the GLOBAL attribute includes a table accessed with an
index, that index also possesses the GLOBAL attribute. Therefore, the scope of an
index-name is identical to that of the data-name which names the table whose
index is named by that index-name and the scope of name rules for data-names
apply.

Part 5. Data Division 175

Integer-1 is optional as an IBM extension. If integer-1 is omitted, a value of 1
is assumed and the key word TO must also be omitted.

The object cannot be a windowed date field.

The object of the OCCURS DEPENDING ON clause may not be variably located;
the object cannot follow an item that contains an OCCURS DEPENDING ON
clause.

OCCURS DEPENDING ON Clause

 Variable-Length Tables
Variable-length tables are specified using the OCCURS DEPENDING ON clause.

Format 2—Variable-Length Tables
55──OCCURS──integer-1───(1)─TO──integer-2─ ──┬ ┬─────── ─DEPENDING─ ──┬ ┬──── ───────────5
 └ ┘─TIMES─ └ ┘─ON─

 ┌ ┐──
5──data-name-1─ ───6 ┴──┬ ┬── ───────5
 │ │┌ ┐───────────────
 └ ┘ ──┬ ┬─ASCENDING── ──┬ ┬───── ──┬ ┬──── ───6 ┴─data-name-2─
 └ ┘─DESCENDING─ └ ┘─KEY─ └ ┘─IS─

5─ ──┬ ┬─────────────────────────────────── ──────────────────────────────────────5%
 │ │┌ ┐────────────────
 └ ┘ ─INDEXED─ ──┬ ┬──── ───6 ┴─index-name-1─
 └ ┘─BY─

Note:
1

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be less
than the value of integer-2.

integer-2
The maximum number of occurrences.

Integer-2 must be greater than integer-1.

The length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

OCCURS DEPENDING ON Clause
The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1
Specifies the object of the OCCURS DEPENDING ON clause; that is, the data
item whose current value represents the current number of occurrences of the
subject item. The contents of items whose occurrence numbers exceed the value
of the object are undefined.

The object of the OCCURS DEPENDING ON clause must describe an integer data
item.

The object of the OCCURS DEPENDING ON clause must not occupy any storage
position within the range of the table (that is, any storage position from the first
character position in the table through the last character position in the table).

176 COBOL Language Reference

 or that follows but is not subordinate to the OCCURS
DEPENDING ON item,

� INVOKE ... USING BY REFERENCE

If the group item is followed by a non-subordinate item, the actual length, rather than
the maximum length, will be used. At the time the subject of entry is referenced, or any
data item subordinate or superordinate to the subject of entry is referenced, the object
of the OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2.

OCCURS DEPENDING ON Clause

If the OCCURS clause is specified in a data description entry included in a record
description entry containing the EXTERNAL clause, data-name-1, if specified, must
reference a data item possessing the external attribute which is described in the
same Data Division.

If the OCCURS clause is specified in a data description entry subordinate to one
containing the GLOBAL clause, data-name-1, if specified, must be a global name
and must reference a data item which is described in the same Data Division.

At the time that the group item, or any data item that contains a subordinate OCCURS
DEPENDING ON item

 is referenced, the value of the object of the OCCURS
DEPENDING ON clause must fall within the range integer-1 through integer-2.

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as follows:

� If the object is outside the group, only that part of the table area that is specified by
the object at the start of the operation will be used.

� If the object is included in the same group and the group data item is referenced
as a sending item, only that part of the table area that is specified by the value of
the object at the start of the operation will be used in the operation.

� If the object is included in the same group and the group data item is referenced
as a receiving item, the maximum length of the group item will be used in the oper-
ation.

Following are the verbs that are affected by the maximum length rule:

� ACCEPT identifier (Format 1 and 2)
� CALL ... USING BY REFERENCE

� MOVE ... TO identifier
� READ ... INTO identifier
� RELEASE identifier FROM ...
� RETURN ... INTO identifier
� REWRITE identifier FROM ...
� STRING ... INTO identifier
� UNSTRING ... INTO identifier DELIMITER IN identifier
� WRITE identifier FROM ...

The maximum length of variable-length groups is always used when they appear as the
identifier on the CALL ... USING BY REFERENCE identifier statement. Therefore, the
object of the OCCURS DEPENDING ON clause does not need to be set, unless the
group is variably-located.

Part 5. Data Division 177

The following constitute complex OCCURS DEPENDING ON:

� Subordinate items can contain OCCURS DEPENDING ON clauses.

� Entries containing an OCCURS DEPENDING ON clause can be followed by non-
subordinate items. Non-subordinate items, however, cannot be the object of an
OCCURS DEPENDING ON clause.

� The location of any subordinate or non-subordinate item, following an item con-
taining an OCCURS DEPENDING ON clause, is affected by the value of the
OCCURS DEPENDING ON object.

� Entries subordinate to the subject of an OCCURS DEPENDING ON clause can
contain OCCURS DEPENDING ON clauses.

� When implicit redefinition is used in a File Description (FD) entry, subordinate level
items can contain OCCURS DEPENDING ON clauses.

� The INDEXED BY phrase can be specified for a table that has a subordinate item
that contains an OCCURS DEPENDING ON clause.

For more information on complex OCCURS DEPENDING ON, see the IBM COBOL
Programming Guide for your platform.

PICTURE Clause

In one record description entry, any entry that contains an OCCURS DEPENDING ON
clause can be followed only by items subordinate to it.

The OCCURS DEPENDING ON clause cannot be specified as subordinate to another
OCCURS clause.

All data-names used in the OCCURS clause can be qualified; they can not be sub-
scripted or indexed.

The ASCENDING/DESCENDING KEY and INDEXED BY clauses are described under
“Fixed-Length Tables” on page 173.

 PICTURE Clause
The PICTURE clause specifies the general characteristics and editing requirements of
an elementary item.

 Format
55─ ──┬ ┬─PICTURE─ ──┬ ┬──── ─character-string──────────────────────────────────────5%
 └ ┘─PIC───── └ ┘─IS─

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except an index
data item or the subject of the RENAMES clause. In these cases, use of this
clause is prohibited.

The PICTURE clause can be specified only at the elementary level.

178 COBOL Language Reference

� For USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE data items

� For internal floating-point data items

E, G, N

All other lowercase letters are not equivalent to their corresponding uppercase repres-
entations.

PICTURE Clause

PIC is an abbreviation for PICTURE and has the same meaning.

character-string
PICTURE character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the elementary
data item.

The PICTURE character-string can contain a maximum of 30 characters.

The PICTURE clause is not allowed:

� For index data items or the subject of the RENAMES clause
� In descriptions of items described with USAGE IS INDEX

Symbols Used in the PICTURE Clause
The meaning of each PICTURE clause symbol is defined in Table 12 on page 180.
The sequence in which PICTURE clause symbols must be specified is shown in
Figure 6 on page 183. More detailed explanations of PICTURE clause symbols follow
the figures.

Any punctuation character appearing within the PICTURE character-string is not consid-
ered a punctuation character, but rather a PICTURE character-string symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS COMMA
exchanges the functions of the period and the comma in PICTURE character strings
and in numeric literals.

The lowercase letters corresponding to the uppercase letters representing the following
PICTURE symbols are equivalent to their uppercase representations in a PICTURE
character-string:

A, B, P, S, V, X, Z, CR, DB

|
|

The heading Size refers to the number of bytes the symbol contributes to the actual
size of the data item.

| In the following description of the PICTURE clause, cs indicates any valid currency
| symbol. For details, see “Currency Symbol” on page 184.

Part 5. Data Division 179

For DBCS data—a character
position into which a DBCS
space is inserted. Represents
a single DBCS character posi-
tion containing a DBCS space.

Occupies 2 bytes

E Marks the start of the expo-
nent in an external floating-
point item.

Occupies 1 byte

G A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.

Under AIX, OS/2, and Windows,
the locale you select must indi-
cate a DBCS code page. For
information on locale, see
Appendix F, “Locale Consider-
ations (Workstation Only)” on
page 568.

N A DBCS character position Occupies 2 bytes Cannot be specified for a
non-DBCS item.

Under AIX, OS/2, and Windows,
the locale you select must indi-
cate a DBCS code page. For
information on locale, see
Appendix F, “Locale Consider-
ations (Workstation Only)” on
page 568.

PICTURE Clause

Table 12 (Page 1 of 3). PICTURE Clause Symbol Meanings

Symbol Meaning Size Restrictions

A A character position that can
contain only a letter of the
alphabet or a space.

Occupies 1 byte

B For Non-DBCS data—a char-
acter position into which the
space character is inserted.

Occupies 1 byte

P An assumed decimal scaling
position. Used to specify the
location of an assumed
decimal point when the point
is not within the number that
appears in the data item. See
also “P Symbol” on page 184.

Not counted in the size of the
data item. Scaling position
characters are counted in
determining the maximum
number of digit positions (18)
in numeric-edited items or in
items that appear as arith-
metic operands.

The size of the value is the
number of digit positions
represented by the PICTURE
character-string.

Can appear only as a contin-
uous string of Ps in the leftmost
or rightmost digit positions within
a PICTURE character-string.

180 COBOL Language Reference

A trailing comma insertion char-
acter can be immediately fol-
lowed by the separator comma
or separator semicolon; in this
case, the PICTURE clause need
not be the last clause of the
data description entry.

PICTURE Clause

Table 12 (Page 2 of 3). PICTURE Clause Symbol Meanings

Symbol Meaning Size Restrictions

S An indicator of the presence
(but not the representation
nor, necessarily, the position)
of an operational sign. An
operational sign indicates
whether the value of an item
involved in an operation is
positive or negative.

Not counted in determining
the size of the elementary
item, unless an associated
SIGN clause specifies the
SEPARATE CHARACTER
phrase (which would occupy 1
byte).

Must be written as the leftmost
character in the PICTURE string.

V An indicator of the location of
the assumed decimal point.
Does not represent a char-
acter position.

When the assumed decimal
point is to the right of the
rightmost symbol in the string,
the V is redundant.

Not counted in the size of the
elementary item

Can appear only once in a
character-string.

X A character position that can
contain any allowable char-
acter from the character set of
the computer.

Occupies 1 byte

Z A leading numeric character
position. When that position
contains a zero, a space char-
acter replaces the zero.

Each 'Z' is counted in the size
of the data item.

9 A character position that con-
tains a numeral.

Each '9' is counted in the size
of the data item.

0 A character position into which
the numeral zero is inserted.

Each '0' is counted in the size
of the data item.

/ A character position into which
the slash character is inserted.

Each '/' is counted in the size
of the data item.

, A character position into which
a comma is inserted.

Each ',' is counted in the size
of the data item.

If the comma insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the
last clause of the data
description entry and must be
immediately followed by the sep-
arator period.

Part 5. Data Division 181

A trailing period insertion char-
acter can be immediately fol-
lowed by the separator comma
or separator semicolon; in this
case, the PICTURE clause need
not be the last clause of the
data description entry.

PICTURE Clause

Table 12 (Page 3 of 3). PICTURE Clause Symbol Meanings

Symbol Meaning Size Restrictions

. An editing symbol that repres-
ents the decimal point for
alignment purposes. In addi-
tion, it represents a character
position into which a period is
inserted.

Each '.' is counted in the size
of the data item.

If the period insertion character
is the last symbol in the
PICTURE character-string, the
PICTURE clause must be the
last clause of that data
description entry and must be
immediately followed by the sep-
arator period.

+
-
CR
DB

Editing sign control symbols.
Each represents the character
position into which the editing
sign control symbol is placed.

Each character used in the
symbol is counted in deter-
mining the size of the data
item.

The symbols are mutually exclu-
sive in one character-string.

* A check protect symbol—a
leading numeric character
position into which an asterisk
is placed when that position
contains a zero.

Each asterisk (*) is counted in
the size of the item.

| cs| Currency symbol, representing
| a character position into which
| a currency sign value is
| placed. The default currency
| symbol is the dollar sign ($).
| For details, see “Currency
| Symbol” on page 184.

| The first occurrence of a cur-
| rency symbol adds the
| number of characters in the
| currency sign value to the size
| of the data item. Each subse-
| quent occurrence adds one
| character to the size of the
| data item.

Figure 6 on page 183 shows the sequence in which PICTURE clause symbols must be
specified.

182 COBOL Language Reference

■ Closed square indicates that the item is an IBM exten-
sion.

PICTURE Clause

Figure 6. PICTURE Clause Symbol Sequence

Figure Legend:

¹ Closed circle indicates that the symbol(s) at the top of
the column can, in a given character-string, appear any-
where to the left of the symbol(s) at the left of the row.

{ } Braces indicate items that are mutually exclusive.

Part 5. Data Division 183

 either in the CURRENCY compiler option or

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and the
NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the default
currency sign value and currency symbol. For more information about the CURRENCY
SIGN clause, see “CURRENCY SIGN Clause” on page 96. For more information
about the CURRENCY and NOCURRENCY compiler options, see the IBM COBOL Pro-
gramming Guide for your platform.

Different currency symbols must not be used in the same PICTURE
character-string.

PICTURE Clause

Symbols that appear twice Nonfloating insertion symbols + and -, floating insertion
symbols Z, *, +, -, and cs, and the symbol P appear
twice. The leftmost column and uppermost row for each
symbol represents its use to the left of the decimal point
position. The second appearance of the symbol in the
table represents its use to the right of the decimal point
position.

 P Symbol
Because the scaling position character P implies an assumed decimal point (to the left
of the Ps, if the Ps are leftmost PICTURE characters; to the right of the Ps, if the Ps
are rightmost PICTURE characters), the assumed decimal point symbol, V, is redun-
dant as either the leftmost or rightmost character within such a PICTURE description.

In certain operations that reference a data item whose PICTURE character-string con-
tains the symbol P, the algebraic value of the data item is used rather than the actual
character representation of the data item. This algebraic value assumes the decimal
point in the prescribed location and zero in place of the digit position specified by the
symbol P. The size of the value is the number of digit positions represented by the
PICTURE character-string. These operations are any of the following:

� Any operation requiring a numeric sending operand.
� A MOVE statement where the sending operand is numeric and its PICTURE

character-string contains the symbol P.
� A MOVE statement where the sending operand is numeric-edited and its PICTURE

character-string contains the symbol P and the receiving operand is numeric or
numeric-edited.

� A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol P are ignored and
are not counted in the size of the operand.

 Currency Symbol
The currency symbol in a character-string is represented by the symbol $, or by a
single character specified in the CUR-
RENCY SIGN clause in the SPECIAL-NAMES paragraph of the Environment Division.

|
|
|
|
|
|
|

| A currency symbol may be repeated within the PICTURE character-string to specify
| floating insertion.
|

184 COBOL Language Reference

Unlike all other PICTURE clause symbols, currency symbols are case-sensitive: for
example, 'D' and 'd' specify different currency symbols.

G N

The symbol G or N can appear alone in the PICTURE character-string.

E

 � DBCS items
� External floating-point items

PICTURE Clause

|
|

| A currency symbol may be used only to define a numeric-edited item with USAGE
| DISPLAY.

| In the following description of the PICTURE clause, cs indicates any valid currency
| symbol.

 Character-String Representation
Symbols That Can Appear More Than Once

The following symbols can appear more than once in one PICTURE character-
string:

A B P X Z 9 ð / , + - \ cs

At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or
cs must be present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately following any of
these symbols specifies the number of consecutive occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

Symbols That Can Appear Only Once
The following symbols can appear only once in one PICTURE character-string:

S V . CR DB

Except for the PICTURE symbol V, each time any of the above symbols appears in
the character-string, it represents an occurrence of that character or set of allow-
able characters in the data item.

Data Categories and PICTURE Rules
The allowable combinations of PICTURE symbols determine the data category of the
item:

 � Alphabetic items
 � Numeric Items
 � Numeric-edited items
 � Alphanumeric items
 � Alphanumeric-edited items

Part 5. Data Division 185

For
numeric date fields, the PICTURE character-string can contain only the symbols 9 and
S.

For numeric
date fields, the number of digit positions must match the number of characters specified
by the DATE FORMAT clause.

 COMPUTATIONAL-3, COMPUTATIONAL-4, or
COMPUTATIONAL-5.

PICTURE Clause

 Alphabetic Items
The PICTURE character-string can contain only the symbol A.

The contents of the item in standard data format must consist of any of the letters of
the English alphabet and the space character.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal containing only alpha-
betic characters, SPACE, or a symbolic-character as the value of a figurative constant.

 Numeric Items
Types of numeric items are:

 � Binary
� Packed decimal (internal decimal)
� Zoned decimal (external decimal)

The PICTURE character-string can contain only the symbols 9, P, S, and V.
|
|

The number of digit positions must range from 1 through 18, inclusive.

If unsigned, the contents of the item in standard data format must contain a combina-
tion of the Arabic numerals 0-9. If signed, it may also contain a +, −, or other represen-
tation of the operational sign.

Examples of Valid Ranges

PICTURE Valid Range of Values

9999 ð through 9999
S99 -99 through +99

 S999V9 -999.9 through +999.9
PPP999 ð through .ððð999
S999PPP -1ððð through -999ððð and

+1ððð through +999ððð or zero

Other Clauses: The USAGE of the item can be DISPLAY, BINARY, COMPUTA-
TIONAL, PACKED-DECIMAL,

A VALUE clause can specify a figurative constant ZERO.

A VALUE clause associated with an elementary numeric item must specify a numeric
literal or the figurative constant ZERO. A VALUE clause associated with a group item
consisting of elementary numeric items must specify a nonnumeric literal or a figura-

186 COBOL Language Reference

The NUMPROC, TRUNC, and BINARY compiler options can affect the use of numeric
data items. For details, see the IBM COBOL Programming Guide for your platform.
(Note, the BINARY compiler option is only applicable to OS/2 and Windows programs.)

PICTURE Clause

tive constant, because the group is considered alphanumeric. In both cases, the literal
is treated exactly as specified; no editing is performed.

 Numeric-edited Items
The PICTURE character-string can contain the following symbols:

B P V Z 9 ð / , . + - CR DB \ cs

The combinations of symbols allowed are determined from the PICTURE clause symbol
order allowed (see Figure 6 on page 183), and the editing rules (see “PICTURE
Clause Editing” on page 190).

The following rules also apply:

� Either the BLANK WHEN ZERO clause must be specified for the item, or the string
must contain at least one of the following symbols:

B / Z ð , . \ + - CR DB cs

� The number of digit positions represented in the character-string must be in the
range 1 through 18, inclusive.

� The total number of character positions in the string (including editing-character
positions) must not exceed 249.

The contents of those character positions representing digits in standard data format
must be one of the 10 Arabic numerals.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant. The literal is treated exactly as specified; no editing is done.

 Alphanumeric Items
The PICTURE character-string must consist of either of the following:

� The symbol X

� Combinations of the symbols A, X, and 9 (A character-string containing all As or all
9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format may be any allowable characters from
the character set of the computer.

Part 5. Data Division 187

 DBCS Items
The PICTURE character-string can contain the symbol(s) G, G and B, or N. Each G, B
or N represents a single DBCS character position.

The entire range of characters for a DBCS literal can be used.

 Under AIX, OS/2, and Windows, do not include a single byte character of
a DBCS code page in a DBCS data item. (The locale you select must indicate a DBCS
code page. For information on locale, see Appendix F, “Locale Considerations (Work-
station Only)” on page 568.)

For a code page with characters represented in double bytes, the following padding and
truncation rules apply:

� Padding—For DBCS data items, padding is done using the double byte space
characters until the data area is filled (based on the number of byte positions allo-
cated for the data item).

Single-byte characters are used for padding when the padding needed is not a
multiple of the code page width (for example, a group item moved to a DBCS data
item).

� Truncation—For DBCS data items, truncation is done based on the size of the
target data area on the byte boundary of the end of the data area. You must
ensure that a truncation does not result in truncation of bytes representing a partial
DBCS character.

PICTURE Clause

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant.

 Alphanumeric-edited Items
The PICTURE character-string can contain the following symbols:

A X 9 B ð /

The string must contain at least one A or X, and at least one B or 0 (zero) or /.

The contents of the item in standard data format must be two or more characters from
the character set of the computer.

Other Clauses: USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify a nonnumeric literal or a figurative con-
stant. The literal is treated exactly as specified; no editing is done.

188 COBOL Language Reference

Other Clauses: When PICTURE clause symbol G is used, USAGE DISPLAY-1 must
be specified.

When PICTURE clause symbol N is used, USAGE DISPLAY-1 is assumed and does
not need to be specified.

Any associated VALUE clause must specify a DBCS literal or the figurative constant
SPACE/SPACES.

External Floating-point Items
 Format
55─ ──┬ ┬───── ─mantissa E─ ──┬ ┬────────── ─exponent──5%

├ ┤─ + ─ ├ ┤─ req .+ ─
└ ┘─ – ─ └ ┘─ – ──────

+ or −
A sign character must immediately precede both the mantissa and the exponent.

A + sign indicates that a positive sign will be used in the output to represent posi-
tive values and that a negative sign will represent negative values.

A − sign indicates that a blank will be used in the output to represent positive
values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

mantissa
The mantissa can contain the symbols:

9 . V

An actual decimal point can be represented with a period (.) while an assumed
decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the mantissa; the
decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.

E Indicates the exponent.

exponent
The exponent must consist of the symbol 99.

Other Clauses: The OCCURS, REDEFINES, RENAMES, and USAGE clauses may
be associated with external floating-point items.

The SIGN clause is accepted as documentation and has no effect on the representation
of the sign.

The SYNCHRONIZED clause is treated as documentation.

The following clauses are invalid with external floating-point items:

PICTURE Clause

Part 5. Data Division 189

� BLANK WHEN ZERO
 � JUSTIFIED
 � VALUE

DBCS Simple insertion B

External floating-point Special insertion .

 DBCS items.

For edited DBCS
items, each insertion symbol (B) is counted in the size of the item and represents the
position within the item where the DBCS space is to be inserted.

PICTURE Clause

PICTURE Clause Editing
There are two general methods of editing in a PICTURE clause:

 � Insertion editing

 – Simple insertion
 – Special insertion
 – Fixed insertion
 – Floating insertion

� Suppression and replacement editing

– Zero suppression and replacement with asterisks
– Zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category . The type of
editing that is valid for each category is shown in Table 13.

Table 13. Data Categories

Data Category Type of Editing Insertion Symbol

Alphabetic None None

Numeric None None

Numeric-edited Simple insertion

Special insertion

Fixed insertion

Floating insertion

Zero suppression

Replacement

B 0 / ,

.

cs + − CR DB

cs + −

Z *

Z * + − cs

Alphanumeric None None

Alphanumeric-edited Simple insertion B 0 /

Simple Insertion Editing
This type of editing is valid for alphanumeric-edited, numeric-edited, and

Each insertion symbol is counted in the size of the item, and represents the position
within the item where the equivalent character is to be inserted.

190 COBOL Language Reference

 GGBBGG D1D2D3D4 D1D2␣␣␣␣D3D4

 either or external floating-point
items.

 +999.99E+99 12345 +123.45E+ð2

PICTURE Clause

For example:

PICTURE Value of Data Edited Result

X(1ð)/XX ALPHANUMERð1 ALPHANUMER/ð1
 X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
 99,B999,Bððð 1234 ð1,␣234,␣ððð
 99,999 12345 12,345

Special Insertion Editing
This type of editing is valid for numeric-edited items

The period (.) is the special insertion symbol; it also represents the actual decimal point
for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the posi-
tion within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but not
both, must be specified in one PICTURE character-string.

For example:

PICTURE Value of Data Edited Results

 999.99 1.234 ðð1.23
 999.99 12.34 ð12.34

999.99 123.45 123.45
 999.99 1234.5 234.5ð

Fixed Insertion Editing
This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:

 cs

+ − CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing sign control symbol
can be specified in one PICTURE character-string.

Unless it is preceded by a + or − symbol, the currency symbol must be the first char-
acter in the character-string.

When either + or − is used as a symbol, it must be the first or last character in the
character-string.

Part 5. Data Division 191

PICTURE Clause

When CR or DB is used as a symbol, it must occupy the rightmost two character posi-
tions in the character-string. If these two character positions contain the symbols CR or
DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data item,
as shown below:

 Editing Symbol Result: Result:
 in PICTURE Data Item Data Item

Character-String Positive or Zero Negative

+ + -
 - space -
 CR 2 spaces CR
 DB 2 spaces DB

For example:

PICTURE Value of Data Edited Result

999.99+ +6555.556 555.55+
 +9999.99 -6555.555 -6555.55
 9999.99 +1234.56 1234.56
 $999.99 -123.45 $123.45
 -$999.99 -123.456 -$123.45
 -$999.99 +123.456 $123.45
 $9999.99CR +123.45 $ð123.45
 $9999.99DB -123.45 $ð123.45DB

Floating Insertion Editing
This type of editing is valid only for numeric-edited items.

The following symbols are used:

cs + −

Within one PICTURE character-string, these symbols are mutually exclusive as floating
insertion characters.

Floating insertion editing is specified by using a string of at least two of the allowable
floating insertion symbols to represent leftmost character positions into which these
actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the leftmost
limit at which this actual character can appear in the data item. The rightmost floating
insertion symbol represents the rightmost limit at which this actual character can
appear.

The second leftmost floating insertion symbol in the character-string represents the left-
most limit at which numeric data can appear within the data item. Nonzero numeric
data may replace all characters at or to the right of this limit.

192 COBOL Language Reference

PICTURE Clause

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the string of
floating insertion symbols are considered part of the floating character-string. If the
period (.) special-insertion symbol is included within the floating string, it is considered
to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:

� The number of character positions in the sending item, plus
� The number of nonfloating insertion symbols in the receiving item, plus
� One character for the floating insertion symbol.

Representing Floating Insertion Editing
In a PICTURE character-string, there are two ways to represent floating insertion
editing and, thus, two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point are
represented by the floating insertion symbol. When editing is performed, a single
floating insertion character is placed to the immediate left of the first nonzero digit
in the data, or of the decimal point, whichever is farther to the left. The character
positions to the left of the inserted character are filled with spaces.

If all numeric character positions in the PICTURE character-string are represented
by the insertion character, then at least one of the insertion characters must be to
the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion symbol.
When editing is performed, then:

� If the value of the data is zero, the entire data item will contain spaces.
� If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of Data Edited Result

 $$$$.99 .123 $.12
 $$$9.99 .12 $ð.12
 $,$$$,999.99 -1234.56 $1,234.56
 +,+++,999.99 -123456.789 -123,456.78
 $$,$$$,$$$.99CR -1234567 $1,234,567.ððCR
 ++,+++,+++.+++ ðððð.ðð

Zero Suppression and Replacement Editing
This type of editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are mutu-
ally exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in one
PICTURE character-string:

Z * + − cs

Part 5. Data Division 193

PICTURE Clause

Specify zero suppression and replacement editing with a string of one or more of the
allowable symbols to represent leftmost character positions in which zero suppression
and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the string of
floating editing symbols are considered part of the string. If the period (.) special
insertion symbol is included within the floating editing string, it is considered to be part
of the character-string.

Representing Zero Suppression
In a PICTURE character-string, there are two ways to represent zero suppression, and
two ways in which editing is performed:

1. Any or all of the leading numeric character positions to the left of the decimal point
are represented by suppression symbols. When editing is performed, the replace-
ment character replaces any leading zero in the data that appears in the same
character position as a suppression symbol. Suppression stops at the leftmost
character:

� That does not correspond to a suppression symbol
� That contains nonzero data
� That is the decimal point.

2. All the numeric character positions in the PICTURE character-string are repres-
ented by the suppression symbols. When editing is performed, and the value of
the data is nonzero, the result is the same as in the preceding rule. If the value of
the data is zero, then:

� If Z has been specified, the entire data item will contain spaces.

� If * has been specified, the entire data item, except the actual decimal point,
will contain asterisks.

For example:

PICTURE Value of Data Edited Result

\\\\.\\ ðððð.ðð \\\\.\\
 ZZZZ.ZZ ðððð.ðð
 ZZZZ.99 ðððð.ðð .ðð

\\\\.99 ðððð.ðð \\\\.ðð
 ZZ99.99 ðððð.ðð ðð.ðð
 Z,ZZZ.ZZ+ +123.456 123.45+

\,\\\.\\+ -123.45 \\123.45-
 \\,\\\,\\\.\\+ +12345678.9 12,345,678.9ð+
 $Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67
 $B\,\\\,\\\.\\BBDB -12345.67 $ \\\12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK WHEN
ZERO clause for the same entry.

194 COBOL Language Reference

The data description entry for data-name-2, the redefined item, can contain a REDE-
FINES clause.

REDEFINES Clause

 REDEFINES Clause
The REDEFINES clause allows you to use different data description entries to describe
the same computer storage area.

 Format
55──level-number─ ──┬ ┬───────────── ─REDEFINES──data-name-2──────────────────────5%
 ├ ┤─data-name-1─
 └ ┘─FILLER──────

Note: Level-number, data-name-1, and FILLER are not part of the REDEFINES clause
itself, and are included in the format only for clarity.

When specified, the REDEFINES clause must be the first entry following data-name-1
or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES clause must be
the first entry following the level-number.

The level-numbers of data-name-1 and data-name-2 must be identical, and must not be
level 66 or level 88.

data-name-1, FILLER
Identifies an alternate description for the same area, and is the redefining item or
the REDEFINES subject .

data-name-2
Is the redefined item or the REDEFINES object .

When more that one level-01 entry is written subordinate to an FD entry, a condition
known as implicit redefinition occurs. That is, the second level-01 entry implicitly rede-
fines the storage allotted for the first entry. In such level-01 entries, the REDEFINES
clause must not be specified.

Redefinition begins at data-name-1 and ends when a level-number less than or equal to
that of data-name-1 is encountered. No entry having a level-number numerically lower
than those of data-name-1 and data-name-2 can occur between these entries. For
example:

ð5 A PICTURE X(6).
ð5 B REDEFINES A.
 1ð B-1 PICTURE X(2).
 1ð B-2 PICTURE 9(4).
ð5 C PICTURE 99V99.

In this example, A is the redefined item, and B is the redefining item. Redefinition
begins with B and includes the two subordinate items B-1 and B-2. Redefinition ends
when the level-05 item C is encountered.

Part 5. Data Division 195

When the data item implicitly redefines multiple 01-level records in a file description
(FD) entry, items subordinate to the redefining or redefined item can contain an
OCCURS DEPENDING ON clause.

An item described as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE can be the subject or object of a REDEFINES
clause.

An external or internal floating-point item can be the subject or object of a REDEFINES
clause.

REDEFINES Clause

The data description entry for the redefined item cannot contain an OCCURS clause.
However, the redefined item can be subordinate to an item whose data description
entry contains an OCCURS clause. In this case, the reference to the redefined item in
the REDEFINES clause must not be subscripted. Neither the redefined item nor the
redefining item, or any items subordinate to them, can contain an OCCURS
DEPENDING ON clause.

If the GLOBAL clause is used in the data description entry which contains the REDE-
FINES clause, it is only the subject of that REDEFINES clause that possesses the
global attribute.

The EXTERNAL clause must not be specified on the same data description entry as a
REDEFINES clause.

If the data item referenced by data-name-2 is either declared to be an external data
record or is specified with a level-number other than 01, the number of character posi-
tions it contains must be greater than or equal to the number of character positions in
the data item referenced by the subject of this entry. If the data-name referenced by
data-name-2 is specified with a level-number of 01 and is not declared to be an
external data record, there is no such constraint.

One or more redefinitions of the same storage area are permitted. The entries giving
the new descriptions of the storage area must immediately follow the description of the
redefined area without intervening entries that define new character positions. Multiple
redefinitions must all use the data-name of the original entry that defined this storage
area. For example:

ð5 A PICTURE 9999.
ð5 B REDEFINES A PICTURE 9V999.
ð5 C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1), and any subordinate entries, must not
contain any VALUE clauses.

REDEFINES Clause Considerations
Data items within an area can be redefined without changing their lengths. For
example:

196 COBOL Language Reference

REDEFINES Clause

ð5 NAME-2.
 1ð SALARY PICTURE XXX.
 1ð SO-SEC-NO PICTURE X(9).
 1ð MONTH PICTURE XX.
ð5 NAME-1 REDEFINES NAME-2.
 1ð WAGE PICTURE XXX.
 1ð EMP-NO PICTURE X(9).
 1ð YEAR PICTURE XX.

Data item lengths and types can also be re-specified within an area. For example:

ð5 NAME-2.
 1ð SALARY PICTURE XXX.
 1ð SO-SEC-NO PICTURE X(9).
 1ð MONTH PICTURE XX.
ð5 NAME-1 REDEFINES NAME-2.
 1ð WAGE PICTURE 999V999.
 1ð EMP-NO PICTURE X(6).
 1ð YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not cause any data to be erased and never supersedes a previous
description. Thus, if B REDEFINES C has been specified, either of the two procedural
statements, MOVE X TO B and MOVE Y TO C, could be executed at any point in the
program.

In the first case, the area described as B would assume the value and format of X. In
the second case, the same physical area (described now as C) would assume the
value and format of Y. Note that, if the second statement is executed immediately after
the first, the value of Y replaces the value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined item.
This does not, however, cause any change in existing data. For example:

ð5 B PICTURE 99 USAGE DISPLAY VALUE 8.
ð5 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
ð5 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary value
-3848.

The above example demonstrates how the improper use of redefinition can give unex-
pected or incorrect results.

Part 5. Data Division 197

RENAMES Clause

REDEFINES Clause Examples
The REDEFINES clause can be specified for an item within the scope of an area being
redefined (that is, an item subordinate to a redefined item). For example:

ð5 REGULAR-EMPLOYEE.
 1ð LOCATION PICTURE A(8).
 1ð GRADE PICTURE X(4).
 1ð SEMI-MONTHLY-PAY PICTURE 9999V99.
 1ð WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
 PICTURE 999V999.

ð5 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 1ð LOCATION PICTURE A(8).
 1ð FILLER PICTURE X(6).
 1ð HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a redefining
item. For example:

ð5 REGULAR-EMPLOYEE.
 1ð LOCATION PICTURE A(8).
 1ð GRADE PICTURE X(4).
 1ð SEMI-MONTHLY-PAY PICTURE 999V999.

ð5 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
 1ð LOCATION PICTURE A(8).
 1ð FILLER PICTURE X(6).
 1ð HOURLY-PAY PICTURE 99V99.
 1ð CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

 Undefined Results
Undefined results can occur when:

� A redefining item is moved to a redefined item (that is, if B REDEFINES C and the
statement MOVE B TO C is executed).

� A redefined item is moved to a redefining item (that is, if B REDEFINES C and if the
statement MOVE C TO B is executed).

 RENAMES Clause
The RENAMES clause specifies alternative, possibly overlapping, groupings of elemen-
tary data items.

 Format
55──66──data-name-1──RENAMES──data-name-2─ ──┬ ┬────────────────────────── ───────5%
 └ ┘ ──┬ ┬─THROUGH─ ─data-name-3─
 └ ┘─THRU────

198 COBOL Language Reference

Can specify a DBCS data item if data-name-2 specifies a DBCS data item and the
THROUGH phrase is not specified.

RENAMES Clause

The special level-number 66 must be specified for data description entries that contain
the RENAMES clause. Level-number 66 and data-name-1 are not part of the
RENAMES clause itself, and are included in the format only for clarity.

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow that record's last
data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66
entry.

Data-name-1 cannot be used as a qualifier; it can be qualified only by the names
of level indicator entries or level-01 entries.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must name ele-
mentary or group items within the associated level-01 entry, and must not be the
same data-name. Both data-names can be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2 and
data-name-3, or for any group entry to which they are subordinate. In addition, the
OCCURS DEPENDING ON clause must not be specified for any item defined
between data-name-2 and data-name-3.

When data-name-3 is specified, data-name-1 is treated as a group item that
includes all elementary items:

� Starting with data-name-2 (if it is an elementary item) or the first elementary
item within data-name-2 (if it is a group item).

� Ending with data-name-3 (if it is an elementary item) or the last elementary
item within data-name-3 (if it is a group item).

The key words THROUGH and THRU are equivalent.

The leftmost character in data-name-3 must not precede the leftmost character in
data-name-2; the rightmost character in data-name-3 must not precede the right-
most character in data-name-2. This means that data-name-3 cannot be totally
subordinate to data-name-2.

When data-name-3 is not specified, all of the data attributes of data-name-2
become the data attributes for data-name-1. That is:

� When data-name-2 is a group item, data-name-1 is treated as a group item.

� When data-name-2 is an elementary item, data-name-1 is treated as an ele-
mentary item.

Figure 7 illustrates valid and invalid RENAMES clause specifications.

Part 5. Data Division 199

SIGN Clause

 COBOL Specifications Storage Layouts

Example 1 (Valid)
ð1 RECORD─I.

ð5 DN─1... . │%───────────────RECORD─I───────────────5│
ð5 DN─2... . ┌──────┬──────────┬───────────┬──────────┐
ð5 DN─3... . │ DN─1 │ DN─2 │ DN─3 │ DN─4 │
ð5 DN─4... . └──────┴──────────┴───────────┴──────────┘

66 DN─6 RENAMES DN─1 THROUGH DN─3. │%───────────DN─6────────────5│

Example 2 (Valid)
ð1 RECORD─II. │%───────────────RECORD─II──────────────5│
 ð5 DN─1. │%───────────DN─1─────────────5│ │

1ð DN─2... . ┌──────────┬───────────────────┬─────────┐
1ð DN─2A... . │ DN─2 │ DN─2A │ DN─5 │

ð5 DN─1A REDEFINES DN─1. └──────────┴───────────────────┴─────────┘
1ð DN─3A... . │%───────────DN─1A────────────5│
1ð DN─3... . ┌───────┬────────┬─────────────┐
1ð DN─3B... . │ DN─3A │ DN─3 │ DN─3B │

ð5 DN─5... . └───────┴────────┴─────────────┘
66 DN─6 RENAMES DN─2 THROUGH DN─3. │%─────DN─6─────5│

Example 3 (Invalid)
ð1 RECORD─III. │%──────────────RECORD─III──────────────5│
 ð5 DN─2. │%────────DN─2─────────5│ │

1ð DN─3... . ┌──────────┬────────────┬────────────────┐
1ð DN─4... . │ DN─3 │ DN─4 │ DN─5 │

ð5 DN─5... . └──────────┴────────────┴────────────────┘
66 DN─6 RENAMES DN─2 THROUGH DN─3. DN─6 is indeterminate

Example 4 (Invalid)
ð1 RECORD─IV. │%──────────────RECORD─IV───────────────5│
 ð5 DN─1. │%─────────DN─1───────────5│ │

1ð DN─2A... . ┌──────────┬───────────────┬─────────────┐
1ð DN─2B... . │ DN─2A │ DN─2B │ DN─3 │
1ð DN─2C REDEFINES DN─2B. └──────────┴───────────────┴─────────────┘

15 DN─2... . ┌───────┬───────┐
15 DN─2D... . │ DN─2 │ DN─2D │

ð5 DN─3... . └───────┴───────┘
66 DN─4 RENAMES DN─1 THROUGH DN─2. DN─4 is indeterminate

Figure 7. RENAMES Clause—Valid and Invalid Specifications

 SIGN Clause
The SIGN clause specifies the position and mode of representation of the operational
sign for a numeric entry.

 Format
55─ ──┬ ┬────────────── ──┬ ┬─LEADING── ──┬ ┬───────────────────────── ───────────────5%
 └ ┘ ─SIGN─ ──┬ ┬──── └ ┘─TRAILING─ └ ┘ ─SEPARATE─ ──┬ ┬───────────
 └ ┘─IS─ └ ┘─CHARACTER─

200 COBOL Language Reference

The SEPARATE CHARACTER phrase cannot be specified for a date field.

The SIGN clause is treated as documentation for external floating-point items. For
internal floating-point items, the SIGN clause must not be specified.

SIGN Clause

The SIGN clause can be specified only for a signed numeric data description entry (that
is, one whose PICTURE character-string contains an S), or for a group item that con-
tains at least one such elementary entry. USAGE IS DISPLAY must be specified,
explicitly or implicitly.

If a SIGN clause is specified in either an elementary or group entry subordinate to a
group item for which a SIGN clause is specified, the SIGN clause for the subordinate
entry takes precedence for the subordinate entry.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described with the
SIGN IS SEPARATE clause.

The SIGN clause is required only when an explicit description of the properties and/or
position of the operational sign is necessary.

When specified, the SIGN clause defines the position and mode of representation of
the operational sign for the numeric data description entry to which it applies, or for
each signed numeric data description entry subordinate to the group to which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:

� The operational sign is presumed to be associated with the LEADING or TRAILING
digit position, whichever is specified, of the elementary numeric data item. (In this
instance, specification of SIGN IS TRAILING is the equivalent of the standard
action of the compiler.)

� The character S in the PICTURE character string is not counted in determining the
size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

� The operational sign is presumed to be the LEADING or TRAILING character posi-
tion, whichever is specified, of the elementary numeric data item. This character
position is not a digit position.

� The character S in the PICTURE character string is counted in determining the size
of the data item (in terms of standard data format characters).

� + is the character used for the positive operational sign.

� - is the character used for the negative operational sign.

|

Every numeric data description entry whose PICTURE contains the symbol S is a
signed numeric data description entry. If the SIGN clause is also specified for such an
entry, and conversion is necessary for computations or comparisons, the conversion
takes place automatically.

Part 5. Data Division 201

 or at the group level
(in which case, every elementary item within this group level item is synchronized).

SYNCHRONIZED Clause

 SYNCHRONIZED Clause
The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

 Format
55─ ──┬ ┬─SYNCHRONIZED─ ──┬ ┬─────── ───5%
 └ ┘─SYNC───────── ├ ┤─LEFT──
 └ ┘─RIGHT─

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning.

The SYNCHRONIZED clause is never required, but can improve performance on some
systems for binary items used in arithmetic.

The SYNCHRONIZED clause can appear at the elementary level

LEFT
Specifies that the elementary item is to be positioned so that it will begin at the left
character position of the natural boundary in which the elementary item is placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will terminate on
the right character position of the natural boundary in which it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked, but they have
no effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

Table 14 lists the effect of the SYNCHRONIZE clause on other language elements.

Table 14 (Page 1 of 2). SYNCHRONIZE Clause Effect on Other Language Elements

Language Element Comments

OCCURS clause When specified for an item within the scope of an OCCURS
clause, each occurrence of the item is synchronized.

DISPLAY or
PACKED-DECIMAL

Each item is syntax checked, but it has no effect on the execution
of the program.

202 COBOL Language Reference

 or its USAGE is INDEX.

USAGE IS POINTER,
USAGE IS
PROCEDURE-POINTER,
or USAGE IS OBJECT
REFERENCE

The data is aligned on a fullword boundary.

COMPUTATIONAL-1 The data is aligned on a fullword boundary.

COMPUTATIONAL-2 The data is aligned on a doubleword boundary.

COMPUTATIONAL-3 The data is treated the same as the SYNCHRONIZED clause for a
PACKED-DECIMAL item.

COMPUTATIONAL-4 The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

COMPUTATIONAL-5
(Workstation Only)

The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL item.

DBCS and Floating Point
Item

The SYNCHRONIZED clause is ignored.

SYNCHRONIZED Clause

In the File Section, the compiler assumes that all level-01 records containing SYN-
CHRONIZED items are aligned on doubleword boundaries in the buffer. You must
provide the necessary slack bytes between records to ensure alignment when there are
multiple records in a block.

In the Working-Storage Section, the compiler aligns all level-01 entries on a doubleword
boundary.

Table 14 (Page 2 of 2). SYNCHRONIZE Clause Effect on Other Language Elements

Language Element Comments

BINARY or COMPUTA-
TIONAL

When the item is the first elementary item subordinate to an item
that contains a REDEFINES clause, the item must not require the
addition of unused character positions.

When the synchronized clause is not specified for a subordinate
data item (one with a level number of 02 through 49):

� The item is aligned at a displacement that is a multiple of 2
relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9 through S9(4).

� The item is aligned at a displacement that is a multiple of 4
relative to the beginning of the record, if its USAGE is
BINARY and its PICTURE is in the range of S9(5) through
S9(18),

When SYNCHRONIZED is not specified for binary items, no space
is reserved for slack bytes.

REDEFINES clause For an item that contains a REDEFINES clause, the data item that
is redefined must have the proper boundary alignment for the data
item that redefines it. For example, if you write the following, be
sure that data item A begins on a fullword boundary:

ð2 A PICTURE X(4).
ð2 B REDEFINES A PICTURE S9(9) BINARY SYNC.

Part 5. Data Division 203

 USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, USAGE IS OBJECT REFER-
ENCE, and COMPUTATIONAL-1 data items

 for COMPUTATIONAL-2 data items.

SYNCHRONIZED Clause

For the purposes of aligning binary items in the Linkage Section, all level-01 items are
assumed to begin on doubleword boundaries. Therefore, if you issue a CALL state-
ment, such operands of any USING phrase within it must be aligned correspondingly.

 Slack Bytes
There are two types of slack bytes:

Slack bytes within records
Unused character positions preceding each synchronized item in the record.

Slack bytes between records
Unused character positions added between blocked logical records.

Slack Bytes within Records
For any data description that has binary items that are not on their natural boundaries,
the compiler inserts slack bytes within a record to ensure that all SYNCHRONIZED
items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need to
determine whether slack bytes are required and, if necessary, how many the compiler
will add. The algorithm the compiler uses to calculate this is as follows:

� The total number of bytes occupied by all elementary data items preceding the
binary item are added together, including any slack bytes previously added.

� This sum is divided by m, where:

m = 2 for binary items of 4-digit length or less

m = 4 for binary items of 5-digit length or more: USAGE IS INDEX,

m = 8

� If the remainder (r) of this division is equal to zero, no slack bytes are required. If
the remainder is not equal to zero, the number of slack bytes that must be added
is equal to m - r.

These slack bytes are added to each record immediately following the elementary data
item preceding the binary item. They are defined as if they constituted an item with a
level number equal to that of the elementary item that immediately precedes the SYN-
CHRONIZED binary item, and are included in the size of the group that contains them.

204 COBOL Language Reference

SYNCHRONIZED Clause

For example:

ð1 FIELD-A.
 ð5 FIELD-B PICTURE X(5).
 ð5 FIELD-C.
 1ð FIELD-D PICTURE XX.

[1ð SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
1ð FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.

ð1 FIELD-L.
 ð5 FIELD-M PICTURE X(5).
 ð5 FIELD-N PICTURE XX.
 [ð5 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
 ð5 FIELD-O.

1ð FIELD-P COMPUTATIONAL PICTURE S9(6) SYNC.

Slack bytes can also be added by the compiler when a group item is defined with an
OCCURS clause and contains within it a SYNCHRONIZED binary data item. To deter-
mine whether slack bytes are to be added, the following action is taken:

� The compiler calculates the size of the group, including all the necessary slack
bytes within a record.

� This sum is divided by the largest m required by any elementary item within the
group.

� If r is equal to zero, no slack bytes are required. If r is not equal to zero, m - r
slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item containing
the OCCURS clause. For example, a record defined as follows will appear in storage,
as shown, in Figure 8:

ð1 WORK-RECORD.
 ð5 WORK-CODE PICTURE X.
 ð5 COMP-TABLE OCCURS 1ð TIMES.
 1ð COMP-TYPE PICTURE X.

[1ð SLACK-BYTES PIC XX. INSERTED BY COMPILER]
1ð COMP-PAY PICTURE S9(4)V99 COMP SYNC.
1ð COMP-HRS PICTURE S9(3) COMP SYNC.

 1ð COMP-NAME PICTURE X(5).

Part 5. Data Division 205

SYNCHRONIZED Clause

COMP-
HOURS

W
O

R
K

-C
O

D
E

C
O

M
P

-T
Y

P
E

FFFF

First Occurrence of COMP-TABLE Second Occurrence of COMP-TABLE

D = doubleword boundary
F = fullword boundary
H = halfword boundary

COMP-PAY COMP-NAME

D D D D

H H H H H H H H

D

Slack
Bytes

Slack
Bytes

Figure 8. Insertion of Slack Bytes within a Record

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, the compiler has
added two slack bytes within the record.

In the example previous, without further adjustment, the second occurrence of
COMP-TABLE would begin one byte before a doubleword boundary, and the alignment of
COMP-PAY and COMP-HRS would not be valid for any occurrence of the table after the first.
Therefore, the compiler must add slack bytes at the end of the group, as though the
record had been written as follows:

ð1 WORK-RECORD.
 ð5 WORK-CODE PICTURE X.
 ð5 COMP-TABLE OCCURS 1ð TIMES.
 1ð COMP-TYPE PICTURE X.

[1ð SLACK-BYTES PIC XX. INSERTED BY COMPILER]
1ð COMP-PAY PICTURE S9(4)V99 COMP SYNC.

 1ð COMP-HRS PICTURE S9(3) COMP SYNC.
 1ð COMP-NAME PICTURE X(5).

[1ð SLACK-BYTES PIC XX. INSERTED BY COMPILER]

In this example, the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first occurrence of
COMP-TABLE will now appear as shown in Figure 9.

206 COBOL Language Reference

SYNCHRONIZED Clause

D D

F

First Occurrence of COMP-TABLE

D = doubleword boundary
F = fullword boundary
H = halfword boundary

COMP-
HOURS

D D

COMP-PAY COMP-NAME

H H H H H

FF

H

Slack
BytesW

O
R

K
-C

O
D

E

C
O

M
P

-T
Y

P
E

Figure 9. Insertion of Slack Bytes between Records

Each succeeding occurrence within the table will now begin at the same relative posi-
tion as the first.

Slack Bytes between Records
 Under MVS and VM, if the file contains blocked logical records that are to

be processed in a buffer, and any of the records contain binary entries for which the
SYNCHRONIZED clause is specified, you can improve performance by adding any
needed slack bytes between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes, are
added. (For variable-length records under MVS and VM, it is necessary to add an
additional 4 bytes for the count field.) The total is then divided by the highest value of
m for any one of the elementary items in the record.

If r (the remainder) is equal to zero, no slack bytes are required. If r is not equal to
zero, m - r slack bytes are required. These slack bytes can be specified by writing a
level-02 FILLER at the end of the record.

To show the method of calculating slack bytes both within and between records, con-
sider the following record description:

ð1 COMP-RECORD.
 ð5 A-1 PICTURE X(5).
 ð5 A-2 PICTURE X(3).
 ð5 A-3 PICTURE X(3).
 ð5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 ð5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ð5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

Part 5. Data Division 207

SYNCHRONIZED Clause

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a 4-digit COMPUTATIONAL
item and 1 slack byte must therefore be added before B-1. With this byte added, the
number of bytes preceding B-2 totals 14. Because B-2 is a COMPUTATIONAL item of
5 digits in length, two slack bytes must be added before it. No slack bytes are needed
before B-3.

The revised record description entry now appears as:

ð1 COMP-RECORD.
 ð5 A-1 PICTURE X(5).
 ð5 A-2 PICTURE X(3).
 ð5 A-3 PICTURE X(3).
 [ð5 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 ð5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [ð5 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 ð5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ð5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but, from the rules given in the preceding
discussion, it appears that m = 4 and r = 2. Therefore, to attain proper alignment for
blocked records, you must add 2 slack bytes at the end of the record.

The final record description entry appears as:

ð1 COMP-RECORD.
 ð5 A-1 PICTURE X(5).
 ð5 A-2 PICTURE X(3).
 ð5 A-3 PICTURE X(3).
 [ð5 SLACK-BYTE-1 PICTURE X. INSERTED BY COMPILER]
 ð5 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 [ð5 SLACK-BYTE-2 PICTURE XX. INSERTED BY COMPILER]
 ð5 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
 ð5 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
 ð5 FILLER PICTURE XX. [SLACK BYTES YOU ADD]

208 COBOL Language Reference

NATIVE

COMP-1
NATIVE

COMP-2
NATIVE

COMP-3
COMP-4

NATIVE
COMP-5

COMPUTATIONAL-1
NATIVE

COMPUTATIONAL-2
NATIVE

COMPUTATIONAL-3
COMPUTATIONAL-4

NATIVE
COMPUTATIONAL-5

NATIVE
DISPLAY-1

NATIVE
INDEX
objref phrase

POINTER
PROCEDURE-POINTER

objref phrase
OBJECT REFERENCE

class-name-1
METACLASS

OF

COMP-5 and COMPUTATIONAL-5 are only supported on AIX, OS/2, and
Windows.

The NATIVE phrase is treated as a comment for COMP-3,
COMPUTATIONAL-3, COMP-5, COMPUTATIONAL-5, and
PACKED-DECIMAL data items. NATIVE has no effect on MVS and VM.

USAGE Clause

 USAGE Clause
The USAGE clause specifies the format of a data item in computer storage.

 Format 1
55─ ──┬ ┬─────────────── ──┬ ┬─BINARY─ ──┬ ┬──────── ───────── ────────────────────────5%
 └ ┘ ─USAGE─ ──┬ ┬──── │ │└ ┘─ ─
 └ ┘─IS─ ├ ┤─COMP────────────────────────
 ├ ┤ ─ ─ ──┬ ┬──────── ─────────
 │ │└ ┘─ ─
 ├ ┤ ─ ─ ──┬ ┬──────── ─────────
 │ │└ ┘─ ─
 ├ ┤─ ──────────────────────
 ├ ┤ ─ ─ ──┬ ┬──────── ─────────
 │ │└ ┘─ ─
 ├ ┤─ ───(1)───────────────────
 ├ ┤─COMPUTATIONAL───────────────
 ├ ┤ ─ ─ ──┬ ┬────────
 │ │└ ┘─ ─
 ├ ┤ ─ ─ ──┬ ┬────────
 │ │└ ┘─ ─
 ├ ┤─ ─────────────
 ├ ┤ ─ ─ ──┬ ┬────────
 │ │└ ┘─ ─
 ├ ┤─ ───(1)──────────
 ├ ┤ ─DISPLAY─ ──┬ ┬──────── ────────
 │ │└ ┘─ ─
 ├ ┤ ─ ─ ──┬ ┬──────── ──────
 │ │└ ┘─ ─
 ├ ┤─ ───────────────────────

├ ┤─┤ ├───────────
 ├ ┤─PACKED-DECIMAL──────────────
 ├ ┤─ ─────────────────────
 └ ┘─ ───────────

:
├─ ─ ─ ──┬ ┬───────────────────────────────────── ───────────────────┤
 └ ┘ ──┬ ┬─────────────────── ─ ─
 └ ┘ ─ ─ ──┬ ┬────
 └ ┘─ ─

Note:
1

The USAGE clause can be specified for a data description entry with a level-number
other than 66 or 88. However, if it is specified at the group level, it applies to each
elementary item in the group. The usage of an elementary item must not contradict the
usage of a group to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in storage. The
format can be restricted if certain Procedure Division statements are used.

Part 5. Data Division 209

For data items defined with the DATE FORMAT clause, only usage DISPLAY and
COMP-3 (or its equivalents, COMPUTATIONAL-3 and PACKED-DECIMAL) are
allowed. For details, see “Combining the DATE FORMAT Clause with Other Clauses”
on page 167.

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point) cannot
have PICTURE strings.

Note: BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be
affected by the BINARY and TRUNC compiler option specifications. For informa-
tion on the effect of these compiler options, see the IBM COBOL Programming
Guide for your platform. (The BINARY compiler option is only applicable to OS/2
and Windows programs.)

USAGE Clause

When the USAGE clause is not specified at either the group or elementary level, it is
assumed that the usage is DISPLAY.

 Computational Items
A computational item is a value used in arithmetic operations. It must be numeric. If
the USAGE of a group item is described with any of these items, the elementary items
within the group have this usage.

The maximum length of a computational item is 18 decimal digits.

The PICTURE of a computational item can contain only:

9 One or more numeric character positions
S One operational sign
V One implied decimal point
P One or more decimal scaling positions

BINARY
Specified for binary data items. Such items have a decimal equivalent consisting
of the decimal digits 0 through 9, plus a sign. Negative numbers are represented
as the two's complement of the positive number with the same absolute value.

The amount of storage occupied by a binary item depends on the number of
decimal digits defined in its PICTURE clause:

The operational sign for “big-endian” binary data (such as MVS and VM) is con-
tained in the left most bit of the binary data. The operational sign for “little-endian”
binary data is contained in the left most bit of the right most byte of the binary data.

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in packed
decimal format. There are 2 digits for each character position, except for the

Digits in PICTURE Clause Storage Occupied

1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

210 COBOL Language Reference

COMPUTATIONAL-1 or COMP-1 (Floating-Point)
Specified for internal floating-point items (single precision). COMP-1 items are 4
bytes long.

 COMP-1 data items are affected by the FLOAT(NATIVE|HEX) com-
piler option. For details, see the IBM COBOL Programming Guide for your plat-
form

COMPUTATIONAL-2 or COMP-2 (Long Floating-Point)
Specified for internal floating-point items (double precision). COMP-2 items are 8
bytes long.

 COMP-2 data items are affected by the FLOAT(NATIVE|HEX) com-
piler option. For details, see the IBM COBOL Programming Guide for your plat-
form

COMPUTATIONAL-3 or COMP-3 (Internal Decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (Binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (Native Binary)
 Under AIX, OS/2, and Windows, this represents native binary data.

In a COMP-5 binary data item, the total precision of the literal (integer and decimal
positions) can be up to the maximum value that can be accommodated in the
number of bytes allocated for the binary field (for example, 2, 4, or 8 bytes) rather
than conforming to the maximum integer and decimal positions specified in the
PICTURE clause. This is always the native binary data, independent of the
BINARY compiler option.

USAGE Clause

trailing character position, which is occupied by the low-order digit and the sign.
Such an item can contain any of the digits 0 through 9, plus a sign, representing a
value not exceeding 18 decimal digits.

The sign representation uses the same bit configuration as the 4-bit sign represen-
tation in zoned decimal fields. For details, see the IBM COBOL Programming
Guide for your platform.

COMPUTATIONAL or COMP (Binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is synonymous
with BINARY.

 DISPLAY Phrase
The data item is stored in character form, 1 character for each 8-bit byte. This corre-
sponds to the format used for printed output. DISPLAY can be explicit or implicit.

USAGE IS DISPLAY is valid for the following types of items:

 � Alphabetic
 � Alphanumeric
 � Alphanumeric-edited
 � Numeric-edited

Part 5. Data Division 211

 � External floating-point

Effect of CHAR(EBCDIC) Compiler Option (Workstation Only): Character data
items are treated as EBCDIC when the CHAR(EBCDIC) option is used, unless the
character data is defined with the NATIVE phrase. Also note, group items are affected
by the CHAR options as well. A group item is treated as a USAGE DISPLAY item and
consists of either native single byte characters (with CHAR(NATIVE)) or EBCDIC char-
acters (with CHAR(EBCDIC)). Any USAGE clause specified on a group applies to the
elementary items within the group and not to the group itself for the purpose of defining
semantics involving group items.

Command-line arguments are always passed in as native data types. If you specify the
host data type compiler options (CHAR(EBCDID), FLOAT(HEX), or BINARY(S390)),
you must specify the NATIVE phrase on any arguments with data types affected by
these compiler options.

 DISPLAY-1 Phrase
The DISPLAY-1 phrase defines an item as DBCS.

An index data item can be referred to directly in the USING phrase of an ENTRY state-
ment.

USAGE Clause

� External decimal (numeric)

Alphabetic , alphanumeric , alphanumeric-edited , and numeric-edited items are dis-
cussed in “Data Categories and PICTURE Rules” on page 185.

External Decimal Items are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each byte
are zone bits; the 4 high-order bits of the low-order byte represent the sign of the item.
The 4 low-order bits of each byte contain the value of the digit.

The maximum length of an external decimal item is 18 digits.

The PICTURE character-string of an external decimal item can contain only 9s; the
operational-sign, S; the assumed decimal point, V; and one or more Ps.

 INDEX Phrase
A data item defined with the INDEX phrase is an index data item .

An index data item is a 4-byte elementary item (not necessarily connected with any
table) that can be used to save index-name values for future reference. Through a
SET statement, an index data item can be assigned an index-name value; such a value
corresponds to the occurrence number in a table.

Direct references to an index data item can be made only in a SEARCH statement, a
SET statement, a relation condition, the USING phrase of the Procedure Division
header, or the USING phrase of the CALL statement.

212 COBOL Language Reference

 DATE FORMAT,

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the
index data item.

OBJECT REFERENCE Phrase
A data item defined with the OBJECT REFERENCE phrase is an object reference .

class-name-1
An optional class name.

You must declare class-name-1 in the REPOSITORY paragraph in the Configura-
tion Section of the containing class or outermost program. If specified,
class-name-1 indicates that data-name always refers to an object-instance of class
class-name-1 or a class derived from class-name-1.

If class-name-1 is not specified, data-name can refer to an object of any class. In
this case, data-name-1 is a “universal” object reference.

You can specify data-name-1 within a group item without affecting the semantics of
the group item. There is no conversion of values or other special handling of the
object references when statements are executed that operate on the group. The
group continues to behave as an alphanumeric data item.

METACLASS
Indicates that the data-name always refers to a class object reference that is an
instance of the metaclass of class-name-1 or of a metaclass derived from the
metaclass of class-name-1.

You can use these object references to INVOKE methods that are defined in the
metaclass.

USAGE Clause

An index data item can be part of a group item referred to in a MOVE statement or an
input/output statement.

An index data item saves values that represent table occurrences, yet is not necessarily
defined as part of any table. Thus, when it is referred to directly in a SEARCH or SET
statement, or indirectly in a MOVE or input/output statement, there is no conversion of
values when the statement is executed.

The USAGE IS INDEX clause can be written at any level. If a group item is described
with the USAGE IS INDEX clause, the elementary items within the group are index data
items; the group itself is not an index data item, and the group name cannot be used in
SEARCH and SET statements or in relation conditions. The USAGE clause of an ele-
mentary item cannot contradict the USAGE clause of a group to which the item
belongs.

An index data item cannot be a conditional variable.

The JUSTIFIED, PICTURE, BLANK WHEN ZERO, SYNCHRONIZED,
or VALUE clauses cannot be used to describe group or elementary items described
with the USAGE IS INDEX clause.

Part 5. Data Division 213

The USAGE IS OBJECT REFERENCE clause can be used at any level except level 66
or 88. If a group item is described with the USAGE IS OBJECT REFERENCE clause,
the elementary items within the group are object-reference data items. The group itself
is not an object reference. The USAGE clause of an elementary item cannot contradict
the USAGE clause of a group that contains the item.

An object reference can be defined in any section of the data division of a class,
method, or program, although it does not belong to any class or category. An object-
reference data item can be used in only:

� A SET statement (Format 7 only)
� A relation condition
� An INVOKE statement
� The USING or RETURNING phrase of an INVOKE statement
� The USING or RETURNING phrase of a CALL statement
� A program Procedure Division or ENTRY statement USING or RETURNING

phrase
� A method Procedure Division USING or RETURNING phrase

Object reference data items:

� Are ignored in CORRESPONDING operations
� Are unaffected by INITIALIZE statements
� Can be the subject or object of a REDEFINES clause
� Cannot be a conditional variable
� Can be written to a file (but upon subsequent reading of the record the content of

the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or NULLS.

You can use the SYNCHRONIZED clause with USAGE IS OBJECT REFERENCE to
obtain efficient alignment of the object-reference data item.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS OBJECT
REFERENCE clause.

 POINTER Phrase
A data item defined with USAGE IS POINTER is a pointer data item . A pointer data
item is a 4-byte elementary item,

You can use pointer data items to accomplish limited base addressing. Pointer data
items can be compared for equality or moved to other pointer items.

A pointer data item can only be used:

� In a SET statement (Format 5 only)

� In a relation condition

� In the USING phrase of a CALL statement, an ENTRY statement, or the Procedure
Division header.

USAGE Clause

214 COBOL Language Reference

The USAGE IS POINTER clause can be written at any level except level 88. If a group
item is described with the USAGE IS POINTER clause, the elementary items within the
group are pointer data items; the group itself is not a pointer data item and cannot be
used in the syntax where a pointer data item is allowed. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to which the item
belongs.

Pointer data items can be part of a group that is referred to in a MOVE statement or an
input/output statement. However, if a pointer data item is part of a group, there is no
conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of the
pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.

A pointer data item cannot be a conditional variable.

A pointer data item does not belong to any class or category.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS POINTER
clause.

Pointer data items are ignored in CORRESPONDING operations.

A pointer data item can be written to a data set, but, upon subsequent reading of the
record containing the pointer, the address contained can no longer represent a valid
pointer.

Note: USAGE IS POINTER is implicitly specified for the ADDRESS OF special reg-
ister. For more information see the IBM COBOL Programming Guide for your platform.

 PROCEDURE-POINTER Phrase
A procedure-pointer data item can contain the address of a procedure entry point.
Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

 Under MVS and VM, a procedure-pointer data item is an 8-byte elementary
item.

 Under AIX, OS/2, and Windows, a procedure-pointer data item is a
4-byte elementary item.

The entry point for a procedure-pointer data item can be:

USAGE Clause

Part 5. Data Division 215

� The primary entry point of a COBOL program as defined by the PROGRAM-ID
statement of the outermost program of a compilation unit; it must not be the
PROGRAM-ID of a nested program.

� An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

� An entry point in a non-COBOL program.

The entry point address and code address are contained in the first word. The second
word is binary zero.

A procedure-pointer data item can only be used:

� In a SET statement (Format 6 only)
� In a CALL statement
� In a relation condition
� In the USING phrase of an ENTRY statement or the Procedure Division header

The USAGE IS PROCEDURE-POINTER clause can be written at any level except level
88. If a group item is described with the USAGE IS PROCEDURE-POINTER clause,
the elementary items within the group are procedure-pointer data items; the group itself
is not a procedure-pointer and cannot be used in the syntax where a procedure-pointer
data item is allowed. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group to which the item belongs.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of values
when the statement is executed. If a procedure-pointer data item is written to a data
set, subsequent reading of the record containing the procedure-pointer can result in an
invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain effi-
cient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or NULLS.

The DATE FORMAT, JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot
be used to describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

USAGE Clause

216 COBOL Language Reference

 NATIVE Phrase
 Under MVS and VM, the NATIVE phrase is treated as a comment.

Using the NATIVE phrase, you can mix characters, floating point, and binary data as
represented on the S390 and native platform. The NATIVE phrase overrides the
CHAR(EBCDIC), FLOAT(HEX), and BINARY(S390) compiler options, which indicate
host data type usages. (Note, the BINARY compiler option is only applicable to OS/2
and Windows programs.)

Using both host and native data types within a program (ASCII and EBCDIC, Hex
Floating point and IEEE floating point, and/or big endian and little endian binary) is only
valid for those data items specifically defined with the NATIVE phrase.

Specifying NATIVE does not change the class or the category of the data item.

Numeric data items are treated in arithmetic operations (numeric comparisons, arith-
metic expressions, assignment to numeric targets, arithmetic statement) based on their
logical numeric values, regardless of their internal representations.

Characters are converted to the representation of the target item prior to an assign-
ment.

Comparisons are done based on the collating sequence rules applicable to the oper-
ands. If native and non-native characters are compared, the comparison is based on
the COLLSEQ option in effect.

In the class Working-Storage Section, the VALUE clause can only be used in condition-
name entries.

As an IBM extension, in the File and Linkage Sections, if the VALUE clause is used in
entries other than condition-name entries, the VALUE clause is treated as a comment.

VALUE Clause

 VALUE Clause
The VALUE clause specifies the initial contents of a data item or the value(s) associ-
ated with a condition name. The use of the VALUE clause differs depending on the
Data Division section in which it is specified.

In the Working-Storage Section, the VALUE clause can be used in condition-name
entries, or in specifying the initial value of any data item. The data item assumes the
specified value at the beginning of program execution. If the initial value is not explicitly
specified, it is unpredictable.

 Format 1
Format 1—Literal Value

55──VALUE─ ──┬ ┬──── ─literal───5%
 └ ┘─IS─

Part 5. Data Division 217

Any VALUE clause associated with COMPUTATIONAL-1 or COMPUTATIONAL-2
(internal floating-point) items must specify a floating-point literal. The condition-name
VALUE phrase must also specify a floating-point literal. In addition, the figurative con-
stant ZERO and both integer and decimal forms of the zero literal can be specified in a
floating-point VALUE clause or condition-name VALUE phrase.

For information on floating-point literal values, see “Rules for Floating-point Literal
Values:” on page 24.

A VALUE clause cannot be specified for external floating-point items.

A VALUE clause associated with a DBCS item must contain a DBCS literal or the figu-
rative constant SPACE.

A data item cannot contain a VALUE clause if the prior data item contains a OCCURS
clause with the DEPENDING ON phrase.

VALUE Clause

Format 1 specifies the initial value of a data item. Initialization is independent of any
BLANK WHEN ZERO or JUSTIFIED clause specified.

A format 1 VALUE clause specified in a data description entry that contains or is subor-
dinate to an OCCURS clause causes every occurrence of the associated data item to
be assigned the specified value. Each structure that contains the DEPENDING ON
phrase of the OCCURS clause is assumed to contain the maximum number of occur-
rences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains, or is
subordinate to, an entry containing either an EXTERNAL or a REDEFINES clause.
This rule does not apply to condition-name entries.

If the VALUE clause is specified at the group level, the literal must be a nonnumeric
literal or a figurative constant. The group area is initialized without consideration for the
subordinate entries within this group. In addition, the VALUE clause must not be speci-
fied for subordinate entries within this group.

For group entries, the VALUE clause must not be specified if the entry also contains
any of the following clauses: JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE DISPLAY).

The VALUE clause must not conflict with other clauses in the data description entry, or
in the data description of this entry's hierarchy.

Rules for Literal Values:
� Wherever a literal is specified, a figurative constant can be substituted.

� If the item is numeric, all VALUE clause literals must be numeric. If the literal
defines the value of a Working-Storage item, the literal is aligned according to the
rules for numeric moves, with one additional restriction: The literal must not have a
value that requires truncation of nonzero digits. If the literal is signed, the associ-
ated PICTURE character-string must contain a sign symbol (S).

218 COBOL Language Reference

 unless the associ-

VALUE Clause

� All numeric literals in a VALUE clause of an item must have a value that is within
the range of values indicated by the PICTURE clause for that item. For example,
for PICTURE 99PPP, the literal must be within the range 1000 through 99000, or
zero. For PICTURE PPP99, the literal must be within the range 0.00000 through
0.00099.

� If the item is an elementary or group alphabetic, alphanumeric, alphanumeric-
edited, or numeric-edited item, all VALUE clause literals must be nonnumeric
literals. The literal is aligned according to the alphanumeric alignment rules, with
one additional restriction: the number of characters in the literal must not exceed
the size of the item.

� The functions of the editing characters in a PICTURE clause are ignored in deter-
mining the initial appearance of the item described. However, editing characters
are included in determining the size of the item. Therefore, any editing characters
must be included in the literal. For example, if the item is defined as PICTURE
+999.99 and the value is to be +12.34, then the VALUE clause should be specified
as VALUE "+012.34".

 Format 2
Format 2—Condition-Name Value

55──88──condition-name-1─ ──┬ ┬─VALUE─ ──┬ ┬──── ── ──────────────────────────────────5
 │ │└ ┘─IS─
 └ ┘ ─VALUES─ ──┬ ┬─────
 └ ┘─ARE─

 ┌ ┐───
5─ ───6 ┴─literal-1─ ──┬ ┬──────────────────────── ─.────────────────────────────────5%
 └ ┘ ──┬ ┬─THROUGH─ ─literal-2─
 └ ┘─THRU────

This format associates a value, values, and/or range(s) of values with a condition-
name. Each such condition-name requires a separate level-88 entry. Level-number 88
and condition-name are not part of the Format 2 VALUE clause itself. They are
included in the format only for clarity.

condition-name-1
A user-specified name that associates a value with a conditional variable. If the
associated conditional variable requires subscripts or indexes, each procedural ref-
erence to the condition-name must be subscripted or indexed as required for the
conditional variable.

Condition-names are tested procedurally in condition-name conditions (see “Condi-
tional Expressions” on page 239).

literal-1
When literal-1 is specified alone, the condition-name is associated with a single
value.

literal-1 THROUGH literal-2
The condition-name is associated with at least one range of values. Whenever the
THROUGH phrase is used, literal-1 must be less than literal-2,

Part 5. Data Division 219

ated data item is a non-year-last windowed date field. For details, see “Rules for
Condition-Name Values:” on page 220.

In the VALUE clause of a data description entry (Format 2), all the literals specified for
the THROUGH phrase must be DBCS literals if the associated conditional variable is a
DBCS data item. The figurative constants SPACE and SPACES can be used as DBCS
literals.

 Under MVS and VM, the range of DBCS literals specified for the
THROUGH phrase is based on the binary collating sequence of the hexadecimal values
of the DBCS characters.

 Under AIX, OS/2, and Windows, the range of nonnumeric literals or
DBCS literals specified for the THROUGH phrase is based on the collating sequence
indicated by the locale (except for single-byte character comparisons when a
non-NATIVE collating sequence is in effect). For more information on locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 568.

The conditional variable cannot be an item with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE.

USAGE other than USAGE IS DISPLAY can be specified within the group.

VALUE Clause

|

Rules for Condition-Name Values:
� The VALUE clause is required in a condition-name entry, and must be the only

clause in the entry. Each condition-name entry is associated with a preceding con-
ditional variable. Thus, every level-88 entry must always be preceded either by the
entry for the conditional variable, or by another level-88 entry when several
condition-names apply to one conditional variable. Each such level-88 entry implic-
itly has the PICTURE characteristics of the conditional variable.

� The key words THROUGH and THRU are equivalent.

The condition-name entries associated with a particular conditional variable must
immediately follow the conditional variable entry. The conditional variable can be
any elementary data description entry except another condition-name, a RENAMES
clause (level-66 item), or an item with USAGE IS INDEX.

A condition-name can be associated with a group item data description entry. In
this case:

– The condition-name value must be specified as a nonnumeric literal or figura-
tive constant.

– The size of the condition-name value must not exceed the sum of the sizes of
all the elementary items within the group.

– No element within the group can contain a JUSTIFIED or SYNCHRONIZED
clause.

– No USAGE other than DISPLAY can be specified within the group.

Condition-names can be specified both at the group level and at subordinate levels
within the group.

220 COBOL Language Reference

The VALUE clause is allowed for internal floating-point data items.

The VALUE clause is allowed for DBCS data items. Relation tests for DBCS data
items are performed according to the rules for comparison of DBCS items. These
rules can be found in “Comparison of DBCS Operands” on page 253.

VALUE Clause

The relation test implied by the definition of a condition-name at the group level is
performed in accordance with the rules for comparison of nonnumeric operands,
regardless of the nature of elementary items within the group.

A space, a separator comma, or a separator semicolon, must separate successive
operands.

Each entry must end with a separator period.

� The type of literal in a condition-name entry must be consistent with the data type
of its conditional variable. In the following example:

– CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name value to
a 2-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
3-character nonnumeric literal.

– The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO
cannot exceed 5 characters.

Because this is a group item, the literal must be nonnumeric.

ð5 CITY-COUNTY-INFO.
 88 BRONX VALUE "ð3NYC".
 88 BROOKLYN VALUE "24NYC".
 88 MANHATTAN VALUE "31NYC".
 88 QUEENS VALUE "41NYC".
 88 STATEN-ISLAND VALUE "43NYC".

 1ð COUNTY-NO PICTURE 99.
 88 DUTCHESS VALUE 14.
 88 KINGS VALUE 24.
 88 NEW-YORK VALUE 31.
 88 RICHMOND VALUE 43.
 1ð CITY PICTURE X(3).
 88 BUFFALO VALUE "BUF".
 88 NEW-YORK-CITY VALUE "NYC".
 88 POUGHKEEPSIE VALUE "POK".
ð5 POPULATION...

Part 5. Data Division 221

� If the item is a windowed date field, the following restrictions apply:

– For alphanumeric conditional variables:

- Both literal-1 and literal-2 (if specified) must be alphanumeric literals of the
same length as the conditional variable.

- The literals must not be specified as figurative constants.

- If literal-2 is specified, then both literals must contain only decimal digits.

– If the YEARWINDOW compiler option is specified as a negative integer, then
literal-2 must not be specified.

– If literal-2 is specified, then literal-1 must be less than literal-2 after applying
the century window specified by the YEARWINDOW compiler option. That is,
the expanded date value of literal-1 must be less than the expanded date
value of literal-2.

For more information on using condition-names with windowed date fields, see
“Condition-Name Conditions and Windowed Date Field Comparisons” on
page 243.

 Format 3
Format 3—NULL Value

55──VALUE─ ──┬ ┬──── ──┬ ┬─NULL── ──5%
 └ ┘─IS─ └ ┘─NULLS─

This format assigns an invalid address as the initial value of an item defined as USAGE
IS POINTER or USAGE IS PROCEDURE-POINTER. It also assigns an invalid object
reference as the initial value of an item defined as USAGE IS OBJECT REFERENCE.

VALUE IS NULL can only be specified for elementary items described implicitly or
explicitly as USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS
OBJECT REFERENCE.

VALUE Clause

222 COBOL Language Reference

Requirements for a Method Procedure Division

ENTRY Statement

EXIT METHOD Statement

GOBACK Statement

INVOKE Statement

 Part 6. Procedure Division

Procedure Division Structure . 225
. 226

The Procedure Division Header . 227
Declaratives . 230
Procedures . 231
Arithmetic Expressions . 233
Conditional Expressions . 239
Statement Categories . 261
Statement Operations . 264

Procedure Division Statements . 277
ACCEPT Statement . 277
ADD Statement . 282
ALTER Statement . 285
CALL Statement . 287
CANCEL Statement . 294
CLOSE Statement . 296
COMPUTE Statement . 300
CONTINUE Statement . 302
DELETE Statement . 303
DISPLAY Statement . 305
DIVIDE Statement . 309

 . 312
EVALUATE Statement . 313
EXIT Statement . 317

. 318
EXIT PROGRAM Statement . 319

 . 320
GO TO Statement . 321
IF Statement . 323
INITIALIZE Statement . 325
INSPECT Statement . 328

 . 337
MERGE Statement . 345
MOVE Statement . 352
MULTIPLY Statement . 357
OPEN Statement . 359
PERFORM Statement . 365
READ Statement . 376
RELEASE Statement . 385
RETURN Statement . 387
REWRITE Statement . 389
SEARCH Statement . 393
SET Statement . 400
SORT Statement . 407

 Copyright IBM Corp. 1991, 1998 223

START Statement . 415
STOP Statement . 418
STRING Statement . 420
SUBTRACT Statement . 425
UNSTRING Statement . 428
WRITE Statement . 436

224 COBOL Language Reference

 class definition, and
method definition.

Class Procedure Division
The class Procedure Division contains only method definitions. All methods intro-
duced in a COBOL class compilation unit must be defined in that compilation unit's
Procedure Division.

Method Procedure Division
A method Procedure Division consists of optional declaratives, and procedures that
contain sections and/or paragraphs, sentences, and statements. A method can
INVOKE other methods, be recursively INVOKEd, and issue a CALL to a program.
A method Procedure Division cannot contain nested programs or methods.

For additional details on a method Procedure Division, see “Requirements for a
Method Procedure Division” on page 226.

and Method

As an IBM extension, section-name can be omitted. If you omit section-name, paragraph-name
can be omitted.

Priority-numbers are not valid for methods, recursive programs, or (on AIX, OS/2, and
Windows) programs compiled with the THREAD option.

Format—Class Procedure Division
55─ ─PROCEDURE DIVISION.─ ──┬ ┬─────────────────────── ──5%
 │ │┌ ┐─────────────────────
 └ ┘───6 ┴─method-definition─

Procedure Division Structure

Procedure Division Structure

The Procedure Division is optional in a COBOL source program,

Program Procedure Division
A program Procedure Division consists of optional declaratives, and procedures
that contain sections and/or paragraphs, sentences, and statements.

Format—Program Procedure Division
55─ ──┬ ┬─────────────────────────── ──5

└ ┘─procedure division header─

5─ ──┬ ┬─── ───────5
 │ │┌ ┐───
 └ ┘ ─DECLARATIVES.─ ───6 ┴─┤ sect ├──.──USE─ ──┬ ┬─────────────────────────────────────── ─END DECLARATIVES.─
 │ │┌ ┐─────────────────────────────────────
 └ ┘ ───6 ┴ ─paragraph-name.─ ──┬ ┬──────────────
 │ │┌ ┐────────────
 └ ┘ ───6 ┴─sentence─

 ┌ ┐──
5─ ───6 ┴ ─section-name────(1) ─SECTION─ ──┬ ┬──────────────────── ─.─ ──┬ ┬─────────────────────────────────────── ─────────5%
 └ ┘─priority-number────(2) │ │┌ ┐─────────────────────────────────────
 └ ┘ ───6 ┴ ─paragraph-name.─ ──┬ ┬──────────────
 │ │┌ ┐────────────
 └ ┘ ───6 ┴─sentence─

sect:
├──section-name──SECTION─ ──┬ ┬──────────────────── ───┤
 └ ┘─priority-number────(2)

Notes:
1

2

 Copyright IBM Corp. 1991, 1998 225

Requirements for a Method Procedure Division
When using a Method Procedure Division, you need to know that:

� You can use the EXIT METHOD statement or the GOBACK statement to return
control to the invoking method or program. An implicit EXIT METHOD statement is
generated as the last statement of every method procedure division.

For details on the EXIT METHOD statement, see “EXIT METHOD Statement” on
page 318.

� You can use the STOP RUN statement (which terminates the run unit) in a
method.

� You can use the RETURN-CODE special register within a method Procedure Divi-
sion to access return codes from CALLed subprograms, but the RETURN-CODE
value is not returned to the invoker of the current method. Use the Procedure
Division RETURNING data name to return a value to the invoker of the current
method. For details, see the discussion of RETURNING data-name-2 under “The
Procedure Division Header” on page 227.

You cannot specify the following statements in a method PROCEDURE DIVISION:

 � ALTER
 � ENTRY
 � EXIT PROGRAM
� GO TO without a specified procedure name

 � SEGMENTATION
� USE FOR DEBUGGING

The following special registers are allocated on a per-invocation basis for methods;
thus, they are in initial state on each method entry.

� ADDRESS OF (for each record in the Linkage Section)
 � RETURN-CODE
 � SORT-CONTROL
 � SORT-CORE-SIZE
 � SORT-FILE-SIZE
 � SORT-MESSAGE
 � SORT-MODE-SIZE
 � SORT-RETURN
 � TALLY

Procedure Division Structure

226 COBOL Language Reference

Methods

REFERENCE
BY

VALUE
BY

RETURNING data-name-2

Format—Procedure Division Header for Classes
55──PROCEDURE DIVISION──.──5%

 or an invoked method.

 or a
method is invoked by the INVOKE statement or INVOKE

 or invoked method

A data item in the USING phrase of the Procedure Division header can have a
REDEFINES clause in its data description entry.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING option is valid in the ENTRY statement; each
USING identifier must be defined as a level-01 or level-77 item in the Linkage
Section of the called subprogram or invoked method.

 or INVOKE

Each USING identifier in a calling program can be a data item of any level in the
Data Division.

If you specify the host data type compiler options
(CHAR(EBCDIC), FLOAT(HEX), or BINARY(S390)), you must specify the NATIVE

Procedure Division Header

The Procedure Division Header
The Procedure Division, if specified, is identified by one of the following headers,
depending on whether you are defining a program, method, or class.

Format—Procedure Division Header for Programs and
55──PROCEDURE DIVISION─ ──┬ ┬─── ──5
 │ │┌ ┐──
 │ ││ │┌ ┐─────────────
 └ ┘ ─USING─ ───6 ┴─ ─ ──┬ ┬─────────────────── ───6 ┴data-name-1
 ├ ┤ ──┬ ┬──── ─ ─
 │ │└ ┘─ ─
 └ ┘ ──┬ ┬──── ─ ─────
 └ ┘─ ─

5─ ──┬ ┬────────────────────────── ─.───5%
 └ ┘── ─ ─ ─ ─

USING
The USING phrase makes data items defined in a calling program available to a
called subprogram

Only specify the USING phrase if the program is invoked by a CALL statement
 and the CALL statement

includes a USING phrase.

The USING phrase is valid in the Procedure Division header of a called subpro-
gram entered at the beginning of the nondeclaratives portion; each USING identi-
fier must be defined as a level-01 or level-77 item in the Linkage Section of the
called subprogram ; it must not contain a REDEFINES clause.

In a calling program, the
USING phrase is valid for the CALL statement; each USING identifier
must be defined as a level-01, level-77, or an elementary item in the Data Division.

It is possible to call from non-COBOL programs or pass user parameters from a
system command to a COBOL main program.

 For AIX, OS/2, and Windows, command-line arguments are always
passed in as native data types.

Part 6. Procedure Division 227

phrase on any arguments with data types affected by these compiler options.
(Note, the BINARY compiler option is only applicable to OS/2 and Windows pro-
grams.)

 or invoking and invoked methods

For invoking and invoked methods, see “Conformance Requirements
for USING Phrase” on page 341.

 or invoking and invoked methods

 or INVOKE USING
 or invoking method

 or invoked method

As an IBM extension, an identifier can appear more than once in a Procedure Divi-
sion USING phrase. The last value passed to it by a CALL USING or INVOKE
USING statement is used. The BY REFERENCE or BY VALUE phrase applies to
all parameters that follow until overridden by another BY REFERENCE or BY
VALUE phrase.

BY REFERENCE
When a CALL or INVOKE argument is passed BY CONTENT or BY REFER-
ENCE, BY REFERENCE must be specified or implied for the corresponding
formal parameter on the PROCEDURE/ENTRY USING phrase.

BY REFERENCE is the default if neither BY REFERENCE or BY VALUE is
specified.

If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY REFERENCE (explicit or
implicit), the object program executes as if each reference to a USING identi-
fier in the called subprogram or invoked method Procedure Division is replaced
by a reference to the corresponding USING identifier in the calling program or
invoked method.

If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY CONTENT, the value of the
item is moved when the CALL or INVOKE statement is executed and placed
into a system-defined storage item possessing the attributes declared in the
Linkage Section for data-name-1. The data description of each parameter in
the BY CONTENT phrase of the CALL or INVOKE statement must be the
same, meaning no conversion or extension or truncation, as the data
description of the corresponding parameter in the USING phrase of the Proce-
dure Division header.

Procedure Division Header

The order of appearance of USING identifiers in both calling and called subpro-
grams , determines the correspondence of single
sets of data available to both programs. The correspondence is positional and not
by name. For calling and called subprograms, corresponding identifiers must
contain the same number of characters, although their data descriptions need not
be the same.

For index-names, no correspondence is established; index-names in calling and
called programs always refer to separate
indexes.

The identifiers specified in a CALL USING statement name
data items available to the calling program that can be referred
to in the called program ; a given identifier can appear more
than once. These items are defined in any Data Division section.

228 COBOL Language Reference

BY VALUE
If the reference to the corresponding data item in the CALL or INVOKE state-
ment declares the parameter to be passed BY VALUE, then the value of the
argument is passed, not a reference to the sending data item. Since CALLed
subprograms and INVOKEd methods have access only to a temporary copy of
the sending data item, any modifications made to the formal parameters corre-
sponding to the BY VALUE argument do not affect the argument.

Examples illustrating these concepts can be found in IBM COBOL Program-
ming Guide for your platform.

RETURNING data-name-2
Is the RETURNING phrase identifier. It specifies a data item to be returned as a
program or method result. You must define data-name-2 as either a level 01 or 77
entry in the Linkage Section.

Data-name-2 is an output-only parameter. The initial state of data-name-2 has an
undefined and unpredictable value when the program or method is entered. You
must initialize data-name-2 in the program or method before you reference its
value. When a program or method returns to its invoker, the final value in
data-name-2 is implicitly stored into the identifier specified in the CALL
RETURNING phrase or the INVOKE RETURNING phrase, as described in “CALL
Statement” on page 287 or “INVOKE Statement” on page 337.

When you specify Procedure Division RETURNING data-name-2, the
RETURN-CODE special register can be used within the PROCEDURE DIVISION
only as a means of accessing return codes from CALLed subprograms. The
RETURN-CODE value is not returned to the caller of the current program (the
value in data-name-2 is).

When the RETURNING phrase is specified on the PROCEDURE DIVISION header
of a program or method, the CALL or INVOKE statement used to pass control to
the program or method must also specify a RETURNING phrase. The
data-name-2 and the identifier specified on the CALL or INVOKE RETURNING
must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE, JUSTIFIED, and
BLANK WHEN ZERO clauses (except that PICTURE clause currency symbols can
differ, and periods and commas can be interchanged due to the DECIMAL POINT
IS COMMA clause).

Do not use the Procedure Division RETURNING phrase in:

� Programs that contain the ENTRY statement

 � Nested programs

� Main programs— results of specifying Procedure Division RETURNING on a
main program are undefined. You should only specify the Procedure Division
RETURNING phrase on called subprograms. For main programs, use the
RETURN-CODE special register to return a value to the operating environ-
ment.

Procedure Division Header

|
|
|
|
|
|
|

|
|
|

|

Part 6. Procedure Division 229

� Under MVS and VM, on programs that use CEEPIPI—results of
specifying Procedure Division RETURNING on programs that are called with
the Language Environment preinitialization service (CEEPIPI) are undefined.

 or invoked method

 or the
ENTRY statement

� They are operands of SET ADDRESS OF, CALL...BY REFERENCE ADDRESS
OF, or INVOKE...BY REFERENCE ADDRESS OF

Declaratives

Data items defined in the Linkage Section of the called program ,
can be referenced within the Procedure Division of that program if, and only if, they
satisfy one of the following conditions:

� They are operands of the USING phrase of the Procedure Division header

� They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions

� They are items subordinate to any item that satisfies the condition in the rules
above

� They are condition-names or index-names associated with data items that satisfy
any of the above conditions

 Declaratives
Declaratives provide one or more special-purpose sections that are executed when an
exceptional condition occurs.

When Declarative Sections are specified, they must be grouped at the beginning of the
Procedure Division, and the entire Procedure Division must be divided into sections.

Each Declarative Section starts with a USE statement that identifies the section's func-
tion; the series of procedures that follow specify what actions are to be taken when the
exceptional condition occurs. Each Declarative Section ends with another section-
name followed by a USE statement, or with the key words END DECLARATIVES. See
“USE Statement” on page 533 for more information on the USE statement.

The entire group of Declarative Sections is preceded by the key word DECLARATIVES,
written on the line after the Procedure Division header; the group is followed by the key
words END DECLARATIVES. The key words DECLARATIVES and END DECLAR-
ATIVES must each begin in Area A and be followed by a separator period. No other
text can appear on the same line.

In the declaratives part of the Procedure Division, each section header must be fol-
lowed by a separator period, and must be followed by a USE statement, followed by a
separator period. No other text can appear on the same line.

