
1

1

Software Engineering
G22.2440-001

Session 5 - Main Theme
Software Analysis and Design

Dr. Jean-Claude Franchitti

New York University
Computer Science Department

Courant Institute of Mathematical Sciences

2

Agenda

• Traditional Data and Process Modeling
Approaches

• From Requirements Analysis to Business and
Application Models

• Roles of Software Analysis and Design
• Object-Oriented Analysis and Design with UML
• Selecting and Combining Approaches
• Creating a Data Model
• Homework #3
• Project #1 (ongoing)
• Summary

2

3

Summary of Previous Session

• Review
• Architecture-Driven Iterative Process
• Project Planning and Estimation
• Cooperative Roles of Software Engineering

and Project Management
• Summary

4

Part I

Traditional Data
and

Process Modeling Approaches

3

5

Key Definitions

• A process model is a formal way of
representing how a business operates

• Data flow diagramming shows business
processes and the data that flows between
them

6

Key Definitions

• Logical process models describe processes
without suggesting how they are conducted

• Physical models include information about
how the processes are implemented

4

7

Reading a Data Flow Diagram
(DFD)

8

DFD Elements

5

9

Structured English

Common Statements Example

Action Statement Profits = Revenues - Expenses
Generate Inventory - Report
Add Product record to Product Data Store

If Statement IF Customer Not in Customer Data Store
THEN Add Customer record to Customer Data Store
ELSE Add Current-Sale to Customer’s Total-Sales

Update Customer record in Customer Data Store

For Statement FOR all Customers in Customer Data Store
Generate a new line in the Customer-Report
Add Customer’s Total-Sales to Report-Total

Case Statement CASE
If Income < 10,000: Marginal-tax-rate = 10%
If Income < 20,000: Marginal-tax-rate = 20%
If Income < 30,000: Marginal-tax-rate = 31%
If Income < 40,000: Marginal-tax-rate = 35%
ELSE Marginal-tax-rate = 38%

ENDCASE

10

Key Definition

• Decomposition is the process of modeling
the system and its components in increasing
levels of detail.

• Balancing involves insuring that
information presented at one level of a DFD
is accurately represented in the next level
DFD.

6

11

Context Diagram

• Shows the context into which the business process
fits

• Shows the overall business process as just one
process

• Shows all the outside entities that receive
information from or contribute information to the
system

12

Relationship Among DFD levels

7

13

Level 0 Diagram

• Shows all the processes that comprise the overall
system

• Shows how information moves from and to each
process

• Adds data stores

14

Level 1 Diagrams

• Shows all the processes that comprise a single
process on the level 0 diagram

• Shows how information moves from and to each
of these processes

• Shows in more detail the content of higher level
process

• Level 1 diagrams may not be needed for all level 0
processes

8

15

Level 2 Diagrams

• Shows all processes that comprise a single process
on the level 1 diagram

• Shows how information moves from and to each
of these processes

• Level 2 diagrams may not be needed for all level 1
processes

• Correctly numbering each process helps the user
understand where the process fits into the overall
system

16

Data Flow Splits and Joins

• A data flow split shows where a flow is broken
into its component parts for use in separate
processes

• Data flow splits need not be mutually exclusive
nor use all the data from the parent flow

• As we move to lower levels we become more
precise about the data flows

• A data flow join shows where components are
merged to describe a more comprehensive flow

9

17

Alternative Data Flows

• Where a process can produce different data given different
conditions

• We show both data flows and use the process description
to explain why they are alternatives

• Tip -- alternative data flows often accompany processes
with IF statements

18

Elements of a Use Case

• Trigger -- event that causes the scenario to begin
– External trigger
– Temporal trigger

• All possible inputs and outputs
• Individual steps

– Show sequential order
– Show conditional steps

10

19

DFD and Use Cases

• The Data Flow Diagram (DFD) is an essential tool
for creating formal descriptions of business
processes and data flows.

• Use cases record the input, transformation, and
output of business processes.

• Eliciting scenario descriptions and modelling
business processes are critically important skills
for the systems analyst to master.

20

Process Modeling and DFDs

• Define process modeling
• Discuss the purpose of data flow diagrams
• Discuss the components of a DFD
• Discuss the rules for constructing DFD
• Discuss functional decomposition
• Create DFD

11

21

Key Ideas

• Process modeling can be used with manual or
computerized systems

• Always design processes from the viewpoint of
the organization running the system

• Data flow diagrams are a graphical representation
of business processes in an information system

• Focus of data flow diagrams is on processes and
activities, not data (despite the name)

22

Process Modeling

• Describes business processes or the activities that
people do

• Used to document and organize information
gathered during systems analysis

• Focus on processes or activities
• Start with text description of processes then create

DFDs

12

23

Data Flow Diagrams

• Show the flow of data and logic within a
system

• Model:
– sources and destinations of data
– data inputs and outputs
– actions that transform inputs into outputs
– data maintained by an information system

24

DFDs

• Primary modeling technique used in
traditional systems development

• Start by creating a context DFD
– shows boundaries or scope of the system
– this is the highest level DFD
– have a single process representing the entire

information system and list external entities and
data flows

13

25

Types of DFDs

• Logical DFD –
– models what the system does

• Physical DFD-
– models how it will be done

26

Possibilities

• Current logical
• Current physical
• New logical
• New physical

14

27

Elements of a DFD

• Processes
• Data Flows
• Data stores
• External entities

28

Process

• Any activity that transforms data
• Components:

– process identification #
– process description label

• Each process performs only one activity

15

29

Data flow

• Traces flow of information throughout the
system

• It is data in motion

30

Data store

• Also known as data repository
• Is where data is temporarily or permanently

stored or held

16

31

External entity

• External Entity - something or someone that
provides data to the system or receives
output from the system

• does not perform any system processes
• name of entity goes inside the symbol

32PowerPoint Presentation for Dennis & Haley Wixom, Systems Analysis and Design, 2nd Edition
Copyright 2003 © John Wiley & Sons, Inc. All rights reserved.6 - 9

Naming and Drawing DFD
Elements

Process

Data flow

Data store

External
entity

17

33

Rules

• Sequence of processes must move from left to
right, top to bottom

• Every data flow must begin or end at a process
• Avoid black holes
• Avoid magic process

34

Business Processes and DFDs

• Business processes cannot be depicted with
a single DFD.

• Decomposition is used to depict business
processes with a hierarchy of diagrams
– Parent and child diagrams

• Balancing is used to ensure accuracy of
diagrams at all levels in the hierarchy

18

35

Steps in constructing DFDs

• Create a context DFD
• Create DFD fragments
• Create level 0 diagram
• Create level 1,…,level n diagrams
• Validate diagrams created

36

Functional decomposition

• Once a context DFD is created,
– then create Level 0 DFD

• Processes from Level 0 DFD are further
decomposed
– until a sufficient level of detail is reached

• Do it until no sub process can logically be broken
down any further

• Lowest level DFD is called a primitive DFD

19

37

Creating a context diagram

• Provides a summary of the overall system
• A single process represents the entire

information system
• List external entities and data flows
• Number for process is 0

38

Creating a level 0 diagram

• Shows major processes that are a part of the
overall system

• Shows how the major processes are
interrelated by data flows

• Shows external entities and the major
processes with which they interact

• Adds data stores

20

39

Creating level 1 diagrams

• Generally, one level 1 diagram is created for every
major process on the level 0 diagram

• Shows all the internal processes that comprise a
single process on the level 0 diagram

• Shows how information moves from and to each
of these processes

• If a parent process is decomposed into, for
example, three child processes, these three child
processes wholly and completely make up the
parent process

