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Abstract—Breadth First Search (BFS) is a widely used ap-
proach for sampling large graphs. However, it has been empiri-
cally observed that BFS sampling is biased toward high-degree
nodes, which may strongly affect the measurement results. In
this paper, we quantify and correct the degree bias of BFS.
First, we consider a random graph RG(pk) with an arbitrary

degree distribution pk. For this model, we calculate the node
degree distribution expected to be observed by BFS as a function
of the fraction f of covered nodes. We also show that, for RG(pk),
all commonly used graph traversal techniques (BFS, DFS, Forest
Fire, Snowball Sampling, RDS) have exactly the same bias. Next,
we propose a practical BFS-bias correction procedure that takes
as input a collected BFS sample together with the fraction f . Our
correction technique is exact (i.e., leads to unbiased estimation)
for RG(pk). Furthermore, it performs well when applied to a
broad range of Internet topologies and to two large BFS samples
of Facebook and Orkut networks.

Index Terms—Breadth-First-Search (BFS), network topology,
sampling methods, bias, estimation, online social networks.

I. INTRODUCTION

A LARGE body of work in the networking community
focuses on Internet topology measurements at various

levels, including the IP or AS connectivity, the Web (WWW),
peer-to-peer (P2P) and online social networks (OSN). The size
of these networks and other restrictions often make measuring
the entire graph impossible. For example, learning only the
topology of Facebook social graph would require downloading
more than 115TB of HTML data [2], which is impractical.
Instead, researchers typically collect and study a small but
representative sample of the graph of interest.
In this paper, we are particularly interested in sampling

networks that naturally allow to explore the neighbors of
a given node, as it is the case in WWW, P2P and OSN.
A number of graph exploration techniques use this basic
operation for sampling. They can be roughly classified in two
categories: (i) random walks, and (ii) graph traversals.
In the first category, random walks, nodes can be revisited.

This category includes the classic Random Walk (RW) [3]
and its variations [4]–[10]. They are used for sampling of
nodes on the Web [4], P2P networks [5]–[7], OSNs [11,12]
and large graphs in general [13]. Although most random walks

Manuscript received 15 December 2010; revised 2 June 2011. This is a
revised and extended version of [1]. This work has been supported by the
following grants: SNF grant PBELP2-130871, Switzerland; ManCom 2110
of the Hasler Foundation, Switzerland; NSF CDI award 1028394, AFOSR
FA9550-10-1-0310, AFOSR MURI Prime Award FA9550- 09-0643.
M. Kurant and A. Markopoulou are with the California Institute for

Telecommunications and Information Technology (CalIT2) at the University
of California, Irvine, CA 92697-2800 (e-mail: maciej.kurant@gmail.com,
athina@uci.edu). Athina Markopoulou is also with the EECS Dept and the
Center for Pervasive Communications and Computing (CPCC) at UC Irvine.
P. Thiran is with the School of Computer & Comm. Sciences, EPFL,

Lausanne, Switzerland (e-mail: patrick.thiran@epfl.ch).
Digital Object Identifier 10.1109/JSAC.2011.111005.

〈q k
〉

ex
pe

ct
ed

ob
se

rv
ed

av
er

ag
e

no
de

de
gr

ee

〈k〉

〈k2〉
〈k〉

f fraction of sampled nodes 10

Random Walk (RW)

Graph traversal techniques:
- BFS
- DFS

- Forest Fire
- Snowball / RDS

Fig. 1. Overview of results. In this paper, we calculate the node degree
distribution qk expected to be observed by BFS in a random graph RG(pk)
with a given degree distribution pk , as a function of the fraction of sampled
nodes f . In this plot, we show only the average 〈qk〉. We show the RW as
a reference. 〈k〉 = 〈pk〉 is the real average node degree, and 〈k2〉 is the
real average squared node degree. Observations: (i) For a small sample
size, BFS has the same bias as RW; with increasing f , the bias decreases;
a complete BFS (f= 1) is unbiased. (ii) All graph traversal techniques
(that use sampling without replacement) lead to the same bias in RG(pk).
(iii) The shape of the BFS curve depends on the graph (the real node degree
distribution pk), but it is always monotonically decreasing; we calculate it
precisely in this paper. (iv) We also correct for the bias and compute the
original distribution pk based on the sampled qk and f (not shown here).

introduce a bias towards high-degree nodes [3], it can be easily
corrected for [14]–[17]. In this paper, we use RW as baseline
for comparison only; for more details on random walks please
refer to our companion paper [2] in this issue.
In the second category, which we refer to as graph traver-

sals, sampling is without replacement: each node is visited
at most once (or exactly once, when the process runs until
completion and the graph is connected). These methods vary
in the order in which they visit the nodes; examples include
BFS, Depth-First Search (DFS), Forest Fire (FF) [13], Snow-
ball Sampling (SBS) [18] and Respondent-Driven Sampling
(RDS) [19]. Graph traversals, especially BFS, are very popular
and widely used for sampling Internet topologies, e.g., in
WWW [20] or OSNs [21]–[23]. Reasons for its popularity
include (i) its simplicity and efficiency and (ii) the fact that
a BFS sample reveals the topology (all the nodes and edges)
around the starting point. This allows to characterize the topo-
logical characteristics (e.g., shortest path lengths, clustering
coefficients, community structure) in that part of the graph,
which is an advantage of BFS over random walks.
However, a BFS sample may or may not be representative

