
Wait-Free Synchronization in Quantum-Based
Multiprogrammed Systems?

(Extended Abstract)

James H. Anderson, Rohit Jain, and David Ott

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract. We consider wait-free synchronization in multiprogrammed
uniprocessor and multiprocessor systems in which the processes bound to

each processor are scheduled for execution using a scheduling quantum.

We show that, in such systems, any object with consensus number P in
Herlihy's wait-free hierarchy is universal for any number of processes ex-

ecuting on P processors, provided the scheduling quantum is of a certain

size. We give an asymptotically tight characterization of how large the
scheduling quantum must be for this result to hold.

1 Introduction

This paper is concerned with wait-free synchronization in multiprogrammed sys-

tems. In such systems, several processes may be bound to the same processor. In

related previous work, Ramamurthy, Moir, and Anderson considered wait-free

synchronization in multiprogrammed systems in which processes on the same

processor are scheduled by priority [4]. For such systems, Ramamurthy et al.

showed that any object with consensus number P in Herlihy's wait-free hierar-

chy [2] is universal for any number of processes executing on P processors, i.e.,

universality is a function of the number of processors in a system, not the num-

ber of processes. An object has consensus number C i� it can be used to solve

C-process consensus, but not (C+1)-process consensus, in an asynchronous sys-

tem in a wait-free manner. An object is universal in a system if it can be used

to implement any other object in that system in a wait-free manner.

In this paper, we establish similar results for multiprogrammed systems in

which quantum-based scheduling is used. Under quantum-based scheduling, each

processor is allocated to its assigned processes in discrete time units called

quanta. When a processor is allocated to some process, that process is guar-

anteed to execute without preemption for Q time units, where Q is the length of

the quantum, or until it terminates, whichever comes �rst. In this paper, we show

that quantum-based systems are similar to priority-based systems with regard

? Work supported by NSF grants CCR 9510156 and CCR 9732916, and by a Young In-

vestigator Award from the U.S. Army Research O�ce, grant number DAAH04-95-1-

0323. The �rst author was also supported by an Alfred P. Sloan Research Fellowship.

to universality. In particular, we show that any object with consensus number P

in Herlihy's wait-free hierarchy is universal in a quantum-based system for any

number of processes executing on P processors, provided the scheduling quan-

tum is of a certain size. We give an asymptotically tight characterization of how

large the scheduling quantum must be for this result to hold.

Our results are summarized in Table 1. This table gives conditions under

which an object with consensus number C is universal in a P -processor quantum-

based system. In this table, Tmax (Tmin) denotes the maximum (minimum) time

required to perform any atomic operation,Q is the length of the scheduling quan-

tum, and c is a constant that follows from the algorithms we present. Obviously,

if C < P , then universal algorithms are impossible [2]. If P � C � 2P , then the

smallest value of Q that su�ces is a value proportional to (2P + 1�C)Tmax . If

2P � C < 1, then the smallest value of Q that su�ces is a value proportional

to 2Tmax . If C =1, then Q (obviously) can be any value [2].

An important special case of our main result is that reads and writes are

universal in quantum-based uniprocessor systems (P = 1). In this case, the

scheduling quantum must be large enough to encompass the execution of eight

high-level language instructions (see Theorem 1). In any practical system, the

scheduling quantum would be much larger than this. Thus, in practice, Herlihy's

wait-free hierarchy collapses in multithreaded uniprocessor applications in which

quantum-based scheduling is used.

It is important to note that the results of this paper do not follow from

the previous results of Ramamurthy et al. concerning priority-based systems,

because priority-based and quantum-based execution models are fundamentally

incomparable. In a priority-based system, if a process p is preempted during

an object invocation by another process q that invokes the same object, then p

\knows" that q's invocation must be completed by the time p resumes execution.

This is because q has higher priority and will not relinquish the processor until it

completes. Thus, operations of higher priority processes \automatically" appear

to be atomic to lower priority processes executing on the same processor. This

is the fundamental insight behind the results of Ramamurthy et al.

In contrast, in a quantum-based system, if a process is ever preempted while

accessing some object, then there are no guarantees that the process preempting

it will complete any pending object invocation before relinquishing the processor.

On the other hand, if a process can ever detect that it has \crossed" a quantum

boundary, then it can be sure that the next few instructions it executes will be

performed without preemption. Several of the algorithms presented in this paper

employ such a detection mechanism. This kind of detection mechanism would be

ill-suited for use in a priority-based system, because a process in such a system

can never be \sure" that it won't be preempted by a higher-priority process.