40

Validate DFDs

• Look for:
– Syntax errors
– Semantic errors

• Use:
– User walkthroughs
– Role-play

• Examine lowest level DFD to ensure consistent
decomposition

• Examine names to ensure consistent use of terms

21

41

Describing complex processes

• Techniques used include:
– Structured English
– Decision Trees
– Decision Tables

42

Use Cases & DFDs

• Major use cases become high level
processes on Level 0 DFD

• Inputs and outputs become data flows
• Number process same as use case number
• Change process name into verb phrase
• Combine DFD fragments into one diagram
• Each step becomes a process for the level 1

DFD

22

43

Key Definitions

• A process model is a formal way of
representing how a business operates

• Data flow diagramming shows business
processes and the data that flows between
them

44

Key Definitions

• Logical process models describe processes
without suggesting how they are conducted

• Physical models include information about
how the processes are implemented

23

45

Creating Data Flow Diagrams:
Integrating Scenario Descriptions

• DFDs generally integrate scenario descriptions
• Names of use cases become processes
• Names of inputs and outputs become data flows
• Combining “small” data inputs and outputs into a

single flow

46

Steps in Building DFDs

• Build the context diagram
• Create DFD fragments for each scenario
• Organize DFD fragments into level 0
• Decompose level 0 DFDs as needed
• Validate DFDs with user

24

47

DFD Fragment Tips

• All process names must be verb phrases
• Maintain organization’s viewpoint in naming processes
• Layouts often place

– processes in the centre
– inputs from the left
– outputs to the right
– stores beneath the processes

48

A DFD Fragment Example

25

49

A Second DFD Fragment Example

50

Level 0 Tips

• Generally move from top to bottom, left to
right

• Minimize crossed lines
• Iterate as needed

– The DFD is often drawn many times before it is
finished, even with very experienced systems
analysts

26

51

Tips for Level 1 and Below

• Sources for inputs and outputs listed at higher level
• List source and destination of data flows to processes and

stores within each DFD
• Depth of DFD depends on overall system complexity

– Two processes generally don’t need lower level
– More than seven processes become overly complex and

difficult to read

52

Validating the DFD

• Syntax errors
– Assure correct DFD structure

• Semantics errors
– Assure accuracy of DFD relative to actual/desired

business processes
• User walkthroughs
• Role-play processes
• Examine lowest level DFDs
• Examine names carefully

27

53

CD Selection Example

54

CD Selection Example

28

55

CD Selection Example

56

CD Selection Example

29

57

CD Selection Example

58

CD Selection Example

30

59

CD Selection Example

60

Summary

• The Data Flow Diagram (DFD) is a tool for
creating formal descriptions of business processes
and data flows.

• Use cases record the input, transformation, and
output of business processes.

• Eliciting scenario descriptions and modelling
business processes are critically important skills
for the systems analyst to master.

31

61

Part II

From Requirements Analysis
to

Business and Analysis Models

(See Session 2 – Handout 8)

62

Gathering Information

32

63

Key Ideas

• The goal of the analysis phase is to truly
understand the requirements of the new system
and develop a system that addresses them -- or
decide a new system isn’t needed.

• The line between systems analysis and systems
design is very blurry.

64

Overview

• Interviews
• Joint Application Design (JAD)
• Questionnaires
• Document Analysis
• Observation

33

65

Interviews

66

Interviews -- Five Basic Steps

• Selecting Interviewees
• Designing Interview Questions
• Preparing for the Interview
• Conducting the Interview
• Post-Interview Follow-up

34

67

Selecting Interviewees

• Based on Information Needed
• Often Good to Get Different Perspectives

– Managers
– Users
– Ideally, All Key Stakeholders

68

Types of Questions

Types of Questions Examples

Closed-Ended Questions * How many telephone
orders are received per day?

* How do customers place orders?
* What additional information

would you like the new system
to provide?

Open-Ended Questions * What do you think about the
current system?

* What are some of the problems
you face on a daily basis?

* How do you decide what types of
marketing campaign to run?

Probing Questions * Why?
* Can you give me an example?
* Can you explain that in a bit

more detail?

35

69

Designing Interview Questions

• Unstructured interview
– Broad, Roughly Defined Information

• Structured interview
– More Specific Information

70

Questioning Strategies

High Level
Very General

Medium-Level
Moderately
Specific

Low-Level
Very Specific

TOP DOWN

BOTTOM UP

EXAMPLES?

36

71

Interview Preparation Steps

• Prepare General Interview Plan
– List of Question
– Anticipated Answers and Follow-Ups

• Confirm Areas of Knowledge
• Set Priorities in Case of Time Shortage
• Prepare the Interviewee

– Schedule
– Inform of Reason for Interview
– Inform of Areas of Discussion

72

Conducting the Interview

• Appear professional and unbiased
• Record all information
• Check on organizational policy regarding tape recording
• Be sure you understand all issues and terms
• Separate facts from opinions
• Give interviewee time to ask questions
• Be sure to thank the interviewee
• End on time

37

73

Conducting the Interview
Practical Tips

• Don’t Worry, Be Happy
• Pay Attention
• Summarize Key Points
• Be Succinct
• Be Honest
• Watch Body Language

74

Post-Interview Follow-Up

• Prepare Interview Notes
• Prepare Interview Report
• Look for Gaps and New Questions

38

75

Interview Report

INTERVIEW REPORT

Interview notes approved by: ____________

Person interviewed ______________
Interviewer _______________
Date _______________
Primary Purpose:

Summary of Interview:

Open Items:

Detailed Notes:

76

JOINT APPLICATION DESIGN
(JAD)

39

77

JAD : Introduction

• Invented by IBM late 1970s
• Structured Meeting of 10-20 users
• ~30 minutes per agenda item
• frequent breaks

78

JAD : Overview

• Selecting participants
• Designing the session
• Preparing for the session
• Conducting the session
• Follow-Up

40

79

JAD Key Ideas

• Allows project managers, users, and
developers to work together

• May reduce scope creep by 50%
• Avoids requirements being too specific or

too vague

80

Joint Application Design (JAD)
Important Roles

• Facilitator
• Scribe

41

81

Joint Application Design (JAD)
Setting

• U-Shaped seating
• Away from distractions
• Whiteboard/flip chart
• Prototyping tools
• e-JAD

82

JAD Meeting Room

JPEG Figure 5-5 Goes Here

42

83

The JAD Session

• Tend to last 5 to 10 days over a three week period
• Prepare questions as with interviews
• Formal agenda and ground rules
• Facilitator activities

– Keep session on track
– Help with technical terms and jargon
– Record group input
– Help resolve issues

• Post-session follow-up

84

Managing Problems in JAD Sessions

• Reducing domination
• Encouraging non-contributors
• Side discussions
• Agenda merry-go-round
• Violent agreement
• Unresolved conflict
• True conflict
• Use humour

43

85

JAD : Summary

• Structured Meeting
• Facilitator and scribe + 10-20 users
• Attempts to overcome usual problems with

groups
• Only one person talks at once
• Every opinion is valued

86

QUESTIONNAIRES

44

87

Questionnaire Steps

• Selecting participants
– Using samples of the population

• Designing the questionnaire
– Careful question selection

• Administering the questionnaire
– Working to get good response rate

• Questionnaire follow-up
– Send results to participants

88

Good Questionnaire Design

Begin with non-threatening and interesting questions

Group items into logically coherent sections

Do not put important items at the very end of the questionnaire

Do not crowd a page with too many items

Avoid abbreviations

Avoid biased or suggestive items or terms

Number questions to avoid confusion

Pretest the questionnaire to identify confusing questions

Provide anonymity to respondents

45

89

Document Analysis

• Provides clues about existing “as-is” system
• Typical documents

– Forms
– Reports
– Policy manuals

• Look for user additions to forms
• Look for unused form elements

90

Observation

• Users/managers often don’t remember everything
they do

• Checks validity of information gathered other
ways

• Behaviours change when people are watched
• Careful not to ignore periodic activities

– Weekly … Monthly … Annual

46

91

Criteria for Selecting the
Appropriate Techniques

• Type of information
• Depth of information
• Breadth of information
• Integration of information
• User involvement
• Cost
• Combining techniques

92

Selecting the Appropriate Techniques

Interviews JAD Questionnaires Document Observation
Analysis

Type of As-Is As-Is As-Is As-Is As-Is
Information Improve. Improve. Improve.

