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Abstract
We consider a semi-classical model to describe the origin of the spin–orbit interaction in a
simple system such as the hydrogen atom. The interaction energy U is calculated in the rest-
frame of the nucleus, around which an electron, having linear velocity v and magnetic dipole-
moment ,μ travels in a circular orbit. The interaction energy U is due to the coupling of the
induced electric dipole v c( / )P μ= × with the electric field En of the nucleus. Assuming the
radius of the electron’s orbit remains constant during a spin-flip transition, our model predicts
that the energy of the system changes by U½ ,Δ = the factor ½ emerging naturally as a
consequence of equilibrium and the change of the kinetic energy of the electron. The correct ½
factor for the spin–orbit coupling energy is thus derived without the need to invoke the well-
known Thomas precession in the rest-frame of the electron.

Keywords: spin–orbit coupling, Thomas precession, electromagnetic interaction

1. Introduction

The equation for the energy splitting Δ due to spin–orbit
interaction was first derived in 1926 by Thomas, using Bohr’s
model of the hydrogen atom, Schrödinger’s quantum
mechanics, and relativistic kinematics [1, 2]. This result
turned out to be in complete agreement with the predictions of
Dirac’s relativistic quantum mechanics, which was for-
mulated two years later (1928). The Thomas result [3] may be
written as

s L
g

m c

V r

r r4

d ( )

d
. (1)

2 2
Δ = ⋅

Here V r( ) is the potential energy of the electron at distance r
from the nucleus, and L is the orbital angular momentum of
the electron, which, in Bohr’s classical model, moves in a
circular orbit of radius r with velocity v in the presence of the
electric field En of the nucleus. In the Gaussian system of
units, the relation between the magnetic dipole moment μ and
the spin angular momentum s of the electron is

s
ge

mc2
. (2)μ =

In the above equation, m is the mass and e (a negative entity)
is the charge of the electron, c is the speed of light in vacuum,
and g 2≅ is the g-factor associated with the electron’s spin
magnetic moment. According to Thomas, the interaction

energyU between the magnetic moment μ of the electron and
the effective magnetic field B v Ec( / ) n′ ≅ − × (obtained by a
relativistic transformation of the field En of the nucleus to the
rest-frame of the electron) is

BU . (3)μ= − ⋅ ′

The literature [3, 4] describes how, after quantization of s
and L, and aside from the so-called Thomas factor, the
interaction energy U of equation (3) assumes the form of Δ
given by equation (1). For the convenience of the reader, we
will derive this result in the following sections.

At the time Thomas proposed his model, it was expected
thatU had to be added to the basic quantized energy value n
obtained via Bohr’s model and Schrödinger’s wave equation.
(Caution: the subscript n of n refers to the nth energy level,
whereas the subscript n of En is a reminder that the E-field is
that of the nucleus.) Thus, after quantization, U in principle
should coincide precisely with the experimentally observed
shift in energy given by equation (1). The choice of U given
by equation (3), however, leads to a spin–orbit coupling
energy that is twice as large as that in equation (1). In order to
obtain the correct ½ factor, Thomas resorted to special rela-
tivity and tracked the successive relativistic transformations
of the electron’s rest-frame in its circular orbit. (This relati-
vistic effect is nowadays referred to as the Thomas preces-
sion; see appendix A for a brief derivation of the Thomas
precession rate TΩ following the elegant approach suggested
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by Purcell.) By incorporating the contribution of this relati-
vistic precession, Thomas was able to derive the correct
interaction energy, U½ , in the rest-frame of the electron.

Although the Thomas ½ factor is fully explained by
Dirac’s equation, most physics textbooks prefer to describe
the spin–orbit interaction in simpler terms using the Thomas
model, thus avoiding the more complex formalism of relati-
vistic quantum mechanics. In the words of Furry [5], ‘the
original method that was used before the invention of the
present quantum mechanics…is lacking in rigor, but it does
provide a physical picture for the effect. As long as physics is
unfinished business, and physicists must invent approximate
models to try to account for unexplained phenomena, the
study of arguments of this sort will be important in the phy-
sicist’s education’.

Over the years, several authors have attempted to sim-
plify Thomas’s argument and presented alternative routes to
arriving at the desired ½ factor [5–21]. Some even questioned
the validity of Thomas’s reasoning (though not that of his
final result). In particular, Fisher [8] states that ‘Thomas’s
original paper…got the correct answer by an incorrect
physical argument. This wrong argument persists to this day,
so let us hasten to correct it.’ Elsewhere in the same paper
[8], Fisher writes: ‘Apparently the success of the Dirac
equation…made people less interested in probing the details
of the atomic spin–orbit interaction. Today one is told that the
Thomas effect is included in the Dirac equation. How do we
know? Is this another accident[?]’ More recently, Khol-
metskii et al [17] have pointed out a ‘logical inconsistency’ in
the semi-classical model of spin–orbit splitting, which relies
on a non-relativistic equation of motion while including the
relativistic phenomenon of Thomas’s precession.

In the context of the above history of developments, the
present paper aims to introduce an alternative approach to
calculating Δ based on a semi-classical model of hydrogen-
like atoms (similar to that of Bohr), but with the magnetic
dipole-moment μ of the electron and its related interaction
energyU explicitly taken into account. Keeping the treatment
in the rest-frame of the nucleus, we show that, in our
approach, the factor ½ emerges naturally and without the
need to introduce the Thomas precession. Our model repre-
sents an alternative to that of Thomas, which, while corro-
borating his result, provides a simple yet intuitive
interpretation of the origin of the spin–orbit interaction
energy. The present paper may thus be regarded as a novel
application of classical electrodynamics to quantum physics
and its interpretation.