Our quantum-based execution model is based on two key assumptions:

(i) If a process is preempted during an object invocation, then the �rst such

preemption may happen at any point in time after the invocation begins.

(ii) When a process resumes execution after having been preempted, it cannot

be preempted again until after Q time units have elapsed.

consensus number C universal if: not universal if:

P Q � c(P + 1)Tmax Q � PTmin

P + 1 Q � cPTmax Q � (P � 1)Tmin

...
...

...

n, where P � n < 2P Q � c(2P + 1� n)Tmax Q � (2P � n)Tmin

...
...

...

2P � 2 Q � c3Tmax Q � 2Tmin

2P � 1 Q � c2Tmax Q � Tmin

2P Q � c2Tmax Q � Tmin

2P + 1 Q � c2Tmax Q � Tmin

...
...

...

1 Q � 0 |

Table 1. Conditions under which an object with consensus number C is universal for

any number of processes in a P -processor quantum-based system.

Note in particular that we do not assume that each object invocation starts at

the beginning of a quantum. This is because the objects we implement might be

used in other algorithms, in which case it might be impossible to ensure that each

invocation of an object begins execution at a quantum boundary. We also make

no assumptions regarding how the next process to run is selected on a processor.

Indeed, the process currently running on a processor may be allocated several

quanta in succession before the processor is allocated to a di�erent process |

in fact, the processor may never be allocated to another process.

These assumptions rule out certain trivial solutions to the problems we ad-

dress. For example, the above-mentioned result about the universality of reads

and writes in quantum-based uniprocessors is obtained by presenting a wait-free

implementation of a consensus object that uses only reads and writes. It may

seem that such an implementation is trivial to obtain: simply de�ne the quantum

to be large enough so that any consensus invocation �ts within a single quantum!

However, our model precludes such a solution, because we do not assume that

each object invocation starts at the beginning of a quantum.

It is similarly fruitless to implement a uniprocessor consensus object by re-

quiring each process to repeatedly test some condition (i.e., by busy waiting)

until a quantum boundary has been crossed, and to then perform the consensus

invocation (safely) within the new quantum. This is because, for a process to

detect that a quantum boundary has been crossed, it must eventually be pre-

empted by another process. Such a preemption may never occur. Even if we

were able to assume that such a preemption would eventually occur (e.g., be-

cause round-robin scheduling was being used), the proposed solution should still

be rejected. This is because it forces operations (on consensus objects, in this

case) to be performed at the rate the processor is switched between processes.

This defeats one of the main attractions of the quantum-based execution model:

in most quantum-based systems, the scheduling quantum is large enough to al-

low many operations to be performed safely inside a single quantum without

any fear of interferences, i.e., the rate at which operations potentially could be

performed is much higher than the rate of process switches.

The remainder of this paper is organized as follows. In Sect. 2, we present

de�nitions and notation that will be used in the remainder of the paper. Then,

in Sect. 3, we present our results for quantum-based uniprocessor systems. We

begin by presenting a wait-free, constant-time implementation of a consensus

object that uses only reads and writes and a quantum of constant size. This

implementation proves that reads and writes are universal in quantum-based

uniprocessor systems [2]. Object implementations of practical interest are usu-

ally based on synchronization primitives such as compare-and-swap (C&S), not

consensus objects. We show that, given a quantum of constant size and using

only reads and writes, C&S can be implemented in a quantum-based uniprocessor

system in constant time. We also show that any read-modify-write primitive can

be implemented in constant time as well. In Sect. 4, we present our results for

quantum-based multiprocessor systems. Our goal in this section is to establish

universality results for objects with consensus number C, where C � P . We

do this by showing how to use such objects to implement a wait-free consen-

sus object for any number of processes running on P processors. As C varies,

the quantum required for this consensus implementation to work correctly is as

given in Table 1. In the full paper, we prove that our characterization of the

required quantum is asymptotically tight [1]. This proof is omitted here due to

space limitations. We end the paper with concluding remarks in Sect. 5.

2 De�nitions and Notation

A quantum-based system consists of a set a processes and a set of processors.

In most ways, quantum-based systems are similar to shared-memory concurrent

systems as de�ned elsewhere. For brevity, we focus here on the important dif-

ferences. In a quantum-based system, each process is assigned to a distinct pro-

cessor. Associated with any quantum-based system is a scheduling quantum (or

quantum for short), which is a nonnegative integer value. In an actual quantum-

based system, the quantum would be given in time units. In this paper, we �nd it

convenient to more abstractly view a quantum as specifying a statement count.