To-Be To-Be

Depth of High High Medium Low Low
Information

Breadth of Low Medium High High Low
Information

Integration Low High Low Low Low
of Info.

User Medium High Low Low Low
Involvement

Cost Medium Low- Low Low Low-
Medium Medium

47

93

Gathering Information
(Summary)

• Interviews
• Joint Application Design (JAD)
• Questionnaires
• Document Analysis
• Observation

94

Part III

Roles of Analysis and Design

Role of analysis with respect to requirements and to design:

http://www.ivarjacobson.com/pub/TechnicalQuestions.html

http://www.ivarjacobson.com/files/AnalysisBasics.htm

48

95

Purpose

• The purposes of Analysis & Design are:
– To transform the requirements into a design of

the system-to-be
– To evolve a robust architecture for the system
– To adapt the design to match the

implementation environment
• Designing the system for performance in its run-

time environment

96

Relation to
Other

Disciplines

• The Requirements discipline provides the primary input for Analysis and
Design

• The Implementation discipline provides the software component organization in
the development environment

• The Test discipline tests designed system
• The Configuration and Change Management discipline develops and maintains

the supporting artifacts that are used during Analysis and Design
• The Project Management discipline plans the project, and each iteration

49

97

Model
Characteristics

Requirements Analysis Design Implementation Test
• Feature lists
• Domain

models
• Use cases
• Customer

language
• External view

• Unambiguous
models

• Consistent use
cases

• Developer
language

• Internal view
• Sets solution

architecture
• Conceptual
• Informal models
• Few

abstractions,
subsystems,
interfaces

• Physical
• Technologies

and “-ilities”
• Many

abstractions,
subsystems,
interfaces

• Detailed
• Formal

• Implement
details (source,
scripts,
binaries,
executables,
etc.)

• Distribute
executable
components
across
computing
nodes

• Unit test

• Test cases,
procedures,
components

• Integration and
system tests

• Feed results
back into
process

Transform Models

98

Requirements versus Analysis

• Requirements specify the behavior of the largest-
grained component: the system
– Specifies the behaviors the system provides for and

with the actors
– “The system shall…”

• Object-oriented analysis is reduction of a system
to a coarse set of discovered objects with
responsibilities, so that the set of objects is able to
fulfill the behavioral requirements of the user
– Analysis limits the effort to objects found in the

domain – otherwise you are doing design

50

99

Analysis
Class

• Analysis classes represent an early conceptual model
for ‘things in the system which have responsibilities
and behavior’

• Class, stereotyped as «boundary», «entity» or «control»
– Entity classes

• Long-lived, real-life object or event in the application domain
• Data and behavior
• Usually persistent (saved in a file or database)

– Boundary classes
• Interaction between the system and its actors
• At the system boundary

– Control classes
• Coordination and sequencing of system behavior
• Transactions

Analysis Class

Entity

Control

Boundary

100

Use-Case
Realization

Collaboration
diagram

Sequence
diagram

Class
diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Use
Cases

Use Case Use-Case Realization

• A use-case realization is a description
of how a particular use case is
realized within the design model, in
terms of collaborating objects

<<trace>>

51

101

Example: Pay Invoice Use Case

• The use case Pay Invoice is used by a Buyer to
schedule invoice payments. The Pay Invoice use
case then completes the payment on the due date

• Precondition: The Buyer has received the goods
or services ordered and at least one invoice from
the system. The Buyer now plans to schedule the
invoice(s)

• Postcondition: The use-case ends when the
invoice has been paid or the invoice payment was
canceled and no money was transferred

102

Pay Invoice Use Case: Flow of Events
• Basic path

1. The buyer invokes the use case by beginning to browse the invoices
received by the system. The system checks that the content of each
invoice is consistent with the order confirmations received earlier (as part
of the Confirm Order use case) and somehow indicates this to the buyer.
The order confirmation describes which items will be delivered, when,
where, and at what price.

2. The buyer decides to schedule an invoice for payment by the bank, and
the system generates a payment request to transfer money to the seller’s
account. Note that a buyer may not schedule the same invoice for
payment twice.

3. Later, if there is enough money in the buyer’s account, a payment
transaction is made on the scheduled date. During the transaction, money
is transferred from the buyer’s account to the seller’s account, as
described by the abstract use case Perform Transactions (which is used by
Pay Invoice). The buyer and the seller are notified of the result of the
transaction. The bank collects a fee for the transaction, which is
withdrawn from the buyer’s account by the system.

4. The use-case instance terminates
− (Alternative Paths not included here)

52

103

Analysis Class Diagram
Realizing a Pay Invoice Use Case

Order Confirmation

Buyer Payment Request UI

Order Handler

Invoice

Payment Scheduler Payment Request

104

Collaboration Diagram Realizing a
Pay Invoice Use Case

Scott : Buyer : Payment Request UI

 : Order Handler

 : Payment Scheduler : Payment Request

 : Order Confirmation

 : Invoice

1: Browse Invoice

6: Schedule Invoice for Payment

2: Browse

9: setStatus(scheduled)

3: Check Invoice

7: Schedule payment

4: Get

5: Get

8: New

53

105

Iteration

Use Case A

Use Case A
Realization

Iteration n

Use Case B

Use Case B
Realization

Iteration n+1

Use Case C

Use Case C
Realization

Iteration n+2

• Iteratively develop
the system, one use
case at a time

• Early iterations
− Architecturally

significant use
cases

− High risk use
cases

− High priority use
cases

time

106

Analysis versus Design

• Analysis
– Focus on

understanding the
problem

– Idealized design
– Behavior
– Functional structure
– Functional

requirements
– A small model

• Design
– Focus on

understanding the
solution

– Operations and
attributes

– Performance
– Close to real code
– Object lifecycles
– Non-functional

requirements
– A large model

54

107

Analysis versus Design
• Analysis

– Understand the problem and begin to develop
a visual model of what you are trying to build
• Independent of implementation and technology

concerns
– Translate the functional requirements into

software concepts
• Get a rough cut at the objects that comprise the

system
– Focus on behavior
– Focus on structure: coupling/separating concerns

• Design
– Refine the model into a form that will allow a

seamless transition into implementation

108

Analysis versus Design
• “If you tried to manage all of the analysis and design

issues in one go, your brain would explode on all but
the most trivial developments.”

• Mental switch of focus
– Analysis: problem domain

• I do care about what the system has to do
• I don’t care (as much) about memory, persistence, databases,

languages, etc.
– Design: solution domain

• I do care about memory, persistence, databases,etc.
• I don’t care (as much) about understanding the problem

• In practice, Analysis and Design are closely related and
often iterative
– To understand a problem, produce a solution
– The “as much” above is a balance of focus

55

109

Not Top-Down or Bottom-Up
– It is Middle-In/Out

• The use cases define a middle level
• At the middle level, identify analysis

classes that collaborate to realize the
use cases

• From the middle level, move up and
down
– Up: Defining subsystems
– Down: Defining design classes

• Understanding and solving the
problem is iterative
– Middle-to-Top, Top-to-Middle,

Middle-to-Bottom, and Bottom-to-
Middle

Subsystems

Analysis Classes

Design Classes

Use Cases

110

What is Architecture?