of the entire graph. For example, a BFS sample of a lattice
is a lattice. Unfortunately, this is not true in general. It has
been observed empirically that BFS introduces a bias towards
high-degree nodes [20,24]–[26]. We also confirmed this fact
in a recent measurement of Facebook [2,11], where our BFS
crawler found the average node degree equal to 324, while the
real value is only 94; in other words BFS overestimated the
average node degree by about 250%. This bias clearly affects
the inferences based on a BFS sample, whether node attributes
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or topological properties are of interest. Despite the popularity
of BFS on the one hand, and its bias on the other hand, we
still know relatively little about the statistical properties of
node sequences returned by BFS. The analysis is challenging
because BFS, and more generally sampling without replace-
ment, introduces complex dependencies between the sampled
nodes, which make it difficult to deal with mathematically.
Our work is a step towards understanding and correcting

the bias of BFS sampling. We make the following main
contributions. First, we consider a random graph RG(pk) with
a given (and arbitrary) degree distribution pk. We calculate
precisely the node degree distribution qk expected to be
observed by BFS as a function of the fraction f of sampled
nodes. We illustrate this and related results in Fig. 1. In our
analysis, we use arguments following the lines of those used
by Achlioptas et al. [27] to analyze the bias of traceroute
sampling. However, we analyze a different sampling design:
in traceroute sampling all nodes are visited and some edges are
missing, whereas in BFS sampling some nodes are sampled
but all edges incident to them are seen.
Second, we propose a practical BFS-bias correction proce-

dure. It takes as input a collected BFS sample together with
the fraction f of covered nodes, and estimates the distribution
of an arbitrary function x(v) defined on graph nodes. The cor-
rection procedure is exact (i.e., leads to unbiased estimation)
for RG(pk) graphs, and also turns out to be a good heuristic
when applied to a broad range of Internet topologies, as well as
to two large BFS samples of Facebook and Orkut networks.
We make its ready-to-use python implementation publicly
available at [28].
The outline of the rest of paper is as follows. Section II

discusses related work. Section III presents BFS and other
graph traversal algorithms under study. Section IV presents the
random graph RG(pk) model used in this paper. Section V
analyzes the degree bias of BFS. Section VI shows how
to correct for this bias in RG(pk). Section VII provides
simulation results and evaluation in real world networks.
Section VIII gives some practical recommendations, and Sec-
tion IX concludes the paper.

II. RELATED WORK

A. BFS used in practice

BFS is widely used today for exploring large networks, such
as OSNs. In [21], Ahn et al. used BFS to sample Orkut and
MySpace. In [22] and [29], Mislove et al. used BFS to crawl
the social graph in four popular OSNs: Flickr, LiveJournal,
Orkut, and YouTube. In [23], Wilson et al. measured the social
graph and the user interaction graph of Facebook using several
BFSs, each BFS constrained in one of the largest 22 regional
Facebook networks. In our recent work [2,11], we have
also crawled Facebook using various sampling techniques,
including BFS.

B. BFS bias

It has been empirically observed that incomplete BFS and
its variants introduce bias towards high-degree nodes [20]
[24]–[26]. We confirmed this in Facebook [2,11], which, in
fact, inspired and motivated this paper. Analogous bias has

been observed in the field of social science, for sampling
techniques closely related to BFS, i.e., Snowball Sampling
and RDS [16,18,19] (see Section III-B5).

C. Analyzing BFS

To the best of our knowledge, the sampling bias of BFS
has not been analyzed so far. [30] and [27] are the closest
related papers in terms of methodology. The original paper by
Kim [30] analyzes the size of the largest connected component
in classic Erdös-Rényi random graph by essentially applying
the configuration model [31] with node degrees chosen from a
Poisson distribution. To match the stubs (or “clones” in [30])
uniformly at random in a tractable way, Kim proposes a
“cut-off line” algorithm. He first assigns each stub a random
index from [0, np], and next progressively scans this interval.
Achlioptas et al. used this powerful idea in [27] to study the
bias of traceroute sampling in random graphs RG(pk) with
a given degree distribution pk. The basic operation in [27]
is traceroute (i.e., “discover a path”) and is performed from
a single node to all other nodes in the graph. The union of
the observed paths forms a “BFS-tree”, which includes all
nodes but misses some edges (e.g., those between nodes at
the same depth in the tree). In contrast, the basic operation in
the traversal methods presented in our paper is to discover all
neighbors of a node, and it is applied to all nodes in increasing
distance from the origin. Another important difference is
that [27] studies a completed BFS-tree, whereas we study the
sampling process when it has visited only a fraction f < 1 of
nodes. Indeed, a completed BFS (f=1) is trivial in our case:
it has no bias, as all nodes are covered.

In the field of social science, a significant effort was put to
correct for the bias of BFS’s close cousin - Snowball Sampling
(SBS) [18]. SBS together with a bias correction procedure is
called Respondent-Driven Sampling (RDS) [19]. The currently
used correction technique [16,17] assumes that nodes can be
revisited, which essentially approximates SBS by Random
Walk. In this paper, we formally show that this approximation
is valid if the fraction f of sampled nodes is small. However,
as [32] points out, the current RDS methodology is systemati-
cally biased for larger f . Consequently, [33] proposed an SBS
bias correction method based on the random graph RG(pk).
This is essentially the same basic starting idea as used in our
original paper published independently [1]. However, the two
papers fundamentally differ in the final solution: [33] proposes
a simulation-aided approach, whereas we solve the problem
analytically.

Another recent and related paper is [34]. The authors
propose and evaluate a heuristic approach to correct the
degree bias in the ith generation of SBS, based on the
values measured in the generation i− 1. In practice, this
generation-based scheme may be challenging to implement,
because the number of nodes per generation may grow close
to exponential with i. Consequently, we are likely to face a
situation where collecting the next generation is prohibitively
expensive, while the current generation has much fewer nodes
than our sampling capabilities allow for.
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D. Probability Proportional to Size Without Replacement

At a closer look, our RG(pk)-based approach reduces BFS
(and other graph traversals) to a classic sampling design
called Probability Proportional to Size Without Replacement
(PPSWOR) [35]–[42]. Unfortunately, to the best of our knowl-
edge, none of the existing results is directly applicable to our
problem. This is because, speaking in the terms used later in
this paper, the available results either (i) require the knowledge
of qk(f) (expected, not sampled) as an input, (ii) propose how
to calculate qk(f) for the first two nodes only, or (iii) calculate
qk(f) as an average of many simulated traversals of the
known graph (in contrast, we only have one run on unknown
graph) [42].

