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Abstract

Scheduling Techniques for Synchronous and Multidimensional Synchro-
nous Dataflow

by

Praveen Kumar Murthy

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California at Berkeley

Professor Edward A. Lee, Chair

In this thesis, we present various scheduling techniques for programs expressed as

Synchronous Dataflow (SDF) and Multidimensional Synchronous dataflow graphs.

Synchronous dataflow has proven efficient as a specification model for block-diagram

based programming environments for signal processing. Two key reasons for its popularity

are that a) static schedules can be constructed at compile time, thus eliminating the

overhead due to dynamic scheduling, and b) it models multirate signal processing

application very naturally and intuitively. The first property is particularly important in

environments where code-synthesis for embedded processors is desirable, since embedded

signal processing applications have rigid throughput requirements in order to meet hard-

real-time constraints. Multidimensional Synchronous Dataflow (MDSDF) is an extension

of SDF to multiple dimensions; in this model, applications such as image and video signal

processing, which operate on multidimensional signal spaces, are more naturally modeled

and specified than in SDF.

The amount of on-chip memory available on embedded processors is often severely

limited. Adding off-chip memory is usually not an option because it entails a speed penalty,

it increases overall system cost and size, and increases power requirements. Thus, when

generating software implementations from SDF specifications for a uniprocessor, the

scheduling problem of minimizing code size and buffer memory size becomes crucial. If

the scheduling is not done carefully, the blowup in the size of the implementation can
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preclude implementation on the processor. Previous techniques have focused on

scheduling to minimize code size. However, this neglected the buffer memory usage of the

schedule; in this thesis, we develop techniques that jointly minimize for code size and

buffer-memory size of the software implementation. We give three polynomial-time

algorithms: a dynamic programming algorithm that is used as a post-optimization step, and

two heuristics that use different approaches to constructing these schedules. The general

problem is shown to be NP-complete, thus justifying the use of heuristics. An extensive

experimental study is given to show the efficacy of all these techniques.

We extend these scheduling results to MDSDF specifications. We then tackle a

problem of a different type. A multidimensional signal can be sampled in many different

ways. A straightforward extension of one-dimensional sampling results in the so-called

rectangular sampling structure, where the samples lie on a rectangular grid. However, a

more general sampling structure is a geometrical lattice; sampling lattices that are not

rectangular can have many advantages in certain applications. For example, a signal

sampled on a non-rectangular lattice can have a lower sampling density than one sampled

on an equivalent rectangular lattice. For real-time processing of multidimensional signals,

a lower sampling density means fewer samples to process in a given time interval. The

standard MDSDF model suffers from the inability to model multidimensional systems

sampled on arbitrary sampling lattices; hence, we give an extension of MDSDF that is

capable of modeling such systems. The model we give preserves the property of static,

compile-time schedulability. However, constructing such schedules requires the solution to

some challenging problems. In particular, we show that an augmented set of balance

equations have to be solved simultaneously in the extended model. The additional

equations are quite different from the usual balance equations in SDF and MDSDF; they

involve computing so-called “integer volumes” of parallelepipeds. This computation turns

out to be an interesting number-theoretic problem, and we present several approaches for

solving it. Finally, we present a practical example of a video sampling structure conversion

system to show the usefulness of the generalized MDSDF model.

Edward A. Lee, Thesis Committee Chairman
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1
Introduction

This thesis is concerned with certain aspects of static scheduling of programs for

digital signal processing (DSP) applications specified as dataflow graphs. In particular,

synchronous dataflow (SDF), and multidimensional synchronous dataflow (MDSDF) are

two subsets of dataflow that are well suited for programming signal processing systems. A

key property that these two models have is that all scheduling decisions can be made at

compile time, rather than at run time. The thesis has two main parts: the first is a study of

the problem of minimizing the amount of code size and buffer size in the target program

when synthesizing code from a SDF or MDSDF specification. The second is a

generalization of MDSDF to permit modeling of multidimensional multirate signal

processing systems sampled on arbitrary sampling lattices.

Over the past few years, there has been increasing interest in dataflow models of

computation for DSP because of the proliferation of block diagram programming

environments for specifying and rapidly prototyping DSP systems. Dataflow is a very

natural abstraction for a block-diagram language, and many subsets of dataflow have

attractive mathematical properties that make them useful as the basis for these block-

diagram programming environments.

Visual languages have always been attractive in the engineering community,

especially in computer aided design, because engineers most often conceptualize their

systems in terms of hierarchical block diagrams or flowcharts. The 1980s witnessed the

acceptance in industry of logic-synthesis tools, in which circuits are usually described

graphically by block diagrams, and one expects the trend to continue in the evolving field
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of high-level synthesis and rapid prototyping. The advent of high speed workstations with

advanced graphics capabilities will make possible increasingly sophisticated forms of

visualizing complex systems.

Another trend driving this research is the advent of high-performance DSP

architectures that are capable of executing computationally intensive DSP algorithms in

real-time. These architectures are typically used in embedded systems like digital cellular

telephones, voiceband data modems, speech recognition systems, video compression and

decompression, and music synthesizers, where constraints on speed, memory usage, power

consumption, and size are fairly stringent. The time-to-market of these products is also a

key issue in hotly competitive areas like consumer electronics.

Traditionally, DSPs have been programmed in assembly language by experienced

programmers, a tedious and error-prone process at best. However, because of the

constraints mentioned above, it is becoming more desirable to provide tools that make

programming easier so that designs can be conceptualized, optimized, and made into

products more quickly. The reliance on assembly language has been for performance

reasons, and one does not expect that automated techniques will be as good as hand-

optimized code in general. But we do expect that as DSPs become more powerful, and

algorithms get more complicated, it will not only become reasonable to sacrifice some

performance in favor of a quicker and cleaner design, but it will become imperative to do

so, since it will become infeasible to hand-code large systems in assembly language due to

the high complexity, just as large circuits today can no longer be hand-optimized.

The mass popularity and acceptance of the Internet is also driving the need for new,

throughput-hungry applications such as video-on-demand, video tele-conferencing, and

image and video signal processing applications in general. The real-time performance

requirements of high quality video are orders of magnitude higher than those required for

high quality audio. Supporting these applications will certainly require multiprocessor DSP

architectures, and it is well known that programming parallel architectures is a difficult

problem. A combination of having to program a parallel machine and having to program it

in assembly language is an even more unattractive one!

Block diagram languages for specifying systems have several advantages, in

addition to those mentioned already. As software systems become increasingly complex, it
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has been proving more difficult to realize one of the biggest advantages that software

supposedly has over dedicated hardware implementations: re-usability. Quite simply,

writing arbitrary software does not lead to software that can be re-used or maintained

easily. High-level organization is often required to ensure that software reusability is a

reality. A major reason for the warm reception that the Java programming language has

gotten from Web developers and software developers in general is precisely because of its

potential for code reuse: both the concept of applets, which are stand-alone applications

that run inside a Web browser, and the concept of the Java virtual machine that abstracts

away platform-specific dependencies, make it possible for software engineers to develop

code only once, without having to worry about porting issues.

Block diagram environments encourage software reuse because the blocks in the

library are modular, reusable components. Block diagrams, combined with an appropriate

MoC, enforce the idea that specifications should notoverspecify the system under

consideration; this allows a specification to be re-targeted to a different architecture much

more easily. A common example of overspecification in high-level, imperative languages

is the total ordering of all statements, making it difficult for a compiler or hardware

synthesis tool to extract parallelism from the specification. Since writing parallel programs

is a difficult problem in general, it is essential that specification languages make it easier

for automated tools to do the partitioning, scheduling, and load balancing.

Finally, block diagram languages are easy to use. Experience has shown that there

is often a great resistance to learning a new programming language; people will argue

strenuously that everything can be done well by the language they are currently

comfortable with. However, ease-of-use and a clear, concise syntax and semantics will

allow a language to become used and accepted much more easily, and block diagram

languages certainly seem to have this property, as they are very intuitive. It has been

remarked that the acceptance of a block-diagram language occurs almost by stealth since

users do not even realize that they are learning a new language!

By a model of computation (MoC), we mean the semantics of the interaction

between the blocks (or modules) in the system. A program in a block diagram language is

specified by interconnecting blocks drawn from a library of blocks. A graph is a natural,

mathematical structure for describing programs written this way. The interconnections
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usually specify communication channels through which data is sent and received. The

interconnection may also specify precedence constraints in some MoCs. Thus, we can

loosely speak of a buffer on an interconnection where data is actually stored while being

exchanged between blocks.

In the rest of this chapter, we survey a number of MoCs and programming

languages that are relevant to this thesis, and discuss their formal properties. In the next

three sections, we discuss a few concepts that are useful when describing mathematical

properties of MoCs.

1.1 Reactive Systems

Signal processing applications fall into the class of so-calledreactive systems—

these are systems that must continuously respond to an environment and produce outputs

with certain real-time constraints. A key point is that such systems never terminate. For

example, an algorithm that digitizes speech for transmission over a telephone line has to

run continuously and is never turned off. The amount of data processed by such systems

can be vast; just 10 minutes of audio at the CD rate of 44.1 khz entails processing over 26

million input samples. In contrast,transformational systems, like conventional programs

for computing, operate on data presented to them in the beginning, compute, and halt after

producing results.

Hence, we need to allow infinite sequences of block executions in models designed

to represent reactive systems. Several problems must be dealt with when infinite sequences

of actor executions are allowed. Firstly, there is the potential for buffers to become

unbounded. Secondly, the system may deadlock, indicating that the system cannot execute

infinitely. Even if a part of the system deadlocks, this is still an error in most practical cases

since in a reactive system, all specified operations are assumed to operate infinitely. Lastly,

some mechanism is needed to actually sequence the actor executions in accordance with

the precedence constraints imposed by the graph. The simplest method is to have a dynamic

scheduler that picks any actor that is firable (meaning it has enough input tokens on all of

its incoming edges) and executes it. However, the overhead associated with this runtime

decision making can be significant, especially if the graph is of fine granularity (meaning
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that there are many actors that have a small execution time). A better solution is to construct

finite schedules and execute them inside an infinite loop. This approach is called static

scheduling, and is only possible if periodic schedules exist for the program.

1.2 Computability

As already mentioned, a model of computation refers to the semantics of the

interaction between modules in the system. A key concept that is useful for classifying

different models of computations is the concept of computability [Epst89]. This concept

refers to the class of functions that may be expressed by interconnecting the modules in the

system. The terms interconnection and module are used in a broad sense here. For example,

a module might be an actor in a dataflow graph, and the interconnection the communication

channel through which data tokens are exchanged, or the module can be a program

statement, and the interconnection between two program statements the set of memory

locations accessed by each.

It can be shown that it is sufficient to consider functions from the integers to

integers—functions that have a different range or domain can always be expressed as

functions from the integers to integers. The number of functions from the integers to

integers that can be expressed in the MoC is usually called theexpressive power of the

MoC1. An expression of a program in an MoC is said to be of finite description if the

number of modules and interconnections used for expressing the program is finite.

A function is called computable if there is a finite length procedure for computing

it in a finite amount of time; this is an intuitive definition of what we understand to be an

“algorithm”. In the theory of computability, it has been found that all attempts at

formalizing the notion of computability lead to the same class of computable functions.

Thus, if a function can be computed on a Turing machine, it can be “computed” in any other

formal system as well, for example, in the -calculus, Post production systems and so on

[Epst89]. To be precise, it can be proven that a function is computable by a Turing machine

1.  Expressive power is also used sometimes to mean the degree of succinctness with which programs can be
expressed in the MoC. However, we do not use the term this way in the discussion above.

λ
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if and only if it is apartially recursive function. The partially recursive functions arise in a

formalism known as recursive function theory; this is a purely arithmetic formalism and is

not based on a machine-like abstraction like the Turing machine. Classes of functions in

this theory are built up by giving a set initial functions (the everywhere zero function

, the successor function , and the projection functions

), and some allowed operations (functional composition, recursive

definitions), and taking the class to be the smallest one closed under such operations. In this

theory, the most general class of functions are the partially recursive functions. Hence, a

function computed by a Turing machine is often called a partially recursive function, and

the following alternative definition of a partial recursive function can be stated in terms of

a machine model of computation (rather than the purely arithmetic one used in recursive

function theory): it is a function computed by a Turing machine that may or may not halt

on a given input. In contrast, the total recursive functions (that are also defined

arithmetically in recursive function theory) are functions computed by Turing machines

that always halt.

The Church-Turing hypothesis states that the class of computable functions are

precisely those computable by Turing machines (or definable in the -calculus, or the class

of partially recursive functions, and so on.) Of course, we cannot prove this hypothesis

since the notion of computability is not a precise one, and is based on an intuitive belief of

what a mechanical procedure should be for computing functions. However, the fact that all

attempts at formalizing the notion of computability have led to the same class of functions

gives a compelling reason to believe the Church-Turing hypothesis. The book [Epst89]

provides a good introduction to the theory of computability, and includes several

philosophical and mathematical viewpoints regarding the Church-Turing hypothesis.

The number of functions from integers to integers is more than the number of

computable functions. This is because the set of computable functions is countably infinite

while the set of functions from the integers to integers is uncountably infinite. The

surprising thing is that there are many practical functions of interest that are uncomputable.

An example is thehalting problem: this is a function that takes as input a program, and

returns 1 if the program halts in a finite number of steps and 0 otherwise. Since programs

can be encoded as integers, this is also a function from the integers to integers, and one

n x( ) 0= s x( ) x 1+=

Ui x1 … xn, ,( ) xi=

λ



7

would like to know whether this function is computable. It turns out that it is not

computable (that is, it isundecidable): there is no one algorithm that can decide in a finite

amount of time whether or not the program given as the input terminates. Other

undecidable problems for Turing machines include questions such as whether a program

will execute in bounded memory.

If the class of functions that can be computed by an MoC coincides with the class

of functions computed by Turing machines, the MoC is calledTuring complete. Hence,

problems that are undecidable for Turing machines will also be undecidable for the MoC.

There is, in general, a trade-off between the expressive power and decision power

of the MoC, where the former refers to generality of the class of programs that may be

specified, while the latter refers to properties about programs that may be mathematically

proven. The more the expressive power is, the less the decision power is, and at the extreme

end of the spectrum are Turing complete models since they express the most general class

of programs but have the least decision power since many general questions about these

programs are undecidable. At the other end of the spectrum are models that can only

express a highly restricted class of programs, like marked graphs, but have high decision

power since many questions are decidable and can even be answered efficiently (that is, in

polynomial time).

1.3 Semantics

In order to prove non-trivial properties about programs, the MoC should have well-

defined semantics. Indenotational semantics, the meaning of a program is defined as the

function the program computes (or denotes) [Stoy77][Alli86]. In this approach, the range

and domain of the functions are usually partial orders. A partial order (p.o) is simply a set

of values, with an ordering ( ) relation on the elements of the set. There need not be an

ordering relationship between every two members of the set; hence, it is apartial order. If

the program is a straight-line program, with no loops or recursion, the problem of

determining the function that the program denotes is fairly simple: it is simply the

composition of the functions represented in the individual steps. The problem of

determining the function is more complicated for recursive, or iterative programs.

≤
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In a recursive or iterative program, one can conceptually think of data values

generated during the execution of the program as a sequence of progressively better

approximations to the final result. The notion of approximation is captured in a partial order

in the following way. If  and  are two elements representing “information” (held by the

data values) in some manner, then  in the p.o if the information in  is a superset of

that in . The notion ofcontinuity for functions that operate on domains that are partial

orders is the following: given a sequence of better approximations , the

upper bound  of the sequence is an element that has all of the information in the ; in

other words, . Theleast upper bound  is an upper bound that satisfies

for any other upper bound . A function  iscontinuous if the least upper bound of the

sequence  is identical to  applied to the least upper bound of

. Basically, there are no “surprises” at the limit: applying  one element

at a time will give the same answer as applying  all at once. A fixed point is simply a value

 such that  where  is some function. A fixed point represents “convergence”

since applying the function again to the information does not generate different

information. Since recursive or iterative programs can be thought of as “converging” to the

final answer, the notions of fixed points and partial orders are useful for giving

mathematical meanings to these programs. Moreover, a least fixed point is unique, which

is why least fixed points are used to give meanings to programs since they represent

convergence to unique final information. Note that convergence need not mean that the

program halts: the “final” answer could in fact be some sort of infinite structure, like a real

number. Denotational semantics is concerned with what happens in the limit, and if the

limit happens to be a well-defined infinite structure, then hopefully any finite behavior of

the program will simply be an approximation of the final infinite structure.