• Software architecture encompasses the set of
significant decisions about the organization of
a software system
– Selection of the structural elements and their

interfaces by which a system is composed
– Behavior as specified in collaborations among those

elements
– Composition of these structural and behavioral

elements into larger systems
– Architectural style or pattern that guides this

organization

• Architecture = Elements + Form + Rationale

56

111

Architecture Constrains Design
Which Constrains Implementation

• Architecture involves a set of strategic design
decisions, rules, or patterns that constrain design
and implementation

CODE

architecture
design

implementation

Incrementally assess and reduce
the space of solution options

Architecture decisions are the
most fundamental decisions

• Changing them will have
significant ripple effects

112

“4+1 View” Model of
Software Architecture

Logical View

Functionality
Structure

Implementation View

Software management

Process View

Performance,
scalability,
throughput

Deployment View

System topology,
delivery, installation,

communication

Use Case View
Functionality

Understandability
Usability

• Each view covers particular concerns, omitting elements not
relevant to that concern

• Views are “slices” of the overall system model

57

113

Analysis and Design Workflow

114

Analysis and Design Roles,
Activities, and Artifacts

58

115

Define the
Architecture

116

Grow the Design

59

117

Designer Role

• The designer role defines the
responsibilities, operations,
attributes, and relationships
of one or several classes, and
determines how they will be
adjusted to the
implementation environment

• Skills and Knowledge
– Use-case modeling techniques
– System requirements
– Software design techniques,

including object-oriented analysis
and design techniques, and the
Unified Modeling Language

– Technologies with which the system
will be implemented

118

Part IV

Object-Oriented Modeling with UML

60

119

Session Objectives

Key terms
Use Case
Object
Object class
State
Behavior
Operation
Encapsulation
Constructor Operation
Query Operation
Update Operation
Association
Multiplicity

Abstract Class
Concrete Class
Class-Scope attribute
Abstract operation
Method
Polymorphism
Overriding
Aggregation
Composition
Event
State transition
Sequence diagram

120

Session Objectives

Discuss the concepts and principles underlying the object-
oriented approach
Describe the activities in the different phases of the object-
oriented development life cycle
State the advantages of object-oriented modeling versus
traditional systems development approaches
Learn to develop requirements models using use-case
diagrams
Learn to use class diagrams to develop object models of
the problem domain
Learn to develop dynamic models using state, interaction
and activity diagrams
Model real-world applications using UML diagrams

61

121

Introduction

• Object-Oriented systems development life
cycle

– Process of progressively developing
representation of a system component (or
object) through the phases of analysis, design
and implementation

– The model is abstract in the early stages
– As the model evolves, it becomes more and

more detailed

122

The Object-Oriented Systems
Development Life Cycle

• Analysis Phase
– Model of the real-world application is developed

showing its important properties
– Model specifies the functional behavior of the system

independent of implementation details
• Design Phase

– Analysis model is refined and adapted to the
environment

– Can be separated into two stages
• System design

– Concerned with overall system architecture
• Object design

– Implementation details are added to system design

62

123

The Object-Oriented Systems
Development Life Cycle

• Implementation Phase
– Design is implemented using a programming

language or database management system

124

The Object-Oriented Systems
Development Life Cycle

• Deliverables and Outcomes
1. The ability to tackle more challenging problem domains
2. Improved communication among users, analysts, designers and

programmers
3. Increased consistency among analysis, design and programming

activities
4. Explicit representation of commonality among system

components
5. Reusability of analysis, design and programming results
6. Increased consistency among the models developed during

object-oriented analysis, design, and programming

63

125

The Unified Modeling Language
(UML)

• A notation that allows the modeler to specify,
visualize and construct the artifacts of software
systems, as well as business models

• Techniques and notations
– Use cases
– Class diagrams
– State diagrams
– Sequence diagrams
– Activity diagrams

126

Use-Case Modeling

• Applied to analyze functional requirements of
the system

• Performed during the analysis phase to help
developers understand functional requirements
of the system without regard for implementation
details

• Use Case
– A complete sequence of related actions initiated by an

actor
• Actor

– An external entity that interacts with the system

64

127

Use-case diagram
for a university registration system

128

Use-Case Modeling

• Developing Use-Case Diagrams
– Use cases are always initiated by an actor
– Use cases represent complete functionality of the

system
• Relationships Between Use Cases

– Use cases may participate in relationships with other
use-cases

– Two types
• Extends

– Adds new behaviors or actions to a use case
• Include

– One use case references another use case

65

129

Object Modeling
Class Diagrams

• Object
– An entity that has a well-defined role in the application

domain, and has state, behavior, and identity
• State

– A condition that encompasses an object’s properties
and the values those properties have

• Behavior
– A manner that represents how an object acts and reacts

• Object Class
– A set of objects that share a common structure and a

common behavior

130

Object Modeling
Class Diagrams

• Class Diagram
– Class is represented as a rectangle with three

compartments
– Objects can participate in relationships with

objects of the same class

66

131

Object Modeling
Object Diagrams

• Object Diagram
– A graph of instances that are compatible with a given

class diagram; also called an instance diagram
– Object is represented as a rectangle with two

compartments
• Operation

– A function or service that is provided by all the
instances of a class

• Encapsulation
– The technique of hiding the internal implementation

details of an object from its external view

132

Object Modeling
Object Diagrams

• Types of Operations
– Query

• An operation that accesses the state of an object but does not
alter the state

– Update
• An operation that alters the state of an object

– Scope
• An operation that applies to a class rather than an object

instance
– Constructor

• An operation that creates a new instance of a class

67

133

UML class and object diagrams
(a) Class diagram showing two classes
(b) Object diagram with two instances

134

Representing Associations

• Association
– A relationship between object classes
– Degree may be unary, binary, ternary or higher
– Depicted as a solid line between participating classes

• Association Role
– The end of an association where it connects to a class
– Each role has multiplicity, which indicates how many

objects participate in a given association relationship

68

135

Representing Association Classes

• Association Class
– An association that has attributes or operations

of its own, or that participates in relationships
with other classes

• Similar to an associative entity in ER
modeling

136

Representing Derived Attributes,
Derived Associations and Derived Roles

• Derived attributes, associations and roles
can be computed from other attributes,
associations or roles

• Shown by placing a slash (/) before the
name of the element

69

137

Representing Generalization

• Generalization
– Abstraction of common features among multiple

classes, as well as their relationships, into a more
general class

• Subclass
– A class that has been generalized

• Superclass
– A class that is composed of several generalized

subclasses

138

Representing Generalization

• Discriminator
– Shows which property of an object class is being

abstracted by a generalization relationship
• Inheritance

– A property that a subclass inherits the features from its
superclass

• Abstract Class
– A class that has no direct instances, but whose

descendents may have direct instances
• Concrete Class

– A class that can have direct instances

70

139

Representing Generalization

• Semantic Constraints among Subclasses
– Overlapping

• A descendant may be descended from more than one of the
subclasses

– Disjoint
• A descendant may not be descended from more than one of the

subclasses
– Complete

• All subclasses have been specified. No additional subclasses
are expected

– Incomplete
• Some subclasses have been specified, but the list is known to

be incomplete

140

Representing Generalization

• Class-scope Attribute
– An attribute of a class which specifies a value common

to an entire class, rather than a specific value for an
instance.