230 COBOL Language Reference

3. LABEL declarative (see “USE Statement” on page 533)

As IBM extensions, the following apply to declarative procedures:

For AIX, OS/2, Windows, MVS, and VM:

� A declarative procedure can be performed from a nondeclarative procedure.

Additionally for MVS and VM:

� A nondeclarative procedure can be performed from a declarative procedure.

� A declarative procedure can be referenced in a GO TO statement in a declar-
ative procedure.

� A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

You can include a statement that executes a previously invoked USE procedure that is
still in control. However, to avoid an infinite loop, you must be sure there is an eventual
exit at the bottom.

Procedures

The USE statement has three formats:

1. EXCEPTION declarative (see “USE Statement” on page 533)
2. DEBUGGING declarative (see “USE Statement” on page 533)

The USE statement itself is never executed; instead, the USE statement defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the routine
that activated it.

Within a declarative procedure, except for the USE statement itself, there must be no
reference to any nondeclarative procedure.

Within a declarative procedure, no statement should be included that would cause the
execution of a USE procedure that had been previously invoked and had not yet
returned control to the invoking routine.

The declarative procedure is exited when the last statement in the procedure is exe-
cuted.

 Procedures
Within the Procedure Division, a procedure consists of:

� A section or a group of sections
� A paragraph or group of paragraphs

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section-header optionally followed by one or more paragraphs.

Part 6. Procedure Division 231

Section-headers are optional after the key words END DECLARATIVES or if
there are no declaratives.

 or a positive signed numeric literal

You cannot specify priority-numbers:

� In a method definition
� In a program that is declared with the RECURSIVE attribute
� In a program that specifies the THREAD compiler option (Workstation

only)

If there are no declaratives (format-2), a paragraph-name is not required in the
Procedure Division.

As an IBM extension, all paragraphs do not need to be contained within sections,
even if one or more paragraphs are so contained.

Procedures

Section-header
A section-name followed by the key word SECTION, optionally followed, by a
priority-number , followed by a separator period.

Section-name
A user-defined word that identifies a section. A referenced section-name,
because it cannot be qualified, must be unique within the program in
which it is defined.

Priority-number
An integer ranging in value from 0
through 99.

Sections in the declaratives portion must contain priority numbers in the range
of 0 through 49.

A section ends immediately before the next section header, or at the end of
the Procedure Division, or, in the declaratives portion, at the key words END
DECLARATIVES.

Paragraph
A paragraph-name followed by a separator period, optionally followed by one or
more sentences.

Note: Paragraphs must be preceded by a period because paragraphs always
follow either the ID Division Header, a Section, or another paragraph, all of which
must end with a period.

Paragraph-name
A user-defined word that identifies a paragraph. A paragraph-name, because
it can be qualified, need not be unique.

A paragraph ends immediately before the next paragraph-name or section header,
or at the end of the Procedure Division, or, in the declaratives portion, at the key
words END DECLARATIVES.

232 COBOL Language Reference

Arithmetic Expressions

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

identifier
The word or words necessary to make unique reference to a data
item, optionally including qualification, subscripting, indexing, and
reference-modification. In any Procedure Division reference (except
the class test), the contents of an identifier must be compatible with
the class specified through its PICTURE clause, or results are unpre-
dictable.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented for
compilation, unless the statement rules dictate some other order of execution.

The end of the Procedure Division is indicated by one of the following:

� An Identification Division header, which indicates the start of a nested source
program

� The END PROGRAM header

� The physical end of the program; that is, the physical position in a source
program after which no further source program lines occur

 Arithmetic Expressions
Arithmetic expressions are used as operands of certain conditional and arithmetic state-
ments.

An arithmetic expression can consist of any of the following:

1. An identifier described as a numeric elementary item (including numeric functions)

2. A numeric literal

3. The figurative constant ZERO

4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic
operators

5. Two arithmetic expressions, as defined in items 1, 2, 3, and/or 4, separated by an
arithmetic operator

6. An arithmetic expression, as defined in items 1, 2, 3, 4, and/or 5, enclosed in
parentheses.

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals appearing in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic can be performed.

Part 6. Procedure Division 233

Arithmetic Expressions

If an exponential expression is evaluated as both a positive and a negative number, the
result will always be the positive number. The square root of 4, for example,

4 \\ ð.5 (the square root of 4)

is evaluated as +2 and -2. IBM COBOL always returns +2.

If the value of an expression to be raised to a power is zero, the exponent must have a
value greater than zero. Otherwise, the size error condition exists. In any case where
no real number exists as the result of the evaluation, the size error condition exists.

 Arithmetic Operators
Five binary arithmetic operators and two unary arithmetic operators (Table 15) can be
used in arithmetic expressions. They are represented by specific characters that must
be preceded and followed by a space.

Note: Exponents in fixed-point exponential expressions cannot contain more than 9
digits. The compiler will truncate any exponent with more than 9 digits. In this case,
the compiler will issue a diagnostic message if the exponent is a literal or constant; if
the exponent is a variable or data-name, a diagnostic is issued at run-time.

Parentheses can be used in arithmetic expressions to specify the order in which ele-
ments are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are contained
within a nest of parentheses, evaluation proceeds from the least inclusive to the most
inclusive set.

When parentheses are not used, or parenthesized expressions are at the same level of
inclusiveness, the following hierarchic order is implied:

 1. Unary operator
 2. Exponentiation

3. Multiplication and division
4. Addition and subtraction.

Parentheses either eliminate ambiguities in logic where consecutive operations appear
at the same hierarchic level or modify the normal hierarchic sequence of execution
when this is necessary. When the order of consecutive operations at the same

Table 15. Binary and Unary Operators

Binary
Operator Meaning

Unary
Operator Meaning

+ Addition + Multiplication by +1

− Subtraction − Multiplication by −1

* Multiplication

/ Division

** Exponentiation

234 COBOL Language Reference

Arithmetic with Date Fields
Arithmetic operations that include a date field are restricted to:

� Adding a non-date to a date field

� Subtracting a non-date from a date field

� Subtracting a date field from a compatible date field

Date field operands are compatible if they have the same date format except for the
year part, which may be windowed or expanded.

The following operations are not allowed:

� Any operation between incompatible dates

Arithmetic Expressions

hierarchic level is not completely specified by parentheses, the order is from left to
right.

An arithmetic expression can begin only with a left parenthesis, a unary operator, or an
operand (that is, an identifier or a literal). It can end only with a right parenthesis or an
operand. An arithmetic expression must contain at least one reference to an identifier
or a literal.

There must be a one-to-one correspondence between left and right parentheses in an
arithmetic expression, with each left parenthesis placed to the left of its corresponding
right parenthesis.

If the first operator in an arithmetic expression is a unary operator, it must be imme-
diately preceded by a left parenthesis if that arithmetic expression immediately follows
an identifier or another arithmetic expression.

Table 16 shows permissible arithmetic symbol pairs. An arithmetic symbol pair is the
combination of two such symbols in sequence. In the table:

Yes indicates a permissible pairing.
No indicates that the pairing is not permitted.

Table 16. Valid Arithmetic Symbol Pairs

First Symbol

Second Symbol

Identifier
or
Literal

* / ** +
−

Unary +
or
Unary − ()

Identifier or Literal No Yes No No Yes

* / ** + − Yes No Yes Yes No

Unary + or Unary − Yes No No Yes No

 (Yes No Yes Yes No

) No Yes No No Yes

Part 6. Procedure Division 235

� Adding two date fields

� Subtracting a date field from a non-date

� Unary minus, applied to a date field

� Division, exponentiation, or multiplication of or by a date field

� Arithmetic expressions that specify a year-last date field

� Arithmetic statements that specify a year-last date field, except as a receiving data
item when the sending field is a non-date

The following pages describe the result of using date fields in the supported addition
and subtraction operations.

For more information on using date fields in arithmetic operations, see:

� “ADD Statement” on page 282
� “COMPUTE Statement” on page 300
� “SUBTRACT Statement” on page 425

Notes:

1. Arithmetic operations treat date fields as numeric items; they do not recognize any
date-specific internal structure. For example, adding 1 to a windowed date field
containing the value 991231 (that might be used in an application to represent
December 31, 1999) results in the value 991232, not 000101.

2. When used as operands in arithmetic expressions or arithmetic statements, win-
dowed date fields are automatically expanded according to the century window
specified by the YEARWINDOW compiler option. When the
DATEPROC(TRIG) compiler option is in effect, this expansion is sensitive to trigger
values in the windowed date field. For details of both
regular and trigger-sensitive windowed expansion, see “Semantics of
Windowed Date Fields” on page 165.

Addition Involving Date Fields
The following table shows the result of using a date field with a compatible operand in
an addition.

For details on how a result is stored in a receiving field, see “Storing Arithmetic Results
That Involve Date Fields” on page 237.

Table 17. Results of Using Date Fields in Addition

First Operand

Second Operand

Non-date Date field

Non-date Non-date Date field

Date field Date field Not allowed

Arithmetic Expressions

|

|
|

|
|
|
|

236 COBOL Language Reference

Subtraction Involving Date Fields
The following table shows the result of using a date field with a compatible operand in
the subtraction:

first operand − second operand

In a SUBTRACT statement, these operands appear in the reverse order:

SUBTRACT second operand FROM first operand

Table 18. Results of Using Date Fields in Subtraction

First Operand

Second Operand

Non-date Date field

Non-date Non-date Not allowed

Date field Date field Non-date

Storing Arithmetic Results That Involve Date Fields
The following statements perform arithmetic, then store the result, or sending field, into
one or more receiving fields:

 ADD
 COMPUTE
 DIVIDE
 MULTIPLY
 SUBTRACT

Note: In a MULTIPLY statement, only GIVING identifiers can be date fields. In a
DIVIDE statement, only GIVING identifiers or the REMAINDER identifier can be date
fields.

Any windowed date fields that are operands of the arithmetic expression or statement
are treated as if they were expanded before use, as described under “Semantics of
Windowed Date Fields” on page 165.

If the sending field is a date field, then the receiving field must be a compatible date
field. That is, both fields must have the same date format, except for the year part,
which may be windowed or expanded.

If the ON SIZE ERROR clause is not specified on the statement, the store operation
follows the existing COBOL rules for the statement, and proceeds as if the receiving
and sending fields (after any automatic expansion of windowed date field operands or
result) were both non-dates.

When the ON SIZE ERROR clause is specified, Table 19 on page 239 shows how
these statements store the value of a sending field in a receiving field, where either
field may be a date field.

Table 19 on page 239 uses the following terms to describe how the store is performed:

Arithmetic Expressions

|
|
|

|
|
|
|

Part 6. Procedure Division 237

Non-windowed
The statement performs the store with no special date-sensitive size error
processing, as described under “SIZE ERROR Phrases” on page 266.

Windowed...

...with non-date sending field
The non-date sending field is treated as a windowed date field compatible
with the windowed date receiving field, but with the year part representing
the number of years since 1900. (This representation is similar to a win-
dowed date field with a base year of 1900, except that the year part is not
limited to a positive number of at most 2 digits.) The store proceeds as if
this assumed year part of the sending field were expanded by adding 1900
to it.

...with date sending field
The store proceeds as if all windowed date field operands had been
expanded as necessary, so that the sending field is a compatible expanded
date field.

Size error processing: For both kinds of sending field, if the assumed or
actual year part of the sending field falls within the century window, then
the sending field is stored in the receiving field after removing the century
component of the year part. That is, the low-order or rightmost 2 digits of
the expanded year part are retained, and the high-order or leftmost 2 digits
are discarded.

If the year part does not fall within the century window, then the receiving
field is unmodified, and the size error imperative statement is executed
when any remaining arithmetic operations are complete.

For example:

77 DUE-DATE PICTURE 9(5) DATE FORMAT YYXXX.
77 IN-DATE PICTURE 9(8) DATE FORMAT YYYYXXX VALUE 1995ðð1.

...
COMPUTE DUE-DATE = IN-DATE + 1ðððð
ON SIZE ERROR imperative-statement

 END-COMPUTE

The sending field is an expanded date field representing January 1, 2005.
Assuming that 2005 falls within the century window, the value stored in
DUE-DATE is 05001—the sending value of 2005001 without the century
component 20.

Size error processing and trigger values: If the DATEPROC(TRIG) compiler option is
in effect, and the sending field contains a trigger value (either zero or all nines) the size
error imperative statement is executed, and the result is not stored in the receiving field.

A non-date is considered to have a trigger value of all nines if it has a nine in every
digit position of its assumed date format. Thus, for a receiving date format of YYXXX,

Arithmetic Expressions

|

|
|
|

|
|

238 COBOL Language Reference

the non-date value 99,999 is a trigger, but the values 9,999 and 999,999 are not,
although the larger value of 999,999 will cause a size error anyway.

Table 19. Storing Arithmetic Results Involving Date Fields When ON SIZE ERROR is Specified

Receiving Field

Sending Field

Non-date Date field

Non-date Non-windowed Not allowed

Windowed date field Windowed Windowed

Expanded date field Non-windowed Non-windowed

The class condition determines whether the contents of a data item are DBCS or
KANJI.

Conditional Expressions

|
|

 Conditional Expressions
A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions are specified in
EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either simple conditions or complex condi-
tions. Both simple and complex conditions can be enclosed within any number of
paired parentheses; the parentheses do not change whether the condition is simple or
complex.

 Simple Conditions
There are five simple conditions:

 � Class condition
 � Condition-name condition
 � Relation condition
 � Sign condition
 � Switch-status condition

A simple condition has a truth value of either true or false.

 Class Condition
The class condition determines whether the content of a data item is alphabetic,
alphabetic-lower, alphabetic-upper, numeric, or contains only the characters in the set
of characters specified by the CLASS clause as defined in the SPECIAL-NAMES para-
graph of the Environment Division.

Part 6. Procedure Division 239

DBCS
KANJI

Identifier-1 can reference a data item whose usage is explicitly or implicitly
DISPLAY-1.

 or (as IBM extensions) USAGE COMPUTATIONAL-3, or USAGE
PACKED-DECIMAL

Conditional Expressions

 Format
55──identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─NUMERIC────────── ───────────────────────5%
 └ ┘─IS─ └ ┘─NOT─ ├ ┤─ALPHABETIC───────
 ├ ┤─ALPHABETIC-LOWER─
 ├ ┤─ALPHABETIC-UPPER─
 ├ ┤─class-name───────
 ├ ┤─ ─────────────
 └ ┘─ ────────────

identifier-1
Must reference a data item whose usage is explicitly or implicitly DISPLAY.

If identifier-1 is a function-identifier, it must reference an alphanumeric function.

NOT
When used, NOT and the next key word define the class test to be executed for
truth value. For example, NOT NUMERIC is a truth test for determining that an
identifier is nonnumeric.

NUMERIC
Identifier consists entirely of the characters 0 through 9, with or without an opera-
tional sign.

If its PICTURE does not contain an operational sign, the identifier being tested is
determined to be numeric only if the contents are numeric and an operational sign
is not present.

If its PICTURE does contain an operational sign, the identifier being tested is deter-
mined to be numeric only if the item is an elementary item, the contents are
numeric, and a valid operational sign is present.

The NUMERIC test cannot be used with an identifier described as alphabetic or as
a group item that contains one or more signed elementary items.

For numeric data items, the identifier being tested can be described as USAGE
DISPLAY

.

ALPHABETIC
Identifier consists entirely of any combination of the lowercase or uppercase alpha-
betic characters A through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as numeric.

ALPHABETIC-LOWER
Identifier consists entirely of any combination of the lowercase alphabetic charac-
ters a through z and the space.

The ALPHABETIC-LOWER test cannot be used with an identifier described as
numeric.

240 COBOL Language Reference

DBCS
 Under MVS and VM, the identifier consists entirely of DBCS charac-

ters. For DBCS data items, the identifier being tested must be described explicitly
or implicitly as USAGE DISPLAY-1. Each byte of the DBCS identifier being tested
can contain characters that range in value from X'00' through X'FF'.

 Under AIX, OS/2, and Windows, the identifier contains DBCS char-
acters that correspond to valid MVS DBCS characters.

For all platforms, a range check is performed on the data portion of the item for
valid character representation. The valid range is X'41' through X'FE' for both
bytes of each DBCS character and X'4040' for the DBCS blank. (These ranges
are for the equivalent DBCS character representation for MVS, not the actual
DBCS character value ranges of the workstation DBCS characters.)

KANJI
 Under MVS and VM, the identifier consists entirely of DBCS charac-

ters. For KANJI data items, the identifier being tested must be described explicitly
or implicitly as USAGE DISPLAY-1. Each byte of the DBCS identifier being tested
can contain characters that range in value from X'00' through X'FF'.

 Under AIX, OS/2, and Windows the identifier contains DBCS charac-
ters that correspond to valid MVS DBCS characters.

For all platforms, a range check is performed on the data portion of the item for
valid character representation. The valid range is from X'41' through X'7F' for
the first byte, from X'41' through X'FE' for the second byte, and X'4040' for the
DBCS blank. (These ranges are for the equivalent DBCS character representation
for MVS, not the actual DBCS character value ranges of the workstation DBCS
characters.)

The class test is not valid for items defined as USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER, as these items do not belong to any class or category.

The class condition cannot be used for external floating-point (USAGE DISPLAY) or
internal floating-point (USAGE COMP-1 and USAGE COMP-2) items.

Conditional Expressions

ALPHABETIC-UPPER
Identifier consists entirely of any combination of the uppercase alphabetic charac-
ters A through Z and the space.

The ALPHABETIC-UPPER test cannot be used with an identifier described as
numeric.

class-name
Identifier consists entirely of the characters listed in the definition of class-name in
the SPECIAL-NAMES paragraph.

The class-name test must not be used with an identifier described as numeric.

The class test is not valid for items defined as USAGE IS INDEX, as these items do not
belong to any class or category.

Part 6. Procedure Division 241

or Internal-Decimal

DBCS DBCS
KANJI

NOT DBCS
NOT KANJI

Condition-names with DBCS and floating-point values are allowed.

Conditional Expressions

Table 20 shows valid forms of the class test.

Table 20. Valid Forms of the Class Test for Different Types of Identifiers

Type of Identifier Valid Forms of the Class Test

Alphabetic ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT class-name

Alphanumeric,
Alphanumeric-edited, or
Numeric-edited

ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
NUMERIC
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT NUMERIC
NOT class-name

External-Decimal NUMERIC NOT NUMERIC

 Condition-Name Condition
A condition-name condition tests a conditional variable to determine whether its value is
equal to any value(s) associated with the condition-name.

 Format
55──condition-name───5%

A condition-name is used in conditions as an abbreviation for the relation condition.
The rules for comparing a conditional variable with a condition-name value are the
same as those specified for relation conditions.

If the condition-name has been associated with a range of values (or with several
ranges of values), the conditional variable is tested to determine whether or not its
value falls within the range(s), including the end values. The result of the test is true if
one of the values corresponding to the condition-name equals the value of its associ-
ated conditional variable.

The following example illustrates the use of conditional variables and condition-names:

ð1 AGE-GROUP PIC 99.
 88 INFANT VALUE ð.

88 BABY VALUE 1, 2.
88 CHILD VALUE 3 THRU 12.
88 TEEN-AGER VALUE 13 THRU 19.

242 COBOL Language Reference

Condition-Name Conditions and Windowed Date Field
Comparisons
If the conditional variable is a windowed date field, then the values associated with its
condition-names are treated like values of the windowed date field; that is, they are
treated as if they were converted to expanded date format, as described under “Seman-
tics of Windowed Date Fields” on page 165.

For example, given YEARWINDOW(1945), specifying a century window of 1945–2044,
and the following definition:

ð5 DATE-FIELD PIC 9(6) DATE FORMAT YYXXXX.
 88 DATE-TARGET VALUE ð5122ð.

then a value of 051220 in DATE-FIELD would cause the following condition to be true:

IF DATE-TARGET...

because the value associated with DATE-TARGET and the value of DATE-FIELD
would both be treated as if they were prefixed by “20” before comparison.

However, the following condition would be false:

IF DATE-FIELD = ð5122ð...

because, in a comparison with a windowed date field, literals are treated as if they are
prefixed by “19”, regardless of the century window. So the above condition effectively
becomes:

IF 2ðð5122ð = 19ð5122ð...

For more information on using windowed date fields in conditional expressions, see
“Date Fields” on page 244.

A nonnumeric literal can be enclosed in paren-
theses within a relation condition.

Conditional Expressions

AGE-GROUP is the conditional variable; INFANT, BABY, CHILD, and TEEN-AGER are
condition-names. For individual records in the file, only one of the values specified in
the condition-name entries can be present.

The following IF statements can be added to the above example to determine the age
group of a specific record:

IF INFANT... (Tests for value ð)
IF BABY... (Tests for values 1, 2)
IF CHILD... (Tests for values 3 through 12)
IF TEEN-AGER... (Tests for values 13 through 19)

Depending on the evaluation of the condition-name condition, alternative paths of exe-
cution are taken by the object program.

 Relation Condition
A relation condition compares two operands, either of which can be an identifier, literal,
arithmetic expression, or index-name.

Part 6. Procedure Division 243

 Date Fields
Date fields can be alphanumeric, external decimal, or internal decimal; the existing
rules for the validity and mode (numeric or nonnumeric) of comparing such items still

Conditional Expressions

 Format 1
55──operand-1─ ──┬ ┬──── ──┬ ┬ ──┬ ┬───── ──┬ ┬─GREATER─ ──┬ ┬────── ───── ─operand-2──────5%
 └ ┘─IS─ │ │└ ┘─NOT─ │ │└ ┘─THAN─
 │ │├ ┤─>─────────────────
 │ │├ ┤ ─LESS─ ──┬ ┬────── ───
 │ ││ │└ ┘─THAN─
 │ │├ ┤─<─────────────────
 │ │├ ┤ ─EQUAL─ ──┬ ┬──── ────
 │ ││ │└ ┘─TO─
 │ │└ ┘─=─────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬────
 │ │└ ┘─THAN─ └ ┘─TO─
 ├ ┤─>=──────────────────────────────────
 ├ ┤ ─LESS─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬──── ───
 │ │└ ┘─THAN─ └ ┘─TO─
 └ ┘─<=──────────────────────────────────

operand-1
The subject of the relation condition. Can be an identifier, literal, function-identifier,
arithmetic expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal, function-identifier,
arithmetic expression, or index-name.

The relation condition must contain at least one reference to an identifier.

The relational operator specifies the type of comparison to be made. Table 21 shows
relational operators and their meanings. Each relational operator must be preceded
and followed by a space. The relational operators >= and <= must not have a space
between them.

Table 21. Relational Operators and Their Meanings

Relational Operator Can Be Written Meaning

IS GREATER THAN IS > Greater than

IS NOT GREATER THAN IS NOT > Not greater than

IS LESS THAN IS < Less than

IS NOT LESS THAN IS NOT < Not less than

IS EQUAL TO IS = Equal to

IS NOT EQUAL TO IS NOT = Not equal to

IS GREATER THAN OR
EQUAL TO

IS >= Is greater than or equal to

IS LESS THAN OR EQUAL
TO

IS <= Is less than or equal to

244 COBOL Language Reference

apply. For example, an alphanumeric date field cannot be compared with an internal
decimal date field. In addition to these rules, two date fields can be compared only if
they are compatible; they must have the same date format except for the year part,
which may be windowed or expanded.

For year-last date fields, the only comparisons that are supported are IS EQUAL TO
and IS NOT EQUAL TO between two year-last date fields with identical date formats, or
between a year-last date field and a non-date.

Table 22 on page 246 shows supported comparisons for non-year-last date fields.
This table uses the following terms to describe how the comparisons are performed:

Non-windowed
The comparison is performed with no windowing, as if the operands were
both non-dates.

Windowed
The comparison is performed as if:

1. Any windowed date field in the relation were expanded according to
the century window specified by the YEARWINDOW compiler option,
as described under “Semantics of Windowed Date Fields” on
page 165.

 This expansion is sensitive to trigger values in the date
field comparand if the DATEPROC(TRIG) compiler option is in effect.

2. Any repetitive alphanumeric figurative constant were expanded to the
size of the windowed date field with which it is compared, giving an
alphanumeric non-date comparand. Repetitive alphanumeric figurative
constants include ZERO (in an alphanumeric context), SPACE,
LOW-VALUE, HIGH-VALUE, QUOTE and ALL literal.

3. Any non-date operands were treated as if they had the same date
format as the date field, but with a base year of 1900.

 If the DATEPROC(NOTRIG) compiler option is in effect,
the comparison is performed as if the non-date operand were
expanded by assuming 19 for the century part of the expanded year.

If the DATEPROC(TRIG) compiler option is in effect, the comparison is
sensitive to date trigger values in the non-date operand. For alphanu-
meric operands, these trigger values are LOW-VALUE, HIGH-VALUE,
and SPACE. For alphanumeric and numeric operands compared with
windowed date fields with at least one X in the DATE FORMAT clause
(that is, windowed date fields other than just a windowed year), values
of all zeros or all nines are also treated as triggers. If a non-date
operand contains a trigger value, the comparison proceeds as if the
non-date operand were expanded by copying the trigger value to the
assumed century part of the expanded year. If the non-date operand
does not contain a trigger value, the century part of the expanded year
is assumed to be 19.

Conditional Expressions

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Part 6. Procedure Division 245

The comparison is then performed according to normal COBOL rules.
Nonnumeric comparisons are not changed to numeric comparisons by the
prefixing of the century value.

Relation conditions can contain arithmetic expressions. For information about the treat-
ment of date fields in arithmetic expressions, see “Arithmetic with Date Fields” on
page 235.

Table 22. Comparisons with Date Fields

First Operand

Second Operand

Non-date Windowed date field Expanded date field

Non-date Non-windowed Windowed1 Non-windowed

Windowed date field Windowed1 Windowed Windowed

Expanded date field Non-windowed Windowed Non-windowed

Note:

1. When compared with windowed date fields, non-dates are assumed to contain a windowed
year relative to 1900. For details, see items 3 and 4 under the definition of “Windowed” com-
parison.

 DBCS Items
 Under MVS and VM, DBCS data items and literals can be used with all

relational operators. Comparisons are based on the binary collating sequence of the
hexadecimal values of the DBCS characters. If the DBCS items are not the same
length, the smaller item is padded on the right with DBCS spaces.

 Under AIX, OS/2, and Windows, comparisons of DBCS data items and
literals are based on a collation sequence according to the COLLSEQ compiler option:

� If the COLLSEQ(NATIVE) compiler option is in effect, then the collating sequence
is determined by the locale. For information on the locale, see Appendix F,
“Locale Considerations (Workstation Only)” on page 568.

� Otherwise, the collating sequence is determined by the binary values of the DBCS
characters.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied in compar-
isons of DBCS data items and literals.

DBCS items can be compared only with DBCS items.

Pointer Data Items
Only EQUAL and NOT EQUAL are allowed as relational operators when specifying
pointer data items. Pointer data items are items defined explicitly as USAGE IS
POINTER, or are ADDRESS OF special registers, which are implicitly defined as
USAGE IS POINTER.

Conditional Expressions

246 COBOL Language Reference

The operands are equal if the two addresses used in the comparison would both result
in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH Format
1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL) statements,
because there is no meaningful ordering that can be applied to pointer data items.

 Format 2
55─ ──┬ ┬ ─ADDRESS OF──identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ───────────5
 ├ ┤─identifier-2───────────── └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─
 ├ ┤─NULL───────────────────── └ ┘─=─────────────
 └ ┘─NULLS────────────────────

5─ ──┬ ┬ ─ADDRESS OF──identifier-3─ ───5%
 ├ ┤─identifier-4─────────────
 ├ ┤─NULL─────────────────────
 └ ┘─NULLS────────────────────

identifier-1
identifier-3

Can specify any level item defined in the Linkage Section, except 66 and 88.

identifier-2
identifier-4

Must be described as USAGE IS POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS POINTER. That is, NULL=NULL is not allowed.

Table 23 summarizes the permissible comparisons for USAGE IS POINTER, NULL,
and ADDRESS OF.

Table 23. Permissible Comparisons for USAGE IS POINTER, NULL, and ADDRESS OF

First Operand

Second Operand

USAGE IS
POINTER ADDRESS OF NULL/NULLS

USAGE IS POINTER Yes Yes Yes

ADDRESS OF Yes Yes Yes

NULL/NULLS Yes Yes No

Note:

 YES = Comparison allowed only for EQUAL, NOT EQUAL
 NO = No comparison allowed

Procedure-Pointer Data Items
Only EQUAL and NOT EQUAL are allowed as relational operators when specifying
procedure-pointer data items. Procedure-pointer data items are items defined explicitly
as USAGE IS PROCEDURE-POINTER.

Conditional Expressions

Part 6. Procedure Division 247

The operands are equal if the two addresses used in the comparison would both result
in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH Format
1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL) statements,
because there is no meaningful ordering that can be applied to procedure-pointer data
items.

 Format 3
55─ ──┬ ┬────────────── ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──┬ ┬────────────── ────5%
 ├ ┤─identifier-1─ └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─ ├ ┤─identifier-2─
 ├ ┤─NULL───────── └ ┘─=───────────── ├ ┤─NULL─────────
 └ ┘─NULLS──────── └ ┘─NULLS────────

identifier-1
identifier-2

Must be described as USAGE IS PROCEDURE-POINTER.

NULL(S)
As in this syntax diagram, can be used only if the other operand is defined as
USAGE IS PROCEDURE-POINTER. That is, NULL=NULL is not allowed.

Object Reference Data Items
A data item of USAGE OBJECT REFERENCE can be compared for equality or ine-
quality with another data item of USAGE OBJECT REFERENCE or with NULL, NULLS,
or SELF. (A comparison with SELF is only allowed in a method.) Two object-
references compare equal only if the data items identify the same object.

 Format 4
55─ ──┬ ┬─object-reference-identifier-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──────5
 ├ ┤─SELF────────────────────────── └ ┘─IS─ └ ┘─NOT─ │ │└ ┘─TO─
 ├ ┤─NULL────────────────────────── └ ┘ ─=─────────────
 └ ┘─NULLS─────────────────────────

5─ ──┬ ┬─object-reference-identifier-2─ ──5%
 ├ ┤─SELF──────────────────────────
 ├ ┤─NULL──────────────────────────
 └ ┘─NULLS─────────────────────────

Conditional Expressions

Comparison of Numeric and Nonnumeric Operands

Comparing Numeric Operands
The algebraic values of numeric operands are compared.

� The length (number of digits) of the operands is not significant.
� Unsigned numeric operands are considered positive.
� Zero is considered to be a unique value, regardless of sign.
� Comparison of numeric operands is permitted, regardless of the type of USAGE

specified for each.

248 COBOL Language Reference

IFP EFP FPL

NN

NN

NN

NN

NN

NN

NN

NU NU

NU NU

NU NU NU

NU NU NU

NU NU NU

NU NU NU

Internal Floating-point (IFP) NU NU NU NU NU NU NU NU NU

External Floating-Point (EFP) NU NU NU NU NU NU NU NU NU

Floating-point Literal (FPL) NU NU NU NU NU NU

Conditional Expressions

Table 24 on page 249 summarizes permissible comparisons with numeric operands.

The symbols used in Table 24 and Table 25 are as follows:

NN = Comparison for nonnumeric operands
NU = Comparison for numeric operands
Blank = Comparison is not allowed.

Table 24. Permissible Comparisons with Numeric Second Operands

First Operand

Second Operand

ZR NL ED BI AE ID

Nonnumeric Operand

Group (GR) NN NN1 NN1

Alphabetic (AL) NN NN1 NN1

Alphanumeric (AN) NN NN1 NN1

Alphanumeric-edited (ANE) NN NN1 NN1

Numeric-Edited (NE) NN NN1 NN1

Figurative Constant (FC 2) NN1

Nonnumeric Literal (NNL) NN1

Numeric Operand

Figurative Constant ZERO
(ZR)

NU NU NU NU

Numeric Literal (NL) NU NU NU NU

External Decimal (ED) NU NU NU NU NU NU

Binary (BI) NU NU NU NU NU NU

Arithmetic Expression (AE) NU NU NU NU NU NU

Internal Decimal (ID) NU NU NU NU NU NU

Note:

1 Integer item only.
2 Includes all figurative constants except ZERO.

Comparing Nonnumeric Operands
Comparisons of nonnumeric operands are made with respect to the collating sequence
of the character set in use.

� For the EBCDIC character set, the EBCDIC collating sequence is used.

� For the ASCII character set, the ASCII collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

Part 6. Procedure Division 249

Conditional Expressions

� Under AIX, OS/2, and Windows if the collating sequence specified
is NATIVE (explicitly or by default), the comparisons of characters are based on
the collating sequence indicated by the locale setting. For more information on
locale, see Appendix F, “Locale Considerations (Workstation Only)” on page 568.

� When the PROGRAM COLLATING SEQUENCE clause is specified in the
OBJECT-COMPUTER paragraph, the collating sequence associated with the
alphabet-name clause in the SPECIAL-NAMES paragraph is used.

The size of each operand is the total number of characters in that operand; the size
affects the result of the comparison. There are two cases to consider:

Operands of Equal Size
Characters in corresponding positions of the two operands are compared,
beginning with the leftmost character and continuing through the rightmost
character.

If all pairs of characters through the last pair test as equal, the operands are
considered as equal.

If a pair of unequal characters is encountered, the characters are tested to
determine their relative positions in the collating sequence. The operand con-
taining the character higher in the sequence is considered the greater
operand.

Operands of Unequal Size
If the operands are of unequal size, the comparison is made as though the
shorter operand were extended to the right with enough spaces to make the
operands equal in size.

250 COBOL Language Reference

Internal Floating-
point (IFP)

External Floating-
point (EFP)

NN NN NN NN NN NN NN

Floating-point Literal
(FPL)

Conditional Expressions

Table 25 summarizes permissible comparisons with nonnumeric operands.

Table 25. Permissible Comparisons with Nonnumeric Second Operands

First Operand

Second Operand

GR AL AN ANE NE FC 2 NNL

Nonnumeric Operand

Group (GR) NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN

Alphanumeric (AN) NN NN NN NN NN NN NN

Alphanumeric-edited
(ANE)

NN NN NN NN NN NN NN

Numeric-Edited (NE) NN NN NN NN NN NN NN

Figurative Constant
(FC2)

NN NN NN NN NN

Nonnumeric Literal
(NNL)

NN NN NN NN NN

Numeric Operand

Figurative Constant
ZERO (ZR)

NN NN NN NN NN

Numeric Literal (NL) NN1 NN1 NN1 NN1 NN1

External Decimal
(ED)

NN1 NN1 NN1 NN1 NN1 NN1 NN1

Binary (BI)

Arithmetic
Expression (AE)

Internal Decimal (ID)

Note:

1 Integer item only.
2 Includes all figurative constants except ZERO.

Part 6. Procedure Division 251

� External floating-point items can be compared with nonnumeric operands.

� In the comparison of an index-name with an arithmetic expression, the occurrence
number that corresponds to the value of the index-name is compared with the
arithmetic expression.

Since an integer function can be used wherever an arithmetic expression can be
used, this extension allows you to compare an index-name to an integer or numeric
function.

Conditional Expressions

Comparing Numeric and Nonnumeric Operands
The nonnumeric comparison rules, discussed above, apply. In addition, when numeric
and nonnumeric operands are being compared, their USAGE must be the same. In
such comparisons:

� The numeric operand must be described as an integer literal or data item.
� Non-integer literals and data items must not be compared with nonnumeric oper-

ands.

If either of the operands is a group item, the nonnumeric comparison rules, discussed
above, apply. In addition to those rules:

� If the nonnumeric operand is a literal or an elementary data item , the numeric
operand is treated as though it were moved to an alphanumeric elementary data
item of the same size, and the contents of this alphanumeric data item were then
compared with the nonnumeric operand.

� If the nonnumeric operand is a group item , the numeric operand is treated as
though it were moved to a group item of the same size, and the contents of this
group item were compared then with the nonnumeric operand.

See “MOVE Statement” on page 352.

Comparing Index-Names and Index Data Items
Comparisons involving index-names and/or index data items conform to the following
rules:

� The comparison of two index-names is actually the comparison of the corre-
sponding occurrence numbers.

� In the comparison of an index-name with a data item (other than an index data
item), or in the comparison of an index-name with a literal, the occurrence number
that corresponds to the value of the index-name is compared with the data item or
literal.

� In the comparison of an index data item with an index-name or another index data
item, the actual values are compared without conversion. Results of any other
comparison involving an index data item are undefined.

Table 26 on page 253 shows valid comparisons for index-names and index data items.

252 COBOL Language Reference

Arithmetic
Expression

Compare
occurrence
number with
arithmetic
expression

Illegal

Comparison of DBCS Operands
The rules for comparing DBCS operands are the same as those for the comparison of
nonnumeric operands.

 Under MVS and VM, the comparison is based on a binary collating
sequence of the hexadecimal values of the DBCS characters.

 Under AIX, OS/2, and Windows if the collating sequence specified is
NATIVE (explicitly or by default), the comparisons of characters are based on the col-
lating sequence indicated by the locale setting. For more information on locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 568.

Note: The PROGRAM COLLATING SEQUENCE clause will not be applied to compar-
isons of DBCS operands.

Operand-1 can be
defined as a floating-point identifier.

Conditional Expressions

Table 26. Comparisons for Index-Names and Index Data Items

Operands
Compared

Index-
Name

Index
Data Item

Data-Name
(Numeric
Integer
Only)

Literal
(Numeric
Integer
Only)

Index-Name Compare
occurrence
number

Compare
without
conver-
sion

Compare
occurrence
number
with data-
name

Compare
occurrence
number
with literal

Index Data
Item

Compare
without
conversion

Compare
without
conver-
sion

Illegal Illegal

 Sign Condition
The sign condition determines whether or not the algebraic value of a numeric operand
is greater than, less than, or equal to zero.

 Format
55──operand-1─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─POSITIVE─ ──────────────────────────────────5%
 └ ┘─IS─ └ ┘─NOT─ ├ ┤─NEGATIVE─
 └ ┘─ZERO─────

operand-1
Must be defined as a numeric identifier, or it must be defined as an arithmetic
expression that contains at least one reference to a variable.

Part 6. Procedure Division 253

 Under MVS and VM, if you are using the NUMPROC compiler option,
the results of the sign condition test can be affected. For details, see the IBM
COBOL for MVS & VM Programming Guide.

Date Fields in Sign Conditions
The operand in a sign condition can be a date field, but is treated as a non-date for the
sign condition test. Thus, if the operand is an identifier of a windowed date field, date
windowing is not done, so the sign condition may be used to test a windowed date field
for an all-zero value.

However, if the operand is an arithmetic expression, then any windowed date fields in
the expression will be expanded during the computation of the arithmetic result, prior to
using the result for the sign condition test.

For example, given that:

� Identifier WIN-DATE is defined as a windowed date field, and contains a value of
zero

� Compiler option DATEPROC is in effect

� Compiler option YEARWINDOW(starting-year) is in effect, with a starting-year other
than 1900

then this sign condition would evaluate to true:

WIN-DATE IS ZERO

whereas this sign condition would evaluate to false:

WIN-DATE + ð IS ZERO

Conditional Expressions

The operand is:

� POSITIVE if its value is greater than zero
� NEGATIVE if its value is less than zero
� ZERO if its value is equal to zero

An unsigned operand is either POSITIVE or ZERO.

NOT
One algebraic test is executed for the truth value of the sign condition. For
example, NOT ZERO is regarded as true when the operand tested is positive or
negative in value.

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|

|

|

|

 Switch-Status Condition
The switch-status condition determines the on or off status of an UPSI switch.

 Format
55──condition-name───5%

254 COBOL Language Reference

Conditional Expressions

condition-name
Must be defined in the SPECIAL-NAMES paragraph as associated with the ON or
OFF value of an UPSI switch. (See “SPECIAL-NAMES Paragraph” on page 89.)

The switch-status condition tests the value associated with the condition-name. (The
value associated with the condition-name is considered to be alphanumeric.) The result
of the test is true if the UPSI switch is set to the value (0 or 1) corresponding to
condition-name. See “UPSI” in the IBM COBOL Programming Guide for your platform.

 Complex Conditions
A complex condition is formed by combining simple conditions, combined conditions,
and/or complex conditions with logical operators, or negating these conditions with
logical negation.

Each logical operator must be preceded and followed by a space. The following table
shows the logical operators and their meanings.

Unless modified by parentheses, the following precedence rules (from highest to
lowest) apply:

 1. Arithmetic operations
 2. Simple conditions
 3. NOT
 4. AND
 5. OR

The truth value of a complex condition (whether parenthesized or not) is the truth value
that results from the interaction of all the stated logical operators on either of the fol-
lowing:

� The individual truth values of simple conditions

� The intermediate truth values of conditions logically combined or logically negated.

A complex condition can be either of the following:

� A negated simple condition
� A combined condition (which can be negated)

Table 27. Logical Operators and Their Meanings

Logical
Operator

Name Meaning

AND Logical con-
junction

The truth value is true when both conditions are true.

OR Logical
inclusive
OR

The truth value is true when either or both conditions are true.

NOT Logical
negation

Reversal of truth value (the truth value is true if the condition is
false).

Part 6. Procedure Division 255

Conditional Expressions

Negated Simple Conditions
A simple condition is negated through the use of the logical operator NOT.

 Format
55──NOT──condition-1───5%

The negated simple condition gives the opposite truth value of the simple condition.
That is, if the truth value of the simple condition is true, then the truth value of that
same negated simple condition is false, and vice versa.

Placing a negated simple condition within parentheses does not change its truth value.
That is, the following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

 Combined Conditions
Two or more conditions can be logically connected to form a combined condition.

 Format
 ┌ ┐────────────────────────
55──condition-1─ ───6 ┴──┬ ┬─AND─ ─condition-2─ ─────────────────────────────────────5%
 └ ┘─OR──

The condition to be combined can be any of the following:

 � A simple-condition

� A negated simple-condition

� A combined condition

� A negated combined condition (that is, the NOT logical operator followed by a com-
bined condition enclosed in parentheses)

� Combinations of the preceding conditions that are specified according to the rules
in the following table.

256 COBOL Language Reference

Conditional Expressions

Parentheses are never needed when either ANDs or ORs (but not both) are used
exclusively in one combined condition. However, parentheses can be needed to modify
the implicit precedence rules to maintain the correct logical relation of operators and
operands.

There must be a one-to-one correspondence between left and right parentheses, with
each left parenthesis to the left of its corresponding right parenthesis.

Table 29 illustrates the relationships between logical operators and conditions C1 and
C2.

Table 28. Combined Conditions—Permissible Element Sequences

Combined
condition
element

Left
most

When not leftmost, can
be immediately pre-
ceded by:

Right
most

When not rightmost, can
be immediately followed
by:

simple- con-
dition

Yes OR NOT AND (Yes OR AND)

OR AND No simple-condition) No simple-condition NOT (

NOT Yes OR AND (No simple-condition (

(Yes OR NOT AND (No simple-condition NOT (

) No simple-condition) Yes OR AND)

Table 29. Logical Operators and Evaluation Results of Combined Conditions

Value for
C1

Value
for C2

C1
AND
C2

C1 OR
C2

NOT
(C1
AND
C2)

NOT
C1
AND
C2

NOT
(C1 OR
C2)

NOT C1
OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Order of Evaluation of Conditions
Parentheses, both explicit and implicit, define the level of inclusiveness within a
complex condition. Two or more conditions connected by only the logical operators
AND or OR at the same level of inclusiveness establish a hierarchical level within a
complex condition. An entire complex condition, therefore, is a nested structure of
hierarchical levels with the entire complex condition being the most inclusive hierar-
chical level.

Within this context, the evaluation of the conditions within an entire complex condition
begins at the left of the condition. The constituent connected conditions within a hierar-
chical level are evaluated in order from left to right, and evaluation of that hierarchical

Part 6. Procedure Division 257

Conditional Expressions

level terminates as soon as a truth value for it is determined, regardless of whether all
the constituent connected conditions within that hierarchical level have been evaluated.

Values are established for arithmetic expressions and functions if and when the condi-
tions containing them are evaluated. Similarly, negated conditions are evaluated if and
when it is necessary to evaluate the complex condition that they represent. For
example:

NOT A IS GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR
(((A + B) IS EQUAL TO C) AND (D IS POSITIVE))

Order of Evaluation:
1. (NOT (A IS GREATER THAN B)) is evaluated, giving some intermediate truth value,

t1. If t1 is true, the combined condition is true, and no further evaluation takes
place. If t1 is false, evaluation continues as follows.

2. (A + B) is evaluated, giving some intermediate result, x.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value, t2. If t2 is
false, the combined condition is false, and no further evaluation takes place. If t2
is true, the evaluation continues as follows.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value, t3. If t3 is
false, the combined condition is false. If t3 is true, the combined condition is true.

Abbreviated Combined Relation Conditions
When relation-conditions are written consecutively, any relation-condition after the first
can be abbreviated in one of two ways:

� Omission of the subject
� Omission of the subject and relational operator.

 Format
 ┌ ┐───
55──relation-condition─ ───6 ┴──┬ ┬─AND─ ──┬ ┬───── ──┬ ┬───────────────────── ─object─ ─5%
 └ ┘─OR── └ ┘─NOT─ └ ┘─relational-operator─

In any consecutive sequence of relation-conditions, both forms of abbreviation can be
specified. The abbreviated condition is evaluated as if:

1. The last stated subject is the missing subject.
2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element sequence in
combined conditions, as shown in Table 28 on page 257.

If the word immediately following NOT is GREATER THAN, >, LESS THAN, <, EQUAL
TO, and =, then the NOT participates as part of the relational operator.

258 COBOL Language Reference

 Using Parentheses
You can use parentheses in combined relation conditions to specify an intended order
of evaluation. Using parentheses can also help you to improve the readability of condi-
tional expressions.

The following rules govern the use of parentheses in abbreviated combined relation
conditions:

1. Parentheses can be used to change the order of evaluation of the logical operators
AND and OR.

2. The word NOT participates as part of the relational operator when it is immediately
followed by GREATER THAN, >, LESS THAN, <, EQUAL TO, and =.

3. NOT in any other position is considered a logical operator and thus results in a
negated relation-condition. If you use NOT as a logical operator, only the relation
condition immediately following the NOT is negated; the negation is not propagated
through the abbreviated combined relation condition along with the subject and
relational operator.

4. The logical NOT operator can appear within a parenthetical expression that imme-
diately follows a relational operator.

5. When a left parenthesis appears immediately after the relational operator, the rela-
tional operator is distributed to all objects enclosed in the parentheses. In the case
of a “distributed” relational operator, the subject and relational operator remain
current after the right parenthesis which ends the distribution. The following three
restrictions apply to cases where the relational operator is distributed throughout
the expression:

a. A simple condition cannot appear within the scope of the distribution.
b. Another relational operator cannot appear within the scope of the distribution.
c. The logical operator NOT cannot appear immediately after the left parenthesis,

which defines the scope of the distribution.

6. Evaluation proceeds from the least to the most inclusive condition.

7. There must be a one-to-one correspondence between left and right parentheses,
with each left parenthesis to the left of its corresponding right parenthesis. If the
parentheses are unbalanced, the compiler inserts a parenthesis and issues an
E-level message. Note, however, that if the compiler-inserted parenthesis results
in the truncation of the expression, you will receive an S-level diagnostic message.

8. The last stated subject is inserted in place of the missing subject.

9. The last stated relational operator is inserted in place of the missing relational
operator.

10. Insertion of the omitted subject and/or relational operator ends when:

a. Another simple condition is encountered,
b. A condition-name is encountered,

Conditional Expressions

NOT in any other position is considered a logical operator (and thus results in a
negated relation-condition).

Part 6. Procedure Division 259

c. A right parenthesis is encountered that matches a left parenthesis that appears
to the left of the subject.

11. In any consecutive sequence of relation conditions, you can use both abbreviated
relation conditions that contain parentheses and those that don't.

12. Consecutive logical NOT operators cancel each other and result in an S-level
message. Note, however, that an abbreviated combined relation condition can
contain two consecutive NOT operators when the second NOT is part of a rela-
tional operator. For example, you can abbreviate the first condition as the second
condition listed below.

A = B and not A not = C
A = B and not not = C

The following table summarizes the rules for forming an abbreviated combined relation
condition.

Table 30. Abbreviated Combined Conditions—Permissible Element Sequences

Combined
Condition
Element

Left
most

When not leftmost, can
be immediately preceded
by:

Right
most

When not rightmost, can
be immediately followed
by:

Subject Yes NOT (No Relational operator

Object No Relational operator AND
OR NOT (

Yes AND OR)

Relational
operator

No Subject AND OR NOT No Object (

AND OR No Object) No Object Relational operator
NOT (

NOT Yes AND OR (No Subject Object Relational
operator (

(Yes Relational operator AND
OR NOT (

No Subject Object NOT (

) No Object) Yes AND OR)

NOT (A = B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT = C)) AND
(NOT (A NOT = D))))

Conditional Expressions

The following examples illustrate abbreviated combined relation conditions, with and
without parentheses, and their unabbreviated equivalents.

Table 31. Abbreviated Combined Conditions—Unabbreviated Equivalents

Abbreviated Combined Relation Condition Equivalent

A = B AND NOT < C OR D ((A = B) AND (A NOT < C)) OR (A NOT < D)

A NOT > B OR C (A NOT > B) OR (A NOT > C)

NOT A = B OR C (NOT (A = B)) OR (A = C)

260 COBOL Language Reference

EXIT METHOD
GOBACK

Statement Categories

 Statement Categories
There are four categories of COBOL statements:

 � Imperative
 � Conditional
 � Delimited scope
 � Compiler directing.

 Imperative Statements
An imperative statement either specifies an unconditional action to be taken by the
program, or is a conditional statement terminated by its explicit scope terminator (see
“Delimited Scope Statements” on page 263). A series of imperative statements can be
specified whenever an imperative statement is allowed. A conditional statement that is
terminated by its explicit scope terminator is also classified as an imperative statement
(see “Delimited Scope Statements” on page 263). Table 32 lists COBOL imperative
statements.

Table 32 (Page 1 of 2). Imperative Statements

Arithmetic
 ADD1

 COMPUTE1

 DIVIDE1

 MULTIPLY1

 SUBTRACT1

Data Movement
 ACCEPT (DATE,DAY,DAY-OF-WEEK,TIME)
 INITIALIZE
 INSPECT
 MOVE
 SET
 STRING2

 UNSTRING2

Ending
 STOP RUN
 EXIT PROGRAM

Input-Output
 ACCEPT identifier
 CLOSE
 DELETE3

 DISPLAY
 OPEN
 READ4

 REWRITE3

 START3

 STOP literal
 WRITE5

Part 6. Procedure Division 261

or Method

INVOKE

Statement Categories

Table 32 (Page 2 of 2). Imperative Statements

Ordering
 MERGE
 RELEASE
 RETURN6

 SORT

Procedure Branching
 ALTER
 EXIT
 GO TO
 PERFORM

Program Linkage
 CALL7

 CANCEL

Table Handling
 SET

Note:

1 Without the ON SIZE ERROR and/or the NOT ON SIZE ERROR phrase.
2 Without the ON OVERFLOW and/or the NOT ON OVERFLOW phrase.
3 Without the INVALID KEY and/or the NOT INVALID KEY phrase.
4 Without the AT END, NOT AT END, INVALID KEY, and/or NOT INVALID KEY phrases.
5 Without the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, and/or NOT END-OF-PAGE

phrases.
6 Without the AT END and/or NOT AT END phrase.
7 Without the ON OVERFLOW phrase, and without the ON EXCEPTION and/or NOT ON

EXCEPTION phrase.

 Conditional Statements
A conditional statement specifies that the truth value of a condition is to be deter-
mined, and that the subsequent action of the object program is dependent on this truth
value. (See “Conditional Expressions” on page 239.) Table 33 lists COBOL state-
ments that become conditional when a condition (for example, ON SIZE ERROR or
ON OVERFLOW) is included, and when the statement is not terminated by its explicit
scope terminator.

Table 33 (Page 1 of 2). Conditional Statements

Arithmetic
ADD...ON SIZE ERROR
ADD...NOT ON SIZE ERROR
COMPUTE...ON SIZE ERROR
COMPUTE...NOT ON SIZE ERROR
DIVIDE...ON SIZE ERROR
DIVIDE...NOT ON SIZE ERROR
MULTIPLY...ON SIZE ERROR
MULTIPLY...NOT ON SIZE ERROR
SUBTRACT...ON SIZE ERROR
SUBTRACT...NOT ON SIZE ERROR

262 COBOL Language Reference

or Method

INVOKE...ON EXCEPTION
INVOKE...NOT ON EXCEPTION

Statement Categories

Table 33 (Page 2 of 2). Conditional Statements

Data Movement
 STRING...ON OVERFLOW

STRING...NOT ON OVERFLOW
 UNSTRING...ON OVERFLOW

UNSTRING...NOT ON OVERFLOW

Decision
 IF
 EVALUATE

Input-Output
 DELETE...INVALID KEY

DELETE...NOT INVALID KEY
 READ...AT END

READ...NOT AT END
 READ...INVALID KEY

READ...NOT INVALID KEY
 REWRITE...INVALID KEY

REWRITE...NOT INVALID KEY
 START...INVALID KEY

START...NOT INVALID KEY
 WRITE...AT END-OF-PAGE

WRITE...NOT AT END-OF-PAGE
 WRITE...INVALID KEY

WRITE...NOT INVALID KEY

Ordering
 RETURN...AT END

RETURN...NOT AT END

Program Linkage
 CALL...ON OVERFLOW
 CALL...ON EXCEPTION

CALL...NOT ON EXCEPTION

Table Handling
 SEARCH

Delimited Scope Statements
In general, a DELIMITED SCOPE statement uses an explicit scope terminator to turn a
conditional statement into an imperative statement; the resulting imperative statement
can then be nested. Explicit scope terminators can also be used, however, to terminate
the scope of an imperative statement. Explicit scope terminators are provided for all
COBOL verbs that can have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement can be specified
wherever an imperative statement is allowed by the rules of the language.

Part 6. Procedure Division 263

END-INVOKE

Statement Operations

Explicit Scope Terminators
An EXPLICIT SCOPE TERMINATOR marks the end of certain Procedure Division
statements. A conditional statement that is delimited by its explicit scope terminator is
considered an imperative statement and must follow the rules for imperative state-
ments.

The following are explicit scope terminators:

END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF

END-MULTIPLY
END-PERFORM

END-READ
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE

Implicit Scope Terminators
At the end of any sentence, an IMPLICIT SCOPE TERMINATOR is a separator period
that terminates the scope of all previous statements not yet terminated.

An unterminated conditional statement cannot be contained by another statement.
However, a scope terminator will be assumed just prior to the next phrase of the con-
taining statement.

Note: Except for nesting conditional statements within IF statements, nested state-
ments must be imperative statements, and must follow the rules for imperative state-
ments. You should not nest conditional statements.

 Compiler-Directing Statements
Statements that direct the compiler to take a specified action are discussed in
“Compiler-Directing Statement” on page 512.

 Statement Operations
COBOL statements perform the following types of operations:

 � Arithmetic
 � Data manipulation
 � Input/output
 � Procedure branching

There are several phrases common to arithmetic and data manipulation statements,
such as:

 � CORRESPONDING Phrase
 � GIVING Phrase
 � ROUNDED Phrase
� SIZE ERROR Phrases

264 COBOL Language Reference

 USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE

� Neither identifier-1 nor identifier-2 is described as a USAGE IS POINTER, USAGE
IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE

� identifier-1 and/or identifier-2 can be subordinate to a FILLER item.

Statement Operations

 CORRESPONDING Phrase
The CORRESPONDING phrase (CORR) allows ADD, SUBTRACT, and MOVE oper-
ations to be performed on elementary data items of the same name if the group items
to which they belong are specified.

Both identifiers following the key word CORRESPONDING must name group items. In
this discussion, these identifiers are referred to as identifier-1 and identifier-2.

A pair of data items (subordinate items), one from identifier-1 and one from identifier-2,
correspond if the following conditions are true:

� In an ADD or SUBTRACT statement, both of the data items are elementary
numeric data items. Other data items are ignored.

� In a MOVE statement, at least one of the data items is an elementary item, and the
move is permitted by the move rules.

� The two subordinate items have the same name and the same qualifiers up to but
not including identifier-1 and identifier-2.

� The subordinate items are not identified by the key word FILLER.

� Neither identifier-1 nor identifier-2 is described as a level 66, 77, or 88 item, nor is
either described as a USAGE IS INDEX item. Neither identifier-1 nor identifier-2
can be reference-modified.

� The subordinate items do not include a REDEFINES, RENAMES, OCCURS,
USAGE IS INDEX,

 clause in their descriptions.

However, identifier-1 and identifier-2 themselves can contain or be subordinate to
items containing a REDEFINES or OCCURS clause in their descriptions.

For example, if two data hierarchies are defined as follows:

ð5 ITEM-1 OCCURS 6.
 1ð ITEM-A PIC S9(3).
 1ð ITEM-B PIC +99.9.
 1ð ITEM-C PIC X(4).
 1ð ITEM-D REDEFINES ITEM-C PIC 9(4).
 1ð ITEM-E USAGE COMP-1.
 1ð ITEM-F USAGE INDEX.
ð5 ITEM-2.
 1ð ITEM-A PIC 99.
 1ð ITEM-B PIC +9V9.
 1ð ITEM-C PIC A(4).
 1ð ITEM-D PIC 9(4).
 1ð ITEM-E PIC 9(9) USAGE COMP.
 1ð ITEM-F USAGE INDEX.

Part 6. Procedure Division 265

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the result
of a floating-point operation is always rounded. For more information on floating-point
arithmetic expressions, see IBM COBOL Programming Guide for your platform.

� When the result of an arithmetic statement is stored in a windowed date field, and
the year of the result falls outside the century window. For example, given
YEARWINDOW(1940), which specifies a century window of 1940–2039, the fol-
lowing SUBTRACT statement causes a size error:

Statement Operations

Then, if ADD CORR ITEM-2 TO ITEM-1(X) is specified, ITEM-A and ITEM-A(X),
ITEM-B and ITEM-B(X), and ITEM-E and ITEM-E(X) are considered to be corre-
sponding and are added together. ITEM-C and ITEM-C(X) are not included because
they are not numeric. ITEM-D and ITEM-D(X) are not included because ITEM-D(X)
includes a REDEFINES clause in its data description. ITEM-F and ITEM-F(X) are not
included because they are defined as USAGE IS INDEX. Note that ITEM-1 is valid as
either identifier-1 or identifier-2.

If any of the individual operations in the ADD CORRESPONDING statement produces a
size error condition, imperative-statement-1 in the ON SIZE ERROR phrase is not exe-
cuted until all of the individual additions are completed.

 GIVING Phrase
The value of the identifier that follows the word GIVING is set equal to the calculated
result of the arithmetic operation. Because this identifier is not involved in the computa-
tion, it can be a numeric-edited item.

 ROUNDED Phrase
After decimal point alignment, the number of places in the fraction of the result of an
arithmetic operation is compared with the number of places provided for the fraction of
the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless ROUNDED is specified. When ROUNDED is speci-
fied, the least significant digit of the resultant identifier is increased by 1 whenever the
most significant digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing rightmost
Ps, and when the number of places in the calculated result exceeds the number of
integer positions specified, rounding or truncation occurs, relative to the rightmost
integer position for which storage is allocated.

SIZE ERROR Phrases
A size error condition can occur in four different ways:

� When the absolute value of the result of an arithmetic evaluation, after decimal
point alignment, exceeds the largest value that can be contained in the result field

� When division by zero occurs

266 COBOL Language Reference

ð1 WINDOWED-YEAR DATE FORMAT YY PICTURE 99
VALUE IS 5ð.

...

SUBTRACT 2ð FROM WINDOWED-YEAR
ON SIZE ERROR imperative-statement

The size error occurs because the result of the subtraction, a windowed date field,
has an effective year value of 1930, which falls outside the century window. For
details on how windowed date fields are treated as if they were converted to
expanded date format, see “Subtraction Involving Date Fields” on page 237.

For more information on how size errors can occur when using date fields, see
“Storing Arithmetic Results That Involve Date Fields” on page 237.

 or
COMPUTATIONAL-4,

Statement Operations

� In an exponential expression, as indicated in the following table:

The size error condition applies only to final results, not to any intermediate results.

If the resultant identifier is defined with USAGE IS BINARY, COMPUTATIONAL,
 the largest value that can be contained in it is the maximum

value implied by its associated decimal PICTURE character-string.

If the ROUNDED phrase is specified, rounding takes place before size error checking.

When a size error occurs, the subsequent action of the program depends on whether or
not the ON SIZE ERROR phrase is specified.

If the ON SIZE ERROR phrase is not specified and a size error condition occurs, trun-
cation rules apply and the value of the affected resultant identifier is computed.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the value
of the resultant identifier affected by the size error is not altered—that is, the error
results are not placed in the receiving identifier. After completion of the execution of
the arithmetic operation, the imperative statement in the ON SIZE ERROR phrase is
executed, control is transferred to the end of the arithmetic statement, and the NOT ON
SIZE ERROR phrase, if specified, is ignored.

Table 34. Exponentiation Size Error Conditions

Size error
Action taken when a SIZE
ERROR clause is present

Action taken when a SIZE
ERROR clause is not
present

Zero raised to zero power The SIZE ERROR imper-
ative is executed.

The value returned is 1, and a
message is issued.

Zero raised to a negative
number

The SIZE ERROR imper-
ative is executed.

Program is terminated abnor-
mally.

A negative number raised to a
fractional power

The SIZE ERROR imper-
ative is executed.

The absolute value of the
base is used, and a message
is issued.

Part 6. Procedure Division 267

The composite of operands can be more than 18 digits. For more information, see the
section on intermediate results in the IBM COBOL Programming Guide for your plat-
form.

Statement Operations

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if an
individual arithmetic operation causes a size error condition, the ON SIZE ERROR
imperative statement is not executed until all the individual additions or subtractions
have been completed.

If the NOT ON SIZE ERROR phrase has been specified and, after execution of an
arithmetic operation, a size error condition does not exist, the NOT ON SIZE ERROR
phrase is executed.

When both ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified, and
the statement in the phrase that is executed does not contain any explicit transfer of
control, then, if necessary, an implicit transfer of control is made after execution of the
phrase to the end of the arithmetic statement.

 Arithmetic Statements
The arithmetic statements are used for computations. Individual operations are speci-
fied by the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These operations
can be combined symbolically in a formula, using the COMPUTE statement.

Arithmetic Statement Operands
The data description of operands in an arithmetic statement need not be the same.
Throughout the calculation, the compiler performs any necessary data conversion and
decimal point alignment.

Size of Operands
The maximum size of each operand is 18 decimal digits. The composite of operands
is a hypothetical data item resulting from aligning the operands at the decimal point and
then superimposing them on one another. It must not contain more than 18 decimal
digits.

For example, assume that each item is defined as follows in the Data Division:

A PICTURE 9(7)V9(5).
B PICTURE 9(11)V99.
C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17
decimal digits:

ADD A B TO C

It has the following implicit description:

COMPOSITE-OF-OPERANDS PICTURE 9(12)V9(5).

268 COBOL Language Reference

Statement Operations

In the ADD and SUBTRACT statements, if the composite of operands is 18 digits or
less, the compiler ensures that enough places are carried so that no significant digits
are lost during execution. The following table shows how the composite of operands is
determined for arithmetic statements:

In all arithmetic statements, it is important to define data with enough digits and decimal
places to ensure the desired accuracy in the final result.

Table 35. How the Composite of Operands is Determined

Statement Determination of the Composite of Operands

SUBTRACT
ADD

Superimposing all operands in a given statement (except those following the
word GIVING)

MULTIPLY Superimposing all receiving data items

DIVIDE Superimposing all receiving data items, except the REMAINDER data item

COMPUTE Restriction does not apply

 Overlapping Operands
When operands in an arithmetic statement share part of their storage (that is, when the
operands overlap), the result of the execution of such a statement is unpredictable.

 Multiple Results
When an arithmetic statement has multiple results, execution conceptually proceeds as
follows:

� The statement performs all arithmetic operations to find the result to be placed in
the receiving items, and stores that result in a temporary location.

� A sequence of statements transfers or combines the value of this temporary result
with each single receiving field. The statements are considered to be written in the
same left-to-right order as the multiple results are listed.

For example, executing the following statement:

ADD A, B, C, TO C, D(C), E.

is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.
ADD TEMP TO C.
ADD TEMP TO D(C).
ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When the
addition operation for D(C) is performed, the subscript C contains the new value of C.

Data Manipulation Statements
The following COBOL statements move and inspect data: ACCEPT, INITIALIZE,
INSPECT, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING,
UNSTRING, and WRITE.

Part 6. Procedure Division 269

Statement Operations

 Overlapping Operands
When the sending and receiving fields of a data manipulation statement share a part of
their storage (that is, when the operands overlap), the result of the execution of such a
statement is unpredictable.

 Input-Output Statements
COBOL input-output statements transfer data to and from files stored on external
media, and also control low-volume data that is obtained from or sent to an input/output
device.

In COBOL, the unit of file data made available to the program is a record, and you
need only be concerned with such records. Provision is automatically made for such
operations as the movement of data into buffers and/or internal storage, validity
checking, error correction (where feasible), blocking and deblocking, and volume
switching procedures.

The description of the file in the Environment Division and Data Division governs which
input-output statements are allowed in the Procedure Division. Permissible statements
for each type of file organization are shown in Table 45 on page 363 and Table 46 on
page 364.

Discussions in the following section use the terms volume and reel . The term volume
refers to all non-unit-record input-output devices. The term reel applies only to tape
devices. Treatment of direct access devices in the sequential access mode is logically
equivalent to the treatment of tape devices.

Common Processing Facilities
There are several common processing facilities that apply to more than one input-
output statement. The common processing facilities provided are:

 � Status key
� Invalid key condition
� INTO/FROM identifier phrase
� File position indicator

 Status Key
If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is placed
in the specified status key (the 2-character data item named in the FILE STATUS
clause) during execution of any request on that file; the value indicates the status of
that request. The value is placed in the status key before execution of any
EXCEPTION/ERROR declarative or INVALID KEY/AT END phrase associated with the
request.

There are two status key data-names. One is described by data-name-1 in the FILE
STATUS clause of the FILE-CONTROL entry. This is a two character data item with
the first character known as status key 1 and the second character known as status key
2. The combinations of possible values and their meanings are shown in Table 36 on
page 271.

270 COBOL Language Reference

The other status key is described by data-name-8 in the FILE STATUS clause of the
FILE-CONTROL entry. Data-name-8 does not apply to QSAM files (MVS and VM only)
or to line sequential files (Workstation only). For more information on data-name-8, see
“FILE STATUS Clause” on page 122.

This does not apply to
MVS and VM VSAM sequential files.

Statement Operations

Table 36 (Page 1 of 4). Status Key Values and Meanings

High-
Order
Digit

Meaning Low-
Order
Digit

Meaning

0 Successful
Completion

0 No further information

2 This file status value only applies to indexed files with alternate keys that
allow duplicates.

The input-output statement was successfully executed, but a duplicate key
was detected. For a READ statement the key value for the current key of
reference was equal to the value of the same key in the next record within
the current key of reference. For a REWRITE or WRITE statement, the
record just written created a duplicate key value for at least one alternate
record key for which duplicates are allowed.

4 A READ statement was successfully executed, but the length of the record
being processed did not conform to the fixed file attributes for that file.

5 An OPEN statement is successfully executed but the referenced optional file
is not present at the time the OPEN statement is executed. The file has
been created if the open mode is I-O or EXTEND.

7 For a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR
REMOVAL phrase or for an OPEN statement with the NO REWIND phrase,
the referenced file was on a non-reel/unit medium.

1 At end condi-
tion

0 A sequential READ statement was attempted and no next logical record
existed in the file because the end of the file had been reached, or the first
READ was attempted on an optional input file that was not present.

4 A sequential READ statement was attempted for a relative file and the
number of significant digits in the relative record number was larger than the
size of the relative key data item described for the file.

Part 6. Procedure Division 271

Under AIX, OS/2, and Windows, file status 39 is not supported for line
sequential files or Btrieve files.

Statement Operations

Table 36 (Page 2 of 4). Status Key Values and Meanings

High-
Order
Digit

Meaning Low-
Order
Digit

Meaning

2 Invalid key
condition

1 A sequence error exists for a sequentially accessed indexed file. The prime
record key value has been changed by the program between the successful
execution of a READ statement and the execution of the next REWRITE
statement for that file, or the ascending requirements for successive record
key values were violated.

Under OS/2 for Btrieve indexed files, file status 21 is not applicable. You
can create records sequentially in any key order.

2 An attempt was made to write a record that would create a duplicate key in
a relative file; or an attempt was made to write or rewrite a record that would
create a duplicate prime record key or a duplicate alternate record key
without the DUPLICATES phrase in an indexed file.

3 An attempt was made to randomly access a record that does not exist in the
file, or a START or random READ statement was attempted on an optional
input file that was not present.

4 An attempt was made to write beyond the externally defined boundaries of a
relative or indexed file. Or, a sequential WRITE statement was attempted
for a relative file and the number of significant digits in the relative record
number was larger than the size of the relative key data item described for
the file.

3 Permanent
error condi-
tion

0 No further information

4 A permanent error exists because of a boundary violation; an attempt was
made to write beyond the externally-defined boundaries of a sequential file.

5 An OPEN statement with the INPUT, I-O, or EXTEND phrase was attempted
on a non-optional file that was not present.

7 An OPEN statement was attempted on a file that would not support the
open mode specified in the OPEN statement. Possible violations are:

1. The EXTEND or OUTPUT phrase was specified but the file would not
support write operations.

2. The I-O phrase was specified but the file would not support the input
and output operations permitted.

3. The INPUT phrase was specified but the file would not support read
operations.

8 An OPEN statement was attempted on a file previously closed with lock.

9 The OPEN statement was unsuccessful because a conflict was detected
between the fixed file attributes and the attributes specified for that file in the
program. These attributes include the organization of the file (sequential,
relative, or indexed), the prime record key, the alternate record keys, the
code set, the maximum record size, the record type (fixed or variable), and
the blocking factor.

272 COBOL Language Reference

Statement Operations

Table 36 (Page 3 of 4). Status Key Values and Meanings

High-
Order
Digit

Meaning Low-
Order
Digit

Meaning

4 Logic error
condition

1 An OPEN statement was attempted for a file in the open mode.

2 A CLOSE statement was attempted for a file not in the open mode.

3 For a mass storage file in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution of a
REWRITE statement was not a successfully executed READ statement.

For relative and indexed files in the sequential access mode, the last input-
output statement executed for the file prior to the execution of a DELETE or
REWRITE statement was not a successfully executed READ statement.

4 A boundary violation exists because an attempt was made to rewrite a
record to a file and the record was not the same size as the record being
replaced, or an attempt was made to write or rewrite a record that was
larger than the largest or smaller than the smallest record allowed by the
RECORD IS VARYING clause of the associated file-name.

6 A sequential READ statement was attempted on a file open in the input or
I-O mode and no valid next record had been established because:

1. The preceding READ statement was unsuccessful but did not cause an
at end condition

2. The preceding READ statement caused an at end condition.

7 The execution of a READ statement was attempted on a file not open in the
input or I-O mode.

8 The execution of a WRITE statement was attempted on a file not open in
the I-O, output, or extend mode.

9 The execution of a DELETE or REWRITE statement was attempted on a file
not open in the I-O mode.

Part 6. Procedure Division 273

Statement Operations

Table 36 (Page 4 of 4). Status Key Values and Meanings

High-
Order
Digit

Meaning Low-
Order
Digit

Meaning

9 Implementor-
defined con-
dition

0 No further information.

1 For VSAM only on MVS and VM: Password failure.

Under AIX, OS/2, and Windows: Authorization failure.

2 Logic error.

3 For all files, except QSAM: Resource not available.

4 For VSAM under MVS and VM with CMPR2 compiler-option only: No file
position indicator for sequential request.

Under AIX, OS/2, and Windows: Concurrent open error.

5 For all files, except QSAM: Invalid or incomplete file information.

6 For VSAM file under MVS and VM: An OPEN statement with the OUTPUT
or EXTEND phrase was attempted for an optional file, but no DD statement
was specified for the file.

For QSAM file under MVS and VM: An OPEN statement with the OUTPUT
or EXTEND phrase was attempted for an optional file, but no DD statement
was specified for the file and the CBLQDA(OFF) run-time option was speci-
fied.

Under AIX, OS/2, and Windows: File system not available.

7 For VSAM only under MVS and VM: OPEN statement execution successful:
File integrity verified.

Under AIX, OS/2, and Windows: Errors related to remote file access.

8 Under AIX, OS/2, and Windows: Open failed due to locked file.

9 Under AIX, OS/2, and Windows: Record access failed due to locked record.

Invalid Key Condition
The invalid key condition can occur during execution of a START, READ, WRITE,
REWRITE, or DELETE statement. (For details of the causes for the condition, see the
appropriate statement in “Part 4. Environment Division” on page 85.) When an invalid
key condition occurs, the input-output statement that caused the condition is unsuc-
cessful.

When the invalid key condition is recognized, actions are taken in the following order:

1. If the FILE STATUS clause is specified in the FILE-CONTROL entry, a value is
placed into the status key to indicate an invalid key condition. (See Table 36 on
page 271.)

2. If the INVALID KEY phrase is specified in the statement causing the condition,
control is transferred to the INVALID KEY imperative-statement. Any
EXCEPTION/ERROR declarative procedure specified for this file is not executed.

274 COBOL Language Reference

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure can be
omitted.

Statement Operations

Execution then continues according to the rules for each statement specified in the
imperative-statement.

3. If the INVALID KEY phrase is not specified in the input-output statement for a file,
an EXCEPTION/ERROR procedure must be specified, and that procedure is exe-
cuted. The NOT INVALID KEY phrase, if specified, is ignored.

If the invalid key condition does not exist after execution of the input-output operation,
the INVALID KEY phrase is ignored, if specified, and the following actions are taken:

1. If an exception condition which is not an invalid key condition exists, control is
transferred according to the rules of the USE statement following the execution of
any USE AFTER EXCEPTION procedure.

2. If no exception condition exists, control is transferred to the end of the input-output
statement or the imperative statement specified in the NOT INVALID KEY phrase,
if it is specified.

INTO/FROM Identifier Phrase
This phrase is valid for READ, RETURN, RELEASE, REWRITE, and WRITE state-
ments. The identifier specified must be the name of an entry in the Working-Storage
Section or the Linkage Section, or of a record description for another previously opened
file. Record-name/file-name and identifier must not refer to the same storage area.

 Format
55─ ──┬ ┬ ──┬ ┬─READ─── ─file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ───────────5%
 │ │└ ┘─RETURN─ └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─
 └ ┘ ──┬ ┬─RELEASE─ ─record-name-1─ ──┬ ┬──────────────────── ─────────
 ├ ┤─REWRITE─ └ ┘ ─FROM──identifier-1─
 └ ┘─WRITE───

� The INTO phrase can be specified in a READ or RETURN statement.

The result of the execution of a READ or RETURN statement with the INTO
phrase is equivalent to the application of the following rules in the order specified:

– The execution of the same READ or RETURN statement without the INTO
phrase.

– The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the CORRE-
SPONDING phrase. The size of the current record is determined by rules
specified in the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The
implied MOVE statement does not occur if the execution of the READ or
RETURN statement was unsuccessful. Any subscripting or reference-
modification associated with identifier-1 is evaluated after the record has been
read or returned and immediately before it is moved to the data item. The

Part 6. Procedure Division 275

 GOBACK,

Statement Operations

record is available in both the record area and the data item referenced by
identifier-1.

� The FROM phrase can be specified in a RELEASE, REWRITE, or WRITE state-
ment.

The result of the execution of a RELEASE, REWRITE, or WRITE statement with
the FROM phrase is equivalent to the execution of the following statements in the
order specified:

MOVE identifier-1 TO record-name-1

The same RELEASE, REWRITE, or WRITE statement without the FROM phrase.

After the execution of the RELEASE, REWRITE or WRITE statement is complete,
the information in the area referenced by identifier-1 is available, even though the
information in the area referenced by record-name-1 is not available, except speci-
fied by the SAME RECORD AREA clause.

File Position Indicator
The file position indicator is a conceptual entity used in this document to facilitate exact
specification of the next record (or alternatively under AIX, OS/2, and Windows, the
previous record) to be accessed within a given file during certain sequences of input-
output operations. The setting of the file position indicator is affected only by the
OPEN, CLOSE, READ and START statements. The concept of a file position indicator
has no meaning for a file opened in the output or extend mode.

Statements, sentences, and paragraphs in the Procedure Division are executed
sequentially, except when a procedure branching statement such as EXIT, GO TO,
PERFORM, or STOP is used.

276 COBOL Language Reference

environment-name

 using line sequential
file I-O or

It can also be a DBCS data item or an external floating-point item.

ACCEPT Statement

Procedure Division Statements

 ACCEPT Statement
The ACCEPT statement transfers data into the specified identifier. There is no editing
or error checking of the incoming data.

 Data Transfer
Format 1—Data Transfer

55──ACCEPT──identifier-1─ ──┬ ┬──────────────────────────── ──────────────────────5%
 └ ┘ ─FROM─ ──┬ ┬─mnemonic-name-1──
 └ ┘ ─ ─

Format 1 transfers data from an input/output device into identifier-1. When the FROM
phrase is omitted, the system input device is assumed.

Format 1 is useful for exceptional situations in a program when operator intervention (to
supply a given message, code, or exception indicator) is required. The operator must,
of course, be supplied with the appropriate messages with which to reply.

 Under AIX, OS/2, and Windows, the input file must be a byte stream file
(for example, a file consisting of text data with records delimited by a record termi-
nator). You can create a byte stream file in your COBOL program

 with the DISPLAY statement. (Most text editors can be used to create a byte
stream file as well.)

The input file cannot be a VSAM, Btrieve, SFS, or STL file (including sequential, rela-
tive, or indexed files).

If the source of the ACCEPT statement is a file and identifier-1 is filled without using
the full record delimited by the record terminator, the remainder of the input record is
used in the next ACCEPT statement for the file. The record delimiter characters are
removed from the input data before the input records are moved into the ACCEPT
receiving area.

If the source of the ACCEPT statement is a terminal, the data entered at the terminal,
followed by the enter key, is treated as the input data. If the input data is shorter than
identifier-1, the area is padded with spaces.

identifier-1
Can be any group item, or an elementary alphabetic, alphanumeric, alphanumeric-
edited, numeric-edited or external decimal item.

 Copyright IBM Corp. 1991, 1998 277

ACCEPT Statement

mnemonic-name
Must be associated in the SPECIAL-NAMES paragraph with an input/output device:
either a system input device or a console. For more information on acceptable
values for mnemonic-name, see “SPECIAL-NAMES Paragraph” on page 89.

� System input device

Record length of 80 characters is assumed even if a logical record length
of other than 80 characters is specified.

The system input device is read until identifier-1 is filled or EOF is
encountered. If the length of identifier-1 is not an even multiple of the
system input device record length, the final record will be truncated as
required. If EOF is encountered after data has been moved, and before
identifier-1 has been filled, identifier-1 is padded with blanks. If EOF is
encountered before any data has been moved to identifier-1, padding will
not take place and identifier-1 contents will remain unchanged. Each
input record is concatenated with the previous input record.

If the input record is of the fixed-length format, the entire input record is
used. No editing is performed to remove trailing or leading blanks.

 Under MVS and VM, if the input record is of the variable-
length format, the actual record length is used to determine the amount of
data received. With variable format records, the Record Definition Word
(RDW) is removed from the beginning of the input record. Only the actual
input data is transferred to identifier-1.

 � Console

 Under MVS and VM:

1. A system-generated message code is automatically displayed, followed by
the literal AWAITING REPLY.

The maximum length of an input message is 114 characters.

2. Execution is suspended.

3. After the message code (the same code as in item 1) is entered from the
console and recognized by the system, ACCEPT statement execution is
resumed. The message is moved to identifier-1 and left-justified, regard-
less of its PICTURE clause.

The ACCEPT statement is terminated after any of the following occurs:

– If no data is received from the console. For example, if the operator
hits the ENTER key

– The identifier is filled with data

– Fewer than 114 characters of data are entered

If 114 bytes of data are entered and the identifier is still not filled with
data, then more requests for data are issued to the console.

If more than 114 characters of data are entered, only the first 114 charac-
ters will be recognized by the system.

278 COBOL Language Reference

environment-name
A valid environment-name can be specified. See Table 8 on page 91 for a list of
valid environment-names.

 Under AIX, OS/2, and Windows, ACCEPT (or DISPLAY) with an
environment name is directed to the destination based on the assignment of the
system target for the environment name via the environment variable assignment.

If the environment variable is not set, the first three are directed to the system logic
input device, the system logic output device, and the user terminal, respectively as
determined by COBOL for the platform. (For example, CONSOLE would be stdin
as the default.) DISPLAY to SYSPUNCH/SYSPCH fails unless you set the corre-
sponding environment variable to indicate a valid target. The target file is deter-
mined by checking the COBOL environment-name (CONSOLE, SYSIN, SYSIPT,
SYSOUT, SYSLIST, SYSLST, SYSPUNCH, and SYSPCH). If an environment var-
iable is defined corresponding to the COBOL environment variable, the value of the
environment variable is used as the system file identifier. For more information on
environment-variables, see the IBM COBOL Programming Guide for your platform.

Note: If the device is the same as that used for READ statements, results are unpre-
dictable.

 DATE
YYYYMMDD, DAY YYYYDDD,

ACCEPT Statement

If the identifier is longer than the incoming message, the rightmost charac-
ters are padded with spaces.

If the incoming message is longer than the identifier, the character posi-
tions beyond the length of the identifier are truncated.

 Under AIX, OS/2, and Windows: ACCEPT or DISPLAY with an
environment name is directed to the destination based on the value of the environ-
ment variable corresponding to the COBOL environment name (SYSIN or
CONSOLE).

If the environment variable corresponding to the COBOL environment name is not
set, ACCEPT from SYSIN, SYSIPT, or CONSOLE is from the system logical input
device (stdin) and DISPLAY on SYSOUT, SYSLIST, or SYSLST is to the system
logical output device (stdout). DISPLAY to SYSPUNCH or SYSPCH is supported
only if the environment variable for SYSPUNCH is set to a valid display target.

System Information Transfer
System information contained in the specified conceptual data items DATE,

 DAY, DAY-OF-WEEK, or TIME, can be transferred into
the identifier. The transfer must follow the rules for the MOVE statement without the
CORRESPONDING phrase. See “MOVE Statement” on page 352.

Part 6. Procedure Division 279

YYYYMMDD

YYYYDDD

, internal floating-point, or external
floating-point item

DATE YYYYMMDD, DAY YYYYDDD,
 DATE YYYYMMDD, DAY YYYYDDD,

If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYXXXX, and identifier-2 must be
defined with this date format.

DATE YYYYMMDD
Has the implicit PICTURE 9(8). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYYYXXXX, and identifier-2 must
be defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 1995ð427

ACCEPT Statement

Format 2—System Information Transfer
55──ACCEPT──identifier-2──FROM─ ──┬ ┬ ─DATE─ ──┬ ┬────────── ────────────────────────5%
 │ │└ ┘─ ─
 ├ ┤ ─DAY─ ──┬ ┬───────── ──
 │ │└ ┘─ ─
 ├ ┤─DAY-OF-WEEK────────
 └ ┘─TIME───────────────

identifier-2
Can be a group, elementary alphanumeric, alphanumeric-edited, numeric-edited,
external decimal, internal decimal, binary

.

Format 2 accesses the current date in two formats—the day of the week or the time of
day as carried by the system, which can be useful in identifying when a particular run of
an object program was executed. You can also use Format 2 to supply the date in
headings and footings.

Note: The current date and time is also accessible via the date/time intrinsic function
CURRENT-DATE, which also supports 4-digit year values and provide additional infor-
mation (see “Intrinsic Functions” on page 447).

DATE, DAY, DAY-OF-WEEK, and TIME
The conceptual data items DATE, DAY,
DAY-OF-WEEK, and TIME implicitly have USAGE DISPLAY. Because these are con-
ceptual data items, they cannot be described in the COBOL program.

DATE
Has the implicit PICTURE 9(6).

The sequence of data elements (from left to right) is:

2 digits for the year
2 digits for the month
2 digits for the day

Thus, 27 April 1995 is expressed as: 95ð427

280 COBOL Language Reference

If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYXXX, and identifier-2 must be
defined with this date format.

DAY YYYYDDD
Has the implicit PICTURE 9(7). If the DATEPROC compiler option is in effect, then
the returned value has implicit DATE FORMAT YYYYXXX, and identifier-2 must be
defined with this date format.

The sequence of data elements (from left to right) is:

4 digits for the year
3 digits for the day

Thus, 27 April 1995 is expressed as: 1995117

ACCEPT Statement

DAY
Has the implicit PICTURE 9(5).

The sequence of data elements (from left to right) is:

2 digits for the year
3 digits for the day

Thus, 27 April 1995 is expressed as: 95117

DAY-OF-WEEK
Has the implicit PICTURE 9(1).

The single data element represents the day of the week according to the following
values:

1 represents Monday 5 represents Friday
2 represents Tuesday 6 represents Saturday
3 represents Wednesday 7 represents Sunday
4 represents Thursday

Thus, Wednesday is expressed as: 3

TIME
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:

2 digits for hour of day
2 digits for minute of hour
2 digits for second of minute
2 digits for hundredths of second

Thus, 2:41 PM is expressed as: 1441ðððð

Part 6. Procedure Division 281

ADD Statement

 ADD Statement
The ADD statement sums two or more numeric operands and stores the result.

 Format 1
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────
55──ADD─ ───6 ┴──┬ ┬─identifier-1─ ─TO─ ───6 ┴ ─identifier-2─ ──┬ ┬───────── ───────────────5
 └ ┘─literal-1──── └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬───────── ───────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

All identifiers or literals preceding the key word TO are added together, and this sum is
added to and stored in identifier-2. This process is repeated for each successive occur-
rence of identifier-2, in the left-to-right order in which identifier-2 is specified.

 Format 2
 ┌ ┐────────────────────
55──ADD─ ───6 ┴──┬ ┬─identifier-1─ ──┬ ┬──── ──┬ ┬─identifier-2─ ────────────────────────5
 └ ┘─literal-1──── └ ┘─TO─ └ ┘─literal-2────

 ┌ ┐─────────────────────────────
5─ ─GIVING─ ───6 ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬───────── ───────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

The values of the operands preceding the word GIVING are added together, and the
sum is stored as the new value of each data item referenced by identifier-3.

 Format 3
55──ADD─ ──┬ ┬─CORRESPONDING─ ─identifier-1──TO──identifier-2─ ──┬ ┬───────── ────────5
 └ ┘─CORR────────── └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬───────── ───────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-ADD─
 └ ┘─ON─

Elementary data items within identifier-1 are added to and stored in the corresponding
elementary items within identifier-2.

282 COBOL Language Reference

The following restrictions apply to date fields:

� In Format 1, identifier-2 may specify one or more date fields; identifier-1 must
not specify a date field.

� In Format 2, either identifier-1 or identifier-2 (but not both) may specify at most
one date field. If identifier-1 or identifier-2 specifies a date field, then every
instance of identifier-3 must specify a date field that is compatible with the date
field specified by identifier-1 or identifier-2. That is, they must have the same
date format, except for the year part, which may be windowed or expanded.

If neither identifier-1 nor identifier-2 specifies a date field, then identifier-3 may
specify one or more date fields without any restriction on the date formats.

� In Format 3, only corresponding elementary items within identifier-2 may be
date fields. There is no restriction on the format of these date fields.

� A year-last date field is allowed in an ADD statement only as identifier-1 and
when the result of the addition is a non-date

There are two steps to determining the result of an ADD statement that involves
one or more date fields:

1. Addition: determine the result of the addition operation, as described under
“Addition Involving Date Fields” on page 236.

2. Storage: determine how the result is stored in the receiving field. (In Formats
1 and 3, the receiving field is identifier-2; in Format 3, the receiving field is the
GIVING identifier-3.) For details, see “Storing Arithmetic Results That Involve
Date Fields” on page 237.

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

The composite of operands can be more than 18 digits. For information on arithmetic
intermediate results, see the IBM COBOL Programming Guide for your platform.

ADD Statement

For all Formats:

identifier
In Format 1, must name an elementary numeric item.

In Format 2, must name an elementary numeric item, except when following the
word GIVING. Each identifier following the word GIVING must name an elemen-
tary numeric or numeric-edited item.

In Format 3, must name a group item.

|
|

literal
Must be a numeric literal.

The composite of operands must not contain more than 18 digits. The compiler
ensures that enough places are carried so that no significant digits are lost during exe-
cution.

Part 6. Procedure Division 283

ADD Statement

� In Format 1, the composite of operands is determined by using all of the operands
in a given statement.

� In Format 2, the composite of operands is determined by using all of the operands
in a given statement excluding the data items that follow the word GIVING.

� In Format 3, the composite of operands is determined separately for each pair of
corresponding data items.

 ROUNDED Phrase
For Formats 1, 2, and 3, see “ROUNDED Phrase” on page 266.

SIZE ERROR Phrases
For Formats 1, 2, and 3, see “SIZE ERROR Phrases” on page 266.

CORRESPONDING Phrase (Format 3)
See “CORRESPONDING Phrase” on page 265.

 END-ADD Phrase
This explicit scope terminator serves to delimit the scope of the ADD statement.
END-ADD permits a conditional ADD statement to be nested in another conditional
statement. END-ADD can also be used with an imperative ADD statement.

For more information, see “Delimited Scope Statements” on page 263.

284 COBOL Language Reference

Do not use the ALTER statement in programs that have the RECURSIVE attribute, in
methods, or in AIX, OS/2, or Windows programs compiled with the THREAD option.

ALTER Statement

 ALTER Statement
The ALTER statement changes the transfer point specified in a GO TO statement.

The ALTER statement encourages the use of unstructured programming practices; the
EVALUATE statement provides the same function as the ALTER statement and helps
to ensure that your program will be well-structured.

 ┌ ┐──
55──ALTER─ ───6 ┴─procedure-name-1──TO─ ──┬ ┬──────────── ─procedure-name-2─ ─────────5%
 └ ┘─PROCEED TO─

The ALTER statement modifies the GO TO statement in the paragraph named by
procedure-name-1. Subsequent executions of the modified GO TO statement(s)
transfer control to procedure-name-2.

procedure-name-1
Must name a Procedure Division paragraph that contains only one sentence: a
GO TO statement without the DEPENDING ON phrase.

procedure-name-2
Must name a Procedure Division section or paragraph.

Before the ALTER statement is executed, when control reaches the paragraph specified
in procedure-name-1, the GO TO statement transfers control to the paragraph specified
in the GO TO statement. After execution of the ALTER statement, however, the next
time control reaches the paragraph specified in procedure-name-1, the GO TO state-
ment transfers control to the paragraph specified in procedure-name-2.