III. GRAPH EXPLORATION TECHNIQUES

Let G = (V,E) be a connected graph with the set
of vertices V , and a set of undirected edges E. Initially,
G is unknown, except for one (or few) seed node(s). When
sampling through graph exploration, we begin at the seed
node, and we recursively visit (one, some or all) its neighbors.
We distinguish two main categories of exploration techniques:
random walks and graph traversals.

A. Random walks (baseline)

Random walks allow revisiting the same node many times.
They come in many flavors [3]–[10]; see our companion
paper [2] in this issue for more details. Because in this paper
we use random walks merely as a useful reference, we include
only the classic simple Random Walk (RW) [3]. RW selects
the next-hop node uniformly at random among the neighbors
of the current node.

B. Graph traversals

In contrast, graph traversals never revisits the same node.
At the end of the process, and assuming that the graph is
connected, all nodes are visited. However, when using graph
traversals for sampling, we terminate after having collected a
fraction f < 1 (usually f � 1) of graph nodes.
1) Breadth First Search (BFS): BFS is a classic graph

traversal algorithm that starts from the seed and progressively
explores all neighbors. At each new iteration the earliest ex-
plored but not-yet-visited node is selected next. Consequently,
BFS discovers first the nodes closest to the seed.

2) Depth First Search (DFS): This technique is similar to
BFS, except that at each iteration we select the latest explored
but not-yet-visited node. As a result, DFS explores first the
nodes that are faraway (in the number of hops) from the seed.

3) Forest Fire (FF): FF is a randomized version of BFS,
where for every neighbor v of the current node, we flip a coin,
with probability of success p, to decide if we explore v. FF
reduces to BFS for p=1. It is possible that this process dies
out before it covers all nodes. In this case, in order to make FF
comparable with other techniques, we revive the process from
a random node already in the sample. Forest Fire is inspired by
the graph growing model of the same name proposed in [43]
and is used as a graph sampling technique in [13].

TABLE I
NOTATION SUMMARY.

G = (V, E) graph G with nodes V and edges E
kv degree of node v
pk = 1

|V |
P

v∈V 1kv=k degree distribution in G

〈k〉 = 〈pk〉 =
P

k k pk average node degree in G
qk expected sampled degree distribution
〈qk〉 =

P
k k qk expected sampled average node degree

bqk sampled degree distribution
bpk estimated original degree distribution in G
f fraction of nodes covered by the sample

4) Snowball Sampling (SBS): According to a classic def-
inition by Goodman [18], an n-name Snowball Sampling is
similar to BFS, but at every node v, not all kv , but exactly n
neighbors are chosen randomly out of all kv neighbors of v.
These n neighbors are scheduled to visit, but only if they have
not been visited before.

5) Respondent-Driven Sampling (RDS): Respondent-
Driven Sampling (RDS) [16,17,19] adopts SBS to penetrate
hidden populations (such as that of drug addicts) in social
surveys. RDS is essentially SBS equipped with some bias
correction procedure (omitted in Fig. 1). In Section II, we
comment on these techniques.

IV. GRAPH MODEL RG(pk)
A basic, yet very important property of every graph is its

node degree distribution pk, i.e., the fraction of nodes with
degree equal to k, for all k ≥ 0.1 Depending on the network,
the degree distribution can vary, ranging from constant-degree
(in regular graphs), a distribution concentrated around the
average value (e.g., in Erdös-Rényi random graphs or in well-
balanced P2P networks), to heavily right-skewed distributions
with k covering several decades (as this is the case in WWW,
unstructured P2P, Internet at the IP and Autonomous System
level, OSNs). We handle all these cases by assuming that we
are given any fixed node degree distribution pk. Other than
that, the graph G is drawn uniformly at random from the set
of all graphs multigraphs2 with degree distribution pk. We
denote this model by RG(pk).
Because RG(pk) mimics an arbitrary node degree distribu-

tion pk, it can be considered a “first-order approximation” of
real-life graphs. Of course, there are many graph properties
other than pk that are not captured by RG(pk). However,
we show later that, with respect to the BFS sampling bias,
RG(pk) approximates the real Internet topologies surprisingly
well.
We use a classic technique to generate RG(pk), called the

configuration model [31]: each node v is given kv “stubs”
or “edges-to-be”. Next, all these

∑
v∈V kv = 2|E| stubs

are randomly matched in pairs, until all stubs are exhausted
(and |E| edges are created). In Fig. 2 (ignore the rectangular
interval [0,1] for now), we present four nodes with their stubs
(left) and an example of their random matching (right).

1As we define pk as a ‘fraction’, not the ‘probability’, pk determines the
degree sequence in the graph, and vice versa.
2A multigraph is a graph that accepts multiple edges and self-loops.

An alternative approach is to connect nodes v and w independently with
probability kw·kv

z
[44]. By construction, this procedure avoids multiple edges

and self-loops. However, it achieves the desired degree sequence not in every
realization, but in expectation only. More importantly, it imposes a limit
kv ≤ √

z on node degrees.



1802 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 9, OCTOBER 2011

V. ANALYZING THE NODE DEGREE BIAS

In this section, we study the node degree bias observed
when the graph exploration techniques of Section III are run
on the random graph RG(pk) of Section IV. In particular,
we are interested in the node degree distribution qk expected
to be observed in the raw sample. Typically, the observed
distribution is different from the original one, qk �= pk, with
higher average value 〈qk〉 > 〈pk〉 (i.e., average sampled and
observed node degree, respectively). Below, we derive qk as
a function of pk and, in the case of BFS, of the fraction of
sampled nodes f .