This allows us to avoid having to incorporate time explicitly into our model.

Informally, when a processor is allocated to some process, that process is guar-

anteed to execute without preemption for at least Q atomic statements, where

Q is the value of the quantum, or until it terminates.

Our programming notation should be self explanatory; as an example of this

notation, see Fig. 1. In this and subsequent �gures, each numbered statement

is assumed to be atomic. When considering a given object implementation, we

consider only statement executions that arise when processes perform operations

on the given object, i.e., we abstract away from the other activities of these

processes outside of object accesses. For \long-lived" objects that may be invoked

repeatedly, we assume that when a process completes some operation on the

object, that process's program counter is updated to point to the �rst statement

of some nondeterministically-selected operation of the object.

We de�ne a program's semantics by a set of histories. A history of a program

is a sequence t0
s0
�!t1

s1
�!� � �, where t0 is an initial state and ti

si
�!ti+1 denotes

that state ti+1 is reached from state ti via the execution of statement si; unless

stated otherwise, a history is assumed to be a maximal such sequence. Consider

the history t0
s0
�!t1

s1
�!� � � ti

si
�!ti+1 � � � tj

sj

�!tj+1 � � �, where si and sj are succes-

sive statement executions by some process p. We say that p is preempted before

sj in this history i� some other process on p's processor executes a statement

between states ti+1 and tj . A history h = t0
s0
�!t1

s1
�!� � � is well-formed i� it sat-

is�es the following condition: for any statement execution sj in h by any process

p, if p is preempted before sj, then no process on p's processor other than p exe-

cutes a statement after state tj+1 until either (i) p executes at least Q statements

or (ii) p's object invocation that includes sj terminates. We henceforth assume

all histories are well-formed. We de�ne program properties using invariants and

stable assertions. An assertion is stable in a history i� it holds from some state

onward. An assertion is an invariant in a history i� it is stable and initially true.

Notational Conventions: The number of processes and processors in the sys-

tem are denoted N and P , respectively. Processors are labeled from 1 to P .

M denotes the maximum number of processes on any processor. Q denotes the

value of the quantum, and C will be used to refer to a given object's consensus

number (see Sect. 1). Unless stated otherwise, p; q, and r are assumed to be uni-

versally quanti�ed over process identi�ers. The predicate running (p) holds at a

state i� process p is the currently-running process on its processor at that state.

The predicate p@s holds i� statement s is the next statement to be executed

by process p. We use p@S as shorthand for (9s : s 2 S :: p@s), p:s to denote

statement number s of process p, p:v to denote p's local variable v, and pr(p) to

denote process p's processor. valtype denotes an arbitrary type. 2

3 Uniprocessor Systems

In this section, we present constant-time implementations of a consensus object

(Sect. 3.1), a C&S object (Sect. 3.2), and a read-modify-write object (Sect. 3.3)

for quantum-based uniprocessor systems. Each of these implementations uses

only reads and writes and requires a quantum of constant size.

3.1 Consensus

Our uniprocessor consensus algorithm is shown in Fig. 1. Here Q is assumed

to be eight atomic statements. In lines 1-14 of the algorithm, the worst-case

execution sequence consists of nine atomic statements (in particular, lines 1-8

and 14). Thus, with Q = 8, a process can be preempted at most once while

executing within lines 1-14. Note that each process p both begins and ends this

shared variable Dec1, Dec2: valtype [? initially ?;

Run: 1::N

procedure decide(in: valtype) returns valtype
private variable val: valtype [? =� local to process p, the invoking process �=

1: Run := p;

2: if Dec2 = ? then

3: Dec1 := in;

4: if Run 6= p then

5: val := Dec2; =� statements 5-9 execute without preemption �=
6: if val = ? then

7: Dec1 := in;
8: Dec2 := in

else

9: Dec1 := val

�

else

10: Dec2 := in;
11: if Run 6= p then

12: val := Dec1; =� statements 12-13 execute without preemption �=

13: Dec2 := val

�

�

�;
14: Run := p;

15: return Dec2

Fig. 1. Uniprocessor consensus using reads and writes.

code sequence by assigning Run := p. Thus, if any process p is preempted while

executing within lines 1-14 by another process q that also executes within lines

1-14, then Run 6= p holds by the time p resumes execution. This is because

q's execution of lines 1-14 can itself be preempted at most once, and thus if q

executes any of these statements within a quantum, then it must execute q:1 or

q:14 or both within that quantum. This handshaking mechanism is typical of

those employed in the algorithms in this paper to enable a process to detect if

it has been preempted.

