
Nominal Games and Full Abstraction for the Nu-Calculus

S. Abramsky
Oxford University

D. R. Ghica
Oxford University

A. S. Murawski
Oxford University

C.-H. L. Ong
Oxford University

I. D. B. Stark
Edinburgh University

Abstract

We introduce nominal games for modelling program-
ming languages with dynamically generated local names,
as exemplified by Pitts and Stark’s nu-calculus. Inspired
by Pitts and Gabbay’s recent work on nominal sets, we
construct arenas and strategies in the world (or topos) of
Fraenkel-Mostowski sets (or simply FM-sets). We fix an
infinite set N of names to be the “atoms” of the FM-theory,
and interpret the type ν of names as the flat arena whose
move-set is N . This approach leads to a clean and pre-
cise treatment of fresh names and standard game construc-
tions (such as plays, views, innocent strategies, etc.) that
are considered invariant under renaming. The main result
is the construction of the first fully-abstract model for the
nu-calculus.

1 Introduction

Many convenient features of modern programming lan-
guages involve some notion of generativity: the idea that an
entity (e.g. identifier, reference, object, exception, thread,
channel, etc.) may be freshly created, distinct from all oth-
ers. Such dynamic creations occur at a variety of levels,
from the run-time behaviour of Lisp’s gensym, to resolv-
ing questions of scope during program linking. For sound
design and correct implementation, it is essential to develop
an appropriate abstract understanding of what it means to
be new.

The nu-calculus of Pitts and Stark [16] was devised to
explore this common property of generativity, by adding
names to the simply-typed lambda-calculus. Names may
be created locally, passed around, and compared with one
another, but that is all. Central to the nu-calculus is the use
of name abstraction, as found in the π-calculus [10]: the
expression νn.M represents the creation of a fresh name,
which is then bound to n within the body of M . Functions
may have local names that remain private and persist from
one use of the function to the next; alternatively, names may
also travel beyond their original scope and outlive their cre-
ator. It is this mobility of names that allows the nu-calculus

to capture notions of scope, privacy and sharing.
Game semantics has emerged as a powerful paradigm for

giving accurate semantics for a wide spectrum of program-
ming languages. Fully abstract1 game models have now
been constructed for languages with references of various
kinds, such as statically-scoped assignable variables [2] and
general references [1]. Game models that have been con-
structed for these languages (with the notable exception of
[8]) follow Reynolds in viewing a reference type ref[A]
as a product of “read method” and “write method”. As
O’Hearn has pointed out, using this interpretation, functori-
ality of the ref[−] type constructor requires the presence of
“bad variables” in the language, which has the unfortunate
consequence of rendering testing for reference equality – a
common programming idiom – meaningless. An alternat-
ive view is to interpret references as names (or locations)
of storage cells, according to which testing for reference
equality clearly makes good sense. As Stark has observed in
[20]: “dynamically created names really do capture the dif-
ficult part of · · · references”, our aim here is to give a game-
semantic characterization of names as embodied in the nu-
calculus, as a first (but we believe key) step towards the
construction of a good game model of references as names.

Though designed in all respects to be as simple as pos-
sible, the nu-calculus has so far resisted all attempts to
model it fully abstractly. The best effort so far, namely [8],
still falls some way short of the criterion. In this paper, we
present the first fully abstract model for the calculus, which
is based on a version of Honda-Yoshida call-by-value games
[5] but constructed in the universe of FM-sets [4]. We fix
an infinite set N of names to be the “atoms” of the FM-
theory, and interpret the type ν by (the flat arena of) N . In
our setting, a play is a justified sequence of moves-with-
names (written mS), satisfying certain conditions, but con-
sidered up to appropriate renaming. Intuitively the name
set S in mS comprises all names that have been introduced
by P at moves that are P-visible (in the sense of [6]) at that
point. This device, together with the Name Change Condi-
tions which govern the way name sets evolve as the com-
putation unfolds, records the scope of each freshly created

1A model of a programming language is fully abstract if observational
equivalence coincides with the equational theory induced by the model.

1

http://www.ed.ac.uk/~stark/nominalgames.html
stark
Appears in the Proceedings of LICS 2004

name. We give a simple algorithm for the composition of
strategies that processes name sets in accordance with the
mobility of names in the nu-calculus. Semantic objects in-
terpreting nu-calculus terms depend on names in an obvious
way. Our approach is to leave the name dependence of the
various game constructions (such as plays, strategies, view
functions, etc.) implicit through the use of finite support [4],
which in turn depends on the properties of arenas equipped
with an action of name permutation.

Recently Laird, in work [8] to appear at FOSSACS’04,
has also constructed a game model for the nu-calculus. He
builds a category of dialogue games acted upon by the auto-
morphism group of the natural numbers, and it allows cer-
tain properties of freshness and locality to be characterized
semantically. However the model is not fully abstract for
the nu-calculus. An open problem identified in [8, §6] is
to characterize the denotations of the nu-calculus terms. As
Laird has noted therein, the key to solving it is to find a way
of keeping track of the scope of each new name. Our model
gives just such an innovation.

2 Nu-Calculus

For a full description of the nu-calculus, see [16, 19, 20];
here we summarize briefly. The calculus has ground types
o (booleans: t and f) and ν (names), with higher function
types over these. Typing judgements have the form S; Γ �
M : A, where S is a finite set of names; it follows from
the definition that all names that occur free in M are in S.
It has a call-by-value operational semantics given in terms
of a big-step relation S � M ⇓A (S′)C, meaning that the
closed term S; � M : A evaluates to a canonical form C
and creates fresh names S′; the canonical forms are names,
booleans and λ-abstractions. Evaluation can be shown to be
deterministic and terminating. We say that terms-in-context
S; Γ � Mi : A for i = 1, 2 are observationally equivalent,
written S; Γ � M1 ≈A M2, if for all contexts C[] such that
S; � C[Mi] : o for i = 1, 2, we have

∃S1.S; � C[M1] ⇓ (S1)t ⇐⇒ ∃S2.S; � C[M2] ⇓ (S2)t

Intuitively S; Γ � M1 ≈A M2 if they give the same result
in any boolean context. E.g. at ground types:

νn.(n = n) ≈o t and νn.νn′.(n = n′) ≈o f.