For instance, consider the following factorial program [Alli86]:

fact(n) = if (n=0) then 1 else n*fact(n-1) (1.1)

In the definition above, we are usingfact  before we have really defined it. We would like

to be sure that the program above really does compute the factorial function defined as the

set of pairs . In other words, we would like to be

a b

a b≤ b

a
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able to prove that the program abovedenotes the factorial function. Consider the program

fact  written in Church’s lambda notation:

F = f. x. if x=0 then 1 else x*f(x-1) (1.2)

The  in the above expression simply means that the symbol following it is a variable in

the expression. Hence,  is a function (called afunctional sometimes) of two variables: an

argument  that is a function itself, and an argument  that  is applied to. For example,

we can let , for the successor function, let , and evaluate :

F succ 7 = if 7=0 then 1 else 7*succ(7-1)

The above clearly evaluates to 49. However, notice that applying  to succ gives the

function

F succ = x. if x=0 then 1 else x*succ(x-1) = x. if x=0 then
1 else x^2

Clearly, this function is not equal to succ( ); hence, it cannot be the function that the

program in equation 1.1 denotes. What we really want is the function  that is a fixed-point

of equation 1.2; that is, the function  such that . Certainly, applying  to the

function  results in a fixed point:

F factorial = x. if x=0 then 1 else x*factorial(x-1) =
factorial

So factorial is a fixed point of . However, recursive equations of the type in 1.2 can have

many different fixed points. Indeed, for any fixed point  of ,  is defined unambiguously

for all non-negative integers, but on the negative integers, the definition gives us

 etc. We could make an arbitrary choice for  and fix the values

on all of the negative integers; for each arbitrary choice, we would get a different function

that is a fixed-point of . However, the least fixed point is unique; this is why the meaning

of the program is taken to be the least fixed point solution to the recursive equation 1.2.

The existence of least fixed points is not usually guaranteed for arbitrary functions

on arbitrary domains. However, least fixed points do exist if suitable restrictions are made

on the domains and functions. For example, if the domain is a complete partial order, where

“complete” means that every increasing chain  has a least upper bound, and

λ λ
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functions operating on this domain are continuous as described before, then the Tarski

fixed point theorem guarantees the existence of a least fixed point for any function.

Moreover, Tarski’s theorem is constructive: it gives us a procedure for finding this fixed

point. If the domain is a metric space, and functions are continuous in the usual topological

sense, then the Banach fixed point theorem guarantees the existence of fixed points (and

again, with further suitable restrictions on functions, the theorem becomes constructive,

rather than existential).

Finding the least fixed point using Tarski’s theorem is straightforward. In the partial

order, we include an element called “bottom”—this element represents complete absence

of information; that is, the “undefined” state. “Bottom” is less than every other element in

the partial order. If the elements of the partial order are functions, then “bottom” is the

everywhere-undefined function. To find the fixed point of , we simply keep applying

to “bottom” until we converge to the result; that is, until further application of  does not

change the answer. So, if we apply  to bottom using equation 1.2, we get the new function

 that is undefined everywhere except at  where it has value 1. If we apply  to this

function, that is, , we get the function  undefined everywhere except at 0

and 1, where the values are 1 and 1. In this manner, we get a sequence of functions  where

each function  agrees with the factorial function on the integers  and is

undefined for all other integers. The least fixed point of this sequence of functions is the

factorial function, and hence themeaning of the program is that it denotes the factorial

function (note also that the function we get as the least fixed point has value bottom for all

the negative integers). So, for any finite , the function denoted by the program is a coarser

approximation to the factorial function since the function only agrees with the factorial

function on  and is undefined everywhere else.

1.4 Dataflow

A dataflow graph is a directed graph where the set of vertices, called actors,

represent computations, and a set of directed edges between the actors represent

communication channels implemented as first-in-first-out (FIFO) queues. Actors consume

F F

F

F

f 0 0 F

F F bottom( ) f 1
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data values, called tokens, from their input edges and produce tokens on their output edges;

hence, the edges also represent precedence constraints.

The application of dataflow principles to design computer architectures and

programming languages was pioneered by Dennis in the 1970s [Denn75][Denn80]. Unlike

Von Neumann architectures, where instructions are under the explicit control of a program

counter, computations in a dataflow computer are driven by the availability of data.

Hardware capability is provided for detecting when data is available, and for routing data

tokens to the appropriate actor inputs.

Actors in a dataflow graph are required to be functional: that is, the output produced

by a process is uniquely determined by its inputs (in case the reader objects that this

precludes the actor from having state, an edge from an actor to itself can be used to carry

state information in the form of an input). Dataflow languages and functional languages,

like pure Lisp and Standard ML, belong to the class ofdefinitional languages, in contrast

to imperative languages like C or FORTRAN, which belong to the class ofoperational

languages [Ambl92]. The difference can be succinctly stated in the following manner: in a

definitional approach, the programmer justdefines the problem she wants to solve, while

in an operational approach, the programmer has to specify the precise sequence of steps

needed to solve the problem. Usually, a definitional approach uses the mathematical notion

of function application to inputs: the output answer is the composition of all the functions

specified in the program. In an operational approach, there is a global state, consisting of

variables that the program manipulates: the result of the program is the final state after all

of the steps have been executed. Operational approaches may overspecify the problem

because, in general, there might be more than one sequence of steps that solves the same

problem (that is, results in the same final state). In such a case, there might be an advantage

of choosing one particular sequence over another, for reasons of resource usage for

example. But determining that some different, desired sequence of steps will lead to the

same final state is a very difficult problem, and cannot usually be done. In a definitional

approach, the sequencing (that is, the order in which the functions are evaluated) is left to

the compiler, and often good use can be made of this freedom. In [Lee95], more

connections are made between dataflow, visual languages, and various existing

programming languages.
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General dataflow graphs are Turing complete [Lee96b]. Of-course, this is trivially

true if we do not make any restrictions on the actors: an actor could encode an entire Turing

machine. However, dataflow graphs are Turing complete even if we make the restriction

that all actors have finite state (or functional with self-loops allowed), and that actors

produce tokens drawn from a finite alphabet. Because of these restrictions, an actor by itself

cannot internally store integers of arbitrary size; hence, it cannot by itself have the

expressive power of a Turing machine. However, the presence of potentially unbounded

queues on the edges allows us to encode arbitrary integers using finitely-valued tokens, and

this allows us to simulate a Turing machine using dataflow actors. Since key questions for

Turing machines, such as the halting problem, are undecidable, such questions for dataflow

programs are also undecidable.

1.4.1 Computation Graphs

Perhaps the earliest form of dataflow studied is the computation graph model

proposed by Karp and Miller in their seminal 1966 paper [Karp66]. In this model, each

actor consumes and produces a fixed number of tokens (known at compile time) on each

invocation. In addition, each edge has zero or more initial tokens, and a threshold parameter

that dictates that the sink vertex of that edge can be invoked only if the number of tokens

on the edge is at least equal to the threshold (figure 1-1). Note that the threshold is at least

equal to the number consumed on the arc. The primary focus in [Karp66] is in establishing

the determinacy of computation graphs: Karp and Miller prove that the sequence of tokens

A

B

C

D

(1,3,2,3)

(2,2,3,3)

(0,4,7,7)

(8,1,2,2)
(2,8,3,5)

Figure 1-1A computation graph. The 4-tuple associated with an edge represents the
number of initial tokens, the number of tokens produced onto the arc, the number of
tokens consumed from the arc, and the threshold parameter of the arc.
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produced on the edges does not depend on the order in which actors are invoked as long as

all of the data precedences are respected. They are also interested in establishing

termination conditions for these graphs. A program graph terminates if at least one actor is

unable to continue firing because of a lack of input tokens. They formulate the problem as

an integer linear program and show that an integer solution to these equations is necessary

and sufficient to establish termination. Finally, they prove conditions under which buffer

sizes on the edges remain bounded as the computation graph is executed.

1.4.2 Petri Nets

A Petri net is a directed bipartite graph consisting of two types of nodes: places and

transitions (see figure 1-2). All edges in this graph are directed between places and

transitions (or vice-versa), but never between two transitions or two places. Roughly

speaking, places correspond to edges in a dataflow graph and hold tokens. A transition fires

by removing a token from each of its input places and adding a token to each of its output

places. A place cannot have a negative number of tokens; hence, a transition can fire only

if each of its input places has at least one token. A marking is simply a function mapping

each place to a non-negative integer representing the number of tokens in that place.

It turns out that Petri nets with the expressive power of Turing Machines result if so

called inhibitor edges are allowed between places and transitions— these allow a transition

to check whether a place has zero tokens [Petr81]. Equivalent to Petri nets are the vector

addition systems from [Karp69]. The idea here is to look at sequences of vectors

Figure 1-2a) A Petri net. Places are the circles, and transitions are the heavy lines.
The dots in the places indicate tokens. b) A Petri net equivalent to a dataflow graph.
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(representing the marking of a Petri net) that result when elements of the vectors are

incremented or decremented (representing the firing of transitions, or executions of actors

in a computation graph). Karp and Miller’s paper is mainly concerned with reachability

analysis—that is, to determine whether a particular marking is reachable from some other

marking.

1.4.3 Synchronous Dataflow

This model of computation was proposed by Lee in [Lee86] for use in specifying

multirate DSP algorithms. SDF is a special case of Karp-Miller computation graphs in that

the threshold parameter is always equal to the number of tokens consumed on the edge. In

[Lee86][Lee87], algorithms are given that determine at compile time whether or not an

SDF graph deadlocks, and whether or not an SDF graph has a periodic schedule that does

not require unbounded memory. Algorithms are also developed for constructing static

multiprocessor schedules, where the partitioning and sequencing is all done at compile

time. SDF has since proved to be very suitable for describing a large class of useful DSP

applications, and its strong formal properties have motivated its use (and some closely

related models) in a large number of programming environments for signal processing

[Lauw90, Lee89, Ohal91, Pino95a, Ritz92, Veig90]. Part of this thesis is devoted to the

problem of constructing static schedules that minimize the amount of program and data

memory required by the resulting software implementation.

If each actor in an SDF graph is required to have finite state and produce tokens

drawn from a finite alphabet, then the SDF model is not Turing complete [Lee96b].

However, without these restrictions, the model is Turing complete. We will not be worried

much about these issues in the rest of the thesis since they are mainly of theoretical

importance. The presence of actors with theoretically infinite state does not affect our

results since the optimizations we perform are at the SDF graph level, and at that level, we

know that the buffers are of well-defined, bounded lengths provided that the SDF graph is

sample-rate consistent.

The term “synchronous” in SDF is not to be confused with its usage in the context

of synchronous reactive languages such as Signal, Lustre, and Esterel [Benv91]. In these
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languages, “synchronous” refers to the fact that there is a global clock (sometimes this is

explicit as in the case of Lustre, and sometimes implicit as in the case of Esterel) that

coordinates events. A variable (representing an infinite stream of tokens) is aligned with a

boolean-valued clock signal, and takes on some value whenever its clock value is TRUE.

In Esterel, a clock defines the instants in which a reaction takes place to external events. In

Signal, a powerful algebraic methodology has been devised that allows the compiler to

reason about the signals in the system and detect inconsistencies. In SDF, there is no notion

of a clock: synchronous simply means that the schedules constructed for SDF graphs ensure

that data is produced and consumed at the same rate over the period of the static schedule.

“Synchronous” has also been used in the concurrency community to mean a particular style

of synchronizing communication actions called “rendezvous”.

To avoid confusion, we emphasize that SDF is not by itself a programming

language but a model on which a class of programming languages can be based. A library

of predefined SDF actors together with a means of specifying how to connect a set of

instances of these actors into an SDF graph constitutes a programming language.

Augmenting the actor library with a means for defining new actors, perhaps in some other

programming language, defines a more general SDF-based programming language. This

thesis presents techniques to compile programs in any such language into efficient

implementations.

1.4.4 Cyclo-static Dataflow

This is a closely related model to SDF; it has been proposed by the researchers in

the GRAPE project at K. U. Leuven [Lauw94]. In this model, an actor has several phases:

in each phase, it consumes a certain number of tokens and produces a certain number of

tokens. The numbers of tokens produced and consumed can be different for each phase of

the actor. Since the total number of phases of each actor is restricted to be finite, static

periodic schedules can be constructed for cyclo-static graphs in a manner analogous to SDF

graphs. The main advantage of this model appears to be a lower buffering requirement on

the edges in certain types of graphs.
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For example, consider adistributor operator, which routes data received from a

single input to each of two outputs in alternation (Figure 1-3). In SDF, this actor consumes

two tokens and produces one token on each of its two outputs. In cyclo-static dataflow, by

contrast, this operation can be represented as an actor that consumes one token on its input

edge, and produces tokens according to the periodic pattern  (one token

produced on the first invocation, none on the second invocation, one on the third

invocation, and so on) on the output edge corresponding to edge , and according to

the complementary pattern  on the edge corresponding to . The

periodic SDF schedule in Figure 1-3(a) requires 2 units of memory for the buffer on edge

, while the cyclostatic implementation in Figure 1-3(b) requires only 1 unit of

memory. However, the cyclostatic schedule is larger, and it is not clear whether the

reduction in buffer size is more than the increase in code size of the cyclo-static schedule

(for example, the schedule  is longer than ). Further investigation is

required to resolve these issues rigorously.

1.4.5 Multidimensional Synchronous Dataflow

Lee has proposed a multidimensional extension of SDF [Lee93] in which actors

produce and consumen-dimensional rectangles of data, and each edge corresponds to a

semi-infinite multidimensional sequence

.
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Figure 1-3Cyclostatic dataflow compared to synchronous dataflow. Actor B is
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For example, an actor could produce a  grid consisting of six tokens each time it is

invoked. This extension to multidimensional dataflow has several advantages over SDF,

especially for multidimensional, multirate signal processing applications. One advantage is

that data parallelism is exposed to a much greater degree in an MDSDF specification than

is possible with SDF. This issue is crucial in image processing algorithms where there is a

lot of data parallelism present, and a specification model that exposes all of it to a compiler

could result in better implementations. Secondly, certain forms of control flow that cannot

be expressed succinctly in SDF can be expressed succinctly in MDSDF. Thirdly, the

presence of more than one dimension allows more efficient and intuitive specification of

one-dimensional algorithms since certain bookkeeping activities can be done in the other

dimension.

However, this model appears to be most useful for specifying multirate,

multidimensional signal processing systems. When there are 2 or more dimensions, there

are many possible choices for the sampling geometry, and the standard rectangular grid is

not necessarily the “best” choice. The MDSDF model as specified in [Lee93] has -

dimensional rectangles as data structures, and can only model systems using the rectangular

sampling grid. Part of the contribution of this thesis is to present a generalization of

MDSDF to handle arbitrary sampling lattices. The key issue that arises is whether the

generalized model can be scheduled statically—it turns out that our modelis amenable to

static scheduling.

1.4.6 Systolic Arrays

A systolic array is a network of processing elements (P.E’s) interconnected in a

regular fashion [Kung88]. These elements are often very simple; for example, adders and

multipliers. The processors compute and pass data along in a “rhythmic” fashion; the

behavior of each processor, that of pumping data in and out in a regular fashion, each time

performing some short computation, is akin to the behavior of the heart pumping blood

through the arteries in a regular fashion (hence the moniker “systolic” arrays). A large

amount of work has been done to determine techniques for optimally mapping algorithms

onto systolic arrays (for example, by minimizing the number of processing elements,

2 3×
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maximizing the throughput, or minimizing the buffers on the arcs). A general class of

applications that are realizable by systolic arrays are the so-called regular iterative

algorithms [Kung88], which include many problems from linear algebra like LU

decomposition, and matrix multiplication, problems requiring dynamic programming such

as finding the shortest path in a graph, and many signal processing problems like

convolution and IIR filtering. Roughly speaking, a regular iterative algorithm has a

dependence graph with a highly regular topology and connectivity that is highly localized

(that is, there are no “global” communications). Given such an algorithm, it is possible to

generate an optimized systolic architecture that implements the algorithm. Similarly,

wavefront arrays are like systolic arrays but instead of being globally synchronized, they

use a data-driven computing paradigm like dataflow. However, wavefront arrays also have

the regular structure found in systolic arrays.