Having explained the manner in which preemptions are detected, we can now

describe the rest of the algorithm.Two shared \decision" variables are employed,

Dec1 and Dec2. Both are initially ?, and it is assumed that no process's input

value is ?. All processes return the value assigned toDec2. Before returning, each

process attempts to assign its input value to both Dec1 and Dec2 in sequence.

To understand how the algorithm works, suppose that a process p is pre-

empted just before executing the assignment to Dec1 at line 3. If, while p is

preempted, another process q executes within lines 1-14, then p will detect this

when it resumes execution and then execute lines 5-9. When p resumes execu-

tion, it will immediately perform the assignment at line 3. Note that p may be

assigningDec1 here very \late", i.e., well after other processes have reached a de-

cision and terminated. However, the algorithm ensures that p's late assignment

does not cause some process to return an erroneous value. To see this, note that

because p has already been preempted once during lines 1-14, it executes lines

5-9 without preemption. Thus, it can safely deal with its late assignment with-

out any fear of interferences due to further preemptions. The late assignment is

dealt with as follows. If a decision has not yet been reached, then p assigns its

own input value to both Dec1 and Dec2 (lines 7 and 8). Otherwise, p \undoes"

its late assignment to Dec1 by copying to Dec1 the current value within Dec2

(line 9). The need to \undo" late assignments is the main reason why the algo-

rithm uses two decision variables | to restore the value of one variable, another

variable is needed.

A process p potentially could also be preempted just before performing the

assignment toDec2 at line 10. If, while p is preempted, another process q executes

within lines 1-14, then p will detect this when it resumes execution and then

execute lines 12 and 13 without preemption. These lines \undo" p's potentially

\late" assignment to Dec2 by copying to Dec2 the current value of Dec1.

The correctness of this algorithm follows from the following three lemmas,

which due to space limitations are stated here without proof.

Lemma 1: p@15) (9q ::Dec2 = q:in) is an invariant . 2

Lemma 2:Dec2 6= ?) ((Dec1 = Dec2) _ (9p :: running (p)^p@f4::9; 11::13g))

is an invariant . 2

Lemma 3: (8v : v 6= ? :: (Dec1 = v ^ Dec2 = v) _ (9p :: running(p) ^

p@f4::9g^Dec2 = v) _ (9p :: running(p)^p@f11::13g^Dec1 = v)) is stable. 2

Theorem 1: In a quantum-based uniprocessor system with Q � 8, consensus

can be implemented in constant time using only reads and writes. 2

3.2 Compare-and-Swap

Our uniprocessor C&S implementation is shown in Fig. 2. The most important

shared variables in the implementation are X1 and X2. Each of these variables

has three �elds, val, proc, and alt . X2:val gives the \current" value of the im-

plemented object at all times. It can be seen by inspecting lines 25-48 that the

way in which X1 and X2 are assigned is very reminiscent of the way Dec1 and

Dec2 were assigned in our consensus algorithm. After each is assigned, a check

is made to see if a preemption has occurred, in which case the assignment is

undone if necessary. Assuming Q is de�ned to be large enough so that each C&S

invocation is preempted at most once, this \undo code" cannot be preempted.

In our consensus algorithm, undoing a late assignment was relatively simple

because a consensus object is accessed only once by each process. For the sake

of comparison, consider what happens when a process p detects that Run 6= p

at line 11 in Fig. 1. For Run 6= p to be detected, p must have been preempted

type

X-type = record val: valtype; proc: 1::N ; alt: 0::1 end =� stored in one word �=

shared variable

Seen1; Seen2: array [1::N;0::1] boolean;
Run: 1::N ;

X1;X2: X-type initially (v; (1; 0)), where v is object's initial value

procedure C&S(old;new: valtype)

returns boolean

private variable

=� p denotes the invoking process �=

v: X-type;
b: boolean

1: if old = new then

2: return X2:val = old

�;
3: Run := p;

4: v := X2;

5: Seen1[v:proc; v:alt] := true;

6: if Run 6= p then

=� lines 7-11 nonpreemptable �=
7: b := Seen2[v:proc; v:alt];

8: Seen1[v:proc; v:alt] := b;

9: v := X2;
10: Seen1[v:proc; v:alt] := true;

11: Seen2[v:proc; v:alt] := true

else

12: Seen2[v:proc; v:alt] := true;

13: if Run 6= p then

=� lines 14-18 nonpreemptable �=
14: b := Seen1[v:proc; v:alt];

15: Seen2[v:proc; v:alt] := b;