Note that name generation is not itself observable, although
names themselves may be, if revealed:

νn.λx : o.n �≈o→ν λx : o.(νn.n). (1)

Here the left hand term evaluates to a function with a local
name n, that it returns when invoked; while the right hand
function creates a new and different name each time it is

applied. These are distinguished by passing them to the
test function (λf : o → ν.(f t = f f)). Sometimes names
remain private, as in the following:

νn.(λx : ν.(x = n)) ≈ν→o νn.(λx.f) (2)

νn.νn′.(λf : ν → o.(fn = fn′)) ≈(ν→o)→o λf.t . (3)

Although the first two functions differ at the name n, no
external context can provide it. Similarly for the second
pair, any constructed function f must treat n and n′ equally.
For further examples, see [19, 17, 13].

Even without the classic difficulties of nontermination,
issues like this make reasoning about the nu-calculus some-
what challenging, especially at higher types. Stark [18]
presents an equational theory that is complete at ground
types, and a relational theory that is complete for first-
order functions, as in (2). There are also operational tech-
niques [16] and a categorical model with logical relations,
fully abstract to first order [20]. These show that observa-
tional equivalence is decidable up to first order; but with no
general results at second or higher orders.

3 Call-by-value games

In this section we introduce Honda and Yoshida’s call-
by-value games [5]. The question-answer paradigm of the
CBV games differs from the more familiar call-by-name
games in an important way: initial moves of CBV arenas
are P-answers. As we shall see these are the possible an-
swers to a question posed by the environment (or O). There
is an essentially equivalent version of CBV games due to
Abramsky and McCusker [3]; our presentation here is a re-
formulation of Honda and Yoshida’s games in the style of
McCusker [9].

An arena is a triple A = 〈MA,�A, λA 〉 consisting of
a set of moves MA, a justification relation �A ⊆ (MA +
{ † }) × MA, where † is a dummy move, satisfying:

(f1) For each m ∈ MA there is a unique x ∈ (MA + { † })
such that x �A m; in case † �A m, we call m an initial
move.

(f2) �A� (MA × MA) is well-founded;

a labelling function λA : MA −→ {P,O } × {Q,A } that
designates each move as one of four types: P-question, P-
answer, O-question and O-answer, and satisfying:

(l1) Initial moves are P-answers.

(l2) If m1,m2 ∈ MA are such that m1 �A m2, then m1

and m2 are moves by different players.

(l3) Answers may only justify questions. I.e. if m1 �A m2

and m1 is an answer then m2 is a question.

2

It is useful to think of the arena A as a vertex-
labelled directed graph with vertex-set MA and edge-set
�A� (MA × MA) such that the labels on vertices are given
by λA satisfying (l1), (l2) and (l3). It follows from (f1) and
(f2) that the graph so defined is a forest of trees in which the
roots are the initial moves.

Example 3.1. We begin with the empty arena 0 =
〈∅, ∅, ∅ 〉, and the singleton arena

1 = 〈 { ∗ }, { (∗, PA) }, { (†, ∗) } 〉

The arenas representing the ground types of the nu-calculus,
o and ν, (which we shall also write as o and ν respect-
ively, by abuse of notation) are flat arenas. I.e. they are
discrete graphs (forests), all of whose nodes are (necessar-
ily) P-answers; Mo = { ∗ } + { ∗ }, but for convenience we
name the elements t and f, and Mν = N , a distinguished,
countably infinite set of names.

We introduce two arena constructors. For each construc-
tion, we shall first describe it rather informally as an opera-
tion on labelled forests, and then give a formal description
(in terms of a triple). The former is probably easier to un-
derstand; the latter is important for the subsequent develop-
ment of nominal games in Section 4. We shall use a simple
notation for forest construction. We write A =

∑
i∈I Ti to

mean the forest with constituent trees Ti’s; and write a 〈A 〉
for the tree, rooted at a, that is constructed from the forest A
by adding, for each tree Ti of A, an edge that joins a to Ti’s
root. Thus every forest has a canonical form

∑
i∈I ai 〈Ai 〉

(in which each forest Ai is also in canonical form). We
write A + B to mean the disjoint union of forests A and B.

Tensor product. Given arenas A =
∑

i∈I ai 〈Ai 〉 and
B =

∑
j∈J bj 〈Bj 〉, we define

A ⊗ B =
∑

i∈I,j∈J
(ai, bj) 〈Ai + Bj 〉

whose nodes inherit their labels from A or B as appropriate.
Formally, writing IA for the initial moves of A, and setting
IA = MA − IA, we define:

MA⊗B = IA × IB + IA × IB + IA × IB

λA⊗B(a, b) =

PA if a ∈ IA and b ∈ IB

λB(b) if a ∈ IA and b ∈ IB

λA(a) if a ∈ IA and b ∈ IB

and �A⊗B is the least relation satisfying

† �A⊗B (a, b) ⇐⇒ a ∈ IA ∧ b ∈ IB

(a, b) �A⊗B (a′, b′) ⇐⇒ a = a′ ∈ IA ∧ b �B b′

∨ b = b′ ∈ IB ∧ a �A a′

It is easy to see that A ⊗ B is an arena.

Function space (and prearenas). Given arenas A =∑
i∈I ai 〈Ai 〉 and B =

∑
j∈J bj 〈Bj 〉, we define

prearena A ⇀ B =
∑

i∈I aOQ
i 〈A⊥

i + B 〉
function space A → B = ∗ 〈A ⇀ B 〉

where ∗ is a fresh P-answer, the forest A⊥
i is obtained from

Ai by swapping all O/P labels therein, aOQ
i fixes the label

of ai as OQ, and the labels of the rest of the nodes are inher-
ited. Formally we define the function space arena A → B
as:

MA→B = { ∗ } + MA + IA × MB

λA→B(m) =

PA if m = ∗
OQ if m ∈ IA

λA⊥(m) if m ∈ MA − IA

λB(b) if m = (a, b)

and �A→B is the least relation satisfying

† �A→B m ⇐⇒ m = ∗
m �A→B m′ ⇐⇒ m = ∗ ∧ † �A m′

∨ m,m′ ∈ MA ∧ m �A m′

a �A→B (a′, b′) ⇐⇒ a = a′ ∈ IA ∧ † �B b′

(a, b) �A→B (a′, b′) ⇐⇒ a = a′ ∈ IA ∧ b �B b′

It is straightforward to verify that A → B is an arena, but
A ⇀ B is not (because its initial moves are O-questions, in-
stead of P-answers). Structures of the form A ⇀ B, where
A and B are arenas, are called prearenas, which will play
an important part in the sequel: we shall define (plays and)
strategies over prearenas, not arenas. Further, we shall in-
terpret a term-in-context x1 : C1, · · · , xn : Cn � t : A as a
strategy over the prearena C1 ⊗ · · · ⊗ Cn ⇀ A (writing A
for the arena that denotes the type A).