There are several differences between MDSDF and the dependence graphs

amenable to implementation as systolic arrays. MDSDF is a dataflow model, and MDSDF

graphs, like SDF graphs, can be of arbitrary topology. Hence, it is not necessary that

MDSDF graphs have the sort of regular structure that dependence graphs of regular

iterative algorithms do. Secondly, one of the possible uses of MDSDF is to provide a

specification language from which implementations can be derived for general purpose

multiprocessor architectures. These include architectures like the Philips Video Signal

Processor (VSP), where the number of processing elements is fixed and is not scalable with

the size of the algorithm, and where MIMD (multiple instructions multiple data) design is

necessary due to the differing granularity of the tasks and non-regular control flow. Hence,

the work on scheduling dependence graphs onto systolic and wavefront arrays has limited

use in the context of MDSDF.

1.4.7 Boolean Dataflow

While the above models all have restricted expressive power, theboolean dataflow

(BDF) model,which was defined by Lee in [Lee91] and explored further by Buck in

[Buck93], has significantly more expressive power. In this model, the number of data

values produced or consumed by each actor is either fixed, as in SDF, or is a function of a
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boolean-valued token produced or consumed by the actor. Buck addresses the problem of

constructing a non-empty sequence of conditional actor invocations, where each actor is

either invoked unconditionally or invoked conditionally based on the value of boolean

tokens. This sequence should produce no net change in the number of tokens residing in the

FIFO queue corresponding to each edge. Such an invocation sequence is referred to as a

complete cycle, and clearly, if a finite complete cycle is found, it can be repeated

indefinitely, and a finite bound on the amount of memory required (for buffering) can be

determined at compile-time. It can be shown that the boolean dataflow model is Turing-

complete. Thus, a number of key decision problems for BDF graphs are undecidable,

including the problem of finding finite complete cycles (and thus, the problem of

determining whether a graph can be implemented in bounded memory). Buck presents

heuristic techniques for finding finite complete cycles for BDF graphs. Whenever his

techniques fail, the graph has to be executed dynamically, although clustering techniques

can often significantly reduce the number of tasks that have to be executed dynamically

[Buck93].

1.4.8 Well Behaved Dataflow

Gaoet al. have studied a programming model, called well-behaved dataflow, in

which non-SDF actors are used only as parts of predefined constructs [Gao92]. Of the two

non-SDF constructs provided, one is a conditional construct, and the other is a looping

construct in which the number of iterations can be data-dependent. This restriction on the

use of more general actors guarantees that infinite schedules can be implemented with

bounded memory. Gao’s model, although more general than SDF, has significantly less

expressive power than the BDF model of Buck because it is not Turing-complete (this

follows from the fact that every graph in this model can be implemented in bounded

memory).
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1.4.9 Kahn Process Networks

The Kahn process network model is an elegant model of concurrency that was

proposed by Gilles Kahn in his seminal 1974 paper [Kahn74]. In his model, there are a

number of processes that communicate by sending data to each other over channels which

have potentially infinite queues. The processes execute concurrently; a process may write

to a channel whenever it wants, but if it wants to read from a channel and the channel is

empty, then it must block until it gets data on that channel. In other words, a process cannot

base an action on the presence or absence of data.

Kahn is mainly interested in defining precisely the function computed by the

network. He proceeds by constructing a partial order of streams based on the prefix order.

A stream is a potentially infinite sequence of tokens, and captures the movement of data

along the communication channel (also called the channel’s history). In the prefix partial

order, a stream  is less than or equal to a stream  if  is a prefix of . Clearly, if  is

a prefix of , then  has more information than , and thus represents a more evolved

state than . Kahn constrains the processes that implement blocking reads and non-

blocking writes to correspond to continuous functions on the prefix partial order; this

simply prevents a process from waiting for an infinite amount of time before producing

outputs. Thus, Kahn is able to use the Tarski fixpoint theorem to show that the function

computed by the network is the least fixed point of their composition. Since the least fixed

point of a continuous function on a complete partial order is always unique, it follows that

Kahn process networks are determinate in the sense that there can only be one valid

computation (that is, exactly one history on each channel) for a particular set of inputs. The

fixed point in the network can be reached by executing the processes in the usual way since

Tarski’s theorem tells us that the least fixed point can be reached by starting the

computation on the all-undefined state—in the process network, this is simply the state

where all queues on the channels are empty. Also, the least fixed point of a Kahn process

network is usually a set of infinite sequences; hence, any execution of the network for a

finite amount of time represents an approximation of the final answer. Put another way, the

operational behavior of the network converges to the denotational meaning only when time

goes to infinity.

A B A B A
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Kahn’s conceptualization of dataflow networks in terms of these continuous

processes is a powerful one; the determinacy of models like computation graphs, SDF

graphs, BDF graphs all follow from this since each of these models satisfies the

assumptions made of processes in the Kahn model.

1.5 Non Dataflow MoCs

While we are only concerned with dataflow MoCs in this thesis, it is worthwhile to

briefly review some non-dataflow MoCs. These include Statecharts for specifying control-

dominated applications, numerous other discrete event simulators used for modeling

hardware, queueing networks, communication protocols, and hybrid dynamical systems

used for modeling systems with continuous time and discrete time behaviors.

1.5.1 Discrete Event Simulators

Unlike the dataflow MoCs we have discussed so far, data values in a discrete event

(DE) system also have an associated time stamp. An event is a tuple  where  is

the th datum and  its timestamp. A discrete event simulator processes events

chronologically, in order of increasing time. There is typically a global event queue in

which all the events in the graph are stored, and the actor that is invoked next is the one that

has input events with the smallest timestamps. Typically, maintaining the global event

queue is a computationally expensive procedure. The presence of simultaneous events

often leads to non-determinacy, where the result of the computation depends on the order

in which blocks are invoked. The simultaneity problem can be partially solved by insisting

that each block add an infinitesimal delay on its output events. Networks of such-causal

systems have been shown to be determinate [Yates93]. The presence of feedback loops can

also cause problems; we refer the reader to [Chan96] for a discussion of these issues.

Examples of popular discrete event simulators include the VHDL language used for

hardware specification and synthesis, and numerous simulation tools such as SIMAN,

SIMULA, GASP, and SLAM [Cass93].
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1.5.2 Statecharts

Statecharts is a visual language based on a hierarchical finite state machine model

of computation. Hierarchy is a useful feature, both for designing ease, and for managing

complexity. For example, a compiler can use hierarchy in the specification during

scheduling and compilation intelligently and avoid the blow-up in the size of the program

that can result if the hierarchy is flattened or is not there to begin with. However, the

semantical issues become more challenging when hierarchy is allowed. Statecharts

attempts to precisely define the syntax and semantics of hierarchical FSM systems. The

original specification of Statecharts had a number of ambiguous definitions; as a result

there are at least 22 different variants of the language in use today, each having slightly

different semantics and formal properties [Beec95].

1.5.3 Hybrid Dynamical Systems

A hybrid dynamical system consists of some sort of FSM at the top level, while

within each state, the system evolves according to a set of continuous time differential

equations. Transitions between states at the top level occur when the system within the

present state evolves to a point that triggers a change of state. These systems are useful for

modeling scenarios where, for example, some discrete event protocol interacts with a

system having continuous time dynamics.

For example, consider the problem of designing the controller for the crossing gate

at a railway track intersection. This controller has three states at the top level: gate up, gate

lowering, and gate down. In each state, there is a differential equation according to which

the system variables evolve. The system variables are the position of the train, and the

position of the gate. When the gate is up, the system evolves according to the continuous

time dynamics of the train. When the train nears the gate, the controller moves into the

“gate lowering” state. When the gate is being lowered, the evolution is a pair of differential

equations, the second one modeling the movement of the gate.

The research in this area is still new, and the objectives are mainly formal

verification: to formally prove that the system does not enter any bad states, where a bad

state is defined to be a region of the continuous state space that forms the domain of the
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variables in the system. In the train gate controller example, this is the region where the gate

is still up even though the train is passing through. There are essentially two degrees of

modeling freedom in these systems: the generality of the finite state machine model at the

top level, and the generality of differential equations allowed in the states. Typically, the

top-level model is a basic finite state machine, and the continuous variables have piecewise

linear trajectories (resulting in the so-called linear hybrid systems). Typically, one tries to

prove that the verification problem is decidable, rather than undecidable. Making the

differential equations more general usually results in the verification problem becoming

undecidable. Even when decidable, the decision algorithms typically have exponential or

super exponential lower bounds because of the state space explosion problem (formal

verification methods typically explore the entire state-space in order to ensure that bad

states are not reachable; however, the size of the state-space can be exponentially bigger

than the size of the specification), so that heuristic techniques of state-space reduction have

to be used to get reasonable running times. The papers [Alur95][Henz96] provide a starting

point for exploring this research area.

1.6 A Denotational Approach for Classifying MoCs

Terms like “synchronous”, “discrete event”, “dataflow” have been used somewhat

loosely in the past. For instance, one research group coined the term “asynchronous

dataflow” to mean the opposite of “synchronous dataflow”; i.e, dynamic dataflow where

actors do not consume and produce fixed numbers of tokens known at compile time. This

use of “asynchronous” contradicts its usage in other contexts where it implies a self-timed

concurrent execution policy, which can certainly be used on a “synchronous” dataflow

graph. There has been some work recently that attempts to define and classify, in a

mathematically rigorous manner, the various models used for specifying reactive systems

[Lee96]. The approach in [Lee96] is denotational in flavor, in that it attempts to give

meanings to systems constructed using different models of computation (in contrast, an

operational approach would attempt to specify the precise method of execution in a model

of computation). The basic result from [Lee96] is a classification of various kinds of

systems in terms of signals and functions on signals. Signals are defined to be possibly-
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infinite sets of tag/value tuples, where tags are usually drawn from some infinite partially

ordered set. The different classifications arise when the set of tags is uncountably infinite,

countably infinite, when the tags can be put into one-on-one correspondence with the

integers in an order preserving way, etc. Fixed-point semantics are used to give meaning to

networks of processes (functions) with feedback loops.

1.7 Other Programming Languages

There are several programming languages that are also relevant to the research in

this thesis, and some of these, like the synchronous reactive languages, have been

mentioned already. Some of these languages have a dataflow flavor to them, like Signal,

and some are based on finite state machines, like Esterel. Other particularly interesting and

relevant languages are APL, Lucid, and Sisal. These languages have all been developed to

bring multidimensional programming into the realm of functional, declarative languages.

As already mentioned, imperative languages overspecify the computation; this

makes it difficult to compile this code onto parallel architectures. This has motivated a large

body of work in developing efficient compilers that can extract parallelism from

FORTRAN or C programs automatically. For example, nested loops often pose great

problems for parallelism extraction because the usual dependency analysis may not be

good enough to deduce what is really going on. For instance, if a statement A writes to an

array X, and a statement B after statement A reads from array X, straightforward

dependency analysis suggests that there is a dependency between statements A and B.

However, it could be that the index into which A is writing to is never the same as the index

from which B is reading from; hence, in reality, there might be no dependency at all. It is

possible to systematically deduce these dependencies for particular classes of array

indexing functions; for example, if the indexing function is an affine function of the loop

indices. These dependency tests frequently involve solving simultaneous Diophantine

equations, as in the Banerjee test [Bane88][Zima90].

The languages community, in contrast, is tackling the problem from the other end,

by trying to provide languages where arrays and indexing can be expressed declaratively,

or functionally, rather than imperatively. This should make the job of the compiler
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significantly easier, and would theoretically lead to more efficient implementations.

However, current functional languages are inept at handling large multidimensional objects

like arrays [Mull91]. There are several reasons for this. Firstly, allocating and filling in

values into data-structures is an alien concept in declarative semantics since data-structures

are results of expressions in such languages. Secondly, referential transparency requires

that any array element can only be defined once; recursive definitions of arrays where this

might be violated are illegal. Thirdly, operations that modify the array must first copy the

array, again because once an array has been defined, it may not be written to. The cost of

copying large arrays is expensive.

The first problem has been solved by so called array comprehensions. These allow

various subregions in an array to be defined in a single expression. Moreover, the ordering

of the definitions of the subregion does not matter; only the data dependencies are specified

and from this the compiler can choose any initialization order it wants (see [Huda89] for an

example).

One of the first functional languages to incorporate arrays as a basic type was

Iverson’s APL (A Programming Language) [Iver62]. APL permits direct manipulation of

arrays as complete entities and provides functions that can be applied simultaneously over

all entries in an array. However, APL has proved difficult to implement and compilers for

APL do not produce code competitive to FORTRAN code (see papers 2 and 3 in [Mull91]).

One of the main goals in the design of APL was succinctness; in this it succeeded rather

well. Programs written in APL use a special character set, and are succinct to the point of

being cryptic. APL was also the language that inspired FP [Back78], which in turn

rejuvenated interest in definitional programming paradigms.

The “Concrete domains” work of Kahn and Plotkin [Kahn93], and the following1

sequential algorithms work of Berry and Curien [Berr85] is an attempt by theoreticians to

extend denotational theories to computations that operate on the so-called “deterministic

concrete data-structures” (dcds); these structures encapsulate, in an abstract way, most

common data structures like arrays, records, lists etc. Essentially, a dcds consists of a

number of cells where each cell may be filled with a unique value. A cell has an enabling

1.  It should be noted that the material in [Kahn93] actually appeared in french as an INRIA technical report in
1978; it was published in english in 1993.
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condition that dictates that it be filled with a value if and only if the enabling condition is

satisfied. The enabling condition usually takes the form of specifying that some other cell

or cells be filled with particular values. It can be seen that intuitively, the cells are elements

of a complete partial order, induced by the enabling conditions; this gives these data-

structures specific mathematical properties [Kahn93]. A sequential algorithm is roughly

defined to be a so-called Kahn-Plotkin sequential function whose inputs and outputs are

states of a dcds. These functions can be composed to build up an applicative program and

it is shown in [Berr85] that these programs have the full abstraction property: the

operational specification of sequential functions and their compositions is identical to the

denotational semantics that gives meaning to such a program.

Despite the overspecification problem, imperative languages still outperform

functional languages; they can be compiled down to very efficient implementations that

make good use of the capabilities of the machines and run many times faster than

equivalent implementations generated from functional programs. On the other hand,

imperative languages are generally considered to be difficult to maintain and change since

even a minor change could have all sorts of unexpected side effects. One expects that

ultimately there will be good compilers for functional languages that can compete with

imperative languages. Below we mention a couple of interesting functional languages

suitable for multidimensional programming.

1.7.1 Lucid

Lucid is a declarative language with a dataflow flavor [Ashc95]. Declarative is

similar to functional: it means that the programmer specifies the computation she wants,

and not the precise operational details for executing the computation. Lucid has a notion of

multidimensional indexing which makes it possible to write programs that operate on

multidimensional data objects. For example, in the construct

seq = posint fby.a runningSum.b(drop.b(seq,n));

fby.a  denotes “followed by in dimension a”,runningSum.b  denotes “the procedure

runningSum  should operate on dimension b”, anddrop.b(seq,n)  denotes “drop

every th value fromseq  in theb dimension”, where these dimensions are all assumedn
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to be orthogonal. As another example, the following construct is used as the basic

computation step in a routine for solving Laplace’s equation for heat transfer in three

dimensions:

avg(M) = (left M + right M + up M + down M + front M + rear M)/6

where the expressionleft M  denotes the value ofM at the current (horizontal) space

coordinate minus one, just asdown M denotes the value ofM at the current vertical space

coordinate minus one.

The developers of Lucid argue that Lucid can be viewed as an application of

intensional logic. Intensional logic is a theory invented by logicians to study natural

language statements that have context sensitive meanings. However, these contexts are

usually “hidden”, and not explicit. Even though conventional forms ofextensional logic,

like temporal logic, can be used for reasoning about such statements, the resulting

formalisms are usually unnatural and do not have the intuitive feel that the natural language

statement would. In Lucid, the “contexts” are the indices of the multidimensional data-

structures, and these are implicit, as the two example statements given above show. While

these statements can also be thought of extensionally, where data objects are infinite

sequences in the style of Haskell, and Lucid operators likefirst , next , and fby

correspond to the list operationshead , tail , andcons , the developers argue that it is

more natural to interpret Lucid statements in an intensional manner.