16: v := X2;
17: Seen1[v:proc; v:alt] := true;

18: Seen2[v:proc; v:alt] := true

�

�;

19: if v:val 6= old then

20: Run := p;
21: return false

�;

22: alt := 1� alt;
23: Seen1[p; alt] := false;

24: Seen2[p; alt] := false;

25: X1 :=(new;p; alt);

26: if Run 6= p then

=� lines 27-35 nonpreemptable �=

27: v := X2;

28: X1 := v;
29: Seen1[v:proc; v:alt] := true;

30: Seen2[v:proc; v:alt] := true;

31: if :Seen2[p;alt] then

32: if X2:val = old then

33: X1 :=(new;p;alt);

34: X2 :=(new;p;alt);

35: Seen2[p; alt] := true

�

�

else

36: X2 :=(new; p;alt);

37: if Run 6= p then

=� lines 38-46 nonpreemptable �=

38: v := X1;

39: X2 := v;
40: Seen1[v:proc; v:alt] := true;

41: Seen2[v:proc; v:alt] := true;

42: if :Seen2[p;alt] then
43: if X2:val = old then

44: X1 :=(new;p;alt);

45: X2 :=(new;p;alt);

46: Seen2[p;alt] := true

�

�

else

47: Seen2[p; alt] := true

�

�;

48: Run := p;

49: return Seen2[p;alt]

Fig. 2. Uniprocessor C&S implementation. For simplicity, the object being accessed is

left implicit. To be precise, the object's address should be passed as a parameter to the

C&S procedure. The object can be read by reading X2:val.

either before or after its assignment to Dec2 at line 10. If it was preempted

after assigning Dec2, then it assigned both Dec1 and Dec2 (lines 3 and 10)

without preemption, in which case copying the value of Dec1 to Dec2 in lines

12 and 13 has no e�ect. (The value copied from Dec1 must equal that assigned

to Dec1 by p: another process q can alter Dec1 only if it executes lines 2 and 3

without preemption and detects Dec2 = ? at line 2.) On the other hand, if p

was preempted before assigning Dec2, then this is a potentially late assignment

that may have overwritten a previously agreed upon decision value. In this case,

copying the value of Dec1 to Dec2 in lines 12 and 13 undoes the overwrite.

Undoing a late assignment in our C&S implementation is much more compli-

cated, because each process can perform repeated C&S operations. Some of the

subtleties involved can be seen by considering what happens when a process p

detects that Run 6= p upon executing line 37 in Fig. 2 (the counterpart to the

situation considered above for our consensus algorithm). By our handshaking

mechanism, this implies that p was preempted either before or after its assign-

ment to X2 at line 36. The question is: Should this assignment to X2 be undone?

Given that X2:val de�nes the current state of the implemented object, the an-

swer to this question depends on whether the value assigned toX2 by p has been

\seen" by another process. If p's value has been seen, then its assignment to X2

cannot be undone. There is no way for p to infer that its value has been seen by

inspecting the value of X2 (or X1, for that matter), so an additional mechanism

is needed. In our implementation, the Seen
ags provide the needed mechanism.

There are two pairs of such
ags for each process p, Seen1[p; 0]/Seen2[p; 0] and

Seen1[p; 1]/Seen2[p; 1]. p alternates between these pairs from one C&S to the

next. The current pair is given by p's alt variable. If p detects that Seen2[p; alt]

holds, then it knows that a value it has assigned to X1 or X2 has been seen

by another process. Two pairs of Seen
ags are needed to distinguish values

assigned by p in consecutive C&S operations. Two Seen
ags per pair are needed

to be able to undo late assignments to these
ags after preemptions. The proc

and alt �elds in X1 and X2 allow a process to detect which Seen
ags to use.

Given the above description of the shared variables that are used, it is possible

to understand the basic structure of the code. Trivial C&S operations for which

old = new are handled in lines 1 and 2. Lines 3-49 are executed to perform

a nontrivial C&S. In lines 3-18, the current value of the implemented object is

read and the process that wrote that value is informed that its value has been

seen by updating that process's Seen
ags. The code sequence that is used here

is similar to that employed in our consensus algorithm to update Dec1 and

Dec2. In lines 19-21, a check is made to see if the current value of the object

matches the speci�ed old value. If they do match, then lines 22-49 are executed

to attempt to update the object to hold the speci�ed new value. In lines 23 and

24, the invoking process's Seen
ags are initialized. The rest of the algorithm is

as described above. First X1 is written, and a preemption check is performed.