Our treatment of spin–orbit coupling in hydrogen-like
atoms may be summarized as follows. In its steady-state of
motion, the electron revolves around the nucleus in a circular
orbit in the xy-plane, with its magnetic dipole-moment μ
aligned either parallel or anti-parallel to the z-axis. Thus, in
the rest-frame of the nucleus, not only does the electron have
a magnetic dipole-moment ẑ ,μ but also a (relativistically-
induced) electric dipole-moment r̂ v c( / ) ,P P μ= = ×
pointing radially inward or outward, depending on the sign of

.μ The nucleus exerts a Coulomb force on the charge e of the
electron, as well as a (much weaker) force on the dipoles μ

and .P While the Coulomb force is always attractive, the
force of the nuclear E-field on the dipole pair could be
attractive or repulsive, depending on whether μ is aligned
with or against the z-axis. We take the orbital radius of our
classical electron circling the nucleus to be fixed by the
attractive Coulomb force of the nucleus on the charge e of the
electron. The perturbing force arising from the action of the
nuclear E-field on the dipoles μ and P thus affects only the
velocity of the electron in its orbit. The resulting change in the
kinetic energy of the electron turns out to be one-half the
interaction energy EnP− ⋅ between the nuclear E-field and
the dipoles μ and .P (Note that there is no magnetic field B in
the rest-frame of the nucleus and that, therefore, the interac-
tion energy Bμ− ⋅ is zero.) The bottom line is that only one-
half of the spin–orbit interaction energy will be available for
exchange with an absorbed or emitted photon; the remaining
half is needed to adjust the electron’s kinetic energy of
rotation around the nucleus. This simple mechanism provides
the conceptual basis for arriving at the Thomas ½ factor in the
rest-frame of the nucleus without invoking Thomas’s
precession.

The search for the origin of the Thomas ½ factor in the
rest-frame of the nucleus (including an examination of the
role of the induced electric dipole moment )P has a long and
distinguished history. References [12–21] as well as those
cited therein provide a good starting point for delving into the
subject. In this connection, previous efforts have typically
aimed at clarifying the spin dynamics in the rest-frame of the
nucleus, thus helping to relate the behavior of the magnetic
moment μ of the electron in its own rest-frame to that in the
rest-frame of the nucleus. To our knowledge, no previous
investigator has dismissed Thomas’s original argument in
favor of an alternative mechanism acting directly in the rest-
frame of the nucleus; a mechanism that would reduce the
spin–orbit energy by the desired ½ factor. In contrast, the
premise of the present paper is that Thomas’s precession,
being a kinematic effect in the rest-frame of the electron,
cannot account for the observed ½ factor. Instead, we propose
that the action of the nuclear E-field on μ and P (within the
rest-frame of the nucleus) produces a change in the kinetic
energy of the electron, which suffices to explain the observed
spin–orbit coupling energy.

2. Energy equation and equilibrium

In our model, the electron orbits in a circular path of radius r
with angular velocity ω (and linear (tangential) speed v r )ω=
in the presence of the field En of a massive nucleus having
charge q ;n see figure 1. Taking into account the kinetic energy
K , the potential energy V , and the interaction energy U
between μ and E ,n the total energy of the system may be
written as follows:

K V U mr
eq

r
U

1

2
. (4)n2 2ω= + + = + +

The electromagnetic (EM) interaction energy U can be
derived in the rest-frame of the nucleus from the energy
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expression ( )U E B x(8 ) d ,1 2 2 3∫π= +− knowing that the
moving magnetic dipole μ possesses an electric dipole

v c( / )P μ= × with its associated electric field E .P Therefore,
E E EU x(4 ) d ,n n

1 3 PP∫π= ⋅ = − ⋅− which, for ẑ ,μ μ= can
be written as

E v EU c r E c[( / ) ] / . (5)n n nP μ ωμ= − ⋅ = − × ⋅ = −

The above equation is equivalent to equation (3). It must
be pointed out that the expression relating P to ,μ which is
accurate for a particle moving at constant velocity v, has been
extended here to a case in which the direction of v varies with
time. For modest accelerations, such as those associated with
the orbital motion of the electron in the hydrogen atom, such
an approximation is probably justified.

2.1. Force on a moving magnetic dipole and the equilibrium
condition

The basic equilibrium condition requires that the attractive
electric force on the electron due to the field En of the
nucleus, namely, E r̂e eq r/ ,n n

2= provide the centripetal

acceleration ( ) r̂r .2ω− However, there is an additional radial
force F acting on μ which needs to be taken into account.
According to the literature [22–25], the expression for F is3

F v Ec( / ) ( ) . (6)nμ= − × ⋅

The force F in equation (6) corresponds to the motion of
a constant μ in the presence of the external field E .n (This
force may be derived by assuming that the electron possesses
the electric dipole-moment P and a hidden momentum, to be
described in section 3. An alternative route to arriving at the
same force without invoking hidden entities is presented in
section 4.) In our system, ẑμ μ= and, in the xy-plane of the

orbit, E E 0z x z y∂ = ∂ = while ( )E q z r q r/ / .z z z n n
3 3∂ = ∂ =

Consequently

F r̂ E r̂
r q

cr
c U r/ / . (7)n

n3

⎛
⎝⎜

⎞
⎠⎟

ωμ
ωμ= − = − =

The equilibrium condition is then

eq

r

U

r
mr . (8)n

2
2ω+ = −

With the above equilibrium condition established, sol-
ving for ω and substituting it in equation (4) yields the energy
of our classical system as

eq

r
U

2

1

2
, (9)n= +

where the resulting added term U½δ = emerges naturally
with the correct ½ factor included. The interesting physical
consequence of equation (9) is that if, in a pure spin-flip
transition, the orbit radius r remains constant, then the energy
of the system will change by ( ) U2 ,n− ≅  without the
need to introduce Thomas’s precession mechanism.

Returning now to equation (8), let us denote by r0 and 0ω
the orbital radius and the angular velocity of the electron in
the absence of spin–orbit coupling (i.e., in the standard Bohr
model of the hydrogen atom). Then, considering that the
inclusion of spin–orbit interaction associated with ẑμ μ=
requires only a small adjustment to r and ,ω say, by
r r r0δ = − and ,0δω ω ω= − we find, in accordance with

equation (8), that ( )mr rU( ),3 2δ ω δ= − that is

m r mr U r3 2 / . (10)0
2

0 0 0ω δ ω δω+ = −

The above equation establishes a link between rδ and δω
on the one hand, and the interaction energy U on the other,
when the magnetic moment μ of the electron is aligned either
with the z-axis (spin down, U 0)< or against the z-axis (spin
up, U 0 ).> In general, we shall assume that, in a spin-flip
process, the orbital radius remains constant at the Bohr radius
r ,0 that is, r 0,δ = and proceed to calculate δω from
equation (10). Clearly, the angular velocity of the electron in
its spin-up state ( 0μ < and U 0)> will be less than that in
the standard Bohr model, that is ,0ω ω< whereas in the spin-
down state ( 0μ > and U 0 ),< we will have 0ω ω> .

