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ABSTRACT

The problem of finding the maximum likelihood estimator of a

network under power and bandwidth constraints is consitidre
particular, a case where the sensors cannot fully sharedht

is treated. An iterative algorithm that relaxes the requiat of
sharing all the data is given. The algorithm is based on d loca
Fisher scoring method and an iterative information shagry
cedure. The case where the sensors share sub-optimal testima
is also analyzed. The asymptotic distribution of the edémas
derived and used to provide means of discrimination betvesen
timates that are associated with different local maximaeflog-
likelihood function. The results are validated by a simiolat

1. INTRODUCTION

The advent of a large number of applications for sensor misvo
has increased interest in the fields of distributed detecéstima-
tion and quantization (see e.g. [1] and references therdingre
have been two major streams in the research on distributed in
mation gathering. The first, often called data fusion, usasib-
tics in order to provide ad hoc methods for distributed infar
tion systems (see [2] and references therein). The otherafre
research uses information theory in order to gain insightisa
tributed systems, to derive bounds on their performancd,tan
construct algorithms for detection and estimation (seg[8}g4],
and [5]). Recently, Nowak [6] treated the problem of Maximum
Likelihood (ML) estimation of the Gaussian mixture model dy
sensor network and offered the Decentralized ExpectatiariM
mization (EM) algorithm.

In the present paper, we adopt a different approach. We use

asymptotic statistical theory in order to characterizéateaspects
of the distributed system and to offer methods for perfograati-
mation under power and bandwidth constraints.

The general setting considered in this paper is the follgwin
A network of sensors is distributed in order to collect measu
ments of a common physical phenomenon. The data are callecte
for a parameter estimation task. This problem becomeskiivi-
der any of the following conditions: (1) all the data can barsh
by the sensors, or (2) a sufficient statistic is available eant be
shared by the sensors. In these cases, maximum likelihdiotbes
tion can be performed and it is asymptotically optimal. Heere
if bandwidth and power constraints prevent sharing all tatad
and a sufficient statistic is not available, then questioiseas to
how close we can get to optimal performance and by what means.
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For simplicity, we do not treat quantization issues. Howgewar
results are extendable to quantized data and communication
First we describe a simple information sharing method, tvhic
Ensures that all sensors can compute the ML estimator (MEE) o
the full data set collected by the sensor network. This cad te
a major reduction in the amount of transmitted informatiothe
network without any loss of performance. Second, we preasent
sub-optimal reduced communication method in which each@en
computes a stationary point of its local likelihood funatiout not
necessarily the MLE. These sub-optimal estimates are dlmre
the sensors. To aggregate these estimates, we apply antatgmp
theorem to approximate their distribution, which leads twell
posed Gaussian mixture framework. Finally, we validate @nod
vide additional insight on the theoretical results by a datian.

2. PROBLEM FORMULATION

Consider the following distributed estimation problem. étwork

of L sensors is geographically distributed in order to colletad
for an estimation task. Each of these sensors collects amdismt

P x 1random vectory; ¢, t = 1,...,n;; 1 = 1,..., L, drawn
independently from the same distribution with densfty; 8°).
The K x 1 vector paramete®® is unknown but the density is
known to lie in a parametric classf(y;0) : 6 € ®}. This
scenario corresponds o sensors that observe the same physical
phenomenon through independent noisy channels.

Denote byL(Y1;0) = .- 311, log f(y1,1;:0), whereY; =
[yi,1¥1,2 --- ¥Yi,n,), thelocal likelihood of sensor, which is the
normalized log-likelihood function of the measurementsilable

to sensol. It is known that under some regularity conditions on
f(y; 0): asn; — oo, n% v log f(yie;0) — E{log f(y;0)}
uniformly in ® for almost every sequencgy;:}. Here and in
the sequelE {-} denotes the expectation with respect to the true
density f(y, 8°). Therefore,

E {log f(y;0)} = /'log<f(y;o>>f(y,0°>dyéa(o(%o) ,

which will be called the ambiguity function.

Denote byY = [Y:1Y: ... Y] thefull data set that is col-
lected by the sensor network, andbfY; 0) =1 Zle L(Y;0)
the normalized log-likelihood function associated witbsh data,
which will be called theglobal likelihood.