We illustrate the tensor and function space constructions
in Figure 1, wherein O-questions and P-answers are drawn
as �� and �� respectively. Henceforth we fix a representation
of disjoint union of sets:

X0 + · · · + Xn =
n⋃

i=0

{ (i, x) : x ∈ Xi }.

Example 3.2. The arena A = ν ⊗ (ν → ν) is a forest
of three levels. Formally the root nodes (initial moves),
at level 1, are elements in MA of the form (0, (a, (0, ∗))),
level-2 and level-3 moves are of the forms (1, (a, (1, b)))
and (1, (a, (2, (b, c)))) – call it m – respectively, where a, b
and c range over N .

Notation. The cumbersome disjoint-union representation of
moves will come in useful in the definition of actions on
FM-arenas (see Lemma 4.2 and Example 4.3). However, in
practice (see Examples 4.4, 4.7, 4.9, etc.), it will be enough

3

b1

A2

a2

B1

· · ·

A → B

· · ·

∗
A ⊗ B

BjAiB2

(ai, bj)(a1, b2)(a1, b1)

A1B1A1

BA

· · ·· · ·

A1

a1

· · ·· · ·
B2

b2

A⊥
i

ai

· · ·

b2b1

B2B1B1· · ·

b2b1

B2

a1

B1

A⊥
1 A⊥

2

a2

· · ·

b2b1

B2

Figure 1. Arena constructors illustrated

to identify the moves informally. E.g. we say that m (from
the preceding Example) is the level-3 name c whose parent
and grandparent are names b and a respectively.

A justified sequence over a prearena A is a finite se-
quence of O/P-alternating moves such that, except for
the opening move which is initial (and necessarily an O-
question), every move m has a justification pointer (or
simply pointer) to some earlier move m0 such that m0 �A

m; we say that m is explicitly justified by m0, or m0 ex-
plicitly justifies m. It follows that there is exactly one oc-
currence of an initial move in a justified sequence, namely,
the opening move. A question occurrence in a justified se-
quence s is said to be pending just in case no answer in s is
explicitly justified by it. Recall the definition of the P-view
[6] of a justified sequence s, written �s�:

�sm� = �s�m if m is a P-move
�m� = m if m is initial

�sm0 um� = �s�m0 m if O-move m is explicitly
justified by m0

In �sm0 um� the pointer from m to m0 is retained, simil-
arly for the pointer from m in �sm� in case m is a P-move.

4 Nominal games

Pitts and Gabbay have argued cogently (in [4, 14]) for
the use of Fraenkel-Mostowski (FM) permutation model of
set theory as a syntax-independent mathematical model of

fresh bindable names and α-conversion. Here we construct
Honda-Yoshida style CBV arenas equipped with an action
of name permutation that preserves justification and move-
labels, and use it to make precise an implicit notion of de-
pendence on names.

An overview of FM-sets. We fix a countably infinite set
N of names, and write PERM(N) for the group of permuta-
tions of N . In the following we shall be concerned with
actions on certain (structured) sets X induced by elements
of PERM(N): this is a function mapping pairs (π, x) ∈
PERM(N) × X to elements π ·X x of X and satisfying:
for any π, π′ ∈ PERM(N) and x ∈ X

π′ ·X (π ·X x) = (π′ ◦ π) ·X x
idN ·X x = x

where π ◦ π′ is the composition of π′ followed by π, and
idN is the identity of the group PERM(N).

We think of an action of PERM(N) on a set X as an ab-
stract device for regarding the elements x of X as somehow
“involving names from N for their construction”, in that
x may be varied just by permuting certain names. Given
such a set X , we say that a set of names A ⊆ N sup-
ports an element x ∈ X just in case every permutation π ∈
PERM(N) that fixes A also fixes x: ∀a ∈ A . π(a) = a =⇒
π ·X x = x. We say that x is finitely supported if there is
some finite subset A ⊆ N that supports it. It is an easy
exercise to show that if x is finitely supported, then there is
a least finite subset of N that supports it: we call this the
support of x, and denote it by SUPPXx, or simply SUPP(x).
We define an FM-set to be a set X equipped with an ac-
tion of PERM(N) in which every element x ∈ X is finitely
supported. For example N is an FM-set: it has a canon-
ical2 PERM(N)-action given by applying the permutation,
as a function, to names i.e. π ·N a = π(a). It follows that
SUPPNa = { a } for each a ∈ N . Henceforth, we take N to
mean the FM-set equipped with the canonical action. The
empty set and the singleton set 1 = { ∗ } are also FM-sets
(both have the obvious, and unique, PERM(N)-action).

Let X and Y be FM-sets. We say that U ⊆ X is an FM-
subset of X just in case for all x ∈ X , if x ∈ U then for all
π ∈ PERM(N), π ·X x ∈ U . We say that R ⊆ X × Y is
an FM-relation just if R is an FM-subset of X × Y i.e. for
all x ∈ X, y ∈ Y , if (x, y) ∈ R then for all π ∈ PERM(N),
(π ·X x, π ·Y y) ∈ R. It is straightforward to see that an FM-
subset of an FM-set is itself an FM-set, so is the quotient
X/R of an FM-set by an equivalence FM-relation R. In the
same vein, an FM-function f : X −→ Y is an FM-relation
that is functional i.e. f ⊆ X × Y is single-valued and total.
The FM-sets are the objects of a category (indeed topos),
written FM, whose maps f : X −→ Y are FM-functions.

2There are other actions. E.g. null action: π · a = a for all π, and
conjugate action: π · a = π−1

0 (π(π0a)) for a fixed π0.

4

FM-set constructions. Let X and Y be FM-sets.