Not only does the assumption r 0δ = lead to the correct
(i.e., experimentally observed) value of the spin–orbit energy,
but it may also be said to conform to the standard quantum
mechanical treatment of the hydrogen atom via Schrödinger’s
equation. In fact, according to Bohr’s semi-classical model,
the orbital radius r of the electron is quantized. The Schrö-
dinger equation foresees [26] that the electron wave-function
is spread out, and that the orbit radius r is more properly
represented by the quantum expectation value
r a n ℓ ℓ½ [3 ( 1)],nℓ 0

2〈 〉 = − + which is a function of the
quantum numbers n and ℓ; here a0 is the Bohr radius of the
hydrogen atom. In a pure spin-flip transition, the orbital
angular momentum L maintains its quantum number, that is,
ℓ remains constant. Since also the principal quantum number
n remains constant, it might be expected that spin-flip is a
transition at constant r rnℓ= 〈 〉.

Figure 1. An electron orbiting a stationary nucleus of charge qn

located at the origin of coordinates. The orbit’s radius is r, and the
linear velocity of the electron is v ˆr ,φω= where ω is the angular
velocity and φ̂ is the unit-vector in the azimuthal direction. It is
assumed that the electron arrives at x y z r( , , ) ( , 0, 0)= at t 0.=
The magnetic dipole-moment of the electron (not shown) is ẑ ,μ μ=
which is perpendicular to the xy-plane of the orbit. At t 0,= the
relativistically-induced electric dipole-moment v c( / )P μ= × is
aligned with the x-axis, as indicated.

3 The force on the magnetic dipole has been derived in the context of the
Shockley–James paradox [22].

3
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The assumption that the orbit radius r remains constant
during a spin-flip transition in a non-relativistic semi-classical
model does not necessarily imply that it holds also for the
solution of Dirac’s equation in relativistic quantum mechan-
ics. In the context of an extended Bohr model, the spin-
dependence of the radial part of the Dirac–Coulomb wave-
function has been considered by Kholmetskii et al in [17].

Denoting the particle’s energy in the absence of spin–
orbit coupling by K V eq r/2 ,n n0 0 0= + = where

( )r n m e q/ n0
2 2= ℏ is the Bohr radius associated with the

principal quantum number n, the total classical energy of the
system may be written as follows:

v E
eq

r
U

me q

n
c

2

1

2 2
½[( / ) ] .

(11)

n
n n

n
0

2 2

2 2
μδ= + = + = −

ℏ
− × ⋅  

Whereas the first term on the right-hand side of
equation (11) is the unperturbed energy level

( )me q n/ 2 ,n n
2 2 2 2= − ℏ the second term, treated as a small

perturbation, provides the energy split due to spin–orbit
interaction, in agreement with observation.

2.2. Thomas’s contemporaries equated the interaction energy
U with the spin–orbit energy

We speculate now as to why, at the time of Thomas, physi-
cists incorrectly assumed that the interaction energy U had to
correspond to the spin–orbit energy .Δ We start by pointing
out that the first term on the right-hand side of equation (9) is
precisely the result of Bohr’s model, according to which an
integer number n of deBroglie wavelengths p2 / mechλ π= ℏ
must fit around the electron’s circular orbit. (pmech is the
mechanical linear momentum of the electron.) This condition
leads straightforwardly to quantization of orbital angular
momentum, mr n .2ω = ℏ The other constraint is imposed by
the need to obtain the centripetal acceleration from the
attractive Coulomb force of the nucleus, i.e.,
mr eq r/ .n

2 2ω = − These two independent constraints on the
electron’s orbit are subsequently solved to yield

( )r n m e q/ n0
2 2= ℏ and me q n/ ( ).n0

2 2 3 3ω = ℏ Thus, in the
absence of spin–orbit interaction, the kinetic plus potential
energy of the electron is found to be

K V
eq

r
m

eq

n2
½ . (12)n

n n
0 0

0

2
⎜ ⎟⎛
⎝

⎞
⎠= + = = −

ℏ


Bohr’s quantization of angular momentum thus leads to
quantization of the orbits and of the energy, in (partial)
agreement with the predictions of Schrödinger’s equation.
Thomas and his contemporaries apparently did not realize that
the force F of equation (6) acts on the electron. Therefore, the
equilibrium condition used in conjunction with the Bohr
model lacked the U-dependent term in our equation (8). For a
spin-flip transition occurring at fixed r, the potential energy
V r( ) is obviously constant but, without the U-dependent term,
the equilibrium condition, equation (10), implies that 0,δω =
so that also K and, consequently, K Vn = + must remain

constant. In this case, when the interaction termU is added to
K V ,+ as in equation (4), the energy change appears to be

U,δ = leading one to believe that the spin–orbit energy Δ
must correspond to U.δ = Since the interaction energyU is
twice as large as the experimentally observed spin–orbit
energy split ,Δ physicists looked for a way to explain the
missing ½ factor, as Thomas did with his precession
mechanism, which is associated with a continuous rotation of
the rest-frame of the electron.

However, in the rest-frame of the nucleus, where we
contend that Thomas’s precession is absent, the additional
radial force F of equation (7) needs to be taken into account
[17–19]. In fact, if U is added to K V+ while keeping
r 0,δ = equation (8) dictates that ω (and also K ) appearing in
equation (4) must change—if the equilibrium condition for
the orbiting electron is to be restored. Consequently, the
resulting change in energy, ,δ is not U, but rather U½ , as in
equation (9).