• Abstract Operation
– Defines the form or protocol of an operation but not its

implementation
• Method

– The implementation of an operation
• Polymorphism

– The same operation may apply to two or more classes
in different ways

71

141

Interpreting Inheritance and
Overriding

• Overriding
– Process of replacing a method inherited from a superclass by a

more specific implementation of that method in a subclass
– Three Types

• Overriding for Extension
– Operation inherited by a subclass from its superclass is extended

by adding some behavior
• Overriding for restriction

– The protocol of the new operation in the subclass is restricted
• Overriding for optimization

– The new operation is implemented with improved code by
exploiting the restrictions imposed by a subclass

142

Representing Multiple Inheritance

• Multiple Classification
– An object is an instance of more than one class
– Use is discouraged and not supported by UML

semantics
• Multiple Inheritance

– Allows a class to inherit features from more
than one superclass

72

143

Representing Aggregation

• Aggregation
– A part-of relationship between a component

object and an aggregate object
– Example: Personal computer

• Composed of CPU, Monitor, Keyboard, etc

144

Dynamic Modeling:
State Diagrams

• State
– A condition during the life of an object during which

it satisfies some conditions, performs some actions or
waits for some events

– Shown as a rectangle with rounded corners
• State Transition

– The changes in the attribute of an object or in the
links an object has with other objects

– Shown as a solid arrow
– Diagrammed with a guard condition and action

• Event
– Something that takes place at a certain point in time

73

145

Dynamic Modeling:
Sequence Diagrams

• Sequence Diagram
– A depiction of the interaction among objects during

certain periods of time

• Activation
– The time period during which an object performs an

operation

• Messages
– Means by which objects communicate with each

other

146

Dynamic Modeling
Sequence Diagrams

• Synchronous Message
– A type of message in which the caller has to

wait for the receiving object to finish executing
the called operation before it can resume
execution itself

• Simple Message
– A message that transfers control from the

sender to the recipient without describing the
details of the communication

74

147

Sequence diagram for a class registration
scenario with prerequisites

148

Process Modeling:
Activity Diagrams

• Shows the conditional logic for the
sequence of system activities needed to
accomplish a business process

• Clearly shows parallel and alternative
behaviors

• Can be used to show the logic of a use case

75

149

Analysis Versus Design

• Start with existing set of analysis model
• Progressively add technical details
• Design model must be more detailed than analysis

model
• Component Diagram

– A diagram that shows the software components or
modules and their dependencies

• Deployment Diagram
– A diagram that shows how the software components,

process and objects are deployed into the physical
architecture of the system

150

Summary

• Object-Oriented modeling approach
– Benefits
– Unified Modeling Language

• Use cases
• Class diagrams
• State diagrams
• Sequence diagrams
• Activity Diagrams

• Use-case modeling

76

151

Summary

• Object Modeling: Class Diagrams
– Associations
– Generalizations
– Inheritance and Overriding
– Aggregation

• Dynamic Modeling: State Diagrams
• Dynamic Modeling: Sequence Diagrams
• Analysis Versus Design

152

Part V

Selecting and Combining Approaches

77

153

Key Definitions

• The purpose of the design phase is to translate the “what”
of the analysis phase to the “how” of new system
development

• Logical DFDs and ERDs are converted into physical DFDs
and ERDs

• Structured English is turned into pseudocode and CASE
repositories are expanded

154

Design Strategies

• Custom development (build from scratch)
• Purchase and customise
• Outsource development

78

155

Classical Mistakes

• Reducing design time
• Feature creep
• Silver bullet syndrome
• Switching tools in mid-project

156

Design Strategies

79

157

Custom Development

Pros Cons

Allows flexibility
and creativity

Builds technical
skills and functional
knowledge in-house

Requires significant time
and effort

May exacerbate existing
backlogs

May require missing skills

Often costs more

Often takes more calendar
time

Risk of project failure

158

Packaged Software

• Include small single-function tools
• All-encompassing enterprise resource planning (ERP)

systems
• Rarely a perfect fit with business needs
• May allow for customization

– Manipulation of system parameters
– Changing way features work
– Synchronizing with other application interfaces

80

159

Systems Integration

• Building systems by combining packages,
legacy systems, and custom pieces

• Integrating data is the key

160

Outsourcing

• Hiring an external vendor, developer, or
service provider

• May reduce costs or add value
• Risks include possibly

– Losing confidential information
– Losing control over future development
– Losing learning opportunities

81

161

Outsourcing Contracts

• Time and arrangements
• Fixed-price
• Value-added

162

Outsourcing Guidelines

• Keep lines of communication open
• Define and stabilize requirements before signing

the contract
• View the relationship as a partnership
• Select vendor, developer, or provider carefully
• Assign someone to manage the relationship
• Don’t outsource what you don’t understand
• Emphasize flexible requirements

82

163

Selecting a Design Strategy

• Consider each of the following:
– Business need
– In-house experience
– Project skills
– Project management
– Time frame

164

Developing The Actual Design

83

165

Developing an Alternative Matrix

• What tools and technologies are needed for a
custom development project?

• What vendors make products that address the
project needs?

• What service providers would be able to build this
application if outsourced?

166

Requests for Proposals (RFP)

• Solicits proposals from vendor, developer,
or service providers

• Explains the system and criteria for
selecting among applicants

• Request for Information (RFI) -- a shorter
version

84

167

Request for Proposal Contents

• Description of desired system
• Special technical needs or circumstances
• Evaluation criteria
• Instructions on how to respond
• Desired schedule
• Other information that will help the submitter to make a

more complete or accurate proposal

168

Moving From Logical To
Physical Models

85

169

Key Definition

• In contrast to the logical DFD and ERD
which shows the business view of the new
system, the physical DFD and ERD will
show the implementation details and how
the system will work.

170

The Physical DFD

• Contains the same components as the logical DFD
• The same rules pertaining to balance and

decomposition apply
• Contains additional details describing how the

system will be built

86

171

Steps to Create the Physical DFD

• Add implementation references
• Draw a human-machine boundary
• Add system related data stores, data flows and

processes
• Update data elements in the data flows
• Update the metadata in the CASE repository

172

Contrasting Logical and Physical
DFDs

87

173

The Physical ERD

• Contains the same components as the
logical ERD

• The same rules pertaining to cardinality and
modality apply

• Contains additional details describing how
the data will be stored, in a file or database
table

174

Steps to Create the Physical ERD

88

175

Summary

• The design phase is where the blueprint of the system is
developed

• The Project team considers and selects among
– custom application development,
– buying a package and customizing it, and
– outsourcing.

• Physical DFDs and ERDs add details about the
implementation of the system to the “business view”

176

Use Case
Design

89

177

Grow the Design

Detailed design activities (class design and use-case
design) are tightly bound and alternate between one another

178

Review: Use-Case
Analysis - Steps

• Supplement the Use-Case Description
• For each use-case realization

– Find classes from Use-Case Behavior
– Distribute Use-Case Behavior to Classes

• For each resulting analysis class
– Describe responsibilities
– Describe attributes and associations
– Qualify architectural analysis mechanisms

• Unify analysis classes
• Review

90

179

Analysis Results
• Architecture

– Packages organized into Layers – focused on upper layers
– Analysis mechanisms
– Key abstractions (classes)

• Classes
– Classes named to reflect their roles and responsibilities
– Classes defined

• Responsibilities, Attributes
• Associations
• Classes are internally cohesive

– Classes assigned to packages
• Closely related classes are in the same packages
• Packages are loosely coupled

• Use-case realizations
– All required functionality is realized – all flows are realized
– Each class has the attributes and responsibilities it needs to

carry out its assigned responsibility

180

Analysis versus Design

• Analysis
– Focus on

understanding the
problem

– Idealized design
– Behavior
– Functional

structure
– Functional

requirements
– A small model

• Design
– Focus on

understanding the
solution

– Operations and
attributes

– Performance
– Close to real code
– Object lifecycles
– Non-functional

requirements
– A large model

91

181

Step into Design

• Next steps are to refine the analysis model
into a design model

• Two perspectives for further decomposition
– Architecture: further detailing of parts and

their relationships
• Packages Subsystems
• Analysis mechanisms Design mechanisms

– Class: further detailing of the parts
• Analysis classes Design classes, components,

and interfaces
• A third perspective assures integration

(“Re-composition”)
– Use-case realization -- Design

182

Purpose of “Grow the Design”
Workflow

• Provide the natural transition from analysis
activities to design activities, identifying:
– appropriate design elements from analysis elements
– appropriate design mechanisms from related analysis

mechanisms

• Maintain the consistency and integrity of the
architecture, ensuring that:
– new design elements identified for the current iteration

are integrated with pre-existing design elements.
– maximal re-use of available components and design

elements is achieved as early as possible in the design
effort.