The ALTER statement acts as a program switch, allowing, for example, one sequence
of execution during initialization and another sequence during the bulk of file proc-
essing.

Altered GO TO statements in programs with the INITIAL attribute are returned to their
initial states each time the program is entered.

Part 6. Procedure Division 285

ALTER Statement

 Segmentation Considerations
A GO TO statement in a section whose priority is greater than or equal to 50 must not
be referred to by an ALTER statement in a section with a different priority. All other
uses of the ALTER statement are valid and are performed, even if the GO TO to which
the ALTER refers is in a fixed overlayable segment.

Altered GO TO statements in independent segments are returned to their initial states
when control is transferred to the independent segment that contains the ALTERED GO
TO from another independent segment with a different priority.

This transfer of control can take place because of:

� The effect of previous statements
� An explicit transfer of control with a PERFORM or GO TO statement
� A sort or merge statement with the INPUT or OUTPUT phrase specified

286 COBOL Language Reference

Programs defined with the RECURSIVE attribute can execute a CALL statement that
directly or indirectly CALLs itself.

Do not specify the name of a class or a method in the CALL statement.

procedure-ptr-1

ADDRESS OF
file-name-1
OMITTED

ADDRESS OF
LENGTH OF

literal-2
OMITTED

VALUE identifier-4
BY ADDRESS OF

LENGTH OF
literal-3

RETURNING identifier-5

File-name-1 is supported on MVS and VM only.

The rules of formation for program names are dependent on the PGMNAME com-
piler option. For details, see the discussion of program names in “PROGRAM-ID
Paragraph” on page 77 and also the description of the PGMNAME compiler
option in the IBM COBOL Programming Guide for your platform.

Identifier-1 can be an alphabetic or zoned decimal data item. Identifier-1 cannot be
a windowed date field.

CALL Statement

 CALL Statement
The CALL statement transfers control from one object program to another within the run
unit.

The program containing the CALL statement is the calling program; the program identi-
fied in the CALL statement is the called subprogram. Called programs can contain
CALL statements; however, a called program must not execute a CALL statement that
directly or indirectly calls the calling program.

 Format
55──CALL─ ──┬ ┬─identifier-1──── ──┬ ┬── ──5
 ├ ┤─literal-1─────── │ │┌ ┐───
 └ ┘─ ─ │ ││ │┌ ┐────────────────────────────────────
 └ ┘ ─USING─ ───6 ┴──┬ ┬ ──┬ ┬─────────────────── ───6 ┴──┬ ┬ ──┬ ┬──────────── ─identifier-2─
 │ │└ ┘ ──┬ ┬──── ─REFERENCE─ │ │└ ┘─ ─
 │ │└ ┘─BY─ ├ ┤ ─ ────(1) ──────────────
 │ │└ ┘ ─ ──────────────────────
 │ │┌ ┐────────────────────────────────────
 ├ ┤ ──┬ ┬──── ─CONTENT─ ───6 ┴──┬ ┬ ──┬ ┬──────────── ─identifier-3─ ──────
 │ │└ ┘─BY─ │ │├ ┤ ─ ─
 │ ││ │└ ┘ ─ ──
 │ │├ ┤ ─ ────────────────────
 │ │└ ┘ ─ ──────────────────────
 │ │┌ ┐────────────────────────────────────
 └ ┘ ──┬ ┬──── ─ ─ ───6 ┴──┬ ┬ ──┬ ┬──────────── ─ ─ ────────
 └ ┘─ ─ │ │├ ┤ ─ ─
 │ │└ ┘ ─ ──
 └ ┘ ─ ────────────────────

5─ ──┬ ┬─────────────────────────── ───5
 └ ┘── ─ ── ─

5─ ──┬ ┬─── ───────5
 ├ ┤ ──┬ ┬─── ──┬ ┬──
 │ │└ ┘ ──┬ ┬──── ─EXCEPTION──imperative-statement-1─ └ ┘ ─NOT─ ──┬ ┬──── ─EXCEPTION──imperative-statement-2─
 │ │└ ┘─ON─ └ ┘─ON─
 └ ┘──┬ ┬──── ─OVERFLOW──imperative-statement-3──
 └ ┘─ON─

5─ ──┬ ┬────────── ───5%
 └ ┘─END-CALL─

Note:
1

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric data
item such that its value can be a program name.

Part 6. Procedure Division 287

procedure-pointer-1
Must be defined with USAGE IS PROCEDURE-POINTER, and must be set to a
valid program entry point; otherwise, the results of the CALL statement are unde-
fined.

After a program has been canceled by COBOL, released by PL/I or C, or deleted
by assembler, any procedure-pointers that had been set to that program's entry
point are no longer valid.

When the called subprogram is entered through an ENTRY statement, literal-1 or the
contents of identifier-1 must be the same as the name specified in the called subpro-
gram's ENTRY statement.

 or the ENTRY statement

The sequence of appearance of the identifiers in the USING phrase of the CALL state-
ment and in the corresponding USING phrase in the called program's ENTRY state-
ment determines the correspondence between the identifiers used by the calling and
called programs.

 and BY VALUE
 or BY VALUE

 or BY VALUE

CALL Statement

When the called subprogram is to be entered at the beginning of the Procedure Divi-
sion, literal-1 or the contents of identifier-1 must specify the program-name of the called
subprogram.

For information on how the compiler resolves CALLs to program names found in mul-
tiple programs, see “Conventions for Program-Names” on page 66.

 USING Phrase
The USING phrase specifies arguments that are passed to the target program.

Include the USING phrase in the CALL statement only if there is a USING phrase in the
Procedure Division header through which the called program
is invoked. The number of operands in each USING phrase must be identical.

For more information on the USING phrase see “The Procedure Division Header” on
page 227.

The sequence of appearance of the identifiers in the USING phrase of the CALL state-
ment and in the corresponding USING phrase in the called subprogram's Procedure
Division header determines the correspondence between the identifiers used by the
calling and called programs. This correspondence is positional.

The values of the parameters referenced in the USING phrase of the CALL statement
are made available to the called subprogram at the time the CALL statement is exe-
cuted. The description of the data item in the called program must describe the same
number of character positions as the description of the corresponding data item in the
calling program.

The BY CONTENT, BY REFERENCE phrases apply to parameters that
follow them until another BY CONTENT, BY REFERENCE, phrase is
encountered. BY REFERENCE is assumed if you do not specify a BY CONTENT, BY
REFERENCE, phrase prior to the first parameter.

288 COBOL Language Reference

Can be a data item of any level in the Data Division.

file-name-1 (MVS and VM Only)
 Under MVS and VM, a file-name for a QSAM file. See IBM COBOL for

MVS & VM Programming Guide for details on using file-name with the CALL state-
ment.

ADDRESS OF Special Register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 10.

OMITTED
Indicates that no argument is passed.

Can be a data item of any level in the Data Division.

literal-2
Can be:

� A nonnumeric literal
� A figurative constant (except ALL literal or NULL/NULLS)
� A DBCS literal

CALL Statement

BY REFERENCE Phrase
If the BY REFERENCE phrase is either specified or implied for a parameter, the corre-
sponding data item in the calling program occupies the same storage area as the data
item in the called program.

identifier-2
Identifier-2 cannot be a func-

tion identifier.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-2 prior to invocation of the CALL statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-2 TO pointer or PROCEDURE/ENTRY USING.

BY CONTENT Phrase
If the BY CONTENT phrase is specified or implied for a parameter, the called program
cannot change the value of this parameter as referenced in the CALL statement's
USING phrase, though the called program can change the value of the data item refer-
enced by the corresponding data-name in the called program's Procedure Division
header. Changes to the parameter in the called program do not affect the corre-
sponding argument in the calling program.

identifier-3
Identifier-3 cannot be a func-

tion identifier.

Note: If defined in the Linkage Section or File Section, you must have already
provided addressability for identifier-3 prior to invocation of the CALL statement.
You can do this by coding either one of the following: SET ADDRESS OF
identifier-3 TO pointer or PROCEDURE/ENTRY USING.

Part 6. Procedure Division 289

LENGTH OF Special Register
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

ADDRESS OF Special Register
For information on the ADDRESS OF special register, see “ADDRESS OF” on
page 10.

OMITTED
Indicates that no argument is passed.

For nonnumeric literals, the called subprogram should describe the parameter as PIC
X(n) USAGE DISPLAY, where "n" is the number of characters in the literal.

For DBCS literals, the called subprogram should describe the parameter as PIC G(n)
USAGE DISPLAY-1, or PIC N(n) with implicit or explicit USAGE DISPLAY-1, where "n" is
the length of the literal.

BY VALUE Phrase
The BY VALUE phrase applies to all arguments that follow until overridden by another
BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the argu-
ment is passed, not a reference to the sending data item. The called program can
modify the formal parameter corresponding to the BY VALUE argument, but any such
changes do not affect the argument since the called program has access to a tempo-
rary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with non-COBOL
programs (such as C), they can also be used for COBOL-to-COBOL invocations. In
this case, BY VALUE must be specified or implied for both the argument in the CALL
USING phrase and the corresponding formal parameter in the Procedure Division
USING phrase.

identifier-4
Must be an elementary data item in the Data Division. It must be one of the fol-
lowing:

� Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
� Floating point (USAGE COMP-1 or COMP-2)
� Pointer (USAGE POINTER)
� Procedure-pointer (USAGE PROCEDURE-POINTER)
� Object reference (USAGE OBJECT REFERENCE)
� Single-byte alphanumeric (such as PIC X or PIC A)

The following can also be passed BY VALUE:

� Reference modified item with length one
� SHIFT-IN and SHIFT-OUT special registers
� LINAGE-COUNTER special register when it is usage binary

CALL Statement

290 COBOL Language Reference

ADDRESS OF Special Register
An ADDRESS OF special register passed BY VALUE is treated as a pointer. For
information on the ADDRESS OF special register, see “ADDRESS OF” on
page 10.

LENGTH OF Special Register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary.
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

literal-3
Must be one of the following:

 � Numeric literal
 � ZERO
� 1-character nonnumeric literal

 � Symbolic character
� Single byte figurative constant

 – SPACE
 – QUOTE
 – HIGH-VALUE
 – LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less digits.
In this case, a fullword binary representation of the literal value is passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

 RETURNING Phrase
identifier-5

The RETURNING data item, which must be defined in the DATA DIVISION. The
return value of the CALLed program is implicitly stored into identifier-5.

You can specify the RETURNING phrase for calls to functions written in COBOL, C, or
in other programming languages that use C linkage conventions. If you specify the
RETURNING phrase on a CALL to a COBOL subprogram:

� The CALLed subprogram must specify the RETURNING phrase on its Procedure
Division header.

� Identifier-5 and the corresponding Procedure Division RETURNING identifier in the
target program must have the same PICTURE, USAGE, SIGN, SYNCHRONIZE,
JUSTIFIED, and BLANK WHEN ZERO clauses (except that PICTURE clause cur-
rency symbols can differ, and periods and commas can be interchanged due to the
DECIMAL POINT IS COMMA clause).

When the target returns, its return value is assigned to identifier-5, using either the
rules for SET statement, if identifier-6 is USAGE IS INDEX, USAGE IS POINTER,

CALL Statement

|
|

Part 6. Procedure Division 291

USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE; other-
wise, the rules for the MOVE statement are used.

Note: The CALL... RETURNING data item is an output-only parameter. On entry to
the called program, the initial state of the PROCEDURE DIVISION RETURNING data
item has an undefined and unpredictable value. You must initialize the PROCEDURE
DIVISION RETURNING data item in the called program before you reference its value.
The value that is passed back to the calling program is the final value of the PROCE-
DURE DIVISION RETURNING data item when the called program returns.

If an EXCEPTION or OVERFLOW occurs, identifier-5 is not changed. Identifier-5 must
not be reference-modified.

The RETURN-CODE special register is not set by execution of CALL statements that
include the RETURNING phrase.

CALL Statement

|
|
|
|
|
|

ON EXCEPTION Phrase
An exception condition occurs when the called subprogram cannot be made available.
At that time, one of the following two actions will occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1. Execution then continues according to the rules for each
statement specified in imperative-statement-1. If a procedure branching or condi-
tional statement that causes explicit transfer of control is executed, control is trans-
ferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-1, control is transferred to the end of the
CALL statement and the NOT ON EXCEPTION phrase, if specified, is ignored.

2. If the ON EXCEPTION phrase is not specified in the CALL statement, the NOT
ON EXCEPTION phrase, if specified, is ignored.

NOT ON EXCEPTION Phrase
If an exception condition does not occur (that is, the called subprogram can be made
available), control is transferred to the called program. After control is returned from
the called program, control is transferred to:

� Imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

� The end of the CALL statement in any other case (if the ON EXCEPTION phrase
is specified, it is ignored).

If control is transferred to imperative-statement-2, execution continues according to the
rules for each statement specified in imperative-statement-2. If a procedure branching
or conditional statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon completion
of the execution of imperative-statement-2, control is transferred to the end of the CALL
statement.

292 COBOL Language Reference

CALL Statement

ON OVERFLOW Phrase
The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

 END-CALL Phrase
This explicit scope terminator serves to delimit the scope of the CALL statement.
END-CALL permits a conditional CALL statement to be nested in another conditional
statement. END-CALL can also be used with an imperative CALL statement.

For more information, see “Delimited Scope Statements” on page 263.

Part 6. Procedure Division 293

Identifier-1 can be alphabetic or zoned decimal data item. It cannot be a windowed
date field.

The program-name referenced in the CANCEL statement can be affected by the
PGMNAME compiler option. For details, see the IBM COBOL Programming
Guide for your platform.

Do not specify the name of a class or a method in the CANCEL statement.

 or GOBACK statement

CANCEL Statement

 CANCEL Statement
The CANCEL statement ensures that the next time the referenced subprogram is called
it will be entered in its initial state.

 Format
 ┌ ┐────────────────────
55──CANCEL─ ───6 ┴──┬ ┬─identifier-1─ ──5%
 └ ┘─literal-1────

identifier-1, literal-1
Literal-1 must be a nonnumeric literal. Identifier-1 must be an alphanumeric data
item such that its value can be a program name. The rules of formation for
program names are dependent on the PGMNAME compiler option. For details,
see the discussion of program names in “PROGRAM-ID Paragraph” on page 77
and also the description of the PGMNAME compiler option in the IBM COBOL Pro-
gramming Guide for your platform.

Each literal or contents of the identifier specified in the CANCEL statement must be
the same as the literal or contents of the identifier specified in an associated CALL
statement.

After a CANCEL statement for a called subprogram has been executed, that subpro-
gram no longer has a logical connection to the program. The contents of data items in
external data records described by the subprogram are not changed when that subpro-
gram is canceled. If a CALL statement is executed later by any program in the run unit
naming the same subprogram, that subprogram will be entered in its initial state.

When a CANCEL statement is executed, all programs contained within the program
referenced by the CANCEL statement are also canceled. The result is the same as if a
valid CANCEL were executed for each contained program in the reverse order in which
the programs appear in the separately compiled program.

A CANCEL statement closes all open files that are associated with an internal file con-
nector in the program named in the explicit CANCEL statement. Any USE procedures
associated with any of these files are not executed.

You can cancel a called subprogram by referencing it as the operand of a CANCEL
statement, by terminating the run unit of which the subprogram is a member, or by
executing an EXIT PROGRAM statement in the called subpro-
gram if that subprogram possesses the INITIAL attribute.

294 COBOL Language Reference

 or a GOBACK

CANCEL Statement

No action is taken when a CANCEL statement is executed, naming a program that
either:

 1.

� Under MVS and VM, has not been dynamically called in this run unit by
another COBOL for OS/390 & VM, COBOL for MVS & VM, VS COBOL II, or
OS/VS COBOL program.

� Under AIX, OS/2, and Windows, has not been called in this run unit by another
IBM COBOL program.

2. Has been called and subsequently canceled.

Called subprograms can contain CANCEL statements. However, a called program
must not execute a CANCEL statement that directly or indirectly cancels the calling
program itself, or any other program higher than itself in the calling hierarchy. In such
a case, the run unit is terminated.

A program named in a CANCEL statement must not refer to any program that has been
called and has not yet executed an EXIT PROGRAM statement.

A program can, however, cancel a program that it did not call, providing that, in the
calling hierarchy, it is higher than or equal to the program it is canceling. For example:

A calls B and B calls C (When A receives control,
it can cancel C.)

A calls B and A calls C (When C receives control,
it can cancel B.)

Part 6. Procedure Division 295

WITH NO REWIND

Format 3—Line Sequential Files (Workstation Only)
 ┌ ┐───
55──CLOSE─ ───6 ┴─file-name-1─ ──┬ ┬────────────────────────────────── ──────────────5%
 ├ ┤ ──┬ ┬─REEL───(1) ──┬ ┬──────────────────
 │ │└ ┘─UNIT───(1) ├ ┤ ──┬ ┬───── ─REMOVAL─
 │ ││ │└ ┘─FOR─
 │ │└ ┘─WITH NO REWIND───
 └ ┘ ──┬ ┬────── ──┬ ┬─NO REWIND───(1) ───────
 └ ┘─WITH─ └ ┘─LOCK────────

Note:
1 Under AIX, OS/2, and Windows, the UNIT, REEL, and NO REWIND phases

are treated as a comment. Although, the file status will be set to 07, indi-
cating a successful completion of a CLOSE for a non-reel/unit medium.

CLOSE Statement

 CLOSE Statement
The CLOSE statement terminates the processing of volumes and files.

 Format 1—Sequential
 ┌ ┐───
55──CLOSE─ ───6 ┴─file-name-1─ ──┬ ┬────────────────────────────────── ──────────────5%
 ├ ┤ ──┬ ┬─REEL───(1) ──┬ ┬──────────────────
 │ │└ ┘─UNIT───(1) ├ ┤ ──┬ ┬───── ─REMOVAL─
 │ ││ │└ ┘─FOR─
 │ │└ ┘─ ───
 └ ┘ ──┬ ┬────── ──┬ ┬─NO REWIND───(1) ───────
 └ ┘─WITH─ └ ┘─LOCK────────

Note:
1 Under MVS, the REEL, UNIT, and NO REWIND phrases are not valid for

VSAM files. Under AIX, OS/2, and Windows, the UNIT, REEL, and NO
REWIND phases are treated as a comment. Although, the file status will be
set to 07, indicating a successful completion of a CLOSE for a non-reel/unit
medium.

Format 2—Indexed and Relative Files
 ┌ ┐───────────────────────────────────
55──CLOSE─ ───6 ┴─file-name-1─ ──┬ ┬──────────────── ────────────────────────────────5%
 └ ┘ ──┬ ┬────── ─LOCK─
 └ ┘─WITH─

file-name-1
Designates the file upon which the CLOSE statement is to operate. If more than
one file-name is specified, the files need not have the same organization or
access. File-name-1 must not be a sort or merge file.

REEL/UNIT
Under MVS and VM, you can specify these phrases only for QSAM multivolume or
single volume files. The terms REEL and UNIT are interchangeable.

Under AIX, OS/2, and Windows, REEL and UNIT are treated as comments.

296 COBOL Language Reference

� Table 39 on page 298 for line sequential files

CLOSE Statement

WITH NO REWIND and FOR REMOVAL
Under MVS and VM, these phrases apply only to QSAM tape files. If they are
specified for storage devices to which they do not apply, they are ignored.

Under AIX, OS/2, and Windows, WITH NO REWIND and FOR REMOVAL are
treated as comments.

A CLOSE statement can be executed only for a file in an open mode. After successful
execution of a CLOSE statement (without the REEL/UNIT phrase if using format 1):

� The record area associated with the file-name is no longer available. Unsuccessful
execution of a CLOSE statement leaves availability of the record data undefined.

� An OPEN statement for the file must be executed before any other input/output
statement.

� Under AIX, OS/2, and Windows any record locks and file locks held by the file
connector on the closed file are released.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE statement is unsuccessful,
the EXCEPTION/ERROR procedure (if specified) for this file is executed.

Effect of CLOSE Statement on File Types
If the SELECT OPTIONAL clause is specified in the FILE-CONTROL entry for a file,
and the file is not present at run time, standard end-of-file processing is not performed.
For QSAM files, the file position indicator and current volume pointer are unchanged.

Files are divided into the following types:

Non-Reel/Unit
A file whose input or output medium is such that rewinding, reels, and units
have no meaning. All VSAM, Btrieve, and STL files are non-reel/unit file
types. QSAM files can be non-reel/unit file types.

Sequential Single Volume
A sequential file that is contained entirely on one volume. More than one
file can be contained on this volume. All VSAM, Btrieve, and STL files are
single volume. QSAM files can be single volume.

Sequential Multivolume
A sequential file that is contained on more than one volume. QSAM files
are the only files that can be multivolume. The concept of volume has no
meaning for VSAM, Btrieve, or STL files.

The permissible combinations of CLOSE statement phrases are included in:

� Table 37 on page 298 for sequential files
� Table 38 on page 298 for indexed and relative files

Part 6. Procedure Division 297

CLOSE REEL/UNIT WITH
NO REWIND

F B, F B, F

Table 39. Line Sequential File Types and CLOSE Statement Phrases

CLOSE Statement Phrases Action

CLOSE C

CLOSE WITH LOCK C,E

CLOSE Statement

The meaning of each key letter is shown in Table 40 on page 298.

Table 37. Sequential Files and CLOSE Statement Phrases

CLOSE Statement Phrases

Non-
Reel/
Unit

Sequential
Single-
Volume

Sequential
Multi-Volume

CLOSE C C, G A, C, G

CLOSE REEL/UNIT F F, G F, G

CLOSE REEL/UNIT FOR REMOVAL D D D

CLOSE WITH NO REWIND C, H B, C A, B, C

CLOSE WITH LOCK C, E C, E, G A, C, E, G

Table 38. Indexed and Relative File Types and CLOSE Statement Phrases

CLOSE Statement Phrases Action

CLOSE C

CLOSE WITH LOCK C,E

Table 40 (Page 1 of 2). Meanings of Key Letters for Sequential File Types

Key Actions Taken

 A Previous Volumes Unaffected

Input and Input-Output Files —Standard volume-switch processing is performed for all
previous volumes (except those controlled by a previous CLOSE REEL/UNIT state-
ment). Any subsequent volumes are not processed.

Output Files —Standard volume-switch processing is performed for all previous
volumes (except those controlled by a previous CLOSE REEL/UNIT statement).

 B No Rewinding of Current Reel —the current volume is left in its current position.

298 COBOL Language Reference

CLOSE Statement

Table 40 (Page 2 of 2). Meanings of Key Letters for Sequential File Types

Key Actions Taken

 C Close File

Input and Input-Output Files —If the file is at its end, and label records are specified,
the standard ending label procedure is performed. Standard system closing procedures
are then performed.

If the file is at its end, and label records are not specified, label processing does not
take place, but standard system closing procedures are performed.

If the file is not at its end, standard system closing procedures are performed, but there
is no ending label processing.

Output Files —If label records are specified, standard ending label procedures are per-
formed. Standard system closing procedures are then performed.

If label records are not specified, ending label procedures are not performed, but
standard system closing procedures are performed.

 D Volume Removal —Treated as a comment.

 E File Lock —The compiler ensures that this file cannot be opened again during this exe-
cution of the object program.

 F Close Volume

Input and Input-Output Files —If the current reel/unit is the last and/or only reel/unit
for the file or if the reel is on a non-reel/unit medium, no volume switching is performed.
If another reel/unit exists for the file, the following operations are performed: a volume
switch, beginning volume label procedure, and the first record on the new volume is
made available for reading. If no data records exist for the current volume, another
volume switch occurs.

Output (Reel/Unit Media) Files —The following operations are performed: the ending
volume label procedure, a volume switch, and the beginning volume label procedure.
The next executed WRITE statement places the next logical record on the next direct
access volume available. A close statement with the REEL phrase does not close the
output file; only an end-of-volume condition occurs.

Output (Non-Reel/Unit Media) Files —Execution of the CLOSE statement is consid-
ered successful. The file remains in the open mode and no action takes place except
that the value of the I-O status associated with the file is updated.

 G Rewind —The current volume is positioned at its physical beginning.

 H Optional Phrases Ignored —The CLOSE statement is executed as if none of the
optional phrases were present.

Part 6. Procedure Division 299

EQUAL

Can name an elementary floating-point data item.

The word EQUAL can be used in place of =.

If identifier-1 or the result of the arithmetic expression (or both) are date fields, see
“Storing Arithmetic Results That Involve Date Fields” on page 237 for details on
how the result is stored in identifier-1. If a year-last date field is specified as
identifier-1, then the result of the arithmetic expression must be a non-date.

A year-last date field must not be specified in the arithmetic expression.

COMPUTE Statement

 COMPUTE Statement
The COMPUTE statement assigns the value of an arithmetic expression to one or more
data items.

With the COMPUTE statement, arithmetic operations can be combined without the
restrictions on receiving data items imposed by the rules for the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements.

When arithmetic operations are combined, the COMPUTE statement can be more effi-
cient than the separate arithmetic statements written in a series.

 Format
 ┌ ┐─────────────────────────────
55──COMPUTE─ ───6 ┴─identifier-1─ ──┬ ┬───────── ──┬ ┬─=───── ─arithmetic-expression────5
 └ ┘─ROUNDED─ └ ┘ ─ ─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬───────────── ───────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-COMPUTE─
 └ ┘─ON─

identifier-1
Must name elementary numeric item(s) or elementary numeric-edited item(s).

|
|

arithmetic-expression
Can be any arithmetic expression, as defined in “Arithmetic Expressions” on
page 233.

When the COMPUTE statement is executed, the value of the arithmetic expression
is calculated, and this value is stored as the new value of each data item refer-
enced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function, or literal
allows the user to set the value of the data item(s) referenced by identifier-1 equal
to the value of that identifier or literal.

|

300 COBOL Language Reference

COMPUTE Statement

 ROUNDED Phrase
For a discussion of the ROUNDED phrase, see “ROUNDED Phrase” on page 266.

SIZE ERROR Phrases
For a discussion of the SIZE ERROR phrases, see “SIZE ERROR Phrases” on
page 266.

 END-COMPUTE Phrase
This explicit scope terminator serves to delimit the scope of the COMPUTE statement.
END-COMPUTE permits a conditional COMPUTE statement to be nested in another
conditional statement. END-COMPUTE can also be used with an imperative
COMPUTE statement.

For more information, see “Delimited Scope Statements” on page 263.

Part 6. Procedure Division 301

CONTINUE Statement

 CONTINUE Statement
The CONTINUE statement allows you to specify a no operation statement. CONTINUE
indicates that no executable instruction is present.

 Format
55──CONTINUE───5%

302 COBOL Language Reference

DELETE Statement

 DELETE Statement
The DELETE statement removes a record from an indexed or relative file. For indexed
files, the key can then be reused for record addition. For relative files, the space is
then available for a new record with the same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O
mode.

 Format
55──DELETE──file-name-1─ ──┬ ┬──────── ──5
 └ ┘─RECORD─

5─ ──┬ ┬── ────────────────────────────────5
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

5─ ──┬ ┬── ──┬ ┬──────────── ───────────5%
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-DELETE─
 └ ┘─KEY─

file-name-1
Must be defined in an FD entry in the Data Division and must be the name of an
indexed or relative file.

After successful execution of a DELETE statement, the record is removed from the file
and can no longer be accessed.

 For OS/2 VSAM files, after the successful execution of a DELETE state-
ment, any record lock held by the file connector on the deleted record is released.
However, if any other file connector holds a lock on the record to be deleted, the
DELETE statement is unsuccessful.

Execution of the DELETE statement does not affect the contents of the record area
associated with file-name-1 or the content of the data item referenced by the data-name
specified in the DEPENDING ON phrase of the RECORD clause associated with
file-name-1 .

If the FILE STATUS clause is specified in the File-Control entry, the associated status
key is updated when the DELETE statement is executed.

The file position indicator is not affected by execution of the DELETE statement.

Sequential Access Mode
For a file in sequential access mode, the last previous input/output statement must be a
successfully executed READ statement. When the DELETE statement is executed, the
system removes the record retrieved by that READ statement.

For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY
phrases must not be specified. However, an EXCEPTION/ERROR procedure can be
specified.

Part 6. Procedure Division 303

As an IBM extension, the INVALID KEY phrase does not need to be specified for a
DELETE statement that references a file in random or dynamic access and for which
an EXCEPTION/ERROR procedure is not specified.

DELETE Statement

Random or Dynamic Access Mode
In random or dynamic access mode, DELETE statement execution results depend on
the file organization: indexed or relative.

When the DELETE statement is executed, the system removes the record identified by
the contents of the prime RECORD KEY data item for indexed files, or the RELATIVE
KEY data item for relative files. If the file does not contain such a record, an INVALID
KEY condition exists. (See “INVALID KEY Condition” under “Common Processing
Facilities” on page 270.)

Transfer of control after the successful execution of a DELETE statement, with the NOT
INVALID KEY phrase specified, is to the imperative statement associated with the
phrase.

 END-DELETE Phrase
This explicit scope terminator serves to delimit the scope of the DELETE statement.
END-DELETE permits a conditional DELETE statement to be nested in another condi-
tional statement. END-DELETE can also be used with an imperative DELETE state-
ment.

For more information, see “Delimited Scope Statements” on page 263.

304 COBOL Language Reference

environment-name-1

� Internal floating-point numbers are converted to external floating-point numbers
for display, such that:

– A COMP-1 item will display as if it had an external floating-point PICTURE
clause of -.9(8)E-99

– A COMP-2 item will display as if it had an external floating-point PICTURE
clause of -.9(17)E-99

Data items defined with USAGE IS POINTER are converted to an external decimal
number that would have a PICTURE clause of PIC 9(10).

Data items defined with USAGE IS PROCEDURE-POINTER or USAGE IS OBJECT
REFERENCE cannot be specified in a DISPLAY statement.

DISPLAY Statement

 DISPLAY Statement
The DISPLAY statement transfers the contents of each operand to the output device.
The contents are displayed on the output device in the order, left to right, in which the
operands are listed.

 Under AIX, OS/2, and Windows, the target file is determined by checking
the COBOL environment-name (CONSOLE, SYSIN, SYSIPT, SYSOUT, SYSLIST,
SYSLST, SYSPUNCH, and SYSPCH). If an environment variable is defined corre-
sponding to the COBOL environment-name, the value of the environment-variable is
used as the system file identifier. For more information on environment-variables, see
the IBM COBOL Programming Guide for your platform.

For SYSPUNCH and SYSPCH, the DISPLAY statement will fail unless the corre-
sponding environment variable is set to point to a valid target.

 Format
 ┌ ┐────────────────────
55──DISPLAY─ ───6 ┴──┬ ┬─identifier-1─ ──┬ ┬────────────────────────────── ────────────5
 └ ┘─literal-1──── └ ┘ ─UPON─ ──┬ ┬─mnemonic-name-1────
 └ ┘ ─ ─

5─ ──┬ ┬──────────────────────── ───5%
 └ ┘ ──┬ ┬────── ─NO ADVANCING─
 └ ┘─WITH─

identifier-1
If it is numeric and is not described as an external decimal, the identifier-1 is con-
verted automatically to external format, as follows:

� Binary or internal decimal items are converted to external decimal. Negative
signed values cause a low-order sign overpunch.

No other identifiers require conversion.

Index names or data items defined with USAGE IS INDEX cannot be specified in a
DISPLAY statement.

Part 6. Procedure Division 305

Date fields are treated as non-dates when specified in a DISPLAY statement. That is,
the DATE FORMAT is ignored, and the content of the data item is transferred to the
output device as is.

DBCS data items, explicitly or implicitly defined as USAGE DISPLAY-1, are transferred
to the sending field of the output device. Under MVS and VM, for proper results, the
output device must have the capability to recognize DBCS shift-out and shift-in control
characters.

Both DBCS and non-DBCS operands can be specified in a single DISPLAY verb.

Signed numeric literals and non-integer numeric literals are allowed.

Floating-point literals are allowed.

DBCS literals are allowed.

The ALL figurative constant can be used with DBCS literals in a DISPLAY verb.

 or environment-name

The list of valid environment-names in a DISPLAY statement is contained in
Table 8 on page 91.

DISPLAY Statement

literal-1
Can be any figurative constant. When a figurative constant is specified, only a
single occurrence of that figurative constant is displayed.

Each numeric literal must be an unsigned integer.

UPON
mnemonic-name must be associated in the
SPECIAL-NAMES paragraph with an output device.

 A default logical record size is assumed for each device, as follows:

The system logical output device = 120 characters
The system punch device = 80 characters
The console = 100 characters

A maximum logical record size is allowed for each device, as follows:

The system logical output device = 255 characters
The system punch device = 255 characters
The console = 100 characters

Note: On the system punch device, the last eight characters are used for
PROGRAM-ID name.

When the UPON phrase is omitted, the system's logical output device is assumed.

WITH NO ADVANCING
When specified, the positioning of the output device will not be changed in any way
following the display of the last operand. If the output device is capable of posi-
tioning to a specific character position, it will remain positioned at the character
position immediately following the last character of the last operand displayed. If
the output device is not capable of positioning to a specific character position, only
the vertical position, if applicable, is affected. This can cause overprinting.

306 COBOL Language Reference

If a DBCS operand must be split across multiple records, it will be split only on a
double-byte boundary.

 Under MVS and VM, the shift code compensation is required under this
case. That is, when a DBCS operand is split across multiple records, the shift-in char-
acter needs to be inserted at the end of the current record, and the shift-out character
needs to be inserted at the beginning of the next record. A space is padded after the
shift-in character, if necessary. These additional inserted shift codes and spaces are
included in the count while the compiler is calculating the number of records required.

After the last operand has been transferred to the output device, the device is reset to
the leftmost position of the next line of the device.

If a DBCS data item or literal is specified in a DISPLAY verb, the size of the sending
field is the total character count of all operands listed, with each DBCS character
counted twice, plus the necessary shift codes for DBCS.

DISPLAY Statement

If the WITH NO ADVANCING phrase is not specified, then after the last operand
has been transferred to the output device, the positioning of the output device will
be reset to the leftmost position of the next line of the device.

 Under MVS and VM, COBOL does not support output devices that are
capable of positioning to a specific character position. See the IBM COBOL Pro-
gramming Guide for your platform for more information about the DISPLAY state-
ment.

The DISPLAY statement transfers the data in the sending field to the output device.
The size of the sending field is the total character count of all operands listed. If the
output device is capable of receiving data of the same size as the data item being
transferred, then the data item is transferred. If the output device is not capable of
receiving data of the same size as the data item being transferred, then one of the
following applies:

� If the total character count is less than the device maximum character count, the
remaining rightmost characters are padded with spaces.

� If the total character count exceeds the maximum, as many records are written as
are needed to display all operands. Any operand being printed or displayed when
the end of a record is reached is continued in the next record.

Notes:

1. The DISPLAY statement causes the printer to space before printing.

2. The DISPLAY statement can be used to identify data records that have caused
one of the following conditions:

a. A size error
b. An invalid key
c. An overflow condition
d. A status key returned as a value other than zero

Part 6. Procedure Division 307

DISPLAY Statement

Such records can be printed, with an identifying message, on some other medium
than that used for valid output. Thus, all records for one execution that need
special handling are separately printed.

308 COBOL Language Reference

DIVIDE Statement

 DIVIDE Statement
The DIVIDE statement divides one numeric data item into or by other(s) and sets the
values of data items equal to the quotient and remainder.

 Format 1
 ┌ ┐─────────────────────────────
55──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ───6 ┴ ─identifier-2─ ──┬ ┬───────── ──────────────5
 └ ┘─literal-1──── └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In Format 1, the value of identifier-1 or literal-1 is divided into the value of identifier-2,
and the quotient is then stored in identifier-2. For each successive occurrence of
identifier-2, the division takes place in the left-to-right order in which identifier-2 is speci-
fied.

 Format 2
55──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ──┬ ┬─identifier-2─ ───────────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
5─ ─GIVING─ ───6 ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In Format 2, the value of identifier-1 or literal-1 is divided into the value of identifier-2 or
literal-2. The value of the quotient is stored in each data item referenced by identifier-3.

 Format 3
55──DIVIDE─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ─────────────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
5─ ─GIVING─ ───6 ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

Part 6. Procedure Division 309

Identifier-1 and identifier-2 cannot be
date fields.

If identifier-3 or identifier-4 is a date field, then see “Storing Arithmetic Results That
Involve Date Fields” on page 237 for details on how the quotient or remainder is
stored in identifier-3.

DIVIDE Statement

In Format 3, the value of identifier-1 or literal-1 is divided by the value of identifier-2 or
literal-2. The value of the quotient is stored in each data item referenced by identifier-3.

 Format 4
55──DIVIDE─ ──┬ ┬─identifier-1─ ─INTO─ ──┬ ┬─identifier-2─ ───────────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

5──GIVING──identifier-3─ ──┬ ┬───────── ─REMAINDER──identifier-4───────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In Format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or literal-2.
The value of the quotient is stored in identifier-3, and the value of the remainder is
stored in identifier-4.

 Format 5
55──DIVIDE─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ─────────────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

5──GIVING──identifier-3─ ──┬ ┬───────── ─REMAINDER──identifier-4───────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-DIVIDE─
 └ ┘─ON─

In Format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or literal-2. The
value of the quotient is stored in identifier-3, and the value of the remainder is stored in
identifier-4.

For all Formats:

identifier-1, identifier-2
Must name an elementary numeric item.

identifier-3, identifier-4
Must name an elementary numeric or numeric-edited item.

310 COBOL Language Reference

In Formats 1, 2, and 3, floating-point data items and literals can be used anywhere that
a numeric data item or literal can be specified.

In Formats 4 and 5, floating-point data items or literals cannot be used.

The REMAINDER phrase is invalid if the receiver or any of the operands is a floating-
point item.

DIVIDE Statement

literal-1, literal-2
Must be a numeric literal.

 ROUNDED Phrase
For Formats 1, 2, and 3, see “ROUNDED Phrase” on page 266.

For Formats 4 and 5, the quotient used to calculate the remainder is in an intermediate
field. The value of the intermediate field is truncated rather than rounded.

 REMAINDER Phrase
The result of subtracting the product of the quotient and the divisor from the dividend is
stored in identifier-4. If identifier-3, the quotient, is a numeric-edited item, the quotient
used to calculate the remainder is an intermediate field that contains the unedited quo-
tient.

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the result
of the divide operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR Phrases
For Formats 1, 2, and 3, see “SIZE ERROR Phrases” on page 266.

For Formats 4 and 5, if a size error occurs in the quotient, no remainder calculation is
meaningful. Therefore, the contents of the quotient field (identifier-3) and the remainder
field (identifier-4) are unchanged.

If size error occurs in the remainder, the contents of the remainder field (identifier-4) are
unchanged.

In either of these cases, you must analyze the results to determine which situation has
actually occurred.

For information on the NOT ON SIZE ERROR phrase, see page 268.

 END-DIVIDE Phrase
This explicit scope terminator serves to delimit the scope of the DIVIDE statement.
END-DIVIDE permits a conditional DIVIDE statement to an imperative statement so that
it can be nested in another conditional statement. END-DIVIDE can also be used with
an imperative DIVIDE statement.

For more information, see “Delimited Scope Statements” on page 263.

Part 6. Procedure Division 311

ENTRY Statement

 ENTRY Statement
The ENTRY statement establishes an alternate entry point into a COBOL called sub-
program.

The ENTRY statement cannot be used in:

� Programs that specify a return value using the Procedure Division RETURNING
phrase. For details, see the discussion of the RETURNING phrase under “The
Procedure Division Header” on page 227.

� Nested program. See “Nested Programs” on page 66 for a description of nested
programs.

When a CALL statement naming the alternate entry point is executed in a calling
program, control is transferred to the next executable statement following the ENTRY
statement.

 Format
55─ ── ─ENTRY─ ─literal-1─ ───5

5─ ──┬ ┬── ─.───────────────────5%
 │ │┌ ┐───
 │ ││ │┌ ┐──────────────
 └ ┘ ─USING─ ───6 ┴─ ─ ──┬ ┬─────────────────── ───6 ┴identifier-1
 ├ ┤ ──┬ ┬──── ─REFERENCE─
 │ │└ ┘─BY─
 └ ┘ ──┬ ┬──── ─VALUE─────
 └ ┘─BY─

literal
Must be nonnumeric and conform to the rules for the formation of a program-name
in the outermost program (see “PROGRAM-ID Paragraph” on page 77).

Must not match the program-id or any other ENTRY literal in this program.

Must not be a figurative constant.

Execution of the called program begins at the first executable statement following the
ENTRY statement whose literal corresponds to the CALL statement literal or identifier.

The entry point name on the ENTRY statement can be affected by the PGMNAME
compiler option. For details, see the IBM COBOL Programming Guide for your plat-
form.

 USING Phrase
Do not specify the ENTRY statement in a program that contains a Procedure Division
...RETURNING phrase.

For a discussion of the USING phrase, see “The Procedure Division Header” on
page 227.

312 COBOL Language Reference

EVALUATE Statement

 EVALUATE Statement
The EVALUATE statement provides a shorthand notation for a series of nested IF
statements. It can evaluate multiple conditions. That is, the IF statements can be
made up of compound conditions. The subsequent action of the object program
depends on the results of these evaluations.

 Format
55──EVALUATE─ ──┬ ┬─identifier-1─ ──┬ ┬───────────────────────────── ──────────────────────────────────5
 ├ ┤─literal-1──── │ │┌ ┐───────────────────────────
 ├ ┤─expression-1─ └ ┘ ───6 ┴ ─ ALSO─ ──┬ ┬─identifier-2─
 ├ ┤─TRUE───────── ├ ┤─literal-2────
 └ ┘─FALSE──────── ├ ┤─expression-2─
 ├ ┤─TRUE─────────
 └ ┘─FALSE────────

 ┌ ┐──
 │ │┌ ┐──
5─ ───6 ┴ ───6 ┴─WHEN──┤ phrase 1 ├─ ──┬ ┬──────────────────────── ─imperative-statement-1─ ────────────────5
 │ │┌ ┐──────────────────────
 └ ┘ ───6 ┴─ALSO──┤ phrase 2 ├─

5─ ──┬ ┬──────────────────────────────────── ──┬ ┬────────────── ─────────────────────────────────────5%
 └ ┘ ─WHEN OTHER──imperative-statement-2─ └ ┘─END-EVALUATE─

phrase 1:
├─ ──┬ ┬─ANY── ────────┤
 ├ ┤─condition-1──
 ├ ┤─TRUE───
 ├ ┤─FALSE──
 └ ┘ ──┬ ┬───── ──┬ ┬─identifier-3──────────── ──┬ ┬──
 └ ┘─NOT─ ├ ┤─literal-3─────────────── └ ┘ ──┬ ┬─THROUGH─ ──┬ ┬─identifier-4────────────
 └ ┘─arithmetic-expression-1─ └ ┘─THRU──── ├ ┤─literal-4───────────────
 └ ┘─arithmetic-expression-2─

phrase 2:
├─ ──┬ ┬─ANY── ────────┤
 ├ ┤─condition-2──
 ├ ┤─TRUE───
 ├ ┤─FALSE──
 └ ┘ ──┬ ┬───── ──┬ ┬─identifier-5──────────── ──┬ ┬──
 └ ┘─NOT─ ├ ┤─literal-5─────────────── └ ┘ ──┬ ┬─THROUGH─ ──┬ ┬─identifier-6────────────
 └ ┘─arithmetic-expression-3─ └ ┘─THRU──── ├ ┤─literal-6───────────────
 └ ┘─arithmetic-expression-4─

Operands before the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

� Individually, they are called selection subjects
� Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase
Are interpreted in one of two ways, depending on how they are specified:

� Individually, they are called selection objects
� Collectively, they are called a set of selection objects.

ALSO
Separates selection subjects within a set of selection subjects; separates selection
objects within a set of selection objects.

Part 6. Procedure Division 313

For comparisons involving date fields, see “Date Fields” on
page 244.

� Where identifiers are permitted, they can reference date field, DBCS, floating-point,
USAGE POINTER, USAGE PROCEDURE-POINTER, or USAGE IS OBJECT REF-
ERENCE or USAGE PROCEDURE-POINTER data items.

� Where nonnumeric literals are permitted, DBCS literals are permitted.

� Where numeric literals are permitted, floating-point literals are permitted.

EVALUATE Statement

THROUGH and THRU
Are equivalent.

Two operands connected by a THRU phrase must be of the same class. The two
operands thus connected constitute a single selection object.

The number of selection objects within each set of selection objects must be equal to
the number of selection subjects.

Each selection object within a set of selection objects must correspond to the selection
subject having the same ordinal position within the set of selection subjects, according
to the following rules:

� Identifiers, literals, or arithmetic expressions appearing within a selection object
must be valid operands for comparison to the corresponding operand in the set of
selection subjects.

� Condition-1, condition-2, or the word TRUE or FALSE appearing as a selection
object must correspond to a conditional expression or the word TRUE or FALSE in
the set of selection subjects.

� The word ANY can correspond to a selection subject of any type.

 END-EVALUATE Phrase
This explicit scope terminator serves to delimit the scope of the EVALUATE statement.
END-EVALUATE permits a conditional EVALUATE statement to be nested in another
conditional statement.

For more information, see “Delimited Scope Statements” on page 263.

 Determining Values
The execution of the EVALUATE statement operates as if each selection subject and
selection object were evaluated and assigned a numeric or nonnumeric value, a range
of numeric or nonnumeric values, or a truth value. These values are determined as
follows:

� Any selection subject specified by identifier-1, identifier-2, ... and any selection
object specified by identifier-3 and/or identifier-5 without the NOT or THRU phrase,
are assigned the value and class of the data item that they reference.

� Any selection subject specified by literal-1, literal-2, ... and any selection object
specified by literal-3 and/or literal-5 without the NOT or THRU phrase, are assigned
the value and class of the specified literal. If literal-3 and/or literal-5 is the figura-
tive constant ZERO, it is assigned the class of the corresponding selection subject.

314 COBOL Language Reference

EVALUATE Statement

� Any selection subject in which expression-1, expression-2, ... is specified as an
arithmetic expression, and any selection object without the NOT or THRU phrase
in which arithmetic-expression-1 and/or arithmetic-expression-3 is specified, are
assigned numeric values according to the rules for evaluating an arithmetic
expression. (See “Arithmetic Expressions” on page 233.)

� Any selection subject in which expression-1, expression-2, ... is specified as a con-
ditional expression, and any selection object in which condition-1 and/or
condition-2 is specified, are assigned a truth value according to the rules for evalu-
ating conditional expressions. (See “Conditional Expressions” on page 239.)

� Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value. The truth value "true" is assigned to those items
specified with the word TRUE, and the truth value "false" is assigned to those
items specified with the word FALSE.

� Any selection object specified by the word ANY is not further evaluated.

� If the THRU phrase is specified for a selection object without the NOT phrase, the
range of values is all values that, when compared to the selection subject, are
greater than or equal to the first operand and less than or equal to the second
operand, according to the rules for comparison. If the first operand is greater than
the second operand, there are no values in the range.

� If the NOT phrase is specified for a selection object, the values assigned to that
item are all values not equal to the value, or range of values, that would have been
assigned to the item had the NOT phrase been omitted.

Comparing Selection Subjects and Objects
The execution of the EVALUATE statement then proceeds as if the values assigned to
the selection subjects and selection objects were compared to determine whether any
WHEN phrase satisfies the set of selection subjects. This comparison proceeds as
follows:

1. Each selection object within the set of selection objects for the first WHEN phrase
is compared to the selection subject having the same ordinal position within the set
of selection subjects. One of the following conditions must be satisfied if the com-
parison is to be satisfied:

a. If the items being compared are assigned numeric or nonnumeric values, or a
range of numeric or nonnumeric values, the comparison is satisfied if the
value, or one value in the range of values, assigned to the selection object is
equal to the value assigned to the selection subject, according to the rules for
comparison.

b. If the items being compared are assigned truth values, the comparison is satis-
fied if the items are assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the com-
parison is always satisfied, regardless of the value of the selection subject.

2. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of
selection objects is selected as the one satisfying the set of selection subjects.

Part 6. Procedure Division 315

EVALUATE Statement

3. If the above comparison is not satisfied for every selection object within the set of
selection objects being compared, that set of selection objects does not satisfy the
set of selection subjects.

4. This procedure is repeated for subsequent sets of selection objects in the order of
their appearance in the source program, until either a WHEN phrase satisfying the
set of selection subjects is selected or until all sets of selection objects are
exhausted.

Executing the EVALUATE Statement
After the comparison operation is completed, execution of the EVALUATE statement
proceeds as follows:

� If a WHEN phrase is selected, execution continues with the first
imperative-statement-1 following the selected WHEN phrase. Note that multiple
WHEN statements are allowed for a single imperative-statement-1.

� If no WHEN phrase is selected and a WHEN OTHER phrase is specified, exe-
cution continues with imperative-statement-2.

� If no WHEN phrase is selected and no WHEN OTHER phrase is specified, exe-
cution continues with the next executable statement following the scope delimiter.

� The scope of execution of the EVALUATE statement is terminated when execution
reaches the end of the scope of the selected WHEN phrase or WHEN OTHER
phrase, or when no WHEN phrase is selected and no WHEN OTHER phrase is
specified.

316 COBOL Language Reference

As an IBM extension, the EXIT statement does not need to appear in a sentence by
itself. Any statements following the EXIT statement are executed; the EXIT statement
is treated as the CONTINUE statement.

EXIT Statement

 EXIT Statement
The EXIT statement provides a common end point for a series of procedures.

 Format
55─ ──paragraph-name. ─EXIT.───5%

The EXIT statement enables you to assign a procedure-name to a given point in a
program.

Part 6. Procedure Division 317

EXIT METHOD Statement

EXIT METHOD Statement
The EXIT METHOD statement specifies the end of an invoked method.

 Format
55──EXIT METHOD.───5%

You can specify EXIT METHOD only in the Procedure Division of a method. EXIT
METHOD causes the executing method to terminate, and control returns to the invoking
statement. If the containing method specifies the Procedure Division RETURNING
phrase, the value in the data item referred to by the RETURNING phrase becomes the
result of the method invocation.

If you need method-specific data to be in the last-used state on each invocation,
declare it in method Working-Storage. If you need method-specific data to be in the
initial state on each invocation, declare it in method Local-Storage.

If control reaches an EXIT METHOD statement in a method definition, control returns to
the point in the invoking program or method immediately following the INVOKE state-
ment. The state of the invoking program or method is identical to that which existed at
the time it executed the INVOKE statement.

The contents of data items and the contents of data files shared between the invoking
program or method and the invoked method could have changed. The state of the
invoked method is not altered except that the end of the ranges of all PERFORM state-
ment executed by the method are considered to have been reached.

The EXIT METHOD statement does not have to be the last statement in a sequence of
imperative statements, but the statements following the EXIT METHOD will not be exe-
cuted.

When there is no next executable statement in an invoked method, an implicit EXIT
METHOD statement is executed.

318 COBOL Language Reference

As an IBM extension, the EXIT PROGRAM statement does not have to be the last
statement in a sequence of imperative statements, but the statements following the
EXIT PROGRAM will not be executed if a CALL statement is active.

EXIT PROGRAM Statement

EXIT PROGRAM Statement
The EXIT PROGRAM statement specifies the end of a called program and returns
control to the calling program.

You can specify EXIT PROGRAM only in the Procedure Division of a program. It must
not be used in a declarative procedure in which the GLOBAL phrase is specified.

 Format
55──EXIT PROGRAM.──5%

If control reaches an EXIT PROGRAM statement in a program that does not possess
the INITIAL attribute while operating under the control of a CALL statement (that is, the
CALL statement is active), control returns to the point in the calling program imme-
diately following the CALL statement. The program state of the calling program is iden-
tical to that which existed at the time it executed the CALL statement. The contents of
data items and the contents of data files shared between the calling and called program
could have been changed. The program state of the called program is not altered
except that the ends of the ranges of all PERFORM statements executed by that called
program are considered to have been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses the
INITIAL attribute is equivalent also to executing a CANCEL statement referencing that
program.

If control reaches an EXIT PROGRAM statement, and no CALL statement is active,
control passes through the exit point to the next executable statement.

If a subprogram specifies the Procedure Division RETURNING phrase, the value in the
data item referred to by the RETURNING phrase becomes the result of the subprogram
invocation.

When there is no next executable statement in a called program, an implicit EXIT
PROGRAM statement is executed.

Part 6. Procedure Division 319

GOBACK Statement

 GOBACK Statement
The GOBACK statement functions like the EXIT PROGRAM statement when it is coded
as part of a called program (or the EXIT METHOD statement when it is coded as part
of an invoked method) and like the STOP RUN statement when coded in a main
program.

The GOBACK statement specifies the logical end of a called program or invoked
method.

 Format
55──GOBACK───5%

A GOBACK statement should appear as the only statement or as the last of a series of
imperative statements in a sentence because any statements following the GOBACK
are not executed. It must not be used in a declarative procedure in which the GLOBAL
phrase is specified.

If control reaches a GOBACK statement while a CALL statement is active, control
returns to the point in the calling program immediately following the CALL statement, as
in the EXIT PROGRAM statement.

If control reaches a GOBACK statement while an INVOKE statement is active, control
returns to the point in the invoking program or method immediately following the
INVOKE statement, as in the EXIT METHOD statement.

In addition, the execution of a GOBACK statement in a called program that possesses
the INITIAL attribute is equivalent to executing a CANCEL statement referencing that
program.

The table below shows the action taken for the GOBACK statement in both a main
program and a subprogram.

Termination
Statement Main Program Subprogram

GOBACK Return to calling program. (Can be
the system and thus causes the
application to end.)

Return to calling program.

320 COBOL Language Reference

As an IBM extension, the unconditional GO TO statement does not have to be the last
statement in a sequence of imperative statements. However, any statements following
the GO TO are not executed.

Identifier-1 cannot be
a windowed date field.

GO TO Statement

GO TO Statement
The GO TO statement transfers control from one part of the Procedure Division to
another. The types of GO TO statements are:

 � Unconditional
 � Conditional
 � Altered

Unconditional GO TO
The unconditional GO TO statement transfers control to the first statement in the para-
graph or section named in procedure-name, unless the GO TO statement has been
modified by an ALTER statement. (See “ALTER Statement” on page 285.)

 Format 1—Unconditional
55──GO─ ──┬ ┬──── ─procedure-name-1───5%
 └ ┘─TO─

procedure-name-1
Must name a procedure or a section in the same Procedure Division as the GO TO
statement.

When a paragraph is referred to by an ALTER statement, the paragraph must consist
of a paragraph-name followed by an unconditional or altered GO TO statement.

Conditional GO TO
The conditional GO TO statement transfers control to one of a series of procedures,
depending on the value of the identifier.

 Format 2—Conditional
 ┌ ┐────────────────────
55──GO─ ──┬ ┬──── ───6 ┴─procedure-name-1─ ─DEPENDING─ ──┬ ┬──── ─identifier-1──────────5%
 └ ┘─TO─ └ ┘─ON─

procedure-name-1
Must be a procedure or a section in the same Procedure Division as the GO TO
statement. The number of procedure-names must not exceed 255.

identifier-1
Must be a numeric elementary data item which is an integer.

If 1, control is transferred to the first statement in the procedure named by the first
occurrence of procedure-name-1.

Part 6. Procedure Division 321

� A program or method that has the RECURSIVE attribute.
� A program compiled with the THREAD compiler option (Workstation only)

Otherwise, as an IBM
extension, the GO TO statement acts like a CONTINUE statement.

MORE-Labels GO TO
 Under AIX, OS/2, and Windows, GO TO MORE-LABELS is treated as a

comment.

The GO TO MORE-LABELS statement can only be specified in a LABEL declarative.

 Format 4—MORE-LABELS
55──GO─ ──┬ ┬──── ─MORE-LABELS──5%
 └ ┘─TO─

For more details, see the IBM COBOL for MVS & VM Programming Guide.

GO TO Statement

If 2, control is transferred to the first statement in the procedure named by the
second occurrence of procedure-name-1, and so forth.

If the value of identifier is anything other than a value within the range of 1 through
n (where n is the number of procedure-names specified in this GO TO statement),
no control transfer occurs. Instead, control passes to the next statement in the
normal sequence of execution.

Altered GO TO
The altered GO TO statement transfers control to the first statement of the paragraph
named in the ALTER statement.

You cannot specify the altered GO TO statement in the following:

An ALTER statement referring to the paragraph containing an altered GO TO statement
must be executed before the GO TO statement is executed.

 Format 3—Altered
55─ ──paragraph-name. ─GO─ ──┬ ┬──── ─.───5%
 └ ┘─TO─

When an ALTER statement refers to a paragraph, the paragraph can consist only of the
paragraph-name followed by an unconditional or altered GO TO statement.

322 COBOL Language Reference

END-IF can be specified with NEXT SENTENCE as an IBM extension.

END-IF can be specified with NEXT SENTENCE. However, if the NEXT SEN-
TENCE phrase is executed, control will not pass to the next statement following the
END-IF but instead will pass to the statement after the closest following period.

IF Statement

 IF Statement
The IF statement evaluates a condition and provides for alternative actions in the object
program, depending on the evaluation.

 Format
 ┌ ┐───────────────
55──IF──condition-1─ ──┬ ┬────── ──┬ ┬───6 ┴─statement-1─ ─────────────────────────────5
 └ ┘─THEN─ └ ┘─NEXT SENTENCE───

5─ ──┬ ┬─────────────────────────── ──┬ ┬────────── ────────────────────────────────5%
 │ │┌ ┐─────────────── └ ┘─END-IF───(1)

 └ ┘ ─ELSE─ ──┬ ┬───6 ┴─statement-2─
 └ ┘─NEXT SENTENCE───

Note:
1

condition
Can be any simple or complex condition, as described in “Conditional Expressions”
on page 239.

statement-1, statement-2
Can be any one of the following:

� An imperative statement
� A conditional statement
� An imperative statement followed by a conditional statement

NEXT SENTENCE
If the NEXT SENTENCE phrase is specified, then the END-IF phrase must not be
specified.

 END-IF Phrase
This explicit scope terminator serves to delimit the scope of the IF statement. END-IF
permits a conditional IF statement to be nested in another conditional statement. For
more information on explicit scope terminators, see “Delimited Scope Statements” on
page 263.

The scope of an IF statement can be terminated by any of the following:

� An END-IF phrase at the same level of nesting
� A separator period
� If nested, by an ELSE phrase associated with an IF statement at a higher level of

nesting

Part 6. Procedure Division 323

 Transferring Control
If the condition tested is true , one of the following actions takes place:

� If statement-1 is specified, it is executed. If statement-1 contains a procedure
branching or conditional statement, control is transferred, according to the rules for
that statement. If statement-1 does not contain a procedure-branching statement,
the ELSE phrase, if specified, is ignored, and control passes to the next executable
statement after the corresponding END-IF or separator period.

� If NEXT SENTENCE is specified, control passes to an implicit CONTINUE state-
ment immediately preceding the next separator period.

If the condition tested is false , one of the following actions takes place:

� If ELSE statement-2 is specified, it is executed. If statement-2 contains a
procedure-branching or conditional statement, control is transferred, according to
the rules for that statement. If statement-2 does not contain a procedure-branching
or conditional statement, control is passed to the next executable statement after
the corresponding END-IF or separator period.

� If ELSE NEXT SENTENCE is specified, control passes to an implicit CONTINUE
STATEMENT immediately preceding the next separator period.

� If neither ELSE statement-2 nor ELSE NEXT STATEMENT is specified, control
passes to the next executable statement after the corresponding END-IF or sepa-
rator period.

Note: When the ELSE phrase is omitted, all statements following the condition and
preceding the corresponding END-IF or the separator period for the sentence are con-
sidered to be part of statement-1.

Nested IF Statements
When an IF statement appears as statement-1 or statement-2, or as part of statement-1
or statement-2, it is nested .

Nested IF statements (when IF statements contain IF statements) are considered to be
matched IF, ELSE, and END-IF combinations proceeding from left to right. Thus, any
ELSE encountered is matched with the nearest preceding IF that either has not been
already matched with an ELSE, or has not been implicitly or explicitly terminated. Any
END-IF encountered is matched with the nearest preceding IF that has not been implic-
itly or explicitly terminated.

324 COBOL Language Reference

 and DBCS

DBCS
EGCS

The data description
entry for identifier-1 can contain the DEPENDING phrase of the OCCURS clause.

Note: You cannot use the INITIALIZE statement to initialize a variably located item or
group that follows a DEPENDING ON phrase of the OCCURS clause within the same
01 level.

A floating-point data item or literal can be used anywhere a numeric identifier or literal
is specified.

A DBCS data item or literal can be used anywhere an identifier or literal is specified.

INITIALIZE Statement

 INITIALIZE Statement
The INITIALIZE statement sets selected categories of data fields to predetermined
values. It is functionally equivalent to one or more MOVE statements.

When the REPLACING phrase is not used:

� SPACE is the implied sending field for alphabetic, alphanumeric, alphanumeric-
edited, items.

� ZERO is the implied sending field for numeric and numeric-edited items.

 Format
 ┌ ┐────────────────
55──INITIALIZE─ ───6 ┴─identifier-1─ ───5

5─ ──┬ ┬── ─────────────5%
 │ │┌ ┐───
 └ ┘ ─REPLACING─ ───6 ┴ ──┬ ┬─ALPHABETIC────────── ──┬ ┬────── ─BY─ ──┬ ┬─identifier-2─
 ├ ┤─ALPHANUMERIC──────── └ ┘─DATA─ └ ┘─literal-1────
 ├ ┤─NUMERIC─────────────
 ├ ┤─ALPHANUMERIC-EDITED─
 ├ ┤─NUMERIC-EDITED──────
 ├ ┤─ ────────────────
 └ ┘─ ────────────────

identifier-1
Receiving area(s).

identifier-2, literal-1
Sending area(s).

A subscripted item can be specified for identifier-1. A complete table can be initialized
only by specifying identifier-1 as a group that contains the complete table.

The data description entry for identifier-1 or any items subordinate to identifier-1 cannot
contain the DEPENDING ON phrase of the OCCURS clause.

The data description entry for identifier-1 must not contain a RENAMES clause. An
index data item cannot be an operand of INITIALIZE.

Special registers can be specified for identifier-1 and identifier-2 only if they are valid
receiving fields or sending fields, respectively, for the implied MOVE statement(s).

Part 6. Procedure Division 325

A floating-point data item or floating-point literal will be treated as if it is in the
NUMERIC category.

DBCS
EGCS

Refers to the characters allowed for DBCS literals.

 � Object references

� Data items defined with USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER

INITIALIZE Statement

 REPLACING Phrase
When the REPLACING phrase is used:

� The category of identifier-2 or literal-1 must be compatible with the category indi-
cated in the corresponding REPLACING phrase, according to the rules for MOVE.

� The same category cannot be repeated in a REPLACING phrase.

� The key word following the word REPLACING corresponds to a category of data
shown in “Classes and Categories of Data” on page 140.

INITIALIZE Statement Rules
1. Whether identifier-1 references an elementary or group item, all operations are per-

formed as if a series of MOVE statements had been written, each of which had an
elementary item as a receiving field.

If the REPLACING phrase is specified:

� If identifier-1 references a group item, any elementary item within the data item
referenced by identifier-1 is initialized only if it belongs to the category speci-
fied in the REPLACING phrase.

� If identifier-1 references an elementary item, that item is initialized only if it
belongs to the category specified in the REPLACING phrase.

This initialization takes place as if the data item referenced by identifier-2 or
literal-1 acts as the sending operand in an implicit MOVE statement to the identi-
fied item.

All such elementary receiving fields, including all occurrences of table items within
the group, are affected, with the following exceptions:

� Index data items

� Elementary FILLER data items

� Items that are subordinate to identifier-1 and contain a REDEFINES clause, or
any items subordinate to such an item. (However, identifier-1 can contain a
REDEFINES clause or be subordinate to a redefining item.)

2. The areas referenced by identifier-1 are initialized in the order (left to right) of the
appearance of identifier-1 in the statement. Within a group receiving field, affected
elementary items are initialized in the order of their definition within the group.

326 COBOL Language Reference

INITIALIZE Statement

3. If identifier-1 occupies the same storage area as identifier-2, the result of the exe-
cution of this statement is undefined, even if these operands are defined by the
same data description entry.

Part 6. Procedure Division 327

INSPECT Statement

 INSPECT Statement
The INSPECT statement specifies that characters, or groups of characters, in a data
item are to be counted (tallied) or replaced or both.

� It counts the occurrence of a specific character (alphabetic, numeric, or special
character) in a data item. (Formats 1 and 3)

� It fills all or portions of a data item with specified characters, such as spaces or
zeros. (Formats 2 and 3)

� It converts all occurrences of specific characters in a data item to user-supplied
replacement characters. (Format 4)

 Format 1
55──INSPECT──identifier-1──TALLYING───5

 ┌ ┐──
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────
5─ ───6 ┴ ─identifier-2──FOR─ ───6 ┴──┬ ┬ ─CHARACTERS─ ───6 ┴──┬ ┬────────────── ─────────────────────── ───────5%

│ │└ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───6 ┴ ──┬ ┬─identifier-3─ ───6 ┴──┬ ┬──────────────

└ ┘─LEADING─ └ ┘─literal-1──── └ ┘─┤ phrase 1 ├─

phrase 1:
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ───┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

 Format 2
55──INSPECT──identifier-1──REPLACING──5

 ┌ ┐───
 │ │┌ ┐────────────────────
5─ ───6 ┴──┬ ┬─CHARACTERS BY─ ──┬ ┬─identifier-5─ ───6 ┴──┬ ┬────────────── ──────────────────────── ────────5%

│ │└ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───6 ┴ ──┬ ┬─identifier-3─ ─BY─ ──┬ ┬─identifier-5─ ───6 ┴──┬ ┬──────────────

├ ┤─LEADING─ └ ┘─literal-1──── └ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 └ ┘─FIRST───

phrase 1:
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ───┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

328 COBOL Language Reference

None of the identifiers in an INSPECT statement can be windowed date fields.

� An external floating point item

Effect of DBCS
All identifiers and literals (except identifier-2) must be DBCS items, either DBCS literals
or DBCS data items, if any are DBCS items. Identifier-2 cannot be a DBCS item.
DBCS characters, not bytes of data, are tallied in identifier-2.

INSPECT Statement

 Format 3
55──INSPECT──identifier-1──TALLYING───5

 ┌ ┐──
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────
5─ ───6 ┴ ─identifier-2──FOR─ ───6 ┴──┬ ┬ ─CHARACTERS─ ───6 ┴──┬ ┬────────────── ─────────────────────── ────────5

│ │└ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───6 ┴ ──┬ ┬─identifier-3─ ───6 ┴──┬ ┬──────────────

└ ┘─LEADING─ └ ┘─literal-1──── └ ┘─┤ phrase 1 ├─

5──REPLACING──5

 ┌ ┐───
 │ │┌ ┐────────────────────
5─ ───6 ┴──┬ ┬─CHARACTERS BY─ ──┬ ┬─identifier-5─ ───6 ┴──┬ ┬────────────── ──────────────────────── ────────5%

│ │└ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 │ │┌ ┐──
 │ ││ │┌ ┐────────────────────
 └ ┘ ──┬ ┬─ALL───── ───6 ┴ ──┬ ┬─identifier-3─ ─BY─ ──┬ ┬─identifier-5─ ───6 ┴──┬ ┬──────────────

├ ┤─LEADING─ └ ┘─literal-1──── └ ┘─literal-3──── └ ┘─┤ phrase 1 ├─
 └ ┘─FIRST───

phrase 1:
├─ ──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ───┤
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

 Format 4
55──INSPECT──identifier-1──CONVERTING─ ──┬ ┬─identifier-6─ ─TO─ ──┬ ┬─identifier-7─ ────────────────────5
 └ ┘─literal-4──── └ ┘─literal-5────

 ┌ ┐───
5─ ───6 ┴──┬ ┬─BEFORE─ ──┬ ┬───────── ──┬ ┬─identifier-4─ ──5%
 └ ┘─AFTER── └ ┘─INITIAL─ └ ┘─literal-2────

identifier-1
Is the inspected item and can be any of the following:

� An alphanumeric data item
� A numeric data item with USAGE DISPLAY

TALLYING Phrase (Formats 1 and 3)
This phrase counts the occurrence of a specific character (alphabetic, numeric, or
special character) in a data item.

identifier-2
Is the count field , and must be an elementary integer item defined without the
symbol P in its PICTURE character-string.

Part 6. Procedure Division 329

Identifier-2 cannot be:

� A DBCS item
� An external floating point item

� External floating point item

INSPECT Statement

You must initialize identifier-2 before execution of the INSPECT statement begins.

identifier-3 or literal-1
Is the tallying field (the item whose occurrences will be tallied).

Identifier-3 can be any of the following:

� Elementary alphanumeric data item
� Numeric data item with USAGE DISPLAY

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. (If literal-1 is a figurative constant, it is considered to be a
1-character nonnumeric literal.)

CHARACTERS
When CHARACTERS is specified and neither the BEFORE nor AFTER phrase is
specified, the count field (identifier-2) is increased by 1 for each character
(including the space character) in the inspected item (identifier-1). Thus, execution
of the INSPECT TALLYING statement increases the value in the count field by the
number of characters in the inspected item.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified,
the count field (identifier-2) is increased by 1 for each non-overlapping occurrence
of the tallying comparand in the inspected item (identifier-1), beginning at the left-
most character position and continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is speci-
fied, the count field (identifier-2) is increased by 1 for each contiguous non-
overlapping occurrence of the tallying comparand in the inspected item
(identifier-1), provided that the leftmost such occurrence is at the point where com-
parison began in the first comparison cycle for which the tallying comparand is eli-
gible to participate.

FIRST (Format 3 Only)
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified,
the substitution field replaces the leftmost occurrence of the subject field in the
inspected item (identifier-1).

330 COBOL Language Reference

� An external floating point item

� An external floating point item

INSPECT Statement

REPLACING Phrase (Formats 2 and 3)
This phrase fills all or portions of a data item with specified characters, such as spaces
or zeros.

identifier-3 or literal-1
Is the subject field (the item whose occurrences are replaced).

Identifier-3 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-1 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-1 is a figurative constant, it is considered to be a
1-character nonnumeric literal.

identifier-5 or literal-3
Is the substitution field (the item that replaces the subject field).

Identifier-5 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-3 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL.

If literal-3 is a figurative constant, it is considered to be the same length as the
subject field.

The subject field and the substitution field must be the same length.

CHARACTERS BY
When the CHARACTERS BY phrase is used, the substitution field must be 1 char-
acter in length.

When CHARACTERS BY is specified and neither the BEFORE nor AFTER phrase
is specified, the substitution field replaces each character in the inspected item
(identifier-1), beginning at the leftmost character and continuing to the rightmost.

ALL
When ALL is specified and neither the BEFORE nor AFTER phrase is specified,
the substitution field replaces each non-overlapping occurrence of the subject field
in the inspected item (identifier-1), beginning at the leftmost character position and
continuing to the rightmost.

LEADING
When LEADING is specified and neither the BEFORE nor AFTER phrase is speci-
fied, the substitution field replaces each contiguous non-overlapping occurrence of
the subject field in the inspected item (identifier-1), provided that the leftmost such
occurrence is at the point where comparison began in the first comparison cycle for
which this substitution field is eligible to participate.

Part 6. Procedure Division 331

� An external floating point item

INSPECT Statement

FIRST
When FIRST is specified and neither the BEFORE nor AFTER phrase is specified,
the substitution field replaces the leftmost occurrence of the subject field in the
inspected item (identifier-1).

When both the TALLYING and REPLACING phrases are specified (Format 3), the
INSPECT statement is executed as if an INSPECT TALLYING statement (Format 1)
were specified, immediately followed by an INSPECT REPLACING statement (Format
2).

 Replacement Rules
The following replacement rules apply:

� When the subject field is a figurative constant, the single-character substitution field
(which must be 1 character in length) replaces each character in the inspected item
equivalent to the figurative constant.

� When the substitution field is a figurative constant, the substitution field replaces
each non-overlapping occurrence of the subject field in the inspected item.

� When the subject and substitution fields are character-strings, the character-string
specified in the substitution field replaces each non-overlapping occurrence of the
subject field in the inspected item.

� After replacement has occurred in a given character position in the inspected item,
no further replacement for that character position is made in this execution of the
INSPECT statement.

BEFORE and AFTER Phrases (All Formats)
This phrase narrows the set of items being tallied or replaced.

No more than one BEFORE phrase and one AFTER phrase can be specified for any
one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase.

identifier-4 or literal-2
Is the delimiter .

Identifier-4 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-2 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-2 is a figurative constant, it is considered to be 1
character in length.

Delimiters are not counted or replaced. However, the counting and/or replacing of
the inspected item is bounded by the presence of the identifiers and literals.

332 COBOL Language Reference

� An external floating point item

� An external floating point item

INSPECT Statement

INITIAL
The first occurrence of a specified item.

The BEFORE and AFTER phrases change how counting and replacing are done:

� When BEFORE is specified, counting and/or replacing of the inspected item
(identifier-1) begins at the leftmost character and continues until the first occur-
rence of the delimiter is encountered. If no delimiter is present in the inspected
item, counting and/or replacing continues toward the rightmost character.

� When AFTER is specified, counting and/or replacing of the inspected item
(identifier-1) begins with the first character to the right of the delimiter and con-
tinues toward the rightmost character in the inspected item. If no delimiter is
present in the inspected item, no counting or replacement takes place.

CONVERTING Phrase (Format 4)
This phrase converts all occurrences of specific characters in a data item to user-
supplied replacement characters. It can express a string of replacement values.

identifier-6 or literal-4
Is the sending location .

Identifier-6 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-4 must be nonnumeric, and can be any figurative constant that does not
begin with the word ALL. If literal-4 is a figurative constant, it refers to an implicit 1
character data item.

identifier-7 or literal-5
Is the receiving location .

The receiving location (identifier-7 or literal-5) must be the same size as the
sending location (identifier-6 or literal-4).

Identifier-7 can be:

� An elementary alphanumeric data item
� A numeric data item with USAGE DISPLAY

Literal-5 must be nonnumeric and can be any figurative constant that does not
begin with the word ALL. When a figurative constant is used, the size should be
equal to the size of literal-4 or identifier-6.

The same character must not appear more than once in either literal-4 or
identifier-6.

A Format 4 INSPECT statement is interpreted and executed as if a Format 2 INSPECT
statement had been written with a series of ALL phrases (one for each character of
literal-4), specifying the same identifier-1. The effect is as if each single character of

Part 6. Procedure Division 333

external floating point item as if redefined as alphanumeric, with the
INSPECT statement referring to the alphanu-
meric item

INSPECT Statement

literal-4 were referenced as literal-1, and the corresponding single character of literal-5
referenced as literal-3. Correspondence between the characters of literal-4 and the
characters of literal-5 is by ordinal position within the data item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as identifier-1,
the result of the execution of this statement is undefined, even if they are defined by
the same data description entry.

Data Types for Identifiers and Literals
Table 41. Treatment of the Content of Data Items

When referenced by any identifier except
identifier-2, the content of each... Is treated...

alphanumeric or alphabetic item as a character-string

alphanumeric-edited, numeric-edited, or
unsigned numeric (external decimal) item

as if redefined as alphanumeric, with the
INSPECT statement referring to the alphanu-
meric item

signed numeric (external decimal) item as if moved to an unsigned external decimal
item of the same length and then redefined as
alphanumeric, with the INSPECT statement
referring to the alphanumeric item.

If the sign is a separate character, the byte
containing the sign is not examined and, there-
fore, not replaced.

 Data Flow
Except when the BEFORE or AFTER phrase is specified, inspection begins at the left-
most character position of the inspected item (identifier-1) and proceeds character-by-
character to the rightmost position.

The comparands of the following phrases are compared in the left-to-right order in
which they are specified in the INSPECT statement:

� TALLYING (literal-1 or identifier-3, ...)
� REPLACING (literal-3 or identifier-5, ...)

If any identifier is subscripted, reference modified, or is a function-identifier, the sub-
script, reference-modifier, or function is evaluated only once as the first operation in the
execution of the INSPECT statement.

For examples of TALLYING and REPLACING, see the IBM COBOL Programming
Guide for your platform.

334 COBOL Language Reference

INSPECT Statement

 Comparison Cycle
The comparison cycle consists of the following actions:

1. The first comparand is compared with an equal number of leftmost contiguous
characters in the inspected item. The comparand matches the inspected charac-
ters only if both are equal, character-for-character.

If the CHARACTERS phrase is specified, an implied 1-character comparand is
used. The implied character is always considered to match the inspected char-
acter in the inspected item.

2. If no match occurs for the first comparand and there are more comparands, the
comparison is repeated for each successive comparand until either a match is
found or all comparands have been acted upon.

3. Depending on whether a match is found, these actions are taken:

� If a match is found, tallying or replacing takes place, as described in the TAL-
LYING and REPLACING phrase descriptions.

If there are more characters in the inspected item, the first character following
the rightmost matching character is now considered to be in the leftmost char-
acter position. The process described in actions 1 and 2 is then repeated.

� If no match is found and there are more characters in the inspected item, the
first character following the leftmost inspected character is now considered to
be in the leftmost character position. The process described in actions 1 and
2 is then repeated.

4. Actions 1 through 3 are repeated until the rightmost character in the inspected item
either has been matched or has been considered as being in the leftmost character
position.

When the BEFORE or AFTER phrase is specified, the comparison cycle is modified, as
described in “BEFORE and AFTER Phrases (All Formats)” on page 332.

Example of the INSPECT Statement
Figure 10 on page 336 is an example of INSPECT statement results.

Part 6. Procedure Division 335

INSPECT Statement

INSPECT ID─1 TALLYING ID─2 FOR ALL "\\" REPLACING ALL "\\" BY ZEROS.

 ┌───┬───┬───┬───┬───┬───┐ ┌───┐
ID─1 before │ \ │ \ │ \ │ ð │ \ │ \ │ ID─2 before │ ð │
execution └───┴───┼───┼───┼───┴───┤ execution └───┘

│ │ │ │ (initialized by
│ │ │ │ programmer)

Execution for │ │ │ │ TALLYING ID─2
TALLYING phrase: │ │ │ │ comparand: contains:
1st ┌───┬───┤ │ │ │ ┌───┬───┐ ┌───┐
comparison │ \ │ \ │ │ │ │ = │ \ │ \ │ (true) │ 1 │

└───┴───┤ │ │ │ └───┴───┘ └───┘
│ │ │ │

2nd ├───┼───┤ │ ┌───┬───┐ ┌───┐
comparison │ \ │ ð │ │ = │ \ │ \ │ (false) │ 1 │
 ├───┼───┤ │ ├───┴───┘ └───┘

│ │ │ │ │
3rd │ ├───┼───┐ │ ├───┬───┐ ┌───┐
comparison │ │ ð │ \ │ │ = │ \ │ \ │ (false) │ 1 │

│ └───┼───┘ │ └───┴───┘ └───┘
│ │ │

4th │ ├───┬───┤ ┌───┬───┐ ┌───┐
comparison │ │ \ │ \ │ = │ \ │ \ │ (true) │ 2 │
 │ └───┴───┘ └───┴───┘ └───┘
Execution for │
REPLACING phrase: │
5th ┌───┬───┤ ┌───┬───┐ ID─1 changed
comparison │ \ │ \ │ = │ \ │ \ │ (true) to─┐
 └───┴───┘ └───┴───┘ │
 ┌───┬───┬───┬───┬───┬───┐ │

│ ð │ ð │ \ │ ð │ \ │ \ │%─────────────────────────────────┘
 └───┴───┼───┼───┴───┴───┤
 │ │ │
 ├───┼───┐ │ ┌───┬───┐ ID─1
6th │ \ │ ð │ │ = │ \ │ \ │ (false) unchanged
comparison └───┼───┤ │ └───┴───┘
 │ │ │

├───┼───┐ │ ┌───┬───┐ ID─1
7th │ ð │ \ │ │ = │ \ │ \ │ (false) unchanged
comparison └───┼───┘ │ └───┴───┘
 │ │
 ├───┬───┤ ┌───┬───┐ ID─1 changed
8th │ \ │ \ │ = │ \ │ \ │ (true) to──────┐
comparison └───┴───┘ └───┴───┘ │
 ┌───┬───┬───┬───┬───┬───┐ │

│ ð │ ð │ \ │ ð │ ð │ ð │%─────────────────────────────────┘
 └───┴───┴───┴───┴───┴───┘
 └───┴───┴───┴───┴───┴───┘

At the end of inspection:
ID─1 ┌───┬───┬───┬───┬───┬───┐ ID─2 ┌───┐
contains: │ ð │ ð │ \ │ ð │ ð │ ð │ contains: │ 2 │
 └───┴───┴───┴───┴───┴───┘ └───┘

Figure 10. Example of INSPECT Statement Execution Results

336 COBOL Language Reference

INVOKE Statement

 INVOKE Statement
The INVOKE statement invokes a method defined in a class or a metaclass. Methods
can contain INVOKE statements, and a method can execute an INVOKE statement that
directly or indirectly invokes itself. Therefore, all methods are implicitly recursive (unlike
COBOL programs, which support recursion only if the RECURSIVE attribute is specified
in the PROGRAM-ID paragraph.)

The process for resolving the method name specified on the INVOKE statement to a
method implementation is as specified by the IBM SOM. The method resolution is not
case sensitive.

 Format
55──INVOKE─ ──┬ ┬─identifier-1─────────────── ──┬ ┬─literal-1──── ─────────────────────────────────────5
 ├ ┤─class-name-1─────────────── └ ┘─identifier-2─
 ├ ┤─SELF───────────────────────
 └ ┘ ──┬ ┬───────────────── ─SUPER─
 └ ┘─class-name-2 OF─

5─ ──┬ ┬── ────────────────5
 │ │┌ ┐───
 │ ││ │┌ ┐────────────────────────────────────
 └ ┘ ─USING─ ───6 ┴──┬ ┬ ──┬ ┬─────────────────── ───6 ┴──┬ ┬ ──┬ ┬──────────── ─identifier-3─
 │ │└ ┘ ──┬ ┬──── ─REFERENCE─ │ │└ ┘─ADDRESS OF─
 │ │└ ┘─BY─ └ ┘ ─OMITTED──────────────────────
 │ │┌ ┐────────────────────────────────────
 ├ ┤ ──┬ ┬──── ─CONTENT─ ───6 ┴──┬ ┬ ──┬ ┬──────────── ─identifier-4─ ──────
 │ │└ ┘─BY─ │ │├ ┤ ─ADDRESS OF─
 │ ││ │└ ┘ ─LENGTH OF──
 │ │├ ┤ ─literal-2────────────────────
 │ │└ ┘ ─OMITTED──────────────────────
 │ │┌ ┐────────────────────────────────────
 └ ┘ ──┬ ┬──── ─VALUE─ ───6 ┴──┬ ┬ ──┬ ┬──────────── ─identifier-5─ ────────
 └ ┘─BY─ │ │├ ┤ ─ADDRESS OF─
 │ │└ ┘ ─LENGTH OF──
 └ ┘ ─literal-3────────────────────

5─ ──┬ ┬─────────────────────────── ──┬ ┬─── ────────────────5
 └ ┘── ─RETURNING──identifier-6─ └ ┘── ──┬ ┬──── ─EXCEPTION──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬── ──┬ ┬──────────── ─────────────────────────5%
 └ ┘── ─NOT─ ──┬ ┬──── ─EXCEPTION──imperative-statement-2─ └ ┘─END-INVOKE─
 └ ┘─ON─

identifier-1
Must be defined as USAGE OBJECT REFERENCE. The contents of identifier-1
specify the object on which a method is invoked.

The results of the INVOKE statement are undefined if:

� identifier-1 does not contain a valid reference to an object or
� identifier-1 contains NULL

class-name-1
If class-name-1 is specified, the method is invoked on the class object of
class-name-1.

You must specify class-name-1 in the REPOSITORY paragraph of the Configura-
tion Section of the class or program that contains the INVOKE statement.

Part 6. Procedure Division 337

INVOKE Statement

SELF
An implicit reference to the object upon which the currently executing method was
invoked. When SELF is specified, the INVOKE statement must appear within the
Procedure Division of a method.

SUPER
A reference to the object that was used in the invocation of the currently executing
method. The resolution of the method to be invoked will ignore any methods
declared in the class definition of the currently executing method and methods
defined in any class derived from that class, thus the method invoked will be one
that is inherited from an ancestor class. To invoke a method that is inherited from
a specific class, you can qualify SUPER with a class name (class-name-2).

class-name-2
The class to which the inherited method belongs.

You must specify class-name-2 if the reference to SUPER is in a method definition
of a class that uses multiple inheritance. Specify class-name-2 in the REPOSI-
TORY paragraph of the Configuration Section of the class or program that contains
the INVOKE statement. Class-name-2 must be a direct or indirect parent class.

literal-1
The name of the method to be invoked. The referenced object must support the
method identified by literal-1.

Literal-1 must be a nonnumeric literal.

identifier-2
A nonnumeric data item whose value is a method name. The referenced object
must support the method identified by identifier-2.

If identifier-2 is specified, identifier-1 must be defined as USAGE OBJECT REFER-
ENCE without any optional phrases.

Identifier-2 cannot be a windowed date field.

 USING Phrase
The USING phrase specifies arguments that are passed to the target method. For
details on the USING phrase, see “The Procedure Division Header” on page 227.

For conformance requirements for the USING phrase, see “Conformance Requirements
for USING Phrase” on page 341.

BY REFERENCE Phrase
If the BY REFERENCE phrase is either specified or implied for a parameter, the corre-
sponding data item in the invoking method occupies the same storage area as the data
item in the invoked method.

identifier-3
Can be a data item of any level in the DATA DIVISION. Identifier-3 cannot be a
function-identifier.

338 COBOL Language Reference

INVOKE Statement

If defined in the Linkage Section, you must have already provided addressability for
identifier-3 prior to execution of the INVOKE statement. You can do this by coding
either one of the following: SET ADDRESS OF identifier-3 TO pointer or
PROCEDURE/ENTRY USING.

ADDRESS OF Special Register
See “ADDRESS OF” on page 10.

OMITTED
Indicates that no argument is passed.

BY CONTENT Phrase
If the BY CONTENT phrase is specified or implied for a parameter, the invoked method
cannot change the value of this parameter as referenced in the INVOKE statement's
USING phrase. Although, the invoked method can change the value of the data item
referenced by the corresponding data-name in the invoked method's Procedure Division
header. Changes to the parameter in the invoked method do not affect the corre-
sponding argument in the invoking program.

identifier-4
Can be a data item of any level in the Data Division. Identifier-4 cannot be a
function-identifier.

If defined in the Linkage Section, you must have already provided addressability for
identifier-4 prior to execution of the INVOKE statement. You can do this by coding
either one of the following: SET ADDRESS OF identifier-4 TO pointer or
PROCEDURE/ENTRY USING.

literal-2
Can be:

� A nonnumeric literal
� A figurative constant (except ALL literal or NULL/NULLS)
� A DBCS literal

ADDRESS OF Special Register
See “ADDRESS OF” on page 10.

LENGTH OF Special Register
See “LENGTH OF” on page 12.

OMITTED
Indicates that no argument is passed.

BY VALUE Phrase
The BY VALUE phrase applies to all arguments that follow until overridden by another
BY REFERENCE or BY CONTENT phrase.

If the BY VALUE phrase is specified or implied for an argument, the value of the argu-
ment is passed, not a reference to the sending data item. The invoked method can

Part 6. Procedure Division 339

INVOKE Statement

modify the formal parameter corresponding to the BY VALUE argument, but any
changes do not affect the argument since the invoked method has access to a tempo-
rary copy of the sending data item.

While BY VALUE arguments are primarily intended for communication with non-COBOL
programs (such as C), they can also be used for COBOL-to-COBOL invocations. In
this case, BY VALUE must be specified or implied for both the argument in the INVOKE
USING phrase and the corresponding formal parameter in the Procedure Division
USING phrase.

identifier-5
Must be an elementary data item in the DATA DIVISION. Identifier-5 must be one
of the following:

� Binary (USAGE BINARY, COMP, COMP-4, or COMP-5)
� Floating point (USAGE COMP-1 or COMP-2)
� Pointer (USAGE POINTER)
� Procedure-pointer (USAGE PROCEDURE-POINTER)
� Object reference (USAGE OBJECT REFERENCE)
� Single-byte alphanumeric (PIC X or PIC A)

The following can also be passed BY VALUE:

� Reference modified item with length one
� SHIFT-IN and SHIFT-OUT special registers
� LINAGE-COUNTER special register when it is usage binary

ADDRESS OF Special Register
An ADDRESS OF special register passed BY VALUE is treated as a pointer. For
information on the ADDRESS OF special register, see “ADDRESS OF” on
page 10.

LENGTH OF Special Register
A LENGTH OF special register passed BY VALUE is treated as a PIC 9(9) binary.
For information on the LENGTH OF special register, see “LENGTH OF” on
page 12.

literal-3
Must be one of the following:

 � Numeric literal
 � ZERO
� 1-character nonnumeric literal

 � Symbolic character
� Single byte figurative constant

 – SPACE
 – QUOTE
 – HIGH-VALUE
 – LOW-VALUE

ZERO is treated as a numeric value; a fullword binary zero is passed.

340 COBOL Language Reference

INVOKE Statement

If literal-3 is a fixed point numeric literal, it must have a precision of 9 or less digits.
In this case, a fullword binary representation of the literal value is passed.

If literal-3 is a floating point numeric literal, an 8-byte internal floating point
(COMP-2) representation of the value is passed.

Literal-3 must not be a DBCS literal.

Conformance Requirements for USING Phrase
The arguments specified on the USING phrase and the formal parameters specified on
the method PROCEDURE-DIVISION USING must satisfy the following:

� An invoked COBOL method must have the same number of formal parameters on
its procedure division USING phrase as there are arguments on the INVOKE
USING phrase. The presence or absence of USING...BY VALUE must be con-
sistent on the INVOKE statement and the Procedure Division header of the target
method.

� If a formal parameter is a COBOL elementary data item not described with USAGE
IS OBJECT REFERENCE, then the corresponding argument must have the same
PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and BLANK WHEN
ZERO clauses. Note that periods and commas can be interchanged if specifying
the DECIMAL POINT IS COMMA clause, and PICTURE clause currency symbols
can differ.

� If a formal parameter is a COBOL elementary data item described with USAGE IS
OBJECT REFERENCE then:

– If the argument is passed BY REFERENCE, then the argument and the
parameter must be defined with identical USAGE clauses.

– If the argument is passed BY VALUE or BY CONTENT, and the parameter
specified on the method Procedure Division USING phrase is a universal
object reference, then the argument can be any object reference.