If a preemption occurs, then the assignment to X1 is undone if necessary. After

writing X1, X2 is written. Once again, a preemption check is performed and

the assignment is undone if necessary. Note that a process may update another

procedure RMW (Addr: pointer to valtype; f : function) returns valtype

private variable old;new: valtype
1: old := �Addr;

2: new := f(old);

3: if C&S(Addr; old; new) = false then

4: old := �Addr; =� statements 4 and 5 execute without preemption �=

5: �Addr := f(old)

�;
6: return old

Fig. 3. Uniprocessor read-modify-write implementation.

process's Seen
ags in lines 29 and 30 and in lines 40 and 41. Because these

lines are each within a code fragment that is executed without preemption, the

Seen
ags can be updated here without resorting to a more complicated code

sequence like in lines 5-18.

The formal correctness proof of our C&S implementation is not hard, but

it is quite long, so due to space limitations, we defer it to the full paper. The

correctness proof hinges upon the assumption that a process can be preempted at

most once while executing within lines 3-48. A C&S invocation completes after at

most 26 atomic statement executions. The worst case occurs when the following

statements are executed in order: 1, 3-6, 12, 13, 19, 22-26, 36-46, 48, 49. Thus,

lines 3-48 give rise to at most 24 statement executions. It follows that if Q � 23,

then our preemption requirement is met. This gives us the following theorem.

Theorem 2: In a quantum-based uniprocessor system with Q � 23, any object

that is accessed only by means of read and C&S operations can be implemented

in constant time using only reads and writes. 2

3.3 Other Read-Modify-Write Operations

ARMW operation on a variableX is characterized by specifying a function f .

Informally, such an operation is equivalent to the atomic code fragment hx := X;

X := f(x); return xi. Example RMW operations include fetch-and-increment

(F&I), fetch-and-store, and test-and-set. RMW operations can be implemented

on a uniprocessor as shown in Fig. 3. If the C&S at line 3 succeeds, then the

RMW operation atomically takes e�ect when the C&S is performed. If the C&S

fails, then the invoking process must have been preempted between lines 1 and

3. Provided Q is de�ned to be large enough so that lines 1-5 can be preempted

at most once, lines 4 and 5 execute without preemption. If we implement C&S as

in Fig. 2, then the C&S invocation consists of at most 26 statement executions.

Thus, a value of Q � 26 + 3 su�ces. This gives us the following theorem.

Theorem 3: In a quantum-based uniprocessor system with Q � 29, any object

accessed only by means of read, write, and read-modify-writes can be implemented

in constant time using only reads and writes. 2

4 Multiprocessor Systems

In this section, we show that wait-free consensus can be implemented for any

number of processes in a P -processor quantum-based system using C-consensus

objects (i.e., objects that implement consensus for C processes), where C � P ,

provided Q is as speci�ed in Table 1. For simplicity, we assume here that C � 2P ,

because for larger values of C, the implementation we give for C = 2P can

be applied to obtain the results of Table 1. The consensus implementation we

present to establish the results in this table is shown in Fig. 4. In addition to

C-consensus objects, a number of uniprocessor C&S and F&I objects are used in

the implementation. Recall from Sect. 3 that these uniprocessor objects can be

implemented in constant time using only reads and writes. We use \local-C&S"

and \local-F&I" in Fig. 4 to emphasize that these are uniprocessor objects.

In our implementation, processes choose a decision value by participating

in a series of \consensus levels". There are L consensus levels, as illustrated in

Fig. 5. L is a function of M and P , as described below. Each consensus level

consists of a C-consensus object, where C = P +K, 0 � K � P . Also associated

with each consensus level l is a collection of shared variables Outval [l; i], where

1 � i � P . Outval [l; i] is used by processes on processor i to record the decision

value from level l (see line 17 in Fig. 4). When a process assigns a value to

Outval [l; i], we say that it \publishes" the result of level l. The requirement that

at most C processes can access a C-consensus object is enforced by de�ning

P +K \ports" per consensus level. Processors 1 through K have two ports per

object, and processors K + 1 through P have one port. A process can access

a C-consensus object only by �rst claiming one of the ports allocated to its

processor. A process claims a port by executing lines 4-12. One can think of

all ports across all consensus levels as being numbered in sequence, starting

at 1. Ports can be claimed on each processor i by simply performing a F&I

operation on a counter Port[i] that is local to processor i, with one special case

as an exception. This special case arises when a process p executing without

preemption on a processor i � K (which has two ports per level) accesses the

�rst of processor i's ports at some level l. In this case, if p simply increments

Port[i], then it is then positioned to access the second port of level l, which is

pointless because a decision has already been reached at that level. To correct

this, Port [i] is updated in such a case using a C&S operation in line 8.