Let us consider, for example, a spin-flip transition in
which the magnetic dipole moment along the z-axis flips from

μ− to ,μ while the orbit radius r remains constant. Although
the interaction energy between the nuclear E-field and the
relativistically-induced electric dipole P decreases by U2 ,
the corresponding drop in energy in accordance with
equation (9) is U ,δ = − where δ correctly represents the
corresponding spin–orbit energy change Δ of equation (1).
In this case, for the energy equation, equation (4), to hold
while the electron’s orbit remains stable at a constant r, a
change in the kinetic energy K mr½ 2 2ω= would be manda-
tory. This change in K can be readily evaluated by invoking
the condition r 0δ = and calculating δω from equation (10).

Our model, of course, cannot predict the quantization of
, L, and s, nor can it explain why the spin-flip transition

must occur at a constant r. However, a spin-flip transition at
constant r mirrors the observed behavior, whereas one
involving a change in the orbital radius does not.

3. Energy and angular momentum

In this section we merely point out how U½δ = can be
expressed in the form of Δ given by equation (1), and also
remark on the changes in the angular momentum of the
system. During a spin–orbit process (involving spin-flip and/
or a change in the orbital angular momentum), the atom
interacts with the EM field (i.e., a photon), exchanging energy
and angular momentum with it. An analysis of the dynamical
process, which requires the knowledge of forces and torques
acting on μ during the transition, is beyond the scope of the
present article. The overall change in the energy and angular
momentum of the system, however, may be determined by
examining the steady states of the system before and after the
transition.

The interaction energy U between the relativistically-
induced electric dipole-moment P and the field En of the
nucleus given by equation (5) may be written in alternative
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forms, as follows:

( )
( )

v E E v

v E

U c c

c

[( / ) ] /

/ . (13)

n n

n

μ μ
μ

= − × ⋅ = − ⋅ ×
= − ⋅ ×

As an aside, it is interesting to observe from the last
expression in the above equation that U can be expressed in
terms of the coupling v P ,h− ⋅ where P E c/h nμ= × is the so-
called ‘hidden momentum’ of the magnetic dipole in the
presence of an external electric field [22–25].

To show now that U½δ = goes over to Δ of
equation (1), we recall that, in its non-relativistic approx-
imation, Dirac’s equation provides the spin–orbit energy in
the following form [28]4

( )s E p
e

m c4
(2 / ) . (14)n2 2 mechΔ = − ℏ ℏ ⋅ ×

Here p vmmech = is the momentum of the electron, and

E p r p Lq r q r/ /n n nmech mech
3

mech× = × = 3. Noting that

eq r r V r r/ d ( ) /d ,n
3 1= − − it is seen that equation (14) reduces

to equation (1) provided that g 2.= This spin-dependent term
of the Dirac equation related to the kinetic energy arises from
the coupling of the Pauli matrices σ̂ ( )ŝ2 /= ℏ with the cross-
product E p̂n × .

Choosing the second to last expression in equation (13)
and taking into account equation (2), the spin–orbit energy in
accordance with our model will be

( )
( )E v

s E p

U c
ge

m c

½ ½ /

4
. (15)

n

n2 2 mech

μδ = = − ⋅ ×

= − ⋅ ×



This is in agreement with equation (14), which is
equivalent to the standard expression of spin–orbit energy
given by equation (1). Recalling equation (11), we may now
write the Schrödinger Hamiltonian for an electron of mass m,
charge e, and gyromagnetic factor g 2,≅ orbiting at radius r
in the electric field En Φ= − of the nucleus, where
V r e r eq r( ) ( ) / ,nΦ= = as follows:

( )Ĥ
p̂ p̂

ˆ E p̂

p̂ p̂
ŝ L̂

m
e

e

m c

m
e

g

m c

V r

r r

2 4

2 4

d ( )

d
. (16)

n2 2

2 2

σΦ

Φ

= ⋅ + − ℏ ⋅ ×

= ⋅ + + ⋅

Switching now to the subject of EM linear and angular
momenta, it is well known [22–25] that, when the magnetic
dipole μ of the electron interacts with the electric field En of
the nucleus, the system acquires an EM momentum

P E B Ec V c(4 ) ( )d / , (17)nem
1∫ μπ= × = − ×−

as well as the so-called hidden momentum

P E Pc/ . (18)h n emμ= × = −

In the standard Lorentz formulation of classical electro-
dynamics [29], Ph is interpreted as due to the internal stresses
of systems with complex dynamical structure—which is the
case for the magnetic dipole in the present situation. In con-
trast, both Pem and Ph are absent in the Einstein–Laub for-
mulation [30], where the EM momentum has a different
definition. We will discuss the spin–orbit problem from the
perspective of the Einstein–Laub formalism in section 4. For
the moment, however, it suffices to point out that both for-
mulations yield the same results for the force and torque
exerted by En on the magnetic dipole μ of the revolving
electron.

Due to the EM fields and their associated stresses, our
system thus possesses an EM angular momentum, L ,em and a
hidden angular momentum, L r P r E c( / ),h h nμ= × = × ×
above and beyond its mechanical orbital angular momentum
Lmech and spin angular momentum s. In a spin-flip process,
aside from the change s ,zΔ = ±ℏ the change of the angular
momentum L of the system (around the z-axis) is

L L L L . (19)hmech emδ δ δ δ= + +

There is, therefore, a change in ( )L ẑmrmech
2ω=

because of the change δω in the electron’s orbital velocity in
accordance with equation (10), and also a change in Lem and
L ,h because μ changes orientation. Conservation of angular
momentum requires that Lδ be balanced by the exchange of
angular momentum with the absorbed/emitted photon. How-
ever, as will be shown in the following section, Lzδ of
equation (19) turns out to be much smaller than the change

szΔ = ℏ which takes place in consequence of the electron’s
reversal of spin (from s ẑ½= − ℏ to s ẑ½ ,= + ℏ or
vice versa). Therefore, compared to the change in the spin
angular momentum of the system, the change in L given by
equation (19) is expected to be negligible.

4. Spin–orbit interaction energy derived in the
Einstein–Laub formalism

We mentioned earlier that the Lorentz and Einstein–Laub
formulations lead to identical results. It is worthwhile,
therefore, to show explicitly that the force F in equations (6)
and (7) is formulation-independent. The present section is
devoted to an analysis of the spin–orbit interaction using the
Einstein–Laub expressions of force-density and torque-den-
sity exerted by an external E-field on a moving magnetic
dipole [30]. Since there are no hidden entities in the Einstein–
Laub formalism, the calculations are fairly straightforward.
We switch to the SI system of units, so that the reader may see
the various formulas in both Gaussian (previous sections) and
SI systems.