(i) The disjoint union of X and Y , X + Y , is an FM-
set. It inherits a PERM(N)-action from X and Y by:
π ·X+Y (0, x) = (0, π ·X x) and π ·X+Y (1, y) = (1, π ·Y y).
It is straightforward to calculate that SUPPX+Y (0, x) =
SUPPXx and SUPPX+Y (1, y) = SUPPY y.

(ii) The product of X and Y , X×Y , is an FM-set. It can be
endowed with a PERM(N)-action by: π·X×Y (x, y) = (π·X
x, π ·Y y). We have SUPPX×Y (x, y) = SUPPXx∪ SUPPY y.

(iii) The powerset P(X) inherits a PERM(N)-action:
π ·P(X)U = {π ·X x : x ∈ U }. In general, there is no guar-
antee that every element of P(X) has finite support. The set
Pfs(X), consisting of U ∈ P(X) that has finite support, is
an FM-set. We define π ·Pfs(X) U = {π ·X y : y ∈ U },
which has support π ·P(N) (SUPPP(X)U) that is finite since
SUPPP(X)U is assumed to be finite.

(iv) The set “X restricted to Y ”, written X � Y , consisting
of “elements of X abstracted until their support is that of a
given element of Y ” is an FM-set. We define X � Y to be
the quotient (X × Y)/R where (a, b) R (a′, b′) iff b = b′

and there is some SUPPY b-invariant π ∈ PERM(N) such
that π ·X a = a′. Clearly R is an equivalence relation; and
we write the equivalence class of (a, b) as a � b. Moreover
R is an FM-equivalence relation, so (X × Y)/R is an FM-
set, with the action of permutations induced from that on
X × Y : we have π ·X�Y (a � b) = π ·X a � π ·Y b, and
SUPPX�Y a � b = SUPPY b. For the application in the sequel,
we shall take Y to be Pfs(N): informally, x � { a, b, c } is
the element x with all names other than a, b and c abstracted
away.

Example 4.1. Given an FM-set X , the collection of lists
of elements of X , list(X), is an FM-set which inherits a
permutation action from X; see [14] for a justification. It
follows that the “lists of names up to renaming” (where
e.g. [a, a, b] is equivalent to [b, b, a] and to [c, c, a], but
not to [a, a, a] nor to [c, b, c]) form an FM-set, namely,
list(N) � 1. Note that every element of the FM-set has
empty support.

A benefit of the FM-set approach we shall exploit is that
if a particular (arena) construction can be shown to be an
(FM-arena) FM-set construction then it has a canonical ac-
tion of permutations.

FM-arenas and automorphisms. A Fraenkel-Mostowski
arena, or simply FM-arena, is defined to be an arena A =
〈MA,�A, λA 〉 with the additional requirement that MA is
an FM-set, �A is an FM-relation, and λA is an FM-function.
(Note that the label-set {PQ,PA,OQ,OA } is an FM-set
on which each π ∈ PERM(N) acts as the identity function,
and so, each label has empty support.)

Example 4.2. The arenas 0,1, o and ν (with the FM-set
N as the underlying move-set) are FM-arenas. Let N =
{ a1, a2, a3, · · · }. On the other hand, the arena that has
move-set N and justification relation

{ (†, a2n+1) : n ≥ 0 } ∪ { (a2n+1, a2n+2) : n ≥ 0 }

(where N = { a1, a2, a3, · · · } and the labels are uniquely
determined) is not an FM-arena because the justification re-
lation is not an FM-relation.

The following result is straightforward to prove:

Lemma 4.1. The tensor, function space and coproduct con-
structions defined in Section 3 are constructions of FM-
arenas. �

We define an automorphism of an FM-arena A =
〈MA,�A, λA 〉 to be a bijective FM-function f : MA −→
MA that

• preserves �A i.e. for all x, y ∈ (MA +{ † }), if x �A y
then f†(x) �A f†(y) where f† is the extension of f to
MA + { † } that fixes †, and

• preserves λA i.e. for all m ∈ MA, λA(f(m)) =
λA(m).

It follows that f maps a move in the arena forest to a move
at the same level and with the same label. As a consequence
of the definition of FM-arenas, we have:

Lemma 4.2. Every π ∈ PERM(N) defines an automorph-
ism of an FM-arena. �

Henceforth, by arenas and prearenas, we shall mean
FM-arenas and FM-prearenas. We give an example of a
PERM(N)-action on an arena A. We shall write such ac-
tions as π ·A m, instead of π ·MA

m.

Example 4.3. We revisit the arena A in Example 3.2.
The move m therein has support { a, b, c }, and its parent
and grandparent have support { a, b } and { a } respectively.
Take π ∈ PERM(N) that cycles through a, b and c. We
have π ·A (1, (a, (2, (b, c)))) = (1, (b, (2, (c, a)))). Observe
that the permuted move remains at level 3; it is the name a
whose parent and grandparent are c and b respectively.

Name Change Conditions. We shall consider justified
sequences of moves-with-names, and introduce new condi-
tions of Name Change, which are reminiscent of the State
Change conditions introduced in [12]. A name set (ranged
over by S, Si, T , etc.) is a finite subset of N . A move-with-
names of a (pre-)arena A is a pair, written mS (or just m if
S is understood), where m is a move of A and S is a name
set. We often write m∅ simply as m.

5

We first give an informal account of the kind of justified
sequences of moves-with-names that model nu-calculus
computations. We say that a name a occurs in mS if it is an
element of either S or SUPPAm (or of both, in some cases).
Suppose a first occurs at mS (i.e. a is fresh at that point)
in some justified sequence; we say that a is introduced by
P (resp. O) just if m is a P-move (resp. O-move). Intuit-
ively the name set of a move consists of the names that have
been introduced by P at moves that are P-visible (i.e. occur
in the P-view) at that point. Note the asymmetry: names
introduced by O are not recorded in name sets.

Formally, given a prearena, we shall consider justified
sequences of moves-with-names that satisfy Visibility [6],
Well-Bracketing, and the following Name Change Condi-
tions:

(NC1) The name set of a P-move contains the name set of
the preceding O-move, and possibly some other names
which are fresh at that point.

(NC2) Any name in the support of a P-move that is fresh
at that point is a member of the name set of that move.

(NC3) The name set of a non-initial O-move coincides with
that of the P-move that explicitly justifies it.