Denote by§ = argmaxgco L(Y;0) the global maximum
likelihood estimator (GMLE), which is the MLE based on the
global likelihood, and bﬁl = argmaxgeco L(Y;0) the*" lo-
cal MLE (LMLE) which is based on the data of sengor

In many practical scenarios, bandwidth and power congsrain
prevent the sensors from sharing all of their data. Insteady;



partial information can be shared.

3. FISHER SCORING WITH ITERATIVE
INFORMATION SHARING

When the maximization problem required for finding the MLE is
intractable, iterative methods are often used. These rdsthen-
erate a sequend®; };>1 which converges to a relative maximum
of the log-likelihood function. If the log-likelihood fution is not
strictly convex over®, several initializations may be required in
order to find the MLE.

empty set). The question then arises as to how to treat the lar
number of estimates, some of which may correspond to conver-
gence to the highest relative maximum and some to otheivelat
maxima. Two questions will be answered below: (1) given the
collection of estimate$,},, how to aggregate them and find
an estimate fo#°? and (2), how to use additional statistics of the
data to improve and simplify the estimation@f?

The approximation of the asymptotic distribution of a sub-
optimal estimator will lead to an estimate f8f. To this end we
make the following assumption. Assume thé8°, ) has a finite
number of relative maxima and minima with negative definitd a

In the context of sensor networks these methods can be usedositive definite Hessian matrices, respectively. Assuinag all

to iteratively find the GMLE without sharing the full data séne
possible method is Fisher scoring [7], in whi@his updated by

0iv1 = 60, +1 ' (6,)VL(Y;6:)
L
_ 1
—_— . 1 PR — . .
= 6:i+17'(0)7 ;wm,ez) . 1)
whereI(6) = —E{V?L(Y;6)}, and for any functiong(0),

Vg(6) and V?¢(0) denotes the vector of partial derivatives and
the Hessian matrix of (@) with respect t@, respectively. We call
VL(Y;8;) theglobal score function. The second equality in (1)
follows from the independent sensors assumption. Undeacbro
conditions{8; };>1 converges to a relative maximum of the global
likelihood.

Without information sharing, each sensor can only implemen
the local updates

Oriv1 =0 +11(0,)VL(Y;3605), 1=1,....L, (2

which will converge to a relative maximum of the local likeiod.
VL(Y; 6;) is called thdocal score function of sensoti. If suf-
ficient bandwidth is available, a simple information shgnimoto-
col can be deployed to perform the iterations in (1) in a disted
manner and to ensure that the sequef:é,>, convergesto arel-
ative maximum of the global likelihood. Similar to the dibtrted
implementation of the EM algorithm in [6], messages areicicl
passed between sensors in sequential order. In the firg, @&4cl
is shared by the sensors. Given ", VL(Y;8;) is summed
cumulatively as each sensor receives the running sum frem th
previous sensor, adds its local contribution, and sendsptated
sum to the next sensor. In an additional cycle, the last seshsoes
the total sum with the network and each sensor compgjtesac-
cording to (1). The procedure ends either when the relatieage
in the estimator’s value is small or the sum of the score fonct
values is close enough to zero. As mentioned before, sewéral
tializations may be required in order to find the GMLE.

4. AGGREGATION OF SUBOPTIMAL LOCAL
ESTIMATES

As the above information sharing protocol requires shadimig at
each iteration of (1), it may not be practical. Here we coasal
scenario where the information is shared only once, afeectn-

vergence of each local search in (2). Denot@b’ghe relative max-
imum of L(Y;; 8) that the iterations of th&" sensor converged

to. Note that; does not necessarily eqlial the LMI§£ Denote
the information shared by the sensors{isy, n;}1;, wheren, is
an additional statistic shared by the sensors (B(@/:; 6;) or the

sensors collect the same number of samples and denoterit by
Then, the mathematical treatment is the same for all sersats
hence the subscrigtis omitted. Denote the relative maxima of
a(6°,0)by8™ m=0,..., M.

Theorem 1 Under the above assumptichN such thatvn > N,
L(Y; 0) hasM +1 local maximaw.p.1, and the location of these
relative maxima are strongly consistent estimates&@r, m =
0,...,M.

Proofs for all theorems are given in [8]. In order to derive th
asymptotic distribution of an estimator associated witlelative
maximum, consider the following setting. L&™ be a closed
neighborhood o™, in which 8™ is the highest relative maxi-
mum ofa(8°, ). Define them'th local MLE by

6™ = argmaxgcom L(Y;0). Define the matriceA(0)
E{V?log f(y;0)} and

B(9) = E{Vlog f(y;0) - V" log f(y;0)}, and when the in-
verse exists, the matrix

C)=A"(0)BO)A () . (3)

Theorem 2 Under the assumptions made above, forrall (1)
There exist a measurab&™ for all n, (2) 0™ 3 9™ asn — oo,

and (3)y/7n <§m - am) LN (0kx1,C(0™)).