– If the argument is passed BY VALUE or BY CONTENT, and the parameter
specified on the method Procedure Division USING phrase is an object refer-
ence typed to a specific class, then the argument must be an object reference
typed to the same or a derived class.

 RETURNING Phrase
You can specify the RETURNING phrase for invoking methods written in COBOL, C, or
in other programming languages that use C linkage conventions.

identifier-6
The RETURNING data item. Identifier-6:

� Must be defined in the DATA DIVISION
� Must not be reference-modified
� Is not changed if an EXCEPTION occurs
� Contains the return value of the invoked method

|

Part 6. Procedure Division 341

INVOKE Statement

If identifier-6 is specified and the target method is written in COBOL, then the
target method must have a RETURNING phrase on its Procedure Division state-
ment. When the target returns, its return value is assigned to identifier-6, using the
rules for the SET statement if identifier-6 is USAGE IS INDEX, USAGE IS
POINTER, USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFER-
ENCE; otherwise, the rules for the MOVE statement are used.

Note: The INVOKE... RETURNING data item is an output-only parameter. On entry to
the called method, the initial state of the PROCEDURE DIVISION RETURNING data
item has an undefined and unpredictable value. You must initialize the PROCEDURE
DIVISION RETURNING data item in the invoked method before you reference its value.
The value that is passed back to the invoker is the final value of the PROCEDURE
DIVISION RETURNING data item when the invoked method returns.

The RETURN-CODE special register is not set by execution of INVOKE statements.

Conformance Requirements for RETURNING Phrase: The identifiers specified on
an INVOKE RETURNING phrase and the corresponding method Procedure Division
RETURNING phrase must satisfy the following:

� The presence or absence of the RETURNING phrase must be consistent on the
INVOKE statement and the Procedure Division header of the target method.

� If one of the identifiers is a COBOL elementary data item not described with
USAGE IS OBJECT REFERENCE, then the corresponding identifier must have the
same PICTURE, USAGE, SIGN, SYNCHRONIZED, JUSTIFIED, and BLANK
WHEN ZERO clauses. Note that periods and commas can be interchanged if
specifying the DECIMAL POINT IS COMMA clause, and PICTURE clause currency
symbols can differ.

� If the INVOKE RETURNING identifier is a universal object reference, then the
method Procedure Division RETURNING identifier must be an object reference
(either a universal object reference or an object reference typed to a specific
class).

� If the INVOKE RETURNING identifier is an object reference typed to a specific
class, then the method Procedure Division RETURNING identifier must be an
object reference typed to the same class or a derived class.

ON EXCEPTION Phrase
An exception condition occurs when invoked methods are not supported by the method
identified by literal-1 or identifier-2. When an exception condition occurs, one of the
following two actions occur:

1. If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1.

2. If the ON EXCEPTION phrase is not specified, then a condition is raised at run
time.

Exceptions can occur if conformance requirements are not met. Conformance require-
ments include:

|
|
|
|
|
|

|
|

342 COBOL Language Reference

INVOKE Statement

� For the USING phrase, see “Conformance Requirements for USING Phrase” on
page 341

� For the RETURNING phrase, see “Conformance Requirements for RETURNING
Phrase” on page 342

� For the purpose of conformance checking, a fixed-length group data item is consid-
ered to be equivalent to an elementary alphanumeric data item of the same length.

A variable-length group conforms only to other variable-length groups that have the
same maximum length.

For an example, see “INVOKE Parameter Type Conformance—Example” on page 344.

NOT ON EXCEPTION Phrase
If an exception condition does not occur (that is, the invoked method is supported by
the specified object), control is transferred to the invoked method. After control is
returned from the invoked method, control is then transferred:

1. To imperative-statement-2, if the NOT ON EXCEPTION phrase is specified.

2. To the end of the INVOKE statement if the NOT ON EXCEPTION phrase is not
specified.

 END-INVOKE Phrase
This explicit scope terminator serves to delimit the scope of the INVOKE statement.
END-INVOKE permits a conditional INVOKE statement to be nested in another condi-
tional statement.

Note: The RETURN-CODE special register is not set by execution of INVOKE state-
ments.

Part 6. Procedure Division 343

INVOKE Statement

INVOKE Parameter Type Conformance—Example

WORKING-STORAGE SECTION.
ð1 anA USAGE OBJECT REFERENCE A.
ð1 aB USAGE OBJECT REFERENCE B.
ð1 aC USAGE OBJECT REFERENCE C.

...
PROCEDURE DIVISION
INVOKE anX "METHOD-1" USING BY REFERENCE anA.
 BY VALUE aB.
 RETURNING aC.
CLASS-ID. X.

...
METHOD-ID. METHOD-1.

...
LINKAGE SECTION.
ð1 aP USAGE OBJECT REFERENCE P.
ð1 aQ USAGE OBJECT REFERENCE Q.
ð1 anR USAGE OBJECT REFERENCE R.

...
PROCEDURE DIVISION USING BY REFERENCE aP
 BY VALUE aQ
 RETURNING anR.

In the above examples:

� Class P and class A must be the same class.
� Class Q must be the same class or a parent of B.
� Class R must be the same class or a subclass of C.

344 COBOL Language Reference

As an IBM extension, any file-names in a MERGE statement can be specified in
the same SAME RECORD AREA clause.

MERGE Statement

 MERGE Statement
The MERGE statement combines two or more identically sequenced files (that is, files
that have already been sorted according to an identical set of ascending/descending
keys) on one or more keys and makes records available in merged order to an output
procedure or output file.

A MERGE statement can appear anywhere in the Procedure Division except in a
Declarative Section.

 Format
 ┌ ┐──
 │ │┌ ┐───────────────
55──MERGE──file-name-1─ ───6 ┴ ──┬ ┬──── ──┬ ┬─ASCENDING── ──┬ ┬───── ───6 ┴─data-name-1─ ─────────────────────5
 └ ┘─ON─ └ ┘─DESCENDING─ └ ┘─KEY─

 ┌ ┐───────────────
5─ ──┬ ┬── ─USING──file-name-2─ ───6 ┴─file-name-3─ ─────5
 └ ┘ ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name-1─
 └ ┘─COLLATING─ └ ┘─IS─

5─ ──┬ ┬ ─OUTPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-1─ ──┬ ┬─────────────────────────────── ────────────5%
 │ │└ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 │ │┌ ┐───────────────
 └ ┘ ─GIVING─ ───6 ┴─file-name-4─ ──

file-name-1
The name given in the SD entry that describes the records to be merged.

No file-name can be repeated in the MERGE statement.

No pair of file-names in a MERGE statement can be specified in the same SAME
AREA, SAME SORT AREA, or SAME SORT-MERGE AREA clause.

When the MERGE statement is executed, all records contained in file-name-2,
file-name-3,..., are accepted by the merge program and then merged according to the
key(s) specified.

ASCENDING/DESCENDING KEY Phrase
This phrase specifies that records are to be processed in an ascending or descending
sequence (depending on the phrase specified), based on the specified merge keys.

data-name-1
Specifies a KEY data item on which the merge will be based. Each such data-
name must identify a data item in a record associated with file-name-1 . The data-
names following the word KEY are listed from left to right in the MERGE statement
in order of decreasing significance without regard to how they are divided into KEY
phrases. The left-most data-name is the major key, the next data-name is the next
most significant key, and so forth.

Part 6. Procedure Division 345

� KEY data items can be floating-point items.

� KEY data items cannot be variably-located.

� Under AIX, OS/2, and Windows, KEY data items cannot be
windowed date fields.

 Under MVS and VM, KEY data items can be windowed date fields,
under these conditions:

– The input files specified in the USING phrase may be sequential, relative,
or indexed, but must not have any RECORD KEY, ALTERNATE
RECORD KEY, or RELATIVE KEY in the same position as a windowed
date merge key. The file system does not support windowed date fields
as keys, so any ordering imposed by the file system could conflict with the
windowed date field support for the merge operation. In fact, if the merge
is to succeed, then input files must have already been sorted into the
same order as that specified by the MERGE statement, including any win-
dowed date ordering.

– The GIVING phrase must not specify an indexed file, because the (binary)
ordering assumed or imposed by the file system conflicts with the win-
dowed date ordering provided in the output of the merge. Attempting to
write the windowed date merge output to such an indexed file will either
fail or re-impose binary ordering, depending on how the file is accessed
(the ACCESS MODE in the file-control entry).

– If an alphanumeric windowed date field is specified as a KEY for a
MERGE statement, the collating sequence in effect for the merge opera-
tion must be EBCDIC. Thus the COLLATING SEQUENCE phrase of the
MERGE statement or, if this phrase is not specified, then any PROGRAM
COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph,
must not specify a collating sequence other than EBCDIC or NATIVE.

MERGE Statement

The following rules apply:

� A specific key data item must be physically located in the same position and
have the same data format in each input file. However, it need not have the
same data-name.

� If file-name-1 has more than one record description, then the KEY data items
need be described in only one of the record descriptions.

� If file-name-1 contains variable-length records, all of the KEY data-items must
be contained within the first n character positions of the record, where n
equals the minimum records size specified for file-name-1.

� KEY data items must not contain an OCCURS clause or be subordinate to an
item that contains an OCCURS clause.

� KEY data items can be qualified.

� KEY data items cannot be group items that contain variable occurrence data
items.

346 COBOL Language Reference

If the MERGE statement meets these conditions, then the merge operation
takes advantage of SORT Year 2000 features, assuming that the execution
environment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a MERGE
statement, and can thereby exploit the corresponding century windowing capa-
bility of the sort product.

For more information on using windowed date fields as KEY data items, see
the IBM COBOL Programming Guide for your platform.

� Under MVS and VM, if the KEY is a DBCS item, the sequence of
the KEY values are based on the binary collating sequence of the hexadecimal
values of the DBCS characters.

� Under AIX, OS/2, and Windows, if the KEY is a DBCS item,
then the sequence of the KEY values is based on a collation sequence
according to the COLLSEQ compiler option:

– If the COLLSEQ(NATIVE) compiler option is in effect, then the collating
sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 568.

– Otherwise, the collating sequence is determined by the binary values of
the DBCS characters.

� If the KEY is an external floating-point item, the key is treated as alphanu-
meric. The sequence in which the records are merged depends on the col-
lating sequence used.

� If the KEY is an internal floating-point item, the sequence of key values will be
in numeric order.

MERGE Statement

|
|
|

The direction of the merge operation depends on the specification of the
ASCENDING or DESCENDING key words as follows:

� When ASCENDING is specified, the sequence is from the lowest key value to
the highest key value.

� When DESCENDING is specified, the sequence is from the highest key value
to the lowest.

� If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, the sequence of key values depends on the collating
sequence used (see “COLLATING SEQUENCE Phrase” below).

The key comparisons are performed according to the rules for comparison of oper-
ands in a relation condition (see “Relation Condition” on page 243).

COLLATING SEQUENCE Phrase
This phrase specifies the collating sequence to be used in nonnumeric comparisons for
the KEY data items in this merge operation.

 Under AIX, OS/2, and Windows, the COLLATING SEQUENCE phrase is
only valid when an ASCII code page is in effect.

Part 6. Procedure Division 347

MERGE Statement

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES paragraph.
Any one of the alphabet-name clause phrases can be specified, with the following
results:

STANDARD-1
 Under MVS and VM, the ASCII collating sequence is used for all

nonnumeric comparisons. (The ASCII collating sequence is in Appendix B,
“EBCDIC and ASCII Collating Sequences” on page 548.)

 Under AIX, OS/2, and Windows, the collating sequence is
based on the character's hex value order.

STANDARD-2
 Under MVS and VM, the International Reference Version of the

ISO 7-bit code defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange is used for all nonnumeric compar-
isons.

 Under AIX, OS/2, and Windows the collating sequence is based
on the character's hex value order.

NATIVE
 Under MVS and VM, the EBCDIC collating sequence is used for

all nonnumeric comparisons. (The EBCDIC collating sequence is in
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

 Under AIX, OS/2, and Windows, the collating sequence indi-
cated by the locale is selected.

EBCDIC
The EBCDIC collating sequence is used for all nonnumeric comparisons. (The
EBCDIC collating sequence is in Appendix B, “EBCDIC and ASCII Collating
Sequences” on page 548.)

literal
The collating sequence established by the specification of literals in the
alphabet-name clause is used for all nonnumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM COLLATING
SEQUENCE clause (if specified) in the OBJECT-COMPUTER paragraph specifies the
collating sequence to be used. When both the COLLATING SEQUENCE phrase and
the PROGRAM COLLATING SEQUENCE clause are omitted,

� Under MVS and VM, the EBCDIC collating sequence is used. (See
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

� Under AIX, OS/2, and Windows, the COLLSEQ compiler option
indicates the collating sequence used. If COLLSEQ(EBCDIC) is specified, the
EBCDIC collating sequence is used. If COLLSEQ(NATIVE) is specified, the col-
lating sequence as indicated by the locale is used. For more information on locale,

348 COBOL Language Reference

MERGE Statement

see Appendix F, “Locale Considerations (Workstation Only)” on page 568.

 USING Phrase
file-name-2, file-name-3, ...

Specifies the input files.

During the MERGE operation, all the records on file-name-2, file-name-3, ... (that is, the
input files) are transferred to file-name-1. At the time the MERGE statement is exe-
cuted, these files must not be open. The input files are automatically opened, read,
and closed, and if DECLARATIVE procedures are specified for these files for input
operations, the files will be driven for errors if errors occur.

All input files must specify sequential or dynamic access mode and be described in FD
entries in the Data Division.

If file-name-1 contains variable-length records, the size of the records contained in the
input files (file-name-2, file-name-3, ...) must not be less than the smallest record nor
greater than the largest record described for file-name-1. If file-name-1 contains fixed-
length records, the size of the records contained in the input files must not be greater
than the largest record described for file-name-1. For more information, see the IBM
COBOL Programming Guide for your platform.

 GIVING Phrase
file-name-4, ...

Specifies the output files.

When the GIVING phrase is specified, all the merged records in file-name-1 are auto-
matically transferred to the output files (file-name-4...).

All output files must specify sequential or dynamic access mode and be described in
FD entries in the DATA DIVISION.

If the output files (file-name-4,...) contain variable-length records, the size of the records
contained in file-name-1 must not be less than the smallest record nor greater than the
largest record described for the output files. If the output files contain fixed-length
records, the size of the records contained in file-name-1 must not be greater than the
largest record described for the output files. For more information, see the IBM COBOL
Programming Guide for your platform.

At the time the MERGE statement is executed, the output files (file-name-4,...) must not
be open. The output files are automatically opened, read, and closed, and if DECLAR-
ATIVE procedures are specified for these files for output operations, the files will be
driven for errors if errors occur.

Part 6. Procedure Division 349

MERGE Special Registers
SORT-CONTROL Special Register

You define the sort control file (through which you can specify additional options to
the sort/merge function) with the SORT-CONTROL special register.

If you use a sort control file to specify control statements, the values specified in
the sort control file take precedence over those in the special register.

For information, see “SORT-CONTROL” on page 16.

SORT-MESSAGE Special Register (MVS and VM Only)
For information, see “SORT-MESSAGE” on page 18.

 The special register SORT-MESSAGE is equivalent to an option control
statement key word in the sort control file.

MERGE Statement

OUTPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify output records
from the merge operation.

procedure-name-1
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The OUTPUT PROCEDURE can consist of any procedure needed to select, modify, or
copy the records that are made available one at time by the RETURN statement in
merged order from the file referenced by file-name-1. The range includes all statements
that are executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the output procedure. The range also includes
all statements in declarative procedures that are executed as a result of the execution
of statements in the range of the output procedure. The range of the output procedure
must not cause the execution of any MERGE, RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after the file referenced by
file-name-1 has been sequenced by the MERGE statement. The compiler inserts a
return mechanism at the end of the last statement in the output procedure and when
control passes the last statement in the output procedure, the return mechanism pro-
vides the termination of the merge and then passes control to the next executable
statement after the MERGE statement. Before entering the output procedure, the merge
procedure reaches a point at which it can select the next record in merged order when
requested. The RETURN statements in the output procedure are the requests for the
next record.

Note: The OUTPUT PROCEDURE phrase is similar to a basic PERFORM statement.
For example, if you name a procedure in an OUTPUT PROCEDURE, that procedure is
executed during the merging operation just as if it were named in a PERFORM state-
ment. As with the PERFORM statement, execution of the procedure is terminated after
the last statement completes execution. The last statement in an OUTPUT PROCE-
DURE can be the EXIT statement (see “EXIT Statement” on page 317).

350 COBOL Language Reference

SORT-RETURN Special Register
For information, see “SORT-RETURN” on page 18.

MERGE Statement

 Segmentation Considerations
If the MERGE statement appears in a section that is not in an independent segment,
then any output procedure referenced by that MERGE statement must appear:

1. Totally within non-independent segments, or
2. Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output procedure
referenced by that MERGE statement must be contained:

1. Totally within non-independent segments, or
2. Wholly within the same independent segment as that MERGE statement.

Part 6. Procedure Division 351

Do not specify a data item defined with USAGE IS POINTER, USAGE IS
PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE in a MOVE statement.

A data item defined with USAGE IS POINTER, USAGE IS PROCEDURE-POINTER, or
USAGE IS OBJECT REFERENCE can be part of a group that is referred to in a MOVE
CORRESPONDING statement; however, no movement of the data item will take place.

MOVE Statement

 MOVE Statement
The MOVE statement transfers data from one area of storage to one or more other
areas.

 Format 1
 ┌ ┐────────────────
55──MOVE─ ──┬ ┬─identifier-1─ ─TO─ ───6 ┴─identifier-2─ ──────────────────────────────5%
 └ ┘─literal-1────

 Format 2
55──MOVE─ ──┬ ┬─CORRESPONDING─ ─identifier-1──TO──identifier-2────────────────────5%
 └ ┘─CORR──────────

identifier-1, literal-1
Sending area

identifier-2
Receiving area(s)

When Format 1 is specified, all identifiers can be either group or elementary items.
The data in the sending area is moved into the data item referenced by each
identifier-2 in the order in which it is specified. See “Elementary Moves” on page 353
and “Group Moves” on page 356.

When Format 2 is specified, both identifiers must be group items. CORR is an abbrevi-
ation for, and is equivalent to, CORRESPONDING.

When CORRESPONDING is specified, selected items in identifier-1 are moved to
identifier-2, according to the rules for the CORRESPONDING phrase on on page 265.
The results are the same as if each pair of CORRESPONDING identifiers were refer-
enced in a separate MOVE statement.

An index data item cannot be specified in a MOVE statement.

The evaluation of the length of the sending or receiving area can be affected by the
DEPENDING ON phrase of the OCCURS clause (see “OCCURS Clause” on
page 172).

If the sending field (identifier-1) is reference-modified, subscripted, or is an alphanu-
meric or alphabetic function-identifier, the reference-modifier, subscript, or function is

352 COBOL Language Reference

Floating-point —includes internal floating-point items (defined as USAGE COMP-1
or USAGE COMP-2), external floating-point items (defined as USAGE DISPLAY),
and floating-point literals.

DBCS—includes DBCS data items (defined explicitly or implicitly as USAGE
DISPLAY-1) and DBCS literals.

MOVE Statement

evaluated only once, immediately before data is moved to the first of the receiving oper-
ands.

Any length evaluation, subscripting, or reference-modification associated with a
receiving field (identifier-2) is evaluated immediately before the data is moved into that
receiving field.

For example, the result of the statement:

MOVE A(B) TO B, C(B).

is equivalent to:

MOVE A(B) TO TEMP
MOVE TEMP TO B.
MOVE TEMP TO C(B).

where TEMP is defined as an intermediate result item. The subscript B has changed in
value between the time that the first move took place and the time that the final move
to C(B) is executed.

For further information on intermediate results, see the IBM COBOL Programming
Guide for your platform.

After execution of a MOVE statement, the sending field(s) contain the same data as
before execution.

Note: Overlapping operands in a MOVE statement can cause unpredictable results.

 Elementary Moves
An elementary move is one in which the receiving item is an elementary item, and the
sending item is an elementary item or a literal. Any necessary conversion of data from
one form of internal representation to another takes place during the move, along with
any specified editing in, or de-editing implied by, the receiving item. Each elementary
item belongs to one of the following categories:

Alphabetic —includes alphabetic data items and the figurative constant SPACE.

Alphanumeric —includes alphanumeric data items, nonnumeric literals, and all fig-
urative constants except SPACE and ZERO (when ZERO is moved to a numeric or
numeric-edited item).

Alphanumeric-Edited —includes alphanumeric-edited data items.

Numeric —includes numeric data items, numeric literals, and the figurative constant
ZERO (when ZERO is moved to a numeric or numeric-edited item).

Numeric-Edited —includes numeric-edited data items.

Part 6. Procedure Division 353

� When the sending item is floating-point, the data is first converted to either a binary
or internal decimal representation and is then moved.

Floating-point :

� The sending item is converted first to internal floating-point and then moved.

� When data is moved to or from an external floating-point item, the data is con-
verted first to or from its equivalent internal floating-point value.

MOVE Statement

The following rules outline the execution of valid elementary moves. When the
receiving field is:

Alphabetic :

� Alignment and any necessary space filling occur as described under “Alignment
Rules” on page 141.

� If the size of the sending item is greater than the size of the receiving item, excess
characters on the right are truncated after the receiving item is filled.

Alphanumeric or Alphanumeric-Edited :

� Alignment and any necessary space filling take place, as described under “Align-
ment Rules” on page 141.

� If the size of the sending item is greater than the size of the receiving item, excess
characters on the right are truncated after the receiving item is filled.

� If the sending item has an operational sign, the unsigned value is used. If the
operational sign occupies a separate character, that character is not moved, and
the size of the sending item is considered to be one less character than the actual
size.

Numeric or Numeric-edited :

� Except where zeros are replaced because of editing requirements, alignment by
decimal point and any necessary zero filling take place, as described under “Align-
ment Rules” on page 141.

� If the receiving item is signed, the sign of the sending item is placed in the
receiving item, with any necessary sign conversion. If the sending item is
unsigned, a positive operational sign is generated for the receiving item.

� If the receiving item is unsigned, the absolute value of the sending item is moved,
and no operational sign is generated for the receiving item.

� When the sending item is alphanumeric, the data is moved as if the sending item
were described as an unsigned integer.

� De-editing allows moving a numeric-edited data item into a numeric or numeric-
edited receiver. The compiler accomplishes this by first establishing the unedited
value of the numeric-edited item (this value can be signed), then moving the uned-
ited numeric value to the receiving numeric or numeric-edited data item.

354 COBOL Language Reference

DBCS:

� No conversion takes place.

� If the sending and receiving items are not the same size, the data item will be
either truncated or padded with DBCS spaces on the right.

 Under AIX, OS/2, and Windows, if the padding required is not in a
multiple consistent with double-byte characters, single-byte characters will be used
(for example, a group item moved to a DBCS data item).

External
Floating
Point

Internal
Floating
Point DBCS 1

No No No

 3 3 Yes8 Yes8 No

No No No

Yes Yes No

Yes Yes No

Yes Yes No

Floating point 6 No No No Yes Yes Yes Yes No

DBCS7 No No No No No No No Yes

1 Includes DBCS data items.

3 Figurative constants and nonnumeric literals must consist only of numeric characters and will be treated as numeric integer fields.

6 Includes floating-point literals, external floating-point data items (USAGE DISPLAY), and internal floating-point data items (USAGE
COMP-1 or USAGE COMP-2).

7 Includes DBCS data-items, DBCS literals, and SPACE.

MOVE Statement

Notes:

1. If the receiving field is alphanumeric or numeric-edited, and the sending field is a
scaled integer (that is, has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as trailing zeros when the MOVE
statement is executed.

2. If the receiving field is numeric and the sending field is alphanumeric literal or ALL
literal, then all characters of the literal must be numeric characters.

Table 42 shows valid and invalid elementary moves for each category. In the table:

� YES = Move is valid.
� NO = Move is invalid.

Table 42. Valid and Invalid Elementary Moves

Sending Item Category

Receiving Item Category

Alpha-
betic

Alpha-
numeric

Alpha-
numeric
Edited Numeric Numeric-Edited

Alphabetic and SPACE Yes Yes Yes No No

Alphanumeric 2 Yes Yes Yes Yes Yes

Alphanumeric-Edited Yes Yes Yes No No

Numeric Integer and
ZERO4 No Yes Yes Yes Yes

Numeric Non-integer 5 No No No Yes Yes

Numeric-Edited No Yes Yes Yes Yes

Note:

2 Includes nonnumeric literals.

4 Includes integer numeric literals.
5 Includes non-integer numeric literals.

8 Figurative constants and nonnumeric literals must consist only of numeric characters and will be treated as numeric integer fields.
The ALL literal cannot be used as a sending item.

Part 6. Procedure Division 355

Moves Involving Date Fields
If the sending item is specified as a year-last date field, then all receiving fields must
also be year-last date fields with the same date format as the sending item. If a year-
last date field is specified as a receiving item, then the sending item must be either a
non-date or a year-last date field with the same date format as the receiving item. In
both cases, the move is then performed as if all items were non-dates.

Table 43 describes the behavior of moves involving non-year-last date fields. If the
sending item is a date field, then the receiving item must be a compatible date field. If
the sending and receiving items are both date fields, then they must be compatible; that
is, they must have the same date format, except for the year part, which may be win-
dowed or expanded.

This table uses the following terms to describe the moves:

Normal
The move is performed with no date-sensitive behavior, as if the sending
and receiving items were both non-dates.

Expanded
The windowed date field sending item is treated as if it were first converted
to expanded form, as described under “Semantics of Windowed Date
Fields” on page 165.

Invalid
The move is not allowed.

Table 43. Moves Involving Date Fields

Sending Item

Receiving Item

Non-date Windowed date field Expanded date field

Non-date Normal Normal Normal

Windowed date field Invalid Normal Expanded

Expanded date field Invalid Normal1 Normal

1 A move from an expanded date field to a windowed date field is, in effect, a “windowed” move,
because it truncates the century component of the expanded date field. If the move is alpha-
numeric, it treats the receiving windowed date field as if its data description specified JUSTI-
FIED RIGHT. This is true even if the receiving windowed date field is a group item, for which
the JUSTIFIED clause cannot be specified.

MOVE Statement

|
|
|
|
|

|

|
|
|
|
|

 Group Moves
A group move is one in which one or both of the sending and receiving fields are group
items. A group move is treated exactly as though it were an alphanumeric elementary
move, except that there is no conversion of data from one form of internal represen-
tation to another. In a group move, the receiving area is filled without consideration for
the individual elementary items contained within either the sending area or the receiving
area, except as noted in the OCCURS clause. (See “OCCURS Clause” on page 172.)
All group moves are valid.

356 COBOL Language Reference

Identifier-1 and identifier-2 cannot be
date fields.

MULTIPLY Statement

 MULTIPLY Statement
The MULTIPLY statement multiplies numeric items and sets the values of data items
equal to the results.

 Format 1
 ┌ ┐─────────────────────────────
55──MULTIPLY─ ──┬ ┬─identifier-1─ ─BY─ ───6 ┴ ─identifier-2─ ──┬ ┬───────── ──────────────5
 └ ┘─literal-1──── └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-MULTIPLY─
 └ ┘─ON─

In Format 1, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2;
the product is then placed in identifier-2. For each successive occurrence of
identifier-2, the multiplication takes place in the left-to-right order in which identifier-2 is
specified.

 Format 2
55──MULTIPLY─ ──┬ ┬─identifier-1─ ─BY─ ──┬ ┬─identifier-2─ ───────────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
5─ ─GIVING─ ───6 ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-MULTIPLY─
 └ ┘─ON─

In Format 2, the value of identifier-1 or literal-1 is multiplied by the value of identifier-2
or literal-2. The product is then stored in the data item(s) referenced by identifier-3.

For all Formats:

identifier-1, identifier-2
Must name an elementary numeric item.

literal-1, literal-2
Must be a numeric literal.

Part 6. Procedure Division 357

Identifier-3, the GIVING phrase identifier, is the only identifier in the MULTIPLY
statement that can be a date field.

If identifier-3 names a date field, then see “Storing Arithmetic Results That Involve
Date Fields” on page 237 for details on how the product is stored in identifier-3.

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

The composite of operands can be more than 18 digits. For information on arithmetic
intermediate results, see the IBM COBOL Programming Guide for your platform.

MULTIPLY Statement

For Format-2:

identifier-3
Must name an elementary numeric or numeric-edited item.

The composite of operands must not contain more than 18 digits.

 ROUNDED Phrase
For Formats 1 and 2, see “ROUNDED Phrase” on page 266.

SIZE ERROR Phrases
For Formats 1 and 2, see “SIZE ERROR Phrases” on page 266.

 END-MULTIPLY Phrase
This explicit scope terminator serves to delimit the scope of the MULTIPLY statement.
END-MULTIPLY permits a conditional MULTIPLY statement to be nested in another
conditional statement. END-MULTIPLY can also be used with an imperative MUL-
TIPLY statement.

For more information, see “Delimited Scope Statements” on page 263.

358 COBOL Language Reference

Format 3—Line Sequential Files (Workstation Only)
 ┌ ┐───────────────────────────────
 │ │┌ ┐───────────────
55──OPEN─ ───6 ┴──┬ ┬ ─INPUT─ ───6 ┴ ─file-name-1─ ─ ─────────────────────────────────────5%
 │ │┌ ┐───────────────
 ├ ┤ ─OUTPUT─ ───6 ┴ ─file-name-2─
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───6 ┴─file-name-4─

OPEN Statement

 OPEN Statement
The OPEN statement initiates the processing of files. It also checks and/or writes
labels.

Format 1—Sequential Files
 ┌ ┐───
 │ │┌ ┐──
55──OPEN─ ───6 ┴──┬ ┬ ─INPUT─ ───6 ┴ ─file-name-1─ ──┬ ┬─────────────────────── ───────────5%
 │ │├ ┤─REVERSED───(1)───────────
 │ │└ ┘ ──┬ ┬────── ─NO REWIND───(1)

 │ │└ ┘─WITH─
 │ │┌ ┐──
 ├ ┤ ─OUTPUT─ ───6 ┴ ─file-name-2─ ──┬ ┬───────────────────── ─
 │ │└ ┘ ──┬ ┬────── ─NO REWIND─
 │ │└ ┘─WITH─
 │ │┌ ┐───────────────
 ├ ┤ ─I-O─ ───6 ┴─file-name-3─ ─────────────────────────────
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───6 ┴─file-name-4─ ──────────────────────────

Note:
1 Under MVS, the REVERSED and WITH NO REWIND phrases are not valid

for VSAM files. Under AIX, OS/2, and Windows, the REVERSED and WITH
NO REWIND phases are treated as a comment.

Format 2—Indexed and Relative Files
 ┌ ┐───────────────────────────────
 │ │┌ ┐───────────────
55──OPEN─ ───6 ┴──┬ ┬ ─INPUT─ ───6 ┴─file-name-1─ ─ ─────────────────────────────────────5%
 │ │┌ ┐───────────────
 ├ ┤ ─OUTPUT─ ───6 ┴─file-name-2─
 │ │┌ ┐───────────────
 ├ ┤ ─I-O─ ───6 ┴─file-name-3─ ───
 │ │┌ ┐───────────────
 └ ┘ ─EXTEND─ ───6 ┴─file-name-4─

At least one of the phrases, INPUT, OUTPUT, I-O, or EXTEND, must be specified with
the OPEN key word. The INPUT, OUTPUT, I-O, and EXTEND phrases can appear in
any order.

INPUT
Permits opening the file for input operations.

Part 6. Procedure Division 359

 Under AIX, OS/2, and Windows, the I-O phrase is not valid for line
sequential files.

As an IBM extension, the EXTEND phrase is
allowed for files that specify the LINAGE clause.

OPEN Statement

OUTPUT
Permits opening the file for output operations. This phrase can be specified when
the file is being created.

Note: Do not specify OUTPUT for files that:

� Contain records. The file will be replaced by new data. If the OUTPUT phrase
is specified for a file that already contains records, the data set must be
defined as reusable and cannot have an alternate index. The records in the
file will be replaced by the new data and any ALTERNATE RECORD KEY
clause in the SELECT statement will be ignored.

� Under MVS, are defined with a DD dummy card. Unpredictable results can
occur.

I-O Permits opening the file for both input and output operations. The I-O phrase can
be specified only for files assigned to direct access devices.

EXTEND
Permits opening the file for output operations.

The EXTEND phrase is only allowed for sequential access files if the new data is
written in ascending sequence.

Under MVS, for QSAM files, do not specify the EXTEND phrase for a multiple file
reel.

If you want to append to a file, but are unsure if the file exists, use the SELECT
OPTIONAL clause before OPENing the file in EXTEND mode. The file will be
created or appended to, depending on whether the file exists.

file-name-1, file-name-2, file-name-3, file-name-4
Designates a file upon which the OPEN statement is to operate. If more than one
file is specified, the files need not have the same organization or access. Each
file-name must be defined in an FD entry in the Data Division, and must not name
a sort or merge file. The FD entry must be equivalent to the information supplied
when the file was defined.

REVERSED
 Under MVS and VM, the REVERSED phrase is only valid for sequen-

tial single reel files. It is not valid for VSAM files.

If the concept of reels has no meaning for the storage medium (for example, a
direct access device), the REVERSED and NO REWIND phrases do not apply.

 Under AIX, OS/2, and Windows, the REVERSED phrase is treated
as a comment.

360 COBOL Language Reference

� Any OS/2 VSAM files, that specify the LOCK MODE IS AUTOMATIC
phrase are shareable (except for any VSAM files residing on a LAN server).
Shareable files can be opened by more than one file connector. If the OPEN
statement fails due to locking constraints, the file status is set to indicate “file
locked.”

OPEN Statement

NO REWIND
 Under MVS and VM, the NO REWIND phrase is only valid for sequen-

tial single reel files. It is not valid for VSAM files.

 Under AIX, OS/2, and Windows, the NO REWIND phrase is treated
as a comment.

 General Rules
� If a file opened with the INPUT phrase is an optional file which is not present, the

OPEN statement sets the file position indicator to indicate that an optional input file
is not present.

� Execution of an OPEN INPUT or OPEN I-O statement sets the file position indi-
cator:

– For indexed files, to the characters with the lowest ordinal position in the col-
lating sequence associated with the file.

– For sequential and relative files, to 1.

� When the EXTEND phrase is specified, the OPEN statement positions the file
immediately after the last record written in the file. (The record with the highest
prime record key value (for indexed files) or relative key value (for relative files) is
considered the last record.) Subsequent WRITE statements add records as if the
file were opened OUTPUT. The EXTEND option can be specified when a file is
being created; it can also be specified for a file that contains records, or that has
contained records that have been deleted.

� When the EXTEND phrase is not specified, OPEN statement posi-
tions the file at its beginning.

� For MVS VSAM files, if no records exist in the file, the file position
indicator is set so that the first Format 1 READ statement executed results in an
AT END condition.

� When NO REWIND is specified, the OPEN statement execution does not reposi-
tion the file; prior to OPEN statement execution, the file must be positioned at its
beginning. When the NO REWIND phrase is specified (or when both the NO
REWIND and REVERSE phrases are omitted), file positioning is specified with the
LABEL parameter of the DD statement under MVS and with the "label processing"
operand under CMS.

� When REVERSED is specified, OPEN statement execution positions the QSAM file
at its end. Subsequent READ statements make the data records available in
reversed order, starting with the last record.

When OPEN REVERSED is specified, the record format must be fixed.

Part 6. Procedure Division 361

 If the PASSWORD clause is specified in the FILE-CONTROL entry, the
password data item must contain the valid password before the OPEN statement is
executed. If the valid password is not present, the OPEN statement execution is
unsuccessful.

� When the REVERSED, NO REWIND, or EXTEND phrases are not specified,
OPEN statement execution positions the file at its beginning.

 Label Records
 Under AIX, OS/2, and Windows, label processing is not supported. A

warning message is issued if any of the following language elements are encountered:

� LABEL RECORDS IS data-name
 � USE...AFTER...LABEL PROCEDURE
� GO TO MORE-LABELS

If label records are specified for the file when the OPEN statement is executed, the
labels are processed according to the standard label conventions, as follows:

INPUT files The beginning labels are checked.

OUTPUT files The beginning labels are written.

I-O files The labels are checked; new labels are then written.

EXTEND files The following procedures are executed:

� Beginning file labels are processed only if this is a single-volume
file.

� Beginning volume labels of the last existing volume are proc-
essed as though the file was being opened with the INPUT
phrase.

� Existing ending file labels are processed as though the file was
being opened with the INPUT phrase; they are then deleted.

� Processing continues as if the file were opened as an OUTPUT
file.

When label records are specified but not present, or are present but not specified, exe-
cution of the OPEN statement is unpredictable.

OPEN Statement Notes
1. The successful execution of an OPEN statement determines the availability of the

file and results in that file being in open mode. A file is available if it is physically
present and is recognized by the input-output control system. Table 44 on
page 363 shows the results of opening available and unavailable files. For more
information regarding file availability, see the IBM COBOL Programming Guide for
your platform.

362 COBOL Language Reference

2. The successful execution of the OPEN statement makes the associated record
area available to the program; it does not obtain or release the first data record.

3. An OPEN statement must be successfully executed prior to the execution of any of
the permissible input-output statements, except a SORT or MERGE statement with
the USING or GIVING phrase. Table 45 shows the permissible input-output state-
ments for sequential files. An 'X' indicates that the specified statement can be
used with the open mode given at the top of the column.

Table 46 on page 364 shows the permissible statements for indexed and relative
files. An 'X' indicates that the specified statement, used in the access mode
given for that row, can be used with the OPEN mode given at the top of the
column.

Table 44. Availability of a File

OPENed As File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

INPUT
(optional file)

Normal open Normal open; the first read causes the at end condi-
tion or the invalid key condition

I-O Normal open Open is unsuccessful

I-O (optional
file)

Normal open Open causes the file to be created

OUTPUT Normal open;
the file contains
no records

Open causes the file to be created

EXTEND Normal open Open is unsuccessful

EXTEND
(optional file)

Normal open Open causes the file to be created

Table 45. Permissible Statements for Sequential Files

Statement
Open Mode

Input Output I-O Extend

READ X X

WRITE X X

REWRITE X

Part 6. Procedure Division 363

Table 47 shows the permissible input-output statements for line sequential files.
An 'X' indicates that the specified statement can be used with the open mode
given at the top of the column.

 and line
sequential

Table 47. Permissible Statements for Line Sequential Files (Workstation Only)

Statement
Open Mode

Input Output I-O Extend

READ X

WRITE X X

REWRITE

4. A file can be opened for INPUT, OUTPUT, I-O, or EXTEND (sequential
 files only) in the same program. After the first OPEN statement exe-

cution for a given file, each subsequent OPEN statement execution must be pre-
ceded by a successful CLOSE file statement execution without the REEL or UNIT
phrase (for QSAM files only), or the LOCK phrase.

5. If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associ-
ated status key is updated when the OPEN statement is executed.

6. If an OPEN statement is issued for a file already in the open status, the
EXCEPTION/ERROR procedure (if specified) for this file is executed.

Table 46. Permissible Statements for Indexed and Relative Files

File Access Mode Statement
Open Mode

Input Output I-O Extend

Sequential READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Random READ X X

WRITE X X

REWRITE X

START

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

364 COBOL Language Reference

Imperative-statement-1 is optional as an IBM extension.

PERFORM Statement

 PERFORM Statement
The PERFORM statement transfers control explicitly to one or more procedures and
implicitly returns control to the next executable statement after execution of the speci-
fied procedure(s) is completed.

The PERFORM statement can be:

An out-of-line PERFORM statement
Procedure-name-1 is specified.

An in-line PERFORM statement
Procedure-name-1 is omitted.

An in-line PERFORM must be delimited by the END-PERFORM phrase.

The in-line and out-of-line formats cannot be combined. For example, if
procedure-name-1 is specified, the imperative-statement and the END-PERFORM
phrase must not be specified.

The PERFORM statement formats are:

 � Basic PERFORM
� TIMES phrase PERFORM
� UNTIL phrase PERFORM
� VARYING phrase PERFORM

Basic PERFORM Statement
The procedure(s) referenced in the basic PERFORM statement are executed once, and
control then passes to the next executable statement following the PERFORM state-
ment.

Note: A PERFORM statement must not cause itself to be executed. Such a recursive
PERFORM statement can cause unpredictable results.

 Format 1
55──PERFORM─ ──┬ ┬ ─procedure-name-1─ ──┬ ┬─────────────────────────────── ──────────5%
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘ ─imperative-statement-1───(1)─END-PERFORM───────────────

Note:
1

procedure-name-1, procedure-name-2
Must name a section or paragraph in the Procedure Division.

When both procedure-name-1 and procedure-name-2 are specified, if either is a
procedure-name in a declarative procedure, both must be procedure-names in the
same declarative procedure.

If procedure-name-1 is specified, imperative-statement-1 and the END-PERFORM
phrase must not be specified.

Part 6. Procedure Division 365

As an IBM extension, two or more active PERFORM statements can have a
common exit.

PERFORM Statement

If procedure-name-1 is omitted, imperative-statement and the END-PERFORM
phrase must be specified.

imperative-statement
The statements to be executed for an in-line PERFORM.

An in-line PERFORM statement functions according to the same general rules as an
otherwise identical out-of-line PERFORM statement, except that statements contained
within the in-line PERFORM are executed in place of the statements contained within
the range of procedure-name-1 (through procedure-name-2, if specified). Unless spe-
cifically qualified by the word in-line or out-of-line , all the rules that apply to the out-of-
line PERFORM statement also apply to the in-line PERFORM.

Whenever an out-of-line PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-1. Control is always returned
to the statement following the PERFORM statement. The point from which this control
is returned is determined as follows:

� If procedure-name-1 is a paragraph name and procedure-name-2 is not specified,
the return is made after the execution of the last statement of the
procedure-name-1 paragraph.

� If procedure-name-1 is a section name and procedure-name-2 is not specified, the
return is made after the execution of the last statement of the last paragraph in the
procedure-name-1 section.

� If procedure-name-2 is specified and it is a paragraph name, the return is made
after the execution of the last statement of the procedure-name-2 paragraph.

� If procedure-name-2 is specified and it is a section name, the return is made after
the execution of the last statement of the last paragraph in the procedure-name-2
section.

The only necessary relationship between procedure-name-1 and procedure-name-2 is
that a consecutive sequence of operations is executed, beginning at the procedure
named by procedure-name-1 and ending with the execution of the procedure named by
procedure-name-2.

PERFORM statements can be specified within the performed procedure. If there are
two or more logical paths to the return point, then procedure-name-2 can name a para-
graph that consists only of an EXIT statement; all the paths to the return point must
then lead to this paragraph.

When the performed procedures include another PERFORM statement, the sequence
of procedures associated with the embedded PERFORM statement must be totally
included in or totally excluded from the performed procedures of the first PERFORM
statement. That is, an active PERFORM statement whose execution point begins
within the range of performed procedures of another active PERFORM statement must
not allow control to pass through the exit point of the other active PERFORM state-
ment.

366 COBOL Language Reference

x PERFORM a THRU m

a ───────────────────┐
│

d PERFORM j THRU m │
│

f │
│

j ────────────┐ │
│ │

m EXIT. ──────┴──────┘

PERFORM Statement

Figure 11 illustrates valid sequences of execution for PERFORM statements.

x PERFORM a THRU m x PERFORM a THRU m

a ───────────────────┐ a ───────────────────┐
 │ │
d PERFORM f THRU j │ d PERFORM f THRU j │
 │ │
f ────────┐ │ h │
 │ │ │
j ────────┘ │ m ───────────────────┘
 │
m ───────────────────┘ f ───────┐
 │
 j ───────┘

x PERFORM a THRU m

a ───────────────┐
 │
f ────────┐ │
 │ │
m ────────┼──────┘
 │
j ────────┘

d PERFORM f thru j

Figure 11. Valid PERFORM Statement Execution Sequences

When control passes to the sequence of procedures by means other than a PERFORM
statement, control passes through the exit point to the next executable statement, as if
no PERFORM statement referred to these procedures.

 END-PERFORM
Delimits the scope of the in-line PERFORM statement. Execution of an in-line
PERFORM is completed after the last statement contained within it has been executed.

PERFORM with TIMES Phrase
The procedure(s) referred to in the TIMES phrase PERFORM statement are executed
the number of times specified by the value in identifier-1 or integer-1. Control then
passes to the next executable statement following the PERFORM statement.

Part 6. Procedure Division 367

Imperative-statement-1 is optional as an IBM extension.

Identifier-1 cannot be a windowed date field.

Can be a positive signed integer.

Imperative-statement-1 is optional as an IBM extension.

PERFORM Statement

 Format 2
55──PERFORM─ ──┬ ┬ ─procedure-name-1─ ──┬ ┬────────────── ──┬ ┬─identifier-1─ ─TIMES──── ─────────────────5%
 │ │└ ┘─┤ phrase 1 ├─ └ ┘─integer-1────
 └ ┘──┬ ┬─identifier-1─ ─TIMES──imperative-statement-1───(1)─END-PERFORM─
 └ ┘─integer-1────

phrase 1:
├─ ──┬ ┬─THROUGH─ ─procedure-name-2──┤
 └ ┘─THRU────

Note:
1

Note: If procedure-name-1 is specified, imperative-statement and the END-PERFORM
phrase must not be specified.

identifier-1
Must name an integer item.

If identifier-1 is zero or a negative number at the time the PERFORM statement is
initiated, control passes to the statement following the PERFORM statement.

After the PERFORM statement has been initiated, any change to identifier-1 has
no effect in varying the number of times the procedures are initiated.

integer-1

PERFORM with UNTIL Phrase
In the UNTIL phrase format, the procedure(s) referred to are performed until the condi-
tion specified by the UNTIL phrase is true. Control is then passed to the next execut-
able statement following the PERFORM statement.

 Format 3
55──PERFORM─ ──┬ ┬─procedure-name-1─ ──┬ ┬─────────────────────────────── ─┤ phrase 1 ├─ ──────────────5%
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘─┤ phrase 1 ├──imperative-statement-1───(1)─END-PERFORM───────────────

phrase 1:
├─ ──┬ ┬──────────────────────────── ─UNTIL──condition-1───┤
 └ ┘ ──┬ ┬────── ─TEST─ ──┬ ┬─BEFORE─
 └ ┘─WITH─ └ ┘─AFTER──

Note:
1

Note: If procedure-name-1 is specified, imperative-statement-1 and the
END-PERFORM phrase must not be specified.

condition-1
Can be any condition described under “Conditional Expressions” on page 239. If
the condition is true at the time the PERFORM statement is initiated, the specified
procedure(s) are not executed.

Any subscripting associated with the operands specified in condition-1 is evaluated
each time the condition is tested.

368 COBOL Language Reference

Imperative-statement-1 is optional as an IBM extension.

These identifiers cannot be windowed date
fields.

PERFORM Statement

If the TEST BEFORE phrase is specified or assumed, the condition is tested before any
statements are executed (corresponds to DO WHILE).

If the TEST AFTER phrase is specified, the statements to be performed are executed
at least once before the condition is tested (corresponds to DO UNTIL).

In either case, if the condition is true, control is transferred to the next executable state-
ment following the end of the PERFORM statement. If neither the TEST BEFORE nor
the TEST AFTER phrase is specified, the TEST BEFORE phrase is assumed.

PERFORM with VARYING Phrase
The VARYING phrase increases or decreases the value of one or more identifiers or
index-names, according to certain rules. (See “Varying Phrase Rules” on page 375.)

The Format 4 VARYING phrase PERFORM statement can serially search an entire
7-dimensional table.

 Format 4
55──PERFORM───5

5─ ──┬ ┬─procedure-name-1─ ──┬ ┬─────────────────────────────── ─┤ phrase 1 ├──┤ phrase 2 ├─ ──────────5%
 │ │└ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 │ │└ ┘─THRU────
 └ ┘─┤ phrase 1 ├──imperative-statement-1───(1)─END-PERFORM─────────────────────────────

phrase 1:
├─ ──┬ ┬──────────────────────────── ─VARYING─ ──┬ ┬─identifier-2─ ─FROM─ ──┬ ┬─identifier-3─ ─BY──────────5
 └ ┘──┬ ┬────── ─TEST─ ──┬ ┬─BEFORE─ └ ┘─index-name-1─ ├ ┤─index-name-2─
 └ ┘─WITH─ └ ┘─AFTER── └ ┘─literal-1────

5─ ──┬ ┬─identifier-4─ ─UNTIL──condition-1───┤
 └ ┘─literal-2────

phrase 2:
├─ ──┬ ┬─── ───┤
 │ │┌ ┐───
 └ ┘ ───6 ┴─AFTER─ ──┬ ┬─identifier-5─ ─FROM─ ──┬ ┬─identifier-6─ ─BY─ ──┬ ┬─identifier-7─ ─┤ phrase 3 ├─
 └ ┘─index-name-3─ ├ ┤─index-name-4─ └ ┘─literal-4────
 └ ┘─literal-3────

phrase 3:
├──UNTIL──condition-2───┤

Note:
1

Note: If procedure-name-1 is specified, imperative-statement and the END-PERFORM
phrase must not be specified. If procedure-name-1 is omitted, the AFTER phrase must
not be specified.

identifier-2 thru 7
Must name a numeric elementary item.

literal-1 thru 4
Must represent a numeric literal.

Part 6. Procedure Division 369

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

PERFORM Statement

condition-1, condition-2
Can be any condition described under “Conditional Expressions” on page 239. If
the condition is true at the time the PERFORM statement is initiated, the specified
procedure(s) are not executed.

After the condition(s) specified in the UNTIL phrase are satisfied, control is passed
to the next executable statement following the PERFORM statement.

If any of the operands specified in condition-1 or condition-2 is subscripted, refer-
ence modified, or is a function-identifier, the subscript, reference-modifier, or func-
tion is evaluated each time the condition is tested.

When TEST BEFORE is indicated, all specified conditions are tested before the first
execution, and the statements to be performed are executed, if at all, only when all
specified tests fail. When TEST AFTER is indicated, the statements to be performed
are executed at least once, before any condition is tested.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

 Varying Identifiers
The way in which operands are increased or decreased depends on the number of
variables specified. In the following discussion, every reference to identifier-n refers
equally to index-name-n (except when identifier-n is the object of the BY phrase).

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time the
content of the data item referenced by the identifier is set or augmented. If identifier-3,
identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are evaluated each
time the content of the data item referenced by the identifier is used in a setting or an
augmenting operation.

Figure 12 on page 371 illustrates the logic of the PERFORM statement when an identi-
fier is varied with TEST BEFORE.

370 COBOL Language Reference

PERFORM Statement

Augment identifier-2
with current BY value

Execute specified
set of statements

Set identifier-2
equal tocurrent

FROM value

Condition-1
True

Exit
False

Entrance

Figure 12. Varying One Identifier—with TEST BEFORE

Figure 13 illustrates the logic of the PERFORM statement when an identifier is varied
with TEST AFTER.

Entrance

Execute specified set
of statements

Set identifier-2 to
current FROM value

Augment identifier-2
with current BY value

Condition-1
True

Exit
False

Figure 13. Varying One Identifier—with TEST AFTER

Varying Two Identifiers
PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2

VARYING IDENTIFIER-2 FROM IDENTIFIER-3
BY IDENTIFIER-4 UNTIL CONDITION-1

AFTER IDENTIFIER-5 FROM IDENTIFIER-6
BY IDENTIFIER-7 UNTIL CONDITION-2

1. identifier-2 and identifier-5 are set to their initial values, identifier-3 and
identifier-6, respectively.

Part 6. Procedure Division 371

PERFORM Statement

2. condition-1 is evaluated as follows:

a. If it is false, steps 3 through 7 are executed.

b. If it is true, control passes directly to the statement following the PERFORM
statement.

3. condition-2 is evaluated as follows:

a. If it is false, steps 4 through 6 are executed.

b. If it is true, identifier-2 is augmented by identifier-4, identifier-5 is set to the
current value of identifier-6, and step 2 is repeated.

4. procedure-1 and procedure-2 are executed once (if specified).

5. identifier-5 is augmented by identifier-7.

6. Steps 3 through 5 are repeated until condition-2 is true.

7. Steps 2 through 6 are repeated until condition-1 is true.

At the end of PERFORM statement execution:

 � identifier-5

Contains the current value of identifier-6.

 � identifier-2

Has a value that exceeds the last-used setting by the increment/decrement value
(unless condition-1 was true at the beginning of PERFORM statement execution, in
which case, identifier-2 contains the current value of identifier-3).

Figure 14 on page 373 illustrates the logic of the PERFORM statement when two iden-
tifiers are varied with TEST BEFORE.

372 COBOL Language Reference

PERFORM Statement

Entrance

False

False

True

True

Exit

Set identifier-5 to its
current FROM value

Augment identifier-5
with current BY value

Augment identifier-2
with current BY value

Set identifier-5
to its current
FROM value

Set identifier-2 to
current FROM value

Condition-1

Condition-2

Execute specified set
of statements

Figure 14. Varying Two Identifiers—with TEST BEFORE

Figure 15 on page 374 illustrates the logic of the PERFORM statement when two iden-
tifiers are varied with TEST AFTER.

Part 6. Procedure Division 373

PERFORM Statement

Entrance

Execute specified set
of statements

Set identifier-2 to
current FROM value

Set identifier-5 to
current FROM value

Augment identifier-5
with current BY value

Augment identifier-2
with current BY value

Condition-1Condition-2 Exit
True TrueFalse

False

Figure 15. Varying Two Identifiers—with TEST AFTER

Varying Three Identifiers
PERFORM PROCEDURE-NAME-1 THROUGH PROCEDURE-NAME-2

VARYING IDENTIFIER-2 FROM IDENTIFIER-3
BY IDENTIFIER-4 UNTIL CONDITION-1

AFTER IDENTIFIER-5 FROM IDENTIFIER-6
BY IDENTIFIER-7 UNTIL CONDITION-2

AFTER IDENTIFIER-8 FROM IDENTIFIER-9
BY IDENTIFIER-1ð UNTIL CONDITION-3

The actions are the same as those for two identifiers, except that identifier-8 goes
through the complete cycle each time identifier-5 is augmented by identifier-7, which, in
turn, goes through a complete cycle each time identifier-2 is varied.

At the end of PERFORM statement execution:

� identifier-5 and identifier-8

Contain the current values of identifier-6 and identifier-9, respectively.

374 COBOL Language Reference

PERFORM Statement

 � identifier-2

Has a value exceeding its last-used setting by one increment/decrement value
(unless condition-1 was true at the beginning of PERFORM statement execution, in
which case, identifier-2 contains the current value of identifier-3).

Varying More Than Three Identifiers
You can produce analogous PERFORM statement actions to the example above with
the addition of up to four AFTER phrases.

Varying Phrase Rules
No matter how many variables are specified, the following rules apply:

1. In the VARYING/AFTER phrases, when an index-name is specified:

a. The index-name is initialized and incremented or decremented according to
the rules under “INDEXED BY Phrase” on page 175. (See also “SET
Statement” on page 400.)

b. In the associated FROM phrase, an identifier must be described as an integer
and have a positive value; a literal must be a positive integer.

c. In the associated BY phrase, an identifier must be described as an integer; a
literal must be a nonzero integer.

2. In the FROM phrase, when an index-name is specified:

a. In the associated VARYING/AFTER phrase, an identifier must be described as
an integer. It is initialized, as described in the SET statement.

b. In the associated BY phrase, an identifier must be described as an integer and
have a nonzero value; a literal must be a nonzero integer.

3. In the BY phrase, identifiers and literals must have nonzero values.

4. Changing the values of identifiers and/or index-names in the VARYING, FROM,
and BY phrases during execution changes the number of times the procedures are
executed.

Part 6. Procedure Division 375

PREVIOUS

PREVIOUS is only supported on AIX, OS/2, and Windows.

 Under AIX, OS/2, and Windows, you must specify either the NEXT
or PREVIOUS phrase for files in dynamic access mode, which are retrieved
sequentially.

READ Statement

 READ Statement
For sequential access, the READ statement makes the next logical record from a file
available to the object program. For random access, the READ statement makes a
specified record from a direct-access file available to the object program.

When the READ statement is executed, the associated file must be open in INPUT or
I-O mode.

Format 1—Sequential Retrieval
55──READ──file-name-1─ ──┬ ┬──────────── ──┬ ┬──────── ──┬ ┬──────────────────── ──────5
 ├ ┤─NEXT─────── └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─
 └ ┘─ ───(1)

5─ ──┬ ┬───────────────────────────────────── ─────────────────────────────────────5
 └ ┘ ──┬ ┬──── ─END──imperative-statement-1─
 └ ┘─AT─

5─ ──┬ ┬── ──┬ ┬────────── ─────────────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─END──imperative-statement-2─ └ ┘─END-READ─
 └ ┘─AT─

Note:
1

Format 2—Random Retrieval
55──READ──file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ──────────────────────5
 └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─

5─ ──┬ ┬────────────────────────── ──5
 └ ┘ ─KEY─ ──┬ ┬──── ─data-name-1─
 └ ┘─IS─

5─ ──┬ ┬── ────────────────────────────────5
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-3─
 └ ┘─KEY─

5─ ──┬ ┬── ──┬ ┬────────── ─────────────5%
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-4─ └ ┘─END-READ─
 └ ┘─KEY─

file-name-1
Must be defined in a Data Division FD entry.

NEXT RECORD
Reads the next record in the logical sequence of records. NEXT is optional when
ACCESS MODE IS SEQUENTIAL; it has no effect on READ statement execution.

 Under MVS and VM, you must specify the NEXT RECORD phrase for
files in dynamic access mode, which are retrieved sequentially.

376 COBOL Language Reference

PREVIOUS RECORD (Workstation Only)
 Reads the previous record in the logical sequence of records. PRE-

VIOUS applies to indexed and relative files with DYNAMIC access mode.

You must specify either the NEXT or PREVIOUS phrase for files in dynamic
access mode, which are retrieved sequentially.

If you specify READ...PREVIOUS and no previous logical record exists, the AT
END condition occurs and the READ statement is unsuccessful.

When you specify READ...PREVIOUS, the setting of the file position indicator is
used to determine which record to make available according to the following rules:

� If the file position indicator indicates that no valid previous record has been
established, the READ is unsuccessful.

� If the file position indicator is positioned by the execution of an OPEN state-
ment, the AT END condition occurs.

� If the file position indicator is established by a previous START statement, the
first existing record in the file whose relative record number (if a relative file) or
whose key value (if an indexed file) is less than or equal to the file position
indicator is selected.

� If the file position indicator is established by a previous READ statement, the
first existing record in the file whose relative record number (if a relative file) or
whose key value (if an indexed file) is less than the file position indicator is
selected.

If identifier-1 is a date field, then the implied MOVE statement is performed
according to the behavior described under “Moves Involving Date Fields” on
page 356.

READ Statement

INTO Identifier-1
Identifier-1 is the receiving field.

The result of the execution of a READ statement with the INTO phrase is equiv-
alent to the application of the following rules in the order specified:

� The execution of the same READ statement without the INTO phrase.

� The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the CORRE-
SPONDING phrase. The size of the current record is determined by rules
specified for the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The
implied MOVE statement does not occur if the execution of the READ state-
ment was unsuccessful. Any subscripting or reference modification associated
with identifier-1 is evaluated after the record has been read and immediately
before it is moved to the data item. The record is available in both the record
area and the data item referenced by identifier-1.

The INTO phrase can be specified in a READ if:

� Only one record description is subordinate to the file description entry, or

Part 6. Procedure Division 377

Identifier-1 (the record area) can be a DBCS or floating point data item.

Multiple non-alphanumeric records can be specified for file-name-1. Identifier-1
need not describe a group item or an elementary alphanumeric item. The following
rules apply:

1. If the file referenced by file-name-1 is described as containing variable-length
records, or as a QSAM file with RECORDING MODE 'S' or 'U', a group
move will take place.

2. If the file referenced by file-name-1 is described as containing fixed-length
records, the movement will take place according to the rules for the MOVE
statement, using, as a sending field description, the record that specifies the
largest number of character positions. If more than one such record exists, the
sending field record selected will be the one among those records that
appears first under the description of file-name-1.

 Under OS/2, you can only READ a file with LOCK MODE AUTOMATIC if
no other file connector holds a lock on the record you are trying to access. If the
record is locked by another file connector, the READ statement is unsuccessful and the
file status is set to indicate “record locked.” For sequential files, the setting of the file
position indicator is unaffected.

Data-name-1 (the record key) can be defined as a DBCS data item.

When the RECORD KEY clause specifies a DBCS data item, a KEY specified on the
READ statement must be a DBCS data item.

The AT END phrase does not have to be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

READ Statement

� All record-names associated with file-name-1, and the data item referenced by
identifier-1, describe a group item or an elementary alphanumeric item.

The record areas associated with file-name-1 and identifier-1 must not be the same
storage area.

KEY IS Phrase
The KEY IS phrase can be specified only for indexed files. Data-name-1 must identify
a record key associated with file-name-1. Data-name-1 can be qualified; it may not be
subscripted.

AT END Phrases
For sequential access, the AT END phrase must be specified if no applicable USE
AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

For information on at-end condition processing, see “At End Condition” on page 381.

378 COBOL Language Reference

The INVALID KEY phrase does not have to be specified if no applicable USE AFTER
STANDARD EXCEPTION procedure is specified for file-name-1.

READ Statement

INVALID KEY Phrases
For random access, the INVALID KEY phrase must be specified if no applicable USE
AFTER STANDARD EXCEPTION procedure is specified for file-name-1.

For information on INVALID KEY phrases processing, see “Invalid Key Condition” on
page 274.

 END-READ Phrase
This explicit scope terminator serves to delimit the scope of the READ statement.
END-READ permits a conditional READ statement to be nested in another conditional
statement. END-READ can also be used with an imperative READ statement. For
more information, see “Delimited Scope Statements” on page 263.

Multiple Record Processing
If more than one record description entry is associated with file-name-1, these records
automatically share the same storage area; that is, they are implicitly redefined. After a
READ statement is executed, only those data items within the range of the current
record are replaced; data items stored beyond that range are undefined. Figure 16
illustrates this concept. If the range of the current record exceeds the record
description entries for file-name-1, the record is truncated on the right to the maximum
size. In either of these cases, the READ statement is successful and an I-O status (04)
is set indicating a record length conflict has occurred.

Part 6. Procedure Division 379

READ Statement

The FD entry is:
FD INPUT-FILE LABEL RECORDS OMITTED.

01 RECORD-1 PICTURE X(30).

01 RECORD-2 PICTURE X(20).

Contents of input area when READ statement is executed:

 ───────────────────────────────
 ABCDEFGHIJKLMNOPQRSTUVWXYZ1234
 ───────────────────────────────

Contents of record being read in (RECORD-2):

 ────────────────────
 ð123456789ð123456789
 ────────────────────

Contents of input area after READ is executed:

 ð123456789ð123456789??????????
 │ │
 │ │
 └────────┘

(these characters in input area are undefined)

Figure 16. READ Statement with Multiple Record Description

Sequential Access Mode
Format 1 must be used for all files in sequential access mode.

Execution of a Format 1 READ statement retrieves the next logical record from the file.
The next record accessed is determined by the file organization.

 Sequential Files
The NEXT RECORD is the next record in a logical sequence of records. The NEXT
phrase need not be specified; it has no effect on READ statement execution.

If SELECT OPTIONAL is specified in the FILE-CONTROL entry for this file, and the file
is absent during this execution of the object program, execution of the first READ state-
ment causes an at end condition; however, since no file is present, the system-defined
end-of-file processing is not performed.

380 COBOL Language Reference

If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION
procedure does not have to be associated with file-name-1.

READ Statement

At End Condition: If the file position indicator indicates that no next logical record
exists, or that an optional input file is not present, the following occurs in the order
specified:

1. A value, derived from the setting of the file position indicator, is placed into the I-O
status associated with file-name-1 to indicate the at end condition.

2. If the AT END phrase is specified in the statement causing the condition, control is
transferred to imperative-statement-1 in the AT END phrase. Any USE AFTER
STANDARD EXCEPTION procedure associated with file-name-1 is not executed.

3. If the AT END phrase is not specified, a USE AFTER STANDARD EXCEPTION
procedure must be specified with this file, and the procedure is executed. Return
from that procedure is to the next executable statement following the end of the
READ statement.

When the at end condition occurs, execution of the READ statement is unsuc-
cessful. The contents of the associated record area are undefined and the file
position indicator is set to indicate that no valid next record has been established.
Attempts to access or move data into the read record area following an unsuc-
cessful read can result in a protection exception.

If an at end condition does not occur during the execution of a READ statement, the AT
END phrase is ignored, if specified, and the following actions occur:

1. The file position indicator is set and the I-O status associated with file-name-1 is
updated.

2. If an exception condition that is not an at end condition exists, control is transferred
to the end of the READ statement following the execution of any USE AFTER
STANDARD EXCEPTION procedure applicable to file-name-1.

If no USE AFTER STANDARD EXCEPTION procedure is specified, control is
transferred to the end of the READ statement or to imperative-statement-2, if speci-
fied.

3. If no exception condition exists, the record is made available in the record area and
any implicit move resulting from the presence of an INTO phrase is executed.
Control is transferred to the end of the READ statement or to
imperative-statement-2, if specified. In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-2. If a
procedure branching or conditional statement which causes explicit transfer of
control is executed, control is transferred in accordance with the rules for that
statement; otherwise, upon completion of the execution of imperative-statement-2,
control is transferred to the end of the READ statement.

Following the unsuccessful execution of a READ statement, the contents of the associ-
ated record area are undefined and the file position indicator is set to indicate that no
valid next record has been established. Attempts to access or move data into the
record area following an unsuccessful read can result in a protection exception.

Part 6. Procedure Division 381

 Under AIX, OS/2, and Windows, PREVIOUS RECORD is the prior logical
record in the key sequence.

 (or previous)

 (or alternatively for AIX, OS/2, and
Windows, the PREVIOUS phrase)

 (or alternatively for AIX, OS/2, and Windows, no previous record exists),

 Under AIX, OS/2, and Windows see the discussion on PREVIOUS
RECORD on 376.

READ Statement

Multivolume QSAM Files (MVS and VM Only): If end-of-volume is recognized during
execution of a READ statement, and logical end-of-file has not been reached, the fol-
lowing actions are taken:

� The standard ending volume label procedure
� A volume switch
� The standard beginning volume label procedure
� The first data record of the next volume is made available.

Indexed or Relative Files
The NEXT RECORD is the next logical record in the key sequence.

For indexed files, the key sequence is the sequence of ascending values of the current
key of reference. For relative files, the key sequence is the sequence of ascending
values of relative record numbers for records that exist in the file.

Before the READ statement is executed, the file position indicator must be set by a
successful OPEN, START, or READ statement. When the READ statement is exe-
cuted, the record indicated by the file position indicator is made available, if it is still
accessible through the path indicated by the file position indicator.

If the record is no longer accessible (because it has been deleted, for example), the file
position indicator is updated to point to the next existing record in the file,
and that record is made available.

For files in sequential access mode, the NEXT phrase need not be specified.

For files in dynamic access mode, the NEXT phrase
 must be specified for sequential record retrieval.

AT END Condition: If the file position indicator indicates that no next logical record
exists, or that
an optional input file is not present.

 Under MVS and VM, the same procedure occurs as for sequential files (see
“At End Condition” on page 381).

If neither an at end nor an invalid key condition occurs during the execution of a READ
statement, the AT END or the INVALID KEY phrase is ignored, if specified. The same
actions occur as when the at end condition does not occur with sequential files (see “At
End Condition” on page 381).

382 COBOL Language Reference

READ Statement

Sequentially Accessed Indexed Files: When an ALTERNATE RECORD KEY with
DUPLICATES is the key of reference, file records with duplicate key values are made
available in the order in which they were placed in the file.

Sequentially Accessed Relative Files: If the RELATIVE KEY clause is specified for
this file, READ statement execution updates the RELATIVE KEY data item to indicate
the relative record number of the record being made available.

Random Access Mode
Format 2 must be specified for indexed and relative files in random access mode, and
also for files in the dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file organization, as explained in the
following sections.

 Indexed Files
Execution of a Format 2 READ statement causes the value of the key of reference to
be compared with the value of the corresponding key data item in the file records, until
the first record having an equal value is found. The file position indicator is positioned
to this record, which is then made available. If no record can be so identified, an
INVALID KEY condition exists, and READ statement execution is unsuccessful. (See
“INVALID KEY Condition” under “Common Processing Facilities” on page 270.)

If the KEY phrase is not specified, the prime RECORD KEY becomes the key of refer-
ence for this request. When dynamic access is specified, the prime RECORD KEY is
also used as the key of reference for subsequent executions of sequential READ state-
ments, until a different key of reference is established.

When the KEY phrase is specified, data-name becomes the key of reference for this
request. When dynamic access is specified, this key of reference is used for subse-
quent executions of sequential READ statements, until a different key of reference is
established.

 Relative Files
Execution of a Format 2 READ statement sets the file position indicator pointer to the
record whose relative record number is contained in the RELATIVE KEY data item, and
makes that record available.

If the file does not contain such a record, the INVALID KEY condition exists, and READ
statement execution is unsuccessful. (See “Invalid Key Condition” under “Common
Processing Facilities” on page 270.)

The KEY phrase must not be specified for relative files.

Dynamic Access Mode
For files with indexed or relative organization, dynamic access mode can be specified in
the FILE-CONTROL entry. In dynamic access mode, either sequential or random
record retrieval can be used, depending on the format used.

Part 6. Procedure Division 383

READ Statement

Format 1 with the NEXT phrase must be specified for sequential retrieval. All other
rules for sequential access apply.

READ Statement Notes
If the FILE-STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the READ statement is executed.

Following unsuccessful READ statement execution, the contents of the associated
record area and the value of the file position indicator are undefined. Attempts to
access or move data into the record area following an unsuccessful read can result in a
protection exception.

384 COBOL Language Reference

Can define a floating-point data item or DBCS data item. Identifier-1 must be a
DBCS data item if record-name-1 is a DBCS data item.

Identifier-1 can be a floating-point data item or a DBCS data item.

RELEASE Statement

 RELEASE Statement
The RELEASE statement transfers records from an input/output area to the initial phase
of a sorting operation.

The RELEASE statement can only be used within the range of an INPUT PROCE-
DURE associated with a SORT statement.

 Format
55──RELEASE──record-name-1─ ──┬ ┬──────────────────── ────────────────────────────5%
 └ ┘ ─FROM──identifier-1─

Within an INPUT PROCEDURE, at least one RELEASE statement must be specified.

When the RELEASE statement is executed, the current contents of record-name-1 are
placed in the sort file; that is, made available to the initial phase of the sorting opera-
tion.

record-name-1
Must specify the name of a logical record in a sort-merge file description entry
(SD). Record-name-1 can be qualified.

FROM phrase
The result of the execution of the RELEASE statement with the FROM identifier-1
phrase is equivalent to the execution of the following statements in the order speci-
fied.

MOVE identifier-1 to record-name-1.
RELEASE record-name-1.

The MOVE is performed according to the rules for the MOVE statement without the
CORRESPONDING phrase.

identifier-1
Identifier-1 must be one of the following:

� The name of an entry in the Working-Storage Section or the Linkage Section

� The name of a record description for another previously opened file

� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the RELEASE statement is executed, the information is still available in
identifier-1. (See “INTO/FROM Identifier Phrase” under “Common Processing
Facilities” on page 270.)

Part 6. Procedure Division 385

RELEASE Statement

If the RELEASE statement is executed without specifying the SD entry for file-name-1
in a SAME RECORD AREA clause, the information in record-name-1 is no longer avail-
able.

If the SD entry is specified in a SAME RECORD AREA clause, record-name-1 is still
available as a record of the other files named in that clause.

When FROM identifier-1 is specified, the information is still available in identifier-1.

When control passes from the INPUT PROCEDURE, the sort file consists of all those
records placed in it by execution of RELEASE statements.

386 COBOL Language Reference

RETURN Statement

 RETURN Statement
The RETURN statement transfers records from the final phase of a sorting or merging
operation to an OUTPUT PROCEDURE.

The RETURN statement can be used only within the range of an OUTPUT PROCE-
DURE associated with a SORT or MERGE statement.

 Format
55──RETURN──file-name-1─ ──┬ ┬──────── ──┬ ┬──────────────────── ────────────────────5
 └ ┘─RECORD─ └ ┘ ─INTO──identifier-1─

5─ ──┬ ┬──── ─END──imperative-statement-1──5
 └ ┘─AT─

5─ ──┬ ┬── ──┬ ┬──────────── ───────────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─END──imperative-statement-2─ └ ┘─END-RETURN─
 └ ┘─AT─

Within an OUTPUT PROCEDURE, at least one RETURN statement must be specified.

When the RETURN statement is executed, the next record from file-name-1 is made
available for processing by the OUTPUT PROCEDURE.

file-name-1
Must be described in a Data Division SD entry.

If more than one record description is associated with file-name-1, these records
automatically share the same storage; that is, the area is implicitly redefined. After
RETURN statement execution, only the contents of the current record are avail-
able; if any data items lie beyond the length of the current record, their contents
are undefined.

INTO phrase
The result of the execution of a RETURN statement with the INTO phrase is equiv-
alent to the application of the following rules in the order specified:

� The execution of the same RETURN statement without the INTO phrase.

� The current record is moved from the record area to the area specified by
identifier-1 according to the rules for the MOVE statement without the CORRE-
SPONDING phrase. The size of the current record is determined by rules
specified for the RECORD clause. If the file description entry contains a
RECORD IS VARYING clause, the implied move is a group move. The
implied MOVE statement does not occur if the execution of the RETURN
statement was unsuccessful. Any subscripting or reference modification asso-
ciated with identifier-1 is evaluated after the record has been read and imme-
diately before it is moved to the data item. The record is available in both the
record area and the data item referenced by identifier-1.

The record areas associated with file-name-1 and identifier-1 must not be the same
storage area.

Part 6. Procedure Division 387

Multiple non-alphanumeric records can be specified for file-name-1. Identifier-1 need
not describe a group item or an elementary alphanumeric item. The following rules
apply:

1. If the file referenced by file-name-1 contains variable-length records or, under MVS
and VM, a QSAM file with RECORDING MODE 'S' or 'U', a group move will take
place.

2. If the file referenced by file-name-1 contains fixed-length records, the movement
will take place according to the rules for the MOVE statement, using, as a sending
field description, the record that specifies the largest number of character positions.
If more than one such record exists, the sending field record selected will be the
one among those records that appears first under the description of file-name-1.

RETURN Statement

The INTO phrase can be specified in a RETURN statement if one or both of the fol-
lowing are true:

� If only one record description is subordinate to the sort-merge file description entry

� If all record-names associated with file-name-1 and the data item referenced by
identifier-1 describe a group item or an elementary alphanumeric item.

AT END Phrases
The imperative-statement specified on the AT END phrase executes after all records
have been returned from file-name-1. No more RETURN statements can be executed
as part of the current output procedure.

If an at end condition does not occur during the execution of a RETURN statement,
then after the record is made available and after executing any implicit move resulting
from the presence of an INTO phrase, control is transferred to the imperative statement
specified by the NOT AT END phrase, otherwise control is passed to the end of the
RETURN statement.

 END-RETURN Phrase
This explicit scope terminator serves to delimit the scope of the RETURN statement.
END-RETURN permits a conditional RETURN statement to be nested in another condi-
tional statement. END-RETURN can also be used with an imperative RETURN state-
ment.

For more information, see “Delimited Scope Statements” on page 263.

388 COBOL Language Reference

 Under AIX, OS/2, and Windows the REWRITE statement is not sup-
ported for line sequential files.

Record-name-1 can define a floating-point data item or DBCS data item.
Identifier-1 must be a DBCS data item if record-name-1 is a DBCS data item.

� A floating-point data item or a DBCS data item.

REWRITE Statement

 REWRITE Statement
The REWRITE statement logically replaces an existing record in a direct-access file.
When the REWRITE statement is executed, the associated direct-access file must be
open in I-O mode.

 Format
55──REWRITE──record-name-1─ ──┬ ┬──────────────────── ─────────────────────────────5
 └ ┘ ─FROM──identifier-1─

5─ ──┬ ┬── ────────────────────────────────5
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

5─ ──┬ ┬── ──┬ ┬───────────── ──────────5%
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-REWRITE─
 └ ┘─KEY─

record-name-1
Must be the name of a logical record in a Data Division FD entry. The record-
name can be qualified.

FROM phrase
The result of the execution of the REWRITE statement with the FROM identifier-1
phrase is equivalent to the execution of the following statements in the order speci-
fied.

MOVE identifier-1 TO record-name-1.
REWRITE record-name-1

The MOVE is performed according to the rules for the MOVE statement without the
CORRESPONDING phrase.

identifier-1
Identifier-1 can be one of the following:

� The name of an entry in the Working-Storage Section or Linkage Section

� The name of a record description for another previously opened file

� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the REWRITE statement is executed, the information is still available in
identifier-1 (See “INTO/FROM Identifier Phrase” under “Common Processing
Facilities” on page 270).

Part 6. Procedure Division 389

Effect of Record Locking (OS/2 VSAM Files Only)
 For OS/2 VSAM files, if any other file connector holds a LOCK on the

record to be deleted, the REWRITE statement is unsuccessful. If the lock mode is
AUTOMATIC, a successful REWRITE statement releases an existing record lock.

REWRITE Statement

INVALID KEY Phrases
(See “Invalid Key Condition” under “Common Processing Facilities” on page 270.)

An INVALID KEY condition exists when:

� The access mode is sequential, and the value contained in the prime RECORD
KEY of the record to be replaced does not equal the value of the prime RECORD
KEY data item of the last-retrieved record from the file, or

� The value contained in the prime RECORD KEY does not equal that of any record
in the file, or

� The value of an ALTERNATE RECORD KEY data item for which DUPLICATES is
not specified is equal to that of a record already in the file.

 END-REWRITE Phrase
This explicit scope terminator serves to delimit the scope of the REWRITE statement.
END-REWRITE permits a conditional REWRITE statement to be nested in another con-
ditional statement. END-REWRITE can also be used with an imperative REWRITE
statement.

For more information, see “Delimited Scope Statements” on page 263.

Reusing a Logical Record
After successful execution of a REWRITE statement, the logical record is no longer
available in record-name-1 unless the associated file is named in a SAME RECORD
AREA clause (in which case, the record is also available as a record of the other files
named in the SAME RECORD AREA clause).

The file position indicator is not affected by execution of the REWRITE statement.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the REWRITE statement is executed.

 Sequential Files
For files in the sequential access mode, the last prior input/output statement executed
for this file must be a successfully executed READ statement. When the REWRITE
statement is executed, the record retrieved by that READ statement is logically
replaced.

The number of character positions in record-name-1 must equal the number of char-
acter positions in the record being replaced.

390 COBOL Language Reference

The number of character positions in record-name-1 can be different from the number
of character positions in the record being replaced.

The INVALID KEY phrase does not have to be specified if an applicable USE AFTER
STANDARD EXCEPTION procedure is not specified for the associated file-name.

The number of character positions in record-name-1 can be different from the number
of character positions in the record being replaced.

The INVALID KEY phrase does not have to be specified if an appropriate USE AFTER
STANDARD EXCEPTION procedure is not specified.

REWRITE Statement

The INVALID KEY phrase must not be specified for a file with sequential organization.
An EXCEPTION/ERROR procedure can be specified.

 Indexed Files
The number of character positions in record-name-1 must equal the number of char-
acter positions in the record being replaced.

When the access mode is sequential, the record to be replaced is specified by the
value contained in the prime RECORD KEY. When the REWRITE statement is exe-
cuted, this value must equal the value of the prime record key data item in the last
record read from this file.

The INVALID KEY phrase must be specified if an applicable USE AFTER STANDARD
EXCEPTION procedure is not specified for the associated file-name.

When the access mode is random or dynamic, the record to be replaced is specified by
the value contained in the prime RECORD KEY.

Values of ALTERNATE RECORD KEY data items in the rewritten record can differ from
those in the record being replaced. The system ensures that later access to the record
can be based upon any of the record keys.

If an invalid key condition exists, the execution of the REWRITE statement is unsuc-
cessful, the updating operation does not take place, and the data in record-name-1 is
unaffected. (See “INVALID KEY Condition” under “Common Processing Facilities” on
page 270.)

 Relative Files
The number of character positions in record-name-1 must equal the number of char-
acter positions in the record being replaced.

For relative files in sequential access mode, the INVALID KEY phrase must not be
specified. An EXCEPTION/ERROR procedure can be specified.

The INVALID KEY phrase must be specified in the REWRITE statement for relative
files in the random or dynamic access mode, and for which an appropriate USE AFTER
STANDARD EXCEPTION procedure is not specified.

Part 6. Procedure Division 391

REWRITE Statement

When the access mode is random or dynamic, the record to be replaced is specified in
the RELATIVE KEY data item. If the file does not contain the record specified, an
invalid key condition exists, and, if specified, the INVALID KEY imperative-statement is
executed. (See “Invalid Key Condition” under “Common Processing Facilities” on
page 270.) The updating operation does not take place, and the data in record-name
is unaffected.

392 COBOL Language Reference

� A DBCS data item or a floating-point data item.

SEARCH Statement

 SEARCH Statement
The SEARCH statement searches a table for an element that satisfies the specified
condition, and adjusts the associated index to indicate that element.

Format 1—Serial Search
55──SEARCH──identifier-1─ ──┬ ┬─────────────────────────── ──5
 └ ┘ ─VARYING─ ──┬ ┬─identifier-2─
 └ ┘─index-name-1─

 ┌ ┐───
5─ ──┬ ┬───────────────────────────────────── ───6 ┴ ─WHEN──condition-1─ ──┬ ┬─imperative-statement-2─ ────5
 └ ┘──┬ ┬──── ─END──imperative-statement-1─ └ ┘─NEXT-SENTENCE──────────
 └ ┘─AT─

5─ ──┬ ┬──────────── ───5%
 └ ┘─END-SEARCH─

Format 2—Binary Search
55──SEARCH ALL──identifier-1─ ──┬ ┬───────────────────────────────────── ────────────────────────────5
 └ ┘ ──┬ ┬──── ─END──imperative-statement-1─
 └ ┘─AT─

5─ ─WHEN─ ──┬ ┬ ─data-name-1─ ──┬ ┬──── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──┬ ┬─identifier-3──────────── ─────────────────5
 │ │└ ┘─IS─ │ │└ ┘─TO─ ├ ┤─literal-1───────────────
 │ │└ ┘─=───────────── └ ┘─arithmetic-expression-1─
 └ ┘─condition-name-1──

 ┌ ┐──
5─ ───6 ┴──┬ ┬── ──────────5
 └ ┘ ─AND─ ──┬ ┬ ─data-name-2─ ──┬ ┬──── ──┬ ┬ ─EQUAL─ ──┬ ┬──── ──┬ ┬─identifier-4────────────
 │ │└ ┘─IS─ │ │└ ┘─TO─ ├ ┤─literal-2───────────────
 │ │└ ┘─=───────────── └ ┘─arithmetic-expression-2─
 └ ┘─condition-name-2──

5─ ──┬ ┬─imperative-statement-2─ ──┬ ┬──────────── ───5%
 └ ┘─NEXT SENTENCE────────── └ ┘─END-SEARCH─

identifier-1
Can be:

� A data item subordinate to a data item that contains an OCCURS clause; that
is, it can be a part of a multidimensional table. In this case, the data
description entry must specify an INDEXED BY phrase for each dimension of
the table.

� An index data item.

Identifier-1 must refer to all occurrences within the table element; that is, it must
not be subscripted or reference-modified.

The Data Division description of identifier-1 must contain an OCCURS clause with
the INDEXED BY phrase. For Format-2, the Data Division description must also
contain the KEY IS phrase in its OCCURS clause.

SEARCH statement execution modifies only the value in the index-name associ-
ated with identifier-1 (and, if present, of index-name-1 or identifier-2). Therefore, to
search an entire 2- to 7-dimensional table, it is necessary to execute a SEARCH

Part 6. Procedure Division 393

As an IBM extension, you can specify END-SEARCH with NEXT SENTENCE. Note,
however, that if the NEXT SENTENCE phrase is executed, control will not pass to the
next statement following the END-SEARCH, but instead will pass to the statement after
the closest following period.

As an IBM extension, for the Format-2 SEARCH ALL statement, neither
imperative-statement-2 nor NEXT SENTENCE is required. Without them, the SEARCH
statement sets the index to the value in the table that matched the condition.

SEARCH Statement

statement for each dimension. Before each execution, SET statements must be
executed to reinitialize the associated index-names.

AT END/WHEN Phrases
After imperative-statement-1 or imperative-statement-2 is executed, control passes to
the end of the SEARCH statement, unless imperative-statement-1 or
imperative-statement-2 ends with a GO TO statement.

 NEXT SENTENCE

 END-SEARCH Phrase
This explicit scope terminator serves to delimit the scope of the SEARCH statement.
END-SEARCH permits a conditional SEARCH statement to be nested in another condi-
tional statement.

For more information, see “Delimited Scope Statements” on page 263.

 Serial Search
The Format 1 SEARCH statement executes a serial search beginning at the current
index setting. When the search begins, if the value of the index-name associated with
identifier-1 is not greater than the highest possible occurrence number, the following
actions take place:

� The condition(s) in the WHEN phrase are evaluated in the order in which they are
written.

� If none of the conditions is satisfied, the index-name for identifier-1 is increased to
correspond to the next table element, and step 1 is repeated.

� If upon evaluation, one of the WHEN conditions is satisfied, the search is termi-
nated immediately, and the imperative-statement associated with that condition is
executed. The index-name points to the table element that satisfied the condition.
If NEXT SENTENCE is specified, control passes to the statement following the
closest period.

� If the end of the table is reached (that is, the incremented index-name value is
greater than the highest possible occurrence number) without the WHEN condition
being satisfied, the search is terminated, as described in the next paragraph.

If, when the search begins, the value of the index-name associated with identifier-1 is
greater than the highest possible occurrence number, the search immediately ends,

394 COBOL Language Reference

If indexing is used to search a table without an INDEXED BY clause, correct
results are ensured only if both the table defined with the index and the table
defined without the index have table elements of the same length and with the
same number of occurrences.

Identifier-2
cannot be a windowed date field.

SEARCH Statement

and, if specified, the AT END imperative-statement is executed. If the AT END phrase
is omitted, control passes to the next statement after the SEARCH statement.

 VARYING Phrase
index-name-1

One of the following actions applies:

� If index-name-1 is an index for identifier-1, this index is used for the search.
Otherwise, the first (or only) index-name is used.

� If index-name-1 is an index for another table element, then the first (or only)
index-name for identifier-1 is used for the search; the occurrence number
represented by index-name-1 is increased by the same amount as the search
index-name and at the same time.

When the VARYING index-name-1 phrase is omitted, the first (or only) index-name
for identifier-1 is used for the search.

identifier-2
Must be either an index data item or an elementary integer item.

Identifier-2 cannot be subscripted by the first (or
only) index-name for identifier-1. During the search, one of the following actions
applies:

� If identifier-2 is an index data item, then, whenever the search index is
increased, the specified index data item is simultaneously increased by the
same amount.

� If identifier-2 is an integer data item, then, whenever the search index is
increased, the specified data item is simultaneously increased by 1.

WHEN Phrase (Serial Search)
condition-1

Can be any condition described under “Conditional Expressions” on page 239.

Figure 17 illustrates a Format 1 SEARCH operation containing two WHEN phrases.

Part 6. Procedure Division 395

SEARCH Statement

Entrance

Condition-2

<

Increment index-name
for identifier-1
(index-name-1
if applicable)

Increment
index-name-1

(for a different table)
or identifier-2

False

False

>AT END

imperative-
statement-1

True imperative-
statement-3

Index setting:
highest permissible
occurrence number

These operations are included only when called for in the statement.
Control transfers to the next sentence, unless the imperative statement
ends with a GO TO statement.

Condition-1
True imperative-

statement-2

Figure 17. Format 1 SEARCH with Two WHEN Phrases

 Binary Search
The Format 2 SEARCH ALL statement executes a binary search. The search index
need not be initialized by SET statements, because its setting is varied during the
search operation so that its value is at no time less than the value of the first table

396 COBOL Language Reference

� A DBCS item if the ASCENDING/DESCENDING KEY is defined as a DBCS
item.

� A floating-point data item
� A data item defined with USAGE IS POINTER, USAGE IS

PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE
� A windowed date field

SEARCH Statement

element, nor ever greater than the value of the last table element. The index used is
always that associated with the first index-name specified in the OCCURS clause.

The results of a SEARCH ALL operation are predictable only when:

� The data in the table is ordered in ASCENDING/DESCENDING KEY order

� The contents of the ASCENDING/DESCENDING keys specified in the WHEN
clause provide a unique table reference.

identifier-1
Identifier-1 can be:

� A data item subordinate to a data item that contains an OCCURS clause; that
is, it can be a part of a 2- to 7-dimensional table. In this case, the data
description entry must specify an INDEXED BY phrase for each dimension of
the table.

Identifier-1 cannot be:

� USAGE IS INDEX

Identifier-1 must refer to all occurrences within the table element; that is, it must
not be subscripted or reference-modified.

The Data Division description of identifier-1 must contain an OCCURS clause with
the INDEXED BY option. It must also contain the KEY IS phrase in its OCCURS
clause.

AT END
The condition that exists when the search operation terminates without satisfying
the condition specified in any of the associated WHEN phrases.

WHEN Phrase (Binary Search)
If the WHEN relation-condition is specified, the compare is based on the length and
sign of data-name. For example, if the length of data-name is shorter than the length
of the search argument, the search argument is truncated to the length of data-name
before the compare is done. If the search argument is signed and data-name is
unsigned, the sign is removed from the search argument before the compare is done.

If the WHEN phrase cannot be satisfied for any setting of the index within this range,
the search is unsuccessful. Control is passed to imperative-statement-1 of the AT END
phrase, when specified, or to the next statement after the SEARCH statement. In
either case, the final setting of the index is not predictable.

Part 6. Procedure Division 397

� Floating-point data items

� Windowed date fields

Identifier-3 and identifier-4 can be floating-point data items.

Identifier-3 and identifier-4 cannot be data items defined with USAGE IS POINTER,
USAGE IS PROCEDURE-POINTER, or USAGE IS OBJECT REFERENCE.

Identifier-3 and identifier-4 cannot be windowed date fields.

SEARCH Statement

If the WHEN option can be satisfied, control passes to imperative-statement-2, if speci-
fied, or to the next executable sentence if the NEXT SENTENCE phrase is specified.
The index contains the value indicating the occurrence that allowed the WHEN
condition(s) to be satisfied.

condition-name-1
condition-name-2

Each condition-name specified must have only a single value, and each must be
associated with an ASCENDING/DESCENDING KEY identifier for this table
element.

data-name-1
data-name-2

Must specify an ASCENDING/DESCENDING KEY data item in the identifier-1 table
element and must be subscripted by the first identifier-1 index-name. Each data-
name can be qualified.