The intensional approach in Lucid naturally leads to a demand-driven style of

operational semantics (callededuction in [Ashc95]); that is, demands for values at given

contexts generate demands for other, possibly different, values at other, possibly different

contexts. The demand-driven style of evaluation is roughly similar to lazy evaluation

(which is an efficient implementation of the normal-form reduction order in the lambda

calculus), in that values that are not needed are never computed. Normal order reduction is

guaranteed to terminate in the normal canonical form if one exists for the expression.

Applicative order reduction in the lambda calculus, on the other hand, makes the fatal

mistake of evaluating everything at least once, and this can result in a non-terminating

series of reductions, even though there is a normal canonical form [Alli86][Stoy77].

The multidimensional contexts in Lucid can be used for programming constructs

that compute things that are not inherently multidimensional. The different dimensions can
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be used for “temporary” storage. For example, in a matrix multiplication specification, a

problem that is inherently 2-dimensional, a third dimension is used to lay out the row from

one matrix and the column from the other matrix so that a dot-product may be formed. As

will be shown in chapter 4, multidimensional synchronous dataflow is very similar in this

regard since temporary dimensions can be used for computations that do not ordinarily

require them. The use of extra dimensions can however uncover all of the parallelism that

might be present in the algorithm so that a compiler could make good use of it.

However, it should be noted that Lucid is a general, possibly Turing complete

programming language whereas MDSDF is not Turing complete, if MDSDF actors are

restricted to have finite state. Hence, since static schedules can be constructed at compile

time, we can not only construct schedules, but we can optimize them for various metrics,

something that is usually not possible for more general languages. Also, it is not clear

whether it would be easy to express the sort of programs we want to in Chapter 5; the

extension of MDSDF given there seems to be better suited for the task.

1.7.2 SISAL

SISAL stands for Streams and Iterations in a Single Assignment Language. This

language is a general purpose applicative language intended mainly for large scale

scientific applications. Since arrays are an integral part of such computations, arrays and

array operations are included in the language definition (see the paper by Feo in [Mull91],

and also [McGr83]).

Sisal includes array comprehensions that allow arrays to be defined as expressions.

Recursive definitions of arrays are not allowed; this solves the second problem mentioned

before, namely, the problem of defining some elements of the array more than once. Some

effort is also made to eliminate copy operations; the compiler does some node re-ordering

so that read operations are scheduled before write operations, and some runtime checking

to identify the last user of an array.

One attractive feature of arrays in Sisal is that arrays can be “jagged”. This is

possible because an  dimensional array in Sisal is defined to be an array ofn n 1–
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dimensional arrays. The size and bounds of each of these arrays can be different; hence, an

 dimensional array need not be a rectangular hypercube.

Sisal is also a general purpose language, and hence the emphasis is not so much on

static scheduling as it is in MDSDF.

1.8 Modularity and Code Generation

Graphical programming environments for DSP normally contain palettes of

graphical icons that correspond to predefined computational blocks, and the program is

constructed by selecting blocks from these palettes and specifying interconnections. If

some functionality is desired that is not available in the existing library, then it is usually

easy to define a new function and add it to the library, upon which the new function can

become available to all other users of the system. Thus, the format of graphical

programming environments makes it natural and convenient to recycle software and the

development effort. For example, since each function is defined only once, it becomes

economical to spend a large effort to hand-optimize frequently used functions for

efficiency.

1.8.1 Compiling SDF and MDSDF Graphs

The approach used in many signal processing programming environments for

constructing software implementations from block diagrams is the technique ofthreading

[Bier95]. In this approach, the underlying graph model, in this case SDF or MDSDF, is

scheduled to generate a sequence of actor invocations. A code generator then steps through

this schedule and generates the machine instructions necessary for the computation

specified by each actor it encounters; these instructions are obtained from a predefined

library of actor codeblocks. Finally, a memory allocator assigns variables to memory

locations, and does some other bookkeeping activities. The result is the target program.

An alternative approach used by some systems is synthesis; in this approach, the

graph is first translated into some intermediate language. This translation could be by

threading codeblocks specified in the intermediate language. Then the language is

n
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compiled into assembly language. Since the threading technique can be used in synthesis

as well, we assume that a threading model is being used. We also assume that the code-

generator generates inline code; the alternative of using subroutine calls can have

unacceptable overhead, especially if there are many small tasks in the graph. Inline code

presents its own problems however, the chief one being code size explosion. For example,

if an actor appears 20 times in the schedule, then there will be 20 codeblocks in the target

code for that actor. DSPs have very tight constraints on on-chip memory; hence, the

generated code might be unacceptable. However, for SDF graphs, it is usually possible to

generate the so-called single appearance schedules where each actor appears only once in

the schedule; for these schedules, inline code generation results in code that has the least

size to a first approximation. We refer the reader to [Bhat96a] for a more thorough

discussion on various issues involved in compilation from block diagrams.

1.8.1.1 Memory Usage

An important problem that arises when compiling SDF programs is the

minimization of memory requirements—both for code and data (intermediate results). This

is a critical problem because programmable digital signal processors have very limited

amounts of on-chip memory, and the speed and financial penalties for using off-chip

memory are often prohibitively high for the types of applications, typically embedded

systems, where these processors are used. Moreover, off-chip memory typically needs to

be static, increasing the system cost considerably. One concern in this thesis is to develop

techniques to minimize the code and buffering size (for the buffers on the edges between

blocks) when compiling an SDF or MDSDF program.

As will be discussed later, large sample rate changes result in an explosion of code

size requirements if naive compilation techniques are used. Hence, we use a particular class

of schedules that do not result in the code-size explosion problem, and we show that there

is considerable opportunity for optimization for buffer memory usage within this class of

schedules. We develop techniques for producing optimized schedules that minimize both

the code size and the buffering requirements.
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Below, we review some alternative approaches to code generation for embedded

systems.

1.8.2 Compilers

There have been a number of reports on the inability of high-level language

compilers to deliver satisfactory code for time-critical DSP applications [Geni89, Tow88,

Yu93, Zivo95]. The throughput requirements of such applications are often severe, and

designers typically resort to careful manual fine-tuning to sufficiently exploit the parallel

and deeply pipelined architectures of programmable digital signal processors while

meeting their stringent memory constraints. For example, a study was done by Zivojnovic

et al. on the performance of C compilers for several popular DSPs [Zivo95], The best

performance exhibited by these compilers — by the Tartan compiler for the Texas

Instruments TMS320C40, and the ADI 2.0 compiler for the Analog Devices ADSP 21060

— exhibited overheads over handwritten code of 290% and 219% for execution time, 44%

and 57% for program memory, and 0% and 0% for data memory respectively. These

numbers were measured on an FIR filter benchmark. The worst performance exhibited by

these compilers —by the ADI 5.1 for the Analog Devices 2101—had overheads of 775%,

250%, and 0% for execution time, program memory, and data memory respectively.

Although there is new research that appears promising [Liao95], it is too early to determine

whether compilers that come within factors of 1.2-1.5 of hand-written code can be

developed for DSPs. However, it is worth repeating that even if there are good compilers

available, there are still compelling reasons to use block-diagram languages because these

languages can be more easily mapped to multiprocessor architectures than just straight C

code, they are more intuitive to use, they are more modular, and more amenable to formal

verification due to their strong formal properties. Hence, the optimizations that we develop

in this thesis are global in the sense that they apply to the overall graph structure; the code

within the individual actors is assumed to be optimized already, either by hand or by a good

compiler.
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1.8.3 Subroutine Libraries

The use of optimized subroutine libraries, as described earlier, is one approach to

improving efficiency without forcing the user to write or fine-tune code at the assembly

language level. A second approach is to add extensions to a high level language that

facilitate the expression and optimization of common signal processing operations

[Lear90]. This can be highly successful in some compilers; for example, when DSP

extensions to C are used, the Tartan compiler achieves an overhead of only 5% in execution

time, and has no overhead in program or data memory on the FIR filter benchmark.

However, in other compilers, this may not be as useful. The afore-mentioned ADI 5.1

compiler for the 2101 actually gives worse results when compiling the FIR benchmark with

DSP extensions: overheads of 885%, 283%, and 0% for execution time, program, and data

memory respectively [Zivo95].

Another approach is the application of artificial intelligence techniques to confer

optimization expertise to high level language compilers [Yu93]. Although it has not been

extensively evaluated yet, preliminary results show promise.

1.8.4 Block Libraries

The alternative that is pursued in this work is the use of graphical or textual block

diagram languages based on the SDF and MDSDF model and its extensions in conjunction

with hand-optimized block libraries. As is discussed in Chapter 2, the SDF model allows

us to schedule all of the computations at compile-time and thus eliminate the run-time

overhead of dynamic sequencing. This increased efficiency comes at the expense of

reduced expressive power: computations that include data-dependent control constructs

cannot be represented in SDF. However, SDF is suitable for a large and important class of

useful applications, as the large number of SDF-based signal processing design

environments suggests. Benchmarks on the Gabriel design environment [Lee89] showed

that compilation from SDF block diagrams produced code that was significantly more

efficient than that of existing C compilers [Ho88a], although not as efficient as hand-

optimized code. For a restricted model of SDF in which each computation produces only

one data value on each output and consumes only one data value each input, the Comdisco



33

Procoder block diagram compiler produced results that were comparable to the best hand-

optimized code [Powe92]. The reason for this impressive performance is that traditional

compilers apply optimizations mostly within basic blocks [Aho88], while SDF compilers

have more knowledge of the control structure of the program (as mentioned above, the

sequencing of SDF computations can be fixed at compile time) and can thus apply

optimizations globally. Hence, a hybrid compiler/SDF-compiler approach to block

diagram based code synthesis should prove to be very competitive with hand-optimized

code (such a test cannot be made currently since existing compilers perform rather poorly

as already mentioned). Although the performance of the Comdisco Procoder is impressive,

the restricted computational model to which its optimizations apply does not support

systems that have multiple sample rates or decisions.

1.9 Block Diagram Languages—History

There are several graphical programming environments for DSPs available

commercially. Some of these include the Signal Processing WorkSystem marketed by the

Alta group at Cadence Design Systems [Barr91], the COSSAP environment [Ritz92] that

grew out of a research project at the Aachen University of Technology, now being

marketed by Synopsys, the DSP Station developed by Mentor Graphics, the GRAPE

environment [Lauw90] developed at the Katholieke University of Leuven and now

marketed by Eonic systems, and the Hyperception environment. It should be noted that not

all graphical programming environments for DSPs have succeeded. The Sproc chip, a 4-

processor single chip DSP made by Star Semiconductor, also had a graphical environment

that came packaged with a graphical software development system. The development

system included automated partitioning and scheduling tools. However, despite the

adequate programming tools offered, the company and product failed. Several additional

graphical programming and simulation environments for DSP are described in [Desm93,

Kapl87, Karj88, Olso92, Kons94, Reek92, Shan87].A comprehensive survey of the state-

of-the-art tools for DSP programming can be found in [Bier95].

The earliest block diagram language to be used for signal processing was at the Bell

Laboratories in the 1960s, where a block diagram compiler was developed for acoustic
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research [Kell61]. A graphical programming environment for designing digital filters in

presented in [Covi87] (this environment uses only two types of actors: adders and

multiplication by constants). At Advanced Micro Devices, a graphical tool was developed

that allows mapping of a DSP algorithm onto a two-dimensional array of processors

[Ziss87]. At Carnegie Mellon University, an environment targeting the iWarp

multicomputer was developed [Ohal91]. The Khoros program that grew out of research

done at the University of New Mexico is used widely for image and video processing

simulations [Kons94]. At the University of California at Berkeley, work in graphical

environments for DSP and communication is rooted in the BLOSIM system developed by

Messerschmitt in 1984 [Mess84]. This work inspired the development of the Synchronous

Dataflow (SDF) model [Lee86], and provided the foundation for the Gabriel system

[Lee89]. The Gabriel system had code-generation capability, with the target processor

being the Motorola 56000 DSP. The Ptolemy project was started in 1990 as the successor

to Gabriel [Buck94]. The Ptolemy project is an object-oriented framework for the

specification, simulation, and software-synthesis of large scale heterogeneous systems.

Ptolemy supports multiple models of computation, unlike Gabriel which only had one

model of computation—SDF. Different models of computation can interact seamlessly in

Ptolemy, and new models of computation can easily be added by an experienced user.

Models of computation available in Ptolemy include SDF, discrete event, dynamic

dataflow, boolean dataflow, and Kahn process networks. Ptolemy also has extensive code-

generation capabilities, and some of the processors targeted have included the Sproc

multiprocessor DSP from Star Semiconductor [Murt93], the Motorola DSP 56000 and DSP

96000 [Pino95a], and the Texas Instruments TMS320C50 DSP chip.

The block diagram environments mentioned above are all based on MoCs with

varying degrees of formal properties. However, some researchers have proposed block

diagram environments where there is essentially no MoC at all; an example of this

approach is the Pope project from IMEC in Belgium [Verk96]. In the Pope environment, a

module can be specified in C, VHDL, or DFL (data flow language). Multiple protocols for

communication are allowed between modules, unlike most of the MoCs in the literature.

The use of different protocols leads to different semantics.
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1.10 Overview of the Thesis

In this chapter, we have argued in favor of using large grain dataflow languages for

specifying real-time signal processing systems. We have concentrated on two particular

subsets of dataflow: synchronous dataflow, which has proved to be useful for expressing

signal processing algorithms, and its extension to multiple dimensions, multidimensional

synchronous dataflow. We have also argued in favor of block diagram programming

environments, and described a strategy for synthesizing software from SDF/MDSDF-based

graphical programs. We have shown how scheduling plays an important role in the

compilation process.

In the next chapter, we review the SDF model in detail, and formalize the

scheduling concepts needed. We review the concept of single appearance scheduling and

describe its property of requiring the least amount of program memory when software

implementations are generated. We show that one particular scheduling problem is NP-

complete and that we have to resort to heuristics in general. We also establish a simple

lower bound on the buffer size required on any edge in a consistent SDF graph.

In Chapter 3, we identify the problem of constructing single appearance schedules

that minimize the amount of buffering memory required. We describe formally the

buffering model we use, and contrast our buffering models to some other possibilities. The

buffering model we choose is shown to have several useful properties in contrast to other

models. We then build up some machinery to describe single appearance schedules that

minimize the amount of buffering memory required, and we give a polynomial time

algorithm for generating an optimal loop hierarchy, thereby minimizing the buffering

memory. This algorithm is shown to be optimal for a restricted set of graphs called well-

ordered graphs. Several extensions are given. We then tackle general acyclic graphs and

show that the problem becomes NP-complete. Two heuristics are developed, and an

extensive experimental study is given that shows the efficacy of these techniques. Finally,

we extend these techniques further to arbitrary SDF graphs, and conclude with some

discussion of related work. Much of the work in this chapter was done in collaboration with

Dr. Shuvra Bhattacharyya, a researcher at the Hitachi Systems Research Laboratory in San

Jose, California.
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In Chapter 4, we review the MDSDF model, and establish some results regarding

self-loops. In SDF graphs, the precedence constraints imposed by self-loops are relatively

easy to conceptualize; in MDSDF, it requires a bit more effort. We then extend the

scheduling results from Chapter 3 to MDSDF schedules.

In Chapter 5, we identify a shortcoming of the MDSDF model, namely, its inability

to specify multidimensional, multirate signal processing systems sampled on non-

rectangular lattices. In a multidimensional, discrete-time signal, there can be several

choices for the sampling geometry; that is, the periodic “grid” from which samples are

taken. The straightforward extension of one-dimensional sampling leads to the so-called

rectangular sampling structure (also called a rectangular lattice), and MDSDF is capable of

expressing systems dealing with rectangularly sampled signals. However, a more general

sampling structure in multiple dimension is a geometric lattice, and in general, the lattice

may not be a rectangular lattice. Non-rectangular lattices can be useful in practice because

the sampling density required to represent the signal might be lower than with an equivalent

rectangular lattice.