For8° = @, Theorem 2 is the standard existence, consistency,
and asymptotic Gaussian distribution of the MLE, with(6°)
equals to the inverse of the Fisher information matrix (EIM)

Furthermore, consider adyx 1 vector valued functioe(y, €),
which is bounded and twice differentiable with respec@twith
bounded derivatives. Define the vectbrs(0) = = >°7 | e(y+, 6)
andh(0) = E{e(y, 0)} and theQ x K partial derivatives matrix
H(0)], , = E{0eq(y,0)/00}. When the expectation exists,
define the(@ + K) x (Q + K) matrix

_ A1 (0)Vlog f(y;0)
W) =E { { e(y,0) — h(0) — H(0) A~ (0)V log f(y; 0) }
{ AL(@)Vlog f(y;6) r
e(y.60) —h(6) — H(6)A (8)V log f(y:6)

Assume thatW (8™) is nonsingular for allm. In practice, this
assumption is satisfied by an appropriate choice(gf, 6).

Theorem 3 Under the assumptions made above, formall

\/ﬁ{ hn(g:)——iZQM) ] 2N (0x+q)x1, W(O™))



Theorems 1- 3 provide the means for approximating the asymp-
totic density 0f9,, denoted byfgl (0;6°), and the asymptotic joint
density 0f§l and a statistic that is based on the data and the esti-
mator, denoted byg ;, 4,6, x; 6"). If the iterative local search

in (2) is certain to find a relative maximum of the local likedod,

then Theorem 1 guarantees that for sufficiently largle final es-
timate will be in the vicinity of one of théd/ + 1 relative maxima

of a(8°,8) w.p.1. Then, definingD™ as the event that the esti-
mator@, is in ®™ and denoting its probability b, (D™; 8°),

we obtain that for sufficiently large, D™ (D™ = { and
P(U%:o D™) = 1. In generalP,,(D™; 8°) depends om, the

true parameter and the initialization method.

Coroallary 1 Under the assumptions made above, for sufficiently
large n,

M

f5,0:0°) =

m=0

P,.(D™; 8%
(2m)K/2,/det(1/nC(6™))

exp{~ZO-0m)CT OO -0}

whereC(68°) = —A(0°) = B(8°) and
M

N .0%) ~ P, (D™;6°)
IFRNCNCELOEDS (2m) K72 /det (1/nW (8™)) x

w3l T ]

T
:| W71(07rl) |:
)

When the information sharing makes all the local estimates
available, Corollary 1 provides the means to find a good appro
imation to the GMLE@ through a well-posed Gaussian mixture
problem. The theory asserts that these sub-optimal estinzae
drawn from a distribution, which is approximately a multizde
Gaussian Mixture. Furthermore, the cluster correspontditgcal
estimates which are close to the highest maximum of the globa
likelihood has the property that its covariance matrix issel to
the inverse of the FIM evaluated at the mean of this clustestf
mates. This property can be used to discriminate betweativel
maxima.

6—o0m
X — h(a’rn

6—6m
X — h(a'm)

5. SIMULATION RESULTS

We simulated a network aof 2D position estimating sensors and
evaluated two cases: (1) The GMLE under the iterative infor-
mation sharing discussed in section 3, and (2) The partiat-in
mation sharing discussed in section 4. In the simulation—=

50 samples for each of thé sensors were generated according
to the following bivariate Gaussian mixture densjtyy; 0)
25:1 a; f(y; ps), where f(y; ;) is a bivariate Gaussian den-
sity with unknown meam; = [u;1 1152]" , and known covariance
matrix R = 0.21, wherel is the identity matrix, and wherg =

[y1 y2])". The known mixing probabilities ake; = 1— a2 = 0.4.

The parameter vect@ = [111 ju12 po1 f122]” is known a-priori to
liein ® = [0,3] x [0,3] x [0,3] x [0,3]. We chose a scenario

in which the number of samples is small in order to demorestrat
that our method is not restricted to the asymptotic regimeteN
that the Gaussian mixture model of the sensors’ data hasngoth
to do with the Gaussian mixture model of Theorem 3, which is
an asymptotic distribution for the aggregation of the sptiroal
estimates.