A. Random walks (baseline)

Under RW, in any given connected and aperiodic graph,
the probability of being at a particular node v converges at
equilibrium to the stationary distribution πRW

v = kv

2|E| . (I.e., the
sampling probability of a node v is proportional to its de-
gree kv .) Therefore, the expected observed degree distribution
qRWk is (after [14]–[17])

qRWk =
∑
v

πRW
v · 1{kv=k} =

k

2|E| pk |V | =
k pk
〈k〉 , (1)

where 〈k〉 is the average node degree in G. Consequently, the
expected observed average node degree is

〈qRWk 〉 =
∑
k

k qRWk =
∑

k k
2 pk

〈k〉 =
〈k2〉
〈k〉 , (2)

where 〈k2〉 is the average squared node degree in G. We

show this value 〈k2〉
〈k〉 in Fig. 1.

B. Graph traversals (Main Result)

In RW, nodes can be revisited. So the state of the system
at iteration i+1 depends only on iteration i, which makes
it possible to analyze with Markov Chain techniques. In
contrast, graph traversals do not allow for node revisits, which
introduces crucial dependencies between all the iterations and
significantly complicates the analysis. To handle these depen-
dencies, we adopt an elegant technique recently introduced
in [30] (to study the size of the largest connected component)
and extended in [27] (to study the bias of traceroute sam-
pling). We develop our arguments following the lines of [27].
However, this work differs in many aspects from both [30]
and [27], on which we comment in detail in Section II.

1) Exploration without replacement at the stub level: We
begin by defining Algorithm 1 (below) - a general graph
traversal technique that collects a sequence of nodes S,
without replacements. To be compatible with the configuration
model (see Section IV), we are interested in the process at the
stub level, where we consider one stub at a time, rather than
one node at a time. An integral part of the algorithm is a
queue Q that keeps the discovered, but still not-yet-followed
stubs. First, we enqueue on Q all the stubs of some initial
node v1, and by setting S← [v1]. Next, at every iteration, we
dequeue one stub from Q, call it a, and follow it to discover
its partner-stub b, and b’s owner v(b). If node v(b) is not yet

Algorithm 1 Stub-Level Graph Traversal
1: S ← [v1] and Q← [all stubs of v1]
2: while Q is nonempty do
3: Dequeue a from Q
4: Discover a’s partner b
5: if v(b) /∈ S then
6: Append v(b) to S
7: Enqueue on Q all stubs of v(b) except b
8: else
9: Remove b from Q
10: end if
11: end while

discovered, i.e., if v(b) /∈ S, then we append v(b) to S and
we enqueue on Q all the other stubs of v(b).
Depending on the scheduling discipline for the elements

in Q (line 3), Algorithm 1 implements BFS (for a first-in first
out scheduling), DFS (last-in first-out) or Forest Fire (first-
in first-out with randomized stub losses). Line 9 guarantees
that the algorithm never tracebacks the edges, i.e., that stub a
dequeued from Q in line 3 never belongs to an edge that has
already been traversed in the opposite direction.

2) Discovery on-the-fly: In line 4 of Algorithm 1, we follow
stub a to discover its partner b. In a fixed graph G, this step
is deterministic. In the configuration model RG(pk), a fixed
graph G is obtained by matching all the stubs uniformly at
random. Next, we can sample this fixed graph and average the
result over the space of all the random graphs RG(pk) that
have just been constructed. Unfortunately, this space grows
exponentially with the number of nodes |V |, making the
problem untractable. Therefore, we adopt an alternative con-
struction of G - by iteratively selecting b on-the-fly (i.e., every
time line 4 is executed), uniformly at random from all still
unmatched stubs. By the principle of deferred decisions [45],
these two approaches are equivalent.
With the help of the on-the-fly approach, we are able to

write down the equations we need. Indeed, let us denote by
Xi ∈ V the ith selected node, and let P(X1 = u) be the
probability that node u ∈ V is chosen as a starting node. It is
easy to show that with z=2|E| we have

P(X2=v) =
∑
u�=v

kv
z−ku · P(X1=u) (3)

P(X3=w) =
∑
v �=w

∑
u�=w,v

kw
z−kv−ku ·

kv
z−ku · P(X1=u),(4)

and so on. Theoretically, these equations allow us to calculate
the expected node degree at any iteration, and thus the degree
bias of BFS.

3) Breaking the dependencies: There is still one problem
with the equations above. Due to the increasing number of
nested sums, the results can be calculated in practice for a first
few iterations only. This is because we select stub b uniformly
and independently at random from all the unmatched stubs. So
the stub selected at iteration i depends on the stubs selected
at iterations 1 . . . i−1, which results in the nested sums. We
remedy this problem by implementing the on-the-fly approach
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Fig. 2. An illustration of the stub-level, on-the-fly graph exploration without replacements. In this particular example, we show an execution of BFS starting
at node v1. Left: Initially, each node v has kv stubs, where kv is a given target degree of v. Each of these stubs is assigned a real-valued number
drawn uniformly at random from the interval [0, 1] shown below the graph (these numbers remain unchanged throughout the entire process). Next, we follow
Algorithm 1 with a starting node v1. The numbers next to the stubs of every node v indicate the order in which these stubs are enqueued on Q. The first
in Q is stub 1 of node v1. We discover its partner (stub 1 of node v2) by scanning the interval [0, 1] from left to right. Because v2 has not been sampled
yet, we “sample” it now (Step 6) and we enqueue its stubs 2 and 3 on Q (Step 7). The next in Q is stub 2 of node v1; we continue scanning to discover its
partner (stub 1 of node v3). And so on. Center: The state of the system at time t. All stubs in [0, t] have already been matched (the indices of matched
stubs are set in plain line). All unmatched stubs are distributed uniformly at random on (t, 1]. This interval can contain also some (here two) already matched
stubs. Right: The final result is a realization of a random graph G with a given node degree sequence (i.e., of the configuration model). G may contain
self-loops and multiedges.