92

183

Context of Use-Case Design
• Based on prior analysis and design, we have

– An initial architecture design
– Defined major elements of our system (subsystems, their

interfaces, the design classes, the processes, and threads) and
their relationships

– An understanding of how processes map to system hardware
• Now, in use-case design, we concentrate on how a use case is

implemented and make sure there is consistency from beginning
to end

• Use-case design is where the design elements meet the
architectural mechanisms
– The use-case realization from analysis is refined to included the

design elements, using the patterns of interaction defined for the
architectural mechanisms

184

Background of Use-Case Design

• Use-Case Design is a cross-checking,
consistency-imposing activity
– Focus on a “use-case thread” to make sure everything

still fits together
– Continually review the interaction diagrams, looking

for
• inconsistencies
• missing information
• opportunities for reuse
• etc.

– Make sure we have operations for the whole path of
the flow of events

93

185

Verifying for Consistency

• For each use case, across all use cases, verify that
– All the necessary behavior to support a use-case

implementation has been distributed among the appropriate
participating classes

– The use-case flows naturally over the participating design
elements

– All associations between design elements (classes or
subsystems) needed for the use case realizations have been
defined

– All the attributes needed for the use-cases have been defined
• Refine the analysis-level use cases to included the

defined design model elements (which are the design
classes and subsystems that the analysis classes have
“morphed into”)

• Incorporate applicable architectural design
mechanisms

186

Purpose of Use-Case Design

• To refine use-case realizations in terms of
interactions.

• To refine requirements on the operations of
design classes.

• To refine requirements on the operations of
subsystems and/or their interfaces.

• To refine requirements on the operations of
capsules

94

187

Use-Case
Design

Use-Case
Design

Supplementary
Specification

Use-Case Realization
- Analysis

Use-Case Realization – Design
(Refined)

Use-Case
Specifications

Design
Classes

Design Subsystems
and Interfaces

Multiple design
teams, each with
a different focus

• Class diagrams
• Sequence diagrams
• Refined flow-of-

events descriptions

188

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using subsystems
• Describe persistence related behavior

– Read, write, delete persistent objects
– Model transactions
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

95

189

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Read, write, delete persistent objects
– Model transactions
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

190

Review: Use-Case
Realization

user : »ç¿ëÀÚ

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Collaboration
diagram

user
mainWnd fileMgr :

FileMgr
repositorydocument :

Document
gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯Á¤¹®¼-¿¡ ´ëÇÑ º¸±â¸¦
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º¸¸¦ ÇØ´ç ¹®¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î
Á¤·ÄÀ» ½ÃÄÑ È-¸é¿¡
º¸¿©ÁØ´Ù.

Sequence
diagram

Class
diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Use
Cases

Use Case Use-Case Realization

• A use-case realization is a description
of how a particular use case is
realized within the design model, in
terms of collaborating objects

<<trace>>

96

191

Review: From Analysis Classes to
Design Elements

• Analysis classes will seldom retain their same
structure through design
– They may be expanded, collapsed, combined, or even

deleted in design

Analysis Classes Design Elements
Many-to-Many

Mapping

192

Use-Case Realization Refinement
• Identify participating objects
• Allocate responsibilities amongst objects
• Model messages between objects
• Describe processing resulting from messages
• Model associated class relationships
• In essence, re-draw the analysis realizations, now

using the design elements the analysis models were
refined into, making sure that the allocation of
responsibility is still accurate

Sequence diagrams
Class diagrams

97

193

Use-Case Realization
Refinement Steps

• Identify each object that participates in the flow
of the use-case

• Represent each participating object in a sequence
diagram

• Incrementally incorporate applicable architectural
mechanisms

194

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Read, write, delete persistent objects
– Model transactions
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

98

195

With Subsystems and
Architectural Mechanisms

• Look at the interaction diagrams
• For each class that has been refined into a subsystem,

replace the class with the associated subsystem interface
– Any interactions that describe HOW the subsystem

should implement the service should be deferred until
subsystem design

• Incrementally incorporate any applicable architectural
mechanisms
– Use the patterns of behavior defined for the mechanisms
– May include the introduction of new design elements and

messages
• Update the dynamic and static parts (sequence diagrams

and view of participating classes diagram)

196

Representing Subsystems on a
Sequence Diagram

• Interfaces
– Represents any model element that realizes the

interface
– No message should be drawn from the interface

• Proxy class
– Represents a specific subsystem
– Messages can be drawn from the proxy

Proxy

OK

99

197

Example : Incorporating
Subsystem Interfaces

BillingSystem

+ submitBill(forStudent : Student, forTuition : double)

<<subsystem proxy>>

IBill ingSys tem

+ submitBill(forTuition : Double, forStudent : Student)

(from External System Interfaces)

<<Interface>>

ICourseCatalogSystem

+ getCourseOfferings(forSemester : Semester) : CourseOfferingList
+ init ialize()

(from External System Interfaces)

<<Interface>>

CourseCatalogSystem

+ getCourseOfferings(forSemester : Semester) : CourseOfferingList
+ initialize()

(f rom CourseCatalogSystem)

<<subsystem proxy>>

BillingSystem

//submit bill()

CourseCatalogSystem

//get course offerings()

Analysis Classes Design Elements

198

Example: Incorporating Subsystem
Interfaces (Before)

 : Student
 :

RegisterForCoursesForm
 :

RegistrationController
 : Schedule : Student

 : Course Catalog
 :

CourseCatalogSystem

A list of the available
course offerings for this
semester are displayed

Student wishes to
create a new
schedule

1. // create schedule()

1.2. // display course offerings()

1.1. // get course offerings()

1.1.1. // get course offerings(forSemester)

1.3. // display blank schedule()

At this, point the Submit Schedule subflow is executed.

Sequence Diagram: Register for
Courses / Register for Courses - Basic
Flow (Submit Schedule)

2. // select 4 primary and 2 alternate offerings()

2.1. // create schedule with offerings()
2.1.1. // create with offerings()

A blank schedule
is displayed for the
students to select
offerings

2.1.2. // add schedule(Schedule)

1.1.1.1. // get course offerings()

Replace with
subsystem interface

100

199

 : Student

 : RegisterForCoursesForm : RegistrationController : Schedule : Student. :
ICourseCata...

A list of the available
course offerings for this
semester are displayed

Student wishes to
create a new
schedule

At this, point the Submit Schedule subflow is executed.

A blank schedule
is displayed for the
students to select
offerings

This flow is inserted after the Register for Courses - Basic Flow
Sequence Diagram: Register for Courses / Register for
Courses - Basic Flow

Sequence Diagram: University
Artifacts / Use of Schedule
Offering Info

1. createSchedule()

1.2. displayCourseOfferings()

1.3. displayBlankSchedule()

2. select 4 primary and 2 alternate()()

1.1. // get course offerings()

2.1. c reate schedule with offerings(CourseOfferingList, CourseOfferingList)

2.1.1. new(forSemester : Semester, withPrimaryOfferings : CourseOfferingList, withAlternateOfferings : CourseOfferingLi...