We review multidimensional signal processing concepts, and present a dataflow

model that is capable of expressing systems sampled on non-rectangular lattices. We

concentrate on static scheduling, and show that the problem of computing the balance

equations becomes fundamentally more difficult. In particular, the balance equations in this

model include equations requiring the computation of so called “integer volumes” of

parallelepipeds. However, we are able to develop a method that allows these equations to

be solved, thereby permitting static schedules. A practical example using this model is

given. The problem of computing integer volumes turns out to be an interesting number-

theoretic problem and we give a partial solution to this problem at the end of Chapter 5. In

the final chapter, we present our conclusions and directions for future research.
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2
Synchronous Dataflow

2.1 Notation

Given a finite set  of positive integers, we denote by  the greatest common

divisor of  — the largest positive integer that divides all members of , and we denote

the least common multiple of the members of  by . If , we say that

the members of  arecoprime. Given a finite set  of real numbers, we denote the largest

and smallest numbers in  by  and , respectively. Also, if  is a real

number, we denote the largest integer that is less than or equal to  (the “floor” of ) by

, and we denote the smallest integer that is greater than or equal to  (the “ceiling” of

) by . We denote the number of elements in a finite set  by .

2.1.1 Graph Concepts

By a directed multigraph, we mean an ordered pair , where  and  are

finite sets, and associated with each  there are two properties  and

such that . Each member of  is called avertex of the directed

multigraph and each member of  is called anedge. If  is an edge in a directed

multigraph, we say that  is thesource vertex of ; is thesink vertex of ;

is directed from  to ;  is anoutput edgeof ; and  is aninput

edge of .
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Given two not necessarily distinct vertices  and  in a directed multigraph

, we say that  is a predecessor of  if there exists  such that

and ; we say that  is asuccessor of  if  is a predecessor of ; and we

say that  and  areadjacent if  is a successor or predecessor of ; and if  are

distinct, then  is called anadjacent pair. Two subsets  are adjacent if

there exist vertices  and  such that  and  are adjacent. By asubgraph

of a directed multigraph , we mean the directed multigraph formed by any

 together with the set of edges . We denote the

subgraph associated with the vertex-subset  by ; if  is understood

from context, we may simply write . Apath in  is a nonempty

sequence  such that , , . We

say that the path passes througheach member of

,

and we refer to the graph formed by  together with the set of edges in  as theassociated

graph of . Observe that the associated graph of  is not necessarily a subgraph since it

does not necessarily contain all of the edges whose source and sink vertices are members

of . Given a finite path , we say that  isdirected from  to

. A path that is directed from some vertex to itself is called acycle or adirected

cycle, and afundamental cycleis a cycle of which no proper subsequence is a cycle. A

directed multigraph isacyclic if it contains no cycles. Finally, if  is the only edge directed

from  to , then we occasionally denote  by .

If  is a finite sequence of finite paths such that

, for , and , for

, then we define

.

Clearly,  is a path from  to . If there is a path from

 to , then we say that  is anancestorof , and  is adescendantof .

If is neither a descendant nor an ancestor of , we say that is independent of .

Given a directed multigraph and an vertex  in this graph,  denotes the set
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consisting of  and the set of ancestors of ,  denotes the set consisting of

and the set of descendants of , and  denotes the set of vertices

independent of . Finally, an edge istransitive if there exists another path between the

source and sink actors of the transitive edge.

A sequence of vertices  is achain that joins  and  if  is

adjacent to  for . We say that a directed multigraph isconnected if

for any pair of distinct members ,  of , there is a chain that joins  and . Given a

directed multigraph , there is a unique partition (unique up to a reordering of

the members of the partition)  such that for ,  is

connected; and for each ,  for some . Thus, each  can be

viewed as a maximal connected subset of , and we refer to each  as aconnected

component of . Depth-first search can be used to find the connected components of a

directed multigraph in time that is linear in the number of vertices and edges.

A directed multigraph  isstrongly connected if for each pair of distinct

vertices , there is a path directed from  to . We say that a subset of vertices

in  is strongly connected if is strongly connected. Astrongly

connected component of  is a strongly connected subset  such that no

strongly connected subset of  properly contains .

Given a directed multigraph , a vertex  of  is aroot vertex of

 if there is no edge  in  such that . Aroot strongly connected

component of  is a strongly connected component  of  such that

. Finally, if  is a connected component

of , then  is called aconnected component subgraph of ;

similarly, if  is a strongly connected component of , then  is a

strongly connected component subgraph of .

A topological sort of an acyclic directed multigraph  is an ordering

 of the members of  such that for each ,

; that is, the source vertex of each edge occurs

earlier in the ordering than the sink vertex. An acyclic directed multigraph is said to be

well-ordered if it has only one topological sort, and we say that an -vertex well-ordered

directed multigraph ischain-structured if it has  edges. Thus, for a chain-
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structured directed multigraph, there are orderings , and  of

the vertices and edges, respectively, such that each  is directed from  to .

In the remainder of this thesis, by a “graph” or a “directed graph”, we mean a

directed multigraph, unless otherwise stated.

2.1.2 Computational Complexity

When discussing the complexity of algorithms, we will use the standard , , and,

 notation. A function  is  if for sufficiently large ,  is bounded above

by a positive real multiple of . Similarly,  is  if  is bounded below

by a positive real multiple of  for sufficiently large . Finally,  is  if it

is both  and .

Let  represent the size of an input instance to some algorithm . Suppose that the

running time of this algorithm, , is represented as . If the function  is a

polynomial function of , then the algorithm is said to run inpolynomial time. If  is

an exponential function of , then the algorithm is said to run inexponential time. Given

a problem instance, the solution returned by the algorithm is called thecertificate.

Not all combinatorial problems have polynomial time algorithms. The class of

problems that can be solved in polynomial time is called the classP. A more general class

of problems, the classNP, are those that have the following property: a certificate

(solution) to the problem can beverified in polynomial time. There are a great many

combinatorial problems that we can easily show to be inNP but cannot show to be inP

because we are unable to come up with algorithms that solve the problem in polynomial

time. All known algorithms for these problems take exponential time. For reasons too

technical to go into here, ifNP P, then there is a subset ofNP disjoint fromP called the

set ofNP-complete problems. This class of problems has the property that if any problem

in this class is shown to have a polynomial time algorithm, thenNP P. We use standard

techniques of polynomial-time reductions to establish NP-completeness of certain

problems.

v1 v2 … vn, , , e1 e2 … en 1–, , ,

ei vi vi 1+

O Ω

Θ f x( ) O g x( )( ) x f x( )

g x( ) f x( ) Ω g x( )( ) f x( )

g x( ) x f x( ) Θ g x( )( )

O g x( )( ) Ω g x( )( )

x A

f x( ) Θ g x( )( ) g x( )

x g x( )

x

≠

=



41

2.2 Synchronous Dataflow

Recall that in a dataflow graph, the data values on the edges are referred to as

tokens. Formally, an SDF graph is a directed multigraph in which each edge  has three

properties in addition to  and :

• , a nonnegative integer that gives the number of initial tokens

associated with . The number of initial tokens  is also called

thedelay of an edge because it can induce an offset in the execution of

the sink actor in relation to the source actor.

• , a positive integer that indicates the number of tokens

produced onto the channel corresponding to  by each execution of the

computation corresponding to .

• , a positive integer that represents the number of tokens

consumed from  by each execution of .

We refer to a vertex of an SDF graph as anactor, and given an SDF graph , we

represent the set of actors and the set of edges in  by  and ,

respectively. If for each , , then we say that  is

ahomogeneousSDF (HSDF) graph.

Conceptually, each edge in , corresponds to a FIFO (first-in, first-out) queue that

buffers the tokens that pass through the edge. The FIFO queue associated with an edge is

called abuffer  for that edge, and the process of maintaining the queue of tokens on a buffer

is referred to asbuffering . Each buffer contains an initial number of tokens equal to the

delay on the associated edge. Afiring  of an actor in  corresponds to removing

tokens from the head of the buffer for each input edge , and appending  tokens to

the buffer for each output edge . Thus, a firing is only possible if for each input edge ,

there are at least  tokens on the corresponding buffer. After a sequence of  or more

firings, we say that an actor isfireable if there are enough tokens on each input buffer to

fire the actor. Aschedule for  is a sequence , which can be finite or

infinite, of actors in G. Each term  of this sequence is called aninvocation of the
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corresponding actor in the schedule; and for each actor , we denote the th invocation of

 in the schedule by , and we call  theinvocation number of . The schedule that

consists of no invocations — the empty sequence — is called thenull schedule. For each

,  is said to be anadmissible firing if it is fireable immediately after  have

fired in succession. The schedule  is anadmissible schedule for  if

is an admissible firing for each . The process of successively firing the invocations in an

admissible schedule is calledexecuting the schedule, and if a schedule is executed

repeatedly, each repetition of the schedule is called aschedule period of the execution.

If  is an SDF edge, then thedelayless version of  is an edge  such that

if , and if , then  is the edge defined by ,

, , , and . If

 is an SDF graph, then  isdelaylessif  for all , and the

delayless version of  is the SDF graph defined by , where

. In words, the delayless version of  is the

graph that results from setting the delays on all edges to zero.

Consider the simple SDF graph in Figure 2-1. Each edge is annotated with the

number of tokens produced by its source actor and the number of tokens consumed by its

sink — for example, actor  produces three tokens per firing on its output edge and

consumes two tokens from its input edge. The “ ” next to the edge directed from  to

 indicates that this edge has a delay of . Now consider the schedule  for this

example. As we fire the invocations in the schedule, we can represent thestate of the

system — the number of tokens queued on the buffers — with an ordered pair whose first

and second members are, respectively, the number of tokens on the edge  and the

number of tokens on the edge . Then, since there is a delay of  on the left side edge,

the initial state of the system is . Thus, at the start,  is fireable, and as it fires, two

tokens are removed from the left edge and one token is appended to the right edge, so the

state becomes . Since  has no input edges, it can be fired at any time. Hence the

second invocation of the schedule is an admissible firing and its firing leads to the state

N j

N N j j N j

i f i f 1 … f i 1–, ,

S f1 f 2 f 3…= G f i

i

e e e′ e′ e=

e( )del 0= e( )del 0≠ e′ e′( )src e( )src=

e′( )snk e( )snk= e′( )cns e( )cns= e′( )prd e( )prd= e′( )del 0=

G V E,( )= G e( )del 0= e E∈

G V E′,( )

E′ the delayless version ofe e E∈{ }= G

A B C
3 2 1 1

2D

Figure 2-1A simple SDF graph.

A B

2D A

B 2 BACBA

A B→

B C→ 2

2 0( , ) B

0 1( , ) A



43

. It is easily verified that the remaining three invocations in the schedule are

admissible firings, and the sequence of buffer states that results from these remaining

firings is . Thus,  is an admissible schedule for the SDF graph in

Figure 2-1. In contrast, the slightly different schedule  is not admissible, since only

one token resides on the input edge of  prior to the third invocation of , so  is not

fireable.

If  is not an admissible schedule, then some  is not fireable

immediately after its antecedents have fired. Thus, there is at least one edge  such that (1)

 and (2) the buffer associated with  contains less than  tokens

just prior to the th firing in . For each such , we say thatterminates on at

invocation . Clearly then, a schedule is admissible if and only if it does not terminate on

any edge.

Given a schedule  and an actor , we define  to be the number of times

that  invokes . For example, .

We say that a finite schedule  is aperiodic schedule if it invokes each actor at

least once and produces no net change in the system state (i.e, the number of tokens on each

edge is the same after  has executed as before) — for each edge , ×

 = × . For example for the SDF graph in Figure 2-1, we

saw that if the initial state is , the state after executing the schedule  is .

Thus this schedule produces a net change of  tokens on edge  and  token on

, so this schedule is not periodic.

Suppose that  is a vector of positive integers indexed by the actors in a connected

SDF graph . Non-connected SDF graphs can be analyzed by examining each connected

component separately. By definition, a schedule that invokes each actor  times is

a periodic schedule if and only if for each edge  in ,

. (2.1)

This system of equations in the set of variables  — consisting of

one equation for each edge in  — is known as the system ofbalance equations for .

Clearly, a periodic schedule exists for  if and only if the balance equations have a solution
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whose components are all positive integers1. The balance equations can be expressed more

compactly in matrix-vector form as

, (2.2)

where , called thetopology matrix of , is a matrix whose rows are indexed by the

edges in  and whose columns are indexed by the actors in , and whose entries are

defined by

(2.3)

This formulation assumes that  does not contain anyself-loops, edges whose source and

sink vertices are identical. In such a case, there is a vertex  such that ,

and therefore equation 2.3 is self contradictory. In an SDF graph, a self-loop edge

precludes the existence a periodic schedule if ; otherwise it has no effect

on the existence of a periodic schedule, and thus it can be ignored in this analysis.

A periodic schedule exists if and only if equation 2.2 has a solution  where each

element of the vector  is a positive integer. From equation 2.2, it is evident that this

requires that the topology matrix  not have full rank.

We have the following theorem from [Lee86].

Theorem 2-1: A connected SDF graph with  actors has a periodic schedule if and only

if its topology matrix  has rank . Moreover, if its topology matrix  has rank

, then there exists a unique smallest integer solution  to the balance equations

. Moreover, the entries in the vector  are coprime.

The reason that the rank of the topology matrix of a connected SDF graph with

actors cannot be less than  is that such a graph must have at least  edges. Each

of these edges contributes a linearly independent row to the topology matrix. Adding more

1.  Recall that in our definition ofperiodic schedule, we do not require admissibility — a periodic schedule
need not be admissible.
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edges to the graph adds rows to the topology matrix; however, adding rows to a matrix

cannot decrease its rank. Hence, the rank is at least .

Notice that the graph may not have anadmissible schedule. This will depend on the

number of delays on edges in a directed cycle. The topology matrix, and hence the

existence of a periodic schedule, does not depend on the delays in an SDF graph. Facts 2-

1-2-3 summarize some key properties that follow immediately from theorem 2-1.

Fact 2-1: A positive-integer vector  is the repetitions vector of a connected SDF graph

if and only if its components are coprime and it satisfies the balance equations, .

Fact 2-2: Any positive-integer vector that satisfies the balance equations is a positive-

integer multiple of the repetitions vector.

Fact 2-3: A schedule  for a connected SDF graph  is periodic if and only if the

repetitions vector  exists and there exists a positive integer  such that  invokes

each actor  exactly  times.

The positive integer  in Fact 2-3 is called theblocking factor of the associated

schedule. If  is a periodic schedule, we denote the blocking factor of  by , and if

 we say that  is aminimal periodic schedule.

An example of a connected SDF graph that does not have a periodic schedule is

shown in Figure 2-2(a). The topology matrix for this SDF graph is

n 1–

q

Γq 0=

S G

qG J0 S

A J0qG A( )

J0

S S S( )J

S( )J 1= S

Figure 2-2 (a) An SDF graph that does not have a periodic schedule.
(b) A slightly modified version that has a periodic schedule.
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, (2.4)

where each  corresponds to the th row and the th vertex (in alphabetical order)

corresponds to the th column. Observe that the bottom two rows of  are identical, and

the top three rows form a square matrix whose determinant is nonzero. Thus, the matrix

contains three linearly independent rows, so it has full rank, and there is no nontrivial

solution to 2.2.

To understand what is “defective” about this graph, observe that for each firing of

, three firings of  are required to return edge  to its initial state of having no tokens

queued in its buffer, and then three firings of  are required to return  to its initial state.

However, since  is an input edge of  and  produces only two tokens per firing on

, only two firings of  are possible for each firing of . Thus, any infinite admissible

sequence of firings for this graph will produce an unbounded token accumulation on ,

, or both.

If we change  to , the resulting SDF graph, shown in Figure 2-2(b), has

a periodic schedule. The topology matrix of this new SDF graph is

. (2.5)

It is easily verified that the first two rows of  are linearly independent, and each

of the third and fourth rows is the sum of the first two rows. Thus, the rank of  is 2, one

less than the number of actors, so positive-integer solutions to (2.2) exist, and thus the

repetitions vector exists. The repetitions vector for Figure 2-2(b) is given by

. (2.6)

Γ
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=
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From (2.6), we see that  and  are minimal periodic schedules, and

 is a periodic schedule having blocking factor . All three of these

schedules are admissible.

This thesis is primarily concerned with schedules that are both periodic and

admissible, and we refer to such schedules asvalid schedules. An SDF graph isconsistent

if and only if it has a valid schedule, and we say that an SDF graph issample rate

consistent if it has a periodic schedule. Thus, for SDF graphs, consistency implies sample

rate consistency, but the converse is not true: a sample rate consistent SDF graph that is

deadlocked is not consistent.