as follows. First, we assign each stub a real-valued index t
drawn uniformly at random from the interval [0, 1]. Then,
every time we process line 4, we pick b as the unmatched stub
with the smallest index. We can interpret this as a continuous-
time process, where we determine progressively the partners
of stubs dequeued from Q, by scanning the interval from time
t= 0 to t= 1 in a search of unmatched stubs. Because the
indices chosen by the stubs are independent from each other,
the above trick breaks the dependence between the stubs,
which is crucial for making this approach tractable.
In Fig. 2, we present an example execution of Algorithm 1,

where line 4 is implemented as described above.

4) Expected sampled degree distribution qBFS
k : Now we are

ready to derive the expected observed degree distribution qk.
Recall that all the stub indices are chosen independently and
uniformly from [0, 1]. A vertex v with degree k is not sampled
yet at time t if the indices of all its k stubs are larger than t,
which happens with probability (1− t)k. So the probability
that v is sampled before time t is 1−(1−t)k. Therefore, the
expected fraction of vertices of degree k sampled before t is

fk(t) = pk(1−(1−t)k). (5)

By normalizing Eq.(5), we obtain the expected observed (i.e.,
sampled) degree distribution at time t:

qBFSk (t) =
fk(t)∑
l fl(t)

=
pk(1 − (1−t)k)∑
l pl(1− (1−t)l) . (6)

Unfortunately, it is difficult to interpret qBFSk (t) directly, be-
cause t is proportional neither to the number of matched edges
nor to the number of discovered nodes. Recall that our primary
goal is to express qBFSk as a function of fraction f of covered
nodes. We achieve this by calculating f(t) - the expected
fraction of nodes, of any degree, visited before time t

f(t) =
∑
k

fk(t) = 1−
∑
k

pk(1−t)k . (7)

Because pk ≥ 0, and pk > 0 for at least one k > 0, the term∑
k pk(1−t)k is continuous and strictly decreasing from 1 to

0 with t growing from 0 to 1. Thus, for f ∈ [0, 1] there exists
a well defined t= t(f) that satisfies Eq.(7), i.e., the inverse of

f(t). Although we cannot compute t(f) analytically (except
in some special cases such as for k ≤ 4), it is straightforward
to find it numerically. Now, we can rewrite Eq. (6) as

qBFSk (f) =
pk(1− (1−t(f))k)∑
l pl(1− (1−t(f))l) , (8)

which is the expected observed degree distribution after cover-
ing fraction f of nodes of graphG. Consequently, the expected
observed average degree is

〈qBFSk 〉(f) =
∑
k

k · qBFSk (f). (9)

In other words, Eq.(8) and Eq.(9) describe the bias of BFS
sampling underRG(pk), which was our first goal in this paper.
Below, we further analyze these equations to get more insights
in the nature of BFS bias.

5) Equivalence of traversal techniques under RW (pk): An
interesting observation is that, under the random graph model
RW (pk), all common traversal techniques (BFS, DFS, FF,
SBS, etc) are subject to exactly the same bias. The explanation
is that the sampled node sequence S is fully determined by
the choice of stub indices on [0, 1], independently of the way
we manage the elements in Q.

6) Equivalence of traversals to weighted sampling without
replacement: Consider a node v with a degree kv . The
probability that v is discovered before time t, given that it
has not been discovered before t0 ≤ t, is

P(v before time t | v not before t0) = 1−
(

1−t
1−t0

)kv

(10)

We now take the derivative of the above equation with respect
to t, which results in the conditional probability density
function kv( 1−t

1−t0
)kv−1. Setting t→ t0 (but keeping t > t0),

reduces it to kv, which is the probability density that v is
sampled at t0, given that it has not been sampled before. This
means that at every point in time, out of all nodes that have not
yet been selected, the probability of selecting v is proportional
to its degree kv. Therefore, this scheme is equivalent to node
sampling weighted by degree, without replacements.
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7) Equivalence of traversals with f→0 to RW: Finally, for
f→0 (and thus t→0), we have 1−(1−t)k � kt, and Eq. (6)
simplifies to Eq. (1). This means that in the beginning of the
sampling process, every traversal technique is equivalent to
RW, as shown in Fig. 1 for f→0.

8) 〈qBFS
k 〉 is decreasing in f : As in Section V-B2, let Xi ∈

V be the ith selected node, and let z=2|E|. We have shown
above that our procedure is equivalent to weighted sampling
without replacements, thus we can write P(X1= u) = ku

z .
Now, it follows from Eq. (3) that P(X2 = w) = kw

z · αw,
where αw =

∑
u�=w

ku

z−ku
. Because for any two nodes a

and b, we have αb−αa = z(ka− kb)/((z− ka)(z − kb)),
αw strictly decreases with growing kw. As a result, P(X2)
is more concentrated around nodes with smaller degrees than
is P(X1), implying that E[kX2 ] < E[kX1 ]. We can use an
analogous argument at every iteration i ≤ |V |, which allows
us to say that E[kXi ] < E[kXi−1 ]. In other words, 〈qBFSk 〉(f) is
a decreasing function of f .
A practical consequence is that many short traversals are

more biased than a long one, with the same total number of
samples.
9) Comments on the graph connectivity: Note that the

configuration model RG(pk) might result in a graph G that is
not connected. In this case, every exploration technique covers
only the component C in which it was initiated; consequently,
the process described in Section V-B3 stops once C is covered.
In practice, it is also possible to efficiently generate a

simple and connected random graph with a given degree
sequence [46].