Data-name-1 and data-name-2 cannot be:

� Group items containing variable occurrence data items

identifier-3
identifier-4

Must not be an ASCENDING/DESCENDING KEY data item for identifier-1 or an
item that is subscripted by the first index-name for identifier-1.

arithmetic-expression
Can be any of the expressions defined under “Arithmetic Expressions” on
page 233, with the following restriction: Any identifier in the arithmetic-expression
must not be an ASCENDING/DESCENDING KEY data item for identifier-1 or an
item that is subscripted by the first index-name for identifier-1.

When an ASCENDING/DESCENDING KEY data item is specified, explicitly or implicitly,
in the WHEN phrase, all preceding ASCENDING/DESCENDING KEY data-names for
identifier-1 must also be specified.

Search Statement Considerations
Index data items cannot be used as subscripts, because of the restrictions on direct
reference to them.

When the object of the VARYING option is an index-name for another table element,
one Format 1 SEARCH statement steps through two table elements at once.

398 COBOL Language Reference

SEARCH Statement

To ensure correct execution of a SEARCH statement for a variable-length table, make
sure the object of the OCCURS DEPENDING ON clause (data-name-1) contains a
value that specifies the current length of the table.

The scope of a SEARCH statement can be terminated by any of the following:

� An END-SEARCH phrase at the same level of nesting
� A separator period
� An ELSE or END-IF phrase associated with a previous IF statement

Part 6. Procedure Division 399

� Setting USAGE IS POINTER data items to a data address
� Setting USAGE IS PROCEDURE-POINTER data items to an entry address
� Setting USAGE OBJECT REFERENCE data items to refer to an object instance

The
receiving fields cannot be windowed date fields.

The
sending field cannot be a windowed date field.

SET Statement

 SET Statement
The SET statement is used to perform one of the following operations:

� Placing values associated with table elements into indexes associated with index-
names

� Incrementing or decrementing an occurrence number
� Setting the status of an external switch to ON or OFF
� Moving data to condition names to make conditions true

Index-names are related to a given table through the INDEXED BY phrase of the
OCCURS clause; they are not further defined in the program.

When the sending and receiving fields in a SET statement share part of their storage
(that is, the operands overlap), the result of the execution of such a SET statement is
undefined.

Format 1: SET for Basic Table Handling
When this form of the SET statement is executed, the current value of the receiving
field is replaced by the value of the sending field (with conversion).

Format 1—SET (Basic Table Handling)
 ┌ ┐────────────────────
55──SET─ ───6 ┴──┬ ┬─index-name-1─ ─TO─ ──┬ ┬─index-name-2─ ───────────────────────────5%
 └ ┘─identifier-1─ ├ ┤─identifier-2─
 └ ┘─integer-1────

index-name-1, identifier-1
Receiving fields.

Must name either index data items or elementary numeric integer items.

index-name-2
Sending field.

The value before the SET statement is executed must correspond to the occur-
rence number of its associated table.

identifier-2
Sending field.

Must name either an index data item or an elementary numeric integer item.

integer-1
Sending field.

Must be a positive integer.

400 COBOL Language Reference

If index-name-2 is for a table that has a subordinate item that contains an OCCURS
DEPENDING ON clause, then undefined values can be received into identifier-1.

For more information on complex OCCURS DEPENDING ON, see the IBM COBOL
Programming Guide for your platform.

SET Statement

Table 48 shows valid combinations of sending and receiving fields in a Format 1 SET
statement.

Receiving fields are acted upon in the left-to-right order in which they are specified.
Any subscripting or indexing associated with an identifier's receiving field is evaluated
immediately before the field is acted upon.

The value used for the sending field is the value at the beginning of SET statement
execution.

The value for an index-name after execution of a SEARCH or PERFORM statement
can be undefined; therefore, a Format 1 SET statement should reinitialize such index-
names before other table-handling operations are attempted.

Table 48. Sending and Receiving Fields for Format 1 SET Statement

Sending Field

Receiving Field

Index-name
Index Data

Item
Integer Data

Item

Index-name Valid Valid* Valid

Index Data Item Valid* Valid* —

Integer Data Item Valid — —

Integer Literal Valid — —

*No conversion takes place

Format 2: SET for Adjusting Indexes
When this form of the SET statement is executed, the value of the receiving field is
increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the value
in the sending field.

Format 2—SET (Adjusting Indexes)
 ┌ ┐────────────────
55──SET─ ───6 ┴─index-name-3─ ──┬ ┬─UP BY─── ──┬ ┬─identifier-3─ ──────────────────────5%
 └ ┘─DOWN BY─ └ ┘─integer-2────

The receiving field can be specified by index-name-3. This index-name value both
before and after the SET statement execution must correspond to the occurrence
numbers in an associated table.

Part 6. Procedure Division 401

Identifier-3 cannot
be a windowed date field.

If index-name-3 is for a table that has a subordinate item that contains an OCCURS
DEPENDING ON clause, and if the ODO object is changed before executing a Format
2 SET Statement, then index-name-3 cannot contain a value that corresponds to an
occurrence number of its associated table.

For more information on complex OCCURS DEPENDING ON, see the IBM COBOL
Programming Guide for your platform.

SET Statement

The sending field can be specified as identifier-3, which must be an elementary
integer data item, or as integer-2, which must be a nonzero integer.

When the Format 2 SET statement is executed, the contents of the receiving field are
increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the
number of occurrences represented by the value of identifier-3 or integer-2. Receiving
fields are acted upon in the left-to-right order in which they are specified. The value of
the incrementing or decrementing field at the beginning of SET statement execution is
used for all receiving fields.

Format 3: SET for External Switches
When this form of the SET statement is executed, the status of each external switch
associated with the specified mnemonic-name is turned ON or OFF.

Format 3—SET (External Switches)
 ┌ ┐────────────────────────────────────
 │ │┌ ┐───────────────────
55──SET─ ───6 ┴ ───6 ┴─mnemonic-name-1─ ─TO─ ──┬ ┬─ON── ─────────────────────────────────5%
 └ ┘─OFF─

mnemonic-name
Must be associated with an external switch, the status of which can be altered.

Format 4: SET for Condition-names
When this form of the SET statement is executed, the value associated with a
condition-name is placed in its conditional variable according to the rules of the VALUE
clause.

Format 4—SET (Condition-names)
 ┌ ┐────────────────────
55──SET─ ───6 ┴─condition-name-1─ ─TO TRUE───5%

condition-name-1
Must be associated with a conditional variable.

If more than one literal is specified in the VALUE clause of condition-name-1, its associ-
ated conditional variable is set equal to the first literal.

402 COBOL Language Reference

Format 5: SET for USAGE IS POINTER Data Items
When this form of the SET statement is executed, the current value of the receiving
field is replaced by the address value contained in the sending field.

Format 5—SET (USAGE IS POINTER Data Items)
 ┌ ┐────────────────────────────────
55──SET─ ───6 ┴──┬ ┬─identifier-4───────────── ─TO─ ──┬ ┬─identifier-6───────────── ───5%
 └ ┘ ─ADDRESS OF──identifier-5─ ├ ┤ ─ADDRESS OF──identifier-7─
 ├ ┤─NULL─────────────────────
 └ ┘─NULLS────────────────────

identifier-4
Receiving fields.

Must be described as USAGE IS POINTER.

ADDRESS OF identifier-5
Receiving fields.

identifier-5 must be level-01 or level-77 items defined in the Linkage Section. The
addresses of these items are set to the value of the operand specified in the TO
phrase.

Identifier-5 must not be reference-modified.

identifier-6
Sending field.

Must be described as USAGE IS POINTER.

Cannot contain an address within the program's own Working-Storage, File, or
Local-Storage Section.

ADDRESS OF identifier-7
Sending field.

 Under AIX, OS/2, and Windows, it must name an item in either the
Linkage Section or the Working-Storage Section of level 01, 77, or 02-49.

 For MVS and VM, it must name an item in the Linkage Section of any
level except 66 or 88. ADDRESS OF identifier-7 contains the address of the
identifier, and not the content of the identifier.

NULL
NULLS

Sending field.

Sets the receiving field to contain the value of an invalid address.

SET Statement

If multiple condition-names are specified, the results are the same as if a separate SET
statement had been written for each condition-name in the same order in which they
are specified in the SET statement.

Part 6. Procedure Division 403

Table 49 shows valid combinations of sending and receiving fields in a Format 5 SET
statement.

Table 49. Sending and Receiving Fields for Format 5 SET Statement

Sending Field

Receiving Field

USAGE IS
POINTER

ADDRESS OF NULL/NULLS

USAGE IS POINTER Valid Valid -

ADDRESS OF Valid Valid -

NULL/NULLS Valid Valid -

Format 6: SET for USAGE IS PROCEDURE-POINTER Data Items
When this format of the SET statement is executed, the current value of the receiving
field is replaced by the address value contained in the sending field. Additionally, to
enable COBOL programs to interoperate with C programs via C function pointers, the
sending field can be a pointer. The pointer is converted to a procedure-pointer and is
stored in the receiver.

Format 6—SET (USAGE IS PROCEDURE-POINTER Data Items)
 ┌ ┐─────────────────────────────────
55──SET─ ───6 ┴─procedure-pointer-data-item-1─ ─────────────────────────────────────5

5─ ─TO─ ──┬ ┬─procedure-pointer-data-item-2─ ──────────────────────────────────────5%
 ├ ┤ ─ENTRY─ ──┬ ┬─identifier-8─ ──────
 │ │└ ┘─literal-1────
 ├ ┤─NULL──────────────────────────
 ├ ┤─NULLS─────────────────────────
 └ ┘─pointer-data-item-3───────────

procedure-pointer-data-item-1, procedure-pointer-data-item-2
Must be described as USAGE IS PROCEDURE-POINTER.
Procedure-pointer-data-item-1 is the receiving field.

identifier-8
Must be defined as an alphanumeric item such that the value can be a program
name. For more information, see “PROGRAM-ID Paragraph” on page 77. For
entry points in non-COBOL programs, identifier-8 can contain the characters @, #,
and, $.

literal-1
Must be nonnumeric and must conform to the rules for formation of program-
names. For details on formation rules, see the discussion of program-name under
“PROGRAM-ID Paragraph” on page 77.

Identifier-8 or literal-1 must refer to one of the following types of entry points:

� The primary entry point of a COBOL program as defined by the PROGRAM-ID
statement. The PROGRAM-ID must reference the outermost program of a
compilation unit; it must not reference a nested program.

SET Statement

404 COBOL Language Reference

� An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement.

� An entry point in a non-COBOL program.

The program-name referenced by the SET...TO ENTRY statement can be affected
by the PGMNAME compiler option. For details, see the IBM COBOL Programming
Guide for your platform.

NULL
NULLS

Sets the receiving field to contain the value of an invalid address.

pointer-data-item-3
Must be defined with USAGE POINTER. You must set pointer-data-item-3 in a
non-COBOL program, to point to a valid program entry point.

Example of COBOL/C Interoperability (MVS)
The following example demonstrates a COBOL CALL to a C function that returns a
function-pointer to a service, followed by a COBOL CALL to the service:

IDENTIFICATION DIVISION.
PROGRAM-ID DEMO.
DATA DIVISION.
WORKING-STORAGE SECTION.
ð1 FP USAGE POINTER.
ð1 PP USAGE PROCEDURE-POINTER.
PROCEDURE DIVISION.

CALL "c-function" RETURNING FP.
SET PP TO FP.

 CALL PP.

For MVS and VM, COBOL PROCEDURE-POINTERs are 8-bytes in length. Thus, the
SET statement is needed to convert the function pointer (FP) to the COBOL
PROCEDURE-POINTER (PP).

Format 7: SET for USAGE OBJECT REFERENCE Data Items
When this format of the SET statement is executed the value in the receiving item is
replaced by the value in the sending item.

Format 7—SET (USAGE IS OBJECT REFERENCE Data Items)
55──SET─ ─object-reference-id-1─ ─TO─ ──┬ ┬─object-reference-id-2─ ─────────────────5%
 ├ ┤─NULL──────────────────
 └ ┘─SELF──────────────────

Object-reference-id-1 and object-reference-id-2 must be defined as USAGE OBJECT
REFERENCE, with object-reference-id-1 being the receiver and object-reference-id-2
being the sender. If object-reference-id-1 is defined as an object reference of a certain
class (defined as "USAGE OBJECT REFERENCE class-name"), object-reference-id-2
must be an object reference of the same class or a class derived from that class.

SET Statement

Part 6. Procedure Division 405

If the figurative constant NULL is specified, the receiving object-reference-id-1 is set to
the NULL value.

If SELF is specified, the SET statement must appear in the procedure division of a
method. In this case, object-reference-id-1 is set to refer to the object upon which the
currently executing method was invoked.

SET Statement

406 COBOL Language Reference

File-names associated with the GIVING clause (file-name-3...) can be specified in the
SAME AREA clause.

SORT Statement

 SORT Statement
The SORT statement accepts records from one or more files, sorts them according to
the specified key(s), and makes the sorted records available either through an OUTPUT
PROCEDURE or in an output file. See also “MERGE Statement” on page 345. The
SORT statement can appear anywhere in the Procedure Division except in the declar-
ative portion.

 Format
 ┌ ┐──
 │ │┌ ┐───────────────
55──SORT──file-name-1─ ───6 ┴ ──┬ ┬──── ──┬ ┬─ASCENDING── ──┬ ┬───── ───6 ┴─data-name-1─ ──────────────────────5
 └ ┘─ON─ └ ┘─DESCENDING─ └ ┘─KEY─

5─ ──┬ ┬─── ───5
 └ ┘ ──┬ ┬────── ─DUPLICATES─ ──┬ ┬──── ──┬ ┬───────
 └ ┘─WITH─ └ ┘─IN─ └ ┘─ORDER─

5─ ──┬ ┬── ──5
 └ ┘ ──┬ ┬─────────── ─SEQUENCE─ ──┬ ┬──── ─alphabet-name-1─
 └ ┘─COLLATING─ └ ┘─IS─

 ┌ ┐───────────────
5─ ──┬ ┬─USING─ ───6 ┴─file-name-2─ ── ──────────────5
 └ ┘ ─INPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-1─ ──┬ ┬───────────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-2─
 └ ┘─THRU────

 ┌ ┐───────────────
5─ ──┬ ┬─GIVING─ ───6 ┴─file-name-3─ ── ────────────5%
 └ ┘ ─OUTPUT PROCEDURE─ ──┬ ┬──── ─procedure-name-3─ ──┬ ┬───────────────────────────────
 └ ┘─IS─ └ ┘ ──┬ ┬─THROUGH─ ─procedure-name-4─
 └ ┘─THRU────

file-name-1
The name given in the SD entry that describes the records to be sorted.

No pair of file-names in a SORT statement can be specified in the same SAME SORT
AREA, or SAME SORT-MERGE AREA clause. File-names associated with the GIVING
clause (file-name-3...) cannot be specified in the SAME AREA clause.

ASCENDING/DESCENDING KEY Phrase
This phrase specifies that records are to be processed in ascending or descending
sequence (depending on the phrase specified), based on the specified sort keys.

data-name-1
Specifies a KEY data item on which the SORT statement will be based. Each
such data-name must identify a data item in a record associated with file-name-1 .
The data-names following the word KEY are listed from left to right in the SORT
statement in order of decreasing significance without regard to how they are
divided into KEY phrases. The left-most data-name is the major key, the next data-
name is the next most significant key, and so forth. The following rules apply:

Part 6. Procedure Division 407

� KEY data items can be floating-point items.

� KEY data items cannot be variably-located.

� Under AIX, OS/2, and Windows, KEY data items cannot be
windowed date fields.

 Under MVS and VM, KEY data items can be windowed date fields,
under these conditions:

– The GIVING phrase must not specify an indexed file, because the (binary)
ordering assumed or imposed by the file system conflicts with the win-
dowed date ordering provided in the sort output. Attempting to write the
windowed date merge output to such an indexed file will either fail or re-
impose binary ordering, depending on how the file is accessed (the
ACCESS MODE in the file-control entry).

– If an alphanumeric windowed date field is specified as a KEY for a SORT
statement, the collating sequence in effect for the merge operation must
be EBCDIC. Thus the COLLATING SEQUENCE phrase of the SORT
statement or, if this phrase is not specified, then any PROGRAM COL-
LATING SEQUENCE clause in the OBJECT-COMPUTER paragraph,
must not specify a collating sequence other than EBCDIC or NATIVE.

If the SORT statement meets these conditions, then the sort operation takes
advantage of SORT Year 2000 features, assuming that the execution environ-
ment includes a sort product that supports century windowing.

A year-last windowed date field can be specified as a KEY for a SORT state-
ment, and can thereby exploit the corresponding century windowing capability
of the sort product.

For more information on using windowed date fields as KEY data items, see
the IBM COBOL Programming Guide for your platform.

SORT Statement

� A specific KEY data item must be physically located in the same position and
have the same data format in each input file. However, it need not have the
same data-name.

� If file-name-1 has more than one record description, then the KEY data items
need be described in only one of the record descriptions.

� If file-name-1 contains variable-length records, all of the KEY data-items must
be contained within the first n character positions of the record, where n
equals the minimum records size specified for file-name-1.

� KEY data items must not contain an OCCURS clause or be subordinate to an
item that contains an OCCURS clause.

� KEY data items can be qualified.

� KEY data items cannot be group items that contain variable occurrence data
items.

|
|
|

If file-name-3 references an indexed file, the first specification of data-name-1 must be
associated with an ASCENDING phrase and the data item referenced by that

408 COBOL Language Reference

� Under MVS and VM, if the KEY is a DBCS item, the sequence of the
KEY values is based on the binary collating sequence of the hexadecimal values of
the DBCS characters.

� Under AIX, OS/2, and Windows, if the KEY is a DBCS item, then
the sequence of the KEY values is based on a collation sequence according to the
COLLSEQ compiler option:

– If the COLLSEQ(NATIVE) compiler option is in effect, then the collating
sequence is determined by the locale. For information on the locale, see
Appendix F, “Locale Considerations (Workstation Only)” on page 568.

– Otherwise, the collating sequence is determined by the binary values of the
DBCS characters.

� If the KEY is an external floating-point item, the compiler will treat the data item as
character data, rather than numeric data. The sequence in which the records are
sorted depends on the collating sequence used.

� If the KEY data item is internal floating-point, the sequence of key values will be in
numeric order.

SORT Statement

data-name-1 must occupy the same character positions in this record as the data item
associated with the major record key for that file.

The direction of the sorting operation depends on the specification of the ASCENDING
or DESCENDING key words as follows:

� When ASCENDING is specified, the sequence is from the lowest key value to the
highest key value.

� When DESCENDING is specified, the sequence is from the highest key value to
the lowest.

� If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or numeric-
edited, the sequence of key values depends on the collating sequence used (see
“COLLATING SEQUENCE Phrase” on page 410).

� The key comparisons are performed according to the rules for comparison of oper-
ands in a relation condition (see “Relation Condition” under “Conditional
Expressions” on page 239).

 DUPLICATES Phrase
If the DUPLICATES phrase is specified, and the contents of all the key elements asso-
ciated with one record are equal to the corresponding key elements in one or more
other records, the order of return of these records is as follows:

� The order of the associated input files as specified in the SORT statement. Within
a given file the order is that in which the records are accessed from that file.

� The order in which these records are released by an input procedure, when an
input procedure is specified.

Part 6. Procedure Division 409

SORT Statement

If the DUPLICATES phrase is not specified, the order of these records is undefined.
For more information about use of the DUPLICATES phrase, see the related discussion
of alternate indexes in the IBM COBOL Programming Guide for your platform.

COLLATING SEQUENCE Phrase
This phrase specifies the collating sequence to be used in nonnumeric comparisons for
the KEY data items in this sorting operation.

alphabet-name-1
Must be specified in the ALPHABET clause of the SPECIAL-NAMES paragraph.
Any one of the alphabet-name clause phrases can be specified with the following
results:

STANDARD-1
 Under MVS and VM, the ASCII collating sequence is used for all

nonnumeric comparisons. (The ASCII collating sequence is in Appendix B,
“EBCDIC and ASCII Collating Sequences” on page 548.)

 Under AIX, OS/2, and Windows the collating sequence is based
on the character's hex value order.

STANDARD-2
 Under MVS and VM, the International Reference Version of the

ISO 7-bit code defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange is used for all nonnumeric compar-
isons.

 Under AIX, OS/2, and Windows, the collating sequence is
based on the character's hex value order.

NATIVE
 Under MVS and VM, the EBCDIC collating sequence is used for

all nonnumeric comparisons. (The EBCDIC collating sequence is in
Appendix B, “EBCDIC and ASCII Collating Sequences” on page 548.)

 Under AIX, OS/2, and Windows, the collating sequence indi-
cated by the locale is selected.

EBCDIC
The EBCDIC collating sequence is used for all nonnumeric comparisons. (The
EBCDIC collating sequence is in Appendix B, “EBCDIC and ASCII Collating
Sequences” on page 548.)

literal
The collating sequence established by the specification of literals in the
alphabet-name clause is used for all nonnumeric comparisons.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM COL-
LATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER paragraph
specifies the collating sequence to be used. When both the COLLATING
SEQUENCE phrase and the PROGRAM COLLATING SEQUENCE clauses are
omitted, the EBCDIC collating sequence is used.

410 COBOL Language Reference

SORT Statement

 USING Phrase
file-name-2,...

The input files.

When the USING phrase is specified, all the records in file-name-2,..., (that is, the
input files) are transferred automatically to file-name-1. At the time the SORT
statement is executed, these files must not be open; the compiler opens, reads,
makes records available, and closes these files automatically. If
EXCEPTION/ERROR procedures are specified for these files, the compiler makes
the necessary linkage to these procedures.

All input files must be described in FD entries in the Data Division.

If the USING phrase is specified and if file-name-1 contains variable-length
records, the size of the records contained in the input files (file-name-2,...) must
not be less than the smallest record nor greater than the largest record described
for file-name-1. If file-name-1 contains fixed-length records, the size of the records
contained in the input files must not be greater than the largest record described
for file-name-1. For more information, see the IBM COBOL Programming
Guide for your platform.

INPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify input records
before the sorting operation begins.

procedure-name-1
Specifies the first (or only) section or paragraph in the INPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the INPUT PROCEDURE.

The input procedure can consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RELEASE statement
to the file referenced by file-name-1. The range includes all statements that are
executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the input procedure, as well as all state-
ments in declarative procedures that are executed as a result of the execution of
statements in the range of the input procedure. The range of the input procedure
must not cause the execution of any MERGE, RETURN, or SORT statement.

If an input procedure is specified, control is passed to the input procedure before
the file referenced by file-name-1 is sequenced by the SORT statement. The com-
piler inserts a return mechanism at the end of the last statement in the input proce-
dure. When control passes the last statement in the input procedure, the records
that have been released to the file referenced by file-name-1 are sorted.

 GIVING Phrase
file-name-3,...

The output files.

When the GIVING phrase is specified, all the sorted records in file-name-1 are
automatically transferred to the output files (file-name-3,...).

Part 6. Procedure Division 411

SORT Statement

All output files must be described in FD entries in the Data Division.

If the output files (file-name-3,...) contain variable-length records, the size of the
records contained in file-name-1 must not be less than the smallest record nor
greater than the largest record described for the output files. If the output files
contain fixed-length records, the size of the records contained in file-name-1 must
not be greater than the largest record described for the output files. For more
information, see the IBM COBOL Programming Guide for your platform.

At the time the SORT statement is executed, the output files (file-name-3,...) must
not be open. For each of the output files, the execution of the SORT statement
causes the following actions to be taken:

� The processing of the file is initiated. The initiation is performed as if an OPEN
statement with the OUTPUT phrase had been executed.

� The sorted logical records are returned and written onto the file. Each record
is written as if a WRITE statement without any optional phrases had been exe-
cuted.

For a relative file, the relative key data item for the first record returned con-
tains the value '1'; for the second record returned, the value '2', etc.. After
execution of the SORT statement, the content of the relative key data item
indicates the last record returned to the file.

� The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-3. On
the first attempt to write beyond the externally defined boundaries of the file, any
USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is
executed. If control is returned from that USE procedure or if no such USE proce-
dure is specified, the processing of the file is terminated.

OUTPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify output records
from the sorting operation.

procedure-name-3
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-4
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The output procedure can consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RETURN statement
in sorted order from the file referenced by file-name-1. The range includes all state-
ments that are executed as the result of a transfer of control by CALL, EXIT, GO
TO, and PERFORM statements in the range of the output procedure. The range
also includes all statements in declarative procedures that are executed as a result

412 COBOL Language Reference

SORT Special Registers
The special registers, SORT-CORE-SIZE, SORT-MESSAGE, and SORT-MODE-SIZE,
are equivalent to option control statement key words in the sort control file. You define
the sort control data set with the SORT-CONTROL special register.

Note: If you use a sort control file to specify control statements, the values specified in
the sort control file take precedence over those in the special register.

SORT-MESSAGE Special Register
See “SORT-MESSAGE” on page 18.

SORT-CORE-SIZE Special Register
See “SORT-CORE-SIZE” on page 17.

SORT-FILE-SIZE Special Register
See “SORT-FILE-SIZE” on page 17.

SORT-MODE-SIZE Special Register
See “SORT-MODE-SIZE” on page 18.

SORT-CONTROL Special Register
See “SORT-CONTROL” on page 16.

SORT-RETURN Special Register
See “SORT-RETURN” on page 18.

SORT Statement

of the execution of statements in the range of the output procedure. The range of
the output procedure must not cause the execution of any MERGE, RELEASE, or
SORT statement.

If an output procedure is specified, control passes to it after the file referenced by
file-name-1 has been sequenced by the SORT statement. The compiler inserts a
return mechanism at the end of the last statement in the output procedure and
when control passes the last statement in the output procedure, the return mech-
anism provides the termination of the sort and then passes control to the next exe-
cutable statement after the SORT statement. Before entering the output
procedure, the sort procedure reaches a point at which it can select the next record
in sorted order when requested. The RETURN statements in the output procedure
are the requests for the next record.

Note: The INPUT and OUTPUT PROCEDURE phrases are similar to those for a
basic PERFORM statement. For example, if you name a procedure in an
OUTPUT PROCEDURE, that procedure is executed during the sorting operation
just as if it were named in a PERFORM statement. As with the PERFORM state-
ment, execution of the procedure is terminated after the last statement completes
execution. The last statement in an INPUT or OUTPUT PROCEDURE can be the
EXIT statement (see “EXIT Statement” on page 317).

Part 6. Procedure Division 413

SORT Statement

 Segmentation Considerations
If the SORT statement appears in a section that is not in an independent segment, then
any input or output procedure referenced by that SORT statement must appear:

� Totally within non-independent segments, or
� Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input or output pro-
cedure referenced by that SORT statement must be contained:

� Totally within non-independent segments, or
� Wholly within the same independent segment as that SORT statement.

414 COBOL Language Reference

LESS
THAN

<

NOT GREATER
THAN

NOT >
LESS OR EQUAL

THAN TO
<=

 Under AIX, OS/2, and Windows, the following relational operators are
allowed in the KEY phrase:

LESS THAN <
NOT GREATER THAN NOT >
LESS THAN OR EQUAL TO <=

START Statement

 START Statement
The START statement provides a means of positioning within an indexed or relative file
for subsequent sequential record retrieval.

When the START statement is executed, the associated indexed or relative file must be
open in either INPUT or I-O mode.

 Format
55──START──file-name-1─ ──┬ ┬─── ────5
 └ ┘ ─KEY─ ──┬ ┬──── ──┬ ┬─EQUAL─ ──┬ ┬──── ────────────────────── ─data-name-1─
 └ ┘─IS─ │ │└ ┘─TO─
 ├ ┤─=───────────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ─────────────────────
 │ │└ ┘─ ─
 ├ ┤─ ───────────────────────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ──────────────────
 │ │└ ┘─THAN─
 ├ ┤─>───────────────────────────────────
 ├ ┤ ─NOT LESS─ ──┬ ┬────── ─────────────────
 │ │└ ┘─THAN─
 ├ ┤─NOT <───────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ──────────────
 │ │└ ┘─ ─
 ├ ┤─ ───────────────────────────────
 ├ ┤ ─ ─ ──┬ ┬────── ─ ─ ──┬ ┬──── ───
 │ │└ ┘─ ─ └ ┘─ ─
 ├ ┤─ ──────────────────────────────────
 ├ ┤ ─GREATER─ ──┬ ┬────── ─OR EQUAL─ ──┬ ┬────
 │ │└ ┘─THAN─ └ ┘─TO─
 └ ┘─>=──────────────────────────────────

5─ ──┬ ┬── ──5
 └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

5─ ──┬ ┬── ──┬ ┬─────────── ──────────────────────────────5%
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-START─
 └ ┘─KEY─

file-name-1
Must name a file with sequential or dynamic access. File-name-1 must be defined
in an FD entry in the Data Division, and must not name a sort file.

 KEY Phrase
When the KEY phrase is specified, the file position indicator is positioned at the logical
record in the file whose key field satisfies the comparison.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is
implied.

Part 6. Procedure Division 415

If you specify the KEY to be 'less than', or 'less than or equal to' the data item, the file
position indicator is positioned to the last logical record currently existing in the file sat-
isfying the comparison.

For an indexed file, if the key that satisfies the comparison has duplicate entries, the file
position indicator is positioned to the last of these entries.

Both the INVALID KEY phrase and the EXCEPTION/ERROR procedure may be
omitted.

Effect of Record Locking (OS/2 VSAM Files Only)
 For OS/2 VSAM files, the START statement cannot acquire or detect a

record lock. However, if the lock mode is AUTOMATIC, a successful START statement
releases an existing record lock.

START Statement

data-name-1
May be qualified; it may not be subscripted.

When the START statement is executed, a comparison is made between the current
value in the key data-name and the corresponding key field in the file's index.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the START statement is executed (See “Status Key” on
page 270).

INVALID KEY Phrases
If the comparison is not satisfied by any record in the file, an invalid key condition
exists; the position of the file position indicator is undefined, and (if specified) the
INVALID KEY imperative-statement is executed. (See “Invalid Key Condition” under
“Common Processing Facilities” on page 270.)

The INVALID KEY phrase must be specified if no EXCEPTION/ERROR procedure is
explicitly or implicitly specified for this file.

 END-START Phrase
This explicit scope terminator serves to delimit the scope of the START statement.
END-START permits a conditional START statement to be nested in another condi-
tional statement. END-START may also be used with an imperative START statement.

For more information, see “Delimited Scope Statements” on page 263.

 Indexed Files
When the KEY phrase is specified, the key data item used for the comparison is data-
name.

When the KEY phrase is not specified, the key data item used for the EQUAL TO com-
parison is the prime RECORD KEY.

416 COBOL Language Reference

Data-name-1 need not be an alphanumeric item. However, for purposes of
the I/O operation, it will be treated as an alphanumeric item.

START Statement

When START statement execution is successful, the RECORD KEY or ALTERNATE
RECORD KEY with which data-name is associated becomes the key of reference for
subsequent READ statements.

data-name-1
Can be any of the following:

� The prime RECORD KEY

� Any ALTERNATE RECORD KEY

� An alphanumeric data item within a record description for a file whose leftmost
character position corresponds to the leftmost character position of that record
key; it may be qualified. The data item must be less than or equal to the
length of the record key for the file.

The file position indicator points to the first record in the file whose key field satisfies
the comparison. If the operands in the comparison are of unequal lengths, the compar-
ison proceeds as if the longer field were truncated on the right to the length of the
shorter field. All other numeric and nonnumeric comparison rules apply, except that the
PROGRAM COLLATING SEQUENCE clause, if specified, has no effect.

When START statement execution is successful, the RECORD KEY with which
data-name-1 is associated becomes the key of reference for subsequent READ state-
ments.

When START statement execution is unsuccessful, the key of reference is undefined.

 Relative Files
When the KEY phrase is specified, data-name-1 must specify the RELATIVE KEY.

Whether or not the KEY phrase is specified, the key data item used in the comparison
is the RELATIVE KEY data item. The file position indicator points to the logical record
in the file whose key satisfies the comparison.

Part 6. Procedure Division 417

May be a signed numeric integer or non-integer literal, but may not be a floating-
point literal.

 Under AIX, OS/2, and Windows, do not use the STOP RUN or STOP
literal statement in programs compiled with the THREAD compiler option.

The STOP RUN statement does not have to be the last statement in a sequence, but
the statements following the STOP RUN will not be executed.

STOP Statement

 STOP Statement
The STOP statement halts execution of the object program either permanently or tem-
porarily.

 Format
55──STOP─ ──┬ ┬─RUN─────── ───5%
 └ ┘─literal-1─

literal
May be numeric or nonnumeric, and may be any figurative constant except ALL
literal. If the literal is numeric, it must be an unsigned integer.

When STOP literal is specified, the literal is communicated to the operator, and object
program execution is suspended. Program execution is resumed only after operator
intervention, and continues at the next executable statement in sequence.

The STOP literal statement is useful for special situations (a special tape or disk must
be mounted, a specific daily code must be entered, and so forth) when operator inter-
vention is needed during program execution. However, the ACCEPT and DISPLAY
statements are preferred when operator intervention is needed.

When STOP RUN is specified, execution of the object program is terminated, and
control is returned to the system. If a STOP RUN statement appears in a sequence of
imperative statements within a sentence, it must be the last or only statement in the
sequence.

The STOP RUN statement closes all files defined in any of the programs comprising
the run unit.

For use of the STOP RUN statement in calling and called programs, see the table
below.

418 COBOL Language Reference

STOP Statement

 When running on MVS and using the linkage stack instructions, STOP RUN
cannot be used to terminate a COBOL run unit from a subprogram if the linkage stack
level has changed from the time the COBOL main program for that run unit was
entered.

Termination
Statement

Main Program Subprogram

STOP RUN Return to calling program. (May be
the system and cause the applica-
tion to end.)

Return directly to the program that
called the main program. (May be the
system and cause the application to
end.)

Part 6. Procedure Division 419

None of the identifiers in a STRING statement can be windowed date fields.

identifier-1 through identifier-3
May be DBCS data items. If one of these identifiers is a DBCS item, then all of
them, and all literals, must be DBCS items. May not be external floating-point
items.

literal-1 and literal-2
May be DBCS literals. If one of these is a DBCS literal, then all of them must be
DBCS literals, and identifier-1 through identifier-3 must be DBCS items.

SPACE is the only figurative constant allowed for DBCS items.

STRING Statement

 STRING Statement
The STRING statement strings together the partial or complete contents of two or more
data items or literals into one single data item.

One STRING statement can be written instead of a series of MOVE statements.

 Format
 ┌ ┐───
 │ │┌ ┐────────────────────
55──STRING─ ───6 ┴ ───6 ┴──┬ ┬─identifier-1─ ─DELIMITED─ ──┬ ┬──── ──┬ ┬─identifier-2─ ──────5
 └ ┘─literal-1──── └ ┘─BY─ ├ ┤─literal-2────
 └ ┘─SIZE─────────

5──INTO──identifier-3─ ──┬ ┬───────────────────────────────── ─────────────────────5
 └ ┘ ──┬ ┬────── ─POINTER──identifier-4─
 └ ┘─WITH─

5─ ──┬ ┬── ────────────────────────────────5
 └ ┘ ──┬ ┬──── ─OVERFLOW──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬──────────── ──────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─OVERFLOW──imperative-statement-2─ └ ┘─END-STRING─
 └ ┘─ON─

identifier-1
Represents the sending field(s) .

All identifiers (except identifier-4, the POINTER item) must have USAGE DISPLAY,
explicitly or implicitly.

When the sending field or any of the delimiters is an elementary numeric item, it
must be described as an integer, and its PICTURE character-string must not
contain the symbol P.

literal-1
Represents the sending field(s) .

All literals must be nonnumeric literals; each may be any figurative constant except the
ALL literal. When a figurative constant is specified, it is considered a 1-character non-
numeric literal.

420 COBOL Language Reference

 or external floating-point item
As an IBM extension, identifier-3 can

be reference-modified.

When identifier-3 (the receiving field) is a DBCS data item, identifier-4 indicates the
relative DBCS character position (not the relative byte position) in the receiving
field.

STRING Statement

DELIMITED BY Phrase
The DELIMITED BY phrase sets the limits of the string.

identifier-2, literal-2
Are delimiters; that is, character(s) that delimit the data to be transferred.

If identifier-1 or identifier-2 occupies the same storage area as identifier-3 or
identifier-4, undefined results will occur, even if the identifiers are defined by the
same data description entry.

When a figurative constant is specified, it is considered a 1-character nonnumeric
literal.

SIZE
Transfers the complete sending area.

 INTO Phrase
identifier-3

Represents the receiving field .

It must not represent an edited data item and must
not be described with the JUSTIFIED clause.

If identifier-3 and identifier-4 occupy the same storage area, undefined results will
occur, even if the identifiers are defined by the same data description entry.

 POINTER Phrase
identifier-4

Represents the pointer field , which points to a character position in the receiving
field.

It must be an elementary integer data item large enough to contain a value equal
to the length of the receiving area plus 1. The pointer field must not contain the
symbol P in its PICTURE character-string.

ON OVERFLOW Phrases
imperative-statement-1

Executed when the pointer value (explicit or implicit):

� Is less than 1
� Exceeds a value equal to the length of the receiving field.

When either of the above conditions occurs, an overflow condition exists, and no
more data is transferred. Then the STRING operation is terminated, the NOT ON
OVERFLOW phrase, if specified, is ignored, and control is transferred to the end of

Part 6. Procedure Division 421

STRING Statement

the STRING statement or, if the ON OVERFLOW phrase is specified, to
imperative-statement-1.

If control is transferred to imperative-statement-1, execution continues according to
the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is exe-
cuted, control is transferred according to the rules for that statement; otherwise,
upon completion of the execution of imperative-statement-1, control is transferred
to the end of the STRING statement.

If at the time of execution of a STRING statement, conditions that would cause an
overflow condition are not encountered, then after completion of the transfer of
data, the ON OVERFLOW phrase, if specified, is ignored. Control is then trans-
ferred to the end of the STRING statement, or if the NOT ON OVERFLOW phrase
is specified, to imperative-statement-2.

If control is transferred to imperative-statement-2, execution continues according to
the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is exe-
cuted, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-2, control is transferred
to the end of the STRING statement.

 END-STRING Phrase
This explicit scope terminator serves to delimit the scope of the STRING statement.
END-STRING permits a conditional STRING statement to be nested in another condi-
tional statement. END-STRING may also be used with an imperative STRING state-
ment.

For more information, see “Delimited Scope Statements” on page 263.

 Data Flow
When the STRING statement is executed, data is transferred from the sending fields to
the receiving field. The order in which sending fields are processed is the order in
which they are specified. The following rules apply:

� Characters from the sending fields are transferred to the receiving field, according
to the rules for alphanumeric to alphanumeric elementary moves, except that no
space filling is provided (see “MOVE Statement” on page 352).

� When DELIMITED BY identifier/literal is specified, the contents of each sending
item are transferred, character-by-character, beginning with the leftmost character
and continuing until either:

– A delimiter for this sending field is reached (the delimiter itself is not trans-
ferred), or

– The rightmost character of this sending field has been transferred.

� When DELIMITED BY SIZE identifier is specified, each entire sending field is trans-
ferred to the receiving field.

422 COBOL Language Reference

STRING Statement

� When the receiving field is filled, or when all the sending fields have been proc-
essed, the operation is ended.

� When the POINTER phrase is specified, an explicit pointer field is available to the
COBOL user to control placement of data in the receiving field. The user must set
the explicit pointer's initial value, which must not be less than 1 and not more than
the character count of the receiving field. (Note that the pointer field must be
defined as a field large enough to contain a value equal to the length of the
receiving field plus 1; this precludes arithmetic overflow when the system updates
the pointer at the end of the transfer.)

� When the POINTER phrase is not specified, no pointer is available to the user.
However, a conceptual implicit pointer with an initial value of 1 is used by the
system.

� Conceptually, when the STRING statement is executed, the initial pointer value
(explicit or implicit) is the first character position within the receiving field into which
data is to be transferred. Beginning at that position, data is then positioned,
character-by-character, from left to right. After each character is positioned, the
explicit or implicit pointer is increased by 1. The value in the pointer field is
changed only in this manner. At the end of processing, the pointer value always
indicates a value equal to one character beyond the last character transferred into
the receiving field.

Note: Subscript, reference modification, variable-length or variable location calcu-
lations, and function evaluations are performed only once, at the beginning of the exe-
cution of the STRING statement. Therefore, if identifier-3 or identifier-4 is used as a
subscript, reference-modifier, or function argument in the STRING statement, or affects
the length or location of any of the identifiers in the STRING statement, these values
are determined at the beginning of the STRING statement, and are not affected by any
results of the STRING statement.

After STRING statement execution is completed, only that part of the receiving field into
which data was transferred is changed. The rest of the receiving field contains the data
that was present before this execution of the STRING statement.

When the following STRING statement is executed, the results obtained will be like
those illustrated in Figure 18 on page 424.

STRING ID-1 ID-2 DELIMITED BY ID-3
ID-4 ID-5 DELIMITED BY SIZE

INTO ID-7 WITH POINTER ID-8
END-STRING

Part 6. Procedure Division 423

STRING Statement

ID─1 at execution ID─2 at execution ID─4 at execution ID─5 at execution
┌──┬──┬──┬──┬──┬──┐ ┌──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┬──┐ ┌──┬──┬──┬──┬──┐
│ 1│ 2│ 3│ \│ 4│ 5│ │ A│ \│ B│ C│ │ 6│ 7│ 8│ 9│ \│ ð│ │ D│ E│ \│ F│ G│
└──┴──┴──┴──┴──┴──┘ └──┴──┴──┴──┘ └──┴──┴──┴──┴──┴──┘ └──┴──┴──┴──┴──┘
└───┬────┘ └─┬┘ └────────┬────────┘ └───────┬──────┘
First group of Second group of Third group of Fourth group of
characters moved characters moved characters moved characters moved
 │ │ │
 └─────────────┐ └┐ ┌────────────────┘ │
 │ │ │ ┌──────────────────┘
ID─3 │ │ │ │
(delimiter) 6 6 6 6
at execution ┌────────┬──┬─────────────────┬──────────────┐
┌──┐ ┌──┬──┐
│ \│ │ 1│ 2│ 3│ A│ 6│ 7│ 8│ 9│ \│ ð│ D│ E│ \│ F│ G│ Z│ Z│ Z│ Z│ Z│ Z│
└──┘ └──┴──┘

ID─7 after execution (initialized to ALL Z before execution)

ID─8
(pointer)
after execution
┌──┬──┐
│ 1│ 6│
└──┴──┘
(initialized to ð1 before execution)

Figure 18. STRING Statement Execution Results

424 COBOL Language Reference

SUBTRACT Statement

 SUBTRACT Statement
The SUBTRACT statement subtracts one numeric item, or the sum of two or more
numeric items, from one or more numeric items, and stores the result.

 Format 1
 ┌ ┐──────────────────── ┌ ┐─────────────────────────────
55──SUBTRACT─ ───6 ┴──┬ ┬─identifier-1─ ─FROM─ ───6 ┴ ─identifier-2─ ──┬ ┬───────── ────────5
 └ ┘─literal-1──── └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

All identifiers or literals preceding the key word FROM are added together and this sum
is subtracted from and stored immediately in identifier-2. This process is repeated for
each successive occurrence of identifier-2, in the left-to-right order in which identifier-2
is specified.

 Format 2
 ┌ ┐────────────────────
55──SUBTRACT─ ───6 ┴──┬ ┬─identifier-1─ ─FROM─ ──┬ ┬─identifier-2─ ─────────────────────5
 └ ┘─literal-1──── └ ┘─literal-2────

 ┌ ┐─────────────────────────────
5─ ─GIVING─ ───6 ┴ ─identifier-3─ ──┬ ┬───────── ───────────────────────────────────────5
 └ ┘─ROUNDED─

5─ ──┬ ┬── ──────────────────────────────5
 └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

All identifiers or literals preceding the key word FROM are added together and this sum
is subtracted from identifier-2 or literal-2. The result of the subtraction is stored as the
new value of each data item referenced by identifier-3.

 Format 3
55──SUBTRACT─ ──┬ ┬─CORRESPONDING─ ─identifier-1──FROM─────────────────────────────5
 └ ┘─CORR──────────

5─ ─identifier-2─ ──┬ ┬───────── ──┬ ┬── ───5
 └ ┘─ROUNDED─ └ ┘ ──┬ ┬──── ─SIZE ERROR──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─SIZE ERROR──imperative-statement-2─ └ ┘─END-SUBTRACT─
 └ ┘─ON─

Part 6. Procedure Division 425

The composite of operands may contain more than 18 digits. For more information on
arithmetic intermediate results, see the IBM COBOL Programming Guide for your plat-
form.

The following restrictions apply to date fields:

� In Format 1, identifier-1 may specify at most one date field. If identifier-1
specifies a date field, then every instance of identifier-2 must specify a date
field that is compatible with the date field specified by identifier-1. If identifier-1
does not specify a date field, then identifier-2 may specify one or more date
fields, with no restriction on their DATE FORMAT clauses.

� In Format 2, identifier-1 and identifier-2 may each specify at most one date
field. If identifier-1 specifies a date field, then the FROM identifier-2 must be a
date field that is compatible with the date field specified by identifier-1.
Identifier-3 may specify one or more date fields. If identifier-2 specifies a date
field and identifier-1 does not, then every instance of identifier-3 must specify a
date field that is compatible with the date field specified by identifier-2.

� In Format 3, if an item within identifier-1 is a date field, then the corresponding
item within identifier-2 must be a compatible date field.

� A year-last date field is allowed in a SUBTRACT statement only as identifier-1
and when the result of the subtraction is a non-date.

There are two steps to determining the result of a SUBTRACT statement that
involves one or more date fields:

1. Subtraction: determine the result of the subtraction operation, as described
under “Subtraction Involving Date Fields” on page 237.

2. Storage: determine how the result is stored in the receiving field. (In Formats
1 and 3, the receiving field is identifier-2; in Format 3, the receiving field is the
GIVING identifier-3.) For details, see “Storing Arithmetic Results That Involve
Date Fields” on page 237.

SUBTRACT Statement

Elementary data items within identifier-1 are subtracted from, and the results are stored
in, the corresponding elementary data items within identifier-2.

The composite of operands must not contain more than 18 digits. The compiler
ensures that enough places are carried so that no significant digits are lost during exe-
cution.

For all Formats:

identifier
In Format 1, must name an elementary numeric item.

In Format 2, must name an elementary numeric item, unless the identifier follows
the word GIVING. Each identifier following the word GIVING must name a numeric
or numeric-edited elementary item.

In Format 3, must name a group item.

|
|

426 COBOL Language Reference

Floating-point data items and literals may be used anywhere numeric data items and
literals can be specified.

SUBTRACT Statement

literal
Must be a numeric literal.

 ROUNDED Phrase
For information on the ROUNDED phrase, and for operand considerations, see
“ROUNDED Phrase” on page 266.

SIZE ERROR Phrases
For information on the SIZE ERROR phrases, and for operand considerations, see
“SIZE ERROR Phrases” on page 266.

CORRESPONDING Phrase (Format 3)
See “CORRESPONDING Phrase” on page 265.

 END-SUBTRACT Phrase
This explicit scope terminator serves to delimit the scope of the SUBTRACT statement.
END-SUBTRACT permits a conditional SUBTRACT statement to be nested in another
conditional statement. END-SUBTRACT may also be used with an imperative SUB-
TRACT statement.

For more information, see “Delimited Scope Statements” on page 263.

Part 6. Procedure Division 427

None of the identifiers in an UNSTRING statement can be windowed date fields.

As an IBM extension, identifier-1 can be reference-modified. It can be an
alphanumeric-edited or an alphabetic data item. It can also be a DBCS data item.

UNSTRING Statement

 UNSTRING Statement
The UNSTRING statement causes contiguous data in a sending field to be separated
and placed into multiple receiving fields.

 Format
55──UNSTRING──identifier-1──5

5─ ──┬ ┬─── ───────5
 └ ┘ ─DELIMITED─ ──┬ ┬──── ──┬ ┬───── ──┬ ┬─identifier-2─ ──┬ ┬───────────────────────────────────
 └ ┘─BY─ └ ┘─ALL─ └ ┘─literal-1──── │ │┌ ┐─────────────────────────────────
 └ ┘ ───6 ┴ ─OR─ ──┬ ┬───── ──┬ ┬─identifier-3─
 └ ┘─ALL─ └ ┘─literal-2────

5──INTO───5

 ┌ ┐──
5─ ───6 ┴ ─identifier-4─ ──┬ ┬───────────────────────────────── ──┬ ┬───────────────────────────── ────────5
 └ ┘ ─DELIMITER─ ──┬ ┬──── ─identifier-5─ └ ┘ ─COUNT─ ──┬ ┬──── ─identifier-6─
 └ ┘─IN─ └ ┘─IN─

5─ ──┬ ┬───────────────────────────────── ──┬ ┬──────────────────────────────── ───────────────────────5
 └ ┘ ──┬ ┬────── ─POINTER──identifier-7─ └ ┘ ─TALLYING─ ──┬ ┬──── ─identifier-8─
 └ ┘─WITH─ └ ┘─IN─

5─ ──┬ ┬── ──5
 └ ┘ ──┬ ┬──── ─OVERFLOW──imperative-statement-1─
 └ ┘─ON─

5─ ──┬ ┬─── ──┬ ┬────────────── ──────────────────────────5%
 └ ┘ ─NOT─ ──┬ ┬──── ─OVERFLOW──imperative-statement-2─ └ ┘─END-UNSTRING─
 └ ┘─ON─

identifier-1
Represents the sending field . Data is transferred from this field to the data
receiving fields (identifier-4).

It must be an alphanumeric data item.

One UNSTRING statement can take the place of a series of MOVE statements, except
that evaluation or calculation of certain elements is performed only once, at the begin-
ning of the execution of the UNSTRING statement. For more information, see “Values
at the End of Execution of the UNSTRING Statement” on page 434.

The rules for moving an alphanumeric elementary item are the same as those for the
MOVE statement (see “MOVE Statement” on page 352).

DELIMITED BY Phrase
This phrase specifies delimiters within the data that control the data transfer.

If the DELIMITED BY phrase is not specified, the DELIMITER IN and COUNT IN
phrases must not be specified.

428 COBOL Language Reference

� A DBCS data item

If any are DBCS items, then all must be DBCS items. Figurative constants
SPACE and SPACES are allowed for DBCS items.

� A DBCS literal

If any are DBCS literals, all must be DBCS literals. Figurative constants
SPACE and SPACES are allowed for DBCS literals.

 or DBCS

UNSTRING Statement

identifier-2
identifier-3

Each represents one delimiter.

Each can be either of the following:

� An alphanumeric data item

literal-1
literal-2

Each represents one delimiter.

Each can either of the following:

� A nonnumeric literal

Each can be any figurative constant except the ALL literal. When a figurative con-
stant is specified, it is considered to be a 1-character nonnumeric literal.

ALL
One or more contiguous occurrences of any delimiters are treated as if they were
only one occurrence; this one occurrence is moved to the delimiter receiving field
(identifier-5), if specified. The delimiting characters in the sending field are treated
as an elementary alphanumeric item and are moved into the current
delimiter receiving field, according to the rules of the MOVE statement.

When DELIMITED BY ALL is not specified, and two or more contiguous occur-
rences of any delimiter are encountered, the current data receiving field
(identifier-4) is filled with spaces or zeros, according to the description of the data
receiving field.

Delimiter with Two or More Characters
A delimiter that contains two or more characters is recognized as a delimiter only if the
delimiting characters are both of the following:

 � Contiguous
� In the sequence specified in the sending field

Two or More Delimiters
When two or more delimiters are specified, an OR condition exists, and each non-
overlapping occurrence of any one of the delimiters is recognized in the sending field in
the sequence specified.

For example:

DELIMITED BY "AB" or "BC"

Part 6. Procedure Division 429

 � DBCS

Identifier-4 cannot be defined as a floating-point item.

� A DBCS data item

When identifier-1 (the sending field) is a DBCS data item, identifier-6 indicates
the number of DBCS characters (not the number of bytes) examined in the
sending field.

UNSTRING Statement

An occurrence of either AB or BC in the sending field is considered a delimiter. An
occurrence of ABC is considered an occurrence of AB.

 INTO Phrase
This phrase specifies the fields where the data is to be moved.

identifier-4
Represents the data receiving fields .

Each must have USAGE DISPLAY. These fields can be defined as any of the
following:

 � Alphabetic
 � Alphanumeric
� Numeric (without the symbol P in the PICTURE string)—must not be defined

as an alphanumeric-edited item or a numeric-edited item.

DELIMITER IN
If the DELIMITED BY phrase is not specified, the DELIMITER IN phrase must not
be specified.

identifier-5
Represents the delimiter receiving fields . It can be:

 � Alphanumeric

COUNT IN
If the DELIMITED BY phrase is not specified, the COUNT IN phrase must not be
specified.

identifier-6
Is the data-count field for each data transfer. Each field holds the count of
examined characters in the sending field, terminated by the delimiters or the
end of the sending field, for the move to this receiving field; the delimiters are
not included in this count.

Identifier-6 must be an integer data item defined without the symbol P in the
PICTURE string.

 POINTER Phrase
When the POINTER phrase is specified, the value of the pointer field behaves as if it
were increased by 1 for each examined character in the sending field. When execution
of the UNSTRING statement is completed, the pointer field contains a value equal to its
initial value, plus the number of characters examined in the sending field.

430 COBOL Language Reference

When identifier-1 (the sending field) is a DBCS data item, identifier-7 indicates the
relative DBCS character position (not the relative byte position) in the sending field.

UNSTRING Statement

When this phrase is specified, the user must initialize identifier-7 before execution of
the UNSTRING statement begins.

identifier-7
Is the pointer field . This field contains a value that indicates a relative position in
the sending field.

Identifier-7 must be an integer data item defined without the symbol P in the
PICTURE string.

It must be described as a data item of sufficient size to contain a value equal to 1
plus the size of the data item referenced by identifier-1.

TALLYING IN Phrase
When the TALLYING phrase is specified, the field-count field contains (at the end of
execution of the UNSTRING statement) a value equal to the initial value, plus the
number of data receiving areas acted upon.

When this phrase is specified, the user must initialize identifier-8 before execution of
the UNSTRING statement begins.

identifier-8
Is the field-count field . This field is increased by the number of data receiving
fields acted upon in this execution of the UNSTRING statement.

It must be an integer data item defined without the symbol P in the PICTURE
string.

ON OVERFLOW Phrases
An overflow condition exists when:

� The pointer value (explicit or implicit) is less than 1.

� The pointer value (explicit or implicit) exceeds a value equal to the length of the
sending field.

� All data receiving fields have been acted upon, and the sending field still contains
unexamined characters.

When an Overflow Condition Occurs
An overflow condition results in the following:

1. No more data is transferred.
2. The UNSTRING operation is terminated.
3. The NOT ON OVERFLOW phrase, if specified, is ignored.
4. Control is transferred to the end of the UNSTRING statement or, if the ON OVER-

FLOW phrase is specified, to imperative-statement-1.

Part 6. Procedure Division 431

UNSTRING Statement

imperative-statement-1
Statement or statements for dealing with an overflow condition.

If control is transferred to imperative-statement-1, execution continues according to
the rules for each statement specified in imperative- statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is exe-
cuted, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-1, control is transferred
to the end of the UNSTRING statement.

When an Overflow Condition Does Not Occur
When, during execution of an UNSTRING statement, conditions that would cause an
overflow condition are not encountered, then:

1. The transfer of data is completed.
2. The ON OVERFLOW phrase, if specified, is ignored.
3. Control is transferred to the end of the UNSTRING statement or, if the NOT ON

OVERFLOW phrase is specified, to imperative-statement-2.

imperative-statement-2
Statement or statements for dealing with an overflow condition that does not occur.

If control is transferred to imperative-statement-2, execution continues according to
the rules for each statement specified in imperative- statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is exe-
cuted, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-2, control is transferred
to the end of the UNSTRING statement.

 END-UNSTRING Phrase
This explicit scope terminator serves to delimit the scope of the UNSTRING statement.
END-UNSTRING permits a conditional UNSTRING statement to be nested in another
conditional statement. END-UNSTRING may also be used with an imperative
UNSTRING statement.

For more information, see “Delimited Scope Statements” on page 263.

 Data Flow
When the UNSTRING statement is initiated, data is transferred from the sending field to
the current data receiving field, according to the following rules:

Stage 1: Examine

1. If the POINTER phrase is specified, the field is examined, beginning at the relative
character position specified by the value in the pointer field.

If the POINTER phrase is not specified, the sending field character-string is exam-
ined, beginning with the leftmost character.

2. If the DELIMITED BY phrase is specified, the examination proceeds from left to
right, character-by-character, until a delimiter is encountered. If the end of the

432 COBOL Language Reference

UNSTRING Statement

sending field is reached before a delimiter is found, the examination ends with the
last character in the sending field. If there are more receiving fields, the next one
is selected; otherwise, an overflow condition occurs.

If the DELIMITED BY phrase is not specified, the number of characters examined
is equal to the size of the current data receiving field, which depends on its data
category, as shown in Table 41 on page 334.

Stage 2: Move

3. The examined characters (excluding any delimiter characters) are treated as an
alphanumeric elementary item, and are moved into the current data receiving field,
according to the rules for the MOVE statement (see “MOVE Statement” on
page 352).

4. If the DELIMITER IN phrase is specified, the delimiting characters in the sending
field are treated as an elementary alphanumeric item and are moved to the current
delimiter receiving field, according to the rules for the MOVE statement. If the
delimiting condition is the end of the sending field, the current delimiter receiving
field is filled with spaces.

5. If the COUNT IN phrase is specified, a value equal to the number of examined
characters (excluding any delimiters) is moved into the data count field, according
to the rules for an elementary move.

Stage 3: Successive Iterations

6. If the DELIMITED BY phrase is specified, the sending field is further examined,
beginning with the first character to the right of the delimiter.

If the DELIMITED BY phrase is not specified, the sending field is further examined,
beginning with the first character to the right of the last character examined.

7. For each succeeding data receiving field, this process of examining and moving is
repeated until either of the following occurs:

� All the characters in the sending field have been transferred.
� There are no more unfilled data receiving fields.

Table 50. Characters examined when DELIMITED BY is not specified

IF the receiving field is...
THEN the number of characters examined
is...

alphanumeric or alphabetic equal to the number of characters in the
current receiving field

numeric equal to the number of characters in integer
portion of the current receiving field

described with the SIGN IS SEPARATE clause 1 less than the size of the current receiving
field

described as a variable-length data item determined by the size of the current receiving
field at the beginning of the UNSTRING opera-
tion

Part 6. Procedure Division 433

UNSTRING Statement

Values at the End of Execution of the UNSTRING Statement
The following operations are performed only once, at the beginning of the execution of
the UNSTRING statement:

� Calculations of subscripts, reference modifications, variable-lengths, variable
locations

� Evaluations of functions

Therefore, if identifier-4, identifier-5, identifier-6, identifier-7, or identifier-8 is used as a
subscript, reference-modifier, or function argument in the UNSTRING statement, or
affects the length or location of any of the identifiers in the UNSTRING statement, then
these values are determined at the beginning of the UNSTRING statement, and are not
affected by any results of the UNSTRING statement.

Example of the UNSTRING statement
Figure 19 shows the execution results for an example of the UNSTRING statement.

434 COBOL Language Reference

UNSTRING Statement

UNSTRING ID─SEND DELIMITED BY DEL─ID OR ALL "\"
INTO ID─R1 DELIMITER IN ID─D1 COUNT IN ID─C1 (All the data

ID─R2 DELIMITER IN ID─D2 receiving fields
ID─R3 DELIMITER IN ID─D3 COUNT IN ID─C3 are defined as
ID─R4 COUNT IN ID─C4 alphanumeric)

WITH POINTER ID─P
TALLYING IN ID─T
ON OVERFLOW GO TO OFLOW─EXIT.

 DEL─ID
ID─SEND at execution at execution
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐ ┌──┐
│ 1│ 2│ 3│ \│ \│ 4│ 5│ 6│ 7│ 8│ ?│ ?│ 9│ ð│ A│ B│ C│ D│ E│ F│ │ ?│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘ └──┘
└────┬───┴──┬──┴───────┬──────┴┬─┴─┬┴───────┬──────┘ .7/
 │ │ │ │ │ │
 .1/┤ .2/┤ .3/┤ .4/┤.5/┤ .6/┤
 │ └──────┐ └─────┐ │ └───────┐└──────────────────────┐

6 │ 6 └─────────┐ │ 6
┌─────────────────┐│ ┌─────────────────┐ │ │ ┌──────────────┐
┌──┬──┬──┬──┬──┬──┐│ ┌──┬──┬──┬──┬──┬──┐ │ │ ┌──┬──┬──┐ ┌──┬──┬──┬──┬──┐
│ 1│ 2│ 3│ b│ b│ b││ │ 4│ 5│ 6│ 7│ 8│ b│ │ │ │ b│ b│ b│ │ 9│ ð│ A│ B│ C│
└──┴──┴──┴──┴──┴──┘│ └──┴──┴──┴──┴──┴──┘ │ │ └──┴──┴──┘ └──┴──┴──┴──┴──┘
ID─R1 after │ ID─R2 after │ │ ID─R3 after ID─R4 after
execution │ execution │ │ execution execution
 ┌────────────┘ ┌──────────────┘ └───┐
 6 6 6

ID─D1 ID─C1 ID─D2 ID─D3 ID─C3 ID─C4
┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐

 │ \│ │ 3│ │ ?│ │ ?│ │ ð│ │ 8│
└──┘ └──┘ └──┘ └──┘ └──┘ └──┘

 (after execution) (after execution) (after execution)

ID─P ID─T The order of execution is:
(pointer) (tallying

field) .1/ 3 characters are placed in ID─R1.
┌──┬──┐ ┌──┬──┐
│ 2│ 1│ │ ð│ 5│ .2/ Because ALL \ is specified, all consecutive asterisks
└──┴──┘ └──┴──┘ are processed, but only one asterisk is placed in ID─D1.
(after execution──
both initialized to .3/ 5 characters are placed in ID─R2.
ð1 before execution)

.4/ A ? is placed in ID─D2. The current receiving field
is now ID─R3.

.5/ A ? is placed in ID─D3; ID─R3 is filled with spaces;
no characters are transferred, so ð is placed in ID─C3.

.6/ No delimiter is encountered before 5 characters fill
ID─R4; 8 is placed in ID─C4, representing the number
of characters examined since the last delimiter.

.7/ ID─P is updated to 21, the total length of the sending
field + 1; ID─T is updated to 5, the number of fields
acted upon + 1. Since there are no unexamined
characters in the ID─SEND, the OVERFLOW EXIT is not taken.

Figure 19. Results of UNSTRING Statement Execution

Part 6. Procedure Division 435

INVALID imperative-statement-1 NOT INVALID imperative-statement-2
KEY KEY

Format 3—Line Sequential Files (Workstation Only)
55──WRITE──record-name-1─ ──┬ ┬──────────────────── ───5
 └ ┘ ─FROM──identifier-1─

5─ ─── ─ ──┬ ┬─── ──┬ ┬─────────── ─────────────5%
 └ ┘ ─── ──AFTER─ ──┬ ┬─────────── ──┬ ┬ ──┬ ┬─identifier-2─ ──┬ ┬─────── └ ┘─END-WRITE─
 └ ┘─ADVANCING─ │ │└ ┘─integer-1──── ├ ┤─LINE──
 │ │└ ┘─LINES─
 └ ┘─PAGE────────────────────────

WRITE Statement

 WRITE Statement
The WRITE statement releases a logical record for an output or input/output file.

When the WRITE statement is executed:

� The associated sequential file must be open in OUTPUT or EXTEND mode.
� The associated indexed or relative file must be open in OUTPUT, I-O, or EXTEND

mode.
Format 1—Sequential Files

55──WRITE──record-name-1─ ──┬ ┬─────────────────────── ──5
 └ ┘─FROM──identifier-1────(1)

5─ ──┬ ┬──┬ ┬── ─┤ phrase 1 ├─────────────────── ──────────5
 │ │└ ┘ ──┬ ┬─BEFORE─ ──┬ ┬─────────── ──┬ ┬ ──┬ ┬─identifier-2─ ──┬ ┬───────
 │ │└ ┘─AFTER── └ ┘─ADVANCING─ │ │└ ┘─integer-1──── ├ ┤─LINE──
 │ ││ │└ ┘─LINES─
 │ │├ ┤─mnemonic-name-1─────────────
 │ │└ ┘─PAGE────────────────────────
 └ ┘ ──┬ ┬── ──┬ ┬──
 └ ┘ ─ ─ ──┬ ┬───── ─ ─ └ ┘ ─ ─ ──┬ ┬───── ─ ─
 └ ┘─ ─ └ ┘─ ─

5─ ──┬ ┬─────────── ──5%
 └ ┘─END-WRITE─

phrase 1:
├─ ──┬ ┬─── ───5
 └ ┘ ──┬ ┬──── ──┬ ┬─END-OF-PAGE─ ─imperative-statement-3─
 └ ┘─AT─ └ ┘─EOP─────────

5─ ──┬ ┬── ──┤
 └ ┘ ─NOT─ ──┬ ┬──── ──┬ ┬─END-OF-PAGE─ ─imperative-statement-4─
 └ ┘─AT─ └ ┘─EOP─────────

Note:
1 The BEFORE, AFTER, INVALID KEY, and AT END OF PAGE phrases are not valid for STL

files, MVS and VM VSAM files, or OS/2 Btrieve files.

Format 2—Indexed and Relative Files
55──WRITE──record-name-1─ ──┬ ┬──────────────────── ──┬ ┬── ───5
 └ ┘ ─FROM──identifier-1─ └ ┘ ─INVALID─ ──┬ ┬───── ─imperative-statement-1─
 └ ┘─KEY─

5─ ──┬ ┬── ──┬ ┬─────────── ──────────────────────────────5%
 └ ┘ ─NOT INVALID─ ──┬ ┬───── ─imperative-statement-2─ └ ┘─END-WRITE─
 └ ┘─KEY─

record-name-1
Must be defined in a Data Division FD entry. Record-name-1 can be qualified. It
must not be associated with a sort or merge file.

436 COBOL Language Reference

If record-name-1 is defined as a DBCS data item, Identifier-1 must be a DBCS
data item.

For relative files, as an IBM extension, the number of character positions in the
record-name can be different from the number of character positions in the record
being replaced.

� A floating-point data item or a DBCS data item

For line sequential
files, the BEFORE phrase is not supported.

As an IBM
extension, you can specify the ADVANCING PAGE and END-OF-PAGE phrases in a
single WRITE statement.

WRITE Statement

FROM phrase
The result of the execution of the WRITE statement with the FROM identifier-1
phrase is equivalent to the execution of the following statements in the order speci-
fied:

MOVE identifier-1 TO record-name-1.
WRITE record-name-1.

The MOVE is performed according to the rules for the MOVE statement without the
CORRESPONDING phrase.

identifier-1
Identifier-1 can be any of the following:

� The name of an entry in the Working-Storage Section or the LINKAGE
SECTION

� The name of a record description for another previously opened file
� The name of an alphanumeric function identifier

Identifier-1 and record-name-1 must not refer to the same storage area.

After the WRITE statement is executed, the information is still available in
identifier-1. (See “INTO/FROM Identifier Phrase” under “Common Processing
Facilities” on page 270.)

identifier-2
Must be an integer data item.

 ADVANCING Phrase
The ADVANCING phrase controls positioning of the output record on the page.

 Under AIX, OS/2, and Windows, when using WRITE ADVANCING with
environment names C01-C012 or S01-S05, one line is advanced.

Under OS/2, the BEFORE and AFTER phrases are not supported for Btrieve files.

 Under MVS, the BEFORE and AFTER phrases are not supported for VSAM
files. QSAM files are sequentially organized. The ADVANCING and END-OF-PAGE
phrases control the vertical positioning of each line on a printed page.

Part 6. Procedure Division 437

Identifier-2 cannot name a windowed date field.

The mnemonic-name phrase can also be specified for stacker selection with a card
punch file. When using stacker selection, WRITE AFTER ADVANCING must be
used.

WRITE Statement

If the printed page is held on an intermediate device (a disk, for example), the format
can appear different than the expected output when it is edited or browsed.

ADVANCING Phrase Rules
When the ADVANCING phrase is specified, the following rules apply:

1. When BEFORE ADVANCING is specified, the line is printed before the page is
advanced.

2. When AFTER ADVANCING is specified, the page is advanced before the line is
printed.

3. When identifier-2 is specified, the page is advanced the number of lines equal to
the current value in identifier-2. Identifier-2 must name an elementary integer data
item.

4. When integer is specified, the page is advanced the number of lines equal to the
value of integer.

5. Integer or the value in identifier-2 can be zero.

6. When PAGE is specified, the record is printed on the logical page BEFORE or
AFTER (depending on the phrase used) the device is positioned to the next logical
page. If PAGE has no meaning for the device used, then BEFORE or AFTER
(depending on the phrase specified) ADVANCING 1 LINE is provided.

If the FD entry contains a LINAGE clause, the repositioning is to the first printable
line of the next page, as specified in that clause. If the LINAGE clause is omitted,
the repositioning is to line 1 of the next succeeding page.

7. When mnemonic-name is specified, a skip to channels 1 through 12,
or space suppression, takes place. Mnemonic-name must be equated with
environment-name-1 in the SPECIAL-NAMES paragraph.

The ADVANCING phrase of the WRITE statement, or the presence of a LINAGE clause
on the file, causes a carriage control character to be generated in the record that is
written. If the corresponding file connector is EXTERNAL, all file connectors within the
run unit must be defined such that carriage control characters will be generated for
records that are written. That is, if all the files have a LINAGE clause, some of the
programs can use the WRITE statement with the ADVANCING phrase and other pro-
grams can use the WRITE statement without the ADVANCING phrase. However, if
none of the files has a LINAGE clause, then if any of the programs use the WRITE
statement with the ADVANCING phrase, all of the programs in the run unit that have a
WRITE statement must use the WRITE statement with the ADVANCING phrase.

When the ADVANCING phrase is omitted, automatic line advancing is provided, as if
AFTER ADVANCING 1 LINE had been specified.

438 COBOL Language Reference

Note: If you use the ADV compiler option, the compiler adds 1 byte to the
record length in order to allow for the control character. If in your record definition you
already reserve the first byte for the control character, you should use the NOADV
option. For files defined with the LINAGE clause, the NOADV option has no effect.
The compiler processes these files as if the ADV option were specified.

 line sequential files or

WRITE Statement

 LINAGE-COUNTER Rules
If the LINAGE clause is specified for this file, the associated LINAGE-COUNTER
special register is modified during the execution of the WRITE statement, according to
the following rules:

1. If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to 1.

2. If ADVANCING identifier-2 or integer is specified, LINAGE-COUNTER is increased
by the value in identifier-2 or integer.

3. If the ADVANCING phrase is omitted, LINAGE-COUNTER is increased by 1.

4. When the device is repositioned to the first available line of a new page,
LINAGE-COUNTER is reset to 1.

 END-OF-PAGE Phrases
 Under AIX, OS/2, and Windows, the END-OF-PAGE phrase is not sup-

ported for OS/2 Btrieve files.

 Under MVS, the AT END-OF-PAGE phrase is not supported for VSAM files.

When END-OF-PAGE is specified, and the logical end of the printed page is reached
during execution of the WRITE statement, the END-OF-PAGE imperative-statement is
executed. When the END-OF-PAGE phrase is specified, the FD entry for this file must
contain a LINAGE clause.

The logical end of the printed page is specified in the associated LINAGE clause.

An END-OF-PAGE condition is reached when execution of a WRITE END-OF-PAGE
statement causes printing or spacing within the footing area of a page body. This
occurs when execution of such a WRITE statement causes the value in the
LINAGE-COUNTER special register to equal or exceed the value specified in the WITH
FOOTING phrase of the LINAGE clause. The WRITE statement is executed, and then
the END-OF-PAGE imperative-statement is executed.

An automatic page overflow condition is reached whenever the execution of any given
WRITE statement (with or without the END-OF-PAGE phrase) cannot be completely
executed within the current page body. This occurs when a WRITE statement, if exe-
cuted, would cause the value in the LINAGE-COUNTER to exceed the number of lines
for the page body specified in the LINAGE clause. In this case, the line is printed
BEFORE or AFTER (depending on the option specified) the device is repositioned to
the first printable line on the next logical page, as specified in the LINAGE clause. If
the END-OF-PAGE phrase is specified, the END-OF-PAGE imperative-statement is
then executed.

Part 6. Procedure Division 439

As an IBM extension, you can specify both the ADVANCING PAGE and
END-OF-PAGE phrases in a single WRITE statement.

 line sequential files or

WRITE Statement

If the WITH FOOTING phrase of the LINAGE clause is not specified, the automatic
page overflow condition exists because no end-of-page condition (as distinct from the
page overflow condition) can be detected.

If the WITH FOOTING phrase is specified, but the execution of a given WRITE state-
ment would cause the LINAGE-COUNTER to exceed both the footing value and the
page body value specified in the LINAGE clause, then both the end-of-page condition
and the automatic page overflow condition occur simultaneously.

The key words END-OF-PAGE and EOP are equivalent.

INVALID KEY Phrases
 Under AIX, OS/2, and Windows, the INVALID KEY phrase is not sup-

ported for OS/2 Btrieve files.

 Under MVS, the INVALID KEY phrase is not supported for VSAM sequen-
tial files.

An invalid key condition is caused by the following:

� For sequential files :

– An attempt is made to write beyond the externally defined boundary of the file.

� For indexed files :

– An attempt is made to write beyond the externally defined boundary of the file.

– ACCESS SEQUENTIAL is specified and the file is opened OUTPUT, and the
value of the prime record key is not greater than that of the previous record.

– The file is opened OUTPUT or I-O and the value of the prime record key
equals that of an already existing record.

� For relative files :

– An attempt is made to write beyond the externally defined boundary of the file.

– When the access mode is random or dynamic and the RELATIVE KEY data
item specifies a record that already exists in the file

– The number of significant digits in the relative record number is larger than the
size of the relative key data item for the file.

When an invalid key condition occurs:

� If the INVALID KEY phrase is specified, imperative-statement-1 is executed. (See
Table 36 on page 271).

� Otherwise, the WRITE statement is unsuccessful and the contents of record-name
are unaffected (except for MVS QSAM files). And, the following occurs:

440 COBOL Language Reference

As an IBM extension, you can omit both the INVALID KEY phrase and the
EXCEPTION/ERROR procedure.

Effect of Record Locking (OS/2 VSAM Files Only)
 For OS/2 VSAM files, the following applies to files using record locking:

� If two or more file connectors for a sequential file add records by sharing the file
after opening it in EXTEND mode, the records are in an unspecified order.

� If two or more file connectors for a relative file add records by sharing the file after
opening it in EXTEND mode, the relative key values returned are ascending, but
not necessary consecutive.

� If two or more file connectors for an indexed file add records by sharing the file
after opening it in EXTEND mode, the order of alternate keys allowing for dupli-
cates is unspecified.

� If the LOCK MODE IS AUTOMATIC is specified, a successful WRITE statement
releases an existing record lock.

WRITE Statement

– For sequential files —the status key, if specified, is updated and an
EXCEPTION/ERROR condition exists.

If an explicit or implicit EXCEPTION/ERROR procedure is specified for the file,
the procedure is executed. If no such procedure is specified, the results are
unpredictable.

– For relative and indexed files —program execution proceeds according to the
rules described under “Invalid key condition” on page 272.

The INVALID KEY conditions that apply to a relative file in OPEN OUTPUT
mode also apply to one in OPEN EXTEND mode.

� If the NOT INVALID KEY phrase is specified and a valid key condition exists at the
end of the execution of the WRITE statement, control is passed to
imperative-statement-4.

 END-WRITE Phrase
This explicit scope terminator serves to delimit the scope of the WRITE statement.
END-WRITE permits a conditional WRITE statement to be nested in another conditional
statement. END-WRITE can also be used with an imperative WRITE statement.

For more information, see “Delimited Scope Statements” on page 263.

WRITE for Sequential Files
The maximum record size for the file is established at the time the file is created, and
cannot subsequently be changed.

After the WRITE statement is executed, the logical record is no longer available in
record-name-1, unless:

Part 6. Procedure Division 441

If stacker selection for the punch function file is desired, you can specify the appropriate
stacker function-names in the SPECIAL-NAMES paragraph, and then issue WRITE
ADVANCING statements using the associated mnemonic-names.

WRITE Statement

� The associated file is named in a SAME RECORD AREA clause (in which case,
the record is also available as a record of the other files named in the SAME
RECORD AREA clause), or

� The WRITE statement is unsuccessful because of a boundary violation.

In either of these two cases, the logical record is still available in record-name-1.

The file position indicator is not affected by execution of the WRITE statement.

The number of character positions required to store the record in a file might or might
not be the same as the number of character positions defined by the logical description
of that record in the COBOL program. (See “PICTURE Clause Editing” on page 190
and “USAGE Clause” on page 209.)

If the FILE STATUS clause is specified in the File-Control entry, the associated status
key is updated when the WRITE statement is executed, whether or not execution is
successful.

The WRITE statement can only be executed for a sequential file opened in OUTPUT or
EXTEND mode for QSAM files.

 Multivolume Files
 When end-of-volume is recognized for a multivolume OUTPUT file (tape or

sequential direct-access file), the WRITE statement performs the following operations:

� The standard ending volume label procedure
� A volume switch
� The standard beginning volume label procedure

Punch Function Files with the IBM 3525
 When the punch function is used, the next I-O operation after the READ

statement must be a WRITE statement for the punch function file.

If you want to punch additional data into some of the cards and not into others, a
dummy WRITE statement must be issued for the null cards, first filling the output area
with SPACES.

Print Function Files
 After the punch function operations (if specified) are completed, you can

issue WRITE statement(s) for the print function file.

If you wish to print additional data on some of the data cards and not on others, the
WRITE statement for the null cards can be omitted. Any attempt to write beyond the
limits of the card results in abnormal termination of the application, thus, the
END-OF-PAGE phrase cannot be specified.

442 COBOL Language Reference

WRITE Statement

Depending on the capabilities of the specific IBM 3525 model in use, the print file can
be either a 2-line print file or a multiline print file. Up to 64 characters can be printed
on each line.

� For a 2-line print file, the lines are printed on line 1 (top edge of card) and line 3
(between rows 11 and 12). Line control cannot be specified. Automatic spacing is
provided.

� For a multiline print file, up to 25 lines of characters can be printed. Line control
can be specified. If line control is not specified, automatic spacing is provided.

Line control is specified by issuing WRITE AFTER ADVANCING statements for the
print function file. If line control is used for one such statement, it must be used for all
other WRITE statements issued to the file. The maximum number of printable charac-
ters, including any space characters, is 64. Such WRITE statements must not specify
space suppression.

Identifier and integer have the same meanings they have for other WRITE AFTER
ADVANCING statements. However, such WRITE statements must not increase the line
position on the card beyond the card limit, or abnormal termination results.

The mnemonic-name option of the WRITE AFTER ADVANCING statement can also be
specified. In the SPECIAL-NAMES paragraph, the environment-names can be associ-
ated with the mnemonic-names, as follows:

Table 51. Meanings of Environment-names in SPECIAL NAMES paragraph

Environment-name Meaning

C02 Line 3

C03 Line 5

C04 Line 7

 . .

 . .

 . .

C12 Line 23

Advanced Function Printing
 When using the WRITE ADVANCING phrase with a mnemonic-name asso-

ciated with environment-name AFP-5A, a Print Services Facility (PSF) control character
is placed in the control character position of the output record. This control character
(X'5A') allows Advanced Function Printing (AFP) services to be used. For more
information, refer to the documentation for the Print Services Facility products:
PSF/MVS (5695-040), PSF/VM (5684-141), or PSF/VSE (5686-040).

Part 6. Procedure Division 443

WRITE Statement

WRITE for Indexed Files
Before the WRITE statement is executed, you must set the prime record key (the
RECORD KEY data item, as defined in the File-Control entry) to the desired value.
(Note that RECORD KEY values must be unique within a file.)

If the ALTERNATE RECORD KEY clause is also specified in the File-Control entry,
each alternate record key must be unique, unless the DUPLICATES phrase is speci-
fied. If the DUPLICATES phrase is specified, alternate record key values might not be
unique. In this case, the system stores the records so that later sequential access to
the records allows retrieval in the same order in which they were stored.

When ACCESS IS SEQUENTIAL is specified in the File-Control entry, records must be
released in ascending order of RECORD KEY values.

When ACCESS is RANDOM or ACCESS IS DYNAMIC is specified in the File-Control
entry, records may be released in any programmer-specified order.

WRITE for Relative Files
For OUTPUT files, the WRITE statement causes the following actions:

� If ACCESS IS SEQUENTIAL is specified:

The first record released has relative record number 1, the second record released
has relative record number 2, the third number 3, and so on.

If the RELATIVE KEY is specified in the File-Control entry, the relative record
number of the record just released is placed in the RELATIVE KEY during exe-
cution of the WRITE statement.

� If ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE
KEY must contain the desired relative record number for this record before the
WRITE statement is issued. When the WRITE statement is executed, this record
is placed at the specified relative record number position in the file.

For I-O files, either ACCESS IS RANDOM or ACCESS IS DYNAMIC must be specified;
the WRITE statement inserts new records into the file. The RELATIVE KEY must
contain the desired relative record number for this record before the WRITE statement
is issued. When the WRITE statement is executed, this record is placed at the speci-
fied relative record number position in the file.

444 COBOL Language Reference

DATE-TO-YYYYMMDD
DATEVAL

DAY-TO-YYYYDDD

 Part 7. Intrinsic Functions

Intrinsic Functions . 447
Specifying a Function . 447
Function Definitions . 454
ACOS . 458
ANNUITY . 459
ASIN . 460
ATAN . 461
CHAR . 462
COS . 463
CURRENT-DATE . 464
DATE-OF-INTEGER . 466

 . 467
 . 468

DAY-OF-INTEGER . 470
 . 471

FACTORIAL . 472
INTEGER . 473
INTEGER-OF-DATE . 474
INTEGER-OF-DAY . 475
INTEGER-PART . 476
LENGTH . 477
LOG . 478
LOG10 . 479
LOWER-CASE . 480
MAX . 481
MEAN . 482
MEDIAN . 483
MIDRANGE . 484
MIN . 485
MOD . 486
NUMVAL . 487
NUMVAL-C . 488
ORD . 490
ORD-MAX . 491
ORD-MIN . 492
PRESENT-VALUE . 493
RANDOM . 494
RANGE . 495
REM . 496
REVERSE . 497
SIN . 498
SQRT . 499
STANDARD-DEVIATION . 500
SUM . 501
TAN . 502

 Copyright IBM Corp. 1991, 1998 445

UNDATE

YEAR-TO-YYYY
YEARWINDOW

 . 503
UPPER-CASE . 504
VARIANCE . 505
WHEN-COMPILED . 506

 . 508
 . 509

446 COBOL Language Reference

Argument-1 cannot be a windowed date field, except in the
UNDATE intrinsic function.

Intrinsic Functions

 Intrinsic Functions

Data processing problems often require the use of values that are not directly acces-
sible in the data storage associated with the object program, but instead must be
derived through performing operations on other data. An intrinsic function is a function
that performs a mathematical, character, or logical operation, and thereby allows you to
make reference to a data item whose value is derived automatically during the exe-
cution of the object program.

The functions can be grouped into six categories, based on the type of service
performed: mathematical, statistical, date/time, financial, character-handling, and
general.

You can reference a function by specifying its name, along with any required argu-
ments, in a Procedure Division statement.

Functions are elementary data items, and return alphanumeric, numeric or integer
values. Functions cannot serve as receiving operands.

Specifying a Function
The general format of a function-identifier is:

 Format
55──FUNCTION──function-name-1─ ──┬ ┬────────────────────── ────────────────────────5
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───6 ┴─argument-1─ ─)─

5─ ──┬ ┬──────────────────── ───5%
 └ ┘─reference-modifier─

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

argument-1
Argument-1 must be an identifier, literal (other than a figurative constant), or arith-
metic expression.

reference-modifier
Can be specified only for functions of the category alphanumeric

Below, we will show examples of an intrinsic function invocation for an alphanumeric
source statement and a numeric source statement.

The alphanumeric source statement:

MOVE FUNCTION UPPER-CASE("hello") TO DATA-NAME.

 Copyright IBM Corp. 1991, 1998 447

Intrinsic Functions

replaces each lowercase letter in the argument with the corresponding uppercase letter,
resulting in the movement of HELLO into DATA-NAME.

The numeric source statement,

COMPUTE NUM-ITEM = FUNCTION SUM(A B C)

Adds the values of A, B, and C and places the result in NUM-ITEM.

Within a Procedure Division statement, each function-identifier is evaluated at the same
time as any reference modification or subscripting associated with an identifier in that
same position would be evaluated.

Function Definition and Evaluation
The class and characteristics of a function, and the number and types of arguments it
requires, are determined by its function definition. These characteristics include:

� For some functions, the class and characteristics are determined by the arguments
to the function

� For alphanumeric functions, the size of the returned value

� For numeric and integer functions, the sign of the returned value, and whether the
function is integer

� The actual value returned by the function

The evaluation of any intrinsic function is not affected by the context in which it
appears; in other words, function evaluation is not affected by operations or operands
outside the function. However, evaluation of a function can be affected by the attri-
butes of its arguments.

Types of Functions
There are three types of functions:

 � Alphanumeric
 � Numeric
 � Integer

Alphanumeric functions are of the class and category alphanumeric. The value
returned has an implicit usage of DISPLAY and is in standard data format characters.
The number of character positions in the value returned is determined by the function
definition.

Numeric functions are of the class and category numeric. The returned value is
always considered to have an operational sign and is a numeric intermediate result.
For more information, see the IBM COBOL Programming Guide for your platform.

Integer functions are of the class and category numeric. The returned value is always
considered to have an operational sign and is an integer intermediate result. The
number of digit positions in the value returned is determined by the function definition.
For more information, see the IBM COBOL Programming Guide for your platform.

448 COBOL Language Reference

Intrinsic Functions

Rules for Usage
Alphanumeric Functions

An alphanumeric function can be specified anywhere in the general formats that an
identifier is permitted and where the rules associated with the general formats do
not specifically prohibit reference to functions, except as follows:

� As a receiving operand of any statement

� Where the rules associated with the general formats require the data item
being referenced to have particular characteristics (such as class and cate-
gory, usage, size, and permissible values) and the evaluation of the function
according to its definition and the particular arguments specified would not
have these characteristics.

A reference modification for an alphanumeric function is allowed. If reference mod-
ification is specified for a function, the evaluation of the reference modification
takes place immediately after the evaluation of the function.

An alphanumeric function can be referenced as an argument for a function which
allows an alphanumeric argument.

Numeric Functions
A numeric function can be used only where an arithmetic expression can be speci-
fied.

A numeric function can be referenced as an argument for a function which allows a
numeric argument.

A numeric function cannot be used where an integer operand is required, even if
the particular reference will yield an integer value. The INTEGER or
INTEGER-PART functions can be used to force the type of a numeric argument to
be an integer.

Integer Functions
An integer function can be used only where an arithmetic expression can be speci-
fied.

An integer function can be referenced as an argument for a function which allows
an integer argument.

Special Usage Notes:
Identifier-2 of the CALL statement must not be a function-identifier.

The COPY statement will allow function-identifiers of all types in the REPLACING
phrase.

 Arguments
The values returned by some functions are determined by the arguments specified in
the function-identifier when the functions are evaluated. Some functions require no
arguments; others require a fixed number of arguments, and still others allow a variable
number of arguments.

Part 7. Intrinsic Functions 449

An argument cannot be a DBCS literal or data item. See “Function Definitions” on
page 454 for function specific argument specifications.

Intrinsic Functions

An argument must be one of the following:

 � An identifier
� An arithmetic expression

 � A function-identifier
� A literal other than a figurative constant.

 � A special-register

The argument to a function can be any function or an expression containing a function,
including another evaluation of the same function, whose result meets the category
requirement for the argument.

The types of arguments are:

� Alphabetic. An elementary data item of the class alphabetic or a nonnumeric literal
containing only alphabetic characters. The content of the argument will be used to
determine the value of the function. The length of the argument can be used to
determine the value of the function.

� Alphanumeric. A data item of the class alphabetic or alphanumeric or a nonnu-
meric literal. The content of the argument will be used to determine the value of
the function. The length of the argument can be used to determine the value of
the function.

� Integer. An arithmetic expression that will always result in an integer value. The
value of this expression, including its sign, is used to determine the value of the
function.

� Numeric. An arithmetic expression, whose value, including its sign, is used to
determine the value of the function.

Some functions place constraints on their arguments, such as the range of values
acceptable. If the values assigned as arguments for a function do not comply with
specified constraints, the returned value is undefined.

If a nested function is used as an argument, the evaluation of its arguments will not be
affected by the arguments in the outer function.

Only those arguments at the same function level interact with each other. This inter-
action occurs in two areas:

� The computation of an arithmetic expression that appears as a function argument
will be affected by other arguments for that function.

� The evaluation of the function takes into consideration the attributes of all of its
arguments.

450 COBOL Language Reference

Floating-point literals are allowed wherever a numeric argument is allowed, and in arith-
metic expressions used in functions that allow a numeric argument. They are not
allowed where an integer argument is required.

External floating-point items are allowed wherever a numeric argument is allowed, and
in arithmetic expressions used in functions that allow a numeric argument.

External floating-point items are not allowed where an integer argument is required, or
where an argument of alphanumeric class is allowed in a function identification, such as
in the LOWER-CASE, REVERSE, UPPER-CASE, NUMVAL, and NUMVAL-C functions.

Intrinsic Functions

When a function is evaluated, its arguments are evaluated individually in the order
specified in the list of arguments, from left to right. The argument being evaluated can
be a function-identifier, or it can be an expression containing function-identifiers.

If an arithmetic expression is specified as an argument, and if the first operator in the
expression is a unary plus or a unary minus, it must be immediately preceded by a left
parenthesis.

 ALL Subscripting
When a function allows an argument to be repeated a variable number of times, you
can refer to a table by specifying the data-name and any qualifiers that identify the
table. This can be followed immediately by subscripting where one or more of the sub-
scripts is the word ALL.

Note: The evaluation of an ALL subscript must result in at least one argument or the
value returned by the function will be undefined; however, the situation can be diag-
nosed at run-time by specifying the SSRANGE compiler option and the CHECK run-
time option.

Specifying ALL as a subscript is equivalent to specifying all table elements possible
using every valid subscript in that subscript position.