The consensus levels are organized into a sequence of blocks as shown in Fig.

5. The signi�cance of these blocks is explained below. Each process attempts to

participate in each consensus level in the order depicted in Fig. 5, skipping over

levels for which a decision value has already been published. When a process

accesses some level, the input value it uses is either the output of the highest-

numbered consensus level for which there is a published value on its processor,

or its own input value, if no previously-published value exists (see lines 2, 13,

and 14). So that an input value for a level can be determined in constant time, a

counter Lastpub [i] is used on each processor i to point to the highest-numbered

level that has a published value on processor i. Due to preemptions, Lastpub[i]

may need to be incremented to skip over an arbitrary number of levels. It is

constant L = (M(P �K)2 + 1)(KM + 1)

=� total number of consensus levels for C = P +K, where 0 � K � P �=

shared variable

Lastpub: array[1::P] of 0::L initially 0;

=� latest level on a processor for which there is a published consensus value �=

Outval : array[1::L; 1::P] of valtype;
=� Outval[l; i] is the consensus value for level l on processor i �=

Port : array[1::P] of 1::2L+M initially 1 =� next available port on processor �=

procedure decide(val : valtype) returns valtype
private variable =� local to process p �=

input , output : valtype; =� input/output value for a level �=

level , last level : 0::L+M ; =� current (last) level accessed by p �=
numports: 1::2; =� number of ports per consensus object on processor pr(p) �=

port , newport : 1::2L+M ; =� port numbers �=

publevel : 0::L =� last level for which there is published value on processor pr(p) �=

1: if pr(p) � K then numports := 2 else numports := 1 �;

2: input; last level; level := val; 0; 0;

3: while level � L do

4: port := Port[pr(p)]; =� determine port and level �=

5: level := ((port� 1) div numports) + 1;

6: if last level = level then =� if level didn't change, make correction �=

7: newport := port + numports;

8: if local -C&S(&Port[pr(p)]; port; newport + 1) then port := newport

9: else port :=local -F&I(Port[pr(p)])

10: �

else

11: port :=local -F&I(Port[pr(p)])
�;

12: level := ((port� 1) div numports) + 1;

13: publevel := Lastpub[pr(p)]; =� determine input for next level �=
14: if publevel 6= 0 then input := Outval[publevel; pr(p)] �;

15: if level � L then =� necessary because F&I may overshoot the last level �=

16: output := C-consensus(level; input); =� invoke the C-consensus object �=
17: Outval[level; pr(p)] := output; =� publish the result �=

18: local -C&S(&Lastpub[pr(p)]; publevel; level)

�

19: last level := level;

od;

20: publevel := Lastpub[pr(p)];
21: return(Outval[publevel; pr(p)])

Fig. 4. Multiprocessor consensus implementation.

Block 1 Block 2

M(P−K)+1
2

1

2

M(P−K)+1
2

1

2

Block KM+1

Multiprocessor Consensus Value

M(P−K)+1
2

1

2 An 8−consensus object

x x

x x x x x x

K

}

P−K}

Processors 1..K: 2 ports
Processors K+1..P: 1 port

Fig. 5. Organization of the consensus levels in the implementation in Fig. 4.

therefore updated using a C&S operation instead of F&I (see line 18). Each process

on processor i completes by returning the output value from level Lastpub[i].

When a process p attempts to determine an input value for a level, there may

be a number of previous levels that are inaccessible to p (because all available

ports have been claimed) yet no decision value has been published. This can

happen for a previous level l only if the process(es) on p's processor that accessed

level l were preempted before publishing an output value for that level. We say

that the preempted process(es) at level l cause an access failure at level l.

Obviously, there is a correlation between the number of access failures that

can occur on a processor and the number of preemptions that can occur on that

processor. The latter in turn depends on the size of the scheduling quantum Q.

We show below that with a suitable choice of Q, the number of levels for which

an access failure occurs on each processor is limited to a fraction of all the levels.

Using a pigeon-hole argument, it is possible to show that, in any history, there

exists some level for which no process on any processor experiences an access

failure. We call such a level a deciding level . A simple inductive argument shows

that at all levels below a deciding level l, the output value of level l is used by

every process on every processor when accessing any level below l, even if access

failures occur when accessing levels lower than l.