We shall call justified sequences satisfying these conditions
plays (or legal positions). Let S be a name set. An S-play
is defined to be a play that opens with a move with name set
S. Thus, as a consequence of Name Change, in any S-play,
the name set of every move contains S.

Example 4.4. Here is a play3 of 1 ⇀ (ν → ν):

1 ⇀ (ν → ν)
O ∗
P ∗{ a }

O c{ a }

P b{ a,b }

In the figure we align the moves with the components of the
prearena from which they arise; pointers are omitted as they
are completely determined by the type of the arena in this
case. Note that the support of the last move is { c, b }, but
only b is fresh at that point. Thus, according to (NC2), b,
but not c, is in the name set of that move. See also the play
v in Example 4.9 and the explanation therein.

We state a simple but important consequence of the
Name Change Conditions.

Lemma 4.3. (i) Every name that occurs in the name set
of a move is introduced by some P-move that appears
in the P-view at that point.

(ii) The name set of a P-move contains the name set of the
O-move that explicitly justifies it. �

3as taken from the strategy denoting � νa.λxν .νb.b : ν → ν.

Recall that every π ∈ PERM(N) defines an automorph-
ism on an arena A. The action extends (canonically) to an
action on the FM-set list(MA × Pfs(N) × N), the set of
lists of justified moves-with-names (with pointers encoded
as appropriate numeric offsets), as follows: writing such a
list as s = mS1

1 · · · mSl

l , we have

s �→ π ·A m
π·Pfs(N)S1

1 · · · π ·A m
π·Pfs(N)Sl

l

Note that the pointer structure (not displayed above) is pre-
served as the action of (any) π is the identity on N.

Lemma 4.4. The set of plays (over a prearena A), PA, is
an FM-subset of list(MA × Pfs(N) × N), and so, PA is
itself an FM-set. �

In the following we shall consider “S-plays up to re-
naming of all names, except those in S”, where S ranges
over name sets. In FM parlance, these are (equivalence
classes of) S-plays abstracted until their support is (that of)
S ∈ Pfs(N) i.e. elements of the form s � S of the FM-set
PA � Pfs(N) where s ranges over S-plays.

Notation. We shall write the element s � S as [s]S , or
simply as [s] whenever s is understood to be an S-play.

An S-strategy σ of a prearena A is a set of equivalence
classes of S-plays of A satisfying:

(i) Prefix-closure: If [su] ∈ σ then [s] ∈ σ.

(ii) If even-length [s] ∈ σ and smT is an S-play then
[smT] ∈ σ.

(iii) Determinacy: If even-length [s1 mS1
1] and [s2 mS2

2] are
in σ and [s1] = [s2] then [s1 mS1

1] = [s2 mS2
2].

Remark 4.5. Why consider S-strategies (or why S-plays
rather than |S|-plays)? Take { a, b }; � a �≈ν b. The two
terms are denoted by distinct strategies determined by max-
imal plays ∗{ a,b } · a{ a,b } and ∗{ a,b } · b{ a,b } respect-
ively. (Though the swap-action (ab) does map one play to
the other, it is not an S-invariant permutation.) However
; � νab.a ≈ν νab.b, and they have the same denotation as
determined by the maximal play ∗ · a{ a,b }.

Example 4.6. Let S = { a1, · · · , an }. An S-strategy σ
over 1 ⇀ ν can be identified by the unique maximal play in
σ. Non-null plays over 1 ⇀ ν have the following shapes:

1. ∗S · a
S⊕{ b1,···,bm }
i where m ≥ 0

2. ∗S · b
S⊕{ b1,···,bm }
j where m ≥ 1.

(We write S ⊕ T to mean S ∪ T , and it has the force
that S and T are disjoint.) Strategies of type 1 denote
S; � νb1 · · · bm.ai : ν, and those of type 2 denote S; �
νb1 · · · bm.bj : ν.

6

Composing strategies. Let S be a name set. Suppose σ
and τ are S-strategies of prearenas A ⇀ B and B ⇀ C
respectively. Their composite σ ; τ , which will be shown
to be a S-strategy of A ⇀ C, is defined in the style of
“parallel composition with hiding in CSP” (as is standard
in game semantics) as far as the underlying justified moves
are concerned. Roughly speaking the name sets of the com-
posite strategy are obtained by an appropriate union of the
respective name sets of the component strategies.

Example 4.7. To illustrate the idea, take A,B and C to be
1, (o → o) and o respectively, and consider the following
pair of composable plays4 from σ and τ – call them u and v
respectively:

1 σ
⇀ (o → o) (o → o) τ

⇀ o

O ∗
P ∗{ a } ∗
O t{ a } t{ c }

P f{ a,b } f{ c }

f{ c,d }

Note that the last two moves of v are distinct elements of
M(o→o)⇀o. The resultant interaction sequence is

w = ∗ · ∗{ a } · t{ a,c } · f{ a,b,c } · f{ a,b,c,d }.

The corresponding play in σ ; τ is then obtained from w by
“hiding” the B-moves i.e. ∗ · f{ a,b,c,d }.

Let u be a sequence of moves-with-names from A, B
and C together with justification pointers from all moves
except those initial in A. Define u � (B,C) to be the sub-
sequence of u consisting of all moves-with-names (with
pointers) from B ⇀ C; similarly for u � (A,B). We say
that u is an interaction sequence of (A,B,C) if u � (B,C)
is a justified sequence of moves-with-names of B ⇀ C
satisfying Visibility and Well-Bracketing (but not necessar-
ily Name Change); similarly for u � (A,B). We shall call
u � (B,C) the (B,C)-component of u, and call u � (A,B)
the (A,B)-component of u. Note that any move that occurs
in an interaction sequence u is either a P-move of A ⇀ C,
or it is a generalized O-move in the sense that it is an O-
move in exactly one of the two components of u.

We define a binary relation over justified sequences s� t
(read “t is a name accession of s”) by recursion as follows:

• ε � ε

• mS � mT provided S ⊆ T

• smS nS′
� tmT nT ′

provided smS � tmT , S′ ⊆ T ′,
and if n is a P-move then T ′ − T = S′ − S.

4Here σ and τ are taken to be [[� νa.λxo.νb.¬x : o → o]] and
[[g : o → o � νd.g(νc.t) : o]] respectively.