With reference to figure 1, consider an electron having
mass m, charge e (negative entity), and magnetic dipole-
moment ẑ ,μ μ= rotating with angular velocity ω in a circular
orbit of radius r around a massive, stationary nucleus of

4 In the non-relativistic approximation, Dirac’s Hamiltonian for an electron
of charge e (a negative entity) in the presence of an external field E Φ= −
is given by ( )ˆ E p̂H mc eˆ .p̂ p̂

m

e

m c
Dirac

2
2 4 2 2

OσΦ= + + − ⋅ × +⋅ ℏ Here

ˆ ŝ2 /σ = ℏ represents the Pauli matrices, and O stands for higher-order terms
in p4 plus the Darwin term.
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charge q .n The orbit of the electron is in the xy-plane, the
nucleus is at x y z( , , ) (0, 0, 0),n n n = and the magnetic
moment μ is either along ẑ or ẑ ,− indicating that we are
interested only in the two orientations of μ corresponding to
spin-up and spin-down states of the revolving electron. In the
SI system of units used throughout the present section, the
permittivity and permeability of free space are denoted by 0ε
and ,0μ respectively. The various entities needed in our
analysis will now be described.

(i) The electric field of the nucleus at and around the location
of the electron is given by Coulomb’s law, as follows:

( )
E r

r̂ x̂ ŷ ẑq

r

q x y z

x y z
( )

4 4
. (20)n

n n

0
2

0 2 2 2 3/2

⎛
⎝⎜

⎞
⎠⎟πε πε

= = + +

+ +

(ii) The relativistically-induced electric dipole-moment due
to the motion of the electron (magnetic dipole-moment

ẑ ,μ μ= linear velocity v ˆr )φω= is given by

r̂r( ) . (21)0P ε ωμ=

(As before, it is being assumed here that the time-
dependence of the velocity v does not alter the relation
connecting P to μ and v.) Recall that in SI, where
B H M,0μ= + the relation between the electron’s magnetic
dipole-moment μ and its spin angular momentum s is

s
ge

m2
. (22)0

⎜ ⎟⎛
⎝

⎞
⎠μ μ=

(iii) Under the circumstances, the electrostatic interaction
energy between the nucleus and the induced electric
dipole will be

EU r
q

r
( , )

4
. (23)n

n
Pω

ωμ
π

= − ⋅ = −

(iv) Finally, the electron’s kinetic energy K , potential
energy V , mechanical (orbital) angular momentum
L ,mech and the centripetal force Fc acting on the electron
may be written as

K r mr( , ) ½ , (24)2 2ω ω=

V r
q e

r
( )

4
, (25)n

0πε
=

( )L ẑ ,mr (26)mech
2ω=

( )F r̂mr . (27)c
2ω= −

In the Einstein–Laub formalism, the force-density F r t( , )
and the torque-density T r t( , ) exerted by the EM fields
E r t( , ) and H r t( , ) on a material medium specified by its free
charge-density r t( , ),freeρ free current-density J r t( , ),free

polarization P r t( , ), and magnetization M r t( , ), are written
[29–31]

F r E J H P E

P H M H M E

t

a

( , ) ( )

( ) ,

(28 )
t t

free free 0

0 0





ρ μ

μ ε

= + × + ⋅

+ ∂ × + ⋅ − ∂ ×

T r r F P E M Ht b( , ) . (28 )= × + × + ×

In the present problem, there is no external magnetic field
in the rest-frame of the nucleus, that is, H r t( , ) 0.= Also, the
external E-field acting on the electron is E r E rt( , ) ( ),n=
given by equation (20). Assuming the electron arrives at
x y z r( , , ) ( , 0, 0)= at t 0,= in the immediate vicinity of

t 0,= the free charge-density, polarization, and magnetization
may be written as

r t e x r y vt z( , ) ( ) ( ) ( ), (29)freeρ δ δ δ= − −

P r x̂t r x r y vt z( , ) ( ) ( ) ( ) ( ) , (30)0ε ωμ δ δ δ= − −

M r ẑt x r y vt z( , ) ( ) ( ) ( ) . (31)μδ δ δ= − −

Appendix B shows that, after algebraic manipulations,
the Einstein–Laub force exerted by the nucleus on the moving
electron turns out to be

F F r

x̂ x̂

t t x y z

eq

r

q

r

( 0) ( , 0)d d d

4 4
. (32)

n

n n

0
2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫∫∫

πε
ωμ

π

= = =

= −

−∞

∞

The first term on the right-hand side of equation (32) is
the attractive Coulomb force of the nucleus acting on the
charge e of the electron. The second term corresponds to the
force exerted by the nucleus on the moving magnetic dipole

ẑμ μ= (including the contribution to the force by the relati-
vistically-induced electric dipole ).P These are precisely the
same forces as obtained in section 2 using the Lorentz
formalism. (General formulas for the EM force and torque
acting on the revolving electron when μ is not aligned with
the z-axis are given in appendix C.)

The force of the nucleus on the electric and magnetic
dipoles, i.e., the second term on the right-hand side of
equation (32), is much smaller than the force on the charge of
the electron (i.e., the first term). Therefore, the contributions
of P and ,μ the electric and magnetic dipole-moments of the
electron, to the central force can alter the orbital motion only
slightly. Since the central force Fn of equation (32) must be
equal to the centripetal force Fc of equation (27), we have

eq

r

q

r
mr

4 4
. (33)n n

0
2 2

2

πε
ωμ

π
ω− = −

In light of the above force-balance equation, invoking
equations (22)–(26), and using the identity c1/ ,0 0

2μ ε = the
total energy of the electron may now be expressed as

s L

K V U mr
q e

r

q

r
q e

r

q

r

V r
q

r

ge

m
s

V r
g

m c

V r

r r

½
4 4

8 8

½ ( )
1

2 4 2

½ ( )
4

d ( )

d
. (34)

n n

n n

n

2 2

0

0

0

2 2

⎜ ⎟⎛
⎝

⎞
⎠

ω
πε

ωμ
π

πε
ωμ

π
ω

π
μ

= + + = + −

= −

= −

= + ⋅



The above equation indicates that if, during a spin-flip,
the radius r of the orbit remains constant, the change in
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energy will be given by the Thomas formula, equation (1)—
the factor ½ is thus fully accounted for without the need to
invoke the precession of the electron’s rest-frame.