For a table argument specified as "Table-name(ALL)", the order of the implicit specifica-
tion of each table element as an argument is from left to right, where the first (or left-
most) argument is "Table-name(1)" and ALL has been replaced by 1. The next
argument is "Table-name(2)", where the subscript has been incremented by 1. This
process continues, with the subscript being incremented by 1 to produce an implicit
argument, until the ALL subscript has been incremented through its range of values.

For example,

FUNCTION MAX(Table(ALL))

is equivalent to

FUNCTION MAX(Table(1) Table(2) Table(3)... Table(n))

where n is the number of elements in Table.

If there are multiple ALL subscripts, "Table-name(ALL, ALL, ALL)", the first implicit argu-
ment is "Table-name(1, 1, 1)", where each ALL has been replaced by 1. The next argu-

Part 7. Intrinsic Functions 451

Intrinsic Functions

ment is "Table-name(1, 1, 2)", where the rightmost subscript has been incremented by
1. The subscript represented by the rightmost ALL is incremented through its range of
values to produce an implicit argument for each value.

Once a subscript specified as ALL has been incremented through its range of values,
the next subscript to the left that is specified as ALL is incremented by 1. Each sub-
script specified as ALL to the right of the newly incremented subscript is set to 1 to
produce an implicit argument. Once again, the subscript represented by the rightmost
ALL is incremented through its range of values to produce an implicit argument for each
value. This process is repeated until each subscript specified as ALL has been incre-
mented through its range of values.

For example,

FUNCTION MAX(Table(ALL, ALL))

is equivalent to

FUNCTION MAX(Table(1, 1) Table(1, 2) Table(1, 3)... Table(1, n)
Table(2, 1) Table(2, 2) Table(2, 3)... Table(2, n)
Table(3, 1) Table(3, 2) Table(3, 3)... Table(3, n)

 .
 .
 .

Table(m, 1) Table(m, 2) Table(m, 3)... Table(m, n))

where n is the number of elements in the column dimension of Table, and m is the
number of elements in the row dimension of Table.

ALL subscripts can be combined with literal, data-name, or index-name subscripts to
reference multidimensional tables.

For example,

FUNCTION MAX(Table(ALL, 2))

is equivalent to

FUNCTION MAX(Table(1, 2)
 Table(2, 2)
 Table(3, 2)
 .
 .
 .
 Table(m, 2))

where m is the number of elements in the row dimension of Table.

If an ALL subscript is specified for an argument and the argument is reference modi-
fied, then the reference-modifier is applied to each of the implicitly specified elements of
the table.

If an ALL subscript is specified for an operand that is reference-modified, the reference-
modifier is applied to each of the implicitly specified elements of the table.

452 COBOL Language Reference

Intrinsic Functions

If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the range
of values is determined by the object of the OCCURS DEPENDING ON clause.

For example, given a payroll record definition such as:

 ð1 PAYROLL.
 ð2 PAYROLL-WEEK PIC 99.

ð2 PAYROLL-HOURS PIC 999 OCCURS 1 TO 52
DEPENDING ON PAYROLL-WEEK.

The following COMPUTE statements could be used to identify total year-to-date hours,
the maximum hours worked in any week, and the specific week corresponding to the
maximum hours:

COMPUTE YTD-HOURS = FUNCTION SUM (PAYROLL-HOURS(ALL))
COMPUTE MAX-HOURS = FUNCTION MAX (PAYROLL-HOURS(ALL))
COMPUTE MAX-WEEK = FUNCTION ORD-MAX (PAYROLL-HOURS(ALL))

In these function invocations the subscript ALL is used to reference all elements of the
PAYROLL-HOURS array (depending on the execution time value of the
PAYROLL-WEEK field).

Part 7. Intrinsic Functions 453

The behavior of functions marked “DP” depends on whether the DATEPROC or
NODATEPROC compiler option is in effect:

� If the DATEPROC compiler option is in effect, the following intrinsic functions return
date fields:

Returned value has implicit DATE FORMAT...
DATE-OF-INTEGER YYYYXXXX
DATE-TO-YYYYMMDD YYYYXXXX
DAY-OF-INTEGER YYYYXXX
DAY-TO-YYYYDDD YYYYXXX
YEAR-TO-YYYY YYYY
DATEVAL Depends on the format specified by DATEVAL
YEARWINDOW YYYY

� If the NODATEPROC compiler option is in effect:

– The following intrinsic functions return the same values as when DATEPROC
is in effect, but their returned values are non-dates:
 DAY-OF-INTEGER
 DATE-TO-YYYYMMDD
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY

– The DATEVAL and UNDATE intrinsic functions have no effect, and simply
return their (first) arguments unchanged

– The YEARWINDOW intrinsic function returns 0 unconditionally

Intrinsic Functions

 Function Definitions
Table 52 on page 455 provides an overview of the argument type, function type and
value returned for each of the intrinsic functions. Argument types and function types
are abbreviated as follows:

A = alphabetic
I = integer
N = numeric
X = alphanumeric

Each intrinsic function is described in detail on the pages following the table.

454 COBOL Language Reference

 DP

DATE-TO-YYYYMMDD DP I1, I2 I Standard date equivalent
(YYYYMMDD) of I1 (standard date
with a windowed year, YYMMDD),
according to the 100-year interval
whose ending year is specified by the
sum of I2 and the year at execution
time

DATEVAL DP I1 or I Date field equivalent of I1 or X1

X1

 DP

DAY-TO-YYYYDDD DP I1, I2 I Julian date equivalent (YYYYDDD) of
I1 (Julian date with a windowed year,
YYDDD), according to the 100-year
interval whose ending year is speci-
fied by the sum of I2 and the year at
execution time

Intrinsic Functions

Table 52 (Page 1 of 3). Table of Functions

Function Name Arguments Type Value Returned

ACOS N1 N Arccosine of N1

ANNUITY N1, I2 N Ratio of annuity paid for I2 periods at
interest of N1 to initial investment of
one

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of program
collating sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time and difference
from Greenwich Mean Time

DATE-OF-INTEGER I1 I Standard date equivalent
(YYYYMMDD) of integer date

X

DAY-OF-INTEGER I1 I Julian date equivalent (YYYYDDD) of
integer date

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not greater than
N1

INTEGER-OF-DATE I1 I Integer date equivalent of standard
date (YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent of Julian date
(YYYYDDD)

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, or X1 I Length of argument

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

Part 7. Intrinsic Functions 455

Intrinsic Functions

Table 52 (Page 2 of 3). Table of Functions

Function Name Arguments Type Value Returned

LOWER-CASE A1 or X1 X All letters in the argument are set to
lowercase

MAX A1... or X Value of maximum argument; note
that the type of function depends on
the arguments

I1... or I

N1... or N

X1... X

MEAN N1... N Arithmetic mean of arguments

MEDIAN N1... N Median of arguments

MIDRANGE N1... N Mean of minimum and maximum
arguments

MIN A1... or X Value of minimum argument; note
that the type of function depends on
the arguments

I1... or I

N1... or N

X1... X

MOD I1,I2 I I1 modulo I2

NUMVAL X1 N Numeric value of simple numeric
string

NUMVAL-C X1 or

X1,X2

N Numeric value of numeric string with
optional commas and currency sign

ORD A1 or X1 I Ordinal position of the argument in
collating sequence

ORD-MAX A1..., N1..., or
X1...

I Ordinal position of maximum argu-
ment

ORD-MIN A1..., N1..., or
X1...

I Ordinal position of minimum argu-
ment

PRESENT-VALUE N1 or N2... N Present value of a series of future
period-end amounts, N2, at a dis-
count rate of N1

RANDOM I1, none N Random number

RANGE I1... or I Value of maximum argument minus
value of minimum argument; note
that the type of function depends on
the arguments.

N1... N

REM N1,N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the characters of
the argument

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

456 COBOL Language Reference

UNDATE DP I1 or I Non-date equivalent of date field I1
or X1

X1 X

YEAR-TO-YYYY DP I1, I2 I Expanded year equivalent (YYYY) of
I1 (windowed year, YY), according to
the 100-year interval whose ending
year is specified by the sum of I2 and
the year at execution time

YEARWINDOW DP None I If the DATEPROC compiler option is
in effect, returns the starting year (in
the format YYYY) of the century
window specified by the
YEARWINDOW compiler option; if
NODATEPROC is in effect, returns 0

Intrinsic Functions

The following pages define each of the intrinsic functions summarized in the previous
table.

Table 52 (Page 3 of 3). Table of Functions

Function Name Arguments Type Value Returned

STANDARD-DEVIATION N1... N Standard deviation of arguments

SUM I1... or I Sum of arguments; note that the type
of function depends on the argu-
ments.

N1... N

TAN N1 N Tangent of N1

UPPER-CASE A1 or X1 X All letters in the argument are set to
uppercase

VARIANCE N1... N Variance of arguments

WHEN-COMPILED None X Date and time when program was
compiled

Part 7. Intrinsic Functions 457

ACOS

 ACOS
The ACOS function returns a numeric value in radians that approximates the arccosine
of the argument specified.

The function type is numeric.

 Format
55──FUNCTION ACOS─ ──(argument-1) ───5%

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to
-1 and less than or equal to +1.

The returned value is the approximation of the arccosine of the argument and is greater
than or equal to zero and less than or equal to Pi.

458 COBOL Language Reference

ANNUITY

 ANNUITY
The ANNUITY function returns a numeric value that approximates the ratio of an
annuity paid at the end of each period, for a given number of periods, at a given
interest rate, to an initial value of one. The number of periods is specified by
argument-2; the rate of interest is specified by argument-1. For example, if argument-1
is zero and argument-2 is four, the value returned is the approximation of the ratio 1 /
4.

The function type is numeric.

 Format
55──FUNCTION ANNUITY─ ──(argument-1 argument-2) ─────────────────────────────────5%

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to
zero.

argument-2
Must be a positive integer.

When the value of argument-1 is zero, the value returned by the function is the approxi-
mation of:1 / ARGUMENT-2

When the value of argument-1 is not zero, the value of the function is the approxi-
mation of:

ARGUMENT-1 / (1 - (1 + ARGUMENT-1) \\ (- ARGUMENT-2))

Part 7. Intrinsic Functions 459

ASIN

 ASIN
The ASIN function returns a numeric value in radians that approximates the arcsine of
the argument specified.

The function type is numeric.

 Format
55──FUNCTION ASIN─ ──(argument-1) ───5%

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal to
-1 and less than or equal to +1.

The returned value is the approximation of the arcsine of argument-1 and is greater
than or equal to -Pi/2 and less than or equal to +Pi/2.

460 COBOL Language Reference

ATAN

 ATAN
The ATAN function returns a numeric value in radians that approximates the arctangent
of the argument specified.

The function type is numeric.

 Format
55──FUNCTION ATAN─ ──(argument-1) ───5%

argument-1
Must be class numeric.

The returned value is the approximation of the arctangent of argument-1 and is greater
than -Pi/2 and less than +Pi/2.

Part 7. Intrinsic Functions 461

For example, if COLLSEQ(EBCDIC) is specified and the
PROGRAM COLLATING SEQUENCE is not specified (or is NATIVE), the EBCDIC
collating sequence is applied.

CHAR

 CHAR
The CHAR function returns a 1-character alphanumeric value that is a character in the
program collating sequence having the ordinal position equal to the value of the argu-
ment specified.

The function type is alphanumeric.

 Format
55──FUNCTION CHAR─ ──(argument-1) ───5%

argument-1
Must be an integer. The value must be greater than zero and less than or equal to
the number of positions in the collating sequence.

If more than one character has the same position in the program collating sequence,
the character returned as the function value is that of the first literal specified for that
character position in the ALPHABET clause.

If the current program collating sequence was not specified by an ALPHABET clause:

� Under MVS and VM, the EBCDIC collating sequence is used. (See Appendix B,
“EBCDIC and ASCII Collating Sequences” on page 548.)

� Under AIX, OS/2, and Windows, the COLLSEQ compiler option indicates the col-
lating sequence used.

462 COBOL Language Reference

COS

 COS
The COS function returns a numeric value that approximates the cosine of the angle or
arc specified by the argument in radians.

The function type is numeric.

 Format
55──FUNCTION COS─ ──(argument-1) ──5%

argument-1
Must be class numeric.

The returned value is the approximation of the cosine of the argument and is greater
than or equal to -1 and less than or equal to +1.

Part 7. Intrinsic Functions 463

CURRENT-DATE

 CURRENT-DATE
The CURRENT-DATE function returns a 21-character alphanumeric value that repres-
ents the calendar date, time of day, and time differential from Greenwich Mean Time
provided by the system on which the function is evaluated.

The function type is alphanumeric.

 Format
55──FUNCTION CURRENT-DATE──5%

Reading from left to right, the 21 character positions in the value returned can be inter-
preted as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through
59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through
59.

15-16 Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
function is evaluated does not have the facility to provide the fractional part
of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time indi-
cated is the same as or ahead of Greenwich Mean Time. The character '0'
is returned if the system on which this function is evaluated does not have
the facility to provide the local time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time. If char-
acter position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+'
or '-', respectively. If character position 17 is '0', the value 00 is returned.

464 COBOL Language Reference

CURRENT-DATE

For more information, see the IBM COBOL Programming Guide for your platform.

Part 7. Intrinsic Functions 465

If the DATEPROC compiler option is in effect, then the returned value is an expanded
date field with implicit DATE FORMAT YYYYXXXX.

 Under MVS and VM, the INTDATE compiler option affects the starting
date for the integer date functions. For details, see the IBM COBOL for MVS &
VM Programming Guide.

DATE-OF-INTEGER

 DATE-OF-INTEGER
The DATE-OF-INTEGER function converts a date in the Gregorian calendar from
integer date form to standard date form (YYYYMMDD).

The function type is integer.

The function result is an 8-digit integer.

 Format
55──FUNCTION DATE-OF-INTEGER─ ──(argument-1) ────────────────────────────────────5%

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which corre-
sponds to dates ranging from January 1, 1601 thru December 31, 9999.

The returned value represents the International Standards Organization (ISO) standard
date equivalent to the integer specified as argument-1.

The returned value is an integer of the form YYYYMMDD where YYYY represents a
year in the Gregorian calendar; MM represents the month of that year; and DD repres-
ents the day of that month.

466 COBOL Language Reference

DATE-TO-YYYYMMDD

 DATE-TO-YYYYMMDD
The DATE-TO-YYYYMMDD function converts argument-1 from a date with a 2-digit
year (YYnnnn) to a date with a 4-digit year (YYYYnnnn). Argument-2, when added to
the year at the time of execution, defines the ending year of a 100-year interval, or
sliding century window, into which the year of argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an expanded
date field with implicit DATE FORMAT YYYYXXXX.

 Format
55──FUNCTION DATE-TO-YYYYMMDD─ ──(argument-1 ──┬ ┬────────────) ───────────────────5%
 └ ┘─argument-2─

argument-1
Must be zero or a positive integer less than 1,000,000.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming
the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be less
than 10,000 and greater than 1,699.

 Example
Some examples of returned values from the DATE-TO-YYYYMMDD function follow:

Current Year Argument-1 Value Argument-2 Value
DATE-TO-YYYYMMDD
Return Value

2002 851003 120 20851003

2002 851003 -20 18851003

2002 851003 10 19851003

1994 981002 -10 18981002

Part 7. Intrinsic Functions 467

DATEVAL

 DATEVAL
The DATEVAL function converts a non-date to a date field, for unambiguous use with
date fields.

If the DATEPROC compiler option is in effect, the returned value is a date field con-
taining the value of argument-1 unchanged. For information on using the resulting date
field:

� In arithmetic, see “Arithmetic with Date Fields” on page 235
� In conditional expressions, see “Date Fields” on page 244

If the NODATEPROC compiler option is in effect, the DATEVAL function has no effect,
and returns the value of argument-1 unchanged.

The function type depends on the type of argument-1:

Argument-1 Type Function Type

Alphanumeric Alphanumeric

Integer Integer

 Format
55──FUNCTION DATEVAL──(──argument-1──argument-2──)─────────────────────────────5%

argument-1
Must be one of the following:

� A class alphanumeric item with the same number of characters as the date
format specified by argument-2.

� An integer. This can be used to specify values outside the range specified by
argument-2, including negative values.

The value of argument-1 represents a date of the form specified by argument-2.

468 COBOL Language Reference

DATEVAL

argument-2
Must be a nonnumeric literal specifying a date pattern, as defined in “DATE
FORMAT Clause” on page 164. The date pattern consists of YY or YYYY (repres-
enting a windowed year or expanded year, respectively), optionally preceded or fol-
lowed by one or more Xs (representing other parts of a date, such as month and
day), as follows. Note that the values are case-insensitive; the letters X and Y in
argument-2 may be any mix of uppercase and lowercase.

Date-pattern string... Specifies that argument-1 contains...

YY A windowed (2-digit) year.

YYYY An expanded (4-digit) year.

X A single character; for example, a digit repres-
enting a semester or quarter (1–4).

XX Two characters; for example, digits representing a
month (01–12).

XXX Three characters; for example, digits representing
a day of the year (001–366).

XXXX Four characters; for example, 2 digits repres-
enting a month (01–12) and 2 digits representing
a day of the month (01–31).

Note: You can use apostrophes as the literal delimiters instead of quotes (inde-
pendent of the APOST/QUOTE compiler option).

|
|
|
|

|
|

Part 7. Intrinsic Functions 469

If the DATEPROC compiler option is in effect, then the returned value is an expanded
date field with implicit DATE FORMAT YYYYXXX.

 Under MVS and VM, the INTDATE compiler option affects the starting
date for the integer date functions. For details, see the IBM COBOL for MVS &
VM Programming Guide.

DAY-OF-INTEGER

 DAY-OF-INTEGER
The DAY-OF-INTEGER function converts a date in the Gregorian calendar from integer
date form to Julian date form (YYYYDDD).

The function type is integer.

The function result is a 7-digit integer.

 Format
55──FUNCTION DAY-OF-INTEGER─ ──(argument-1) ─────────────────────────────────────5%

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which corre-
sponds to dates ranging from January 1, 1601 thru December 31, 9999.

The returned value represents the Julian equivalent of the integer specified as
argument-1. The returned value is an integer of the form YYYYDDD where YYYY
represents a year in the Gregorian calendar and DDD represents the day of that year.

470 COBOL Language Reference

DAY-TO-YYYYDDD

 DAY-TO-YYYYDDD
The DAY-TO-YYYYDDD function converts argument-1 from a date with a 2-digit year
(YYnnn) to a date with a 4-digit year (YYYYnnn). Argument-2, when added to the year
at the time of execution, defines the ending year of a 100-year interval, or sliding
century window, into which the year of argument-1 falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an expanded
date field with implicit DATE FORMAT YYYYXXX.

 Format
55──FUNCTION DAY-TO-YYYYDDD─ ──(argument-1 ──┬ ┬────────────) ─────────────────────5%
 └ ┘─argument-2─

argument-1
Must be zero or a positive integer less than 100,000.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming
the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be less
than 10,000 and greater than 1,699.

 Example
Some examples of returned values from the DAY-TO-YYYYDDD function follow:

Current Year Argument-1 Value Argument-2 Value
DAY-TO-YYYYDDD
Return Value

2002 10004 -20 1910004

2002 10004 -120 1810004

2002 10004 20 2010004

2013 95005 -10 1995005

Part 7. Intrinsic Functions 471

FACTORIAL

 FACTORIAL
The FACTORIAL function returns an integer that is the factorial of the argument speci-
fied.

The function type is integer.

 Format
55──FUNCTION FACTORIAL─ ──(argument-1) ──5%

argument-1
Must be an integer greater than or equal to zero and less than or equal to 28.

If the value of argument-1 is zero, the value 1 is returned; otherwise, its factorial is
returned.

472 COBOL Language Reference

INTEGER

 INTEGER
The INTEGER function returns the greatest integer value that is less than or equal to
the argument specified.

The function type is integer.

 Format
55──FUNCTION INTEGER─ ──(argument-1) ──5%

argument-1
Must be class numeric.

The returned value is the greatest integer less than or equal to the value of argument-1.
For example,

FUNCTION INTEGER (2.5)

will return a value of 2; and

FUNCTION INTEGER (-2.5)

will return a value of -3.

Part 7. Intrinsic Functions 473

 Under MVS and VM, the INTDATE compiler option affects the starting date
for the integer date functions. For details, see the IBM COBOL for MVS & VM Pro-
gramming Guide.

INTEGER-OF-DATE

 INTEGER-OF-DATE
The INTEGER-OF-DATE function converts a date in the Gregorian calendar from
standard date form (YYYYMMDD) to integer date form.

The function type is integer.

The function result is a 7-digit integer with a range from 1 to 3,067,671.

 Format
55──FUNCTION INTEGER-OF-DATE─ ──(argument-1) ────────────────────────────────────5%

argument-1
Must be an integer of the form YYYYMMDD, whose value is obtained from the
calculation (YYYY * 10,000) + (MM * 100) + DD.

� YYYY represents the year in the Gregorian calendar. It must be an integer
greater than 1600, but not greater than 9999.

� MM represents a month and must be a positive integer less than 13.

� DD represents a day and must be a positive integer less than 32, provided
that it is valid for the specified month and year combination.

The returned value is an integer that is the number of days the date represented by
argument-1, succeeds December 31, 1600 in the Gregorian calendar.

474 COBOL Language Reference

 Under MVS and VM, the INTDATE compiler option affects the starting
date for the integer date functions. For details, see the IBM COBOL for MVS &
VM Programming Guide.

INTEGER-OF-DAY

 INTEGER-OF-DAY
The INTEGER-OF-DAY function converts a date in the Gregorian calendar from Julian
date form (YYYYDDD) to integer date form.

The function type is integer.

The function result is a 7-digit integer.

 Format
55──FUNCTION INTEGER-OF-DAY─ ──(argument-1) ─────────────────────────────────────5%

argument-1
Must be an integer of the form YYYYDDD whose value is obtained from the calcu-
lation (YYYY * 1000) + DDD.

� YYYY represents the year in the Gregorian calendar. It must be an integer
greater than 1600, but not greater than 9999.

� DDD represents the day of the year. It must be a positive integer less than
367, provided that it is valid for the year specified.

The returned value is an integer that is the number of days the date represented by
argument-1, succeeds December 31, 1600 in the Gregorian calendar.

Part 7. Intrinsic Functions 475

INTEGER-PART

 INTEGER-PART
The INTEGER-PART function returns an integer that is the integer portion of the argu-
ment specified.

The function type is integer.

 Format
55──FUNCTION INTEGER-PART─ ──(argument-1) ───────────────────────────────────────5%

argument-1
Must be class numeric.

If the value of argument-1 is zero, the returned value is zero. If the value of
argument-1 is positive, the returned value is the greatest integer less than or equal to
the value of argument-1. If the value of argument-1 is negative, the returned value is
the least integer greater than or equal to the value of argument-1.

476 COBOL Language Reference

 (except DBCS).

A data item described with USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER can be used as argument-1 to the LENGTH function.

The ADDRESS OF special register can be used as argument-1 to the LENGTH func-
tion.

If the ADDRESS OF special register or LENGTH OF special register is used as
argument-1 to the LENGTH function, the result will always be 4, independent of the
ADDRESS OF or LENGTH OF object.

LENGTH

 LENGTH
The LENGTH function returns an integer equal to the length of the argument in bytes.
The function type is integer.

The function result is a 9-digit integer.

 Format
55──FUNCTION LENGTH─ ──(argument-1) ───5%

argument-1
Can be a nonnumeric literal or a data item of any class or category

If argument-1, or any data item subordinate to argument-1, is described with the
DEPENDING phrase of the OCCURS clause, the contents of the data item refer-
enced by the data-name specified in the DEPENDING phrase are used at the time
the LENGTH function is evaluated.

If argument-1 is a nonnumeric literal, an elementary data item, or a group data item that
does not contain a variable occurrence data item, the value returned is an integer equal
to the length of argument-1 in character positions.

If argument-1 is a group data item containing a variable occurrence data item, the
returned value is an integer determined by evaluation of the data item specified in the
DEPENDING phrase of the OCCURS clause for that variable occurrence data item.
This evaluation is accomplished according to the rules in the OCCURS clause
regarding the data item as a sending data item. For more information, see the dis-
cussions of the OCCURS clause and USAGE clause.

If argument-1 is a null-terminated nonnumeric literal, then the returned value is the
number of characters in the literal excluding the null character that is added at the end
of the literal.

The returned value includes implicit FILLER characters, if any.

Part 7. Intrinsic Functions 477

LOG

 LOG
The LOG function returns a numeric value that approximates the logarithm to the base
e (natural log) of the argument specified.

The function type is numeric.

 Format
55──FUNCTION LOG─ ──(argument-1) ──5%

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base e of argument-1.

478 COBOL Language Reference

LOG10

 LOG10
The LOG10 function returns a numeric value that approximates the logarithm to the
base 10 of the argument specified.

The function type is numeric.

 Format
55──FUNCTION LOG1ð─ ──(argument-1) ──5%

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base 10 of argument-1.

Part 7. Intrinsic Functions 479

LOWER-CASE

 LOWER-CASE
The LOWER-CASE function returns a character string that is the same length as the
argument specified with each uppercase letter replaced by the corresponding lowercase
letter.

The function type is alphanumeric.

 Format
55──FUNCTION LOWER-CASE─ ──(argument-1) ───5%

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

The same character string as argument-1 is returned, except that each uppercase letter
is replaced by the corresponding lowercase letter.

The character string returned has the same length as argument-1.

480 COBOL Language Reference

If more than one argument-1 is specified, the combination of alphabetic and alphanu-
meric arguments is allowed.

MAX

 MAX
The MAX function returns the content of the argument that contains the maximum
value.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
55──FUNCTION MAX──(─ ───6 ┴─argument-1─ ─)───5%

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the content of argument-1 having the greatest value. The com-
parisons used to determine the greatest value are made according to the rules for
simple conditions. For more information, see “Conditional Expressions” on page 239.

If more than one argument has the same greatest value, the leftmost argument having
that value is returned.

If the type of the function is alphanumeric, the size of the returned value is the same as
the size of the selected argument.

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

Part 7. Intrinsic Functions 481

MEAN

 MEAN
The MEAN function returns a numeric value that approximates the arithmetic average
of its arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION MEAN──(─ ───6 ┴─argument-1─ ─)──5%

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the argument-1 series. The returned
value is defined as the sum of the argument-1 series divided by the number of occur-
rences referenced by argument-1.

482 COBOL Language Reference

MEDIAN

 MEDIAN
The MEDIAN function returns the content of the argument whose value is the middle
value in the list formed by arranging the arguments in sorted order.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION MEDIAN──(─ ───6 ┴─argument-1─ ─)──────────────────────────────────────5%

argument-1
Must be class numeric.

The returned value is the content of argument-1 having the middle value in the list
formed by arranging all argument-1 values in sorted order.

If the number of occurrences referenced by argument-1 is odd, the returned value is
such that at least half of the occurrences referenced by argument-1 are greater than or
equal to the returned value and at least half are less than or equal. If the number of
occurrences referenced by argument-1 is even, the returned value is the arithmetic
mean of the values referenced by the two middle occurrences.

The comparisons used to arrange the argument values in sorted order are made
according to the rules for simple conditions. For more information, see “Conditional
Expressions” on page 239.

Part 7. Intrinsic Functions 483

MIDRANGE

 MIDRANGE
The MIDRANGE function returns a numeric value that approximates the arithmetic
average of the values of the minimum argument and the maximum argument.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION MIDRANGE──(─ ───6 ┴─argument-1─ ─)────────────────────────────────────5%

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the value of the greatest argument-1 and
the value of the least argument-1. The comparisons used to determine the greatest
and least values are made according to the rules for simple conditions. For more infor-
mation, see “Conditional Expressions” on page 239.

484 COBOL Language Reference

If more than one argument-1 is specified, the combination of alphabetic and alphanu-
meric arguments is allowed.

MIN

 MIN
The MIN function returns the content of the argument that contains the minimum value.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
55──FUNCTION MIN──(─ ───6 ┴─argument-1─ ─)───5%

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the content of argument-1 having the least value. The compar-
isons used to determine the least value are made according to the rules for simple
conditions. For more information, see “Conditional Expressions” on page 239.

If more than one argument-1 has the same least value, the leftmost argument-1 having
that value is returned.

If the type of the function is alphanumeric, the size of the returned value is the same as
the size of the selected argument-1.

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

Part 7. Intrinsic Functions 485

MOD

 MOD
The MOD function returns an integer value that is argument-1 modulo argument-2.

The function type is integer.

The function result is an integer with as many digits as the shorter of argument-1 and
argument-2.

 Format
55──FUNCTION MOD─ ──(argument-1 argument-2) ─────────────────────────────────────5%

argument-1
Must be an integer.

argument-2
Must be an integer. Must not be zero.

The returned value is argument-1 modulo argument-2. The returned value is defined
as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

The following table illustrates the expected results for some values of argument-1 and
argument-2.

Argument-1 Argument-2 Return

 11 5 1
-11 5 4
 11 -5 -4
-11 -5 -1

486 COBOL Language Reference

NUMVAL

 NUMVAL
The NUMVAL function returns the numeric value represented by the alphanumeric
character string specified in an argument. The function strips away any leading or
trailing blanks in the string, producing a numeric value that can be used in an arithmetic
expression.

The function type is numeric.

 Format
55──FUNCTION NUMVAL─ ──(argument-1) ───5%

argument-1
must be a nonnumeric literal or an alphanumeric data item whose content has
either of the following formats:

5─ ──┬ ┬─────── ──┬ ┬─── ──┬ ┬─────── ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬─────── ─────────5
 └ ┘─space─ ├ ┤─+─ └ ┘─space─ │ │└ ┘─.─ ──┬ ┬─────── └ ┘─space─
 └ ┘─-─ │ │└ ┘─digit─
 └ ┘─.──digit────────────────

5─ ──┬ ┬─────── ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ────────5
 └ ┘─space─ │ │└ ┘─.─ ──┬ ┬─────── └ ┘─space─ ├ ┤─+── └ ┘─space─
 │ │└ ┘─digit─ ├ ┤─-──
 └ ┘─.──digit──────────────── ├ ┤─CR─
 └ ┘─DB─

space
A string of one or more spaces.

digit
A string of one or more digits. The totals number of digits must not exceed 18.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES para-
graph, a comma must be used in argument-1 rather than a decimal point.

The returned value is an approximation of the numeric value represented by
argument-1.

Part 7. Intrinsic Functions 487

The NUMVAL-C function cannot be used if any of the following are true:

� The program contains more than one CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the Environment Division.

� Literal-6 in the CURRENCY SIGN clause is a lowercase letter.

� The PICTURE SYMBOL paragraph is specified in the CURRENCY SIGN clause.

NUMVAL-C

 NUMVAL-C
The NUMVAL-C function returns the numeric value represented by the alphanumeric
character string specified as argument-1. Any optional currency sign specified by
argument-2 and any optional commas preceding the decimal point are stripped away,
producing a numeric value that can be used in an arithmetic expression.

The function type is numeric.

|

|
|

|

|

 Format
55──FUNCTION NUMVAL-C─ ──(argument-1 ──┬ ┬────────────) ───────────────────────────5%
 └ ┘─argument-2─

argument-1
Must be a nonnumeric literal or an alphanumeric data item whose content has
either of the following formats:

5─ ──┬ ┬─────── ──┬ ┬─── ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ──────────────────────────────5
 └ ┘─space─ ├ ┤─+─ └ ┘─space─ └ ┘─cs─ └ ┘─space─
 └ ┘─-─

5─ ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬────────────── ──┬ ┬─────── ────────────────────5
 │ ││ │┌ ┐──────────── └ ┘─.─ ──┬ ┬─────── └ ┘─space─
 │ │└ ┘ ───6 ┴─,──digit─ └ ┘─digit─
 └ ┘─.──digit──────────────────────────────────

5─ ──┬ ┬─────── ──┬ ┬──── ──┬ ┬─────── ──5
 └ ┘─space─ └ ┘─cs─ └ ┘─space─

5─ ──┬ ┬ ─digit─ ──┬ ┬────────────── ──┬ ┬────────────── ──┬ ┬─────── ──┬ ┬──── ────────────5
 │ ││ │┌ ┐──────────── └ ┘─.─ ──┬ ┬─────── └ ┘─space─ ├ ┤─+──
 │ │└ ┘ ───6 ┴─,──digit─ └ ┘─digit─ ├ ┤─-──
 └ ┘─.──digit────────────────────────────────── ├ ┤─CR─
 └ ┘─DB─

5─ ──┬ ┬─────── ───5
 └ ┘─space─

space
A string of one or more spaces.

cs The string of one or more characters specified by argument-2. At most, one copy
of the characters specified by cs can occur in argument-1.

488 COBOL Language Reference

NUMVAL-C

digit
A string of one or more digits. The total number of digits must not exceed 18.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES para-
graph, the functions of the comma and decimal point in argument-1 are reversed.

argument-2
If specified, must be a nonnumeric literal or alphanumeric data item, subject to the
following rules:

� argument-2 must not contain any of the digits 0 through 9, any leading or
trailing spaces, or any of the special characters + - . ,

� argument-2 can be of any length valid for an elementary or group data item,
including zero

� Matching of argument-2 is case-sensitive. For example, if you specify
argument-2 as 'Dm', it will not match 'DM', 'dm' or 'dM'.

If argument-2 is not specified, the character used for cs is the currency symbol
specified for the program.

The returned value is an approximation of the numeric value represented by
argument-1.

Part 7. Intrinsic Functions 489

ORD

 ORD
The ORD function returns an integer value that is the ordinal position of its argument in
the collating sequence for the program. The lowest ordinal position is 1.

The function type is integer.

The function result is a 3-digit integer.

 Format
55──FUNCTION ORD─ ──(argument-1) ──5%

argument-1
Must be one character in length and must be class alphabetic or alphanumeric.

The returned value is the ordinal position of argument-1 in the collating sequence for
the program; it ranges from 1 to 256 depending on the collating sequence.

490 COBOL Language Reference

If more than one argument-1 is specified, the combination of alphabetic and alphanu-
meric arguments is allowed.

ORD-MAX

 ORD-MAX
The ORD-MAX function returns a value that is the ordinal number position, in the argu-
ment list, of the argument that contains the maximum value.

The function type is integer.

 Format
 ┌ ┐──────────────
55──FUNCTION ORD-MAX──(─ ───6 ┴─argument-1─ ─)─────────────────────────────────────5%

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the ordinal number that corresponds to the position of argument-1
having the greatest value in the argument-1 series.

The comparisons used to determine the greatest valued argument-1 are made
according to the rules for simple conditions. For more information, see “Conditional
Expressions” on page 239.

If more than one argument-1 has the same greatest value, the number returned corre-
sponds to the position of the leftmost argument-1 having that value.

Part 7. Intrinsic Functions 491

If more than one argument-1 is specified, the combination of alphabetic and alphanu-
meric arguments is allowed.

ORD-MIN

 ORD-MIN
The ORD-MIN function returns a value that is the ordinal number of the argument that
contains the minimum value.

The function type is integer.

 Format
 ┌ ┐──────────────
55──FUNCTION ORD-MIN──(─ ───6 ┴─argument-1─ ─)─────────────────────────────────────5%

argument-1
Must be class numeric, alphanumeric, or alphabetic.

The returned value is the ordinal number that corresponds to the position of the
argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least valued argument-1 are made according to
the rules for simple conditions. For more information, see “Conditional Expressions” on
page 239.

If more than one argument-1 has the same least value, the number returned corre-
sponds to the position of the leftmost argument-1 having that value.

492 COBOL Language Reference

PRESENT-VALUE

 PRESENT-VALUE
The PRESENT-VALUE function returns a value that approximates the present value of
a series of future period-end amounts specified by argument-2 at a discount rate speci-
fied by argument-1.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION PRESENT-VALUE─ ──(argument-1 ───6 ┴─argument-2─ ─)─────────────────────5%

argument-1
Must be class numeric. Must be greater than -1.

argument-2
Must be class numeric.

The returned value is an approximation of the summation of a series of calculations
with each term in the following form:

argument-2 / (1 + argument-1) ** n

There is one term for each occurrence of argument-2. The exponent, n, is incremented
from one by one for each term in the series.

Part 7. Intrinsic Functions 493

RANDOM

 RANDOM
The RANDOM function returns a numeric value that is a pseudo-random number from a
rectangular distribution.

The function type is numeric.

 Format
55──FUNCTION RANDOM─ ──┬ ┬────────────── ───5%

└ ┘──(argument-1)

argument-1
If argument-1 is specified, it must be zero or a positive integer, up to and including
(10**18)-1 which is the maximum value that can be specified in a PIC9(18) fixed
item; however, only those in the range from zero up to and including 2,147,483,645
will yield a distinct sequence of pseudo-random numbers.

If a subsequent reference specifies argument-1, a new sequence of pseudo-random
numbers is started.

If the first reference to this function in the run unit does not specify argument-1, the
seed value used will be zero.

In each case, subsequent references without specifying argument-1 return the next
number in the current sequence.

The returned value is exclusively between zero and one.

For a given seed value, the sequence of pseudo-random numbers will always be the
same.

494 COBOL Language Reference

RANGE

 RANGE
The RANGE function returns a value that is equal to the value of the maximum argu-
ment minus the value of the minimum argument.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
55──FUNCTION RANGE──(─ ───6 ┴─argument-1─ ─)───────────────────────────────────────5%

argument-1
Must be class numeric.

The returned value is equal to argument-1 with the greatest value minus the
argument-1 with the least value. The comparisons used to determine the greatest and
least values are made according to the rules for simple conditions. For more informa-
tion, see “Conditional Expressions” on page 239.

Argument Type Function Type
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

Part 7. Intrinsic Functions 495

REM

 REM
The REM function returns a numeric value that is the remainder of argument-1 divided
by argument-2.

The function type is numeric.

 Format
55──FUNCTION REM─ ──(argument-1 argument-2) ─────────────────────────────────────5%

argument-1
Must be class numeric

argument-2
Must be class numeric. Must not be zero.

The returned value is the remainder of argument-1 divided by argument-2. It is defined
as the expression:

argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1/argument-2))

496 COBOL Language Reference

REVERSE

 REVERSE
The REVERSE function returns a character string of exactly the same length of the
argument, whose characters are exactly the same as those specified in the argument,
except that they are in reverse order.

The function type is alphanumeric.

 Format
55──FUNCTION REVERSE─ ──(argument-1) ──5%

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

If argument-1 is a character string of length n, the returned value is a character string of
length n such that, for 1 <= j <= n, the character in position j of the returned value is the
character from position n-j+1 of argument-1.

Part 7. Intrinsic Functions 497

SIN

 SIN
The SIN function returns a numeric value that approximates the sine of the angle or arc
specified by the argument in radians.

The function type is numeric.

 Format
55──FUNCTION SIN─ ──(argument-1) ──5%

argument-1
Must be class numeric.

The returned value is the approximation of the sine of argument-1 and is greater than
or equal to -1 and less than or equal to +1.

498 COBOL Language Reference

SQRT

 SQRT
The SQRT function returns a numeric value that approximates the square root of the
argument specified.

The function type is numeric.

 Format
55──FUNCTION SQRT─ ──(argument-1) ───5%

argument-1
Must be class numeric. The value of argument-1 must be zero or positive.

The returned value is the absolute value of the approximation of the square root of
argument-1.

Part 7. Intrinsic Functions 499

STANDARD-DEVIATION

 STANDARD-DEVIATION
The STANDARD-DEVIATION function returns a numeric value that approximates the
standard deviation of its arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION STANDARD-DEVIATION──(─ ───6 ┴─argument-1─ ─)──────────────────────────5%

argument-1
Must be class numeric.

The returned value is the approximation of the standard deviation of the argument-1
series. The returned value is calculated as follows:

1. The difference between each argument-1 and the arithmetic mean of the
argument-1 series is calculated and squared.

2. The values obtained are then added together. This quantity is divided by the
number of values in the argument-1 series.

3. The square root of the quotient obtained is then calculated. The returned value is
the absolute value of this square root.

If the argument-1 series consists of only one value, or if the argument-1 series consists
of all variable occurrence data items and the total number of occurrences for all of them
is one, the returned value is zero.

500 COBOL Language Reference

SUM

 SUM
The SUM function returns a value that is the sum of the arguments.

The function type depends on the argument types, as follows:

 Format
 ┌ ┐──────────────
55──FUNCTION SUM──(─ ───6 ┴─argument-1─ ─)───5%

argument-1
Must be class numeric.

The returned value is the sum of the arguments. If the argument-1 series are all inte-
gers, the value returned is an integer. If the argument-1 series are not all integers, a
numeric value is returned.

Argument Type Function Type
All arguments integer Integer
Numeric (some arguments can be integer) Numeric

Part 7. Intrinsic Functions 501

TAN

 TAN
The TAN function returns a numeric value that approximates the tangent of the angle or
arc that is specified by the argument in radians.

The function type is numeric.

 Format
55──FUNCTION TAN─ ──(argument-1) ──5%

argument-1
Must be class numeric.

The returned value is the approximation of the tangent of argument-1.

502 COBOL Language Reference

UNDATE

 UNDATE
The UNDATE function converts a date field to a non-date for unambiguous use with
non-dates.

If the NODATEPROC compiler option is in effect, the UNDATE function has no effect.

The function type depends on the type of argument-1:

Argument-1 Type Function Type

Alphanumeric Alphanumeric

Integer Integer

 Format
55──FUNCTION UNDATE─ ──(argument-1) ───5%

argument-1
A date field.

The returned value is a non-date that contains the value of argument-1 unchanged.

Part 7. Intrinsic Functions 503

UPPER-CASE

 UPPER-CASE
The UPPER-CASE function returns a character string that is the same length as the
argument specified, with each lowercase letter replaced by the corresponding upper-
case letter.

The function type is alphanumeric.

 Format
55──FUNCTION UPPER-CASE─ ──(argument-1) ───5%

argument-1
Must be class alphabetic or alphanumeric and must be at least one character in
length.

The same character string as argument-1 is returned, except that each lowercase letter
is replaced by the corresponding uppercase letter.

The character string returned has the same length as argument-1.

504 COBOL Language Reference

VARIANCE

 VARIANCE
The VARIANCE function returns a numeric value that approximates the variance of its
arguments.

The function type is numeric.

 Format
 ┌ ┐──────────────
55──FUNCTION VARIANCE──(─ ───6 ┴─argument-1─ ─)────────────────────────────────────5%

argument-1
Must be class numeric.

The returned value is the approximation of the variance of the argument-1 series.

The returned value is defined as the square of the standard deviation of the argument-1
series. This value is calculated as follows:

1. The difference between each argument-1 value and the arithmetic mean of the
argument-1 series is calculated and squared.

2. The values obtained are then added together. This quantity is divided by the
number of values in the argument series.

If the argument-1 series consists of only one value, or if the argument-1 series consists
of all variable occurrence data items and the total number of occurrences for all of them
is one, the returned value is zero.

Part 7. Intrinsic Functions 505

WHEN-COMPILED

 WHEN-COMPILED
The WHEN-COMPILED function returns the date and time the program was compiled
as provided by the system on which the program was compiled.

The function type is alphanumeric.

 Format
55──FUNCTION WHEN-COMPILED───5%

Reading from left to right, the 21 character positions in the value returned can be inter-
preted as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through
59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through
59.

15-16 Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99. The value 00 is returned if the system on which the
function is evaluated does not have the facility to provide the fractional part
of a second.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time indi-
cated is the same as or ahead of Greenwich Mean Time. The character '0'
is returned if the system on which this function is evaluated does not have
the facility to provide the local time differential factor.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time. If char-
acter position 17 is '0', the value 00 is returned.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+'
or '-', respectively. If character position 17 is '0', the value 00 is returned.

506 COBOL Language Reference

WHEN-COMPILED

The returned value is the date and time of compilation of the source program that con-
tains this function. If the program is a contained program, the returned value is the
compilation date and time associated with the containing program.

Part 7. Intrinsic Functions 507

YEAR-TO-YYYY

 YEAR-TO-YYYY
The YEAR-TO-YYYY function converts argument-1, a 2-digit year, to a 4-digit year.
Argument-2, when added to the year at the time of execution, defines the ending year
of a 100-year interval, or sliding century window, into which the year of argument-1
falls.

The function type is integer.

If the DATEPROC compiler option is in effect, then the returned value is an expanded
date field with implicit DATE FORMAT YYYY.

 Format
55──FUNCTION YEAR-TO-YYYY─ ──(argument-1 ──┬ ┬────────────) ───────────────────────5%
 └ ┘─argument-2─

argument-1
Must be a non-negative integer that is less than 100.

argument-2
Must be an integer. If argument-2 is omitted, the function is evaluated assuming
the value 50 was specified.

The sum of the year at the time of execution and the value of argument-2 must be less
than 10,000 and greater than 1,699.

 Example
Two examples of return values from the YEAR-TO-YYYY function follow:

Current Year Argument-1 Value Argument-2 Value
YEAR-TO-YYYY
Return Value

1995 4 23 2004

1995 4 -15 1904

2008 98 23 1998

2008 98 -15 1898

508 COBOL Language Reference

YEARWINDOW

 YEARWINDOW
If the DATEPROC compiler option is in effect, the YEARWINDOW function returns the
starting year of the century window specified by the YEARWINDOW compiler option.
The returned value is an expanded date field with implicit DATE FORMAT YYYY.

If the NODATEPROC compiler option is in effect, the YEARWINDOW function returns
0.

The function type is integer.

 Format
55──FUNCTION YEARWINDOW──5%

Part 7. Intrinsic Functions 509

YEARWINDOW

510 COBOL Language Reference

BASIS Statement
CBL (PROCESS) Statement
*CONTROL (*CBL) Statement

DELETE Statement
EJECT Statement

INSERT Statement
READY or RESET TRACE Statement

SERVICE LABEL Statement
SERVICE RELOAD Statement
SKIP1/2/3 Statements
TITLE Statement

Compiler Directives
CALLINTERFACE

 Part 8. Compiler-Directing Statements

Compiler-Directing Statement . 512
 . 512

. 513
. 514

COPY Statement . 516
 . 523

 . 524
ENTER Statement . 524

 . 525
. 526

REPLACE Statement . 527
. 530

. 531
 . 531

 . 532
USE Statement . 533

 . 539
 . 539

 Copyright IBM Corp. 1991, 1998 511

BASIS Statement

 BASIS Statement
The BASIS statement is an extended source program library statement. It provides a
complete COBOL program as the source for a compilation.

A complete program can be stored as an entry in a user's library and can be used as
the source for a compilation. Compiler input is a BASIS statement, optionally followed
by any number of INSERT and/or DELETE statements.

 Format
55─ ──┬ ┬───────────────── ─BASIS─ ──┬ ┬─basis-name─ ────────────────────────────────5%
 └ ┘─sequence-number─ └ ┘─literal-1──

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of
this field is ignored.

BASIS
Can appear anywhere in columns 1 through 72, followed by basis-name. There
must be no other text in the statement.

basis-name, literal-1
It is the name by which the library entry is known to the system environment.

For rules of formation and processing rules, see the description under literal-1 and
text-name-1 of the “COPY Statement” on page 516.

The source file remains unchanged after execution of the BASIS statement.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence numbers in ascending order.

 Compiler-Directing Statement

A Compiler-Directing Statement is a statement, beginning with a compiler directing
verb, that causes the compiler to take a specific action during compilation.

512 Copyright IBM Corp. 1991, 1998

CBL (PROCESS) Statement

CBL (PROCESS) Statement
With the CBL (PROCESS) statement, you can specify compiler options to be used in
the compilation of the program. The CBL (PROCESS) statement is placed before the
Identification Division header of an outermost program.

 Format
55─ ──┬ ┬─CBL───── ──┬ ┬────────────── ───5%
 └ ┘─PROCESS─ └ ┘─options-list─

options-list
A series of one or more compiler options, each one separated by a comma or a
space.

For more information on compiler options, see the IBM COBOL Programming
Guide for your platform.

The CBL (PROCESS) statement can be preceded by a sequence number in columns 1
through 6. The first character of the sequence number must be numeric, and CBL or
PROCESS can begin in column 8 or after; if a sequence number is not specified, CBL
or PROCESS can begin in column 1 or after.

The CBL (PROCESS) statement must end before or at column 72, and options cannot
be continued across multiple CBL (PROCESS) statements. However, you can use
more than one CBL (PROCESS) statement. If you use multiple CBL (PROCESS)
statements, they must follow one another with no intervening statements of any other
type.

The CBL (PROCESS) statement must be placed before any comment lines or other
compiler-directing statements.

Part 8. Compiler-Directing Statements 513

*CONTROL (*CBL) Statement

*CONTROL (*CBL) Statement
With the *CONTROL (or *CBL) statement, you can selectively display or suppress the
listing of source code, object code, and storage maps throughout the source program.

 Format
 ┌ ┐────────────────
55─ ──┬ ┬─\CONTROL─ ───6 ┴──┬ ┬─SOURCE─── ──┬ ┬─── ─────────────────────────────────────5%
 └ ┘─\CBL───── ├ ┤─NOSOURCE─ └ ┘─.─
 ├ ┤─LIST─────
 ├ ┤─NOLIST───
 ├ ┤─MAP──────
 └ ┘─NOMAP────

(For a complete discussion of the output produced by these options, see the IBM
COBOL Programming Guide for your platform.)

The *CONTROL and *CBL statements are synonymous. Whenever *CONTROL is
used, *CBL is accepted as well.

The characters *CONTROL or *CBL can start in any column beginning with column 7,
followed by at least one space or comma and one or more option key words. The
option key words must be separated by one or more spaces or commas. This state-
ment must be the only statement on the line, and continuation is not allowed. The
statement can be terminated with a period.

The *CONTROL and *CBL statements must be embedded in a program source. For
example, in the case of batch applications, the *CONTROL and *CBL statements must
be placed between the PROCESS (CBL) statement and the end of the program (or
END PROGRAM header, if specified).

The source line containing the *CONTROL (*CBL) statement will not appear in the
source listing.

If an option is defined at installation as a fixed option, this fixed option takes preced-
ence over all of the following:

� PARM (if available)
 � CBL statement
� *CONTROL (*CBL) statement

The requested options are handled in the following manner:

1. If an option or its negation appears more than once in a *CONTROL statement, the
last occurrence of the option word is used.

2. If the CORRESPONDING option has been requested as a parameter to the com-
piler, then a *CONTROL statement with the negation of the option word must
precede the portions of the source program for which listing output is to be inhib-
ited. Listing output then resumes when a *CONTROL statement with the affirma-
tive option word is encountered.

514 COBOL Language Reference

*CONTROL (*CBL) Statement

3. If the negation of the CORRESPONDING option has been requested as a param-
eter to the compiler, then that listing is always inhibited.

4. The *CONTROL statement is in effect only within the source program in which it is
written, including any contained programs. It does not remain in effect across
batch compiles of two or more COBOL source programs.

Source Code Listing
Listing of the input source program lines is controlled by any of the following state-
ments:

\CONTROL SOURCE [\CBL SOURCE]
\CONTROL NOSOURCE [\CBL NOSOURCE]

If a *CONTROL NOSOURCE statement is encountered and SOURCE has been
requested as a compilation option, printing of the source listing is suppressed from this
point on. An informational (I-level) message is issued stating that PRINTING OF THE
SOURCE HAS BEEN SUPPRESSED.

Object Code Listing
Listing of generated object code is controlled by any of the following statements occur-
ring in the Procedure Division:

\CONTROL LIST [\CBL LIST]
\CONTROL NOLIST [\CBL NOLIST]

If a *CONTROL NOLIST statement is encountered, and LIST has been requested as a
compilation option, listing of generated object code is suppressed from this point on.

Storage Map Listing
Listing of storage map entries is controlled by any of the following statements occurring
in the Data Division:

\CONTROL MAP [\CBL MAP]
\CONTROL NOMAP [\CBL NOMAP]

If a *CONTROL NOMAP statement is encountered, and MAP has been requested as a
compilation option, listing of storage map entries is suppressed from this point on.

For example, either of the following sets of statements produces a storage map listing
in which A and B will not appear:

\CONTROL NOMAP \CBL NOMAP
 ð1 A ð1 A
 ð2 B ð2 B
\CONTROL MAP \CBL MAP

Part 8. Compiler-Directing Statements 515

literal-1 SUPPRESS
literal-2

literal-1, literal-2
Literal-1 identifies the name of the copy text. Literal-2 identifies where the copy
text exists.

 On MVS and VM:

� The first eight characters are used as the identifying name.
� The literal can contain characters: A-Z, a-z, 0-9, hyphen, @, #, $.
� The leading character must be alphabetic.

 On AIX, OS/2, and Windows:

COPY Statement

 COPY Statement
The COPY statement is a library statement that places prewritten text in a COBOL
program.

Prewritten source program entries can be included in a source program at compile time.
Thus, an installation can use standard file descriptions, record descriptions, or proce-
dures without recoding them. These entries and procedures can then be saved in user-
created libraries; they can then be included in the source program by means of the
COPY statement.

Compilation of the source program containing COPY statements is logically equivalent
to processing all COPY statements before processing the resulting source program.

The effect of processing a COPY statement is that the library text associated with text-
name is copied into the source program, logically replacing the entire COPY statement,
beginning with the word COPY and ending with the period, inclusive. When the
REPLACING phrase is not specified, the library text is copied unchanged.

 Format
55──COPY─ ──┬ ┬─text-name─ ──┬ ┬────────────────────────── ──┬ ┬────────── ────────────5
 └ ┘ ─ ─ └ ┘ ──┬ ┬─OF─ ──┬ ┬─library-name─ └ ┘ ─ ─
 └ ┘─IN─ └ ┘─ ────

5─ ──┬ ┬─── ─.──────────────────────────────5%
 │ │┌ ┐────────────────────────────
 └ ┘ ─REPLACING─ ───6 ┴─operand-1──BY──operand-2─

text-name, library-name
Text-name identifies the name of the copy text. Library-name identifies where the
copy text exists.

Must follow the normal rules of formation for a user-defined word:

� The word can be from 1-30 characters in length.
� The word can contain characters: A-Z, a-z, 0-9, hyphen.
� At least one character must be alphabetic.
� The hyphen can't be the first or last character.

 For MVS and VM, only the first eight characters are used as the identi-
fying name.

516 COBOL Language Reference

� The literal can be from 1-160 characters in length.

As an IBM extension, a user-defined word can be the same as a text-name or a library-
name.

As an IBM extension, if more than one COBOL library is available during compilation,
text-name need not be qualified. If text-name is not qualified, a library-name of SYSLIB
is assumed.

As an IBM extension, COPY statements can be nested.
However, nested COPY statements cannot contain the REPLACING phrase, and a
COPY statement with the REPLACING phrase cannot contain nested COPY state-
ments.

A COPY statement cannot cause recursion. That is, a COPY member can be named
only once in a set of nested COPY statements until the end-of-file for that COPY
member is reached. For example, assume that the source program contains the state-
ment: COPY X. and library-text X contains the statement: COPY Y..

In this case, the library-text Y must not have a COPY X or a COPY Y statement.

COPY Statement

The uniqueness of text-name and library-name is determined after the formation and
conversion rules for a system-dependent name have been applied.

For information on processing rules, see the IBM COBOL Programming Guide for your
platform.

operand-1, operand-2
Can be either pseudo-text, an identifier, a function-identifier, a literal, or a COBOL
word (except COPY).

Each COPY statement must be preceded by a space and ended with a separator
period.

A COPY statement can appear in the source program anywhere a character string or a
separator can appear.

Debugging lines are permitted within library text and pseudo-text. Text words within a
debugging line participate in the matching rules as if the D did not appear in the indi-
cator area. A debugging line is specified within pseudo-text if the debugging line
begins in the source program after the opening pseudo-text delimiter but before the
matching closing pseudo-text delimiter.

If additional lines are introduced into the source program as a result of a COPY state-
ment, each text word introduced appears on a debugging line if the COPY statement
begins on a debugging line or if the text word being introduced appears on a debugging
line in Library text. When a text word specified in the BY phrase is introduced, it
appears on a debugging line if the first library text word being replaced is specified on a
debugging line.

Part 8. Compiler-Directing Statements 517

Lines containing *CONTROL (*CBL), EJECT, SKIP1/2/3, or TITLE statements can
occur in library text. Such lines are treated as comment lines during COPY statement
processing.

DBCS words, DBCS literals, and EUC words are allowed in library text and pseudo-
text.

 SUPPRESS Phrase
The SUPPRESS phrase specifies that the library text is not to be printed on the source
program listing.

COPY Statement

When a COPY statement is specified on a debugging line, the copied text is treated as
though it appeared on a debugging line, except that comment lines in the text appear
as comment lines in the resulting source program.

If the word COPY appears in a comment-entry, or in the place where a comment-entry
can appear, it is considered part of the comment-entry.

After all COPY and REPLACE statements have been processed, a debugging line will
be considered to have all the characteristics of a comment line, if the WITH DEBUG-
GING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

Comment lines or blank lines can occur in library text. Comment lines or blank lines
appearing in library text are copied into the resultant source program unchanged with
the following exception: a comment line or blank line in library text is not copied if that
comment line or blank line appears within the sequence of text words that match
operand-1 (refer to "Replacement and Comparison Rules" on page 520).

The syntactic correctness of the entire COBOL source program cannot be determined
until all COPY and REPLACE statements have been completely processed, because
the syntactic correctness of the library text cannot be independently determined.

Library text copied from the library is placed into the same area of the resultant
program as it is in the library. Library text must conform to the rules for standard
COBOL format.

Note: Characters outside the standard COBOL character set must not appear in
library text or pseudo-text, other than as part of nonnumeric literals, comment lines, or
comment-entries.

 REPLACING Phrase
In the discussion that follows, each operand can consist of one of the following:

 � Pseudo-text
 � An identifier
 � A literal
� A COBOL word (except COPY)

 � Function identifier

518 COBOL Language Reference

Pseudo-text-1 can consist solely of the separator comma or separator semicolon.

Pseudo-text can contain DBCS or EUC user-defined words, but the characters
cannot be continued across lines.

Can be a DBCS literal.

You can include the non-separator COBOL characters (for example, +, *, /, $, <, >,
and =) as part of a COBOL word when used as REPLACING operands. In addi-
tion, the hyphen character can be at the beginning or end of the word.

Either operand, or both, can be a DBCS or EUC name or DBCS literal.

COPY Statement

When the REPLACING phrase is specified, the library text is copied, and each properly
matched occurrence of operand-1 within the library text is replaced by the associated
operand-2.

pseudo-text
A sequence of character-strings and/or separators bounded by, but not including,
pseudo-text-1 delimiters (==). Both characters of each pseudo-text-1 delimiter
must appear on one line; however, character-strings within pseudo-text-1 can be
continued.

Any individual character-string within pseudo-text-1 can be up to 322 characters
long. Keep in mind that a character-string must be delimited by separators. For
more information, see “Characters” on page 2.

Pseudo-text-1 refers to pseudo-text when used for operand-1, and pseudo-text-2
refers to pseudo-text when used for operand-2.

Pseudo-text-1 cannot be null, nor can it consist solely of the space character, sep-
arator comma, separator semicolon, and/or of comment lines. Beginning and
ending blanks are not included in the text comparison process. Embedded blanks
are used in the text comparison process to indicate multiple text words.

Pseudo-text must not contain the word COPY.

Pseudo-text-2 can be null; it can consist solely of space characters and/or
comment lines. Each text word in pseudo-text-2 that is to be copied into the
program is placed in the same area of the resultant program as the area in which it
appears in pseudo-text-2.

identifier
Can be defined in any Data Division section.

literal
Can be numeric or nonnumeric.

word
Can be any single COBOL word (except COPY).

For purposes of matching, each identifier-1, literal-1, or word-1 is treated, respectively,
as pseudo-text containing only identifier-1, literal-1, or word-1.

Part 8. Compiler-Directing Statements 519

However, when operand-1 consists solely of a separator comma
or semicolon, it participates in the match as a text-word (in this case, the space
following the comma or semicolon separator can be omitted).

When the library text contains a closing quotation mark that is not immediately fol-
lowed by a separator space, comma, semicolon, or period, the closing quotation
mark will be considered a separator quotation mark.

COPY Statement

Replacement and Comparison Rules
1. Arithmetic and logical operators are considered text words and can be replaced

only through the pseudo-text option.

2. When a figurative constant is operand-1, it will match only if it appears exactly as it
is specified. For example, if ALL “AB” is specified in the library text, then “ABAB”
is not considered a match; only ALL “AB” is considered a match.

3. When replacing a PICTURE character-string, the pseudo-text option should be
used; to avoid ambiguities, pseudo-text-1 should specify the entire PICTURE
clause, including the key word PICTURE or PIC.

4. Any separator comma, semicolon, and/or space preceding the leftmost word in the
library text is copied into the source program. Beginning with the leftmost library
text word and the first operand-1 specified in the REPLACING option, the entire
REPLACING operand that precedes the key word BY is compared to an equivalent
number of contiguous library text words.

5. Operand-1 matches the library text if, and only if, the ordered sequence of text
words in operand-1 is equal, character for character, to the ordered sequence of
library words. For matching purposes, each occurrence of a comma or semicolon
separator and each sequence of one or more space separators is considered to be
a single space.

6. If no match occurs, the comparison is repeated with each successive operand-1, if
specified, until either a match is found or there are no further REPLACING oper-
ands.

7. Whenever a match occurs between operand-1 and the library text, the associated
operand-2 is copied into the source program.

8. The COPY statement with REPLACING phrase can be used to replace parts of
words. By inserting a dummy operand delimited by colons into the program text,
the compiler will replace the dummy operand with the desired text. Example 3
shows how this is used with the dummy operand :TAG:.

Note: The colons serve as separators and make TAG a stand-alone operand.

9. When all operands have been compared and no match is found, the leftmost
library text word is copied into the source program.

10. The next successive uncopied library text word is then considered to be the left-
most text word, and the comparison process is repeated, beginning with the first
operand-1. The process continues until the rightmost library text word has been
compared.

11. Comment lines or blank lines occurring in the library text and in pseudo-text-1 are
ignored for purposes of matching; and the sequence of text words in the library text
and in pseudo-text-1 is determined by the rules for reference format. Comment

520 COBOL Language Reference

13. COPY REPLACING does not affect the EJECT, SKIP1/2/3, or TITLE compiler-
directing statements. When text words are placed in the source program, addi-
tional spaces are introduced only between text words where there already exists a
space (including the assumed space between source lines).

COPY Statement

lines or blank lines appearing in pseudo-text-2 are copied into the resultant
program unchanged whenever pseudo-text-2 is placed into the source program as
a result of text replacement. Comment lines or blank lines appearing in library text
are copied into the resultant source program unchanged with the following excep-
tion: a comment line or blank line in library text is not copied if that comment line
or blank line appears within the sequence of text words that match pseudo-text-1.

12. Text words, after replacement, are placed in the source program according to
standard COBOL format rules.

Sequences of code (such as file and data descriptions, error and exception routines,
etc.) that are common to a number of programs can be saved in a library, and then
used in conjunction with the COPY statement. If naming conventions are established
for such common code, then the REPLACING phrase need not be specified. If the
names will change from one program to another, then the REPLACING phrase can be
used to supply meaningful names for this program.

Example 1

In this example, the library text PAYLIB consists of the following Data Division entries:

ð1 A.
 ð2 B PIC S99.
 ð2 C PIC S9(5)V99.
 ð2 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

The programmer can use the COPY statement in the Data Division of a program as
follows:

 COPY PAYLIB.

In this program, the library text is copied; the resulting text is treated as if it had been
written as follows:

ð1 A.
 ð2 B PIC S99.
 ð2 C PIC S9(5)V99.
 ð2 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

Example 2

To change some (or all) of the names within the library text, the programmer can use
the REPLACING phrase:

Part 8. Compiler-Directing Statements 521

COPY Statement

COPY PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE
C BY GROSS-PAY
D BY HOURS.

In this program, the library text is copied; the resulting text is treated as if it had been
written as follows:

ð1 PAYROLL.
 ð2 PAY-CODE PIC S99.
 ð2 GROSS-PAY PIC S9(5)V99.
 ð2 HOURS PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the
library, remains unchanged.

Example 3

If the following conventions are followed in library text, then parts of names (for
example the prefix portion of data-names) can be changed with the REPLACING
phrase.

In this example, the library text PAYLIB consists of the following Data Division entries:

ð1 :TAG:.
 ð2 :TAG:-WEEK PIC S99.
 ð2 :TAG:-GROSS-PAY PIC S9(5)V99.
 ð2 :TAG:-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON :TAG:-WEEK OF :TAG:.

The programmer can use the COPY statement in the Data Division of a program as
follows:

COPY PAYLIB REPLACING ==:TAG:== BY ==Payroll==.

Note: It is important to notice in this example the required use of colons or paren-
theses as delimiters in the library text. Colons are recommended for clarity because
parentheses can be used for a subscript, for instance in a table.

In this program, the library text is copied; the resulting text is treated as if it had been
written as follows:

ð1 PAYROLL.
 ð2 PAYROLL-WEEK PIC S99.
 ð2 PAYROLL-GROSS-PAY PIC S9(5)V99.
 ð2 PAYROLL-HOURS PIC S999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAYROLL-WEEK OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the
library, remains unchanged.

Example 4

522 COBOL Language Reference

DELETE Statement

 DELETE Statement
The DELETE statement is an extended source library statement. It removes COBOL
statements from the source program included by a BASIS statement.

 Format
55─ ──┬ ┬───────────────── ─DELETE──sequence-number-field─────────────────────────5%
 └ ┘─sequence-number─

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of
this field is ignored.

DELETE
Can appear anywhere within columns 1 through 72. It must be followed by a
space and the sequence-number-field. There must be no other text in the state-
ment.

sequence-number-field
Each number must be equal to a sequence-number in the BASIS source program.
This sequence-number is the 6-digit number the programmer assigns in columns 1
through 6 of the COBOL coding form. The numbers referenced in the sequence-
number-fields of any INSERT or DELETE statements must always be specified in
ascending numeric order.

The sequence-number-field must be any one of the following:

� A single number

� A series of single numbers

� A range of numbers (indicated by separating the two bounding numbers of the
range by a hyphen)

� A series of ranges of numbers

� Any combination of one or more single numbers and one or more ranges of
numbers

Each entry in the sequence-number-field must be separated from the preceding
entry by a comma followed by a space. For example:

ððð25ð DELETE ðððð1ð-ðððð5ð, ððð4ðð, ððð45ð

Source program statements can follow a DELETE statement. These source program
statements are then inserted into the BASIS source program before the statement fol-

This example shows how to selectively replace level numbers without replacing the
numbers in the PICTURE clause:

COPY xxx REPLACING ==(ð1)== BY ==(ð1)==
== ð1 == BY == ð5 ==.

Part 8. Compiler-Directing Statements 523

lowing the last statement deleted (that is, in the example above, before the next state-
ment following deleted statement 000450).

If a DELETE statement is specified, beginning in column 12 or higher, and a valid
sequence-number-field does not follow the key word DELETE, the compiler assumes
that this DELETE statement is the COBOL DELETE statement.

New source program statements following the DELETE statement can include DBCS or
EUC data items.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence-numbers in ascending order. The source file
remains unchanged. Any INSERT or DELETE statements referring to these sequence-
numbers must occur in ascending order.

 EJECT Statement
The EJECT statement specifies that the next source statement is to be printed at the
top of the next page.

 Format
55──EJECT─ ──┬ ┬─── ──5%
 └ ┘─.─

The EJECT statement must be the only statement on the line. It can be written in
either Area A or Area B, and can be terminated with a separator period.

The EJECT statement must be embedded in a program source. For example, in the
case of batch applications, the EJECT statement must be placed between the CBL
(PROCESS) statement and the end of the program (or the END PROGRAM header, if
specified).

The EJECT statement has no effect on the compilation of the source program itself.

ENTER Statement

 ENTER Statement
The ENTER statement allows the use of more than one source language in the same
source program.

With COBOL for MVS & VM, COBOL Set for AIX, and VisualAge COBOL, only COBOL
is allowed in the source program.

Note: The ENTER statement is syntax checked during compilation but has no effect
on the execution of the program.

524 COBOL Language Reference

INSERT Statement

 INSERT Statement
The INSERT statement is a library statement that adds COBOL statements to the
source program included by a BASIS statement.

 Format
55─ ──┬ ┬───────────────── ─INSERT──sequence-number-field─────────────────────────5%
 └ ┘─sequence-number─

sequence-number
Can optionally appear in columns 1 through 6, followed by a space. The content of
this field is ignored.

INSERT
Can appear anywhere within columns 1 through 72, followed by a space and the
sequence-number-field. There must be no other text in the statement.

sequence-number-field
A number which must be equal to a sequence-number in the BASIS source
program. This sequence-number is the 6-digit number the programmer assigns in
columns 1 through 6 of the COBOL coding form.

The numbers referenced in the sequence-number-fields of any INSERT or DELETE
statements must always be specified in ascending numeric order.

The sequence-number-field must be a single number (for example, 000130). At
least one new source program statement must follow the INSERT statement for
insertion after the statement number specified by the sequence-number-field.

New source program statements following the INSERT statement can include DBCS or
EUC data items.

Note: If INSERT or DELETE statements are used to modify the COBOL source
program provided by a BASIS statement, the sequence field of the COBOL source
program must contain numeric sequence-numbers in ascending order. The source file
remains unchanged. Any INSERT or DELETE statements referring to these sequence-
numbers must occur in ascending order.

 Format
55──ENTER──language-name-1─ ──┬ ┬──────────────── ─.──────────────────────────────5%
 └ ┘─routine-name-1─

language-name-1
A system name that has no defined meaning. It must be either a correctly formed
user-defined word or the word "COBOL". At least one character must be alpha-
betic.

routine-name-1
Must follow the rules for formation of a user-defined word. At least one character
must be alphabetic.

Part 8. Compiler-Directing Statements 525

READY or RESET TRACE Statement

READY or RESET TRACE Statement
The READY or RESET TRACE statement can only appear in the Procedure Division,
but has no effect on your program.

 Format
55─ ──┬ ┬─READY─ ─TRACE──.──5%
 └ ┘─RESET─

You can reproduce the function of READY TRACE by using the USE FOR DEBUG-
GING declarative, DISPLAY statement, and DEBUG-ITEM special register. For
example:

 .
 .
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-39ð WITH DEBUGGING MODE.
 .
 DATA DIVISION.
 .
 WORKING-STORAGE SECTION.

ð1 TRACE-SWITCH PIC 9 VALUE ð.
 88 READY-TRACE VALUE 1.
 88 RESET-TRACE VALUE ð.
 .
 PROCEDURE DIVISION.
 DECLARATIVES.
 COBOL-II-DEBUG SECTION.

USE FOR DEBUGGING ON ALL PROCEDURES.
 COBOL-II-DEBUG-PARA.

IF READY-TRACE THEN
 DISPLAY DEBUG-NAME
 END-IF.
 END DECLARATIVES.
 MAIN-PROCESSING SECTION.
 .
 PARAGRAPH-3.
 .

SET READY-TRACE TO TRUE.
 PARAGRAPH-4.
 .
 PARAGRAPH-6.
 .

SET RESET-TRACE TO TRUE.
 PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that displays the
procedure-name causing execution of the debugging procedure. (In this example, the
object program displays the names of procedures PARAGRAPH-4 through
PARAGRAPH-6 as control reaches each procedure within the range.)

526 COBOL Language Reference

At run time, you must specify the DEBUG run-time option to activate this debugging
procedure. In this way, you have no need to recompile the program to activate or
deactivate the debugging declarative.

As an IBM extension, pseudo-text-1 can consist entirely of a separator comma or a
separator semicolon.

REPLACE Statement

 REPLACE Statement
The REPLACE statement is used to replace source program text.

A REPLACE statement can occur anywhere in the source program where a character-
string can occur. It must be preceded by a separator period except when it is the first
statement in a separately compiled program. It must be terminated by a separator
period.

The REPLACE statement provides a means of applying a change to an entire COBOL
source program, or part of a source program, without manually having to find and
modify all places that need to be changed. It is an easy method of doing simple string
substitutions. It is similar in action to the REPLACING phrase of the COPY statement,
except that it acts on the entire source program, not just on the text in COPY libraries.

If the word REPLACE appears in a comment-entry or in the place where a comment-
entry can appear, it is considered part of the comment-entry.

 Format 1
 ┌ ┐──
55──REPLACE─ ───6 ┴──==pseudo-text-1== ─BY─ ──==pseudo-text-2== ─.───────────────────5%

Each matched occurrence of pseudo-text-1 in the source program is replaced by the
corresponding pseudo-text-2.

 Format 2
55──REPLACE OFF.───5%

Any text replacement currently in effect is discontinued with the format 2 form of
REPLACE. If format 2 is not specified, a given occurrence of the REPLACE statement
is in effect from the point at which it is specified until the next occurrence of the state-
ment or the end of the separately compiled program, respectively.

pseudo-text-1
Must contain one or more text words. Character-strings can be continued.

pseudo-text-2
Can contain zero, one, or more text words. Character strings can be continued.

Any individual character-string within pseudo-text can be up to 322 characters long.

Part 8. Compiler-Directing Statements 527

The REPLACE statement can be used with DBCS literals and DBCS or EUC names.

Pseudo-text can contain DBCS or EUC character-strings, but the characters cannot be
continued across lines.

However, when pseudo-text-1 consists solely of a separator comma or semicolon, it
participates in the match as a text word (in this case, the space following the comma or
semicolon separator can be omitted).

REPLACE Statement

Note: Characters outside the standard COBOL character set should not appear in
pseudo-text, other than as part of nonnumeric literals, comment lines, or comment-
entries.

The compiler processes REPLACE statements in a source program after the proc-
essing of any COPY statements. COPY must be processed first, to assemble a com-
plete source program. Then REPLACE can be used to modify that program,
performing simple string substitution. REPLACE statements can themselves contain
COPY statements.

The text produced as a result of the processing of a REPLACE statement must not
contain a REPLACE statement.

Continuation Rules for Pseudo-text
The character-strings and separators comprising pseudo-text can start in either area A
or area B. If, however, there is a hyphen in the indicator area of a line which follows
the opening pseudo-text delimiter, area A of the line must be blank; and the normal
rules for continuation of lines apply to the formation of text words. (See “Continuation
Lines” on page 35.)

 Comparison Operation
The comparison operation to determine text replacement starts with the leftmost source
program text word following the REPLACE statement, and with the first pseudo-text-1.
Pseudo-text-1 is compared to an equivalent number of contiguous source program text
words. Pseudo-text-1 matches the source program text if, and only if, the ordered
sequence of text words that forms pseudo-text-1 is equal, character for character, to the
ordered sequence of source program text words.

For purposes of matching, each occurrence of a separator comma, semicolon, and
space, and each sequence of one or more space separators is considered to be a
single space.

If no match occurs, the comparison is repeated with each successive occurrence of
pseudo-text-1, until either a match is found or there is no next successive occurrence of
pseudo-text-1.

When all occurrences of pseudo-text-1 have been compared and no match has
occurred, the next successive source program text word is then considered as the left-
most source program text word, and the comparison cycle starts again with the first
occurrence of pseudo-text-1.

528 COBOL Language Reference

Lines containing *CONTROL (*CBL), EJECT, SKIP1/2/3, or TITLE statements can
occur in source program text. Such lines are treated as comment lines during
REPLACE statement processing.

REPLACE Statement

Whenever a match occurs between pseudo-text-1 and the source program text, the cor-
responding pseudo-text-2 replaces the matched text in the source program. The
source program text word immediately following the rightmost text word that participated
in the match is then considered as the leftmost source program text word. The com-
parison cycle starts again with the first occurrence of pseudo-text-1.

The comparison operation continues until the rightmost text word in the source program
text which is within the scope of the REPLACE statement has either participated in a
match or been considered as a leftmost source program text word and participated in a
complete comparison cycle.

REPLACE Statement Notes
Comment lines or blank lines occurring in the source program text and in pseudo-text-1
are ignored for purposes of matching. The sequence of text words in the source
program text and in pseudo-text-1 is determined by the rules for reference format (see
“Reference Format” on page 32). Comment lines or blank lines in pseudo-text-2 are
placed into the resultant program unchanged whenever pseudo-text-2 is placed into the
source program as a result of text replacement. Comment lines or blank lines
appearing in source program text are retained unchanged with the following exception:
a comment line or blank line in source program text is not retained if that comment line
or blank line appears within the sequence of text words that match pseudo-text-1.

Debugging lines are permitted in pseudo-text. Text words within a debugging line par-
ticipate in the matching rules as if the D did not appear in the indicator area.

When a REPLACE statement is specified on a debugging line, the statement is treated
as if the D did not appear in the indicator area.

After all COPY and REPLACE statements have been processed, a debugging line will
be considered to have all the characteristics of a comment line, if the WITH DEBUG-
GING MODE clause is not specified in the SOURCE-COMPUTER paragraph.

Except for COPY and REPLACE statements, the syntactic correctness of the source
program text cannot be determined until after all COPY and REPLACE statements have
been completely processed.

Text words inserted into the source program as a result of processing a REPLACE
statement are placed in the source program according to the rules for reference format.
When inserting text words of pseudo-text-2 into the source program, additional spaces
are introduced only between text words where there already exists a space (including
the assumed space between source lines).

If additional lines are introduced into the source program as a result of the processing
of REPLACE statements, the indicator area of the introduced lines contains the same

Part 8. Compiler-Directing Statements 529

SERVICE LABEL Statement

SERVICE LABEL Statement

 Under AIX, OS/2, and Windows, the SERVICE LABEL statement is
treated as a comment.

This statement is generated by the CICS preprocessor to indicate control flow. It is not
intended for general use.

 Format
55──SERVICE LABEL──5%

The SERVICE LABEL statement can appear only in the Procedure Division, not in the
Declaratives Section.

At the statement following the SERVICE LABEL statement, all registers that might no
longer be valid are reloaded.

See IBM COBOL for MVS & VM Programming Guide for more information.

character as the line on which the text being replaced begins, unless that line contains
a hyphen, in which case the introduced line contains a space.

If any literal within pseudo-text-2 is of a length too great to be accommodated on a
single line without continuation to another line in the resultant program and the literal is
not being placed on a debugging line, additional continuation lines are introduced that
contain the remainder of the literal. If replacement requires the continued literal to be
continued on a debugging line, the program is in error.

Note: Each word in pseudo-text-2 that is to be placed into the resultant program
begins in the same area of the resultant program as it appears in pseudo-text-2.

530 COBOL Language Reference

SKIP1/2/3 Statements

SERVICE RELOAD Statement
The SERVICE RELOAD statement is treated as a comment.

 Format
55──SERVICE RELOAD──identifier-1───5%

 SKIP1/2/3 Statements
The SKIP1/2/3 statements specify blank lines that the compiler should add when
printing the source listing. SKIP statements have no effect on the compilation of the
source program itself.

 Format
55─ ──┬ ┬─SKIP1─ ──┬ ┬─── ──5%

├ ┤─SKIP2─ └ ┘─.─
 └ ┘─SKIP3─

SKIP1
Specifies a single blank line to be inserted in the source listing.

SKIP2
Specifies two blank lines to be inserted in the source listing.

SKIP3
Specifies three blank lines to be inserted in the source listing.

SKIP1, SKIP2, or SKIP3 can be written anywhere in either Area A or Area B, and can
be terminated with a separator period. It must be the only statement on the line.

The SKIP1/2/3 statement must be embedded in a program source. For example, in the
case of batch applications, the SKIP1/2/3 statement must be placed between the CBL
(PROCESS) statement and the end of the program (or the END PROGRAM header, if
specified).

Part 8. Compiler-Directing Statements 531

TITLE Statement

 TITLE Statement
The TITLE statement specifies a title to be printed at the top of each page of the
source listing produced during compilation. If no TITLE statement is found, a title con-
taining the identification of the compiler and the current release level is generated. The
title is left-justified on the title line.

 Format
55──TITLE──literal─ ──┬ ┬─── ───5%
 └ ┘─.─

literal
Must be nonnumeric and can be followed by a separator period.

Can be a DBCS or EUC literal.

Must not be a figurative constant.

In addition to the default or chosen title, the right side of the title line contains:

� Name of the program from the PROGRAM-ID paragraph for the outermost program
(This space is blank on pages preceding the PROGRAM-ID paragraph for the out-
ermost program.)

� Current page number

� Date and time of compilation

The TITLE statement:

� Forces a new page immediately, if the SOURCE compiler option is in effect
� Is not printed on the source listing
� Has no other effect on compilation
� Has no effect on program execution
� Cannot be continued on another line
� Can appear anywhere in any of the divisions

A title line is produced for each page in the listing produced by the LIST option. This
title line uses the last TITLE statement found in the source statements or the default.

The word TITLE can begin in either Area A or Area B.

The TITLE statement must be embedded in a program source. For example, in the
case of batch applications, the TITLE statement must be placed between the CBL
(PROCESS) statement and the end of the program (or the END PROGRAM header, if
specified).

No other statement can appear on the same line as the TITLE statement.

532 COBOL Language Reference

LABEL declarative (MVS and VM Only)

USE Statement

 USE Statement
The formats for the USE statement are:

 EXCEPTION/ERROR declarative

 DEBUGGING declarative

For general information on declaratives, see “Declaratives” on page 230.

 EXCEPTION/ERROR Declarative
The EXCEPTION/ERROR declarative specifies procedures for input/output exception or
error handling that are to be executed in addition to the standard system procedures.

The words EXCEPTION and ERROR are synonymous and can be used interchange-
ably.

Format 1—USE (EXCEPTION ERROR Declarative)
55──USE─ ──┬ ┬──────── ─AFTER─ ──┬ ┬────────── ──┬ ┬─EXCEPTION─ ─PROCEDURE─ ──┬ ┬──── ─────5

└ ┘─GLOBAL─ └ ┘─STANDARD─ └ ┘─ERROR───── └ ┘─ON─

 ┌ ┐───────────────
5─ ──┬ ┬───6 ┴─file-name-1─ ──5%
 ├ ┤─INPUT───────────
 ├ ┤─OUTPUT──────────
 ├ ┤─I-O─────────────
 └ ┘─EXTEND──────────

file-name-1
Valid for all files. When this option is specified, the procedure is executed only for
the file(s) named. No file-name can refer to a sort or merge file. For any given
file, only one EXCEPTION/ERROR procedure can be specified; thus, file-name
specification must not cause simultaneous requests for execution of more than one
EXCEPTION/ERROR procedure.

A USE AFTER EXCEPTION/ERROR declarative statement specifying the name of
a file takes precedence over a declarative statement specifying the open mode of
the file.

INPUT
Valid for all files. When this option is specified, the procedure is executed for all
files opened in INPUT mode or in the process of being opened in INPUT mode that
get an error.

OUTPUT
Valid for all files. When this option is specified, the procedure is executed for all
files opened in OUTPUT mode or in the process of being opened in OUTPUT
mode that get an error.

I-O Valid for all direct-access files. When this option is specified, the procedure is exe-
cuted for all files opened in I-O mode or in the process of being opened in I-O
mode that get an error.

Part 8. Compiler-Directing Statements 533

As IBM extensions to the COBOL 85 Standard, the following apply to declarative proce-
dures:

For AIX, OS/2, Windows, MVS, and VM:

� A declarative procedure can be performed from a nondeclarative procedure.

Additionally for MVS and VM:

� A nondeclarative procedure can be performed from a declarative procedure.

� A declarative procedure can be referenced in a GO TO statement in a declar-
ative procedure.

� A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

USE Statement

EXTEND
Valid for all files. When this option is specified, the procedure is executed for all
files opened in EXTEND mode or in the process of being opened in EXTEND
mode that get an error.

The EXCEPTION/ERROR procedure is executed:

� Either after completing the system-defined input/output error routine, or

� Upon recognition of an INVALID KEY or AT END condition when an INVALID KEY
or AT END phrase has not been specified in the input/output statement, or

� Upon recognition of an IBM-defined condition that causes status key 1 to be set to
9. (See “Status Key” on page 270.)

After execution of the EXCEPTION/ERROR procedure, control is returned to the
invoking routine in the input/output control system. If the input/output status value does
not indicate a critical input/output error, the input/output control system returns control
to the next executable statement following the input/output statement whose execution
caused the exception.

The EXCEPTION/ERROR procedures are activated when an input/output error occurs
during execution of a READ, WRITE, REWRITE, START, OPEN, CLOSE, or DELETE
statement. To determine what conditions are errors see “Common Processing
Facilities” on page 270.

Within a declarative procedure, there must be no reference to any non-declarative pro-
cedures. In the non-declarative portion of the program, there must be no reference to
procedure-names that appear in an EXCEPTION/ERROR declarative procedure, except
that PERFORM statements can refer to an EXCEPTION/ERROR procedure or to pro-
cedures associated with it.

Within an EXCEPTION/ERROR declarative procedure, no statement should be included
that would cause execution of a USE procedure that had been previously invoked and
had not yet returned control to the invoking routine.

534 COBOL Language Reference

You can include a statement that executes a previously invoked USE procedure that is
still in control. However, to avoid an infinite loop, you must be sure that there is an
eventual exit at the bottom.

 LABEL Declarative
The LABEL declarative provides user label-handling procedures.

 Under AIX, OS/2, and Windows, USE...AFTER...LABEL PROCEDURE is
not supported. If encountered, they are ignored and a warning message is issued.

Format 2—USE (LABEL Declarative)
55──USE─ ──┬ ┬──────── ─AFTER─ ──┬ ┬────────── ──┬ ┬─────────── ──┬ ┬────── ──────────────5

└ ┘─GLOBAL─ └ ┘─STANDARD─ ├ ┤─BEGINNING─ ├ ┤─FILE─
 └ ┘─ENDING──── ├ ┤─REEL─
 └ ┘─UNIT─

 ┌ ┐───────────────
5──LABEL PROCEDURE─ ──┬ ┬──── ──┬ ┬───6 ┴─file-name-1─ ───────────────────────────────5%
 └ ┘─ON─ ├ ┤─INPUT───────────
 ├ ┤─OUTPUT──────────
 ├ ┤─I-O─────────────
 └ ┘─EXTEND──────────

USE Statement

EXCEPTION/ERROR procedures can be used to check the status key values whenever
an input/output error occurs.

Precedence Rules for Nested Programs
Special precedence rules are followed when programs are contained within other pro-
grams. In applying these rules, only the first qualifying declarative that is selected for
execution must satisfy the rules for execution of that declarative. The order of preced-
ence for selecting a declarative is:

1. A file-specific declarative (that is, a declarative of the form USE AFTER ERROR
ON file-name-1) within the program that contains the statement that caused the
qualifying condition.

2. A mode-specific declarative (that is, a declarative of the form USE AFTER ERROR
ON INPUT) within the program that contains the statement that caused the quali-
fying condition.

3. A file-specific declarative that specifies the GLOBAL phrase and is within the
program directly containing the program that was last examined for a qualifying
declarative.

4. A mode-specific declarative that specifies the GLOBAL phrase and is within the
program directly containing the program that was last examined for a qualifying
condition.

Steps 3. and 4. are repeated until the last examined program is the outermost program,
or until a qualifying declarative has been found.

Part 8. Compiler-Directing Statements 535

AFTER
User labels follow standard file labels, and are to be processed.

The labels must be listed as data-names in the LABEL RECORDS clause in the
file description entry for the file, and must be described as level-01 data items sub-
ordinate to the file entry.

If neither BEGINNING nor ENDING is specified, the designated procedures are
executed for both beginning and ending labels.

If FILE, REEL, or UNIT is not included, the designated procedures are executed
both for REEL or UNIT, whichever is appropriate, and for FILE labels.

FILE
The designated procedures are executed at beginning-of-file (on the first volume)
and/or at end-of-file (on the last volume) only.

REEL
The designated procedures are executed at beginning-of-volume (on each volume
except the first) and/or at end-of-volume (on each volume except the last).

The REEL option is not applicable to direct-access files.

UNIT
The designated procedures are executed at beginning-of-volume (on each volume
except the first) and/or at end-of-volume (on each volume except the last).

The UNIT phrase is not applicable to files in the random access mode, because
only FILE labels are processed in this mode.

file-name-1
Can appear in different specific arrangements of the format. However, appearance
of a file-name in a USE statement must not cause the simultaneous request for
execution of more than one USE declarative.

file-name-1 must not represent a sort file.

If the file-name-1 option is used, the file description entry for file-name must not
specify a LABEL RECORDS ARE OMITTED clause.

When the INPUT, OUTPUT, or I-O options are specified, user label procedures are
executed as follows:

� When INPUT is specified, only for files opened as input
� When OUTPUT is specified, only for files opened as output
� When I-O is specified, only for files opened as I-O
� When EXTEND is specified, only for files opened EXTEND

If the INPUT, OUTPUT, or I-O phrase is specified, and an input, output, or I-O file,
respectively, is described with a LABEL RECORDS ARE OMITTED clause, the USE
procedures do not apply. The standard system procedures are performed:

� Before the beginning or ending input label check procedure is executed

� Before the beginning or ending output label is created

USE Statement

536 COBOL Language Reference

� After the beginning or ending output label is created, but before it is written on tape

� Before the beginning or ending input-output label check procedure is executed

Within the procedures of a USE declarative in which the USE sentence specifies an
option other than file-name , references to common label items need not be qualified by
a file-name. A common label item is an elementary data item that appears in every
label record of the program, but does not appear in any data records of this program.
Such items must have identical descriptions and positions within each label record.

Within a Declarative Section there must be no reference to any non-declarative proce-
dure. Conversely, in the non-declarative portion there must be no reference to
procedure-names that appear in the Declarative Section, except that the PERFORM
statement can refer to a USE procedure, or to procedures associated with it.

The exit from a Declarative Section is inserted by the compiler following the last state-
ment in the section. All logical program paths within the section must lead to the exit
point.

There is one exception: A special exit can be specified by the statement GO TO
MORE-LABELS. When an exit is made from a Declarative Section by means of this
statement, the system will do one of the following:

1. Write the current beginning or ending label and then reenter the USE section at its
beginning for further creating of labels. After creating the last label, the user must
exit by executing the last statement of the section.

2. Read an additional beginning or ending label, and then reenter the USE section at
its beginning for further checking of labels. When processing user labels, the
section will be reentered only if there is another user label to check. Hence, there
need not be a program path that flows through the last statement in the section.

If a GO TO MORE-LABELS statement is not executed for a user label, the declarative
section is not reentered to check or create any immediately succeeding user labels.

Debugging sections are not permitted in:

� A program or method defined with the RECURSIVE attribute

� A program compiled with the THREAD compiler option (Workstation only)

USE Statement

 DEBUGGING Declarative
Debugging sections are permitted only in the outermost program; they are not valid in
nested programs. Debugging sections are never triggered by procedures contained in
nested programs.

The WITH DEBUGGING MODE clause of the SOURCE compiler statement activates
all debugging sections and lines that have been compiled into the object program. See
Appendix C, “Source Language Debugging” on page 555, for additional details.