VI. CORRECTING FOR NODE DEGREE BIAS

In the previous section, we derived the expected observed
degree distribution qk as a function of the original degree
distribution pk. The distribution qk is usually biased towards
high-degree nodes, i.e., 〈qk〉>〈pk〉. Moreover, because many
node properties are correlated with the node degree [2], their
estimates are also potentially biased. For example, let x(v)
be an arbitrary function defined on graph nodes V (e.g., node
age) and let its mean value

xav =
1
|V |

∑
v∈V

x(v) (11)

be the value we are trying to estimate. If x(v) is corre-
lated with node degree kv , then the straightforward estimator
x̂naive
av = 1/|S| ·∑v∈S x(v) is subject to the same bias as is

〈qk〉. In this section, we derive estimators x̂av of xav.
Note that with this approach we can estimate not only the

mean values, but also the entire distributions. For example, if
x(v)=1{kv=k} then x̂av estimates the proportion of nodes with
degree equal to k, i.e., the original node degree distribution pk.
We derive p̂k for all cases below.

Let S ⊂ V be a sequence of vertices that we sampled.
Based on S, we can estimate qk as

q̂k =
number of nodes in S with degree k

|S| . (12)

A. Random walks (baseline)

Under RW, a straightforward application of the Hansen-
Hurwitz estimator [47] leads to (after [14]–[17])

x̂ RW
av =

∑
v∈S x(v)/kv∑
v∈S 1/kv

. (13)

By plugging x(v)=1{kv=k}, we can estimate the original node
degree distribution as

p̂ RW
k =

q̂k
k
·
(∑

l

q̂l
l

)−1

(14)

where we used the fact that
∑

v∈S 1{kv=k} = |V | · q̂k. From
Eq.(14), we can estimate the average node degree as

〈p̂ RW
k 〉 =

∑
k

k p̂ RW
k = 1 ·

(∑
l

q̂l
l

)−1

=
|S|∑
v∈S

1
kv

, (15)

where the last equation follows from Eq.(12).

B. Graph traversals

Under BFS and other traversals, the inclusion probabil-
ity πBFS

v (i.e., the probability of node v being included in
sample S) of node v ∈ V is proportional to

πBFS
v ∼ q BFS

kv

pkv

∼ 1− (1−t(f))kv ,

where the second relation originates from Eq.(8). Conse-
quently, an application of the Horvitz-Thompson estima-
tor [49], designed typically for sampling without replacement,
leads to

x̂ BFS
av =

(∑
v∈S

x(v)
1−(1−t(f))kv

)
·
(∑

v∈S

1
1−(1−t(f))kv

)−1

.

(16)
Now, similarly to the analysis of RW (above), we obtain

p̂ BFS
k =

q̂k
1− (1−t(f))k ·

(∑
l

q̂l
1− (1−t(f))l

)−1

(17)

〈p̂ BFS
k 〉 =

∑
k

k p̂ BFS
k . (18)

However, in order to evaluate these expressions, we need to
evaluate t(f), that, in turn, requires pk. We can solve this
chicken-and-egg problem iteratively, if we know the real frac-
tion f real of covered nodes, or equivalently the graph size |V |.
First, we evaluate Eq.(17) for some values of t and feed the
resulting p̂k’s into Eq. (7) to obtain the corresponding f ’s. By
repeating this process, we can efficiently drive the values of f
arbitrarily close to f real, and thus find the desired p̂k.
In summary, for BFS, we showed how to estimate the

mean xav of an arbitrary function x(v) defined on graph nodes,
with the estimator of the original degree distribution pk as a
special case. Note that our approach is feasible, as it requires
only the sample S (with value x(v) and degree kv for every
node v ∈ S) and the fraction f of sampled nodes. In [28], we
make a python implementation of all the above estimators
publicly available.
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Fig. 3. Comparison of sampling techniques in theory and in simulation. Left: Observed (sampled) average node degree 〈qk〉 as a function of the fraction f
of sampled nodes, for various sampling techniques. The results are averaged over 1000 graphs with 10000 nodes each, generated by the configuration model
with a fixed heavy-tailed degree distribution pk (shown on the right). Right: Real, expected, and estimated (corrected) degree distributions for selected
techniques and values of f (other techniques behave analogously). We obtained analogous results for other degree distributions and graph sizes |V |. The
term 〈k〉 is the real average node degree, and 〈k2〉 is the real average squared node degree.
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Fig. 4. The effect of assortativity r on the results. First, we use the configuration model with the same degree distribution pk as in Fig. 3 (and the same
number of nodes |V | = 10000) to generate a graph G. Next, we apply the pairwise edge rewiring technique [48] to change the assortativity r of G without
changing node degrees. This technique iteratively takes two random edges {v1, w1} and {v2, w2}, and rewires them as {v1, w2} and {v2, w1} only if it
brings us closer to the desired value of assortativity r. As a result, we obtain graphs with a positive (left) and negative (right) assortativity r. Note that for a
better readability, we present only the values of f ∈ [0, 0.1], i.e., ten times smaller than in Fig. 3.

VII. SIMULATION RESULTS

In this section, we evaluate our theoretical findings on
random and real-life graphs.

A. Random graphs

Fig. 3 verifies all the formulae derived in this paper, for the
random graph RG(pk) with a given degree distribution. The
analytical expectations are plotted in thick plain lines in the
background and the averaged simulation results are plotted
in thinner lines lying on top of them. We observe almost a
perfect match between theory and simulation in estimating the
sampled degree distribution qk (Fig. 3, right) and its mean 〈qk〉
(Fig. 3, left). Indeed, all traversal techniques follow the same
curve (as predicted in Section V-B5), which initially coincides
with that of RW (see Section V-B7) and is monotonically
decreasing in f (see Section V-B8). We also show that
degree-weighted node sampling without replacements exhibits
exactly the same bias (see Section V-B6). Finally, applying the
estimators p̂k derived in Section VI perfectly corrects for the
bias of qk.