In general, one might argue that both r and ω could
change during a spin-flip. In that case, equation (33) indicates
that mr ,3 2ω which in the absence of the spin magnetic
moment is equal to ( )eq / 4 ,n 0πε− must increase by q /4nωμ π
when ẑμ μ= is aligned with the z-axis (i.e., 0 ).μ > Alter-
natively, when 0μ < (i.e., μ aligned with the negative z-axis),
the quantity mr3 2ω must decrease by q /4 .nωμ π Thus, if the
change in the orbital motion of the electron is brought about
by a concurrent change in r and ω (by the small amounts
r r r0δ = − and ),0δω ω ω= − we must have

( )mr mr r mr
q

r r
q

mr

3 2
4

1.5
8

.

(35)

n

n

3 2
0
2

0
2

0
3

0
0

0 0
0
2

δ ω ω δ ω δω
ω μ

π

ω δ δω
μ

π

= + =

→ + =

Any choices for rδ and δω that satisfy equation (35)
would then be acceptable; however, unless r 0,δ = the cor-
responding change in energy, ,δ will not coincide with the
experimentally observed spin–orbit energy given by
equation (1).

A final remark about the angular momentum of the
system is in order. In a spin-flip process, the orbital angular
momentum Lmech of the electron will change in accordance
with the formula

( ) ( )L ẑ ẑmr mr r mr2 . (36)mech
2

0 0 0
2δ δ ω ω δ δω= = +

Assuming r 0δ = and using ( )q mr/ 8n 0
3δω μ π= from

equation (35), we find L ẑq r/ (8 ).nmech 0δ μ π= Invoking
equations (22) and (33), it is now easy to show that the
change of Lz mechˍ in consequence of a switch from ẑ–μ to ẑμ+
(i.e., spin-up to spin-down transition) is given by

L
q

r

g v

c
s

4 2
. (37)z

n
mech

0

2
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠δ

μ
π

= =ˍ

Considering that, for the revolving electron, g 2,≅
v c,≪ and s /2,= ±ℏ it is seen that the change of the
mechanical angular momentum in the spin-flip process is
much smaller than ℏ.

In addition to the mechanical angular momentum just
mentioned, the spin-flip process is accompanied by a change
in the EM angular momentum of the system. In the Einstein–
Laub formalism, the EM momentum-density is
p r E r H rt t t c( , ) ( , ) ( , ) /em

2= × [29]. For a point-charge–
point-magnet system such as a stationary nucleus of charge qn
at a distance r from a stationary electron whose magnetic
moment is ẑ ,μ it is not difficult to show that [32]

p r x y z( )d d d 0. (38)em∫∫∫ =
−∞

∞

Consequently, no net EM momentum resides in the
system. However, the system’s total EM angular momentum

does not vanish. One can show that [32]

( )

L r p r

r r E ẑ

x y z

q

r

( )d d d

( )
4

. (39)e n n
n

em em

0 ⎜ ⎟⎛
⎝

⎞
⎠

∫∫∫
μ ε

μ
π

= ×

= − × × =

−∞

∞

A transition from spin-up to spin-down thus raises the EM
angular momentum of the system by ẑq r2 /(4 ),n 0μ π which is
twice as large as the corresponding change in the mechanical
angular momentum given by equation (37). Once again, such
changes in the angular momentum of the system are negligible
compared to the change in the spin angular momentum

s ẑΔ = ±ℏ .

5. Concluding remarks

We have considered a model in which the spin–orbit energy
originates in the overlap of the electric field EP of the rela-
tivistically-induced electric dipole P with the field En of the
nucleus, yielding, in the rest-frame of the nucleus, the inter-
action energy EU nP= − ⋅ of equation (5). Assuming that in
a spin-flip transition the radius r of the orbit remains constant,
our model predicts that, upon introducing the interaction
energy U, the overall energy of the system changes by

U½ ,δ = as appears in equation (9). The crucial ½ factor
originates from the concurrent change in the kinetic energy K
of the revolving electron during the spin-flip process, emer-
ging naturally as a consequence of the effect of the radial
force F on the stability of the orbit; see equation (7). In the
end, only ½ of the interaction energy U is available to be
exchanged with the absorbed or emitted photon, that is,

U½δ = goes over to Δ of equation (1).
By failing to incorporate the radial force F r̂U r/= of

equation (7) into the equilibrium condition, Thomas’s con-
temporaries were led to incorrectly believe that Δ for the
Bohr model of the hydrogen atom (and the corresponding
solution to Schrödinger’s equation) had to be equated with the
additional interaction energy U given by equation (3). The
neglect of F thus resulted in a theoretical over-estimation of
the expected spin–orbit energy by a factor of 2, which was
subsequently claimed to be corrected by Thomas [1, 2]. The
present paper has argued that the correct ½ factor may be
derived without resort to Thomas’s precession, requiring only
that the kinetic energy K , the potential energy V , and the
interaction energyU between the electron’s magnetic moment
μ and the nuclear E-field be calculated in the rest-frame of the
nucleus—with the caveat that, in a spin-flip transition, the
orbit of the electron must maintain a constant radius.

The question asked by Fisher [8] (and mentioned in our
introductory section) remains as to whether the agreement
between Thomas’s result and relativistic quantum mechanics
is an accident. Either way, the spin–orbit energy calculated in
the electron’s rest-frame must be corroborated with the cor-
responding calculations in the rest-frame of the nucleus. The
results of the present paper indicate that Thomas’s conclusion
(if not his methodology) could be brought into alignment with
the spin–orbit energy obtained in the rest-frame of the
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nucleus. One thing that Thomas’s method does not clarify is
the fate of the remaining energy, EU½ ½ ,nP= − ⋅ which is
not carried by the absorbed/emitted photon. The results of the
preceding sections show that the remaining energy goes into
(or comes out of ) the kinetic energy K of the orbiting electron
as seen in the rest-frame of the nucleus.