Part 8. Compiler-Directing Statements 537

USE Statement

When the debugging mode is suppressed by not specifying that option of the SOURCE
compiler, any USE FOR DEBUGGING declarative procedures and all debugging lines
are inhibited.

Automatic execution of a debugging section is not caused by a statement appearing in
a debugging section.

Format 3—USE (DEBUGGING Declarative)
 ┌ ┐────────────────────
55──USE─ ──┬ ┬───── ─DEBUGGING─ ──┬ ┬──── ──┬ ┬───6 ┴─procedure-name-1─ ─────────────────5%
 └ ┘─FOR─ └ ┘─ON─ └ ┘─ALL PROCEDURES───────

USE FOR DEBUGGING
All debugging statements must be written together in a section immediately after
the DECLARATIVES header.

Except for the USE FOR DEBUGGING sentence itself, within the debugging proce-
dure there must be no reference to any non-declarative procedures.

procedure-name-1
Must not be defined in a debugging session.

Table 53 shows, for each valid option, the points during program execution when
the USE FOR DEBUGGING procedures are executed.

Any given procedure-name can appear in only one USE FOR DEBUGGING sen-
tence, and only once in that sentence. All procedures must appear in the outer-
most program.

ALL PROCEDURES
Procedure-name-1 must not be specified in any USE FOR DEBUGGING sen-
tences. The ALL PROCEDURES phrase can be specified only once in a program.
Only the procedures contained in the outermost program will trigger execution of
the debugging section.

Table 53. Execution of Debugging Declaratives

USE FOR DEBUGGING
Operand

Upon execution of the following, the USE FOR DEBUGGING
procedures are executed immediately

procedure-name-1 Before each execution of the named procedure

After the execution of an ALTER statement referring to the named
procedure

ALL PROCEDURES Before each execution of every nondebugging procedure in the
outermost program

After the execution of every ALTER statement in the outermost
program (except ALTER statements in declarative procedures)

538 COBOL Language Reference

CALLINTERFACE

 Compiler Directives

A Compiler Directive is a statement that causes the compiler to take a specific action
during compilation.

Currently, CALLINTERFACE is the only compiler directive supported.

 CALLINTERFACE
The CALLINTERFACE directive specifies the interface convention for CALL...USING
statements. The convention specified stays in effect until another CALLINTERFACE
specification is made in the source program.

 Under MVS and VM, the CALLINTERFACE directive is not supported.

 Format
55─ ──┬ ┬─>>CALLINTERFACE─ ──┬ ┬────────── ──┬ ┬────────────── ───────────────────────5%
 └ ┘─>>CALLINT─────── ├ ┤─SYSTEM─── ├ ┤─DESC─────────
 ├ ┤─OPTLINK── ├ ┤─DESCRIPTOR───
 ├ ┤─FAR16──── ├ ┤─NODESC───────
 ├ ┤─PASCAL16─ └ ┘─NODESCRIPTOR─
 └ ┘─CDECL────

Note: If you specify a suboption that is not applicable to the platform, the entire
CALLINTERFACE directive is ignored for that platform. For example, if you
specify >>CALLINT CDECL for an OS/2 program, it is ignored.

For more information on which suboptions are in effect for multiple directive and
compiler option specifications, see “Precedence of Sub Options” on page 541.

SYSTEM
Specifies that the system linkage convention of the platform is used as the call
interface convention.

OPTLINK
Specifies that the _Optlink calling convention as defined by C Set++ is used as the
call interface convention.

Table 54. CALLINTERFACE Options supported by Platform

AIX OS/2 Windows

SYSTEM SYSTEM
OPTLINK
FAR16
PASCAL16

SYSTEM
OPTLINK
CDECL

DESC
NODESC

DESC
NODESC

DESC
NODESC

 Copyright IBM Corp. 1991, 1998 539

CALLINTERFACE

FAR16
Specifies that the _FAR16_CDecl calling convention as defined by C Set++ is used
as the call interface convention.

PASCAL16
Specifies that the _FAR16_Pascal calling convention as defined by C Set++ is
used as the call interface convention.

CDECL
Specifies that the CDECL calling convention as defined by Microsoft Visual C is
used as the call interface convention.

DESC, DESCRIPTOR
Indicates that an argument descriptor is passed for each argument on a CALL
statement.

NODESC, NODESCRIPTOR
Indicates that no argument descriptors are passed for any arguments on a CALL
statement. NODESC/NODESCRIPTOR is the default.

Specify CALLINTERFACE only in the Procedure Division.

The positions of CALL statements relative to the >>CALLINTERFACE directive are
recognized following any processing of COPY and REPLACE statements. For
example, CALL statements and >>CALLINTERFACE statements in COPY text are proc-
essed by the rules specified for the directive.

Syntax and General Rules
� You must specify a >>CALLINTERFACE on a line by itself, in Area B.

� You cannot specify >>CALLINTERFACE:

– Within a source text manipulation sentence (for example, COPY or
REPLACING)

– Between the lines of a continued character string
– On a debugging line
– In the middle of a COBOL statement

� The >>CALLINTERFACE specification is limited to the current program.

� The REPLACE statement and REPLACE phrase of the COPY statement do not
affect the CALLINTERFACE specification.

Difference Between the Directive and Compiler Option
You can indicate which calling convention you want by using either the
CALLINTERFACE directive or the CALLINT compiler option. Use the directive when
you want to use more than one call convention for the CALL statements in a compila-
tion unit. Use the compiler option when you want to use the same call convention for
the entire compilation unit.

++

540 COBOL Language Reference

CALLINTERFACE

Precedence of Sub Options
If you specify both the CALLINTERFACE directive (with suboptions) and the CALLINT
compiler option, the directive overrides the compiler option specification for the state-
ments following the directive within a source program.

If you specify the CALLINTERFACE directive without any suboptions, the CALLINT
compiler option specification is in effect.

If you specify only the DESC/NODESC suboption, the calling convention in effect is the
convention specified in the CALLINT compiler option. (DESC/NODESC are options
only for the CALLINTERFACE directive. They are not available in the CALLINT com-
piler option.) For example, if the CALLINT compiler option is set to CALLINT SYSTEM,
given the following directives:

(Section A)
...
>>CALLINTERFACE OPT
(Section B)
...
>>CALLINTERFACE DESC
(Section C)

the following specifications are in effect:

 � Section A—SYSTEM
 � Section B—OPT
� Section C—SYSTEM DESC

Compiler Directives 541

542 COBOL Language Reference

 Appendixes

 Copyright IBM Corp. 1991, 1998 543

Compiler Limits

 Appendix A. Compiler Limits

The following table lists the compiler limits for IBM COBOL programs running under
MVS, VM, AIX, OS/2, and Windows.

Table 55 (Page 1 of 4). Compiler Limits

Language Element Compiler Limit

Size of program 999,999 lines

Size of file record size (AIX, OS/2, and Windows) 64K

Number of literals 4,194,3031

Total length of literals 4,194,303 bytes1

Reserved Word Table entries 1536

COPY REPLACING ... BY ... (items per COPY state-
ment)

No limit

Number of COPY libraries No limit

Block size of COPY library 32,767 bytes

Identification Division

Environment Division

Configuration Section

SPECIAL-NAMES paragraph

function-name IS 18

UPSI-n ... (switches) 0-7

alphabet-name IS ... No limit

literal THRU/ALSO ... 256

Input-Output Section

FILE-CONTROL paragraph

SELECT file-name ... 65,535

ASSIGN system-name ... No limit2

ALTERNATE RECORD KEY data-name ... 253

RECORD KEY length No limit3

RESERVE integer (buffers) 2554

I-O-CONTROL paragraph

RERUN ON system-name ... 32,767

 integer RECORDS 16,777,215

SAME RECORD AREA 255

FOR file-name ... 255

SAME SORT/MERGE AREA No limit2

544 Copyright IBM Corp. 1991, 1998

Compiler Limits

Table 55 (Page 2 of 4). Compiler Limits

Language Element Compiler Limit

MULTIPLE FILE ... file-name No limit2

Data Division

File Section

FD file-name ... 65,535

LABEL data-name ... (if no optional clauses) 255

Label record length 80 bytes

DATA RECORD dnm ... No limit2

BLOCK CONTAINS integer 1,048,5755

RECORD CONTAINS integer 1,048,5755

 Item length 1,048,575 bytes5

LINAGE clause values 2**32 (4-byte binary numbers)

SD file-name ... 65,535

DATA RECORD dnm ... No limit2

Sort record length 32,751 bytes

Working-Storage Section

Items without the EXTERNAL attribute 134,217,727 bytes

Items with the EXTERNAL attribute 134,217,727 bytes

77 data-names 16,777,215 bytes

01-49 data-names 16,777,215 bytes

88 condition-name ... No limit

VALUE literal ... No limit

66 RENAMES ... No limit

PICTURE character-string 30

Numeric item digit positions 18

Numeric-edited character positions 249

PICTURE replication () 16,777,215

PIC repl (editing) 32,767

DBCS Picture replication () 8,388,607

Group item size: File Section 1,048,575 bytes

Elementary item size 16,777,215 bytes

VALUE initialization (Total length of all value literals) 16,777,215 bytes

OCCURS integer 16,777,215

Total number of ODOs 4,194,3031

 Table size 16,777,215 bytes

Table element size 8,388,607 bytes

Appendix A. Compiler Limits 545

Compiler Limits

Table 55 (Page 3 of 4). Compiler Limits

Language Element Compiler Limit

ASC/DES KEY ... (per OCCURS clause) 12 KEYS

 Total length 256 bytes

INDEXED BY ... (index names) (per OCCURS
clause)

12

Total num of indexes (index names) 65,535

Size of relative index 32,765

Linkage Section 134,217,727 bytes

Total 01 + 77 (data items) No limit

Procedure Division

Procedure + constant area 4,194,303 bytes1

USING identifier ... 32,767

Procedure-names 1,048,5751

Subscripted data-names per verb 32,767

Verbs per line (TEST) 7

ADD identifier ... No limit

ALTER pn1 TO pn2 ... 4,194,3031

CALL ... BY CONTENT id 2,147,483,647 bytes

CALL id/lit USING id/lit... 16380 (MVS and VM) 500 (AIX,
OS/2, and Windows)

CALL literal ... 4,194,3031

Active programs in run unit 32,767

Number of names called (DYN) No limit

CANCEL id/lit ... No limit

CLOSE file-name ... No limit

COMPUTE identifier ... No limit

DISPLAY id/lit ... No limit

DIVIDE identifier ... No limit

ENTRY USING id/lit ... No limit

EVALUATE ... subjects 64

EVALUATE ... WHEN clauses 256

GO pn ... DEPENDING 255

INSPECT TALLY/REPL clauses No limit

MERGE file-name ASC/DES KEY ... No limit

Total key length 4,092 bytes6

USING file-name ... 167

546 COBOL Language Reference

Compiler Limits

Table Notes (MVS and VM Only):

1 Items included in 4,194,303 byte limit for procedure plus constant area.
2 Treated as comment; there is no limit.
3 No compiler limit, but VSAM limits it to 255 bytes.
4 QSAM
5 Compiler limit shown, but QSAM limits it to 32,767 bytes.
6 For QSAM and VSAM, the limit is 4088 bytes if EQUALS is coded on the OPTION

control statement.
7 SORT limit for QSAM and VSAM.

Table 55 (Page 4 of 4). Compiler Limits

Language Element Compiler Limit

MOVE id/lit TO id ... No limit

MULTIPLY identifier ... No limit

OPEN file-name No limit

PERFORM 4,194,303

SEARCH ... WHEN ... No limit

SET index/id ... TO No limit

SET index ... UP/DOWN No limit

SORT file-name ASC/DES KEY No limit

Total key length 4,092 bytes6

USING file-name ... 167

STRING identifier ... No limit

DELIMITED id/lit ... No limit

UNSTRING DELIMITED id/lit OR id/lit ... 255

UNSTRING INTO id/lit ... No limit

USE ... ON file-name ... No limit

Appendix A. Compiler Limits 547

EBCDIC Collating Sequence

Appendix B. EBCDIC and ASCII Collating Sequences

The ascending collating sequences for both the EBCDIC (Extended Binary Coded
Decimal Interchange Code) and ASCII (American National Standard Code for Informa-
tion Interchange) character sets are shown in this appendix. In addition to the symbol
and meaning for each character, the ordinal number (beginning with 1), decimal repre-
sentation, and hexadecimal representation are given.

EBCDIC Collating Sequence

Table 56 (Page 1 of 4). EBCDIC Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

65 ␣ Space 64 40
...

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, Logical OR 79 4F

81 & Ampersand 80 50
...

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61
...

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

111 > Greater than sign 110 6E

112 ? Question mark 111 6F
...

548 Copyright IBM Corp. 1991, 1998

EBCDIC Collating Sequence

Table 56 (Page 2 of 4). EBCDIC Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign 124 7C

126 ' Apostrophe, prime sign 125 7D

127 = Equal sign 126 7E

128 " Quotation marks 127 7F
...

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89
...

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99
...

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

168 x 167 A7

169 y 168 A8

Appendix B. EBCDIC and ASCII Collating Sequences 549

EBCDIC Collating Sequence

Table 56 (Page 3 of 4). EBCDIC Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

170 z 169 A9
...

194 A 193 C1

195 B 194 C2

196 C 195 C3

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

201 H 200 C8

202 I 201 C9
...

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9
...

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

233 Y 232 E8

234 Z 233 E9
...

241 0 240 F0

242 1 241 F1

243 2 242 F2

550 COBOL Language Reference

ASCII Code Values

Table 56 (Page 4 of 4). EBCDIC Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

US English ASCII Code Page (ISO 646)

Table 57 (Page 1 of 4). ASCII Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

1 Null 0 0
...

33 ␣ Space 32 20

34 ! Exclamation point 33 21

35 " Quotation mark 34 22

36 # Number sign 35 23

37 $ Dollar sign 36 24

38 % Percent sign 37 25

39 & Ampersand 38 26

40 ' Apostrophe, prime sign 39 27

41 (Opening parenthesis 40 28

42) Closing parenthesis 41 29

43 * Asterisk 42 2A

44 + Plus sign 43 2B

45 , Comma 44 2C

46 - Hyphen, minus 45 2D

47 . Period, decimal point 46 2E

48 / Slant 47 2F

49 0 48 30

50 1 49 31

51 2 50 32

Appendix B. EBCDIC and ASCII Collating Sequences 551

ASCII Code Values

Table 57 (Page 2 of 4). ASCII Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

52 3 51 33

53 4 52 34

54 5 53 35

55 6 54 36

56 7 55 37

57 8 56 38

58 9 57 39

59 : Colon 58 3A

60 ; Semicolon 59 3B

61 < Less than sign 60 3C

62 = Equal sign 61 3D

63 > Greater than sign 62 3E

64 ? Question mark 63 3F

65 @ Commercial At sign 64 40

66 A 65 41

67 B 66 42

68 C 67 43

69 D 68 44

70 E 69 45

71 F 70 46

72 G 71 47

73 H 72 48

74 I 73 49

75 J 74 4A

76 K 75 4B

77 L 76 4C

78 M 77 4D

79 N 78 4E

80 O 79 4F

81 P 80 50

82 Q 81 51

83 R 82 52

84 S 83 53

85 T 84 54

552 COBOL Language Reference

ASCII Code Values

Table 57 (Page 3 of 4). ASCII Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

86 U 85 55

87 V 86 56

88 W 87 57

89 X 88 58

90 Y 89 59

91 Z 90 5A

92 [Opening bracket 91 5B

93 \ Reverse slant 92 5C

94] Closing bracket 93 5D

95 ^ Caret 94 5E

96 _ Underscore 95 5F

97 ` Grave Accent 96 60

98 a 97 61

99 b 98 62

00 c 99 63

01 d 100 64

02 e 101 65

03 f 102 66

04 g 103 67

05 h 104 68

06 i 105 69

07 j 106 6A

08 k 107 6B

09 l 108 6C

10 m 109 6D

11 n 110 6E

12 o 111 6F

13 p 112 70

14 q 113 71

15 r 114 72

16 s 115 73

17 t 116 74

18 u 117 75

19 v 118 76

Appendix B. EBCDIC and ASCII Collating Sequences 553

ASCII Code Values

Table 57 (Page 4 of 4). ASCII Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Representation

Hex
Representation

20 w 119 77

21 x 120 78

22 y 121 79

23 z 122 7A

24 { Opening brace 123 7B

25 ¦ Split vertical bar 124 7C

26 } Closing brace 125 7D

27 ˜ Tilde 126 7E

554 COBOL Language Reference

Source Language Debugging

Appendix C. Source Language Debugging

COBOL language elements that implement the debugging feature are:

 � Debugging lines
 � Debugging sections
� DEBUG-ITEM special register
� Compile-time switch (WITH DEBUGGING MODE clause)

 � Object-time switch

Coding Debugging Lines
A debugging line is a statement that is compiled only when the compile-time switch is
activated. Debugging lines allow you, for example, to check the value of a data-name
at certain points in a procedure.

To specify a debugging line in your program, code a “D” in column 7 (the indicator
area). You can include successive debugging lines, but each must have a “D” in
column 7 and you cannot break character strings across two lines.

All your debugging lines must be written so that the program is syntactically correct,
whether the debugging lines are compiled or treated as comments.

You can code debugging lines anywhere in your program after the
OBJECT-COMPUTER paragraph.

If a debugging line contains only spaces in Area A and in Area B, it is treated as a
blank line.

Coding Debugging Sections
Debugging sections are only permitted in the outermost program; they are not valid in
nested programs. Debugging sections are never triggered by procedures contained in
nested programs.

Debugging sections are declarative procedures. Declarative procedures are described
under “USE Statement” on page 533. A debugging section can be invoked, for
example, by a PERFORM statement that causes repeated execution of a procedure.
Any associated procedure-name debugging declarative section is executed once for
each repetition.

A debugging section executes only if both the compile-time switch and the object-time
switch are activated.

The debug feature recognizes each separate occurrence of an imperative statement
within an imperative statement as the beginning of a separate statement.

 Copyright IBM Corp. 1991, 1998 555

Source Language Debugging

You cannot refer to a procedure defined within a debugging section in a statement
outside of the debugging section.

References to the DEBUG-ITEM special register can be made only from within a
debugging declarative procedure.

DEBUG-ITEM Special Register
For information on the DEBUG-ITEM special register, see “DEBUG-ITEM Special
Register.”

Activate Compile-Time Switch
The compile-time switch activates the debugging lines and sections. To place the
compile-time switch in effect, specify WITH DEBUGGING MODE in the SOURCE COM-
PUTER paragraph of the Configuration Section.

 Format
55──SOURCE-COMPUTER.─ ──┬ ┬── ────────────────────────5%
 └ ┘ ─computer-name─ ──┬ ┬────────────────────────── ─.─
 └ ┘ ──┬ ┬────── ─DEBUGGING MODE─
 └ ┘─WITH─

WITH DEBUGGING MODE
When WITH DEBUGGING MODE is specified, all debugging sections and debug-
ging lines are compiled.

When WITH DEBUGGING MODE is omitted, all debugging sections and debug-
ging lines are treated as comments.

Note: If you include a COPY statement as a debugging line, the “D” must appear on
the first line of the COPY statement. IBM COBOL treats the copied text as the debug-
ging line or lines. The COPY statement is executed, regardless of whether WITH
DEBUGGING MODE is specified or not.

Activate Object-Time Switch
The object-time switch is set when the run-time option DEBUG or NODEBUG is speci-
fied. (DEBUG is the default supplied by IBM.)

For details on the format, see:

� Language Environment Programming Guide for MVS and VM

� COBOL Set for AIX Programming Guide for AIX

� VisualAge COBOL Programming Guide for OS/2 and Windows

The USE FOR DEBUGGING declarative procedures are activated when DEBUG is in
effect and inhibited when NODEBUG is in effect.

The debugging lines (D in column 7) are not affected by the DEBUG/NODEBUG option;
they are always active if they have been compiled.

556 COBOL Language Reference

Source Language Debugging

When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER para-
graph, the object-time switch has no effect on execution of the object program.

You do not have to recompile the source program to activate or deactivate the object-
time switch.

Appendix C. Source Language Debugging 557

Reserved Words

 Appendix D. Reserved Words

This list identifies all reserved words in the COBOL for MVS & VM, COBOL Set for AIX, and VisualAge
COBOL products. It also identifies words that are reserved in the COBOL 85 Standard (which are not
reserved in the IBM COBOL products), and words reserved for future development.

� Words marked under IBM COBOL are reserved words in the COBOL for MVS & VM, COBOL Set for
AIX, and VisualAge COBOL products. These reserved words include both reserved words for IBM
extensions and a subset of the COBOL 85 Standard reserved words.

Reserved words marked 1 are applicable only to AIX, OS/2, and Windows.

� Words marked under Standard Only are COBOL 85 Standard reserved words for function not imple-
mented in IBM COBOL products. If used as user-defined names, these words are flagged with an
S-LEVEL message.

� Words marked under RFD are reserved for future development and are flagged with an I-LEVEL
message.

Words marked X2 under RFD are reserved for future development under MVS and VM only.

Note: You can change which reserved word table is used by using the WORD compiler option. For
details, on how to specify an alternate reserved word table, see the IBM COBOL Programming Guide for
your platform.

Table 58 (Page 1 of 7). Reserved Words Table 58 (Page 1 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

ACCEPT X ARITHMETIC X

ACCESS X ASCENDING X

ADD X ASSIGN X

ADDRESS X AT X

ADVANCING X AUTHOR X

AFTER X AUTOMATIC 1 X

ALL X B-AND X

ALLOWING X B-EXOR X

ALPHABET X B-LESS X

ALPHABETIC X B-NOT X

ALPHABETIC-LOWER X B-OR X

ALPHABETIC-UPPER X BASIS X

ALPHANUMERIC X BEFORE X

ALPHANUMERIC-EDITED X BEGINNING X

ALSO X BINARY X

ALTER X BIT X

ALTERNATE X BITS X

AND X BLANK X

ANY X BLOCK X

APPLY X BOOLEAN X

ARE X BOTTOM X

AREA X BY X

AREAS X CALL X

558 Copyright IBM Corp. 1991, 1998

Reserved Words

Table 58 (Page 2 of 7). Reserved Words Table 58 (Page 2 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

CANCEL X CONTAINS X

CBL X CONTENT X

CD X CONTINUE X

CF X CONTROL X

CH X CONTROLS X

CHARACTER X CONVERTING X

CHARACTERS X COPY X

CLASS X CORR X

CLASS-ID X CORRESPONDING X

CLOCK-UNITS X COUNT X

CLOSE X CURRENCY X

COBOL X CURRENT X

CODE X CYCLE X

CODE-SET X DATA X

COLLATING X DATE X

COLUMN X DATE-COMPILED X

COM-REG X DATE-WRITTEN X

COMMA X DAY X

COMMIT X DAY-OF-WEEK X

COMMON X DB X

COMMUNICATION X DB-ACCESS-CONTROL-KEY X

COMP X DB-DATA-NAME X

COMP-1 X DB-EXCEPTION X

COMP-2 X DB-RECORD-NAME X

COMP-3 X DB-SET-NAME X

COMP-4 X DB-STATUS X

COMP-5 1 X X2 DBCS X

COMP-6 X DE X

COMP-7 X DEBUG-CONTENTS X

COMP-8 X DEBUG-ITEM X

COMP-9 X DEBUG-LINE X

COMPUTATIONAL X DEBUG-NAME X

COMPUTATIONAL-1 X DEBUG-SUB-1 X

COMPUTATIONAL-2 X DEBUG-SUB-2 X

COMPUTATIONAL-3 X DEBUG-SUB-3 X

COMPUTATIONAL-4 X DEBUGGING X

COMPUTATIONAL-5 1 X X2 DECIMAL-POINT X

COMPUTATIONAL-6 X DECLARATIVES X

COMPUTATIONAL-7 X DEFAULT X

COMPUTATIONAL-8 X DELETE X

COMPUTATIONAL-9 X DELIMITED X

COMPUTE X DELIMITER X

CONFIGURATION X DEPENDING X

CONNECT X DESCENDING X

CONTAINED X DESTINATION X

Appendix D. Reserved Words 559

Reserved Words

Table 58 (Page 3 of 7). Reserved Words Table 58 (Page 3 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

DETAIL X END-SEND X

DISABLE X END-START X

DISCONNECT X END-STRING X

DISPLAY X END-SUBTRACT X

DISPLAY-1 X END-TRANSCEIVE X

DISPLAY-2 X END-UNSTRING X

DISPLAY-3 X END-WRITE X

DISPLAY-4 X ENDING X

DISPLAY-5 X ENTER X

DISPLAY-6 X ENTRY X

DISPLAY-7 X ENVIRONMENT X

DISPLAY-8 X EOP X

DISPLAY-9 X EQUAL X

DIVIDE X EQUALS X

DIVISION X ERASE X

DOWN X ERROR X

DUPLICATE X ESI X

DUPLICATES X EVALUATE X

DYNAMIC X EVERY X

EGCS X EXACT X

EGI X EXCEEDS X

EJECT X EXCEPTION X

ELSE X EXCLUSIVE X

EMI X EXIT X

EMPTY X EXTEND X

ENABLE X EXTERNAL X

END X FALSE X

END-ADD X FD X

END-CALL X FETCH X

END-COMPUTE X FILE X

END-DELETE X FILE-CONTROL X

END-DISABLE X FILLER X

END-DIVIDE X FINAL X

END-ENABLE X FIND X

END-EVALUATE X FINISH X

END-IF X FIRST X

END-INVOKE X FOOTING X

END-MULTIPLY X FOR X

END-OF-PAGE X FORM X

END-PERFORM X FORMAT X

END-READ X FREE X

END-RECEIVE X FROM X

END-RETURN X FUNCTION X

END-REWRITE X GENERATE X

END-SEARCH X GET X

560 COBOL Language Reference

Reserved Words

Table 58 (Page 4 of 7). Reserved Words Table 58 (Page 4 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

GIVING X LABEL X

GLOBAL X LAST X

GO X LD X

GOBACK X LEADING X

GREATER X LEFT X

GROUP X LENGTH X

HEADING X LESS X

HIGH-VALUE X LIMIT X

HIGH-VALUES X LIMITS X

I-O X LINAGE X

I-O-CONTROL X LINAGE-COUNTER X

ID X LINE X

IDENTIFICATION X LINE-COUNTER X

IF X LINES X

IN X LINKAGE X

INDEX X LOCALLY X

INDEX-1 X LOCAL-STORAGE X

INDEX-2 X LOCK X

INDEX-3 X LOW-VALUE X

INDEX-4 X LOW-VALUES X

INDEX-5 X MEMBER X

INDEX-6 X MEMORY X

INDEX-7 X MERGE X

INDEX-8 X MESSAGE X

INDEX-9 X METACLASS X

INDEXED X METHOD X

INDICATE X METHOD-ID X

INHERITS X MODE X

INITIAL X MODIFY X

INITIALIZE X MODULES X

INITIATE X MORE-LABELS X

INPUT X MOVE X

INPUT-OUTPUT X MULTIPLE X

INSERT X MULTIPLY X

INSPECT X NATIVE X

INSTALLATION X NEGATIVE X

INTO X NEXT X

INVALID X NO X

INVOKE X NORMAL X

IS X NOT X

JUST X NULL X

JUSTIFIED X NULLS X

KANJI X NUMBER X

KEEP X NUMERIC X

KEY X NUMERIC-EDITED X

Appendix D. Reserved Words 561

Reserved Words

Table 58 (Page 5 of 7). Reserved Words Table 58 (Page 5 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

OBJECT X PURGE X

OBJECT-COMPUTER X QUEUE X

OCCURS X QUOTE X

OF X QUOTES X

OFF X RANDOM X

OMITTED X RD X

ON X READ X

ONLY X READY X

OPEN X REALM X

OPTIONAL X RECEIVE X

OR X RECONNECT X

ORDER X RECORD X

ORGANIZATION X RECORD-NAME X

OTHER X RECORDING X

OUTPUT X RECORDS X

OVERFLOW X RECURSIVE X

OVERRIDE X REDEFINES X

OWNER X REEL X

PACKED-DECIMAL X REFERENCE X

PADDING X REFERENCES X

PAGE X RELATION X

PAGE-COUNTER X RELATIVE X

PARAGRAPH X RELEASE X

PASSWORD X RELOAD X

PERFORM X REMAINDER X

PF X REMOVAL X

PH X RENAMES X

PIC X REPEATED X

PICTURE X REPLACE X

PLUS X REPLACING X

POINTER X REPORT X

POSITION X REPORTING X

POSITIVE X REPORTS X

PRESENT X REPOSITORY X

PREVIOUS 1 X X2 RERUN X

PRINTING X RESERVE X

PRIOR X RESET X

PROCEDURE X RETAINING X

PROCEDURE-POINTER X RETRIEVAL X

PROCEDURES X RETURN X

PROCEED X RETURN-CODE X

PROCESSING X RETURNING X

PROGRAM X REVERSED X

PROGRAM-ID X REWIND X

PROTECTED X REWRITE X

562 COBOL Language Reference

Reserved Words

Table 58 (Page 6 of 7). Reserved Words Table 58 (Page 6 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD Reserved Word
IBM

COBOL
Standard

Only RFD

RF X STANDARD-1 X

RH X STANDARD-2 X

RIGHT X STANDARD-3 X

ROLLBACK X STANDARD-4 X

ROUNDED X START X

RUN X STATUS X

SAME X STOP X

SD X STORE X

SEARCH X STRING X

SECTION X SUB-QUEUE-1 X

SECURITY X SUB-QUEUE-2 X

SEGMENT X SUB-QUEUE-3 X

SEGMENT-LIMIT X SUB-SCHEMA X

SELECT X SUBTRACT X

SELF X SUM X

SEND X SUPER X

SENTENCE X SUPPRESS X

SEPARATE X SYMBOLIC X

SEQUENCE X SYNC X

SEQUENTIAL X SYNCHRONIZED X

SERVICE X TABLE X

SESSION-ID X TALLY X

SET X TALLYING X

SHARED X TAPE X

SHIFT-IN X TENANT X

SHIFT-OUT X TERMINAL X

SIGN X TERMINATE X

SIZE X TEST X

SKIP1 X TEXT X

SKIP2 X THAN X

SKIP3 X THEN X

SORT X THROUGH X

SORT-CONTROL X THRU X

SORT-CORE-SIZE X TIME X

SORT-FILE-SIZE X TIMEOUT X

SORT-MERGE X TIMES X

SORT-MESSAGE X TITLE X

SORT-MODE-SIZE X TO X

SORT-RETURN X TOP X

SOURCE X TRACE X

SOURCE-COMPUTER X TRAILING X

SPACE X TRANSCEIVE X

SPACES X TRUE X

SPECIAL-NAMES X TYPE X

STANDARD X UNEQUAL X

Appendix D. Reserved Words 563

Reserved Words

Table 58 (Page 7 of 7). Reserved Words

Reserved Word
IBM

COBOL
Standard

Only RFD

UNIT X

UNSTRING X

UNTIL X

UP X

UPDATE X

UPON X

USAGE X

USAGE-MODE X

USE X

USING X

VALID X

VALIDATE X

VALUE X

VALUES X

VARYING X

WAIT X

WHEN X

WHEN-COMPILED X

WITH X

WITHIN X

WORDS X

WORKING-STORAGE X

WRITE X

WRITE-ONLY X

ZERO X

ZEROES X

ZEROS X

< X

<= X

+ X

* X

** X

- X

/ X

> X

>= X

= X

Note: 1 These words are reserved under AIX, OS/2, and Windows
only.

2 These words are reserved for future development (RFD) under
MVS and VM only.

564 COBOL Language Reference

ASCII Considerations

Appendix E. ASCII Considerations for MVS and VM

The compiler supports the American National Standard Code for Information Inter-
change (ASCII). Thus, the programmer can create and process tape files recorded in
accordance with the following standards:

� American National Standard Code for Information Interchange, X3.4-1977

� American National Standard Magnetic Tape Labels for Information Interchange,
X3.27-1978

� American National Standard Recorded Magnetic Tape for Information Interchange
(800 CPI, NRZI), X3.22-1967

ASCII-encoded tape files, when read into the system, are automatically translated in the
buffers into EBCDIC. Internal manipulation of data is performed exactly as if the ASCII
files were EBCDIC-encoded files. For an output file, the system translates the EBCDIC
characters into ASCII in the buffers before writing the file on tape. Therefore, there are
special considerations concerning ASCII-encoded files when they are processed in
COBOL.

This appendix also applies (with appropriate modifications) to the International Refer-
ence Version of the ISO 7-bit code (ISCII) defined in International Standard 646, 7-Bit
Coded Character Set for Information Processing Interchange. The ISCII code set
differs from ASCII only in the graphic representation of two code points:

� Ordinal number 37, which is a dollar sign in ASCII, but a lozenge in ISCII

� Ordinal number 127, which is a tilde (˜) in ASCII, but an overline (or optionally a
tilde) in ISCII.

Note: In the following discussion, the information given for STANDARD-1 also applies
to STANDARD-2 except where otherwise specified.

The following paragraphs discuss the special considerations concerning ASCII- (or
ISCII-) encoded files.

 Environment Division
In the Environment Division, the OBJECT-COMPUTER, SPECIAL-NAMES, and
FILE-CONTROL paragraphs are affected.

OBJECT-COMPUTER and SPECIAL-NAMES Paragraphs
When at least one file in the program is an ASCII-encoded file, the alphabet-name
clause of the SPECIAL-NAMES paragraph must be specified; the alphabet-name must
be associated with STANDARD-1 or STANDARD-2 (for ASCII or ISCII collating
sequence or CODE SET, respectively).

When nonnumeric comparisons within the object program are to use the ASCII collating
sequence, the PROGRAM COLLATING SEQUENCE clause of the

 Copyright IBM Corp. 1991, 1998 565

ASCII Considerations

OBJECT-COMPUTER paragraph must be specified; the alphabet-name used must also
be specified as an alphabet-name in the SPECIAL-NAMES paragraph, and associated
with STANDARD-1. For example:

Object-computer. IBM-39ð
 Program collating sequence is ASCII-sequence.
Special-names. Alphabet ASCII-sequence is standard-1.

When both clauses are specified, the ASCII collating sequence is used in this program
to determine the truth value of the following nonnumeric comparisons:

� Those explicitly specified in relation conditions
� Those explicitly specified in condition-name conditions
� Any nonnumeric sort or merge keys (unless the COLLATING SEQUENCE phrase

is specified in the MERGE or SORT statement).

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC col-
lating sequence is used for such comparisons.

The PROGRAM COLLATING SEQUENCE clause, in conjunction with the alphabet-
name clause, can be used to specify EBCDIC nonnumeric comparisons for an
ASCII-encoded tape file or ASCII nonnumeric comparisons for an EBCDIC-encoded
tape file.

The literal option of the alphabet-name clause can be used to process internal data in a
collating sequence other than NATIVE or STANDARD-1.

 FILE-CONTROL Paragraph
For ASCII files, the ASSIGN clause assignment-name has the following formats:

 Format—QSAM File
55─ ──┬ ┬───────── ──┬ ┬───── ─name───5%

└ ┘──label- └ ┘─S- ─

The file must be a QSAM file assigned to a magnetic tape device.

label-
Documents the device and device class to which a file is assigned. If specified, it
must end with a hyphen.

S- The organization field. Optional for QSAM files, which always have sequential
organization.

name
A required 1- to 8-character field that specifies the external name for this file.

 I-O-CONTROL Paragraph
The assignment-name in a RERUN clause must not specify an ASCII-encoded file.

ASCII-encoded files containing checkpoint records cannot be processed.

566 COBOL Language Reference

ASCII Considerations

 Data Division
In the Data Division, there are special considerations for the FD entry and for data
description entries.

For each logical file defined in the Environment Division, there must be a corresponding
FD entry and level-01 record description entry in the File Section of the Data Division.

FD Entry—CODE-SET Clause
The FD Entry for an ASCII-encoded file must contain a CODE-SET clause; the
alphabet-name must be associated with STANDARD-1 (for the ASCII code set) in the
SPECIAL-NAMES paragraph. For example:

Special-names. Alphabet ASCII-sequence is standard-1.
 .
 .
 .
FD ASCII-file label records standard
 Recording mode is f
 Code-set is ASCII-sequence.

Data Description Entries
For ASCII files, the following data description considerations apply:

� PICTURE clause specifications for all five categories of data are valid.
� For signed numeric items, the SIGN clause with the SEPARATE CHARACTER

phrase must be specified.
� For the USAGE clause, only the DISPLAY phrase is valid.

 Procedure Division
An ASCII collated sort/merge operation can be specified in two ways:

� Through the PROGRAM COLLATING SEQUENCE clause in the
OBJECT-COMPUTER paragraph.

In this case, the ASCII collating sequence is used for nonnumeric comparisons
explicitly specified in relation conditions and condition-name conditions.

� Through the COLLATING SEQUENCE phrase of the SORT or MERGE statement.

In this case, only this sort/merge operation uses the ASCII collating sequence.

In either case, alphabet-name must be associated with STANDARD-1 (for ASCII col-
lating sequence) in the SPECIAL-NAMES paragraph.

For this sort/merge operation, the COLLATING SEQUENCE option takes precedence
over the PROGRAM COLLATING SEQUENCE clause.

If both the PROGRAM COLLATING SEQUENCE clause and the COLLATING
SEQUENCE phrase are omitted (or if the one in effect specifies an EBCDIC collating
sequence), the sort/merge is performed using the EBCDIC collating sequence.

Appendix E. ASCII Considerations for MVS and VM 567

Locale

Appendix F. Locale Considerations (Workstation Only)

A locale is defined by language-specific and cultural-specific conventions for processing
information. All such information should be accessible to a program at run time so that
the same program can display or process data differently for different countries.

Locale information consists of data from six categories. Each locale is described by a
locale definition file. The following standard categories can be defined in a locale defi-
nition source file:

LC_CTYPE Defines character classification, case conversion, and other character attri-
butes. Use this category to define the code page in effect.

LC_COLLATE Defines string-collation order information. For IBM COBOL workstation
products running on AIX, OS/2, and Windows, this defines the collating
sequence in effect. This only impacts any > or < comparisons, such as
relational conditions and the SORT or MERGE verb.

LC_MESSAGES Defines the format for affirmative and negative responses and impacts
whether messages (error messages and listing headers for example) are in
US English or Japanese. For any locale other than Japanese, US English
is used.

LC_MONETARY Defines rules an symbols for formatting monetary numeric information.

For IBM COBOL workstation products running on AIX, OS/2, and Windows,
this attribute has no affect. Monetary value representation is controlled
through the COBOL language syntax.

LC_NUMERIC Defines rules and symbols for formatting nonmonetary numeric informa-
tion.

For IBM COBOL workstation products running on AIX, OS/2, and Windows,
this attribute has no affect. Nonmonetary numeric value representation is
controlled through the COBOL language syntax.

LC_TIME Lists rules and symbols for formatting time and date information.

For IBM COBOL workstation products running on AIX, OS/2, and Windows,
this attribute only affects the date and time shown on the compiler listings.
All other date and time values are controlled through the COBOL language
syntax.

Locale definition files are named by the language, territory, and code set information
they describe.

568 Copyright IBM Corp. 1991, 1998

Appendix G. Summary of Language Difference: Host COBOL and
Workstation COBOL

Table 59 lists the language elements that are different between COBOL for MVS & VM
and the IBM Workstation COBOL compilers (COBOL Set for AIX and VisualAge
COBOL). Many COBOL for MVS & VM clauses and phrases are treated as comments
under AIX, OS/2, and Windows. However, this will have minimal effect on existing
applications that you download to the workstation. The Workstation compilers recog-
nize and process most COBOL for MVS & VM language syntax, even if the language
element has no functional effect.

Table 59 (Page 1 of 2). Language Difference Between Mainframe and Workstation IBM COBOL

Language Element Implementation

ACCEPT statement Under AIX, OS/2, and Windows, environment-name determines file identifi-
cation.

APPLY WRITE-ONLY clause Treated as a comment under AIX, OS/2, and Windows.

ASSIGN clause Different syntax for the ASSIGNment name. ASSIGN...USING data-name is
not supported on MVS and VM.

BLOCK CONTAINS clause Treated as a comment under AIX, OS/2, and Windows.

CALL statement A file-name as a CALL argument is not supported under AIX, OS/2, and
Windows.

CLOSE statement The following phrases are treated as comments under AIX, OS/2, and
Windows: FOR REMOVAL, WITH NO REWIND, and UNIT/REEL.

CODE-SET clause Treated as a comment under AIX, OS/2, and Windows.

DISPLAY statement Under AIX, OS/2, and Windows, environment-name determines file identifi-
cation.

File Status data-name-1 Some values and meanings for file status 9x are different under MVS and
VM than under AIX, OS/2, and Windows.

File Status data-name-8 The format and values are different depending on the platform and the file
system.

LABEL RECORD clause LABEL RECORD IS data-name, USE...AFTER...LABEL PROCEDURE, and
GO TO MORE-LABELS are treated as comments under AIX, OS/2, and
Windows. These language elements are processed by the compiler;
however, the user label declaratives are not invoked at run time.

Line Sequential files Line sequential I-O is not supported on MVS and VM.

LOCK MODE clause For OS/2 VSAM files, you can use this clause to specify the locking tech-
nique used for files.

MULTIPLE FILE TAPE Treated as a comment under AIX, OS/2, and Windows. On the workstation,
all files are treated as single volume files.

OPEN statement The following phrases are treated as comments under AIX, OS/2, and
Windows: REVERSED and WITH NO REWIND.

PASSWORD clause Treated as a comment under AIX, OS/2, and Windows.

 Copyright IBM Corp. 1991, 1998 569

Table 59 (Page 2 of 2). Language Difference Between Mainframe and Workstation IBM COBOL

Language Element Implementation

POINTER and
PROCEDURE-POINTER data items

Under COBOL for MVS & VM, a POINTER data item is defined as 4 bytes;
a PROCEDURE-POINTER data item is defined as 8 bytes. Under AIX,
OS/2, and Windows, the size of these data items are consistent with the
native pointer definition of the platform (4 bytes for 32-bit machines and 8
bytes for 64-bit machines).

READ...PREVIOUS Under AIX, OS/2, and Windows only, allows you to read the previous record
for relative or index files with DYNAMIC access mode.

RECORD CONTAINS clause The RECORD CONTAINS n CHARACTERS clause is accepted with one
exception: RECORD CONTAINS 0 CHARACTERS is treated as a comment
under AIX, OS/2, and Windows.

RECORDING MODE clause Treated as a comment under AIX, OS/2, and Windows for relative, indexed,
and line sequential files.

RERUN clause Treated as a comment under AIX, OS/2, and Windows.

RESERVE clause Treated as a comment under AIX, OS/2, and Windows.

SAME AREA clause Treated as a comment under AIX, OS/2, and Windows.

SAME SORT clause Treated as a comment under AIX, OS/2, and Windows.

SET statement Under AIX, OS/2, and Windows, format 5, rules for identifier-7 have exten-
sions.

SORT-CONTROL special register The contents of this special register differ between host and workstation
COBOL.

SORT-CORE-SIZE special register The contents of this special register differ between host and workstation
COBOL.

SORT-FILE-SIZE special register Treated as a comment under AIX, OS/2, and Windows. Values in this
special register are not used.

SORT-MESSAGE special register Treated as a comment under AIX, OS/2, and Windows.

SORT-MODE-SIZE special register Treated as a comment under AIX, OS/2, and Windows. Values in this
special register are not used.

SORT MERGE AREA clause Treated as a comment under AIX, OS/2, and Windows.

START...< Under AIX, OS/2, and Windows, the following relational operators are
allowed: IS LESS THAN, IS <, IS NOT GREATER THAN, IS NOT >, IS
LESS THAN OR EQUAL TO, IS <=

USAGE clause Under AIX, OS/2, and Windows, addition of COMP-5 (new data type, native
binary data format).

WRITE statement Under AIX, OS/2, and Windows, if you specify the WRITE...ADVANCING
with environment names: C01 - C12 or S01 - S05, one line is advanced.

Names known to the platform envi-
ronment

The following names are identified differently: program-name, text-name,
library-name, assignment-name, SORT-CONTROL special register, basis-
name, DISPLAY/ACCEPT target identification, and system-dependent
names.

570 COBOL Language Reference

Industry Specifications

 Appendix H. Industry Specifications

The following industry specifications are supported:

1. ISO 1989:1985, Programming languages - COBOL.

ISO 1989/Amendment 1, Programming languages - COBOL - Amendment 1:
Intrinsic function module.

ISO 1989:1985 is identical to X3.23-1985, American National Standard for Informa-
tion Systems - Programming Language - COBOL.

ISO 1989/Amendment 1 is identical to X3.23a-1989, American National Standard
for Information Systems - Programming Language - Intrinsic Function Module for
COBOL.

ISO 1989:1985/Amd.2:1994, Programming languages - COBOL - Amendment 2:
Correction and clarification amendment for COBOL

ISO 1989:1985/Amd.2:1994 is identical to ANSI X3.23b-1993, American National
Standard for Information Systems - Programming Language - Correction Amend-
ment for COBOL

For supported modules, see item 2 below.

2. X3.23-1985, American National Standard for Information Systems - Programming
Language - COBOL.

X3.23a-1989, American National Standard for Information Systems - Programming
Language - Intrinsic Function Module for COBOL. ANSI X3.23b-1993, American
National Standard for Information Systems - Programming Language - Correction
Amendment for COBOL

All required modules are supported at the highest level defined by the standard. In
the following list, the shorthand notation for describing module levels is shown in
parentheses. For example, to summarize module information for sequential
input/output, the shorthand notation is (2 SEQ 1,2). The first digit indicates the
level of language elements within the module supported by IBM COBOL. Next is
the 3-character abbreviation of the module name as used in the standard. Finally,
the 2 digits separated by a comma indicate the minimum and maximum levels of
the module. For example, (2 SEQ 1,2) means that IBM COBOL supports the
sequential I-O module at level 2, while the range of levels in the module is from 1
(minimum) to 2 (maximum).

� Nucleus (2 NUC 1,2)

Provides internal processing of data within the four basic divisions of a
program and the capability for defining and accessing tables.

� Sequential I-O (2 SEQ 1,2)

Provides access to records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

� Relative I-O (2 REL 0,2)

 Copyright IBM Corp. 1991, 1998 571

Industry Specifications

Provides access to records in either a random or sequential manner. Each
record is uniquely identified by an integer specifying the record's logical posi-
tion in a file.

� Indexed I-O (2 INX 0,2)

Provides access to records in either a random or sequential manner. Each
record in an indexed file is uniquely identified by the value of a key within that
record.

� Sort-Merge (1 SRT 0,1)

Orders one or more files of records, or combines two or more identically
ordered files of records, according to a set of user-specified keys.

� Inter-Program Communication (2 IPC 1,2)

Allows a COBOL program to communicate with other programs through trans-
fers of control and access to common data items.

� Source Text Manipulation (2 STM 0,2)

Allows the insertion of source program text as part of the compilation of the
source program. COBOL libraries contain texts which are available to the
compiler at compile time and which can be treated by the compiler as part of
the source program.

In addition, the following optional modules of the standard are supported:

� Intrinsic Functions (1 ITR 0,1)

Provides the capability to reference a data item whose value is derived auto-
matically at the time of reference during the execution of the object program.

� Debug (1 DEB 0,2)

Monitors object program execution through declarative procedures, special
debugging lines, and a special register, DEBUG-ITEM, which gives specific
information about execution status.

� Segmentation (2 SEG 0,2)

Refreshes independent segments when required.

The following optional modules of the standard are not supported:

 � Report Writer
 � Communications
� Debug (2 DEB 0,2)

3. FIPS Publication 21-4, Federal Information Processing Standard
21-4, COBOL high subset.

4. International Reference Version of the ISO 7-bit code defined in International
Standard 646, 7-Bit Coded Character Set for Information Processing Interchange.

5. The 7-bit coded character sets defined in American National Standard X3.4-1977,
Code for Information Interchange.

572 COBOL Language Reference

Industry Specifications

6. SPIRIT (Service Provider's Requirements for Information Tech-
nology), Part 6—COBOL Language Profile, published by Network Management
Forum.

7. MIA (Multivendor Integration Architecture), technical requirements,
specified by Nippon Telegraph and Telephone Corp (NTT).

 Standard Terminology
The term "COBOL 85 Standard" is used in this book to refer to the combination of the
following standards:

1. ISO 1989:1985, Programming languages - COBOL.

ISO 1989/Amendment 1, Programming languages - COBOL - Amendment 1:
Intrinsic function module.

2. X3.23-1985, American National Standard for Information Systems - Programming
Language - COBOL.

X3.23a-1989, American National Standard for Information Systems - Programming
Language - Intrinsic Function Module for COBOL.

Note: The term "COBOL 74 Standard" is used in this book to refer to X3.23-1974,
American National Standard for Information Systems - Programming Language -
COBOL.

Appendix H. Industry Specifications 573

 Bibliography

IBM COBOL for MVS & VM
Fact Sheet, GC26-8664

Licensed Program Specifications, GC26-4761

Compiler and Run-Time Migration Guide,
GC26-4764

Installation and Customization under MVS,
GC26-4766

Programming Guide, SC26-4767

Language Reference, SC26-4769

Debug Tool User's Guide and Reference,
SC09-2137

Diagnosis Guide, SC26-3138

IBM COBOL Millennium Language Extensions
Guide, GC26-9266

Related Publications for MVS and VM

� IBM VisualAge COBOL Millennium Language
Extensions for MVS & VM

Fact Sheet, GC26-9321

Licensed Program Specifications, GC26-9308

IBM COBOL Millennium Language Extensions
Guide, GC26-9266

Installation and Customization under MVS,
SC26-4766

� IBM Language Environment for MVS and VM

Fact Sheet, GC26-4785

Concepts Guide, GC26-4786

Installation and Customization, SC26-4817

Programming Guide, SC26-4818

Programming Reference, SC26-3312

Writing Interlanguage Communications Applica-
tions, SC26-8351

Run-Time Migration Guide, SC26-8232

Debugging Guide and Run-Time Messages,
SC26-4829

Diagnosis Guide, SC26-3154

Licensed Program Specifications, GC26-4774

Master Index, SC26-3427

� SOMobjects for MVS

Introducing SOMobjects on MVS, GC28-1529

Licensed Program Specifications, GC28-1534

User's Guide, GC28-1545

Class Library Reference, SC28-1546

Reference Summary, SC28-1547

 � VM/ESA

Application Development Guide, SC24-5450

Application Development Reference,
SC24-5451

Command Reference, SC24-5461

User's Guide, SC24-5460

CP Command and Utility Reference,
SC24-5519

System Messages and Codes, SC24-5529

XEDIT Command and Macro Reference,
SC24-5464

XEDIT User's Guide, SC24-5463

 � CICS/ESA

Application Programming Guide, SC33-1169

Application Programming Reference,
SC33-1170

Sample Applications Guide, SC33-1173

 � DB/2

Application Programming and SQL Guide,
SC26-3266

 � IMS/ESA

Application Programming and SQL Guide,
SC26-3266

 � DFSORT

DFSORT Application Guide, SC33-4035

IBM COBOL Set for AIX
Fact Sheet, GC26-8484

Language Reference, SC26-4769

Programming Guide, SC26-8423

Program Builder User's Guide, SC09-2201

LPEX User's Guide and Reference, SC09-2202

574 Copyright IBM Corp. 1991, 1998

Getting Started, GC26-8425

IBM COBOL Millennium Language Extensions
Guide, GC26-9266

SMARTdata UTILITIES for AIX

VSAM in a Distributed Environment, SC26-7064

Data Description and Conversion, SC26-7066

Data Description and Conversion A Data Language
Reference, SC26-7092

SMARTsort for OS/2 and AIX, SC26-7099

Related Publications for AIX

 � DB2

DATABASE 2 AIX/6000 Command Refer-
ence, SC09-1575

DATABASE 2 AIX/6000 Command Reference
for Common Servers, S20H-4645

Application Programming Guide, S20H-4643

SQL Reference, S20H-4665

 � CICS

Application Programming Guide, SC33-1568

Application Programming Reference,
SC33-1569

Administration Guide, SC33-1562

Administration Reference, SC33-1563

Encina for CICS, SC33-1567

Planning and Installation Guide, GC33-1561

Intercommunication Guide, SC33-1564

Messages and Codes, SC33-1566

Problem Determination Guide, SC33-1565

� SOMobjects for AIX

SOMobjects Base Toolkit User's Guide,
SC23-2680-01

SOMobjects Base Toolkit Programmer's Refer-
ence Manual, SC23-2681-01

SOMobjects Base Toolkit Quick Reference
Guide, SC23-2682-01

 � Other

Structured File Server Programmer's Guide and
Reference for AIX, Encina, SC33-1610-00

IBM VisualAge COBOL
Fact Sheet, GC26-9052

Getting Started on OS/2, GC26-9051

Getting Started on Windows, GC26-8944

Language Reference, SC26-4769

Programming Guide, SC26-9050

Visual Builder User's Guide, SC26-9053

IBM COBOL Millennium Language Extensions
Guide, GC26-9266

SMARTdata UTILITIES for OS/2

VSAM in a Distributed Environment, SC26-7063

Data Description and Conversion, SC26-7091

Data Description and Conversion A Data Language
Reference, SC26-7092

SMARTsort for OS/2 and AIX, SC26-7099

SMARTdata UTILITIES for Windows

SdU for Windows Distributed FileManager User's
Guide, SC26-7134

Data Description and Conversion, SC26-7091

Data Description and Conversion A Data Language
Reference, SC26-7092

VSAM Application Programming Interface
Reference, SC26-7133

Related Publications for OS/2

 � DB2

Application Programming Guide, S20H-4643

SQL Reference, S20H-4665

� CICS for OS/2

 Installation, GC33-1580

 Customization, SC33-1581

 Operation, SC33-1582

Reference Summary, SX33-6100

 Intercommunication, SC33-1583

Problem Determination, SC33-1584

Application Programming, SC33-1585

Messages & Codes, SC33-1586

� CICS for Windows NT

Installation Guide, SC33-1880

Bibliography 575

Application Programming Guide, SC33-1888

Intercommunication Guide, SC33-1882

Messages & Codes, SC33-1886

Problem Determination Guide, SC33-1883

� SOMobjects for OS/2

SOMobjects Developers Toolkit User Guide
Version 2.1

SOMobjects Developers Toolkit Programmers
Reference Manual Version 2.1

 � Other

Btrieve Programmer's Manual

Softcopy Publications for IBM COBOL

The following collection kits contain IBM COBOL or
related product publications in BookManager format:

MVS Collection, SK2T-0710

OS/390 Collection, SK2T-6700

VM Collection, SK2T-2067

To view the latest IBM COBOL product publications in
Acrobat PDF format, visit the IBM COBOL Family home
page on the World Wide Web at:

http://www.software.ibm.com/ad/cobol/

576 COBOL Language Reference

 Glossary

The terms in this glossary are defined in accordance
with their meaning in COBOL. These terms may or may
not have the same meaning in other languages.

IBM is grateful to the American National Standards Insti-
tute (ANSI) for permission to reprint its definitions from
the following publications:

� American National Standard Programming Lan-
guage COBOL, ANSI X3.23-1985 (Copyright 1985
American National Standards Institute, Inc.), which
was prepared by Technical Committee X3J4, which
had the task of revising American National Standard
COBOL, X3.23-1974.

� American National Dictionary for Information Proc-
essing Systems (Copyright 1982 by the Computer
and Business Equipment Manufacturers Associ-
ation).

American National Standard definitions are preceded by
an asterisk (*).

A
* abbreviated combined relation condition . The com-
bined condition that results from the explicit omission of
a common subject or a common subject and common
relational operator in a consecutive sequence of relation
conditions.

abend . Abnormal termination of program.

* access mode . The manner in which records are to
be operated upon within a file.

* actual decimal point . The physical representation,
using the decimal point characters period (.) or comma
(,), of the decimal point position in a data item.

* alphabet-name . A user-defined word, in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION, that assigns a name to a specific character
set and/or collating sequence.

* alphabetic character . A letter or a space character.

* alphanumeric character . Any character in the
computer’s character set.

alphanumeric-edited character . A character within an
alphanumeric character-string that contains at least one
B, 0 (zero), or / (slash).

* alphanumeric function . A function whose value is
composed of a string of one or more characters from the
computer's character set.

* alternate record key . A key, other than the prime
record key, whose contents identify a record within an
indexed file.

ANSI (American National Standards Institute) . An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

* argument . An identifier, a literal, an arithmetic
expression, or a function-identifier that specifies a value
to be used in the evaluation of a function.

* arithmetic expression . An identifier of a numeric ele-
mentary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

* arithmetic operation . The process caused by the
execution of an arithmetic statement, or the evaluation of
an arithmetic expression, that results in a mathematically
correct solution to the arguments presented.

* arithmetic operator . A single character, or a fixed
2-character combination that belongs to the following
set:

Character Meaning
 + addition
 − subtraction
 * multiplication
 / division
 ** exponentiation

* arithmetic statement . A statement that causes an
arithmetic operation to be executed. The arithmetic
statements are the ADD, COMPUTE, DIVIDE, MUL-
TIPLY, and SUBTRACT statements.

array . In Language Environment, an aggregate con-
sisting of data objects, each of which may be uniquely

 Copyright IBM Corp. 1991, 1998 577

referenced by subscripting. Roughly analogous to a
COBOL table.

* ascending key . A key upon the values of which data
is ordered, starting with the lowest value of the key up to
the highest value of the key, in accordance with the
rules for comparing data items.

ASCII. American National Standard Code for Informa-
tion Interchange. The standard code, using a coded
character set consisting of 7-bit coded characters (8 bits
including parity check), used for information interchange
between data processing systems, data communication
systems, and associated equipment. The ASCII set con-
sists of control characters and graphic characters.

Extension: IBM has defined an extension to ASCII
code (characters 128-255).

assignment-name . A name that identifies the organiza-
tion of a COBOL file and the name by which it is known
to the system.

* assumed decimal point . A decimal point position
that does not involve the existence of an actual char-
acter in a data item. The assumed decimal point has
logical meaning with no physical representation.

* AT END condition . A condition caused:

1. During the execution of a READ statement for a
sequentially accessed file, when no next logical
record exists in the file, or when the number of sig-
nificant digits in the relative record number is larger
than the size of the relative key data item, or when
an optional input file is not present.

2. During the execution of a RETURN statement, when
no next logical record exists for the associated sort
or merge file.

3. During the execution of a SEARCH statement, when
the search operation terminates without satisfying
the condition specified in any of the associated
WHEN phrases.

B
big-endian . Default format used by the mainframe and
the AIX workstation to store binary data. In this format,
the least significant digit is on the highest address.
Compare with “little-endian.”

binary item . A numeric data item represented in binary
notation (on the base 2 numbering system). Binary
items have a decimal equivalent consisting of the

decimal digits 0 through 9, plus an operational sign. The
leftmost bit of the item is the operational sign.

binary search . A dichotomizing search in which, at
each step of the search, the set of data elements is
divided by two; some appropriate action is taken in the
case of an odd number.

* block . A physical unit of data that is normally com-
posed of one or more logical records. For mass storage
files, a block may contain a portion of a logical record.
The size of a block has no direct relationship to the size
of the file within which the block is contained or to the
size of the logical record(s) that are either contained
within the block or that overlap the block. The term is
synonymous with physical record.

breakpoint . A place in a computer program, usually
specified by an instruction, where its execution may be
interrupted by external intervention or by a monitor
program.

Btrieve . A key-indexed record management system
that allows applications to manage records by key value,
sequential access method, or random access method.
IBM COBOL supports COBOL sequential and indexed
file I-O language through Btrieve.

buffer . A portion of storage used to hold input or output
data temporarily.

built-in function . See “intrinsic function”.

byte . A string consisting of a certain number of bits,
usually eight, treated as a unit, and representing a char-
acter.

C
callable services . In Language Environment, a set of
services that can be invoked by a COBOL program
using the conventional Language Environment-defined
call interface, and usable by all programs sharing the
Language Environment conventions.

called program . A program that is the object of a
CALL statement.

* calling program . A program that executes a CALL to
another program.

case structure . A program processing logic in which a
series of conditions is tested in order to make a choice
between a number of resulting actions.

578 COBOL Language Reference

cataloged procedure . A set of job control statements
placed in a partitioned data set called the procedure
library (SYS1.PROCLIB). You can use cataloged proce-
dures to save time and reduce errors coding JCL.

century window . A century window is a 100-year
interval within which any 2-digit year is unique. There
are several types of century window available to COBOL
programmers:

1. For windowed date fields, it is specified by the
YEARWINDOW compiler option

2. For windowing intrinsic functions
DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
YEAR-TO-YYYY, it is specified by argument-2

3. For Language Environment callable services, it is
specified in CEESCEN

* character . The basic indivisible unit of the language.

character position . The amount of physical storage
required to store a single standard data format character
described as USAGE IS DISPLAY.

character set . All the valid characters for a program-
ming language or a computer system.

* character-string . A sequence of contiguous charac-
ters that form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry. Must be delimited
by separators.

checkpoint . A point at which information about the
status of a job and the system can be recorded so that
the job step can be later restarted.

* class . The entity that defines common behavior and
implementation for zero, one, or more objects. The
objects that share the same implementation are consid-
ered to be objects of the same class.

* class condition . The proposition, for which a truth
value can be determined, that the content of an item is
wholly alphabetic, is wholly numeric, or consists exclu-
sively of those characters listed in the definition of a
class-name.

* Class Definition . The COBOL source unit that
defines a class.

* class identification entry . An entry in the CLASS-ID
paragraph of the IDENTIFICATION DIVISION which con-
tains clauses that specify the class-name and assign
selected attributes to the class definition.

* class-name . A user-defined word defined in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION that assigns a name to the proposition for
which a truth value can be defined, that the content of a
data item consists exclusively of those characters listed
in the definition of the class-name.

class object . The run-time object representing a SOM
class.

* clause . An ordered set of consecutive COBOL
character-strings whose purpose is to specify an attri-
bute of an entry.

CMS (Conversational Monitor System) . A virtual
machine operating system that provides general interac-
tive, time-sharing, problem solving, and program devel-
opment capabilities, and that operates only under the
control of the VM/SP control program.

* COBOL character set . The complete COBOL char-
acter set consists of the characters listed below:

Character Meaning
 0,1...,9 digit
 A,B,...,Z uppercase letter
 a,b,...,z lowercase letter
 ␣ space
 + plus sign
 − minus sign (hyphen)
 * asterisk
 / slant (virgule, slash)
 = equal sign
 $ currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* COBOL word . See “word.”

code page . An assignment of graphic characters and
control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for 8-bit code, assignment of characters and
meanings to 128 code points for 7-bit code.

* collating sequence . The sequence in which the char-
acters that are acceptable to a computer are ordered for
purposes of sorting, merging, comparing, and for proc-
essing indexed files sequentially.

Glossary 579

* column . A character position within a print line. The
columns are numbered from 1, by 1, starting at the left-
most character position of the print line and extending to
the rightmost position of the print line.

* combined condition . A condition that is the result of
connecting two or more conditions with the AND or the
OR logical operator.

* comment-entry . An entry in the IDENTIFICATION
DIVISION that may be any combination of characters
from the computer’s character set.

* comment line . A source program line represented by
an asterisk (*) in the indicator area of the line and any
characters from the computer’s character set in area A
and area B of that line. The comment line serves only
for documentation in a program. A special form of
comment line represented by a slant (/) in the indicator
area of the line and any characters from the computer’s
character set in area A and area B of that line causes
page ejection prior to printing the comment.

* common program . A program which, despite being
directly contained within another program, may be called
from any program directly or indirectly contained in that
other program.

compatible date field . The meaning of the term “com-
patible,” when applied to date fields, depends on the
COBOL division in which the usage occurs:

 � Data Division
Two date fields are compatible if they have identical
USAGE and meet at least one of the following
conditions:

– They have the same date format.

– Both are windowed date fields, where one con-
sists only of a windowed year, DATE FORMAT
YY.

– Both are expanded date fields, where one con-
sists only of an expanded year, DATE FORMAT
YYYY.

– One has DATE FORMAT YYXXXX, the other,
YYXX.

– One has DATE FORMAT YYYYXXXX, the
other, YYYYXX.

| A windowed date field can be subordinate to an
| expanded date group data item. The two date fields
| are compatible if the subordinate date field has
| USAGE DISPLAY, starts two bytes after the start of
| the group expanded date field, and the two fields
| meet at least one of the following conditions:

| – The subordinate date field has a DATE
| FORMAT pattern with the same number of Xs
| as the DATE FORMAT pattern of the group
| date field.

| – The subordinate date field has DATE FORMAT
| YY.

| – The group date field has DATE FORMAT
| YYYYXXXX and the subordinate date field has
| DATE FORMAT YYXX.

 � Procedure Division
Two date fields are compatible if they have the
same date format except for the year part, which
may be windowed or expanded. For example, a
windowed date field with DATE FORMAT YYXXX is
compatible with:

– Another windowed date field with DATE
FORMAT YYXXX

– An expanded date field with DATE FORMAT
YYYYXXX

* compile . (1) To translate a program expressed in a
high-level language into a program expressed in an
intermediate language, assembly language, or a com-
puter language. (2) To prepare a machine language
program from a computer program written in another
programming language by making use of the overall
logic structure of the program, or generating more than
one computer instruction for each symbolic statement, or
both, as well as performing the function of an assembler.

* compile time . The time at which a COBOL source
program is translated, by a COBOL compiler, to a
COBOL object program.

compiler . A program that translates a program written
in a higher level language into a machine language
object program.

compiler directing statement . A statement, beginning
with a compiler directing verb, that causes the compiler
to take a specific action during compilation.

compiler directing statement . A statement that speci-
fies actions to be taken by the compiler during proc-
essing of a COBOL source program. Compiler
directives are contained in the COBOL source program.
Thus, you can specify different suboptions of the direc-
tive within the source program by using multiple compiler
directive statements in the program.

* complex condition . A condition in which one or more
logical operators act upon one or more conditions. (See

580 COBOL Language Reference

also “negated simple condition,” “combined condition,”
and “negated combined condition.”)

* computer-name . A system-name that identifies the
computer upon which the program is to be compiled or
run.

condition . An exception that has been enabled, or
recognized, by Language Environment and thus is eli-
gible to activate user and language condition handlers.
Any alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and results in an interrupt.
They can also be detected by language-specific gener-
ated code or language library code.

* condition . A status of a program at run time for
which a truth value can be determined. Where the term
‘condition’ (condition-1, condition-2,...) appears in these
language specifications in or in reference to ‘condition’
(condition-1, condition-2,...) of a general format, it is a
conditional expression consisting of either a simple con-
dition optionally parenthesized, or a combined condition
consisting of the syntactically correct combination of
simple conditions, logical operators, and parentheses, for
which a truth value can be determined.

* conditional expression . A simple condition or a
complex condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See also “simple
condition” and “complex condition.”)

* conditional phrase . A conditional phrase specifies
the action to be taken upon determination of the truth
value of a condition resulting from the execution of a
conditional statement.

* conditional statement . A statement specifying that
the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

* conditional variable . A data item one or more values
of which has a condition-name assigned to it.

* condition-name . A user-defined word that assigns a
name to a subset of values that a conditional variable
may assume; or a user-defined word assigned to a
status of an implementor defined switch or device.
When ‘condition-name’ is used in the general formats, it
represents a unique data item reference consisting of a
syntactically correct combination of a ‘condition-name’,
together with qualifiers and subscripts, as required for
uniqueness of reference.

* condition-name condition . The proposition, for
which a truth value can be determined, that the value of
a conditional variable is a member of the set of values
attributed to a condition-name associated with the condi-
tional variable.

* CONFIGURATION SECTION. A section of the ENVI-
RONMENT DIVISION that describes overall specifica-
tions of source and object programs and class
definitions.

CONSOLE. A COBOL environment-name associated
with the operator console.

* contiguous items . Items that are described by con-
secutive entries in the Data Division, and that bear a
definite hierarchic relationship to each other.

copybook . A file or library member containing a
sequence of code that is included in the source program
at compile time using the COPY statement. The file can
be created by the user, supplied by COBOL, or supplied
by another product.

CORBA . The Common Object Request Broker Archi-
tecture established by the Object Management Group.
IBM's Interface Definition Language used to describe the
interface for SOM classes is fully compliant with CORBA
standards.

* counter . A data item used for storing numbers or
number representations in a manner that permits these
numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to
an arbitrary positive or negative value.

cross-reference listing . The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified in a
program.

| currency sign value . A character-string that identifies
| the monetary units stored in a numeric-edited item.
| Typical examples are '$', 'USD', and 'EUR'. A cur-
| rency sign value can be defined by either the CUR-
| RENCY compiler option or the CURRENCY SIGN clause
| in the SPECIAL-NAMES paragraph of the Environment
| Division. If the CURRENCY SIGN clause is not speci-
| fied and the NOCURRENCY compiler option is in effect,
| the dollar sign ($) is used as the default currency sign
| value. See also “currency symbol.”

| currency symbol . A character used in a PICTURE
| clause to indicate the position of a currency sign value in
| a numeric-edited item. A currency symbol can be

Glossary 581

| defined by either the CURRENCY compiler option or by
| the CURRENCY SIGN clause in the SPECIAL-NAMES
| paragraph of the Environment Division. If the CUR-
| RENCY SIGN clause is not specified and the
| NOCURRENCY compiler option is in effect, the dollar
| sign ($) is used as the default currency sign value and
| currency symbol. Multiple currency symbols and cur-
| rency sign values can be defined. See also “currency
| sign value.”

* current record . In file processing, the record that is
available in the record area associated with a file.

* current volume pointer . A conceptual entity that
points to the current volume of a sequential file.

D
* data clause . A clause, appearing in a data
description entry in the DATA DIVISION of a COBOL
program, that provides information describing a particular
attribute of a data item.

* data description entry . An entry in the DATA DIVI-
SION of a COBOL program that is composed of a level-
number followed by a data-name, if required, and then
followed by a set of data clauses, as required.

DATA DIVISION . One of the four main components of
a COBOL program, class definition, or method definition.
The DATA DIVISION describes the data to be processed
by the object program, class, or method: files to be
used and the records contained within them; internal
working-storage records that will be needed; data to be
made available in more than one program in the COBOL
run unit. (Note, the Class DATA DIVISION contains only
the WORKING-STORAGE SECTION.)

* data item . A unit of data (excluding literals) defined
by a COBOL program or by the rules for function evalu-
ation.

* data-name . A user-defined word that names a data
item described in a data description entry. When used
in the general formats, ‘data-name’ represents a word
that must not be reference-modified, subscripted or qual-
ified unless specifically permitted by the rules for the
format.

date field . Any of the following:

� A data item whose data description entry includes a
DATE FORMAT clause.

� A value returned by one of the following intrinsic
functions:

 DATE-OF-INTEGER
 DATE-TO-YYYYMMDD
 DATEVAL
 DAY-OF-INTEGER
 DAY-TO-YYYYDDD
 YEAR-TO-YYYY
 YEARWINDOW

� The conceptual data items DATE, DATE
YYYYMMDD, DAY, and DAY YYYYDDD of the
ACCEPT statement.

� The result of certain arithmetic operations (for
details, see “Arithmetic with Date Fields” on
page 235).

The term date field refers to both “expanded date field”
and “windowed date field.” See also “non-date.”

date format . The date pattern of a date field, specified
either:

� Explicitly, by the DATE FORMAT clause or
DATEVAL intrinsic function argument-2

or
� Implicitly, by statements and intrinsic functions that

return date fields (for details, see “Date Field” on
page 59)

DBCS (Double-Byte Character Set) . See “Double-
Byte Character Set (DBCS).”

* debugging line . A debugging line is any line with a
‘D’ in the indicator area of the line.

* debugging section . A section that contains a USE
FOR DEBUGGING statement.

* declarative sentence . A compiler directing sentence
consisting of a single USE statement terminated by the
separator period.

* declaratives . A set of one or more special purpose
sections, written at the beginning of the Procedure Divi-
sion, the first of which is preceded by the key word
DECLARATIVES and the last of which is followed by the
key words END DECLARATIVES. A declarative is com-
posed of a section header, followed by a USE compiler
directing sentence, followed by a set of zero, one, or
more associated paragraphs.

* de-edit . The logical removal of all editing characters
from a numeric-edited data item in order to determine
that item's unedited numeric value.

582 COBOL Language Reference

* delimited scope statement . Any statement that
includes its explicit scope terminator.

* delimiter . A character or a sequence of contiguous
characters that identify the end of a string of characters
and separate that string of characters from the following
string of characters. A delimiter is not part of the string
of characters that it delimits.

* descending key . A key upon the values of which
data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with the
rules for comparing data items.

digit . Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference to any other
symbol.

* digit position . The amount of physical storage
required to store a single digit. This amount may vary
depending on the usage specified in the data description
entry that defines the data item.

* direct access . The facility to obtain data from storage
devices or to enter data into a storage device in such a
way that the process depends only on the location of
that data and not on a reference to data previously
accessed.

* division . A collection of zero, one or more sections or
paragraphs, called the division body, that are formed
and combined in accordance with a specific set of rules.
Each division consists of the division header and the
related division body. There are four (4) divisions in a
COBOL program: Identification, Environment, Data, and
Procedure.

* division header . A combination of words followed by
a separator period that indicates the beginning of a divi-
sion. The division headers are:

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION.

do construction . In structured programming, a DO
statement is used to group a number of statements in a
procedure. In COBOL, an in-line PERFORM statement
functions in the same way.

do-until . In structured programming, a do-until loop will
be executed at least once, and until a given condition is
true. In COBOL, a TEST AFTER phrase used with the
PERFORM statement functions in the same way.

do-while . In structured programming, a do-while loop
will be executed if, and while, a given condition is true.
In COBOL, a TEST BEFORE phrase used with the
PERFORM statement functions in the same way.

Double-Byte Character Set (DBCS) . A set of charac-
ters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require Double-Byte
Character Sets. Because each character requires two
bytes, entering, displaying, and printing DBCS charac-
ters requires hardware and supporting software that are
DBCS-capable.

* dynamic access . An access mode in which specific
logical records can be obtained from or placed into a
mass storage file in a nonsequential manner and
obtained from a file in a sequential manner during the
scope of the same OPEN statement.

Dynamic Storage Area (DSA) . Dynamically acquired
storage composed of a register save area and an area
available for dynamic storage allocation (such as
program variables). DSAs are generally allocated within
STACK segments managed by Language Environment.

E
* EBCDIC (Extended Binary-Coded Decimal Inter-
change Code) . A coded character set consisting of
8-bit coded characters.

EBCDIC character . Any one of the symbols included in
the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item . A data item that has been modified
by suppressing zeroes and/or inserting editing charac-
ters.

* editing character . A single character or a fixed
2-character combination belonging to the following set:

Character Meaning
 ␣ space
 0 zero
 + plus
 − minus
 CR credit
 DB debit
 Z zero suppress
 * check protect
 $ currency sign

, comma (decimal point)

Glossary 583

. period (decimal point)
/ slant (virgule, slash)

element (text element) . One logical unit of a string of
text, such as the description of a single data item or
verb, preceded by a unique code identifying the element
type.

* elementary item . A data item that is described as not
being further logically subdivided.

enclave . When running under the Language Environ-
ment product, an enclave is analogous to a run unit. An
enclave can create other enclaves on MVS and CMS by
a LINK, on CMS by CMSCALL, and the use of the
system () function of C.

*end class header . A combination of words, followed
by a separator period, that indicates the end of a
COBOL class definition. The end class header is:

END CLASS class-name.

*end method header . A combination of words, fol-
lowed by a separator period, that indicates the end of a
COBOL method definition. The end method header is:

END METHOD method-name.

* end of Procedure Division . The physical position of
a COBOL source program after which no further proce-
dures appear.

* end program header . A combination of words, fol-
lowed by a separator period, that indicates the end of a
COBOL source program. The end program header is:

END PROGRAM program-name.

* entry . Any descriptive set of consecutive clauses ter-
minated by a separator period and written in the IDEN-
TIFICATION DIVISION, ENVIRONMENT DIVISION, or
DATA DIVISION of a COBOL program.

* environment clause . A clause that appears as part
of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION. One of the four main com-
ponent parts of a COBOL program, class definition, or
method definition. The ENVIRONMENT DIVISION
describes the computers upon which the source program
is compiled and those on which the object program is
executed, and provides a linkage between the logical
concept of files and their records, and the physical
aspects of the devices on which files are stored.

environment-name . A name, specified by IBM, that
identifies system logical units, printer and card punch

control characters, report codes, and/or program
switches. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVI-
SION, the mnemonic-name may then be substituted in
any format in which such substitution is valid.

environment variable . Any of a number of variables
that describe the way an operating system is going to
run and the devices it is going to recognize.

execution time . See “run time.”

execution-time environment . See “run-time environ-
ment.”

expanded date field . A date field containing an
expanded (4-digit) year. See also “date field” and
“expanded year.”

expanded year . A date field that consists only of a
4-digit year. Its value includes the century: for example,
1998. Compare with “windowed year.”

* explicit scope terminator . A reserved word that ter-
minates the scope of a particular Procedure Division
statement.

exponent . A number, indicating the power to which
another number (the base) is to be raised. Positive
exponents denote multiplication, negative exponents
denote division, fractional exponents denote a root of a
quantity. In COBOL, an exponential expression is indi-
cated with the symbol ‘**’ followed by the exponent.

* expression . An arithmetic or conditional expression.

* extend mode . The state of a file after execution of an
OPEN statement, with the EXTEND phrase specified for
that file, and before the execution of a CLOSE state-
ment, without the REEL or UNIT phrase for that file.

extensions . Certain COBOL syntax and semantics
supported by IBM compilers in addition to those
described in ANSI Standard.

* external data . The data described in a program as
external data items and external file connectors.

* external data item . A data item which is described as
part of an external record in one or more programs of a
run unit and which itself may be referenced from any
program in which it is described.

* external data record . A logical record which is
described in one or more programs of a run unit and

584 COBOL Language Reference

whose constituent data items may be referenced from
any program in which they are described.

external decimal item . A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the
rightmost byte. Bits 0 through 3 of all other bytes
contain 1’s (hex F). For example, the decimal value of
+123 is represented as 1111 0001 1111 0010 1111
0011. (Also know as “zoned decimal item.”)

* external file connector . A file connector which is
accessible to one or more object programs in the run
unit.

external floating-point item . A format for representing
numbers in which a real number is represented by a pair
of distinct numerals. In a floating-point representation,
the real number is the product of the fixed-point part (the
first numeral), and a value obtained by raising the
implicit floating-point base to a power denoted by the
exponent (the second numeral).

For example, a floating-point representation of the
number 0.0001234 is: 0.1234 -3, where 0.1234 is the
mantissa and -3 is the exponent.

* external switch . A hardware or software device,
defined and named by the implementor, which is used to
indicate that one of two alternate states exists.

F
* figurative constant . A compiler-generated value ref-
erenced through the use of certain reserved words.

* file . A collection of logical records.

* file attribute conflict condition . An unsuccessful
attempt has been made to execute an input-output oper-
ation on a file and the file attributes, as specified for that
file in the program, do not match the fixed attributes for
that file.

* file clause . A clause that appears as part of any of
the following DATA DIVISION entries: file description
entry (FD entry) and sort-merge file description entry
(SD entry).

* file connector . A storage area which contains infor-
mation about a file and is used as the linkage between a
file-name and a physical file and between a file-name
and its associated record area.

File-Control . The name of an ENVIRONMENT DIVI-
SION paragraph in which the data files for a given
source program are declared.

* file control entry . A SELECT clause and all its sub-
ordinate clauses which declare the relevant physical
attributes of a file.

* file description entry . An entry in the File Section of
the DATA DIVISION that is composed of the level indi-
cator FD, followed by a file-name, and then followed by
a set of file clauses as required.

* file-name . A user-defined word that names a file con-
nector described in a file description entry or a sort-
merge file description entry within the File Section of the
DATA DIVISION.

* file organization . The permanent logical file structure
established at the time that a file is created.

*file position indicator . A conceptual entity that con-
tains the value of the current key within the key of refer-
ence for an indexed file, or the record number of the
current record for a sequential file, or the relative record
number of the current record for a relative file, or indi-
cates that no next logical record exists, or that an
optional input file is not present, or that the at end condi-
tion already exists, or that no valid next record has been
established.

* File Section . The section of the DATA DIVISION that
contains file description entries and sort-merge file
description entries together with their associated record
descriptions.

file system . The collection of files and file management
structures on a physical or logical mass storage device,
such as a diskette or minidisk.

* fixed file attributes . Information about a file which is
established when a file is created and cannot subse-
quently be changed during the existence of the file.
These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key,
the alternate record keys, the code set, the minimum
and maximum record size, the record type (fixed or vari-
able), the collating sequence of the keys for indexed
files, the blocking factor, the padding character, and the
record delimiter.

* fixed length record . A record associated with a file
whose file description or sort-merge description entry
requires that all records contain the same number of
character positions.

Glossary 585

fixed-point number . A numeric data item defined with
a PICTURE clause that specifies the location of an
optional sign, the number of digits it contains, and the
location of an optional decimal point. The format may
be either binary, packed decimal, or external decimal.

floating-point number . A numeric data item containing
a fraction and an exponent. Its value is obtained by
multiplying the fraction by the base of the numeric data
item raised to the power specified by the exponent.

* format . A specific arrangement of a set of data.

* function . A temporary data item whose value is
determined at the time the function is referenced during
the execution of a statement.

* function-identifier . A syntactically correct combina-
tion of character-strings and separators that references a
function. The data item represented by a function is
uniquely identified by a function-name with its argu-
ments, if any. A function-identifier may include a
reference-modifier. A function-identifier that references
an alphanumeric function may be specified anywhere in
the general formats that an identifier may be specified,
subject to certain restrictions. A function-identifier that
references an integer or numeric function may be refer-
enced anywhere in the general formats that an arith-
metic expression may be specified.

function-name . A word that names the mechanism
whose invocation, along with required arguments, deter-
mines the value of a function.

G
* global name . A name which is declared in only one
program but which may be referenced from that program
and from any program contained within that program.
Condition-names, data-names, file-names, record-
names, report-names, and some special registers may
be global names.

* group item . A data item that is composed of subordi-
nate data items.

H
header label . (1) A file label or data set label that pre-
cedes the data records on a unit of recording media. (2)
Synonym for beginning-of-file label.

* high order end . The leftmost character of a string of
characters.

I
IBM COBOL extension . Certain COBOL syntax and
semantics supported by IBM compilers in addition to
those described in ANSI Standard.

IDENTIFICATION DIVISION. One of the four main
component parts of a COBOL program, class definition,
or method definition. The IDENTIFICATION DIVISION
identifies the program name, class name, or method
name. The IDENTIFICATION DIVISION may include the
following documentation: author name, installation, or
date.

* identifier . A syntactically correct combination of
character-strings and separators that names a data item.
When referencing a data item that is not a function, an
identifier consists of a data-name, together with its qual-
ifiers, subscripts, and reference-modifier, as required for
uniqueness of reference. When referencing a data item
which is a function, a function-identifier is used.

IGZCBSN. The COBOL for MVS & VM bootstrap
routine. It must be link-edited with any module that con-
tains a COBOL for MVS & VM program.

* imperative statement . A statement that either begins
with an imperative verb and specifies an unconditional
action to be taken or is a conditional statement that is
delimited by its explicit scope terminator (delimited scope
statement). An imperative statement may consist of a
sequence of imperative statements.

* implicit scope terminator . A separator period which
terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its
occurrence indicates the end of the scope of any state-
ment contained within the preceding phrase.

* index . A computer storage area or register, the
content of which represents the identification of a partic-
ular element in a table.

586 COBOL Language Reference

* index data item . A data item in which the values
associated with an index-name can be stored in a form
specified by the implementor.

indexed data-name . An identifier that is composed of a
data-name, followed by one or more index-names
enclosed in parentheses.

* indexed file . A file with indexed organization.

* indexed organization . The permanent logical file
structure in which each record is identified by the value
of one or more keys within that record.

indexing . Synonymous with subscripting using index-
names.

* index-name . A user-defined word that names an
index associated with a specific table.

* inheritance (for classes) . A mechanism for using the
implementation of one or more classes as the basis for
another class. A sub-class inherits from one or more
super-classes. By definition the inheriting class con-
forms to the inherited classes.

* initial program . A program that is placed into an
initial state every time the program is called in a run unit.

* initial state . The state of a program when it is first
called in a run unit.

inline . In a program, instructions that are executed
sequentially, without branching to routines, subroutines,
or other programs.

* input file . A file that is opened in the INPUT mode.

* input mode . The state of a file after execution of an
OPEN statement, with the INPUT phrase specified, for
that file and before the execution of a CLOSE statement,
without the REEL or UNIT phrase for that file.

* input-output file . A file that is opened in the I-O
mode.

* INPUT-OUTPUT SECTION. The section of the ENVI-
RONMENT DIVISION that names the files and the
external media required by an object program or method
and that provides information required for transmission
and handling of data during execution of the object
program or method definition.

* Input-Output statement . A statement that causes
files to be processed by performing operations upon indi-

vidual records or upon the file as a unit. The input-
output statements are: ACCEPT (with the identifier
phrase), CLOSE, DELETE, DISPLAY, OPEN, READ,
REWRITE, SET (with the TO ON or TO OFF phrase),
START, and WRITE.

* input procedure . A set of statements, to which
control is given during the execution of a SORT state-
ment, for the purpose of controlling the release of speci-
fied records to be sorted.

instance data . Data defining the state of an object.
The instance data introduced by a class is defined in the
WORKING-STORAGE SECTION of the DATA DIVISION
of the class definition. The state of an object also
includes the state of the instance variables introduced by
base classes that are inherited by the current class. A
separate copy of the instance data is created for each
object instance.

* integer . (1) A numeric literal that does not include
any digit positions to the right of the decimal point.

(2) A numeric data item defined in the DATA DIVISION
that does not include any digit positions to the right of
the decimal point.

(3) A numeric function whose definition provides that all
digits to the right of the decimal point are zero in the
returned value for any possible evaluation of the func-
tion.

integer function . A function whose category is numeric
and whose definition does not include any digit positions
to the right of the decimal point.

interface . The information that a client must know to
use a class—the names of its attributes and the signa-
tures of its methods. With direct-to-SOM compilers such
as COBOL, the interface to a class may be defined by
native language syntax for class definitions. Classes
implemented in other languages might have their inter-
faces defined directly in SOM Interface Definition Lan-
guage (IDL). The COBOL compiler has a compiler
option, IDLGEN, to automatically generate IDL for a
COBOL class.

Interface Definition Language (IDL) . The formal lan-
guage (independent of any programming language) by
which the interface for a class of objects is defined in a
IDL file, which the SOM compiler then interprets to
create an implementation template file and binding files.
SOM's Interface Definition Language is fully compliant
with standards established by the Object Management
Group's Common Object Request Broker Architecture
(CORBA).

Glossary 587

interlanguage communication (ILC) . The ability of
routines written in different programming languages to
communicate. ILC support allows the application writer
to readily build applications from component routines
written in a variety of languages.

intermediate result . An intermediate field containing
the results of a succession of arithmetic operations.

* internal data . The data described in a program
excluding all external data items and external file con-
nectors. Items described in the LINKAGE SECTION of
a program are treated as internal data.

* internal data item . A data item which is described in
one program in a run unit. An internal data item may
have a global name.

internal decimal item . A format in which each byte in
a field except the rightmost byte represents two numeric
digits. The rightmost byte contains one digit and the
sign. For example, the decimal value +123 is repres-
ented as 0001 0010 0011 1111. (Also known as packed
decimal.)

* internal file connector . A file connector which is
accessible to only one object program in the run unit.

* intra-record data structure . The entire collection of
groups and elementary data items from a logical record
which is defined by a contiguous subset of the data
description entries which describe that record. These
data description entries include all entries whose level-
number is greater than the level-number of the first data
description entry describing the intra-record data struc-
ture.

intrinsic function . A pre-defined function, such as a
commonly used arithmetic function, called by a built-in
function reference.

* invalid key condition . A condition, at object time,
caused when a specific value of the key associated with
an indexed or relative file is determined to be invalid.

* I-O-CONTROL. The name of an ENVIRONMENT
DIVISION paragraph in which object program require-
ments for rerun points, sharing of same areas by several
data files, and multiple file storage on a single input-
output device are specified.

* I-O-CONTROL entry . An entry in the I-O-CONTROL
paragraph of the ENVIRONMENT DIVISION which con-
tains clauses that provide information required for the

transmission and handling of data on named files during
the execution of a program.

* I-O-Mode . The state of a file after execution of an
OPEN statement, with the I-O phrase specified, for that
file and before the execution of a CLOSE statement
without the REEL or UNIT phase for that file.

* I-O status . A conceptual entity which contains the
2-character value indicating the resulting status of an
input-output operation. This value is made available to
the program through the use of the FILE STATUS
clause in the file control entry for the file.

iteration structure . A program processing logic in
which a series of statements is repeated while a condi-
tion is true or until a condition is true.

K
K. When referring to storage capacity, two to the tenth
power; 1024 in decimal notation.

* key . A data item that identifies the location of a
record, or a set of data items which serve to identify the
ordering of data.

* key of reference . The key, either prime or alternate,
currently being used to access records within an indexed
file.

* key word . A reserved word or function-name whose
presence is required when the format in which the word
appears is used in a source program.

kilobyte (KB) . One kilobyte equals 1024 bytes.

L
* language-name . A system-name that specifies a par-
ticular programming language.

Language Environment-conforming . A characteristic
of compiler products (such as COBOL for MVS & VM,
COBOL for OS/390 & VM, C/C++ for MVS and VM, PL/I
for MVS and VM) that produce object code conforming
to the Language Environment format.

last-used state . A program is in last-used state if its
internal values remain the same as when the program
was exited (are not reset to their initial values).

588 COBOL Language Reference

* letter . A character belonging to one of the following
two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n,
o, p, q, r, s, t, u, v, w, x, y, z

* level indicator . Two alphabetic characters that iden-
tify a specific type of file or a position in a hierarchy.
The level indicators in the DATA DIVISION are: CD, FD,
and SD.

* level-number . A user-defined word, expressed as a
2-digit number, which indicates the hierarchical position
of a data item or the special properties of a data
description entry. Level-numbers in the range from 1
through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers
in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit.
Level-numbers 66, 77 and 88 identify special properties
of a data description entry.

* library-name . A user-defined word that names a
COBOL library that is to be used by the compiler for a
given source program compilation.

* library text . A sequence of text words, comment
lines, the separator space, or the separator pseudo-text
delimiter in a COBOL library.

LILIAN DATE . The number of days since the beginning
of the Gregorian calendar. Day one is Friday, October
15, 1582. The Lilian date format is named in honor of
Luigi Lilio, the creator of the Gregorian calendar.