2.1.2. addSchedule(theSchedule : Schedule)

1.1.1. getCourseOfferings(Semester)

Replaced with subsystem interface

Example: Incorporating Subsystem Interfaces (After)

200

Encapsulating Subsystem Interactions

• Interactions can be described at
several levels of abstraction

• Subsystem internal interactions can
be described in their own
interaction diagrams

Coarse-grained
interaction between

subsystems

Fine-grained
interaction within

subsystems

101

201

When to Encapsulate Sub-Flows
in a Subsystem

• Encapsulate a sub-flow when it:
– occurs in multiple use-case realizations
– has reuse potential
– is complex and easily encapsulated
– is the responsibility of one person/team
– produces a well-defined result
– is encapsulated within a single Implementation Model

component

• Make sure that what you are abstracting is
worth abstracting

202

Guidelines: Encapsulating
Subsystem Interactions

• Subsystems should be represented by their interfaces on
interaction diagrams

• Messages to subsystems are modeled as messages to the
subsystem interface

• Messages to subsystems correspond to operations on the
subsystem interface

• Interactions within subsystems are modeled in subsystem
design

:InterfaceA

InterfaceA
op1()

op1()

102

203

Advantages of Encapsulating
Subsystem Interactions

• Use-case realizations
– Are less cluttered
– Can be created before the internal designs of

subsystems are created
• parallel development

– Are more generic and easier to change
• subsystems can be substituted

204

Parallel Subsystem
Development

• Concentrate on requirements that affect subsystem
interfaces

• Outline required interfaces
• Model messages that cross subsystem boundaries
• Draw interaction diagrams in terms of subsystem

interfaces fore each use-case
• Refine the interfaces needed to provide messages
• Develop each subsystem in parallel

Use subsystem interfaces as project synchronization points

103

205

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Model transactions
– Read, write, delete persistent objects
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

206

Modeling
Transactions

• What is a Transaction?
– Atomic operation invocations
– “All or nothing”
– Assure consistency in changes

• Modeling options
– Textually (scripts)
– Explicit messages

• Error conditions
– Rollback
– Failure modes
– May require separate interaction diagrams

104

207

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Model transactions
– Read, write, delete persistent objects
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

208

Detailed Flow of Event
Description Options

• Annotate the interaction diagrams to clarify
behavior
– Timing
– Conditional behavior
– Clarification or constraint on operation

behavior
– Control flow (decision steps, looping,

branching)
• Use UML notes or use free-form text

105

209

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Model transactions
– Read, write, delete persistent objects
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

210

Design Model Unification
Considerations

• Model element names should describe their
function
– Avoid similar names
– Avoid synonyms

• Merge similar model elements
• Use inheritance to abstract model elements
• Keep model elements and flows of events

consistent
– When updating a model element, also update the

affected use-case realizations

106

211

Use-Case
Design Steps

• Describe interaction between design objects
• Simplify sequence diagrams using

subsystems
• Describe persistence related behavior

– Model transactions
– Read, write, delete persistent objects
– Handle error conditions
– Handle concurrency control

• Refine the flow of events description
• Unify classes and subsystems
• Evaluate your results

Next

212

Checkpoints: Use-
Case Design

• Is package/subsystem partitioning logical and
consistent?

• Are the names of the packages/subsystems descriptive?
• Do the public package classes and subsystem interfaces

provide a single, logically consistent set of services?
• Do the package/subsystem dependencies correspond to

the relationships between the contained classes?
• Do the classes contained in a package belong there

according to the criteria for the package division?
• Are there classes or collaborations of classes which can

be separated into an independent package/subsystem?

107

213

Checkpoints: Use-
Case Design

• Have all the main and/or sub-flows for this
development iteration been handled?

• Has all behavior been distributed among the
participating design elements?

• Has behavior been distributed to the right design
elements?

• If there are several interaction diagrams for the
use-case realization, is it easy to understand
which diagrams relate to which flow of events?

214

Part VI

Creating a Data Model

108

215

Key Definitions

• A data model shows the people, places and
things of interest to an organization and the
relationships among them.

• The logical data model shows the
organization of data without indicating how
it is stored, created, or manipulated.

216

Key Definitions

• A physical data model shows how the data
will actually be stored in the database.

• Normalization is the process analysts use to
check for data redundancy.

109

217

The Entity-Relation Diagram (ERD)

218

What Is an ERD?

• A picture showing the information created,
stored, and used by a business system.

• Entities generally represent people, places,
and things of interest to the organization.

• Lines between entities show relationships
between entities.

110

219

Using the ERD to Show Business Rules

• ERD symbols can show when one example of an entity
must exist for an example of another to exist
– A product must exist before it can be sold

• ERD symbols can show when one example of an entity can
be related to only one or many examples of another entity
– One doctor can have many patients, each patient may have only

one primary doctor

220

An ERD Example

111

221

ERD Elements

222

Entities and Instances

112

223

Case Repository Entry
for Patient Entity

224

Attributes

• Information captured about an entity
• Only those used by the organization should be

included in the model
• Attribute names are nouns
• Sometimes entity name is added at the beginning

of the attribute name

113

225

Identifiers

• The identifier consists of one or more
attributes that can uniquely identify each
instance of the entity.

226

Identifier Types

114

227

Case Repository Entry for
Patient_SSN Attribute

228

Relationships

• Associations between entities
• Connected by a line
• Given active verb names

– One verb can describe relationship in both
directions

– Two verbs can describe each relationship

115

229

Cardinality

• Cardinality refers to the number of times instances
in one entity can be related to instances in another
entity
– One instance in an entity refers to one and only one instance in the

related entity (1:1)
– One instance in an entity refers to one or more instances in the

related entity (1:M)
– One or more instances in an entity refer to one or more instances in

the related entity (M:M)

230

Modality

• Modality refers to the minimum number of times
that an instance in one entity can be related to an
instance in another entity
– One means that an instance in the related entity must exist for an

instance in another entity to be valid
– Zero means that no instance in the related entity is necessary for an

instance in another entity to be valid

116

231

Case Repository Entry for a
Relationship

232

Metadata

• Information about components of the model
• Metadata is stored in the CASE repository so it

can be shared by developers and users throughout
the SDLC

117

233

Metadata Examples

An Entity An Attribute A Relationship
can be can be can be
described by: described by: described by:

Name Name Verb phrase
Definition Description Definition
Notes Alias Cardinality

Acceptable Values Modality
Format Notes
Notes

234

Creating An Entity-Relationship
Diagram

118

235

ERD Basics

• Drawing the ERD is an iterative process of
trial and revision

• ERDs can become quite complex

236

Steps in Building ERDs

• Identify the entities
• Add appropriate attributes for each entity
• Draw the relationships that connect

associated entities

119

237

ERD Building Tips

• Data stores of the DFD should correspond
to entities

• Only include entities with more than one
instance of information

• Don’t include entities associated with
implementation of the system, not the
system itself

238

An ERD Example: The CD Entity

120

239

An ERD Example: The CD’s
Relationships

240

An ERD Example: CD’s
Relationships Expanded

121

241

Advanced Syntax

242

Special Types of Entities

• Intersection entities are created to store
information about two entities sharing an M:M
relationship

• Independent entities can exist without the help of
another entity

• Dependent entities use the identifier of one or
more other entities as part or all of their identifiers

122

243

An Intersection Entity Example

244

Design Guidelines

• Best practices rather than rules
• Entities should have many occurrences
• Avoid unnecessary attributes
• Clearly label all components
• Apply correct cardinality and modality
• Break attributes into lowest level needed
• Labels should reflect common business terms
• Assumptions should be clearly stated

123

245

Balancing ERDs with DFDs

• All analysis activities are interrelated
• Process models contain two data components

– Data flows and data stores
• The DFD data components need to balance the ERD’s data

stores (entities) and data elements (attributes)
• Many CASE tools provide features to check for imbalance
• Check that all data stores and elements correspond

between models
• Do not follow thoughtlessly -- check that the models make

sense!