In conclusion, Bohr’s model of the hydrogen atom can be
extended to account for the observed spin–orbit interaction
with the stipulation that, during a spin-flip transition, the orbital
radius r remains constant. In other words, if there is a desire to
extend Bohr’s model to accommodate the spin of the electron,
then experimental observations mandate robust orbits during
spin-flip transitions. This is tantamount to admitting that
Bohr’s model is of limited value, and that one should really rely
on Dirac’s equation for the physical meaning of spin, for the
mechanism that gives rise to g 2,= for Zeeman splitting, for
relativistic corrections to Schrödinger’s equation, for Darwin’s
term, and for the correct ½ factor in the spin–orbit coupling
energy. Bohr’s model is a poor man’s way of understanding the
hydrogen atom. If one desires to extend Bohr’s model to
account for the spin–orbit interaction, then one must introduce
the ad hoc assumption that the orbit radius r is invariant during
a spin-flip transition. While a strong physical justification in
support of this assumption does not seem to exist, it at least
provides a plausibility argument for the observed ½ factor.
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Appendix A

Following a suggestion by Purcell as reported in Smoot’s
Berkeley lecture notes [33], we derive Thomas’s precession
formula for the magnetic moment of an electron revolving
with constant angular velocity ω in a circular orbit of radius r
around a stationary nucleus.

With reference to figure A1, let a point-particle travel at
constant speed v rω= around a regular n-sided polygon in the
xy-plane. Also residing in the particle’s rest-frame is a gyro-
scope, whose spin axis G maintains a constant orientation
within the laboratory frame xyz. When, at t 0,= the particle
arrives at the origin, x y( , ) (0, 0),= it suddenly changes
direction and moves toward the next vertex located at x y( , ) =
x y( , ).0 0 From the perspective of a stationary observer in the
inertial xyz frame, the particle has made a swift turn at an angle

y xtan ( / ).1
0 0φ = − However, in the rest-frame of the particle, at

t 0,=′ the coordinates of the next vertex are ( )x y,0 0 =′ ′

v c x y( 1 / , ).2 2
0 0− Therefore, the particle ‘believes’ that it

has turned through a somewhat larger angle ,φ′ namely

y

v c x
tan

1 ( / )
. (A1)1 0

2
0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟φ′ =

−
−

Suppose now that the polygon has a large number of
sides, that is, n 1,≫ so that, in the limit of large n, it
approaches a circle. We may then use the small-angle
approximation to write

v c1 ( / )
. (A2)

2
φ φ′ ≅

−

Now, in the xyz frame, which is the rest-frame of the
nucleus, each sharp turn corresponds to n2 /φ π= radians.
However, from the particle’s perspective, its direction of
travel changes by n2 /φ πγ′ = at each turn (using standard

relativistic notation v c1/ 1 ( / ) ).2γ = − Consequently,
when the full circle is traversed, the particle believes that it
has turned through a cumulative angle of n 2 .φ πγ′ = This, of
course, is an exact result, because, in the limit when n ,→ ∞
the small-angle approximation that led to equation (A2)
becomes accurate.

In the rest-frame of the electron, the spin axis G of the
gyroscope, which is not subject to any external influences,
appears to rotate clockwise in the x′y′-plane; see figure A1.
Therefore, upon completing one full cycle of revolution
around the nucleus, the vector G appears to have undergone a
clockwise rotation through the angle 2 ( 1).Δφ π γ′ = − We
may write

v

c

2 ( 1) 2
1

1

2
1

1
1

2
1

. (A3)

2

2

2

2 2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Δφ π γ π γ
γ

π γ
γ γ

π γ
γ

′ = − = −
+

=
+

− =
+

Recalling that the particle’s angular velocity is v r/ ,ω =
the number of full rotations per second around the circle in the

Figure A1.A point-particle, such as an electron, travels with constant
speed v around a regular, n-sided polygon in the xy-plane. Residing
in the particle’s rest-frame is a gyroscope, whose spin axis G
maintains a constant direction in space as seen in the laboratory
frame. At every corner, the particle swiftly changes direction through
the angle n2 / .φ π= From the perspective of the particle, however,
the turn angle is somewhat greater than φ due to the Lorentz–
FitzGerald contraction of lengths along the direction of travel. The
gyroscope thus appears to undergo a clockwise rotation when
viewed in the rest-frame of the particle.
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xyz frame is /2 ;ω π the same entity in the particle’s rest-frame
is given by /2γω π (due to time dilation). Consequently, the
apparent precession rate of G around the z-axis in the parti-
cle’s rest-frame is given by

ẑ ẑ

a v

v

c

r

c

c

1 1

1
. (A4)

T

3 2

2

3 2 3

2

3

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ω γ
γ

γ
γ

ω

γ
γ

Ω = −
+

= −
+

=
+

×

In the above expression of the Thomas precession rate,
v ˆr φω= is the linear velocity, and a r̂r 2ω= − is the radial
acceleration of the revolving particle—both measured in the
xyz frame. Thomas’s precession is thus seen to be a purely
geometrical effect rooted in the Lorentz–FitzGerald length-
contraction and time-dilation of special relativity. For v c,≪
which is typical of atomic hydrogen, we have 1γ ≅ and

/ ( 1) ½,3γ γ + ≅ leading to

ẑ
r

c
.

2
(A5)T

2 3

2

⎛
⎝⎜

⎞
⎠⎟Ω ω≅ −

We mention in passing that, in the above discussion, as in
much of the literature, the contribution of the Coriolis force to
the precession of G (as seen in the particle’s rest-frame) has
been ignored. This is because in the expression of Δφ′ in
equation (A3) we discounted the ordinary rotation (per
revolution cycle) of the x y′ ′ axes through 2π radians. The
Coriolis force exerts an apparent torque on the gyroscope,
which causes a precession of its spin axis at the rate of

ẑ .C ωΩ = − Unlike the relativistic Thomas precession, the
non-relativistic precession attributed to the Coriolis force has
been deemed incapable of affecting the spin–orbit coupling
energy. This is appropriate considering that the Coriolis tor-
que, being fictitious, cannot affect the energy of the gyro-
scope. However, since the Thomas precession is similar in
character to the non-relativistic rotation of coordinates, it is
not clear why this relativistic counterpart of the Coriolis
torque should be relied upon to arrive at the correction to the
spin–orbit coupling energy.