Each sensor uses local Fisher scoring via (2) to compute its
estimate, where each starting pofhtis generated randomly, ac-
cording to a uniform distribution o®. Using this method, we
observed that about half of the sensors found an estimathvigi
in the vicinity of the true parameter. The other half stagdait a
local maximum.

The ambiguity function has two maxima €, one at the true
parameteg® = [1221] and one a8 = [2.050.951.081.92]"".
Therefore, Corollary 1 asserts that the aggregate disioibwf
the estimate$6,}%_, is approximately a two component 4D mul-
tivariate Gaussian mixture, where the vector means of the tw
components are the locations of the two maxima of the ambigu-
ity function and the covariance matrices at%6°) and C(8')
given in (3). A realization of 4D estimates generatedby: 200
sensors is presented in Fig. 1. Each sub-figure corresponals t
projection of the 4D estimates onto a 2D subspace, whichihsrei
the first two or the last two coordinates. This collection sfi-e
mates is used to find a final estimate via the aggregation metho
described earlier. Clearly, there is a better fit betweer stienated
covariance and the computed FIM at the cluster that correfspo

First, the number of components, the mean vectors and theto estimates in the vicinity of the highest relative maximahthe

covariance_matrices, of the multivariate Gaussian mixtliséri-
bution of{el}f:1 are estimated. The state-of-the-art estimator for
mixture models is the CEM given in [9]. The estimated mean vec
tors serve as candidates for the final estimate and the ¢stima
covariance matrices provide the means to find the compohant t
corresponds to the GMLE. Explicitly, for each componentdtse
tance (e.g. Frobenius norm) between the estimated cocaramd
the inverse of the FIM calculated at the point of the mean i3f th

ambiguity function. The mean of this cluster of estimatessisd
as the approximation to the GMLE.

The performance of this method was evaluated as the num-
ber of sensord. increases. The results are summarized in Fig. 2.
Before estimating the averaged MSE, the cases in which a clus
tering error has occurred were excluded. WHen- 100 a clus-
tering error occurred in less then one percent of the triilsst,
the performance of the GMLE and the Cramer Rao bound (CRB)

component is computed and the mean of the component with theare presented as a benchmark. The performance of the GMLE us-

smallest distance is chosen as the final estimate. If the BiMat
be computed analytically, it needs to be computed by nurmleric
integration. As will be shown in section 5, this method pdas
reliable discrimination between estimates that are agsatiwith
the global maximum and estimates that are associated vath lo
maxima without the need to cluster each estimate separately

If additional information is shared by the sensors, it can be
used to improve the clustering and to provide additionadrétis-
ination. For example, if the data shared by the sensors isahe
{5;, L(Yy; 51)}1L:1, then the final estimate can be the mean of the
cluster of estimates with the highest average log-likelthwalue.

ing iterative information sharing corresponds to the Rislovering
method presented in section 3. This method attains the (G&RB)
L > 10. The average of LMLEs corresponds to the performance
of a network of sensors that perform a global maximizatiash &m
contrast to our aggregation method, always find the LMLE. How
ever, this network performs a crude aggregation rule thmaplsi
averages the local estimates. The aggregation method) give
clustering estimates according to the Gaussian mixtureoobl€
lary 1 outperforms this crude averaging, even though thdityua
of the individual local estimates is worse. In other words, ave
able to compensate for the sub-optimality of the individieaisors
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6. CONCLUDING REMARKS

The problem of finding the MLE based on data collected by a sen-
sor network under power and bandwidth constraints was densi
ered. An iterative information sharing protocol which iséd on
the Fisher scoring method was given as a method for finding the
global MLE without sharing the full data set. For cases inahhi
iterative information sharing is prohibited by a bandwidttn-
107 i straint, an alternative method was given. Instead of iterdnfor-

Average of LMLE's mation sharing, each sensor finds a sub-optimal estimaéel lwas
its local data and shares this estimate once with the otimsose
Clairvoyant average of LMLE's An asymptotic theorem was applied to approximate the bigtri
ol / 'y tion of these sub-optimal estimates which provided the mdan

‘ ‘ CRB ‘ aggregating these estimates into a final global estimateaggre-

10 0 10 gation method compensates for the sub-optimality of theasn
Number of sensors

Average mean square error

Fig. 2. Performance evaluation. 7. REFERENCES
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