Clearly, an SDF graph is consistent if and only if each connected component

subgraph is consistent, and a necessary condition for a connected SDF graph to be

consistent is that the topology matrix does not have full rank. However, for an admissible

periodic schedule to exist, an SDF graph must also have a sufficient amount of delay in

each fundamental cycle. For example, consider the SDF graph in Figure  2-3. The

repetitions vector for this graph is given by

, (2.7)

and thus periodic schedules exists. However, one can easily verify that there are only five

possible non-null admissible schedules for this SDF graph — , , , , and

. Since none of these five schedules contains enough invocations for a periodic

schedule, we see that a valid schedule does not exist. If we increase delay on the output

edge of  from one to two, valid schedules, such as the periodic schedule ,

exist.

ABCBC ABBCC

ABABBCBCCC 2

A

B C

2

3

32

1

1

D

Figure 2-3An SDF graph that has a repetitions vector but does not
have an admissible schedule.
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Associated with any connected, consistent SDF graph , given a positive integer

blocking factor , there is a unique directed graph, called anacyclic precedence graph

(APG), that specifies the precedence relationships between actor invocations throughout

successive minimal schedule periods for  [Lee87]. Each vertex of the APG corresponds

to an actor invocation. There is an edge directed from the vertex corresponding to

invocation  to the vertex corresponding to  if and only if at least one token produced

by  is consumed by . As a simple example, Figure 2-4 below shows the APG for

Figure 2-1 and blocking factor . See [Sih91] for an efficient algorithm that systematically

constructs the APG.

Finally, given a sample rate consistent, connected SDF graph  and an edge  in

, we denote the total number of tokens consumed by  in a minimal schedule

period by ; that is

.

Since in a periodic schedule, the number of tokens produced on an edge equals the number

of tokens consumed, we also have that . If  is

understood from context, then we may suppress the second argument and write

in place of .

2.3 Computing the Repetitions Vector

The repetitions vector can be computed efficiently by applying depth-first search;

see [Bhat96a] for an algorithm. Assuming the production and consumption parameters on

G

J

J

G

Ai Bj

Ai Bj

A1 A2

B1 B2 B3

C1 C2 C3

Figure 2-4The acyclic precedence graph for Figure 2-1 and unity blocking
factor.
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the edges are bounded — so that computing the least common multiple of two numbers is

an elementary operation — the algorithm in [Bhat96a] has time complexity that is linear in

the number of actors and edges in the input SDF graph (that is, its running time is given by

.

2.4 Constructing a Valid Schedule

If a connected SDF graph is consistent and the repetitions vector is computed, a

valid schedule can be constructed. In [Lee87], Lee and Messerschmitt define a class of

scheduling algorithms, called class-S algorithms, that construct valid schedules given a

positive integer multiple of the repetitions vector  (  for some positive integer ).

A class-S algorithm maintains the state of the system as a vector  that is indexed by the

edges in the input SDF graph. A class-S algorithm is any algorithm that repeatedly

schedules fireable actors, updating  as each actor is fired, until either no actor is fireable

or until all actors have been scheduled exactly the number of times specified by the

corresponding component of . Thus, once an actor  has been scheduled  times, a

class-S algorithm does not schedule  again. Lee and Messerschmitt show that a class-S

algorithm constructs a valid schedule if and only if the SDF graph in question is consistent

[Lee87]. A simple implementation of the above idea of constructing a valid schedule has a

running time given byO( ), where  is the input SDF graph,

,

and  ( ) is the maximum over all actors of the number of input (output) edges that are

incident to any actor.

2.5 Determining Whether an SDF Graph Deadlocks

While deadlock in an SDF graph can be detected by simulation, the number of steps

required in the simulation can be as high as . This number is not a polynomial

function of the size of the input graph; hence, detecting deadlock in this manner is not an

Θ G( )edges G( )actors+( )

r r kq= k

b

b

r A r A( )

A

I f i f o E+ G V E,( )=

I r A( )
A G( )actors∈

∑=

f i f o

v( )q∑
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efficient method. However, we can derive a sufficient condition from the Karp-Miller

integer programming formulation in [Karp66] for a simple SDF cycle in the following

manner. Firstly, we state the theorem from [Karp66] as it applies to SDF graphs (recall that

SDF graphs are a special case of computation graphs). Consider the SDF cycle in figure 2-

5.

Theorem 2-2: [Karp66] The cycle in figure 2-5 deadlocks if and only if the following

integer program has a non-negative integer solution for the :

(2.8)

From the above, we can derive the following corollary by observing that SDF graphs of

interest to us are always sample rate consistent. For any cycle, this means that the product

of the numbers consumed around the cycle has to be equal to the product of the numbers

produced around the cycle.

Corollary 2-1: If the inequality

A1 A2 A3 An
u1 w2 u2

w1

D1

D2

Figure 2-5A simple SDF cycle.

x i( ) 1 i n≤ ≤,

x 1( )
D1

W1
-------

1 W1–( )
W1

---------------------
Un

W1
-------x n( )+ +≥

x 2( )
D2

W2
-------

1 W2–( )
W2

---------------------
U1

W2
-------x 1( )+ +≥

…

x n( )
Dn

Wn
-------

1 Wn–( )
Wn

---------------------
Un 1–

Wn
-------------x n 1–( )+ +≥



51

(2.9)

holds, then the cycle does not deadlock.

Proof: Suppose that the cycle does deadlock. Then there is a solution to the system of

inequalities 2.8; the left hand side of 2.9 is derived from some simple algebraic

manipulation of 2.8 and the manipulation shows that it is less than or equal to 0. Hence,

the contrapositive of this implies that there is no solution if it is greater than 0, and this

implies that the cycle does not deadlock by Theorem 2-2.QED.

The corollary provides a quick algebraic test to see if the cycle does not deadlock;

if the test is negative, then we have to resort to simulation to detect deadlock. In graphs that

have few cycles, checking each cycle by this method might be much quicker than

simulation. The Karp-Miller theorem also establishes that the problem of detecting

deadlock is in NP, since a non-deterministic algorithm would simply exhibit the solution to

the integer program if the graph deadlocks. The theorem guarantees that if the solution is

valid, then the graph does deadlock.

2.6 Scheduling to Minimize Buffer Usage

One desirable optimization criterion is the amount of buffer space that is required

by the schedule. If we assume a model of buffering where there is one buffer on every edge,

then the amount of buffer space required on each edge is given by the maximum number

of tokens queued on that edge during one period of the schedule. It is easy to see that

different valid schedules can have vastly different buffering requirements; for the graph in

Figure 2-1, the schedule  requires 11 spaces in all, while the schedule

 requires 5 spaces. This section develops a heuristic that attempts to generate

a schedule that minimizes buffering requirements.

Since an SDF schedule in general can have up to
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actor appearances, algorithms that attempt to construct minimum-buffer schedules can take

 steps or more to execute. Hence, these algorithms do not run in time that is

polynomialin the size of input SDF graph (an algorithm would run in time polynomial in

the size of the SDF graph if its running time were a polynomial function of , the number

of vertices in the graph, and  where  is the maximum of all of the produced/

consumed parameters in the SDF graph). We will therefore require our algorithms for this

purpose to run in time that is a polynomial function of , preferably a linear function.

However, as the theorem below shows, the problem of computing a minimum buffer

schedule for even an arbitrary homogenous SDF graph is NP-complete; hence, we have to

rely on heuristics.

2.6.1 NP Completeness

Formally, the problem HSDF-MIN-BUFFER is defined as follows: Given an

arbitrary homogenous SDF graph , with arbitrary numbers of delays on each

edge, and a positive integer , is there a valid schedule for  that has a total buffering

requirement of  or less, assuming that there is a buffer on every edge?

Definition 2-1: Let .

Observation 2-1: Any valid, minimal schedule for an HSDF graph has a buffering

requirement  that satisfies .

Proof: In an HSDF graph, each actor needs to be fired only once in any periodic schedule.

If on any edge ,  fires before , then the maximum number of

tokens queued is . If  fires before  (provided

) then the maximum number of tokens queued remains . In the

worst schedule, the source actor fires before the sink actor on every edge; this increases

the total amount of buffering by . In the best conceivable schedule, the sink actor fires

before the source on every edge (again, provided there is at least one delay on each edge),

I r A( )
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resulting in the lower bound of .

Definition 2-2: The FEEDBACK ARC SET (FAS) problem is the following: given a

directed graph , and a positive integer , does there exist a subset

with , such that  contains at least one edge from every directed cycle in ? This

problem is known to be NP-complete [Gare79].

Theorem 2-3: The HSDF-MIN-BUFFER problem is NP-complete.

Proof: The fact that HSDF-MIN-BUFFER is in NP is obvious. We reduce FEEDBACK

ARC SET to this problem to show completeness. Let ,  be an arbitrary

instance of the FAS problem. Let  be the HSDF graph constructed from  by reversing

each edge in  and setting  for each edge. We show that  contains a

schedule having a buffering requirement there is a feedback arc set

 in . Observe that any permutation of the actors constitutes a valid

schedule for  since there is a delay on every edge.

Assume that  contains such a schedule. This means that there are at most  edges

in  where the source actor of the edge fires before the sink actor; on every other edge, the

sink actor of the edge fires before the source actor. Construct a new delayless graph

 in which an edge  from  is in  if and only if  fires before  in the

schedule. An edge  is in  if  is an edge in  and  fires before  in the

schedule. Hence,  is the same graph as  except that it has no delays and has reversed

edges wherever the sink actor fires before the source actor in the schedule for . These

edges that are reversed in  with respect to  are the same orientation as the

corresponding edges in . Hence, the set of edges in  that have the reverse orientation

with respect to edges in , has cardinality at most . By construction, it is clear that the

schedule for  is also a valid schedule for  since the schedule respects all of the

precedence constraints in . Since  is delayless, and has a valid schedule, it must be

acyclic. Hence, reversing a subset of edges, with respect to , where this subset has

cardinality at most  results in an acyclic graph; this subset must be a solution to the FAS

instance since the set has to include at least one edge from each directed cycle from .

Figure 2-6 shows an example.
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Now suppose that  has a feedback arc set  of cardinality less than or equal to

. In , remove all of the edges corresponding to  to form a new graph . The graph

 is now acyclic since at least one edge from every cycle has been removed. Construct a

schedule for  in reverse topological order; this ensures that sink actors on all of the edges

fire before the source actors. This schedule is also valid for . Moreover, in , the

schedule is such that on at most  edges can we have the situation that the source actor

fires before the sink; hence, this schedule has a buffering requirement of at most .■

2.6.2 Heuristic for Minimum Buffer Scheduling

Figure 2-7 shows a simple algorithm that constructs schedules that attempt to

minimize buffer usage. A simpler variant of this algorithm has been used in both Gabriel

and Ptolemy programming environments for a number of years. A similar algorithm is also

given by Cubric and Panangaden in [Cubr93] where they establish its optimality for a

restricted set of acyclic, delayless graphs. An actor in the algorithm isdeferrable if any one

of its output edges that is not a transitive edge has at least as many tokens as consumed by

the sink actor on that edge in one firing.

Examples can easily be constructed where the algorithm fails to achieve the

minimum buffer usage. However, in practice, the algorithm does quite well and produces

schedules that are close to optimal even if not optimal. The algorithm can be made more

sophisticated by making the actor selection procedure in theelse  condition less greedy;
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for example, by firing only actors that are in undirected cycles. However, it is an open

problem as to whether such modifications will give an optimal algorithm for a broad class

of graphs.

We close this section by proving a simple theorem about the lower bound on the

amount of buffering required on any edge in an SDF graph. This result is a generalization

of a result proved by researchers in the GRAPE project in [Ade94].

Theorem 2-4: For the 2-actor SDF graph depicted in Figure 2-8, the minimum amount of

buffering required on the edge over all possible valid schedules is given by

, where , if , and by  otherwise.

Proof: Clearly, the minimum buffer schedule for this graph is such that  is invoked

whenever there are enough tokens on the edge to enable it. Also, the maximum number of

tokens will be reached after a firing of  and before a firing of . The theorem claims that

 is the maximum number of tokens queued. To see this, assume that it

is not; that in fact it is greater than this amount. Then it must be the case that the number of

tokens is at least equal to  where  (the change in the number of

tokens on the edge is a multiple of  since if  has been fired  times and  has been

fired  times, then the number of tokens on the edge is given by  and this can

be written as .) Since  is divisible by , we get that . The

Procedure  min-buf-schedule (SDF Graph G=(V,E)):

 = {fireable actors};

 = {deferrable( )};

while  ( )

if  ( )

// fire an actor from
else

// fire an actor that increases total
// number of tokens the least.

end if
end while

F

D F

F φ≠
F \D φ≠

F \D

Figure 2-7A heuristic for generating a minimum buffer schedule.
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Figure 2-8A simple 2-actor SDF graph.
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maximum number of tokens always occurs after a firing of  and before a firing of ;

hence, just before the maximum is reached, the number of tokens was

 since . This shows that  was fireable at the

previous step and contradicts the fact that we always fire it as soon as it becomes fireable.

It remains to show that this bound is tight and is in fact reached during the schedule.

This can be seen by a state enumeration argument. Since  is fired  times and  is

fired  times, the total number of states on the edge is . Since any state that is

reached is of the form , and the number of states in

of this form is precisely , we conclude that the state  is

reachable and that the bound is tight (no state can be repeated since by definition a valid

schedule for an SDF graph is one that returns the buffers to the initial state).

Suppose . Initially, we can fire  enough times to get

tokens on the arc. Now suppose that we were to exceed  tokens on the arc during the

minimum buffer schedule. Then we would have  tokens for some , and

or  at some stage in the schedule. Since  is a multiple of , and thus , we

have . This number of tokens would have resulted after a firing of ; hence,

before  was fired, we would have had  tokens. Since ,

 and  was fireable when  was fired, contradicting the scheduling

strategy. Hence, we cannot exceed  tokens under the minimum-buffer scheduling

strategy.■

2.7 Related Work: Multiprocessor Scheduling

SDF graphs can be scheduled onto multiple processors easily. In this section, we

assume that the SDF graph is in fact an HSDF graph; this is not a restriction since any SDF

graph can be converted1 to an equivalent HSDF graph [Lee86]. Most forms of resource-

constrained (meaning we have some fixed number of processors for example)

multiprocessor scheduling (MS) problems are NP-hard; hence, we must resort to heuristics

1.  However, the size of the HSDF graph is exponentially bigger than the SDF graph. Some recent work has
been done on scheduling the SDF graph onto a multiprocessor directly [Pino95b].
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in general. However, there are several issues that must be dealt with when we generate

multiprocessor schedules for DSP applications. The traditional metric that one tries to

minimize is the makespan; this is the time by which all tasks have finished executing. But

DSP applications are non-terminating; hence, we would like to generate schedules that

maximize the throughput (or minimize the iteration period1). These two metrics give rise

to two different forms of scheduling: Non-overlapped scheduling and overlapped

scheduling.

It is well known that a fundamental upper bound on the throughput achievable in an

HSDF graph is given by the inverse of themaximum cycle mean[Reit68]:

(2.10)

where  is the set of all circuits in the graph,  is the total computation time of circuit

, and  is the delay count of the circuit . A loop that achieves this maximum is called

acritical cycle. A schedule for an HSDF graph israte-optimal if the iteration-period for the

schedule is equal to the maximum cycle mean (also called theiteration-period bound).

In non-overlapped scheduling, one only considers one iteration of the graph and

applies classical MS heuristics to schedule the precedence graph. This schedule is infinitely

repeated. However, since the algorithm overlooks the potential parallelism between the

iterations, schedules obtained by this method will not be throughput optimal in general.

There are a couple of ways in which the performance of a non-overlapped scheduler can be

improved: by increasing theblocking factor, and byretiming  [Leis91]. Retiming is a way

of moving the delays around in the graph so that the critical path can be lowered; this can

result in better schedules.