Returning to Thomas’s argument, suppose now that μ
represents the magnetic dipole-moment of a particle, being
related to its intrinsic angular momentum s via

sge mc( /2 ) ;μ = see equation (2). In a constant, uniform
magnetic field B, the time-rate-of-change of s follows New-
ton’s law, s Btd /d ,μ= × where Bμ × is the torque exerted
by B on the magnetic moment. Since s std /d ,Ω= × where
Ω is the precession rate of the dipole-moment around B, we
find

B
ge

mc2
. (A6)⎜ ⎟⎛

⎝
⎞
⎠Ω = −

Considering that the dipole’s energy in the presence of
the B-field is B s ,μ Ω= − ⋅ = ⋅ Thomas found it plausible
to relate the precession rate TΩ of equation (A5) to the energy
of the revolving electron.

Now, the magnetic field B v Ec( / ) ,n′ ≅ − × which
appears in equation (3) and is produced by a Lorentz

transformation of the nuclear field En to the rest-frame of the
electron, may be written

B ẑ
mr

ec
. (A7)

2 3⎛
⎝⎜

⎞
⎠⎟

ω′ ≅ −

To see this, note that v ˆr ,φω= E r̂q r/ ,n n
2= and

eE mr .n
2ω= − Thus, in accordance with equation (A6), the

precession frequency associated with B′ in the electron’s rest-
frame is

B ẑ
ge

mc

gr

c2 2
. (A8)

2 3

2
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟Ω ω= − ′ ≅

Noting that g 2,≅ it is readily seen that the above fre-
quency is twice as large as that associated with the Thomas
precession, as given by equation (A5); moreover, Ω and TΩ
are seen to have opposite signs. That is how Thomas con-
cluded that the energy associated with a spin-flip transition
must be one-half of the energy U appearing in equation (3),
that is, BU½ ½ μΔ = = − ⋅ .

Appendix B

Using equations (28)–(31) and with the aid of equation (20),
we calculate the Einstein–Laub force exerted by the nucleus
on the moving electron, as follows:

( )

( )

( )

]

F F r

E P E M E

x̂ ŷ ẑ

x̂ ŷ ẑ

ẑ

x̂ ŷ ẑ

t t x y z

x y z

eq
x r y vt z

x y z

x y z

r q

x r y vt z
x

x y z

x y z

v q
x r y vt z

x y z

x y z
x y z

( 0) ( , 0)d d d

( ) d d d

4
( ) ( ) ( )

4

( ) ( ) ( )

4
( ) ( ) ( )

d d d . (B1)

n

t

n

n

n

free 0

0

2 2 2 3/2

0

0

2 2 2 3/2

2 2 2 3/2

⎡⎣
⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎫
⎬⎪
⎭⎪



∫∫∫
∫∫∫

∫∫∫

ρ ε

πε
δ δ δ

ε ωμ
πε

δ δ δ

μ
π

δ δ δ

= = =

= + ⋅ − ∂ ×

= − −

× + +

+ +
+

× − − ∂
∂

+ +

+ +

+ − −

× + +

+ +

−∞

∞

−∞

∞

−∞

∞

′

Recalling the sifting property of Dirac’s delta function
and its derivative, namely

f x x x x f x( ) ( )d ( ), (B2)0 0∫ δ − =
−∞

∞

f x x x x f x( ) ( )d ( ), (B3)0 0∫ δ′ − = − ′
−∞

∞
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straightforward algebraic manipulations of equation (B1)
yield

( ) ( )

( )

( )

( ) ( )

( )

( )

(B4)

F
x̂

x̂ x̂ ŷ ẑ

ŷ x̂

x̂ x̂ ŷ x̂

x̂ x̂

x̂ ŷ x̂

x̂ x̂ x̂

x̂ x̂

t
eq

r

r q

x y z

x x y z

x y z

x r y z x y z
r q

x y

x y z
x r y z x y z

eq

r

r q

r

r q r y

r y

y y
eq

r

q

r

r q

r y

y r y

r y
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r

q

r

r q

r
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r
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r
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4 4
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4
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4 4
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n
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⎣
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π
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π
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×
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−
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× − +
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− ′
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+
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×
+

+
−

+

= − +

= −

−∞
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−∞
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=

This is the result that was stated in equation (32).

Appendix C

With reference to figure 1, if, in the electron’s rest-frame, the
magnetic moment μ happens to have components along all
three axes, that is, x̂ ŷ ẑ ,x y zμ μ μ μ= + + then, in the rest-
frame of the nucleus, we will have

( )M r x̂ ŷ ẑt x r y vt z( , ) ( ) ( ) ( ),

(C1)

x y z
1μ γ μ μ δ δ δ= + + − −−

( )P r x̂ ẑt v x r y vt z( , ) ( ) ( ) ( ). (C2)z x0ε μ μ δ δ δ= − − −

Substitution into equation (28), followed by integration
over the volume of the particle, yields

( )F x̂ x̂ ẑt
eq

r

q v

r
( 0)

4 4
2 , (C3)n n

z xEL
0

2 3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟πε π

μ μ= = − +

( )T x̂ ŷ ẑt
q v

r
( 0)

4
. (C4)x y

n
EL

1
2

⎛
⎝⎜

⎞
⎠⎟μ γ μ

π
= = + ×−

These are the Einstein–Laub force and torque acting on
the revolving electron in the rest-frame of the nucleus; the
torque is calculated with respect to the instantaneous position
of the electron at t 0,= namely, r r( , 0, 0)0 = .

In its own rest-frame, the electron is acted upon by
F FEL ELγ=′ and T H ,EL μ= ×′ ′ where ( )H ẑq v r/4n

2γ π=′ is

the magnetic field of the revolving nucleus. Clearly,
T TEL EL≅ ′ at non-relativistic velocities where 1.γ ≅ This
near-equality of TEL and TEL′ is perhaps another indication that
Thomas’s precession mechanism cannot be responsible for
the ½ factor in the expression of the spin–orbit coupling
energy.
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