We will shortly use the relation � in the definition of the
composition of strategies. Whenever we write s � t, s will
be a play, t will often not be (because Name Change may
not necessarily be satisfied), but they have the same under-
lying sequence of moves (with name sets erased). For ex-
ample taking s to be each of the composable pair of plays
in Example 4.7, we have

(i) ∗ · ∗{ a } · t{ a } · f{ a,b } � w � (A,B)

(ii) ∗ · t{ c } · f{ c } · f{ c,d } � w � (B,C).

Definition 4.8. Take σ and τ be S-strategies as before. We
define ISeqS(σ, τ) to be the set of interaction sequences u
of (A,B,C), whose first move has name set S, satisfying:

I1. There exists some [t] ∈ τ such that t � u � (B,C).

I2. There exists some [s] ∈ σ such that s � u � (A,B).

I3. Suppose mS is explicitly justified by mS0
0 in u, and m

is an O-move in A ⇀ C. Then S = S0.

I4. L(A,B) ∩ L(B,C) = ∅, where LΘ is the set of names
introduced by P-moves of the component Θ of u.

For any u ∈ ISeqS(σ, τ) we define u � (A,C) to be
the justified sequence of moves-with-names of A ⇀ C
that is obtained from u by first deleting all B-moves and
then resetting pointers from initial C-moves to the open-
ing A-move. We can now define the composite strategy
σ ; τ = { [u � (A,C)] : u ∈ ISeqS(σ, τ) }.

Lemma 4.5. Let σ and τ be S-strategies as before. For any
u ∈ ISeqS(σ, τ), there is a unique t where [t] ∈ τ such that
t � u � (B,C), and there is a unique s where [s] ∈ σ such
that s � u � (A,B). �

Theorem 4.6. Composition is well-defined and associative.
I.e. for any S-strategies σ, τ and ρ over A ⇀ B,B ⇀ C
and C ⇀ D respectively, the set σ ; τ as defined is an S-
strategy over A ⇀ C; further (σ ; τ) ; ρ = σ ; (τ ; ρ). �

Example 4.9. Consider the following pair of composable
plays5 from σ and τ – call them u and v respectively:

1 σ
⇀ (ν → ν) → ν (ν → ν) → ν

τ
⇀ ν

O ∗
P ∗{ c } ∗
O ∗{ c } ∗
P a{ a,c } a
O b{ a,c } b{ b }

P b{ a,c } b
b

5We define σ and τ to be [[� νc.λf.f(νa.a) : (ν → ν) → ν]]
and [[F : (ν → ν) → ν � F (λxν .νb.b) : ν]] respectively. Note that
w � (A, C) is the maximal play of σ ; τ = [[� νabc.b : ν]].

7

In v, since the 5th move points to the 2nd, the former’s name
set is empty by (NC3). The resultant interaction sequence
in ISeq∅(σ, τ) is

w = ∗ · ∗{ c } · ∗{ c } · a{ a,c } · bS · bS · bS

where S = { a, b, c }. The reader may wish to check that
u � w � (A,B) and u � w � (B,C).

Innocent S-strategies. By a P-view, we mean a justified
sequence that is the P-view of some play; similarly for O-
view. Note that the P-view of an S-play is necessarily an
S-play. We say that an S-strategy σ is innocent just in
case whenever even-length [s1 aS1

1 bT1
1] ∈ σ and odd-length

[s2 aS2
2] ∈ σ such that �s1 aS1

1 � = �s2 aS2
2 � (as elements

of PA � S) then, for some bT2
2 , we have [s2 aS2

2 bT2
2] ∈ σ

and �s1 aS1
1 bT1

1 � = �s2 aS2
2 bT2

2 �. Innocent S-strategies are
completely determined by view functions, which are par-
tial FM-functions from odd-length P-views p (which are S-
plays) to justified P-moves (i.e. a P-move together with a
pointer into p). Precisely a view function is a subset f of
PA � S, consisting of (equivalence classes of) even-length
S-plays that are P-views, satisfying

(i) Even-prefix closure: If [p aT] ∈ f and q bU is an even-
length prefix of p then [q bU] ∈ f .

(ii) Single-valued: If [p1 aT1
1], [p2 aT2

2] ∈ f such that
[p1] = [p2] then [p1 aT1

1] = [p2 aT2
2] (as elements of

PA � S).

We say that σ is generated by a view function f , written
σ = strat(f), just in case for any odd-length [s aT] ∈ σ, we
have [s aT bT ′

] ∈ σ if and only if [�s aT � bT ′
] ∈ f .

Example 4.10. Consider the inequivalence (1) in § 2. The
innocent strategy [[� νn.λx.n : o → ν]] is generated by
a view function determined by the (respective equival-
ence classes of the) P-views ∗ · ∗{n } · t{n } · n{n } and
∗ · ∗{n } · f{n } · n{n } over 1 ⇀ (o → ν); the correspond-
ing P-views in [[� λx.νn.n : o → ν]] are ∗ · ∗ · t · n{n }

and ∗ · ∗ · f · n{n }. Thus the terms are denoted by distinct
innocent strategies.

The main result of the section is:

Theorem 4.7. Suppose σ : A ⇀ B and τ : B ⇀ C are
innocent S-strategies, then the composite σ;τ is an innocent
S-strategy. �

5 Several categories of nominal games

Henceforth, without further mention, by a strategy we mean
an innocent strategy. Let S be a name set. We define the
category VS that has arenas as objects; its maps A −→ B

are given by S-strategies over the prearena A ⇀ B. We
write V∅ simply as V.

Interpreting ν-abstraction. The “type-2” strategy in Ex-
ample 4.6, as determined by the unique (equivalence class
of the) play ∗S · aS⊕{ a } – call it new : 1 −→ ν, is the de-
notation of S; � νb.b : ν. More generally take a VS⊕{ a }-
map f : A −→ B as given by a view function f , we define
νa.f to be the VS-map A −→ B as given by the view func-
tion consisting of (equivalence classes of) even-length P-
views [mS

0 m
T⊕{ a }
1 u] provided [mS⊕{ a }

0 m
T⊕{ a }
1 u] ∈ f

and a �∈ SUPP(m0). This gives the interpretation of S; Γ �
νa.M : B in terms of that of S ⊕ { a }; Γ � M : B.