Increasing the blocking factor allows one to consider more than just one iteration of

the graph while scheduling, and gives improved performance. However, an example graph

is given in [Lee86a] for which no non-overlapped schedule of any finite blocking factor can

achieve rate-optimal throughput. Even then, the question of choosing the “best” blocking

factor was posed and left as an open problem [Lee86]. Using max-algebra techniques

1.  By an iteration, we mean the execution of one schedule period of the SDF graph.
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[Bacc93], this problem is analyzed thoroughly in [Murt94b], where the asymptotic

behavior of the critical path in the precedence graph of blocking factor , as  is increased,

is shown to be cyclic in the following sense: there exist constants  and  such that the

critical path in the precedence graph of blocking factor  has weight given by

where  is the maximum cycle mean in the original graph, and  is an integer computable

from the graph in the following way: a particular type of transitive graph is derived from

the original HSDF graph. In this graph, the cyclicity of a maximal strongly connected

component is the greatest common divisor of the lengths of all the critical cycles. The

cyclicity of the graph is the least common multiple of the cyclicities of all the maximal

strongly connected components. The result allows us to conclude that the problem of

computing the “best” blocking factor is decidable, even though the algorithm for finding it

does not run in polynomial time.

In overlapped scheduling, the inter-iteration parallelism is fully taken into account,

and in the absence of resource constraints, always leads to rate-optimal schedules [Reit68].

In [Murt94b] and [Parh91], an example graph is given for which no retiming or increase in

blocking factor can achieve a non-overlapped, rate-optimal schedule. Hence, overlapped

scheduling is fundamentally more powerful than non-overlapped scheduling. However,

much more work has been done in non-overlapped scheduling to devise heuristics based on

critical path methods for many resource constrained problems; for example, minimizing the

interprocessor communication [Sih91], scheduling for a fixed number of processors, and

scheduling for fault tolerance. In contrast, there are few heuristics that generate overlapped

schedules for these various practical scenarios; this is an interesting direction for future

research.
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3
Looped Schedules

In this chapter, we develop scheduling techniques for SDF graphs that jointly

optimize for code-size compactness and for buffer memory usage as a secondary goal.

Code-size compactness is achieved by the organization of loops in the target code. Since

single appearance schedules have the maximum degree of code-compactness, the

algorithms and heuristics we present generate single appearance schedules that minimize

the amount of buffer memory required by the schedule. We present an extensive

experimental study to demonstrate the usefulness of these techniques.

3.1   Looped Schedule Terminology and Notation

We first recall some basic concepts and terminology pertaining to uniprocessor

scheduling from [Bhat94b].

Definition 3-1: Given an SDF graph , aschedule loopis a parenthesized term of the

form , where  is a positive integer, and each  is either an actor in  or

another schedule loop. The parenthesized term  represents the successive

repetition  times of the invocation sequence . If  is a

schedule loop, we say that  is theiteration count of , each  is aniterand of , and

 constitutes thebody of . If the body of  is empty, that is if , we say

that  is anull schedule loop; except where otherwise stated, we assume that all schedule

loops are non-null. Alooped schedule is a sequence , where each  is either

G
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an actor or a schedule loop. Since a looped schedule is usually executed repeatedly, we

refer to each  as aniterand of the associated looped schedule.

When referring to a looped schedule, we often omit the “looped” qualification if it

is understood from context; similarly, we may refer to a schedule loop simply as aloop.

Given a looped schedule , we refer to any contiguous sequence of actors and schedule

loops in  (at any nesting depth) as asubscheduleof . For example, the schedules

 and  are both subschedules of , whereas

 is not. By this definition,  is a subschedule of itself, and every schedule loop

in  is a subschedule of . If the same invocation sequence appears in more than one place

in a looped schedule, we distinguish each instance as a separate subschedule. For example,

in , there are two appearances of , and these correspond to two

distinct subschedules. In this case, the content of a subschedule is not sufficient to specify

it — we must also specify the lexical position, as in “the second appearance of .” If

 is a subschedule of , we say that  iscontained in , and we say that  isnested

in if  is contained in  and .

We denote the set of actors that appear in a looped schedule  by , and

we denote the number of times that an actor  appears in  by ; thus,

,

,

,

.

Formally,  is asingle appearance schedule if

.

As argued in [Bhat94b], if we neglect the code-size overhead associated with the

loops, any single appearance schedule yields the smallest inline implementation of an SDF

graph with regard to code size. Most programmable DSPs have provisions to efficiently

manage loop indices and perform the loop test in hardware, without explicit software

Vi
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control; hence, the loop overhead is typically small. It is almost negligible compared to the

alternative of code-size explosion if a non-looped schedule is used.

Given a looped schedule  and an actor , we define  to be the number

of times that  invokes . Similarly, if  is a subschedule, we define  to be the

number of times that  invokes . For example, if , then

, , and . Also, we

refer to the invocation sequence that a looped schedule  represents as the invocation

sequence generated by S. For example, the invocation sequence generated by

 is . When there is no

ambiguity, we occasionally do not distinguish between a looped schedule and the

invocation sequence that it generates.

A schedule loop is aone-iteration loop if its iteration count is 1. Although such

loops are usually useless in the implementation of a schedule, they are useful for analyzing

schedules, as will be apparent, for example, in Section 3.3. Since a one-iteration schedule

loop generates the same invocation sequence as its body, replacing the loop by its body

does not change the invocation sequence of an enclosing schedule. Thus, given an arbitrary

looped schedule , if we select a one-iteration loop and replace it with its body, select a

one-iteration loop in the resulting schedule and replace it with its body, and repeat this

process until there are no one-iteration loops remaining, we will arrive at a new schedule

 that generates the same invocation sequence as  and contains no one-iteration loops.

Thus, the following fact is obvious.

Fact 3-1: Given a looped schedule , there exists a looped schedule  that generates the

same invocation sequence as  such that  contains no one-iteration schedule loops, and

.

Given a schedule , an invocation  is said to bepart of a subschedule  if

occurs in an invocation of . For example, in the schedule , invocations ,

, , and  are part of the subschedule , whereas , , , and  are not.

Given an SDF graph , an edge  in , a looped schedule  for , and a nonnegative

integer , we define  to denote the number of invocations of  that precede

the th invocation of  in ; and we define  to denote the number of
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tokens on  just prior to the th invocation of  in an execution of . For example,

consider the SDF graph in Figure 3.1 and let  denote the edge directed from  to . Then

, the number of invocations of  that precede invocation  in

the invocation sequence , and .

We will occasionally need to refer to the relative lexical positions of actors in a

single appearance schedule. For this purpose, we define  to be the number

of actors that lexically precede  in the single appearance schedule . Observe that no

ambiguity arises in this definition since we apply it only to single appearance schedules.

For example, if , then , ,

and . Formally, we define thelexical ordering of a single appearance

schedule , denoted , to be the sequence of actors  where

 and  for each . Thus,

. We will apply the following obvious fact

about lexical orderings.

Fact 3-2: If  is a valid single appearance schedule for a delayless SDF graph1, then

whenever  is an ancestor of , we have

.

3.2   Buffering Model

Given a looped schedule  for an SDF graph , we define thebuffer memory

required by , denoted , to be the number of storage units required to

implement the buffering for  if each buffer is mapped to a separate contiguous block of

memory. We assume that every token occupies one storage unit. Quantitatively, if

 denotes the maximum number of tokens that are simultaneously queued

on edge  during an execution of the schedule , we have that

.

1.  Note that a consistent, delayless SDF graph is necessarily acyclic.
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We define the buffer memory requirement of a schedule , as

. In Figure 3-1, if , then

, , and

.

The amount of memory required for buffering may vary greatly between different

schedules. For example, the schedule  has a buffer memory

requirement of , and the schedule  has a

buffer memory requirement of  for the graph in Figure 3-1.

In the model of buffering implied by the “buffer memory requirement” measure,

each buffer is mapped to a contiguous and independent block of memory. This model is

convenient and natural for code generation, and it is the model used, for example, in the

SDF-based code generation environments described in [Ho88b, Pino95a, Ritz92].

However, perfectly valid target programs can be generated without these restrictions. For

example, another model of buffering (for a chain-structured graph) is to use a shared buffer

of size

which gives the maximum amount of data transferred on any edge in one execution of the

single appearance schedule , where  is the

number of vertices in the graph. Assuming that there are no delays on the graph edges, it

can be shown that via proper management of pointers, such a buffer suffices. For the

example graph 3-1, this would imply a buffering requirement of 36 since on edge , 36

samples are exchanged in the schedule , and this is the maximum

over all edges. Moreover, the implementation of this schedule using a shared buffer would

be much simpler than the implementation of a more complicated nested schedule.

But there are two problems with buffer-sharing that prevent its use as the model for

evaluating the buffering cost of single appearance schedules (even for chain-structured

S

S( )buffer_memory S BC 2ABC( )=

A B→ S,( )max_tokens 4= B C→ S,( )max_tokens 1=

S( )buffer_memory 4 1+ 5= =

9A( ) 12B( ) 12C( ) 8D( )

36 12 24+ + 72= 3 3A( ) 4B( )( ) 4 3C( ) 2D( )( )

12 12 6+ + 30=

Figure 3-1A chain-structured SDF graph.
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graphs; the general case is more complicated). Consider the graph in Figure 3-2. The

shared-buffer cost for the schedule  for this graph is given by

.

However, with a buffering model where we have a buffer on each edge, the schedule

 requires total buffering of only 250 units. Of-course, we could attempt

sharing buffers in this nested looped schedule as well, but the implementation of such

sharing could be awkward.

Consider also the effect of having delays on the edges. In the model where we have

a buffer on every edge, having delays does not affect the ease of implementation. For

example, if we introduce  delays on edge  in the graph in Figure 3-2, then we merely

augment the amount of buffering required on that edge by . This is fairly straightforward

to implement. On the other hand, having delays in the shared buffer model causes

complications because there is often no logical place in the buffer to store the initial

samples since the entire buffer might be written over by the time we reach the actor that

consumes the delays. For instance, consider the graph in Figure 3-3. This graph is an SDF

abstraction of a possible system to do sample rate conversion between CD rates and DAT

rates; see Section 3.10 for more details. The repetitions vector for this graph is given by

. Suppose that we were to use the shared-buffer implementation for

schedule . We find that we need a buffer of size 224. After all of the invocations of

have been fired, the first 147 locations of the buffer are filled. Since  writes more samples

than it reads, it starts writing at location  and writes 196 samples. When  begins

execution, it starts reading from location 148 and starts writing from location 120 (120 =

(148+196) mod 224). Actor  then writes 224 samples into the buffer. When  is invoked,

A B C D
50 1 100 50 1 25

Figure 3-2Example to illustrate the inefficiency of using shared buffers.
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Figure 3-3Example to illustrate the difficulty of using shared buffers with delays.
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it starts reading from location 120. Hence, if there were a delay on edge  for instance,

the logical thing to do would be to have a buffer of size 225 (meaning that  would start

reading from location 119) and place the delay in location 119. However, location 119

would have been written over by ; hence, it is not a safe location. This shows that

handling delays in the shared buffer model can be quite awkward, and would probably

involve copying over data from a “delay” buffer of some sort.

For these reasons, this chapter focuses on the buffering model associated with the

“buffer memory requirement” measure. However, a simple extension of these techniques

to combine the above simple model of buffer sharing with the non-shared model is

presented later on for a more restricted class of graphs.

3.3   Factoring Schedule Loops

This section shows that in a single appearance schedule, common terms from the

iteration counts of inner loops can be “factored” into the iteration counts of the enclosing

loops. An important practical advantage of factoring is that it may significantly reduce the

buffer memory requirement.

For example, consider the SDF graph in Figure 3-4. Here,

, and one valid single appearance schedule for this

graph is . With this schedule, prior to each invocation of ,

tokens are queued on each of the input edges of , and a maximum of  tokens are

queued on the input edge of . Thus  units of storage are required to implement the

buffering of tokens for this schedule

Now observe that this schedule generates the same invocation sequence as

. The main result developed in this section allows us to factor

the common divisor of  in the iteration counts of the three inner loops into the iteration

CD
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Figure 3-4An SDF graph used to illustrate the factoring
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count of the outer loop. This yields the new single appearance schedule

, for which at most  tokens simultaneously reside on each edge.

Thus, this factoring application has reduced the buffer memory requirement by a factor of

.

There is, however, a trade-off involved in factoring. For example, the schedule

 requires  loop initiations per schedule period, while the factored

schedule  requires . Thus, the run-time cost of starting loops —

usually, initializing the loop indices — has increased by the same factor by which the buffer

memory requirement has decreased. However, for programmable digital signal processors,

the loop-start-up overhead is normally much smaller than the penalty that is paid when the

memory requirement exceeds the on-chip limits. Unfortunately, we cannot in general

perform the reverse of the factoring transformation; that is, moving a factor from the

iteration count of an outer loop to the iteration counts of the inner loops. Thisreverse

factoring transformation might be desirable in situations where minimizing the buffer

memory requirement is not critical.

Figure 3-5 shows a simple SDF graph that can be used to demonstrate that unlike

the factoring transformation, reverse factoring does not necessarily preserve the

admissibility of a valid single appearance schedule. It is easily verified that  is a

valid single appearance schedule (with blocking factor ) for this graph, while the

reverse-factored derivative  terminates on the edge  at the second

invocation of .

The following theorem establishes a sufficient condition for valid application of the

factoring transformation. The condition is that the sets of actors invoked by the factored

loops are all mutually disjoint. Clearly, this condition is always satisfied when working

with single appearance schedules, and thus a major consequence of Theorem 3-1 is that
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Figure 3-5An example used to illustrate that reverse factoring is
not always valid for single appearance schedules.
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factoring cannot convert a valid single appearance schedule into a schedule that is not valid.

The theorem also establishes that the buffering requirement cannot be increased on any

edge by the factoring transformation. This is intuitively clear since, for any edge ,

factoring reduces the number of times  is invoked before  is invoked, thus reducing the

number of tokens queued on the edge.

Theorem 3-1: Suppose that  is a valid schedule for an SDF graph , and suppose that

 is a schedule loop in  of any nesting depth such that

. Suppose also that  is any positive

integer that divides ; let  denote the schedule loop

; and let  denote the schedule that results from

replacing  with  in . Then  is a valid schedule for , and

.

Proof: See [Bhat96a].■

Recall that the definition ofbuffer memory requirementassumes that each buffer is

implemented as a separate, contiguous block of storage, and thus Theorem 3-1 does not

necessarily apply under more flexible buffer implementations — such as when storage is

shared between multiple buffers that are active (contain unread data) in mutually disjoint

segments of time. In [Bhat94a], shared buffers and buffers that do not necessarily reside in

contiguous memory locations are discussed.

3.4   Reduced Single Appearance Schedules

Definition 3-2: If  is either a schedule loop or a looped schedule, we say that  is

coprime if not all iterands of  are schedule loops, or if all iterands of  are schedule

loops, and there does not exist an integer  that divides all of the iteration counts of the

iterands of .

For example, the schedule loops  and  are both non-

coprime, while the loops  and  are coprime. Similarly, the looped

schedules  and  are both non-coprime, while the schedules

and  are coprime. From the discussion in the previous section, we know that non-
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coprime schedules or loops may result in much higher buffer memory requirements than

their factored counterparts.

Definition 3-3: Given a single appearance schedule , we say that  isfully reduced if

 is coprime and every schedule loop contained in  is coprime.

It can be shown that any fully reduced schedule has unit blocking factor [Bhat96a].

This implies that any schedule that has blocking factor greater than one is not fully reduced.

Thus, if we decide to implement a schedule that has nonunity blocking factor, then we risk

introducing a higher buffer memory requirement. The following theorem shows that we can

always convert a valid single appearance schedule that is not fully reduced into a valid fully

reduced schedule, and thus, we can always avoid the potential overhead associated with

using non-coprime schedule loops over their corresponding factored forms.

Theorem 3-2: Suppose that  is a consistent, connected SDF graph, and  is

a single appearance schedule for . Then there exists a valid, fully reduced schedule

such that , and , for

each .

Proof: See [Bhat96a]. ■

3.5   Algorithms for Joint Code and Data Minimization

We want to compute a single appearance schedule that minimizes the buffer

memory requirement over all valid single appearance schedules. Thus, given the model of

buffer implementation defined in Section 3.2, we wish to construct a software

implementation that minimizes the data memory requirement over all minimum code-size

implementations. As we show later, even for chain-structured SDF graphs, the number of

distinct valid single appearance schedules increases combinatorially with the number of

actors, and thus exhaustive evaluation is not, in a general, a feasible means to find the single

appearance schedule that minimizes the buffer memory requirement. Section 3.9 develops

an efficient dynamic programming algorithm that computes an optimal hierarchy of loops

given a lexical ordering of the actors. For well-ordered graphs, where there is only one

S S

S S
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topological sorting of the vertices, the schedule that results from applying the dynamic

programming algorithm is guaranteed to be the optimal one. For graphs that have more than

one topological sort, we develop heuristics in Section 3.16 and Section 3.19 for generating

suitable topological sorts. These are nested optimally using the dynamic programming

algorithm.