Of course, real-life networks are substantially different
from RG(pk). For example, depending on the graph type,
nodes may tend to connect to similar or different nodes.
Indeed, in most social networks high-degree nodes tend to con-
nect to other high-degree nodes [55]. Such networks are called
assortative. In contrast, biological and technological networks
are typically disassortative, i.e., they exhibit significantly more
high-degree-to-low-degree connections. This observation can
be quantified by calculating the assortativity coefficient r [55],
which is the correlation coefficient computed over all edges
(i.e., degree-degree pairs) in the graph. Values r<0, r>0 and
r = 0 indicate disassortative, assortative and purely random
graphs, respectively.

For the same initial parameters as in Fig. 3 (pk, |V |),
we simulated different levels of assortativity. Fig. 4 shows
the results. Graph assortativity r strongly affects the first
iterations of traversal techniques. Indeed, for assortativity
r > 0 (Fig. 4, left), the degree bias is even stronger than
for r = 0 (Fig. 3, left). This is because the high-degree nodes
are now interconnected more densely than in a purely random
graph, and are thus easier to discover by sampling techniques
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TABLE II
INTERNET TOPOLOGIES USED IN SIMULATIONS. ALL GRAPHS ARE CONNECTED AND UNDIRECTED (WHICH REQUIRED PREPROCESSING IN SOME CASES).

Dataset # nodes # edges 〈k〉=〈pk〉 〈k2〉
〈k〉 Description

ca-CondMat 21 363 91 341 8.6 22.5 Collaboration network of Arxiv Condensed Matter [50]
email-EuAll 224 832 340 794 3.0 567.9 Email network of a large European Research Institution [50]

Facebook-New-Orleans 63 392 816 885 25.8 88.1 Facebook New Orleans network [51]
wiki-Talk 2 388 953 4 656 681 3.9 2705.4 Wikipedia talk (communication) network [52]

p2p-Gnutella31 62 561 147 877 4.7 11.6 Gnutella peer to peer network from August 31 2002 [50]
soc-Epinions1 75 877 405 738 10.7 183.9 Who-trusts-whom network of Epinions.com [53]

soc-Slashdot0811 77 360 546 486 14.1 129.9 Slashdot social network from November 2008 [54]
as-caida20071105 26 475 53 380 4.0 280.2 CAIDA AS Relationships Datasets, from November 2007

web-Google 855 802 4 291 351 10.0 170.4 Web graph from Google [54]
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Fig. 5. BFS in real-life (fully known) Internet topologies described in Table VII-A. The blue circles represent the average node degree 〈bq BFSk 〉 sampled
by BFS, as the function of the fraction of covered nodes f . The thin lines are the corrected values 〈bp BFS

k 〉 resulting from the BFS estimator Eq.(18) (plain
line) and the RW estimator Eq.(15) (dashed). Results are averaged over 1000 randomly seeded BFS samples. The thick lines are the analytical expectations
assuming the random graph model RG(pk). Thick red line (top) is the expectation of 〈q BFSk 〉, calculated with Eq.(9) given the knowledge of the true node
degree distribution pk . Thick gray line (bottom) is the expectation of corrected 〈bp BFS

k 〉, Eq.(18), i.e., precisely 〈k〉.

that are inherently biased towards high-degree nodes. Inter-
estingly, Forest Fire is by far the most affected. A possible
explanation is that under Forest Fire, low-degree nodes are
likely to be completely skipped by the first sampling wave. Not
surprisingly, a negative assortativity r < 0 has the opposite
effect: every high-degree node tends to connect to low-degree
nodes, which significantly slows down the discovery of the
former.
In contrast, random walk RW is not affected by the changes

in assortativity. This is expected, because their stationary
distributions hold for any fixed (connected and aperiodic)
graph regardless of its topological properties.

B. Real-life fully known topologies

Recall, that our analysis is based on the random graph
model RG(pk) (see Section IV), which is only an approxima-
tion of a typical real-life network G. Indeed, RG(pk) follows
the node degree distribution of G, but is likely to miss other
important properties such as assortativity [55], whose effect on
the BFS process we have just demonstrated. For this reason,
one may expect that the technique based on RG(pk) performs
poorly on real-life graphs. Surprisingly, this is not the case.

We evaluated our approach on a broad range of large, real-
life, fully known Internet topologies. As our main source
of data we use SNAP Graph Library [56]; Table VII-A
overviews these datasets. We present the results in Fig. 5.
Interestingly, in most cases the sampled average node de-
gree 〈q̂ BFS

k 〉 closely matches the prediction 〈q BFS
k 〉 of the random

graph model RG(pk). More importantly, applying our BFS
estimator 〈p̂ BFS

k 〉 of real average node degree corrects for the
bias of 〈q̂ BFS

k 〉 surprisingly well. Some significant differences
are visible only for f → 0 and for some specific topologies
(the last two in Fig. 5), which is exactly because the real-life
graphs are not fully captured by graph model RG(pk).
Finally, we also study the RW estimator Eq.(15), as a

simpler alternative to the BFS one Eq.(18). Although they
coincide for f → 0, the RW estimator systematically and
significantly underestimates the average node degree 〈k〉 for
larger values of f .