Total-map category VS
t . Following [5], a VS-map σ :

A −→ B is said to be total just in case σ responds to
every opening question with an answer that introduces no
new name. I.e. the view function of σ is defined on each
opening move aS , and maps it to an answer bS . Note that
such an answer must be an initial move of the arena B (be-
cause in A, any move justified by an opening move – which
must be an answer – is necessarily a question). It is easy to
see that total maps compose. We denote the subcategory of
arenas and total maps as VS

t . It is straightforward to verify
that VS

t has 0 as the initial object, 1 as the terminal object,
and binary products given by ⊗. In contrast, VS does not
have binary products (⊗ is not even bifunctorial); rather it
is a premonoidal category in the sense of [15].

Lifted arenas A⊥. Using our forest construction notation,
we define the lifted arena A⊥ of an arena A as

A⊥ = ⊥PA 〈⊥OQ 〈A 〉 〉.
Note that A⊥ is (graph)-isomorphic to 1 → A, and they are
isomorphic in VS . There are two canonical maps: the VS

t -
map upA : A −→ A⊥ (which is a mono), and the VS-map
dnA : A⊥ −→ A.

Proposition 5.1. The inclusion functor I : VS
t −→ VS

has as right adjoint the lift functor L(A) = A⊥, with
unit upA and counit dnA. The associated monad on VS

t ,
〈T, up, L dn I 〉, where T = LI , has a tensorial strength
tA,B : A ⊗ TB −→ T (A ⊗ B). �

Since the left adjoint is the inclusion functor, by a fam-
ous result of Kleisli, the associated Kleisli category (VS

t)T

is equivalent to VS . Recall that a λc-model [11] over a cat-
egory C with finite products is a strong monad (T, η, µ, t)
together with a T -exponential for every pair (A,B) of C-
objects i.e. a bijection

C(C × A, TB) ∼= C(C, (TB)A)

natural in A and B, for each C-object C. We call (TB)A

the exponential of TB by A.

Proposition 5.2 (λc-model). For each S, VS
t is a λc-

model: the exponential of TB by A is A → B. �

8

Thus it follows from [11] that we can interpret CBV λ-
calculus in VS

t .

Remark 5.1. One could define an interpretion of the CBV
λ-calculus directly in the Kleisli category (VS

t)T
∼= VS ,

following [5]. Indeed it would seem natural to do so since
(in the Honda-Yoshida approach to CBV games) the Kleisli
category (or rather its equivalent) VS is the prior construc-
tion, and the λc-model, VS

t , is a derived notion. The down-
side is one would need to check that the partial pairing and
projection maps of VS are sufficiently well-behaved for the
interpretation. The two interpretations are of course es-
sentially equivalent, as they are related via the natural iso-
morphism VS(A,B) ∼= VS

t (A, TB). However when con-
sidering examples, we prefer to give denotations in VS be-
cause they are simpler.

We say that a VS-map σ : A −→ o is truthful just in
case σ responds to every opening question qS with (the an-
swer) tS

′
i.e. “true” with name set S′; note that by (NC3),

we have S ⊆ S′. For arenas A and B, we define a bin-
ary relation � over VS-maps A −→ B as follows. We say
σ1 � σ2 just in case for any VS-maps ρ : C −→ A and
χ : B −→ o, if ρ ; σ1 ; χ is truthful, so is ρ ; σ2 ; χ.

Lemma 5.3. For any VS-maps σ1, σ2 : A −→ B, σ1 � σ2

iff for any ρ : 1 −→ A and χ : B −→ o, if ρ ; σ1 ; χ is
truthful, so is ρ ; σ2 ; χ. �

Extensional category V̂S
t . It is straightforward to verify

that � is a preorder. We write the equivalence relation in-

duced by � as ≈, and define the extensional category V̂S

with arenas as objects; and maps A −→ B are given by ≈-

equivalence classes of VS-maps. That composition in V̂S is
well-defined follows from the fact that it is monotone with
respect to �. It turns out that V̂S

t is also a λc-model, using
exactly the same constructions as VS

t .

Example 5.2. We revisit the equivalence (3) in §2. Setting
M = νnn′.λf.fn = fn′ and N = λf.t, we aim to show
[[M]] = [[N]] in V̂. By Lemma 5.3 it suffices to show
that for any V-map ρ : (ν → o) → o −→ o, [[M]] ; ρ
is truthful iff [[N]] ; ρ is truthful. Consider the prearena
(ν → o1) → o2 ⇀ o (we label the copies of o, so that
moves from them have the corresponding labels; similarly
we denote the initial moves of the subarenas ν → o1 and
(ν → o1) → o2 respectively as ∗1 and ∗2). Take a ∈ N . If
the even-length [∗2 · ∗1 · a ·m] ∈ ρ, then for any b ∈ N , we
have [∗2 · ∗1 · b ·m] = [∗2 · ∗1 ·a ·m] ∈ ρ. Consequently we
have the following interaction sequence in ISeq∅([[M]], ρ):

∗ ·∗{ a,b }
2 · ∗{ a,b }

1 ·a{ a,b } ·m{ a,b }
1 ·b{ a,b } ·m{ a,b }

1 · t{ a,b }
2 .

Now the corresponding justified sequence in
ISeq∅([[N]], ρ) is ∗ · ∗2 · ∗1 · t2. When projected to

(ν → o) → o ⇀ o, the two sequences have the same
P-view. It follows from the innocence of ρ that [[M]] ; ρ
is truthful iff [[N]] ; ρ is truthful. We know of no previous
model of the nu-calculus that identifies M and N .

6 A fully abstract game model

We interpret a term-in-context S; Γ � M : B, where Γ =
x1 : A1, · · · , xn : An, as a map A1 ⊗ · · · ⊗ An −→ B in

V̂S
t (or equivalently in V̂S). It is straightforward to verify:

Lemma 6.1. All rules and axioms in Figure 3 of [18] are

validated by the extensional game model V̂S
t . �

Indeed we can show:

Lemma 6.2. V̂t is a model of the nu-calculus in the sense
of Stark in [20].

