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Abstract

Current formulations of anisotropic diffusion are unable
to prevent feature drift and smooth small regions. These
deficiencies reduce the effectiveness of the diffusion
operation in many image processing tasks, including
segmentation, edge detection, compression, and multi-
scale processing. This paper introduces a morphological
diffusion coefficient capable of smoothing small objects
while maintaining edge locality. Results are presented
that demonstrate its efficacy in edge detection tasks.

1. Introduction

The anisotropic diffusion equation provides a
technique for selective image smoothing. Preserving
contrast by incorporating region boundaries within the
filtering operation, anisotropic diffusion adaptively filters
a signal by encouraging intra-region smoothing while
inhibiting inter-region interactions. Originally
introduced as an alternative to traditional linear scale
generating kernels [6], the design of this nonlinear
process was motivated by the need to reduce the
movement of edges.

While anisotropic diffusion does reduce feature drift, it
does not guarantee the removal of small scale detail, and
the existence of these small features introduces problems
for a variety of signal processing applications, including
filtering, sampling, and system stability. More recent
expressions of anisotropic diffusion can smooth small
regions, but reintroduce feature drift and edge movement.

In this paper, a realization of the anisotropic diffusion
equation capable of smoothing small features while
preserving edge locality is introduced. The paper is
organized as follows: The second section provides
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background on the anisotropic diffusion equation and
discusses previous coefficient realizations. Section HI
introduces a new diffusion coefficient based on
morphological operators. Section IV reveals numerical
and visual comparisons of the proposed coefficient and
two standard diffusion approaches.

I1. Anisotropic Diffusion

It has been shown that the Gaussian filter can be
implemented with the heat equation [5]. For a two
dimensional image 1, this is expressed as
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where the variance of the Gaussian kernel is proportional
to the solution time, ¢.
In proposing a filter which removes the problem of

feature drift, Perona and Malik introduced the nonlinear
smoothing expression

@

ol .
= div[c V1], @)
where div is the divergence operator, VI is the image
gradient, and c is the diffusion coefficient [6]. Allowing
the diffusion coefficient to vary with respect to the local
image gradient produces anisotropic diffusion, and the
success of the anisotropic diffusion approach is strongly
tied to the method of computing the diffusion coefficient.

Original coefficient implementations were dependent
solely on local gradient information. One suggestion was
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where ¢ is the diffusion coefficient and k is a gradient
threshold [6].

Basing the anisotropic diffusion coefficient completely
on local gradients does create a filter capable of
smoothing an image while maintaining edge locality;



however, it is unable to remove small scale features with
high contrast. This property makes anisotropic diffusion
unsuitable for the removal of heavy-tailed noise and
inappropriate as a sampling prefilter. Additionally, it
results in a mathematically ill-posed process, as small
changes in the original image produce large changes in
the filtered result [9]. These problems may be overcome
by computing the gradient across a larger region.

The first coefficient implementation capable of
increasing the scale of the gradient was introduced by
Catté et al. [2]. By smoothing the image used in the
gradient calculation, the form
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was introduced, where G, is a Gaussian weighted
lowpass filter of standard deviation ¢, I is the image, and
k is the gradient threshold.

Prefiltering the gradient is an attractive and effective
method for allowing the anisotropic diffusion process to
remove small, high contrast regions. Unfortunately,
while the problems inherent to the original anisotropic
diffusion equation are reduced, the use of a linear filter
reintroduces edge movement, defeating the primary
motivation of the anisotropic diffusion process.

To develop a diffusion coefficient capable of smoothing
small scale objects while minimizing feature drift,
regions must be identified without removing important
high frequency content. This criterion suggests the use
of nonlinear filters, and the construction of a diffusion
coefficient based on nonlinear morphological operators is
discussed in the next section.

II1. Morphological Anisotropic Diffusion

Morphological operators are able to produce image
representations of increasing scale without eradicating
edges. Approaching image processing from the vantage
point of human perception, morphological operators
simplify image data, preserving essential shape
characteristics and eliminating irrelevancies [4]. These
properties make them well suited for identifying small
features and allowing the diffusion equation to smooth
them. For an introduction to morphological filtering, see
[8].

The choice of morphological filter type is crucial to the
development of a new diffusion coefficient. Fundamental
operators, such as erosion and dilation, are unsuitable as
they induce edge movement. Simple combinations of
these operators, such as opening and closing, reduce
feature drift but introduce an intrinsic gray scale bias,
removing only light or dark features.
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The morphological close-open filter effectively
identifies regions without removing high frequency
information, without introducing edge drift, and without
exhibiting gray scale bias. Substituting these nonlinear
morphological operators for the linear filter in (4) results
in a new diffusion coefficient
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where I is the original image, k is the gradient threshold,
and (I . K] oK is the morphological close-open filter.

Applying morphological operators to the anisotropic
diffusion coefficient allows the diffusion equation to
smooth objects smaller than the structuring element, K,
while maintaining edge structure and location. In the
next section, results are presented which compare the
new diffusion coefficient with previous diffusion
expressions. These results will illustrate the difficulties
inherent to the previous coefficients while exhibiting the
capability of the new anisotropic diffusion process to
maintain edge locations while smoothing small scale
features.

IV. Results and Conclusions

To display the effectiveness of the new morphological
diffusion coefficient, simulations were conducted with
three classes of the anisotropic diffusion coefficient. The
first class was dependent solely on local gradient
information and represented by the coefficient described
by (3). The second and third classes employed scale-
modified definitions for the gradient. The second class
used a linear filter in performing the gradient calculation
while the third class used a nonlinear morphological
filter. These classes were represented by coefficients
described by (4) and (5), respectively.