C. Sampling Facebook and Orkut

In this section, we apply and test the previous ideas in
sampling real-life, large-scale, and not fully known online
social networks: Facebook and Orkut.
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Fig. 6. BFS in on-line (not fully known) topologies. As in Fig. 5, except that the plots are based on BFS samples taken in Facebook with 28 (random)
seeds (a) and one seed (b), as well as in Orkut with one seed (d). Additionally, we show in (c) the full node degree distributions for Facebook. Because we
do not have the true degree distribution pk of Orkut, we cannot calculate its analytical curve 〈qBFSk 〉. Nevertheless, we show in (d) our best guess of Orkut’s
average node degree 〈k〉 learned by other means, as explained in Footnote 2.

1) Facebook: We have implemented a set of crawlers to
collect the samples of Facebook (FB) following the BFS and
RW techniques. The data sets are summarized in Table VII-C2.
BFS28 consists of 28 small BFS-es initiated at 28 different
nodes, which allowed us to easily parallelize the process.
Moreover, at the time of data collection, we (naively) thought
that this would reduce the BFS bias. After gaining more insight
(which, nota bene, motivated this paper), we collected a single
large BFS1. UNI represents the ground truth. The details of
our implementation are described in [2,11].
Results. We present the Facebook sampling results in

Fig. 6(a-c) and in Table VII-C2. First, we observe that under
BFS28, our estimators q BFS

k and p̂ BFS
k perform very well. For

example, we obtain 〈p̂ BFS
k 〉=85.4 compared with the true value

〈k〉= 94.1. In contrast, BFS1 yields 〈p̂ BFS
k 〉= 72.7 only. Most

probably, this is because BFS1 consists of a single BFS run
that happens to begin in a relatively sparse part of Facebook.
Indeed, note that this run starts at q̂ BFS

k = 50 for f = 0, and
systematically grows with f instead of falling.
Finally, note that both BFS28 and BFS1 are very short

compared to the Facebook size, with f < 1% in both cases.
For this reason, we observe almost no drop in the sampled
average node degre 〈qBFSk 〉 in Fig. 6(a,b). For the same reason,
both the BFS and RW estimators yield almost identical results.
All the above observations hold also for the entire degree

distribution, which is shown in Fig. 6(c).

2) Orkut: Finally, we apply our methodology to a single
BFS sample of Orkut collected in 2006 and described in [22].
It contains |S| = 3072K nodes, which accounts for f=11.3%
of entire Orkut size.
We show the results in Fig. 6(d). Similarly to Facebook

BFS1, the sampled average node degree 〈q̂ BFS
k 〉 does not

decrease monotonically in f . Again, the underlying reason
might be the arbitrary choice of the starting node (in sparsely
connected India in this case). Nevertheless, the estimator
〈p̂ BFS

k 〉 approximates the average node degree3 relatively well.
3Unfortunately, according to our personal communication with Orkut

administrators, there is no ground truth value of the Orkut’s average node
degree 〈k〉 for October 2006, i.e., the period when the BFS sample of [22]
was collected. However, many hints point to a number close to 〈k〉=30, e.g.,
[21] reports 〈k〉 = 30.2 in June-September 2006, and [57] reports 〈k〉 = 19
in late 2004 (which is in agreement with the densification law [43,50]). But,
as these studies may potentially be subject to various biases, we cannot take
these numbers for granted.

TABLE III
FACEBOOK AND ORKUT DATA SETS AND MEASUREMENTS.

Facebook UNI RW BFS28 BFS1
|S| 982K 2.26M 28×81K 1.19M
f 0.44% 1.03% 28×0.04% 0.54%

〈bqk〉 94.1 338.0 323.9 285.9
〈qk〉 - 329.8 329.1 328.7
〈bpk〉 - 93.9 85.4 72.7

Orkut
|S| - - - 3.07M
f - - - 11.3%

〈bpk〉 30 2 33.1

VIII. PRACTICAL RECOMMENDATIONS

In order to sample node properties, we recommend using
RW and its variants. RW is simple, unbiased for arbitrary
topologies (assuming that we use correction procedures sum-
marized in Section VI), and practically unaffected by the
starting point.
In contrast, RW is not useful when sampling non-local

graph properties, such as the graph diameter or the average
shortest path length. In this case, BFS seems very attractive,
because it produces a full view of a particular region in the
graph, which is usually a plausible graph for which the non-
local properties can be easily calculated. However, all such
results should be interpreted very carefully, as they may be
also strongly affected by the bias of BFS. For example, the
graph diameter drops significantly with growing average node
degree of a network. Whenever possible, it is a good practice
to restrict BFS to some well defined community in the sampled
graph. If the community is small enough, we may be able to
exhaust it (at least its largest connected component), which
automatically makes our BFS sample representative of this
community. For example, [23,51] collected full samples of
several Facebook regional networks, and [54,58] completely
covered the WWW graph restricted to one or few domains.
When such communities are not available (e.g., regional
networks are not accessible anymore in Facebook), we are
left with a regular unconstrained BFS sample. In that case, we
recommend applying the RG(pk)-based correction procedure
presented in this paper to quantify the node degree bias, which
may help us evaluate the bias introduced in the topological
metrics.
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IX. CONCLUSION

To the best of our knowledge, our work is the first to
quantify the node-degree bias of BFS sampling. In particular,
we calculated the node degree distribution qk expected to
be observed by BFS as a function of the fraction f of
covered nodes, in a random graph RG(pk) with a given degree
distribution pk. We found that for a small sample size, f →0,
BFS has the same bias as the simple Random Walk, and with
increasing f , the bias monotonically decreases. Based on our
theoretical analysis, we proposed a practical RG(pk)-based
procedure to correct for this bias when calculating any node
statistics. Our technique performed well on a broad range of
Internet topologies. Its ready-to-use implementation can be
downloaded from [28].
In this paper, we used our RG(pk)-based correction proce-

dure to estimate local graph properties, such as node statistics.
A direction for future work is to exploit the node degree-
biases calculated here to develop estimators of non-local graph
properties, such as graph diameter.
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