We now state some lemmas about the number of access failures that may

occur in a history. We �rst consider the two extremes C = 2P and C = P and

then the general case (proofs of Lemmas 4 and 5 can be found in [1]).

Lemma 4: Suppose that C = 2P and that Q is large enough to ensure that each

process can be preempted at most once while accessing any two consensus levels

in succession (the two levels don't have to be consecutive). If processes p and q

on processor i cause an access failure at level l, then at least one of p and q does

not cause an access failure at any level less than l. 2

Corollary 1: If C and Q are as de�ned in Lemma 4, and if there are at most

M processes per processor, then there can be at most M access failures on any

processor. Furthermore, there exists a deciding level among any MP+1 levels. 2

Lemma 5: Suppose that C = P and that Q is large enough to ensure that

each process can be preempted at most once while accessing any P +1 consensus

levels in succession (these levels don't have to be consecutive). If there are at

most M processes on any processor, then there exists a deciding level within any

consecutive MP
2 + 1 consensus levels. 2

Lemma 6: Suppose that C = P + K, where 0 � K � P , and that Q is large

enough to ensure that each process can be preempted at most once while accessing

any P � K + 1 consensus levels in succession (these levels don't have to be

consecutive). If there are at most M processes on any processor, then there exists

a deciding level in any consecutive (M � (P �K)2 + 1) � (KM + 1) levels.

Proof : For processors K + 1 through P , we know from Lemma 5 that there

exists a deciding level among any consecutive M � (P �K)2+1 levels. If we have

KM + 1 groups of M � (P �K)2+ 1) levels each, then processors K + 1 through

P have at least one deciding level in each group. Also, by Corollary 1, processors

1 through K can experience at most KM access failures in total. Thus, there

exists at least one level that is a deciding level for the whole system. 2

The proof of Lemma 6 reveals the insight as to why we group the levels into

KM +1 blocks as depicted in Fig. 5. It is easy to see that each consensus level is

accessed in constant time (recall that our uniprocessor C&S and F&I algorithms

take constant time). Thus, letting c denote the worst-case number of statement

executions per level, we have the following (it can be shown that c = 96 su�ces).

Theorem 4: In a P -processor, quantum-based system, consensus can be im-

plemented in a wait-free manner in polynomial space and time for any number

of processes using read/write registers and C-consensus objects if C � P and

Q � max(2c; c(2P + 1�C)). 2

In the full paper, we prove the following theorem, showing that the quantum

used in the implementation above is asymptotically tight [1].

Theorem 5: In a P -processor, quantum-based system, consensus cannot be im-

plemented in a wait-free manner for any number of processes using read/write

registers and C-consensus objects if C � P and Q � max(1; 2P � C). 2

If we were to add time to our model, then we could easily incorporate the

Tmax and Tmin terms given in Table 1 in the bounds on Q given above.

shared variable P : array[1::3] of valtype [? initially ?

procedure decide(val: valtype) returns valtype

private variable v; w: valtype
1: v := val;

2: for i := 1 to 3 do

3: w := P [i];
4: if w 6= ? then

5: v := w

else

6: P [i] := v

�

od;
7: return P [3]

Fig. 6. Moir and Ramamurthy's uniprocessor consensus algorithm.

5 Concluding Remarks

Our work was partially inspired by a read/write consensus algorithm for

quantum-based uniprocessor systems due to Moir and Ramamurthy [3]. Actu-

ally, their goal was to design wait-free algorithms for multiprocessor systems in

which the processor-to-memory bus is allocated to processors using quantum-

based scheduling. Their consensus algorithm, which is shown in Fig. 6, is also

correct in a quantum-based uniprocessor system. This algorithm is correct if

Q = 8 (this requires �rst replacing the for loop by straight-line code), just like

our uniprocessor consensus algorithm. However, their algorithm requires fewer

references to shared memory. The algorithm employs three shared variables,

P [1], P [2], and P [3]. The idea is to attempt to copy a value from P [1] to P [2],

and then to P [3]. We found our mechanism of detecting preemptions to be much

easier to employ when implementing other objects.

References

1. J. Anderson, R. Jain, and D. Ott. Wait-free synchronization in quantum-based
multiprogrammed systems, May 1998. Available at http://www.cs.unc.edu/

~anderson/papers.html.

2. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems, 13(1):124{149, 1991.

3. M. Moir and S. Ramamurthy. Private communication. 1998.

4. S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing with mini-
mal support. Proceedings of the 15th Annual ACM Symposium on Principles of

Distributed Computing, pp. 233{242. 1996.

This article was processed using the LaTEX macro package with LLNCS style