* LINAGE-COUNTER . A special register whose value
points to the current position within the page body.

LINKAGE SECTION . The section in the DATA DIVI-
SION of the called program that describes data items
available from the calling program. These data items
may be referred to by both the calling and called
program.

literal . A character-string whose value is specified
either by the ordered set of characters comprising the
string, or by the use of a figurative constant.

locale . A set of attributes for a program execution envi-
ronment indicating culturally sensitive considerations,
such as: character code page, collating sequence,
date/time format, monetary value representation,
numeric value representation, or language.

* LOCAL-STORAGE SECTION . The section of the
DATA DIVISION that defines storage that is allocated
and freed on a per-invocation basis, depending on the
value assigned in their VALUE clauses.

* logical operator . One of the reserved words AND,
OR, or NOT. In the formation of a condition, either
AND, or OR, or both can be used as logical connectives.
NOT can be used for logical negation.

* logical record . The most inclusive data item. The
level-number for a record is 01. A record may be either
an elementary item or a group of items. The term is
synonymous with record.

* low order end . The rightmost character of a string of
characters.

M
main program . In a hierarchy of programs and subrou-
tines, the first program to receive control when the pro-
grams are run.

* mass storage . A storage medium in which data may
be organized and maintained in both a sequential and
nonsequential manner.

* mass storage device . A device having a large
storage capacity; for example, magnetic disk, magnetic
drum.

* mass storage file . A collection of records that is
assigned to a mass storage medium.

* megabyte (M) . One megabyte equals 1,048,576
bytes.

* merge file . A collection of records to be merged by a
MERGE statement. The merge file is created and can
be used only by the merge function.

metaclass . A SOM class whose instances are SOM
class-objects. The methods defined in metaclasses are
executed without requiring any object instances of the
class to exist, and are frequently used to create
instances of the class.

method . Procedural code that defines one of the oper-
ations supported by an object, and that is executed by
an INVOKE statement on that object.

* Method Definition . The COBOL source unit that
defines a method.

Glossary 589

* method identification entry . An entry in the
METHOD-ID paragraph of the IDENTIFICATION DIVI-
SION which contains clauses that specify the method-
name and assign selected attributes to the method
definition.

* method-name . A user-defined word that identifies a
method.

* mnemonic-name . A user-defined word that is associ-
ated in the ENVIRONMENT DIVISION with a specified
implementor-name.

multitasking . Mode of operation that provides for the
concurrent, or interleaved, execution of two or more
tasks. When running under the Language Environment
product, multitasking is synonymous with multithreading.

N
name . A word composed of not more than 30 charac-
ters that defines a COBOL operand.

* native character set . The implementor-defined char-
acter set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

* native collating sequence . The implementor-defined
collating sequence associated with the computer speci-
fied in the OBJECT-COMPUTER paragraph.

* negated combined condition . The ‘NOT’ logical
operator immediately followed by a parenthesized com-
bined condition.

* negated simple condition . The ‘NOT’ logical oper-
ator immediately followed by a simple condition.

nested program . A program that is directly contained
within another program.

* next executable sentence . The next sentence to
which control will be transferred after execution of the
current statement is complete.

* next executable statement . The next statement to
which control will be transferred after execution of the
current statement is complete.

* next record . The record that logically follows the
current record of a file.

* noncontiguous items . Elementary data items in the
WORKING-STORAGE and LINKAGE SECTIONs that
bear no hierarchic relationship to other data items.

non-date . Any of the following:

� A data item whose date description entry does not
include the DATE FORMAT clause

 � A literal

� A date field that has been converted using the
UNDATE function

� A reference-modified date field

� The result of certain arithmetic operations that may
include date field operands; for example, the differ-
ence between two compatible date fields

* nonnumeric item . A data item whose description
permits its content to be composed of any combination
of characters taken from the computer’s character set.
Certain categories of nonnumeric items may be formed
from more restricted character sets.

* nonnumeric literal . A literal bounded by quotation
marks. The string of characters may include any char-
acter in the computer’s character set.

null . Figurative constant used to assign the value of an
invalid address to pointer data items. NULLS can be
used wherever NULL can be used.

* numeric character . A character that belongs to the
following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item . A numeric item that is in such a
form that it may be used in printed output. It may
consist of external decimal digits from 0 through 9, the
decimal point, commas, the dollar sign, editing sign
control symbols, plus other editing symbols.

* numeric function . A function whose class and cate-
gory are numeric but which for some possible evaluation
does not satisfy the requirements of integer functions.

* numeric item . A data item whose description restricts
its content to a value represented by characters chosen
from the digits from ‘0’ through ‘9’; if signed, the item
may also contain a ‘+’, ‘−’, or other representation of an
operational sign.

* numeric literal . A literal composed of one or more
numeric characters that may contain either a decimal
point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic sign,
if present, must be the leftmost character.

590 COBOL Language Reference

O
object . An entity that has state (its data values) and
operations (its methods). An object is a way to
encapsulate state and behavior.

object code . Output from a compiler or assembler that
is itself executable machine code or is suitable for proc-
essing to produce executable machine code.

* OBJECT-COMPUTER . The name of an ENVIRON-
MENT DIVISION paragraph in which the computer envi-
ronment, within which the object program is executed, is
described.

* object computer entry . An entry in the
OBJECT-COMPUTER paragraph of the ENVIRONMENT
DIVISION which contains clauses that describe the com-
puter environment in which the object program is to be
executed.

object deck . A portion of an object program suitable as
input to a linkage editor. Synonymous with object
module and text deck.

object module . Synonym for object deck or text deck.

* object of entry . A set of operands and reserved
words, within a DATA DIVISION entry of a COBOL
program, that immediately follows the subject of the
entry.

* object program . A set or group of executable
machine language instructions and other material
designed to interact with data to provide problem sol-
utions. In this context, an object program is generally
the machine language result of the operation of a
COBOL compiler on a source program. Where there is
no danger of ambiguity, the word ‘program’ alone may
be used in place of the phrase ‘object program.’

* object time . The time at which an object program is
executed. The term is synonymous with execution time.

* obsolete element . A COBOL language element in
Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

ODBC. Open Database Connectivity that provides you
access to data from a variety of databases and file
systems.

ODO object . In the example below,

WORKING-STORAGE SECTION
ð1 TABLE-1.
 ð5 X PICS9.

ð5 Y OCCURS 3 TIMES
DEPENDING ON X PIC X.

X is the object of the OCCURS DEPENDING ON clause
(ODO object). The value of the ODO object determines
how many of the ODO subject appear in the table.

ODO subject . In the example above, Y is the subject of
the OCCURS DEPENDING ON clause (ODO subject).
The number of Y ODO subjects that appear in the table
depends on the value of X.

* open mode . The state of a file after execution of an
OPEN statement for that file and before the execution of
a CLOSE statement without the REEL or UNIT phrase
for that file. The particular open mode is specified in the
OPEN statement as either INPUT, OUTPUT, I-O or
EXTEND.

* operand . Whereas the general definition of operand
is “that component which is operated upon,” for the pur-
poses of this document, any lowercase word (or words)
that appears in a statement or entry format may be con-
sidered to be an operand and, as such, is an implied ref-
erence to the data indicated by the operand.

* operational sign . An algebraic sign, associated with
a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

* optional file . A file which is declared as being not
necessarily present each time the object program is exe-
cuted. The object program causes an interrogation for
the presence or absence of the file.

* optional word . A reserved word that is included in a
specific format only to improve the readability of the lan-
guage and whose presence is optional to the user when
the format in which the word appears is used in a source
program.

OS/2 (Operating System/2 *). A multi-tasking oper-
ating system for the IBM Personal Computer family that
allows you to run both DOS mode and OS/2 mode pro-
grams.

* output file . A file that is opened in either the
OUTPUT mode or EXTEND mode.

* output mode . The state of a file after execution of an
OPEN statement, with the OUTPUT or EXTEND phrase
specified, for that file and before the execution of a

Glossary 591

CLOSE statement without the REEL or UNIT phrase for
that file.

* output procedure . A set of statements to which
control is given during execution of a SORT statement
after the sort function is completed, or during execution
of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged
order when requested.

overflow condition . A condition that occurs when a
portion of the result of an operation exceeds the capacity
of the intended unit of storage.

P
packed decimal item . See “internal decimal item.”

* padding character . An alphanumeric character used
to fill the unused character positions in a physical record.

page . A vertical division of output data representing a
physical separation of such data, the separation being
based on internal logical requirements and/or external
characteristics of the output medium.

* page body . That part of the logical page in which
lines can be written and/or spaced.

* paragraph . In the Procedure Division, a paragraph-
name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION and ENVI-
RONMENT DIVISIONs, a paragraph header followed by
zero, one, or more entries.

* paragraph header . A reserved word, followed by the
separator period, that indicates the beginning of a para-
graph in the IDENTIFICATION and ENVIRONMENT
DIVISIONs. The permissible paragraph headers in the
IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRON-
MENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name . A user-defined word that identifies
and begins a paragraph in the Procedure Division.

parameter . Parameters are used to pass data values
between calling and called programs.

password . A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements before gaining access to
data.

* phrase . A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion
of a COBOL procedural statement or of a COBOL
clause.

* physical record . See “block.”

pointer data item . A data item in which address values
can be stored. Data items are explicitly defined as
pointers with the USAGE IS POINTER clause.
ADDRESS OF special registers are implicitly defined as
pointer data items. Pointer data items can be compared
for equality or moved to other pointer data items.

portability . The ability to transfer an application
program from one application platform to another with
relatively few changes to the source program.

* prime record key . A key whose contents uniquely
identify a record within an indexed file.

* priority-number . A user-defined word which classifies
sections in the Procedure Division for purposes of seg-
mentation. Segment-numbers may contain only the
characters '0','1', ... , '9'. A segment-number may be
expressed either as a 1- or 2-digit number.

* procedure . A paragraph or group of logically succes-
sive paragraphs, or a section or group of logically suc-
cessive sections, within the Procedure Division.

* procedure branching statement . A statement that
causes the explicit transfer of control to a statement
other than the next executable statement in the
sequence in which the statements are written in the
source program. The procedure branching statements
are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO,
MERGE, (with the OUTPUT PROCEDURE phrase),

592 COBOL Language Reference

PERFORM and SORT (with the INPUT PROCEDURE or
OUTPUT PROCEDURE phrase).

Procedure Division . One of the four main component
parts of a COBOL program, class definition, or method
definition. The Procedure Division contains instructions
for solving a problem. The Program and Method Proce-
dure Divisions may contain imperative statements, condi-
tional statements, compiler directing statements,
paragraphs, procedures, and sections. The Class Pro-
cedure Division contains only method definitions.

procedure integration . One of the functions of the
COBOL optimizer is to simplify calls to performed proce-
dures or contained programs.

PERFORM procedure integration is the process whereby
a PERFORM statement is replaced by its performed pro-
cedures. Contained program procedure integration is
the process where a CALL to a contained program is
replaced by the program code.

* procedure-name . A user-defined word that is used to
name a paragraph or section in the Procedure Division.
It consists of a paragraph-name (which may be qualified)
or a section-name.

procedure-pointer data item . A data item in which a
pointer to an entry point can be stored. A data item
defined with the USAGE IS PROCEDURE-POINTER
clause contains the address of a procedure entry point.

* program identification entry . An entry in the
PROGRAM-ID paragraph of the IDENTIFICATION DIVI-
SION which contains clauses that specify the program-
name and assign selected program attributes to the
program.

* program-name . In the IDENTIFICATION DIVISION
and the end program header, a user-defined word that
identifies a COBOL source program.

* pseudo-text . A sequence of text words, comment
lines, or the separator space in a source program or
COBOL library bounded by, but not including, pseudo-
text delimiters.

* pseudo-text delimiter . Two contiguous equal sign
characters (==) used to delimit pseudo-text.

* punctuation character . A character that belongs to
the following set:

Character Meaning
 , comma
 ; semicolon

 : colon
 . period (full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 ␣ space
 = equal sign

Q
QSAM (Queued Sequential Access Method) . An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed
of input data blocks that are awaiting processing or of
output data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an output
device.

* qualified data-name . An identifier that is composed
of a data-name followed by one or more sets of either of
the connectives OF and IN followed by a data-name
qualifier.

* qualifier .

1. A data-name or a name associated with a level indi-
cator which is used in a reference either together
with another data-name which is the name of an
item that is subordinate to the qualifier or together
with a condition-name.

2. A section-name that is used in a reference together
with a paragraph-name specified in that section.

3. A library-name that is used in a reference together
with a text-name associated with that library.

R
* random access . An access mode in which the
program-specified value of a key data item identifies the
logical record that is obtained from, deleted from, or
placed into a relative or indexed file.

* record . See “logical record.”

* record area . A storage area allocated for the purpose
of processing the record described in a record
description entry in the File Section of the DATA DIVI-
SION. In the File Section, the current number of char-
acter positions in the record area is determined by the
explicit or implicit RECORD clause.

* record description . See “record description entry.”

Glossary 593

* record description entry . The total set of data
description entries associated with a particular record.
The term is synonymous with record description.

recording mode . The format of the logical records in a
file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key . A key whose contents identify a record
within an indexed file.

* record-name . A user-defined word that names a
record described in a record description entry in the
DATA DIVISION of a COBOL program.

* record number . The ordinal number of a record in
the file whose organization is sequential.

recursion . A program calling itself or being directly or
indirectly called by a one of its called programs.

recursively capable . A program is recursively capable
(can be called recursively) if the RECURSIVE attribute is
on the PROGRAM-ID statement.

reel . A discrete portion of a storage medium, the
dimensions of which are determined by each
implementor that contains part of a file, all of a file, or
any number of files. The term is synonymous with unit
and volume.

reentrant . The attribute of a program or routine that
allows more than one user to share a single copy of a
load module.

* reference format . A format that provides a standard
method for describing COBOL source programs.

reference modification . A method of defining a new
alphanumeric data item by specifying the leftmost char-
acter and length relative to the leftmost character of
another alphanumeric data item.

* reference-modifier . A syntactically correct combina-
tion of character-strings and separators that defines a
unique data item. It includes a delimiting left parenthesis
separator, the leftmost character position, a colon sepa-
rator, optionally a length, and a delimiting right paren-
thesis separator.

* relation . See “relational operator” or “relation condi-
tion.”

* relational operator . A reserved word, a relation char-
acter, a group of consecutive reserved words, or a group

of consecutive reserved words and relation characters
used in the construction of a relation condition. The per-
missible operators and their meanings are:

Operator Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO
Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO
Less than or equal to

IS <= Less than or equal to

* relation character . A character that belongs to the
following set:

Character Meaning

 > greater than
 < less than
 = equal to

* relation condition . The proposition, for which a truth
value can be determined, that the value of an arithmetic
expression, data item, nonnumeric literal, or index-name
has a specific relationship to the value of another arith-
metic expression, data item, nonnumeric literal, or index
name. (See also “relational operator.”)

* relative file . A file with relative organization.

* relative key . A key whose contents identify a logical
record in a relative file.

* relative organization . The permanent logical file
structure in which each record is uniquely identified by
an integer value greater than zero, which specifies the
record’s logical ordinal position in the file.

* relative record number . The ordinal number of a
record in a file whose organization is relative. This

594 COBOL Language Reference

number is treated as a numeric literal which is an
integer.

* reserved word . A COBOL word specified in the list of
words that may be used in a COBOL source program,
but that must not appear in the program as user-defined
words or system-names.

* resource . A facility or service, controlled by the oper-
ating system, that can be used by an executing program.

* resultant identifier . A user-defined data item that is
to contain the result of an arithmetic operation.

reusable environment . A reusable environment is
when you establish an assembler program as the main
program by using either ILBOSTP0 programs, IGZERRE
programs, or the RTEREUS run-time option.

routine . A set of statements in a COBOL program that
causes the computer to perform an operation or series
of related operations. In Language Environment, refers
to either a procedure, function, or subroutine.

* routine-name . A user-defined word that identifies a
procedure written in a language other than COBOL.

* run time . The time at which an object program is
executed. The term is synonymous with object time.

run-time environment . The environment in which a
COBOL program executes.

* run unit . A stand-alone object program, or several
object programs, that interact via COBOL CALL state-
ments, which function at run time as an entity.

S
SBCS (Single Byte Character Set) . See "Single Byte
Character Set (SBCS)".

scope terminator . A COBOL reserved word that marks
the end of certain Procedure Division statements. It may
be either explicit (END-ADD, for example) or implicit
(separator period).

* section . A set of zero, one or more paragraphs or
entities, called a section body, the first of which is pre-
ceded by a section header. Each section consists of the
section header and the related section body.

* section header . A combination of words followed by
a separator period that indicates the beginning of a

section in the Environment, Data, and Procedure Divi-
sions. In the ENVIRONMENT and DATA DIVISIONs, a
section header is composed of reserved words followed
by a separator period. The permissible section headers
in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION
are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed
of a section-name, followed by the reserved word
SECTION, followed by a separator period.

* section-name . A user-defined word that names a
section in the Procedure Division.

selection structure . A program processing logic in
which one or another series of statements is executed,
depending on whether a condition is true or false.

* sentence . A sequence of one or more statements,
the last of which is terminated by a separator period.

* separately compiled program . A program which,
together with its contained programs, is compiled sepa-
rately from all other programs.

* separator . A character or two contiguous characters
used to delimit character-strings.

* separator comma . A comma (,) followed by a space
used to delimit character-strings.

* separator period . A period (.) followed by a space
used to delimit character-strings.

* separator semicolon . A semicolon (;) followed by a
space used to delimit character-strings.

sequence structure . A program processing logic in
which a series of statements is executed in sequential
order.

* sequential access . An access mode in which logical
records are obtained from or placed into a file in a con-
secutive predecessor-to-successor logical record
sequence determined by the order of records in the file.

* sequential file . A file with sequential organization.

Glossary 595

* sequential organization . The permanent logical file
structure in which a record is identified by a
predecessor-successor relationship established when the
record is placed into the file.

serial search . A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last.

* 77-level-description-entry . A data description entry
that describes a noncontiguous data item with the level-
number 77.

* sign condition . The proposition, for which a truth
value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than,
greater than, or equal to zero.

* simple condition . Any single condition chosen from
the set:

 Relation condition
 Class condition
 Condition-name condition
 Switch-status condition
 Sign condition

Single Byte Character Set (SBCS) . A set of charac-
ters in which each character is represented by a single
byte. See also "EBCDIC (Extended Binary-Coded
Decimal Interchange Code)."

slack bytes . Bytes inserted between data items or
records to ensure correct alignment of some numeric
items. Slack bytes contain no meaningful data. In some
cases, they are inserted by the compiler; in others, it is
the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert
slack bytes when they are needed for proper alignment.
Slack bytes between records are inserted by the pro-
grammer.

SOM. System Object Model

* sort file . A collection of records to be sorted by a
SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry . An entry in the
File Section of the DATA DIVISION that is composed of
the level indicator SD, followed by a file-name, and then
followed by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an ENVIRON-
MENT DIVISION paragraph in which the computer envi-

ronment, within which the source program is compiled, is
described.

* source computer entry . An entry in the
SOURCE-COMPUTER paragraph of the ENVIRON-
MENT DIVISION which contains clauses that describe
the computer environment in which the source program
is to be compiled.

* source item . An identifier designated by a SOURCE
clause that provides the value of a printable item.

source program . Although it is recognized that a
source program may be represented by other forms and
symbols, in this document it always refers to a syntac-
tically correct set of COBOL statements. A COBOL
source program commences with the IDENTIFICATION
DIVISION or a COPY statement. A COBOL source
program is terminated by the end program header, if
specified, or by the absence of additional source
program lines.

* special character . A character that belongs to the
following set:

Character Meaning

 + plus sign
− minus sign (hyphen)

 * asterisk
/ slant (virgule, slash)

 = equal sign
 $ currency sign

, comma (decimal point)
 ; semicolon

. period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* special-character word . A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES . The name of an ENVIRONMENT
DIVISION paragraph in which environment-names are
related to user-specified mnemonic-names.

* special names entry . An entry in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION which provides means for specifying the cur-
rency sign; choosing the decimal point; specifying sym-
bolic characters; relating implementor-names to
user-specified mnemonic-names; relating alphabet-

596 COBOL Language Reference

names to character sets or collating sequences; and
relating class-names to sets of characters.

* special registers . Certain compiler generated storage
areas whose primary use is to store information
produced in conjunction with the use of a specific
COBOL feature.

* standard data format . The concept used in
describing the characteristics of data in a COBOL DATA
DIVISION under which the characteristics or properties
of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite
length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the com-
puter, or on a particular external medium.

* statement . A syntactically valid combination of words,
literals, and separators, beginning with a verb, written in
a COBOL source program.

STL File System . STandard Language File System:
native workstation and PC file system for COBOL and
PL/I. Supports sequential, relative, and indexed files,
including the full ANSI 85 COBOL standard I/O language
and all of the extensions described in IBM COBOL Lan-
guage Reference, unless exceptions are explicitly noted.

structured programming . A technique for organizing
and coding a computer program in which the program
comprises a hierarchy of segments, each segment
having a single entry point and a single exit point.
Control is passed downward through the structure
without unconditional branches to higher levels of the
hierarchy.

* sub-class . A class that inherits from another class.
When two classes in an inheritance relationship are con-
sidered together, the sub-class is the inheritor or inher-
iting class; the super-class is the inheritee or inherited
class.

* subject of entry . An operand or reserved word that
appears immediately following the level indicator or the
level-number in a DATA DIVISION entry.

* subprogram . See “called program.”

* subscript . An occurrence number represented by
either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name
optionally followed by an integer with the operator + or -,
that identifies a particular element in a table. A subscript
may be the word ALL when the subscripted identifier is

used as a function argument for a function allowing a
variable number of arguments.

* subscripted data-name . An identifier that is com-
posed of a data-name followed by one or more sub-
scripts enclosed in parentheses.

* super-class . A class that is inherited by another
class. See also sub-class.

switch-status condition . The proposition, for which a
truth value can be determined, that an UPSI switch,
capable of being set to an ‘on’ or ‘off’ status, has been
set to a specific status.

* symbolic-character . A user-defined word that speci-
fies a user-defined figurative constant.

syntax . (1) The relationship among characters or
groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The
structure of expressions in a language. (3) The rules
governing the structure of a language. (4) The relation-
ship among symbols. (5) The rules for the construction
of a statement.

* system-name . A COBOL word that is used to com-
municate with the operating environment.

System Object Model (SOM) . IBM's object-oriented
programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the
Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA) standards.

T
* table . A set of logically consecutive items of data that
are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element . A data item that belongs to the set of
repeated items comprising a table.

text deck . Synonym for object deck or object module.

* text-name . A user-defined word that identifies library
text.

* text word . A character or a sequence of contiguous
characters between margin A and margin R in a COBOL
library, source program, or in pseudo-text which is:

� A separator, except for: space; a pseudo-text delim-
iter; and the opening and closing delimiters for non-

Glossary 597

numeric literals. The right parenthesis and left
parenthesis characters, regardless of context within
the library, source program, or pseudo-text, are
always considered text words.

� A literal including, in the case of nonnumeric literals,
the opening quotation mark and the closing quota-
tion mark that bound the literal.

� Any other sequence of contiguous COBOL charac-
ters except comment lines and the word ‘COPY’
bounded by separators that are neither a separator
nor a literal.

top-down design . The design of a computer program
using a hierarchic structure in which related functions
are performed at each level of the structure.

top-down development . See “structured
programming.”

trailer-label . (1) A file or data set label that follows the
data records on a unit of recording medium. (2)
Synonym for end-of-file label.

* truth value . The representation of the result of the
evaluation of a condition in terms of one of two values:
true or false.

U
* unary operator . A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in an arithmetic
expression and that has the effect of multiplying the
expression by +1 or -1, respectively.

unit . A module of direct access, the dimensions of
which are determined by IBM.

universal object reference . A data-name that can
refer to an object of any class.

* unsuccessful execution . The attempted execution of
a statement that does not result in the execution of all
the operations specified by that statement. The unsuc-
cessful execution of a statement does not affect any
data referenced by that statement, but may affect status
indicators.

UPSI switch . A program switch that performs the func-
tions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

* user-defined word . A COBOL word that must be
supplied by the user to satisfy the format of a clause or
statement.

V
* variable . A data item whose value may be changed
by execution of the object program. A variable used in
an arithmetic expression must be a numeric elementary
item.

* variable length record . A record associated with a
file whose file description or sort-merge description entry
permits records to contain a varying number of character
positions.

* variable occurrence data item . A variable occur-
rence data item is a table element which is repeated a
variable number of times. Such an item must contain an
OCCURS DEPENDING ON clause in its data description
entry, or be subordinate to such an item.

* variably located group. . A group item following, and
not subordinate to, a variable-length table in the same
level-01 record.

* variably located item. . A data item following, and not
subordinate to, a variable-length table in the same
level-01 record.

* verb . A word that expresses an action to be taken by
a COBOL compiler or object program.

VM/SP (Virtual Machine/System Product) . An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a “real” machine.

volume . A module of external storage. For tape
devices it is a reel; for direct-access devices it is a unit.

volume switch procedures . System specific proce-
dures executed automatically when the end of a unit or
reel has been reached before end-of-file has been
reached.

598 COBOL Language Reference

W
windowed date field . A date field containing a win-
dowed (2-digit) year. See also “date field” and “win-
dowed year.”

windowed year . A date field that consists only of a
2-digit year. This 2-digit year may be interpreted using a
century window. For example, 05 could be interpreted
as 2005. See also “century window.”

Compare with “expanded year.”

* word . A character-string of not more than 30 charac-
ters which forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION . The section of the
DATA DIVISION that describes working storage data
items, composed either of noncontiguous items or
working storage records or of both.

Y

Z
zoned decimal item . See “external decimal item.”

Glossary 599

 Index

Special Characters
, (comma)

insertion character 190
symbol in PICTURE clause 181, 185

/ (slash)
insertion character 190
symbol in PICTURE clause 181, 185

(/) comment line 38
 (period) 182
<= (less than or equal to) 244
< (less than) 244
{ : }

description 29
required use of 522

$ (default currency symbol)
in PICTURE clause 182, 185
insertion character 191, 192

* symbol in PICTURE clause 182
*CBL (*CONTROL) statement 514
+ (plus)

insertion character 191, 192, 193
SIGN clause 201
symbol in PICTURE clause 185

− (minus)
insertion character 191, 192
SIGN clause 201
symbol in PICTURE clause 185

= (equal) 244
> (greater than) 244
>= (greater than or equal to) 244

Numerics
0

insertion character 190
symbol in PICTURE clause 181, 185

66, RENAMES data description entry 198
77, item description entry 140
88, condition-name data description entry 162
9, symbol in PICTURE clause 181, 185

A
A, symbol in PICTURE clause 179
abbreviated combined relation condition

abbreviated combined relation condition (continued)
examples 260
using parentheses in 259

ACCEPT statement
mnemonic name in 277, 278
overlapping operands, unpredictable results 269
system information transfer 279
under AIX and OS/2 277

access mode
description 115
dynamic

DELETE statement 304
description 116
READ statement 383

random
DELETE statement 304
description 116
READ statement 383

sequential
DELETE statement 303
description 116
READ statement 380

ACCESS MODE clause 115
ACOS function 458
ADD statement

common phrases 264
CORRESPONDING phrase 284
description and format 282

ADDRESS OF special register 10
ADDRESS OF under AIX and OS/2 403
ADVANCING phrase 437
AFTER phrase

INSPECT statement 334
PERFORM statement 368
with REPLACING 331
with TALLYING 329
WRITE statement 438

AIX COBOL language differences
ACCEPT statement 277
APPLY WRITE-ONLY 129
ASSIGN clause 107
basis-names, library-names, text-names 40
BLOCK CONTAINS 149
CLOSE statement 296
CODE-SET 159
COMP-5 data item 211

600 Copyright IBM Corp. 1991, 1998

AIX COBOL language differences (continued)
compiler limits 544
control characters 142
DBCS 2
environment-name 279
file handling 129
file status data-name-8 122
LABEL RECORDS 154
LINE SEQUENTIAL file I-O 113
locale definition 568
LOCK MODE clause 120
MORE-LABELS, GO TO 322
pointer data item size 214
RECORD CONTAINS clause 151
RECORDING MODE clause 157
RERUN clause 125
RESERVE clause 110
SAME AREA clause 127
SAME SORT AREA clause 128
SAME SORT-MERGE AREA clause 129
SET statement 403
SORT-CONTROL special register 16
SORT-FILE-SIZE under AIX and OS/2 17
SORT-MESSAGE under AIX and OS/2 18
SORT-MODE-SIZE under AIX and OS/2 18
status key value and meaning 271
USE...AFTER...LABEL PROCEDURE 535
WRITE ADVANCING 91, 437

aligning data 202
ALL

phrase of INSPECT statement 329, 331
SEARCH statement 396
UNSTRING statement 429

ALL literal
STOP statement 418
STRING statement 420
UNSTRING statement 429

ALL subscripting 451
ALPHABET clause 92
alphabet-name

description 92
MERGE statement 348
PROGRAM COLLATING SEQUENCE clause 88
SORT statement 410

alphabetic character in ACCEPT 277
alphabetic class and category 140
ALPHABETIC class test 240
alphabetic item

alignment rules 141
elementary move rules 354

alphabetic item (continued)
PICTURE clause 186

ALPHABETIC-LOWER class test 240
ALPHABETIC-UPPER class test 241
alphanumeric arguments 449
alphanumeric class and category

alignment rules 141
description 140

alphanumeric functions 448
alphanumeric item

alignment rules 141
elementary move rules 354
PICTURE clause 187

alphanumeric literal, control character restrictions 142
alphanumeric-edited item

alignment rules 141
elementary move rules 354
PICTURE clause 188

ALSO phrase
ALPHABET clause 94
EVALUATE statement 313

ALTER statement
description and format 285
GO TO statement and 322
segmentation considerations 286

altered GO TO statement 322
ALTERNATE RECORD KEY clause 118
AND logical operator 255
ANNUITY function 459
APPLY WRITE-ONLY clause 129
Area A (cols. 8-11) 33
Area B (cols. 12-72) 34
arguments 449
arithmetic expression

COMPUTE statement 300
description 233
EVALUATE statement 314
relation condition 243

arithmetic operator
description 234
permissible symbol pairs 235

arithmetic statements
ADD 282
common phrases 264
COMPUTE 300
DIVIDE 309
list of 268
multiple results 269
MULTIPLY 357
operands 268

Index 601

arithmetic statements (continued)
programming notes 269
SUBTRACT 425

ASCENDING KEY phrase
collating sequence 174
description 345
MERGE statement 345
OCCURS clause 173
SORT statement 407

ASCII
collating sequence 551
processing considerations 565
specifying in SPECIAL-NAMES paragraph 92

ASIN function 460
ASSIGN clause

description 106
format 102
SELECT clause and 106

assigning index values 400
assignment-name

ASSIGN clause 106
RERUN clause 125
under AIX and OS/2 107

asterisk (*)
comment line 38
insertion character 193

at end condition
READ statement 382
RETURN statement 388

AT END phrase
READ statement 378
RETURN statement 388
SEARCH statement 394

AT END-OF-PAGE phrases 439
ATAN function 461
AUTHOR paragraph

description 83
format 74

B
B

insertion character 190
symbol in PICTURE clause 179

BASIS statement 512
basis-names on AIX and OS/2 40
batch compile 65
BEFORE phrase

INSPECT statement 334
PERFORM statement 368

BEFORE phrase (continued)
with REPLACING 331
with TALLYING 329
WRITE statement 438

binary arithmetic operators 234
binary data item, DISPLAY statement 305
BINARY phrase in USAGE clause 210
binary search 396
blank line 38
BLANK WHEN ZERO clause

description and format 164
USAGE IS INDEX clause 213

BLOCK CONTAINS clause
description 149
format 144

branching
GO TO statement 321
out-of-line PERFORM statement 366

BY CONTENT phrase
CALL statement 289
on INVOKE statement 339

BY REFERENCE phrase
CALL statement 289
on INVOKE statement 338

BY VALUE phrase
CALL statement 290
on INVOKE statement 339

C
C01-C012 under AIX and OS/2 437
call convention 539
CALL statement

CANCEL statement and 294
description and format 287
Linkage Section 230
ON OVERFLOW phrase 287
Procedure Division header 227, 230
program termination statements 287
subprogram linkage 287
transfer of control 57
USING phrase 230

called and calling programs, description 287
CALLINTERFACE directive 539
CANCEL statement 294
carriage control character 438
category of data

alphabetic items 186
alphanumeric items 187
alphanumeric-edited items 188

602 COBOL Language Reference

category of data (continued)
DBCS items 188
numeric items 186
numeric-edited items 187
relationship to class of data 140

CBL (PROCESS) statement 513
century window

See also date field
definition 61

CHAR function 462
character code set, specifying 92
character-string

COBOL word 3
representation in PICTURE clause 185
size determination 142

CHARACTERS BY phrase 331
CHARACTERS phrase

BLOCK CONTAINS clause 150
INSPECT statement 329
MEMORY SIZE clause 88
USAGE clause and 150

characters, valid in COBOL program 2
checkpoint processing, RERUN clause 125
class 69
CLASS clause 95
class condition 239, 241
class Data Division 132
class definition

affect of SELF and SUPER 337
class procedure division 225
CLASS-ID paragraph 79
Configuration Section 86
Data Division 132
description 69
Identification Division 76
inheritance rules 80
requirements for indexed tables 175

class identification division 79
class name, OO 41
class procedure division 225
CLASS-ID paragraph 79
class-name class test 241
classes of data 140
clauses 30, 31
CLOSE statement

affect on record locking 121
format and description 296

COBOL
class definition 69
language structure 2

COBOL (continued)
method definition 71
program structure 64
reference format 32

COBOL 74 Standard 573
COBOL 85 Standard

definition 573
COBOL word 3
CODE-SET clause

ALPHABET clause and 94
description 159
format 144
NATIVE phrase and 159

collating sequence
ASCENDING/DESCENDING KEY phrase and 174
ASCII 551
EBCDIC 548
locale definition 568
specified in OBJECT-COMPUTER paragraph 88
specified in SPECIAL-NAMES paragraph 92

COLLATING SEQUENCE phrase 88
ALPHABET clause 92
MERGE statement 347
SORT statement 410

colon character
description 29
required use of 522

column 7
indicator area 35
specifying comments 37

combined condition
description 256
evaluation rules 257
logical operators and evaluation results 257
order of evaluation 258
permissible element sequences 256

comma (,)
Configuration Section 86
DECIMAL-POINT IS COMMA clause 97
insertion character 190
symbol in PICTURE clause 181

comment line
description 37
Identification Division 83
in library text 518

COMMON clause 78
common processing facilities 270
COMP-1 through COMP-5 data items 211
comparison

cycle, INSPECT statement 335

Index 603

comparison (continued)
DBCS operands 253
in EVALUATE statement 315
nonnumeric operands 249
numeric and nonnumeric operands 252
numeric operands 248
of index data items 252
of index-names 252
rules for COPY statement 520

compatible date field
See also date field
definition 60

compile-time switch 556
compiler directing statements

BASIS 512
COPY 516
DELETE 523
EJECT 524
ENTER 524
INSERT 525
READY TRACE 526
REPLACE 527
RESET TRACE 526
SERVICE LABEL 530
SERVICE RELOAD 531
SKIP1/2/3 531
TITLE 532
USE 533

compiler limits 544
compiler options

ADV 439
controlling output from 514
DATEPROC 59
NUMPROC 254
specifying 513
THREAD 175
TRUNC 143

complex conditions
abbreviated combined relation 258
combined condition 256
description 255
negated simple 256

complex OCCURS DEPENDING ON (CODO) 178
composite of operands 268
COMPUTATIONAL data items 210
COMPUTE statement

common phrases 266
description and format 300

computer-name 87, 88

condition
abbreviated combined relation 258
class 239
combined 256
complex 255
condition-name 242
EVALUATE statement 314
IF statement 323
negated simple 256
PERFORM UNTIL statement 368
relation 243
SEARCH statement 395
sign 253
simple 239
switch-status 254

condition-name
and conditional variable 162
description and format 242
rules for values 220
SEARCH statement 398
SET statement 402
SPECIAL-NAMES paragraph 92
switch status condition 92

conditional expression
comparing index-names and index data items 252
comparison of DBCS operands 253
description 239
order of evaluation of operands 257
parentheses in abbreviated combined relation condi-

tions 259
conditional statements

description 262
GO TO statement 321
IF statement 323
list of 262
PERFORM statement 368

conditional variable 162
Configuration Section

description (programs, classes, methods) 86
REPOSITORY paragraph 98
SOURCE-COMPUTER paragraph 87
SPECIAL-NAMES paragraph 89

conformance rules
general rules 82
INVOKE...USING 341
multiple inheritance 80
SET...USAGE OBJECT REFERENCE 405

Contained Programs 64
continuation

area 32

604 COBOL Language Reference

continuation (continued)
lines 35, 37

CONTINUE statement 302
control characters, using on AIX or OS/2 142
CONTROL statement (*CONTROL) 514
control transfer 56
conversion of data, DISPLAY statement 305
CONVERTING phrase 333
COPY statement

comparison rules 520
description and format 516
example 521
replacement rules 520
REPLACING phrase 518
SUPPRESS option 518

CORRESPONDING (CORR) phrase
ADD statement 284
description 284
MOVE statement 352
SUBTRACT statement 426
with ON SIZE ERROR phrase 268

COS function 463
COUNT IN phrase, UNSTRING statement 430
CR (credit)

insertion character 191
symbol in PICTURE clause 182

cs (currency symbol)
in PICTURE clause 179

CURRENCY SIGN clause
description 96
Euro currency sign 96
restrictions on using NUMVAL-C function 488

currency sign value 96
currency symbol

in PICTURE clause 182
specifying in CURRENCY SIGN clause 96

currency symbol, default ($) 191
CURRENT-DATE function 464

D
data

alignment 141
categories 141, 185
classes 140
format of standard 142
hierarchies used in qualification 137
organization 111
signed 143
truncation of 142, 171

data category
alphabetic items 186
alphanumeric items 187
alphanumeric-edited items 188
DBCS items 188
numeric items 186
numeric-edited items 187

data conversion, DISPLAY statement 305
data description entry

BLANK WHEN ZERO clause 164
data-name 163
DATE FORMAT clause 164
description and format 161
FILLER phrase 163
GLOBAL clause 170
indentation and 140
JUSTIFIED clause 171
level-66 format (previously defined items) 162
level-88 format (condition-names) 162
level-number description 162
OCCURS clause 172
OCCURS DEPENDING ON (ODO) clause 176
PICTURE clause 178
REDEFINES clause 195
RENAMES clause 198
SIGN clause 200
SYNCHRONIZED clause 202
USAGE clause 209
VALUE clause 217

DATA DIVISION
ASCII considerations 567
data description entry 161
data relationships 137
data types 136
description (programs, classes, methods) 132
file description (FD) entry 148
levels of data 137
Linkage Section 135
sort description (SD) entry 148
Working-Storage Section 133

data flow
STRING statement 422
UNSTRING statement 432

data item
data description entry 161
description entry definition 133
EXTERNAL clause 170
record description entry 161

data manipulation statements
ACCEPT 277

Index 605

data manipulation statements (continued)
INITIALIZE 325
list of 269
MOVE 352
overlapping operands 270
READ 376
RELEASE 385
RETURN 387
REWRITE 389
SET 400
STRING 420
UNSTRING 428
WRITE 436

data organization
access modes and 116
indexed 112
line sequential 112
relative 112
sequential 111

DATA RECORDS clause
description 155
format 144

data transfer 277
data types

file data 136
program data 137

data-name
data description entry 163

data-names
precedence if duplicate 132

DATE 280
date field

addition 236
arithmetic 235
compatible 60
DATE FORMAT clause 164
DATEPROC compiler option 59
DATEVAL function 468
definition 59
expansion of windowed date fields before use 165
group items that are date fields 167
in relation conditions 244
in sign conditions 254
MOVE statement, behavior in 356
non-date 61
purpose 58
restrictions 166
size errors 237, 266
storing arithmetic results 237
subtraction 237

date field (continued)
trigger values 166
UNDATE function 503
windowed date field conditional variables 243

date format
See also DATE FORMAT clause
definition 60

DATE FORMAT clause 164
combining with other clauses 167

DATE YYYYMMDD 280
DATE-COMPILED paragraph

description 83
format 74

DATE-OF-INTEGER function 466
DATE-TO-YYYYMMDD function 467
DATE-WRITTEN paragraph

description 83
format 74

DATEPROC compiler option 59
DATEVAL function 468
DAY 281
DAY YYYYDDD 281
DAY-OF-INTEGER function 470
DAY-OF-WEEK 281
DAY-TO-YYYYDDD function 471
DB (debit)

insertion character 191
symbol in PICTURE clause 182

DBCS (Double-Byte Character Set)
See also multi-byte characters
class and category 140
elementary move rules 355
PICTURE clause and 188
use with relational operators 246
using in comments 84

DBCS class condition 241
DD statements

See environment variables
De-editing 354
DEBUG-ITEM special register 11
debugging 555
DEBUGGING declarative 537
debugging line 38, 87
DEBUGGING MODE clause 87
decimal point (.) 266
DECIMAL-POINT IS COMMA clause

description 97
declarative procedures

description and format 230
PERFORM statement 365

606 COBOL Language Reference

declarative procedures (continued)
USE statement 230

declaratives
EXCEPTION/ERROR 533
LABEL 535
precedence rules for nested programs 535
USE FOR DEBUGGING 537

DECLARATIVES key word
begin in Area A 34
description 230

Declaratives Section 230
DELETE statement

affect on record locking 121
description and format 523
dynamic access 304
format and description 303
INVALID KEY phrases 304
random access 304
sequential access 303

DELIMITED BY phrase
STRING 421
UNSTRING statement 428

delimited scope statement 263
delimiter

INSPECT statement 332
UNSTRING statement 428

DELIMITER IN phrase, UNSTRING statement 430
DEPENDING phrase

GO TO statement 321
OCCURS clause 176

DESCENDING KEY phrase 173
collating sequence 174
description 345
MERGE statement 345
SORT statement 407

DISPLAY phrase in USAGE clause 211
DISPLAY statement

description and format 305
external 142, 189
programming notes 307

DIVIDE statement
common phrases 266
description and format 309
REMAINDER phrase 311

division header
format, Environment Division 86
format, Identification Division 74
format, Procedure Division 227
specification of 33

DO-UNTIL structure, PERFORM statement 368
DO-WHILE structure, PERFORM statement 368
Double-Byte Character Set (DBCS)

See also multi-byte characters
class and category 140
PICTURE clause and 188
use with relational operators 246
using in comments 84

DOWN BY phrase, SET statement 401
duplicate data-names, precedence 132
DUPLICATES phrase

KEY phrase 415
SORT statement 409
START statement 415

dynamic access mode
data organization and 116
DELETE statement 304
description 116
READ statement 383

E
E, symbol in PICTURE clause 180
EBCDIC

CODE-SET clause and 159
collating sequence 548
specifying in SPECIAL-NAMES paragraph 92

editing
fixed insertion 191
floating insertion 192
replacement 193
signs 143
simple insertion 190
special insertion 191
suppression 193

editing sign control symbol 182
eject page 38
EJECT statement 524
elementary item

alignment rules 141
basic subdivisions of a record 137
classes and categories 140
MOVE statement 353
nonnumeric operand comparison 252
size determination in program 142
size determination in storage 142

elementary move rules 353
ELSE NEXT SENTENCE phrase 323
END DECLARATIVES key word 230

Index 607

END PROGRAM 65
end program header 34
END-CALL phrase 293
END-IF phrase 323
END-INVOKE phrase 343
end-of-file processing 296
END-OF-PAGE phrases 439
END-PERFORM phrase 367
ENTER statement 524
entry

definition 30
ENTRY statement

description and format 312
subprogram linkage 312

Environment Division
ASCII considerations 565
compiler limits 544
Configuration Section

ALPHABET clause 92
CURRENCY SIGN clause 96
OBJECT-COMPUTER paragraph 88
REPOSITORY paragraph 98
SOURCE-COMPUTER paragraph 87
SPECIAL-NAMES paragraph 89, 95
SYMBOLIC CHARACTERS clause 95

Input-Output Section
FILE-CONTROL paragraph 102

REPOSITORY paragraph 98
environment names with WRITE ADVANCING 437
environment variables

in ACCEPT statement 279
in DISPLAY statement 305

environment-name
SPECIAL-NAMES paragraph 91

environment-name under AIX and OS/2 279
EOP phrases 439
equal sign (=) 243
EQUAL TO relational operator 243
ERROR declarative statement 533
EUC

description 2
Euro currency sign

specifying in CURRENCY SIGN clause 96
EVALUATE statement

comparing operands 315
determining truth value 314
format and description 313

evaluation rules
combined conditions 257
EVALUATE statement 315

evaluation rules (continued)
nested IF statement 324

EXCEPTION declarative statement 533
EXCEPTION/ERROR declarative

CLOSE statement 297
DELETE statement 303
description and format 533

execution flow
ALTER statement changes 285
PERFORM statement changes 365

EXIT METHOD statement
format and description 318

EXIT PROGRAM statement
format and description 319

EXIT statement
format and description 317
PERFORM statement 366

expanded date field
See also date field
definition 60

expanded year
See also date field
definition 60

expansion of windowed date fields before use 165
explicit

scope terminators 264
exponentiation

exponential expression 234
expression, arithmetic 233
EXTEND phrase

OPEN statement 359
EXTERNAL clause

with data item 170
with file name 148

external decimal item
DISPLAY statement 305

external floating point
alignment rules 142
DISPLAY statement 305
PICTURE clause and 189

F
FACTORIAL function 472
FALSE phrase 314
FD (File Description) entry

BLOCK CONTAINS clause 149
DATA RECORDS clause 155
description 147
format 144

608 COBOL Language Reference

FD (File Description) entry (continued)
LABEL RECORDS clause 154
level indicator 137
VALUE OF clause 155

figurative constant
DISPLAY statement 306
STOP statement 418
STRING statement 420
symbolic-character 9
UNSTRING statement 429

file
data type 136
definition 136
handling, on AIX and OS/2 129
labels 154

file description entry
GLOBAL clause 149

file organization
definition 116
LINAGE clause 155
line sequential 112
types of 111

file position indicator
description 276
READ statement 382

File Section
EXTERNAL clause 148
for object-oriented programs 132
RECORD clause 151

file sharing 120
FILE STATUS clause

DELETE statement and 303
description 122
format 102
INVALID KEY phrase and 274
status key 270

FILE-CONTROL paragraph
ASSIGN clause 106
description and format 102
FILE STATUS clause 122
ORGANIZATION clause 111
PADDING CHARACTER clause 114
RECORD KEY clause 117
RELATIVE KEY clause 119
RESERVE clause 110
SELECT clause 106

file-name, specifying on SELECT clause 106
FILLER phrase

CORRESPONDING phrase 163
data description entry 163

fixed insertion editing 191
fixed-length

item, maximum length 161
records 149

floating insertion editing 192
floating-point

DISPLAY statement 305
internal 142

FOOTING phrase of LINAGE clause 155
FOR REMOVAL phrase 296, 297
format notation, rules for xiii
FROM phrase

ACCEPT statement 278
REWRITE statement 389
SUBTRACT statement 425
with identifier 275
WRITE statement 437

function
arguments 449
class and category 141
description 447
rules for usage 449
types of functions 448

G
G, symbol in PICTURE clause 180
GIVING phrase

ADD statement 282
arithmetic 266
DIVIDE statement 311
MERGE statement 349
MULTIPLY statement 357
SORT statement 411
SUBTRACT statement 426

GLOBAL clause
with data item 170
with file name 149

GO TO statement
altered 322
conditional 321
format and description 321
MORE-LABELS 322
SEARCH statement 394
unconditional 321

GOBACK statement 320
GREATER THAN OR EQUAL TO symbol (>=) 243
GREATER THAN symbol (>) 243
group item

class and categories 140

Index 609

group item (continued)
description 137
MOVE statement 356
nonnumeric operand comparison 252

group move rules 356

H
halting execution 418
HIGH-VALUE(S) figurative constant 94
hyphen (-), in indicator area 35

I
IBM extensions, format description xiii
Identification Division

CLASS-ID paragraph 79
format (program, class, method) 74
METHOD-ID paragraph 81
optional paragraphs 83
PROGRAM-ID paragraph 77

identifier 46, 233
IF statement 323
imperative statement 261
implicit

redefinition of storage area 148, 195
scope terminators 264

in line PERFORM statement 365
indentation 35, 140
index

data item 252, 352
relative indexing 52
SET statement 52

index name
assigning values 400
comparisons 252
data item definition 212
OCCURS clause 175
PERFORM statement 375
SEARCH statement 393
SET statement 400

INDEX phrase in USAGE clause 212
INDEXED BY phrase 175
indexed files

CLOSE statement 297
DELETE statement 304
FILE-CONTROL paragraph format 102
I-O-CONTROL paragraph format 124
organization 112
permissible statements for 364

indexed files (continued)
READ statement 382
START statement 416

indexed organization
description 112
FILE-CONTROL paragraph format 102
I-O-CONTROL paragraph format 124

indexing
description 51
MOVE statement evaluation 352
OCCURS clause 51, 172
relative 52
SET statement and 52

indicator area 32
industry specifications 571
INHERITS clause 79
INITIAL clause 78
initial state of program 78
INITIALIZE statement

format and description 325
overlapping operands, unpredictable results 269

input file, label processing 362
Input-Output Section

description 100
FILE-CONTROL paragraph 102
format 100
I-O-CONTROL paragraph 124

input-output statements
ACCEPT 277
CLOSE 296
common processing facilities 270
DELETE 303
DISPLAY 305
EXCEPTION/ERROR procedures 534
general description 270
OPEN 359
READ 376
REWRITE 389
START 415
WRITE 436

INPUT phrase
OPEN statement 359
USE statement 533

INPUT PROCEDURE phrase
RELEASE statement 385
SORT statement 411

Input-Output Section
on AIX and OS/2 113

insertion editing
fixed (numeric-edited items) 191

610 COBOL Language Reference

insertion editing (continued)
floating (numeric-edited items) 192
simple 190
special (numeric-edited items) 191

INSPECT statement
AFTER phrase 332
BEFORE phrase 332
comparison cycle 335
CONVERTING phrase 333
overlapping operands, unpredictable results 269
REPLACING phrase 329

INSTALLATION paragraph
description 83
format 74

instance data 71
integer arguments 449
INTEGER function 473
Integer functions 448
INTEGER-OF-DATE function 474
INTEGER-OF-DAY function 475
INTEGER-PART function 476
internal floating-point

alignment rules 142
DISPLAY statement 305

INTO phrase
DIVIDE statement 309
READ statement 376
RETURN statement 387
STRING statement 421
UNSTRING statement 430
with identifier 275

intrinsic functions
ACOS 458
alphanumeric function 448
ANNUITY 459
ASIN 460
ATAN 461
CHAR 462
COS 463
CURRENT-DATE 464
DATE-OF-INTEGER 466
DATE-TO-YYYYMMDD 467
DATEVAL 468
DAY-OF-INTEGER 470
DAY-TO-YYYYDDD 471
FACTORIAL 472
floating-point literals 451
INTEGER 473
integer function 448
INTEGER-OF-DATE 474

intrinsic functions (continued)
INTEGER-OF-DAY 475
INTEGER-PART 476
LENGTH 477
LOG 478
LOG10 479
LOWER-CASE 480
MAX 481
MEAN 482
MEDIAN 483
MIDRANGE 484
MIN 485
MOD 486
numeric function 448
NUMVAL 487
NUMVAL-C 488
ORD 490
ORD-MAX 491
ORD-MIN 492
PRESENT-VALUE 493
RANDOM 494
RANGE 495
REM 496
REVERSE 497
SIN 498
SQRT 499
STANDARD-DEVIATION 500
SUM 501
summary of 455
TAN 502
UNDATE 503
UPPER-CASE 504
VARIANCE 505
WHEN-COMPILED 506
YEAR-TO-YYYY 508
YEARWINDOW 509

invalid key condition 274
INVALID KEY phrase

DELETE statement 304
READ statement 379
REWRITE statement 390
START statement 416
WRITE statement 440

INVOKE statement
BY CONTENT phrase 339
BY REFERENCE phrase 338
BY VALUE phrase 339
format and description 337
NOT ON EXCEPTION phrase 343
ON EXCEPTION phrase 342

Index 611

INVOKE statement (continued)
RETURNING phrase 341
USING phrase 338

I-O-CONTROL paragraph
APPLY WRITE-ONLY clause 129
checkpoint processing in 125
description 100, 124
MULTIPLE FILE TAPE clause 129
order of entries 124
RERUN clause 125
SAME AREA clause 127
SAME RECORD AREA clause 127
SAME SORT AREA clause 128
SAME SORT-MERGE AREA clause 129

ISCII processing considerations 565

J
JUSTIFIED clause

description and format 171
effect on initial settings 172
STRING statement 421
truncation of data 171
USAGE IS INDEX clause and 171
VALUE clause and 218

K
Kanji 241
key of reference 112
KEY phrase

OCCURS clause 173
READ statement 378
SEARCH statement 393
SORT statement 407
START statement 415

L
LABEL declarative 535
label processing, OPEN statement 362
LABEL RECORDS clause

description 154
format 144

Language Environment Callable Services
description 287

LEADING phrase
INSPECT statement 329, 331
SIGN clause 201

LENGTH function 477
LENGTH OF special register 12
LESS THAN OR EQUAL TO symbol (<=) 243
LESS THAN symbol (<) 243
level

01 item 138
02-49 item 138
66 item 140
77 item 140
88 item 140
indicator, definition of 137

level number
definition 137
description and format 162
FILLER phrase 163

library-name
COPY statement 516

library-names
on AIX and OS/2 40

limit values, date field 166
limits of the compiler 544
LINAGE clause

description 155
diagram of phrases 156
format 144

LINAGE-COUNTER special register
description 13
WRITE statement 439

line advancing 437
line sequential file organization 112
LINE/LINES, WRITE statement 437
LINES AT BOTTOM phrase 156
LINES AT TOP phrase 156
Linkage Section

called subprogram 230
description 135
levels under AIX and OS/2 403
requirement for indexed items 175
VALUE clause 217

literal
and arithmetic expressions 233
ASSIGN clause 106
CODE-SET clause and ALPHABET clause 94
CURRENCY SIGN clause 96
description 20
nonnumeric operand comparison 252
null-terminated nonnumeric 23
STOP statement 418
VALUE clause 218

612 COBOL Language Reference

local storage
defining with RECURSIVE clause 77
requirement for indexed items 175

Local-Storage
object-oriented COBOL 132

locale 568
LOCK MODE clause 120
LOG function 478
LOG10 function 479
logical operator

complex condition 255
in evaluation of combined conditions 257
list of 255

logical record
definition 136
file data 136
program data 137
record description entry and 136
RECORDS phrase 150

LOW-VALUE(S) figurative constant 94
LOWER-CASE function 480

M
MAX function 481
maximum index value 52
MEAN function 482
MEDIAN function 483
MEMORY SIZE clause 88
MERGE statement

ASCENDING/DESCENDING KEY phrase 345
COLLATING SEQUENCE phrase 347
format and description 345
GIVING phrase 349
OUTPUT PROCEDURE phrase 350
USING phrase 349

METACLASS clause 79, 213
metaclass, description 69
method data division 132
method definition

affect of SELF and SUPER 337
Data Division 132
description 71
Identification Division 76
inheritance rules 80
method procedure division 225
METHOD-ID paragraph 81

method identification division 81
method name 40

method procedure division 225
METHOD-ID paragraph 81
methods

available to subclasses 80
exiting 318
invoking 337
recursively reentering 77
reusing 79

MIDRANGE function 484
millennium language extensions

syntax 58
millennium language extensions (MLE)

See also date field
description 58

MIN function 485
minus sign (-)

COBOL character 2
fixed insertion symbol 191
floating insertion symbol 192, 193
SIGN clause 201

mnemonic-name
ACCEPT statement 277
DISPLAY statement 306
SET statement 402
SPECIAL-NAMES paragraph 91
WRITE statement 438

MOD function 486
MORE-LABELS GO TO statement 322
MOVE statement

CORRESPONDING phrase 352
elementary moves 353
format and description 352
group moves 356

multi-byte characters
in COBOL words 4
in literals 20

MULTIPLE FILE TAPE clause 129
multiple inheritance 80
multiple record processing, READ statement 379
multiple results, arithmetic statements 269
multiple volume files, treatment on AIX and OS/2 129
MULTIPLY statement

common phrases 266
format and description 357

multivolume files
READ statement 382
WRITE statement 442

Index 613

N
native binary data item 211
native character set 92
native collating sequence 92
negated combined condition 256
negated simple condition 256
NEGATIVE 254
nested IF structure

description 324
EVALUATE statement 313

nested programs
description 64
precedence rules for 535

NEXT RECORD phrase, READ statement 376
NEXT SENTENCE phrase

IF statement 323
SEARCH statement 394

NO ADVANCING phrase, DISPLAY statement 306
NO REWIND phrase

OPEN statement 359
under AIX and OS/2 296

non-date
See also date field
definition 61

non-reel file, definition 297
nonnumeric literals 23
nonnumeric operands, comparing 249
NOT AT END phrase

READ statement 378
RETURN statement 388

NOT INVALID KEY phrase
DELETE statement 304
READ statement 379
REWRITE statement 390
START statement 416

NOT ON EXCEPTION phrase
CALL statement 292
on INVOKE statement 343

NOT ON OVERFLOW phrase
STRING statement 422
UNSTRING statement 431

NOT ON SIZE ERROR phrase
ADD statement 284
DIVIDE statement 311
general description 266
MULTIPLY statement 358
SUBTRACT statement 427

NULL 222
null block branch, CONTINUE statement 302

null-terminated nonnumeric literals 23
numeric arguments 449
numeric class and category 140
NUMERIC class test 240
numeric function 448
numeric item 186
numeric operands, comparing 248
numeric-edited item

alignment rules 141
editing signs 143
elementary move rules 354
PICTURE clause 187

NUMVAL function 487
NUMVAL-C function 488

O
Object Program 64
OBJECT REFERENCE phrase 213
object time switch 556
OBJECT-COMPUTER paragraph 88
object-oriented COBOL

class definition 69
comparison rules 248
conformance rules

general rules 82
INVOKE...USING 341
multiple inheritance 80
SET...USAGE OBJECT REFERENCE 405

Data Division (class and method) 132
effect of GLOBAL attribute 133
Identification Division (class and method) 74
INHERITS clause 79
INVOKE statement 337
method definition 71
method name 40
multiple inheritance 80
OO class name 41
Procedure Division (class and method) 225
REPOSITORY paragraph 98
SELF and SUPER special characters 7
specifying configuration section 86
subclasses and methods 80
USAGE OBJECT REFERENCE clause 213

objects in EVALUATE statement 313
obsolete language elements xii
OCCURS clause

ASCENDING/DESCENDING KEY phrase 173
description 172
INDEXED BY phrase 175

614 COBOL Language Reference

OCCURS clause (continued)
restrictions 172
variable-length tables format 176

OCCURS DEPENDING ON (ODO) clause
complex 178
description 176
format 176
RECORD clause 151
REDEFINES clause and 172
SEARCH statement and 172
subject and object of 176
subject of 172
subscripting 49

OFF phrase, SET statement 402
OMITTED 289, 290
ON EXCEPTION phrase

CALL statement 292
on INVOKE statement 342

ON OVERFLOW phrase
CALL statement 293
DISPLAY statement 307
STRING statement 421, 432

ON phrase, SET statement 402
ON SIZE ERROR phrase

ADD statement 284
arithmetic statements 266
COMPUTE statement 301
DIVIDE statement 311
MULTIPLY statement 358
SUBTRACT statement 427

OPEN statement
affect on record locking 121
for new/existing files 360
format and description 359
I-O phrase 359
label processing 362
phrases 359
programming notes 362
system dependencies 364

operands
comparison of nonnumeric 249
comparison of numeric 248
composite of 268
overlapping 269, 270

operational sign
algebraic, description of 143
SIGN clause and 143
USAGE clause and 143

optional file
See SELECT OPTIONAL clause

ORD function 490
ORD-MAX function 491
ORD-MIN function 492
order of entries

clauses in FILE-CONTROL paragraph 102
IO CONTROL paragraph 124

order of evaluation in combined conditions 258
ORGANIZATION clause

description 111
format 102
ORGANIZATION IS INDEXED clause 111
ORGANIZATION IS LINE SEQUENTIAL clause 111
ORGANIZATION IS RELATIVE clause 111
ORGANIZATION IS SEQUENTIAL clause 111

OS/2 COBOL language differences
ACCEPT statement 277
APPLY WRITE-ONLY 129
ASSIGN clause 107
basis-names, library-names, text-names 40
BLOCK CONTAINS 149
CLOSE statement 296
CODE-SET clause 159
COMP-5 data item 211
compiler limits 544
control characters 142
DBCS 2
environment-name 279
file handling 129
file status data-name-8 122
LABEL RECORDS 154
LINE SEQUENTIAL file I-O 113
locale definition 568
LOCK MODE clause 120
MORE-LABELS, GO TO 322
pointer data item size 214
RECORD CONTAINS clause 151
RECORDING MODE clause 157
RERUN clause 125
RESERVE clause 110
SAME AREA clause 127
SAME SORT AREA clause 128
SAME SORT-MERGE AREA clause 129
SET statement 403
SORT-CONTROL special register 16
SORT-FILE-SIZE under AIX and OS/2 17
SORT-MESSAGE under AIX and OS/2 18
SORT-MODE-SIZE under AIX and OS/2 18
specifying call convention 539
status key value and meaning 271
USAGE clause 213

Index 615

OS/2 COBOL language differences (continued)
USE...AFTER...LABEL PROCEDURE 535
WRITE ADVANCING 91, 437

out-of-line PERFORM statement 366
outermost programs, debugging 537
output file, label processing 362
OUTPUT phrase 359
OUTPUT PROCEDURE phrase

MERGE statement 350
RETURN statement 387
SORT statement 412

OVERFLOW phrase
CALL statement 293
STRING statement 421, 432

overlapping operands invalid in
arithmetic statements 269
data manipulation statements 270

P
P, symbol in PICTURE clause 180
PACKED-DECIMAL phrase in USAGE clause 210
PADDING CHARACTER clause 114
page eject 38
paragraph

description 30, 232
header, specification of 33
termination, EXIT statement 317

paragraph name
description 232
specification of 33

parentheses
combined conditions, use 257
in arithmetic expressions 234

partial listings 514
PASSWORD clause

description 120
system dependencies 120

PERFORM statement
branching 366
conditional 368
END-PERFORM phrase 367
EVALUATE statement 313
execution sequences 367
EXIT statement 317
format and description 365
in-line 366
out-of-line 366
TIMES phrase 367
VARYING phrase 369, 371

period (.)
actual decimal point 191

phrase, definition 31
physical record

BLOCK CONTAINS clause 149
definition 136
file data 136
file description entry and 136
RECORDS phrase 150

PICTURE clause
and class condition 240
computational items and 210
CURRENCY SIGN clause 96
data categories in 185
DECIMAL-POINT IS COMMA clause 97, 179
description 178
editing 190
format 178
sequence of symbols 183
symbols used in 179

PICTURE SYMBOL phrase 97
plus (+)

fixed insertion symbol 191
floating insertion symbol 192, 193
insertion character 193
SIGN clause 201

pointer data item
defined with USAGE clause 214
relation condition 247
SET statement 403
size on Workstation 214

POINTER phrase
STRING statement 421
UNSTRING statement 431

POSITIVE 254
PRESENT-VALUE function 493
PREVIOUS RECORD phrase, READ statement 376
print files, WRITE statement 442
procedure branching

GO TO statement 321
statements, executed sequentially 276

Procedure Branching Statements 276
Procedure Division

declarative procedures 230
format (programs, methods, classes) 225
header 227
statements 277

procedure-name
GO TO statement 321
MERGE statement 350

616 COBOL Language Reference

procedure-name (continued)
PERFORM statement 365
SORT statement 411

PROCEDURE-POINTER data item
defined with USAGE clause 215
relation condition 247
SET statement 404
size on Workstation 214

procedure, description 231
PROGRAM COLLATING SEQUENCE clause

ALPHABET clause 92
SPECIAL-NAMES paragraph and 88

program termination
GOBACK statement 320
STOP statement 418

PROGRAM-ID paragraph
description 77
format 74

program-name, rules for referencing 67
program, separately-compiled 64
programming notes

ACCEPT statement 277
altered GO TO statement 285
arithmetic statements 269
data manipulation statements 420, 428
DELETE statement 303
DISPLAY statement 307
EXCEPTION/ERROR procedures 535
OPEN statement 362
PERFORM statement 367
RECORDS clause 151
STRING statement 420
UNSTRING statement 428

programming structures 368
programs, recursive 77
pseudo-text

COPY statement operand 519
description 38

punch files, WRITE statement 442

Q
quotation mark (") character 35

R
railroad track format, how to read xiii
random access mode

data organization and 116
DELETE statement 304

random access mode (continued)
description 116
READ statement 383

RANDOM function 494
RANGE function 495
READ statement

affect on record locking 121
AT END phrases 378
dynamic access mode 383
format and description 376
INTO identifier phrase 275, 376
INVALID KEY phrases 274, 379
KEY phrase 378
multiple record processing 379
multivolume files 382
NEXT RECORD phrase 376
overlapping operands, unpredictable results 269
programming notes 384
random access mode 383

READY TRACE statement 526
receiving field

COMPUTE statement 300
MOVE statement 352
multiple results rules 269
SET statement 400
STRING statement 421
UNSTRING statement 430

record
area description 151
elementary items 137
fixed-length 149
logical, definition of 136
physical, definition of 136

RECORD clause
description and format 151
omission of 151

RECORD CONTAINS 0 CHARACTERS 151
record description entry

levels of data 138
logical record 136

RECORD KEY clause
description 117
format 102

record key in indexed file 304
record locking 120
RECORDING MODE clause 157
RECORDS phrase

BLOCK CONTAINS clause 150
RERUN clause 126

Index 617

RECURSIVE clause 77
recursive methods 337
recursive programs 77

requirement for indexed items 175
REDEFINES clause

description 195
examples of 198
format 195
general considerations 196
OCCURS clause restriction 196
SYNCHRONIZED clause and 202
undefined results 198
VALUE clause and 196

redefinition, implicit 148
REEL phrase 296, 297
reference-modification 52, 54
reference-modifier

ALL subscripting 451
Reference, methods of

Simple data 46
relation character

COPY statement 519
INITIALIZE statement 325
INSPECT statement 329

relation condition
abbreviated combined 258
comparison of numeric and nonnumeric

operands 248
comparison with nonnumeric second operand 251
comparison with numeric second operand 249
description 243
operands of equal size 250
operands of unequal size 250

relational operator
in abbreviated combined relation condition 258
meaning of each 244
relation condition use 243

relative files
access modes allowed 117
CLOSE statement 297
DELETE statement 304
FILE-CONTROL paragraph format 102
I-O-CONTROL paragraph format 124
organization 112
permissible statements for 364
READ statement 380
RELATIVE KEY clause 117, 119
REWRITE statement 391
START statement 417

RELATIVE KEY clause
description 119
format 102

relative organization
access modes allowed 117
description 112
FILE-CONTROL paragraph format 102
I-O-CONTROL paragraph format 124

RELEASE statement 269, 385
REM function 496
REMAINDER phrase of DIVIDE statement 311
RENAMES clause

description and format 198
INITIALIZE statement 325
level 66 item 140, 198
PICTURE clause 178

REPLACE statement
comparison operation 528
continuation rules for pseudo-text 528
description and format 527
special notes 529

replacement editing 193
replacement rules for COPY statement 520
REPLACING phrase

COPY statement 518
INITIALIZE statement 326

REPOSITORY paragraph 98
required words xiii
RERUN clause

checkpoint processing 125
description 125
format 124
RECORDS phrase 125
sort/merge 126
under AIX and OS/2 125

RESERVE clause
description 110
format 102
under AIX and OS/2 110

reserved word list 558
RESET TRACE statement 526
result field

GIVING phrase 266
NOT ON SIZE ERROR phrase 266
ON SIZE ERROR phrase 266
ROUNDED phrase 266

RETURN statement
AT END phrase 388
description and format 387
overlapping operands, unpredictable results 269

618 COBOL Language Reference

RETURN-CODE special register 14
RETURNING phrase

CALL statement 291
on INVOKE statement 341

reusing logical records 390
REVERSE function 497
REWRITE statement

affect on record locking 121
description and format 389
FROM identifier phrase 275
INVALID KEY phrase 390

ROUNDED phrase
ADD statement 284
COMPUTE statement 301
description 266
DIVIDE statement 311
MULTIPLY statement 358
size error checking and 267
SUBTRACT statement 427

rules for syntax notation xiii
Rules for Usage 449
run unit

description 64
termination with CANCEL statement 295

S
S 181
S01-S05 environment names under AIX and OS/2 437
SAME AREA clause under AIX and OS/2 127
SAME clause 127
SAME RECORD AREA clause

description 127
format 124

SAME SORT AREA clause
description 128
format 124

SAME SORT AREA clause under AIX and OS/2 128
SAME SORT-MERGE AREA clause

description 129
format 124

scope terminator
explicit 264
implicit 264

SD (Sort File Description) entry
Data Division 148
DATA RECORDS clause 155
description 144, 147
level indicator 137

SEARCH statement
AT END phrase 394
binary search 396
description and format 393
serial search 394
SET statement 394
USAGE IS INDEX clause 213
VARYING phrase 395
WHEN phrase 394

section 30, 231
section header

description 231
specification of 33

section name
description 232
in EXCEPTION/ERROR declarative 533

SECURITY paragraph
description 83
format 74

segmentation considerations 286
SELECT clause

ASSIGN clause and 106
format 102
specifying a file name 106

SELECT OPTIONAL clause
CLOSE statement 297
description 106
format 102
specification for sequential I-O files 106

selection objects in EVALUATE statement 313
selection subjects in EVALUATE statement 313
SELF special character word 7, 337
sending field

MOVE statement 352
SET statement 400
STRING statement 420
UNSTRING statement 428

sentence
COBOL, definition 31
description 233

SEPARATE CHARACTER phrase of SIGN clause 201
separate sign, class condition 240
separately-compiled program 64
separator 221
sequence number area (cols. 1-6) 32
sequential access mode

data organization and 116
DELETE statement 303
description 116
READ statement 380

Index 619

sequential access mode (continued)
REWRITE statement 390

sequential files
access mode allowed 116
CLOSE statement 296, 297
description 111
file description entry 144
FILE-CONTROL paragraph format 102
LINAGE clause 156
OPEN statement 359
PASSWORD clause valid with 120
permissible statements for 363
READ statement 380
REWRITE statement 390
SELECT OPTIONAL clause 106

serial search
PERFORM statement 369
SEARCH statement 394

SERVICE LABEL statement 530
SERVICE RELOAD statement 531
SET statement

description and format 400
DOWN BY phrase 401
index data item values assigned 212
OFF phrase 402
ON phrase 402
overlapping operands, unpredictable results 269
pointer data item 403
procedure-pointer data item 404
requirement for indexed items 175
SEARCH statement 401
TO phrase 400
TO TRUE phrase 402
UP BY phrase 401
USAGE IS INDEX clause 213
USAGE OBJECT REFERENCE 405

sharing data 171
sharing files 149
SHIFT-OUT, SHIFT-IN special registers 15
Sibling program 64
SIGN clause 200
sign condition 253
SIGN IS SEPARATE clause 201
signed

numeric item, definition 186
operational signs 143

simple condition
combined 256
description and types 239
negated 256

Simple data reference 46
simple insertion editing 190
SIN function 498
size-error condition 266
skip to next page 38
SKIP1/2/3 statement 531
slack bytes

between 207
within 204

slash (/)
comment line 37
insertion character 190
symbol in PICTURE clause 181

SOMClass, root for metaclasses 80
SOMObject, root for classes 80
Sort File Description entry

See SD (Sort File Description) entry
SORT statement

ASCENDING KEY phrase 407
COLLATING SEQUENCE phrase 410
DESCENDING KEY phrase 407
description and format 407
DUPLICATES phrase 409
GIVING phrase 411
INPUT PROCEDURE phrase 411
OUTPUT PROCEDURE phrase 412
USING phrase 411

SORT-CONTROL special register 16
SORT-CORE-SIZE special register 17
SORT-FILE-SIZE special register 17
SORT-MESSAGE special register 18
SORT-MODE-SIZE special register 18
SORT-RETURN special register 18
Sort/Merge feature

I-O-CONTROL paragraph format 124
MERGE statement 345
RELEASE statement 385
RERUN clause 126
RETURN statement 387
SAME SORT AREA clause 128
SAME SORT-MERGE AREA clause 129
SORT statement 407

Sort/Merge file statement phrases
ASCENDING/DESCENDING KEY phrase 345
COLLATING SEQUENCE phrase 347
GIVING phrase 349
OUTPUT PROCEDURE phrase 350
USING phrase 349

source code listing 515

620 COBOL Language Reference

source language debugging 555
source program

library, programming notes 521
standard COBOL reference format 32

SOURCE-COMPUTER paragraph 87
special insertion editing 191
special registers

ADDRESS OF 10
DEBUG-ITEM 11
LENGTH OF 12
LINAGE-COUNTER 13
RETURN-CODE 14
SHIFT-OUT, SHIFT-IN 15
SORT-CONTROL 16
SORT-CORE-SIZE 17
SORT-FILE-SIZE 17
SORT-MESSAGE 18
SORT-MODE-SIZE 18
SORT-RETURN 18
TALLY 19
WHEN-COMPILED 19

SPECIAL-NAMES paragraph
ACCEPT statement 278
ALPHABET clause 92
ASCII-encoded file specification 159
CLASS clause 95
CODE-SET clause and 159
CURRENCY SIGN clause 96
DECIMAL-POINT IS COMMA clause 97
description 89
format 89
mnemonic names 91

specifications 571
SQRT function 499
standard alignment

JUSTIFIED clause 172
rules 141

standard COBOL format 32
standard data format 142
STANDARD-1 phrase 92
STANDARD-2 phrase 92
STANDARD-DEVIATION function 500
standards 571
START statement

affect on record locking 121
description and format 415
indexed file 416
INVALID KEY phrase 274, 416
relative file 417
status key considerations 416

statement
categories of 261
conditional 262
data manipulation 269
delimited scope 263
description 31, 233
imperative 261
input-output 270
procedure branching 276

statement operations
common phrases 264
file position indicator 276
INTO/FROM identifier phrase 275

status key
common processing facility 270
file processing 534
value and meaning 271

STOP RUN statement 418
STOP statement 418
storage

map listing 515
MEMORY SIZE clause 88
REDEFINES clause 195

STRING statement
description and format 420
execution of 422
overlapping operands, unpredictable results 269

structure of the COBOL language 2
structured programming

DO-WHILE and DO-UNTIL 368
subclasses and methods 80
subjects in EVALUATE statement 313
subprogram linkage

CALL statement 287
CANCEL statement 294
ENTRY statement 312

subprogram termination
CANCEL statement 294
EXIT PROGRAM statement 319
GOBACK statement 320

subscripting
definition and format 49
INDEXED BY phrase of OCCURS clause 175
MOVE statement evaluation 352
OCCURS clause specification 172
table references 49
using data-names 51
using index-names (indexing) 51
using integers 51

Index 621

substitution field of INSPECT REPLACING 329
SUBTRACT statement

common phrases 264
description and format 425

SUM function 501
SUPER special character word 7, 337
SUPPRESS option, COPY 518
suppress output 514
suppression editing 193
switch-status condition 254
SYMBOLIC CHARACTERS clause 95
symbols in PICTURE clause 179
SYNCHRONIZED clause 202

VALUE clause and 218
syntax notation, rules for xiii
system considerations, subprogram linkage

CALL statement 287
CANCEL statement 294

system information transfer, ACCEPT statement 279
system input device, ACCEPT statement 278
system-name 88

computer-name 87
SOURCE-COMPUTER paragraph 87

T
tab character, restriction in IBM COBOL 28
table references

indexing 51
subscripting 49

TALLY special register 19
TALLYING phrase

INSPECT statement 329
UNSTRING statement 431

TAN function 502
termination of execution

EXIT METHOD statement 318
EXIT PROGRAM statement 319
GOBACK statement 320
STOP RUN statement 418

terminators, scope 264
text words 517
text-name

literal-1 516
under AIX and OS/2 40

THREAD compiler option 175
requirement for indexed items 175

THROUGH (THRU) phrase
ALPHABET clause 93
CLASS clause 96

THROUGH (THRU) phrase (continued)
EVALUATE statement 314
PERFORM statement 365
RENAMES clause 198
VALUE clause 219

TIME 281
TIMES phrase of PERFORM statement 367
TITLE statement 532
TO phrase, SET statement 400
TO TRUE phrase, SET statement 402
transfer of control

ALTER statement 286
explicit 56
GO TO statement 321
IF statement 324
implicit 56
PERFORM statement 365

transfer of data
ACCEPT statement 277
MOVE statement 352
STRING statement 420
UNSTRING statement 428

trigger values, date field 166
truncation of data

arithmetic item 142
JUSTIFIED clause 171
ROUNDED phrase 266
TRUNC compiler option 143

truth value
complex conditions 255
EVALUATE statement 314
IF statement 323
of complex condition 255
sign condition 254
with conditional statement 262

type conformance
general rules 82
INVOKE...USING 341
multiple inheritance 80
SET...USAGE OBJECT REFERENCE 405

U
unary operator 234
unconditional GO TO statement 321
UNDATE function 503
unit file, definition 297
UNIT phrase 296
universal object reference 213

622 COBOL Language Reference

unsigned numeric item, definition 186
UNSTRING statement

description and format 428
execution 432
overlapping operands, unpredictable results 269
receiving field 430
sending field 428

UP BY phrase, SET statement 401
UPON phrase, DISPLAY 306
UPPER-CASE function 504
UPSI-0 through UPSI-7, program switches

and switch-status condition 255
condition-name 92
processing special conditions 91
SPECIAL-NAMES paragraph 91

USAGE clause
BINARY phrase 210
CODE-SET clause and 159
COMPUTATIONAL phrases 211
description 209
DISPLAY phrase 211
DISPLAY-1 phrase 212
elementary item size 142
format 209
INDEX phrase 212
operational signs and 143
PACKED-DECIMAL phrase 210
USAGE IS PROCEDURE-POINTER 215
VALUE clause and 218

USAGE DISPLAY
class condition identifier 239
STRING statement and 420

USAGE IS COMPUTATIONAL phrases 211
USAGE IS OBJECT REFERENCE syntax 209
USAGE IS POINTER 214
USAGE IS PROCEDURE-POINTER 215
USAGE OBJECT REFERENCE phrase 337
USE...AFTER...LABEL PROCEDURE on AIX and

OS/2 535
user labels

DEBUGGING declarative 537
LABEL declarative 535

USING phrase
CALL statement 288
in Procedure Division header 227
MERGE statement 349
on INVOKE statement 338
SORT statement 411
subprogram linkage 230

V
V, symbol in PICTURE clause 181
VALUE clause

condition-name 219
effect on object-oriented programs 133
format 217, 219
level 88 item 140
NULL 222
rules for condition-name values 220
rules for literal values 218

VALUE OF clause
description 155
format 144

variable-length tables 176
VARIANCE function 505
VARYING phrase

PERFORM statement 369
SEARCH statement 395

W
WHEN phrase

EVALUATE statement 313
SEARCH statement 394

WHEN-COMPILED function 506
WHEN-COMPILED special register 19
windowed date field

See also date field
definition 59
expansion before use 165

Windows COBOL language differences
ACCEPT statement 277
APPLY WRITE-ONLY 129
ASSIGN clause 107
basis-names, library-names, text-names 40
BLOCK CONTAINS 149
CLOSE statement 296
CODE-SET 159
COMP-5 data item 211
control characters 142
environment-name 279
file handling 129
file status data-name-8 122
LABEL RECORDS 154
LINE SEQUENTIAL file I-O 113
LOCK MODE clause 120
MORE-LABELS, GO TO 322
pointer data item size 214
RECORD CONTAINS clause 151

Index 623

Windows COBOL language differences (continued)
RECORDING MODE clause 157
RERUN clause 125
RESERVE clause 110
SAME AREA clause 127
SAME SORT AREA clause 128
SAME SORT-MERGE AREA clause 129
SET statement 403
SORT-CONTROL special register 16
SORT-FILE-SIZE under AIX and OS/2 17
SORT-MESSAGE under AIX and OS/2 18
SORT-MODE-SIZE under AIX and OS/2 18
status key value and meaning 271
USE...AFTER...LABEL PROCEDURE 535
WRITE ADVANCING 91, 437

WITH DEBUGGING MODE clause 87, 555
WITH DUPLICATES phrase, SORT statement 409
WITH FOOTING phrase 156
WITH NO ADVANCING phrase 306
WITH NO REWIND phrase, CLOSE statement 297
WITH POINTER phrase

STRING statement 421
UNSTRING statement 431

working storage, levels under AIX and OS/2 403
Working-Storage 133
workstation COBOL language differences

ACCEPT statement 277
APPLY WRITE-ONLY 129
ASSIGN clause 107
basis-names, library-names, text-names 40
BLOCK CONTAINS 149
CLOSE statement 296
CODE-SET 159
COMP-5 data item 211
compiler limits 544
control characters 142
DBCS 2
environment-name 279
file handling 129
file status data-name-8 122
LABEL RECORDS 154
LINE SEQUENTIAL file I-O 113
MORE-LABELS, GO TO 322
pointer data item size 214
RECORD CONTAINS clause 151
RECORDING MODE clause 157
RERUN clause 125
RESERVE clause 110
SAME AREA clause 127
SAME SORT AREA clause 128

workstation COBOL language differences (continued)
SAME SORT-MERGE AREA clause 129
SET statement 403
SORT-CONTROL special register 16
SORT-FILE-SIZE under AIX and OS/2 17
SORT-MESSAGE under AIX and OS/2 18
SORT-MODE-SIZE under AIX and OS/2 18
status key value and meaning 271
USE...AFTER...LABEL PROCEDURE 535
WRITE ADVANCING 91, 437

WRITE
ADVANCING under AIX and OS/2 91, 437

WRITE statement
affect on record locking 121
AFTER ADVANCING 438, 442
ALTERNATE RECORD KEY 444
BEFORE ADVANCING 438, 442
description and format 436
END-OF-PAGE phrases 439
FROM identifier phrase 275
sequential files 437

X
X 181
X'00' - X'1F' control characters 142

Y
year 2000 challenge

See date field
year-last date field

See also date field
definition 60

YEAR-TO-YYYY function 508
YEARWINDOW compiler option

century window 61
YEARWINDOW function 509

Z
Z

insertion character 193
symbol in PICTURE clause 181

zero
filling, elementary moves 353
suppression and replacement editing 193

ZERO in sign condition 254

624 COBOL Language Reference

We'd Like to Hear from You

IBM COBOL for MVS & VM
IBM COBOL Set for AIX
IBM VisualAge COBOL
Language Reference

Publication No. SC26-4769-04

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: COBPUBS at STLVM27

 – Internet: COBPUBS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM COBOL for MVS & VM
IBM COBOL Set for AIX
IBM VisualAge COBOL
Language Reference

Publication No. SC26-4769-04

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and con-
sistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-4769-04 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-4769-04

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

IBM COBOL for MVS & VM

SC26-4769 Language Reference
SC26-4767 Programming Guide
GC26-4764 Compiler and Run-Time Migration Guide
GC26-4766 Installation and Customization under MVS
SC26-3138 Diagnosis Guide
GC26-4761 Licensed Program Specification
SC09-2137 Debug Tool User's Guide and Reference
GC26-8664 Fact Sheet

IBM COBOL Set for AIX

SC26-4769 Language Reference
SC26-8423 Programming Guide
GC26-8425 Getting Started
GC26-8484 Fact Sheet

IBM VisualAge COBOL

SC26-4769 Language Reference
SC26-9050 Programming Guide
GC26-9051 Getting Started on OS/2
GC26-8944 Getting Started on Windows
SC26-9053 Visual Builder User's Guide
GC26-9052 Fact Sheet

SC26-4769-ð4

Spine information:

IBM IBM COBOL Language Reference

	Notices
	Programming Interface Information
	Trademarks

	About This Book
	IBM Extensions
	Obsolete Language Elements
	How to Read the Syntax Diagrams
	DBCS Notation
	Acknowledgment

	Summary of Changes
	Fifth Edition (November 1998, Softcopy Only)
	Fourth Edition (April 1998)
	Third Edition (July 1996, Softcopy Only)
	Second Edition (October 1995)
	Extensions for Object-Oriented COBOL (MVS, AIX, and OS/2 Only)
	Extensions for Interoperability (MVS, VM, AIX, and OS/2)
	Support for COBOL on AIX and OS/2

	Part 1. COBOL Language Structure
	Characters
	Character-Strings
	Figurative Constants
	Special Registers
	Literals
	Separators

	Sections and Paragraphs
	Statements and Clauses

	Reference Format
	Sequence Number Area
	Indicator Area
	Area A
	Area B
	Area A or Area B

	Scope of Names
	Types of Names
	External and Internal Resources
	Resolution of Names

	Referencing Data Names, Copy Libraries, and Procedure Division Names
	Uniqueness of Reference

	Transfer of Control
	Millennium Language Extensions and Date Fields
	Millennium Language Extensions Syntax
	Terms and Concepts

	Part 2. COBOL Source Unit Structure
	COBOL Program Structure
	Nested Programs

	COBOL Class Definition Structure
	COBOL Method Definition Structure

	Part 3. Identification Division
	Identification Division
	PROGRAM-ID Paragraph
	CLASS-ID Paragraph
	METHOD-ID Paragraph
	Optional Paragraphs

	Part 4. Environment Division
	Configuration Section
	SOURCE-COMPUTER Paragraph
	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph
	ALPHABET Clause
	SYMBOLIC CHARACTERS Clause
	CLASS Clause
	CURRENCY SIGN Clause
	REPOSITORY Paragraph

	Input-Output Section
	FILE-CONTROL Paragraph
	SELECT Clause
	ASSIGN Clause
	RESERVE Clause
	ORGANIZATION Clause
	PADDING CHARACTER Clause
	RECORD DELIMITER Clause
	ACCESS MODE Clause
	RECORD KEY Clause
	ALTERNATE RECORD KEY Clause
	RELATIVE KEY Clause
	PASSWORD Clause
	LOCK MODE Clause (OS/2 VSAM Files Only)
	FILE STATUS Clause
	I-O-CONTROL Paragraph
	RERUN Clause
	SAME AREA Clause
	SAME RECORD AREA Clause
	SAME SORT AREA Clause
	SAME SORT-MERGE AREA Clause
	MULTIPLE FILE TAPE Clause
	APPLY WRITE-ONLY Clause

	Part 5. Data Division
	Data Division Overview
	File Section
	Working-Storage Section
	Local-Storage Section
	Linkage Section
	Data Types
	Data Relationships

	Data Division—File Description Entries
	File Section
	EXTERNAL Clause
	GLOBAL Clause
	BLOCK CONTAINS Clause
	RECORD Clause
	LABEL RECORDS Clause
	VALUE OF Clause
	DATA RECORDS Clause
	LINAGE Clause
	RECORDING MODE Clause
	CODE-SET Clause

	Data Division—Data Description Entry
	Format 1
	Format 2
	Format 3
	Level-Numbers
	BLANK WHEN ZERO Clause
	DATE FORMAT Clause
	EXTERNAL Clause
	GLOBAL Clause
	JUSTIFIED Clause
	OCCURS Clause
	PICTURE Clause
	REDEFINES Clause
	RENAMES Clause
	SIGN Clause
	SYNCHRONIZED Clause
	USAGE Clause
	VALUE Clause

	Part 6. Procedure Division
	Procedure Division Structure
	Requirements for a Method Procedure Division
	The Procedure Division Header
	Declaratives
	Procedures
	Arithmetic Expressions
	Conditional Expressions
	Statement Categories
	Statement Operations

	Procedure Division Statements
	ACCEPT Statement
	ADD Statement
	ALTER Statement
	CALL Statement
	CANCEL Statement
	CLOSE Statement
	COMPUTE Statement
	CONTINUE Statement
	DELETE Statement
	DISPLAY Statement
	DIVIDE Statement
	ENTRY Statement
	EVALUATE Statement
	EXIT Statement
	EXIT METHOD Statement
	EXIT PROGRAM Statement
	GOBACK Statement
	GO TO Statement
	IF Statement
	INITIALIZE Statement
	INSPECT Statement
	INVOKE Statement
	MERGE Statement
	MOVE Statement
	MULTIPLY Statement
	OPEN Statement
	PERFORM Statement
	READ Statement
	RELEASE Statement
	RETURN Statement
	REWRITE Statement
	SEARCH Statement
	SET Statement
	SORT Statement
	START Statement
	STOP Statement
	STRING Statement
	SUBTRACT Statement
	UNSTRING Statement
	WRITE Statement

	Part 7. Intrinsic Functions
	Intrinsic Functions
	Specifying a Function
	Function Definitions
	ACOS
	ANNUITY
	ASIN
	ATAN
	CHAR
	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DATE-TO-YYYYMMDD
	DATEVAL
	DAY-OF-INTEGER
	DAY-TO-YYYYDDD
	FACTORIAL
	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUM
	TAN
	UNDATE
	UPPER-CASE
	VARIANCE
	WHEN-COMPILED
	YEAR-TO-YYYY
	YEARWINDOW

	Part 8. Compiler-Directing Statements
	Compiler-Directing Statement
	BASIS Statement
	CBL (PROCESS) Statement
	*CONTROL (*CBL) Statement
	COPY Statement
	DELETE Statement
	EJECT Statement
	ENTER Statement
	INSERT Statement
	READY or RESET TRACE Statement
	REPLACE Statement
	SERVICE LABEL Statement
	SERVICE RELOAD Statement
	SKIP1/2/3 Statements
	TITLE Statement
	USE Statement

	Compiler Directives
	CALLINTERFACE

	Appendixes
	Appendix A. Compiler Limits
	Appendix B. EBCDIC and ASCII Collating Sequences
	EBCDIC Collating Sequence
	US English ASCII Code Page (ISO 646)

	Appendix C. Source Language Debugging
	Coding Debugging Lines
	Coding Debugging Sections
	DEBUG-ITEM Special Register
	Activate Compile-Time Switch
	Activate Object-Time Switch

	Appendix D. Reserved Words
	Appendix E. ASCII Considerations for MVS and VM
	Environment Division
	Data Division
	Procedure Division

	Appendix F. Locale Considerations (Workstation Only)
	Appendix G. Summary of Language Difference: Host COBOL and Workstation COBOL
	Appendix H. Industry Specifications
	Standard Terminology

	Bibliography
	Glossary
	Index