Realization of a discrete representation of the
anisotropic diffusion equation utilized an approximation
suggested in [6]. The iterative solution is given as
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where I;;, is the image pixel value at location (i) for
solution time ¢, Vy, V5, Vg Vy are the image gradients
(simple differences) in the north, south, east, and west
directions respectively, cy,cs cg cw are the corresponding
diffusion coefficients, and At is the solution time step.
Equivalent scale parameters for the linear and
morphological filters in the scale aware diffusion
coefficients were chosen to provide information removal
of similar scale, and both were defined by satisfying
conditions necessary for subsampling the filtered
representations by a factor of three. The Gaussian kernel



used in the second coefficient class was defined to have a
standard deviation of 6/m, as suggested to satisfy
Shannon’s sampling theorem in [1]. Similarly, the
morphological kernel used in the third coefficient class
was defined to be a square structuring element of width
five, as suggested to satisfy the Homotopy Preserving
Critical Sampling Theorem in [3].

Producing a qualitative evaluation of the three
processes, the anisotropic diffusion equation was applied
to synthetic imagery corrupted by 40% salt and pepper
noise. Results are shown in Figure 1. As claimed in the
second section, the diffusion equation based solely on
local gradient information is unable to remove impulsive
noise, while both spatially enlarged coefficients are
capable of smoothing these small, high contrast objects
and maintaining large scale edges. Results for coefficient
classes two and three are visually similar, although closer
inspection will show that the third class, the nonlinear
morphological method, provides a slight improvement in
feature definition.

A second qualitative example of the three anisotropic
diffusion processes was attained by applying the
smoothing operations to the cameraman image. These
results are similar to those achieved with the previous
synthetic imagery, and they are presented in Figure 2.
Again, the first coefficient class, using a traditional
gradient calculation, is unable to remove fine detail, as
evident by the existence of the small objects present on
the ground. The second coefficient class, using a linear
filter within its gradient calculation, removes these small
features, but at the expense of introducing edge
movement and feature drift. (Notice the excessive
smoothing of the camera and the movement of the
elbow.) The new morphological anisotropic diffusion
algorithm is capable of overcoming both deficiencies,
removing small objects while maintaining edge locality.

While qualitative comparison of the three methods of
anisotropic diffusion begins to distinguish the smoothing
properties of the morphological diffusion coefficient, a
quantitative comparison of their edge detection accuracy
displays the advantages of the new diffusion expression.

In determining the edge detection capabilities of the
three variants of anisotropic diffusion, synthetic imagery
was again corrupted by 40% salt and pepper noise.
These images were then smoothed; and at each solution
time, edges were identified and compared with known
edge locations. Recognizing edges in the filtered
imagery was accomplished with the use of a simple Sobel
edge detector, well motivated by the smoothing properties
of the anisotropic diffusion equation, and the threshold of
the edge detector was defined to be equal to the gradient
threshold of the diffusion coefficient, k.
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Experimental comparison of edge detection
performance was calculated using two quantitative
metrics. The first, Pratt’s edge quality measurement, is
defined as
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where I, is the number of edge points detected in the
filtered image result, I; is the number of edge points
existing in the original, noise free imagery, d(i) is the
Euclidean distance between an edge location in the
original image and the nearest detected edge, and o is a
scaling constant, set to the suggested value of 1/9 [7].
Perfect recovery of all edge information in the original
image results in an edge quality measurement of one
(F=1); poor edge localization lowers the value.

The second measurement contains a more tangible
representation of the candidate filter performance and is
defined to be the percentage of original edge points
successfully identified by the edge detection process.
Correctly recovering all edges in the initial image results
in a 100% identification percentage, not detecting a
feature at its original location lowers the identification
measurement.

The results of the numerical experiment are presented
in Figure 3. We see that the linear coefficient initially
outperforms the other diffusion variants in the edge
quality —measurement, but produces the poorest
identification percentage. As solution time increases, the
introduction of edge localization errors by the linear filter
becomes more evident and is displayed by the rapid
decrease in matched features. Specifically, at solution
time three, the linear coefficient is unable to correctly
identify the location of a single edge. The morphological
anisotropic  diffusion method provides significant
performance improvement, able to identify over 70% of
the original edges and attain a solution quality
measurement of .95.
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Figure 1. Three classes of anisotropic diffusion applied to

(c)

synthetic imagery: (a) original image corrupted with 40% salt
and pepper noise; (b) results obtained using (3); (c) results
obtained using (4); (d) results obtained using morphological
anisotropic diffusion (5). The gradient threshold, k, was 40 and
the solution time was 3.
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Figure 3a. Praft’'s measurement of edge quality: (a) resuits
obtained from (3); (b) results obtained using (4); (c) results
obtained using morphological anisotropic diffusion (5). The
gradient threshold, k, was 40.
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Figure 2. Three classes of anisotropic diffusion applied to the
cameraman image: (a) original image; (b) results obtained
using (3); (c) results obtained using (4); (d) results obtained
using morphological anisotropic diffusion (5). The gradient
threshold, k, was 10 and the solution time was 20.

100 T T T

L/X = |

ol B
©
7o =

90

60 E

50

Parcent Correct Pixels

40t 4
30
(b)

20

10

2 2.5

° L L L

o 0.5 1 3

Figure 3b. Percentage of edges correctly identified: (a) results
obtained from (3); (b) resuits obtained using (4); (c) results
obtained using morphological anisotropic diffusion (5). The
gradient threshoid, k, was 40.