Proof. (Sketch) Prop. 5.2 shows V̂t is a λc-model. (Note
that the cartesian closure requirement in [20] is not neces-
sary: it suffices for the category to have all T -exponentials.)
The coproduct 1+1 exists and is disjoint; the interpretation
o of booleans is isomorphic to it. There is a distinguished,
decidable object ν to interpret names. There is a distin-
guished V-map new : 1 −→ ν satisfying the three axioms
in [20, §4.1]. The first axiom requires an argument similar
to that in Example 5.2, the second and third axioms hold in
Vt (and hence in V̂t) and follow straightforwardly from the
FM structure of plays and condition I4 respectively.

Thanks to [20], this guarantees adequacy of our model:
for any ground type b, S � M ⇓b (S′)C iff [[S � M : b]] =
[[S � νS′.C : b]] in V̂S

t . The main result of the paper is that
our model is equationally fully abstract for the nu-calculus.
I.e. for any S; Γ � Mi : A for i = 1, 2, we have S; Γ �
M1 ≈A M2 iff [[S; Γ � M1 : A]] = [[S; Γ � M2 : A]] as

maps in V̂S
t . One direction “⇒” follows from adequacy,

the other is a straightforward consequence of the following
definability result.

Theorem 6.3 (Definability). For any denotable arenas
A1, · · · , An and B, for any totally-defined compact
(i.e. generated by a finite view function) innocent S-strategy
σ : (

⊗n
i=1 Ai) ⇀ B, there is a term Mσ such that

[[S;x1 : A1, · · · , xn : An � Mσ : B]] = σ in VS . �

Example 6.1. Consider the { a }-strategy σ over the prear-
ena A = (ν⊗ν) ⇀ ν given by the following view function:
(we list representatives of the respective equivalence classes
in PA � { a })

1. (a, a){ a } �→ a{ a } 4. (l1, l1){ a } �→ l
{ a }
1

2. (a, l2){ a } �→ l
{ a }
2 5. (l1, l2){ a } �→ l{ a,l }

3. (l1, a){ a } �→ l
{ a,c }
1

9

{ a }; x : ν, y : ν

� if x = a then

if y = a then a︸︷︷︸

1

else y︸︷︷︸
2

 else

if y = a then νc.x︸︷︷︸

3

else

if x = y then x︸︷︷︸

4

else νl.l︸︷︷︸
5

 : ν

Table 1. The term Mσ in Example 6.1.

The term Mσ denoting σ is shown in Table 1. The section
of the view function labelled i corresponds to the i-labelled
path in the decision tree of nested conditionals which is Mσ .

7 Further directions

Pitts and Stark [16] have shown that observational equi-
valence of nu-calculus is decidable for first-order terms. We
have a new proof using the fully abstract game model. Our
aim is to use the game model to resolve the question of de-
cidability for the second-order fragment.

What is a (categorical) model of the nu-calculus? The
answer in [20] gives a way of understanding the nu-calculus
as mediated by a computational metalanguage. We seek
a neutral and direct analysis in a name-indexed setting,
in which we would expect reindexing along the inclusion
S −→ S ⊕{ a } to have a right adjoint of the shape [N](−)
i.e. the name abstraction constructor in [4].

We are interested in a particular extension of the nu-
calculus, where names serve as references to dynamically-
allocated cells for storing integers. This is the Reduced ML
of [19, §5], and similar to the languages treated in [17, 13].
The next step is to construct a fully abstract game model
for Reduced ML. It would be interesting to clarify the con-
nections with the fully abstract model of named reference
in [8]. In a different direction, we also plan to use nominal
games to model object-oriented languages in which names
are used as the unique identities of objects.

Acknowledgements. We thank Andy Pitts for help-
ful advice on FM-sets, EPSRC for financial support
(GR/R88861), and Merton College, Oxford for a Visiting
Research Fellowship (for Stark).

References

[1] S. Abramsky, K. Honda and G. McCusker. Fully abstract
game semantics for general reference. In Proc. LICS ’98.

[2] S. Abramsky and G. McCusker. Linearity, sharing and state:
a fully abstract game semantics for Idealized Algol with act-
ive expressions. In Algol-like languages. Birkhaüser, 1997.

[3] S. Abramsky and G. McCusker. Call-by-value games. In
Proc. CSL ’97. 1998. LNCS Vol. 1414.

[4] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing,
13:341–363, 2002.

[5] K. Honda and N. Yoshida. Game-theoretic analysis of call-
by-value computation. TCS, 221:393–456, 1999.

[6] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
PCF: I, II, III Info. & Comp., 163:285–408, 2000.

[7] J. D. Laird. A fully abstract game semantics of local excep-
tion. In Proc. LICS’01. 2001.

[8] J. D. Laird. A game semantics of local names and good vari-
ables. In Proc. FOSSACS’04. 2004. LNCS Vol. 2987.

[9] G. McCusker. Games for Recursive Types. CUP, 1998.

[10] A. J. R. Milner. Communicating and Mobile Systems: The
Pi-Calculus. CUP, 1999.

[11] E. Moggi. Notions of computation and monads. Info. &
Comp., 93:55–92, 1989.

[12] C.-H. L. Ong. Observational equivalence of third-order
Idealized Algol is decidable. Proc. LICS’02, pp. 245–256,
2002.

[13] A. M. Pitts. Operational semantics and program equivalence.
In Applied Semantics, pp. 378–412, 2002. LNCS Vol. 2395.

[14] A. M. Pitts and M. J. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In MPC 2000,
pp. 230–255, 2000. LNCS Vol. 1837.

[15] A. J. Power and E. P. Robinson. Premonoidal categories and
notions of computation MSCS, 7:453–468, 1997.

[16] A. M. Pitts and I. D. B. Stark. On the observable properties of
higher order functions that dynamically create local names,
or: What’s new? In Proc. 18th MFCS, 1993. LNCS Vol. 711.

[17] A. M. Pitts and I. D. B. Stark. Operational reasoning for
functions with local state. In Higher Order Operational
Techniques in Semantics, pp. 227-273. CUP, 1998.

[18] I. D. B. Stark. Names, equations, relations: Practical ways to
reason about new. Fund. Informaticae, 33:369–396, 1998.

[19] I. D. B. Stark. Names and Higher-Order Functions. PhD
thesis, University of Cambridge, December 1994.

[20] I. D. B. Stark. Categorical models for local names. Lisp and
Symbolic Computation, 9(1):77–107, 1996.

10