246

Summary

• The ERD is the most common technique for drawing data
models. The building blocks of the ERD are:
– Entities describe people, places, or things
– Attributes capture information about the entity
– Relationships associate data across entities

• Intersection, dependent, and independent entities must be
recognized.

• The ERD must be balanced with the DFD.

124

247

Part VII

Agile Analysis and Design
See: http://www.rspa.com/reflib/AgileDevelopment.html

248

Readings

n Readings
n Slides and Handouts posted on the course web site
n Documentation provided with software engineering tools

n Project Frameworks Setup (ongoing)
n As per references provided on the course Web site

n Individual Assignment
n See Handouts: “Assignment #5”

125

249

Part VIII

Conclusion

250

Course Assignments
• Individual Assignments

• Problems and reports based on case studies or exercises

• Project-Related Assignments
• All assignments (other than the individual assessments) will

correspond to milestones in the team project.
• As the course progresses, students will be applying various

methodologies to a project of their choice. The project and related
software system should relate to a real-world scenario chosen by each
team. The project will consists inter-related deliverables which are
due on a (bi-) weekly basis.

• There will be only one submission per team per deliverable and all
teams must demonstrate their projects to the course instructor.

• A sample project description and additional details will be available
under handouts on the course Web site.

126

251

Course Project
• Project Logistics

• Teams will pick their own projects, within certain constraints: for instance,
all projects should involve multiple distributed subsystems (e.g., web-based
electronic services projects including client, application server, and
database tiers). Students will need to come up to speed on whatever
programming languages and/or software technologies they choose for their
projects - which will not necessarily be covered in class.

• Students will be required to form themselves into "pairs" of exactly two (2)
members each; if there is an odd number of students in the class, then one
(1) team of three (3) members will be permitted. There may not be any
"pairs" of only one member! The instructor and TA(s) will then assist the
pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly
three (3) pairs if necessary due to enrollment, but students are encouraged to
form their own 2-pair teams in advance. If some students drop the course,
any remaining pair or team members may be arbitrarily reassigned to other
pairs/teams at the discretion of the instructor (but are strongly encouraged to
reform pairs/teams on their own). Students will develop and test their
project code together with the other member of their programming pair.

252

Sample Project Methodology
Very eXtreme Programming (VXP)

• After teams formed, 1/2 week to Project
Concept

• 1/2 week to Revised Project Concept
• 2 to 3 iterations
• For each iteration:

– 1/2 week to plan
– 1 week to iteration report and demo

127

253

Sample Project Methodology
Very eXtreme Programming (VXP)

(continued)

• Requirements: Your project focuses on two application
services

• Planning: User stories and work breakdown
• Doing: Pair programming, write test cases before coding,

automate testing
• Demoing: 5 minute presentation plus 15 minute demo
• Reporting: What got done, what didn’t, what tests show
• 1st iteration: Any
• 2nd iteration: Use some component model framework
• 3rd iteration: Refactoring, do it right this time

254

Revised Project Concept (Tips)

1. Cover page (max 1 page)
2. Basic concept (max 3 pages): Briefly

describe the system your team proposes to
build. Write this description in the form of
either user stories or use cases (your
choice). Illustrations do not count towards
page limits.

3. Controversies (max 1 page)

128

255

First Iteration Plan (Tips)
• Requirements (max 2 pages):
• Select user stories or use cases to implement in

your first iteration, to produce a demo by the last
week of class

• Assign priorities and points to each unit - A point
should correspond to the amount of work you
expect one pair to be able to accomplish within
one week

• You may optionally include additional medium
priority points to do “if you have time”

• It is acceptable to include fewer, more or different
use cases or user stories than actually appeared in
your Revised Project Concept

256

First Iteration Plan (Tips)

• Work Breakdown (max 3 pages):
• Refine as engineering tasks and assign to pairs
• Describe specifically what will need to be coded

in order to complete each task
• Also describe what unit and integration tests will

be implemented and performed
• You may need additional engineering tasks that do

not match one-to-one with your user stories/use
cases

• Map out a schedule for the next weeks
• Be realistic – demo has to been shown before the

end of the semester

129

257

2nd Iteration Plan (Tips):
Requirements

• Max 3 pages
• Redesign/reengineer your system to use a

component framework (e.g., COM+, EJB, CCM,
.NET or Web Services)

• Select the user stories to include in the new system
– Could be identical to those completed for your 1st

Iteration
– Could be brand new (but explain how they fit)

• Aim to maintain project velocity from 1st iteration
• Consider what will require new coding vs. major

rework vs. minor rework vs. can be reused “as is”

258

2nd Iteration Plan (Tips):
Breakdown

• Max 4 pages
• Define engineering tasks, again try to maintain

project velocity
• Describe new unit and integration testing
• Describe regression testing

– Can you reuse tests from 1st iteration?
– If not, how will you know you didn’t break something

that previously worked?
• 2nd iteration report and demo to be presented

before the end of the semester

130

259

2nd Iteration Report (Tips):
Requirements

• Max 2 pages
• For each engineering task from your 2nd Iteration

Plan, indicate whether it succeeded, partially
succeeded (and to what extent), failed (and how
so?), or was not attempted

• Estimate how many user story points were
actually completed (these might be fractional)

• Discuss specifically your success, or lack thereof,
in porting to or reengineering for your chosen
component model framework(s)

260

2nd Iteration Report (Tips): Testing

• Max 3 pages
• Describe the general strategy you followed for

unit testing, integration testing and regression
testing

• Were you able to reuse unit and/or integration
tests, with little or no change, from your 1st

Iteration as regression tests?
• What was most difficult to test?
• Did using a component model framework help or

hinder your testing?

131

261

Project Presentation and Demo

• All Iterations Due
• Presentation slides (optional)

262

Readings

• Readings
• Slides and Handouts posted on the course web site
• Documentation provided with business and application modeling tools

(e.g., Popkin Software Architect)
• SE Textbook: Chapters 8 (Part 2) and 18 (Part 3)

• Project Frameworks Setup (ongoing)
• As per references provided on the course Web site

• Individual Assignment
• See Session 4 Handout: “Assignment #3”

• Team Assignment
• See Session 2 Handout: “Team Project Specification” (Part 1)

132

263

Next Session:
From Analysis and Design to Software Architectures

(Part I)

n Towards Agile Enterprise Architecture Models
n Building an Object Model Using UML
n Architectural Analysis
n Design Patterns
n Architectural Patterns
n Architecture Design Methodology

n Achieving Optimum-Quality Results
n Selecting Kits and Frameworks
n Using Open Source vs. Commercial Infrastructures

n Summary
n Individual Assignment #4
n Project (Part 2)

264

Next Session:
Business Model Engineering

Software Analysis and Design

• Traditional Data and Process Modeling Approaches
• From Requirements Analysis to Business and Application

Models
• Business Model Capture Tools
• Process Modeling
• Capturing the Organization and Location Aspects
• Developing a Process Model
• Roles of Software Analysis and Design
• Object-Oriented Analysis and Design with UML
• Selecting and Combining Approaches
• Creating a Data Model
• Homework #3
• Project #1 (ongoing)
• Summary