3.6   R-Schedules

If  is either a schedule loop or a looped schedule, we say that satisfies theR-

condition if one of the following two conditions holds.

(a)  has a single iterand, and this single iterand is an actor,or

(b)  has exactly two iterands, and these two iterands are schedule loops

having coprime iteration counts.

We call a valid single appearance schedule  anR-scheduleif  satisfies the R-condition,

and every schedule loop contained in  satisfies the R-condition.

In [Murt94a] it is shown that in a delayless chain-structured SDF graph, whenever

a valid single appearance schedule exists, an R-schedule can be derived whose buffer

memory requirement is no greater than that of the original schedule. This result is easily

generalized to give the following theorem for arbitrary consistent SDF graphs.

Theorem 3-3: Suppose that  is a consistent SDF graph and  is a valid

single appearance schedule for . Then there exists an R-schedule  for  such that

 for all , and .

Proof: See [Bhat96a] or [Murt94c].

3.7   The Buffer Memory Lower Bound for Single Appearance
Schedules

Given a consistent SDF graph , there is an efficiently computable upper and

lower bound on the buffer memory requirement over all valid single appearance schedules.

The lower bound can be derived easily by examining a generic two-actor SDF graph, as
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shown in Figure 3-6(a). From the balance equations it is easily verified that the repetitions

vector for this graph is given by , where , and that

if , then the only R-schedule for this graph is . From

Theorem 3-3 it follows that if , then

 is a lower bound for the buffer memory

requirement of the graph in Figure 3-6(a). Similarly, if , then there are exactly

two R-schedules —  and . Since

, we obtain  as a lower bound for the buffer memory

requirement. Thus, given a valid single appearance schedule  for Figure 3-6(a), we have

that

, and

. (3.1)

Furthermore, if  is an edge in a general SDF graph, it is easy to show that the

projection of a valid schedule  onto , which is a valid schedule for

, always satisfies

. (3.2)

It follows that the lower bound defined by (3.1) holds whenever  is an edge

in a consistent SDF graph ,  is a valid single appearance schedule for ,

, and . We have motivated the

following definition.

Definition 3-4: Given an SDF edge , we define thebuffer memory lower bound

Figure 3-6Examples used to develop the buffer memory lower bound.
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(BMLB) of , denoted , by

, where

If  is an SDF graph, then

is called the BMLB of , and a valid single appearance schedule  for  that satisfies

 for all  is called aBMLB schedule for .

In Figure 3-7, we see that , and . Thus, to

implement any single appearance schedule for this graph, at least three memory words will

be required to implement the edge , and at least three words will be required for

. Furthermore, a valid single appearance schedule for Figure 3-7 is a BMLB

schedule if and only if its buffer memory requirement equals . It is easily verified that

only two R-schedules for Figure 3-7 exist — , and ; the

associated buffer memory requirements are  and , respectively.

Thus, a BMLB schedule does not exist for Figure 3-7.

In contrast, the SDF graph shown in Figure 3-8 has a BMLB schedule. This graph

results from simply interchanging the production and consumption parameters of edge

 in Figure 3-7. Here, , the BMLB values for both edges are
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Figure 3-7An SDF graph that does not have a BMLB schedule.
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again identically equal to , and  is a valid single appearance schedule whose

buffer memory requirement achieves the sum of these BMLB values.

The following fact is a straightforward extension of the development of the BMLB.

Fact 3-3: Suppose that  is an SDF graph that consists of two vertices  and

edges  directed from  to . Then (a) if  for all

, then  is a BMLB schedule for ; (b) otherwise,

 is an optimal schedule — that is, it minimizes the buffer memory

requirement over the two valid minimal single appearance schedules — for , and it is a

BMLB schedule if and only if  for 1.

For example, in Figure 3-6(b), let  denote the upper edge, and let  denote the

lower edge. Then , and  is a BMLB schedule if

. Similarly, if , then it is easily verified that

 is a BMLB schedule. However, if  and , then

 is optimal, but is not a BMLB schedule since in this case

, while .

Fact 3-4: If  is a connected, consistent, acyclic SDF graph,

for all , and  is a BMLB schedule for the delayless version of , then  is a

BMLB schedule for .

Proof: Let  denote the delayless version of . If  is a BMLB schedule for , then

is a valid schedule for  that satisfies

 for all . It follows from

Definition 3-4 that  is BMLB schedule for .■

Fact 3-5: If  is a connected, consistent SDF graph and  is an edge in , then

.

1.  Note that in this case,  is the only valid minimal single appearance schedule.
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Recall that  is the total number of samples exchanged in one complete cycle

of a minimal schedule on edge  in graph , and  is the of the

repetitions of  and .

Proof: From the balance equations,

.

Multiplying the numerator and denominator of this last quotient by , and recalling

that , we obtain the desired result.■

We conclude this section by defining an obvious, efficiently computable upper

bound for single appearance schedules that have unit blocking factor. Clearly, if

 is a connected, consistent SDF graph, and  is a unit blocking factor single

appearance schedule for , we have

.

We refer the RHS of this inequality as thebuffer memory upper bound (BMUB)

for .

In Figure 3-8, , and the BMUB for this graph is .

3.8   The Number of R-Schedules

Now let  denote the number of R-schedules for an -actor chain-structured SDF

graph. Trivially, for a -actor graph there is only one schedule obtainable by the recursive

scheduling process, so . For a -actor graph, there is only one edge, and thus only

one choice for , . Since for a -actor graph,  and  both contain only

one actor, we have . For a -actor graph,  contains  actor and

 contains  actors, while  contains  actors and  contains a single

e G,( )TNSE

e G ρG e( )src e( )snk,( ) gcd
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-----------------------------------------------
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actor. Thus,

.

Continuing in this manner, we see that for each positive integer ,

. (3.3)

The sequence of positive integers generated by (3.3) with  is known as the

set ofCatalan numbers, and each  is known as the th Catalan number. Catalan

numbers arise in many problems in combinatorics; for example, the number of different

binary trees with  vertices is given by the th Catalan number, . It can be shown that

the sequence generated by (3.3) is given by

, for , (3.4)

where , and it can be shown that the expression on the right

hand side of (3.4) is  [Corm90].

For example, the chain-structured SDF graph in Figure 3-1 consists of four actors,

so (3.4) indicates that this graph has  R-schedules. The R-schedules for Figure

3-1 are , ,

, , and

; and the corresponding buffer memory requirements are,

respectively, , , , , and .

ε3 the number of R-schedules wheni 1=( )( )
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3.9   Dynamic Programming Algorithm

The problem of determining the R-schedule that minimizes the buffer memory

requirement for a chain-structured SDF graph can be formulated as an optimal

parenthesization problem. A familiar example of an optimal parenthesization problem is

matrix chain multiplication [Corm90]. In matrix chain multiplication, we must compute the

matrix product , assuming that the dimensions of the matrices are compatible

with one another for the specified multiplication. There are several ways in which the

product can be computed. For example, with , one way of computing the product is

, where the parenthesizations indicate the order in which the multiplies

occur. Suppose that  have dimensions ,

respectively. It is easily verified that computing the matrix chain product as

 requires  scalar multiplications, whereas computing it as

 requires only  multiplications (assuming that we use the standard

algorithm for multiplying two matrices).

Thus, we would like to determine an optimal way of placing the parentheses so that

the total number of scalar multiplications is minimized. This can be achieved using a

dynamic programming approach. The key observation is that any optimal parenthesization

splits the product  between  and  for some  in the range

, and thus the cost of this optimal parenthesization is the cost of computing

the product , plus the cost of computing , plus the cost of

multiplying these two products together. In an optimal parenthesization, the subchains

 and  must themselves be parenthesized optimally. Hence

this problem has the optimal substructure property and is thus amenable to a dynamic

programming solution.

Determining the optimal R-schedule for a chain-structured SDF graph is similar to

the matrix chain multiplication problem. Recall the example of Figure 3-1. Here

; an optimal R-schedule is ;

and the associated buffer memory requirement is . Therefore, as in the matrix chain

multiplication case, the optimal parenthesization (of the schedule body) contains a break in

the chain at some . Because the parenthesization is optimal, the
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n 4=

M1 M2M3( )( )M4

M1 M2 M3 M4, , , 10 1× 1 10× 10 3× 3 2×, , ,
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1 k n 1–( )≤ ≤
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A B C D, , ,( )q 9 12 12 8, , ,( )T
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chains to the left of  and to the right of  must both be parenthesized optimally. Thus, we

have the optimal substructure property.

Now given a chain-structured SDF graph  consisting of actors  and

edges , such that each  is directed from  to , given integers

 in the range , denote by  the minimum buffer memory requirement

over all R-schedules for . Then, the minimum buffer

memory requirement over all R-schedules for  is . If , then,

, (3.5)

where  for all ,and  is the memory cost at the split if we split the chain

at . It is given by

. (3.6)

The gcd term in the denominator arises because, the repetitions vector  of

 satisfies , for

all .

A dynamic programming algorithm derived from the above formulation is specified

in Figure 3-9. In this algorithm, first the quantity  is computed

for each subchain . Then the two-actor subchains are examined, and the

buffer memory requirements for these subchains are recorded. This information is then

used to determine the minimum buffer memory requirement and the location of the split

that achieves this minimum for each three-actor subchain. The minimum buffer memory

requirement for each three-actor subchain  is stored in entry  of the

array , and the index of the edge corresponding to the split is stored in entry

 of the  array. This data is then examined to determine the minimum

buffer memory requirement for each four-actor subchain, and so on, until the minimum

buffer memory requirement for the -actor subchain, which is the original graph , is

determined. At this point, procedure  is called to recursively construct an

k k
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procedure ScheduleChainGraph

input:  a chain-structured SDF graph  consisting of actors

and edges  such that each  is directed from  to .

output:  an R-schedule body for  that minimizes the buffer memory requirement.

for /* Compute the gcd’s of all subchains */

for

for ;

for

for

;

;

for

;

;

if

;

; ;

output ; /* Convert the  array into an R-schedule */

procedure ConvertSplits( )

implicit inputs:  the SDF graph  and the  and  arrays

of procedure ScheduleChainGraph.

explicit inputs: positive integers  and  such that .

output: An R-schedule body for  that minimizes

the buffer memory requirement.

if output

else

; ;

;

output ;

G A1 A2 … An, , ,

α1 α2 … αn 1–, , , αi Ai Ai 1+

G

i 1 2 … n, , ,=

GCD i i,[ ] qG Ai( )=

j i 1+( ) i 2+( ) … n, , ,=

GCD i j,[ ] GCD i j 1–,[ ] qG Aj( ),{ }( )gcd=

i 1 2 … n, , ,= Subcostsi i,[ ] 0=

chain_size 2 3… n, , ,=

right chain_size chain_size 1+ … n, , ,=
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min_cost ∞=
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split_cost qG Aleft i+( ) GCD left right,[ ]⁄( ) αleft i+( )prd×=

total_cost split_cost Subcosts left lefti+,[ ] Subcosts left i 1+ + right,[ ]+ +=
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split i= min_cost total_cost=

Subcosts left right,[ ] min_cost= SplitPositions left right,[ ] split=

ConvertSplits 1n,( ) SplitPositions

L R,
G GCD SplitPositions

L R 1 L R n≤ ≤ ≤ G( )actors=

AL AL 1+ … AR, , ,{ } G,( )subgraph

L R=( ) AL

s SplitPositionsL R,[ ]= i L GCD L L s+,[ ] GCD L R,[ ]⁄=

iR GCD L s 1+ + R,[ ] GCD L R,[ ]⁄=

i LConvertSplitsL L s+,( )( ) iRConvertSplitsL s 1+ + R,( )( )

Figure 3-9Pseudo-code for the dynamic programming
algorithm to schedule a chain-structured graph.
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optimal R-schedule from a top-down traversal of the optimal split positions stored in the

 array.

Assuming that the components of  are bounded, which makes thegcd

computations elementary operations, it is easily verified that the time complexity of

 is dominated by the time required for the innermostfor  loop — the

(for ) loop — and the running time of one iteration of this loop

is bounded by a constant that is independent of . Thus, the following theorem guarantees

that under our assumptions, the running time of  is  and

.

Theorem 3-4: The total number of iterations of the (for )

loop that are carried out in  is  and .

Proof: This is straightforward.

3.10   Example: Sample Rate Conversion

Digital audio tape (DAT) technology operates at a sampling rate of  kHz, while

compact disk (CD) players operate at a sampling rate of  kHz. Interfacing the two, for

example, to record a CD onto a digital tape, requires a sample rate conversion.

The naive way to do this is shown in Figure 3-10(a). It is more efficient to perform

the rate change in stages. Rate conversion ratios are chosen by examining the prime factors

SplitPositions

qG

ScheduleChainGraph

i 0 1 … chain_size 2–, , ,=

n

ScheduleChainGraph O n
3( )

Ω n
3( )

i 0 1 … chain_size 2–, , ,=

ScheduleChainGraph O n
3( ) Ω n

3( )

48

44.1

Figure 3-10(a). CD to DAT sample rate change system.
(b). Multi-stage implementation of a CD to DAT sample rate system.
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160 147
(a)

CA D E F
1 3 2 7 8 7 5 1

DATCD (b)

B
1 2



79

of the two sampling rates. The prime factors of  and  are  and

, respectively. Thus, the ratio  is , or . One

way to perform this conversion in four stages is , , , and . Figure 3-10(b)

shows the multistage implementation. Explicit upsamplers and downsamplers are omitted,

and it is assumed that the FIR filters are general polyphase filters [Buck91].

Here ; the optimal looped

schedule given by our dynamic programming approach is

; and the associated buffer memory requirement is

. In contrast, the alternative schedule  has a

buffer memory requirement of  if a separate buffer is used for each edge and a buffer-

memory requirement of  if one shared buffer is used. This is an important savings with

regard to current technology: a buffer memory requirement of  will fit in the on-chip

memory of most existing programmable digital signal processors, while a buffer memory

requirement of  is too high for all programmable digital signal processors, except for

a small number of the most expensive ones. The savings of  ( %) over using a single

shared buffer can also be significant on chips that only have on the order of  words of

memory. It can be verified that the latency of the optimally nested schedule is given by

, as opposed to

 for the naive schedule. If we take

(for example, a 22.05Mhz chip has 22.05Mhz/44.1khz = 500 instruction cycles in one

sample period of the CD actor), and , then the two

latencies are 73810 and 103510 instruction cycles; the nested schedule has 29% less

latency.

One more advantage that a nested schedule can have over the naive schedule with

shared buffering is in the amount ofinput buffering required. Some DSP chips have a

feature where a dedicated I/O manager can write incoming samples to a buffer in on-chip

memory, the size of which can be programmed by the user. If the single appearance

schedule spans more than one sample period, then input buffering is a useful feature since

it avoids the need for interrupts. Chips that have input buffering include the Analog Devices

ADSP 2100. If we compute the amount of input buffering required by the naive schedule,
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we find that it is , whereas for the

optimally nested schedule, it is given by .

3.11   An Efficient Heuristic

Our dynamic programming solution for chain-structured graphs runs in

time, where  is the number of actors. As a quicker alternative solution, we developed a

more time-efficient heuristic approach. The heuristic is simply to introduce the

parenthesization on the edge where the minimum amount of data is transferred. This is done

recursively for each of the two halves that result. The running time of the heuristic is given

by the recurrence

, (3.7)

where  is the actor at which the split occurs. This is because we must compute thegcdof

the repetitions vector components of the  actors to the left of the split, and thegcdof the

repetitions of the  actors to the right. This takes  time assuming that the

repetitions vector components are bounded. Computing the minimum of the data transfers

takes a further  time since there are  edges to consider. The worst case solution

to this recurrence is , but the average case running time is  if

.

We have evaluated the heuristic on  randomly generated -actor chain-

structured SDF graphs, and we have found that on average, it yields a buffer memory

requirement that is within  of the optimal cost. For each random graph, we also

compared the heuristic’s solution to the worst-case schedule and to a randomly-generated

R-schedule. On average, the worst-case schedule had over  times higher cost than the

heuristic’s solution, and the random schedule had  times higher cost. Furthermore, the

heuristic outperformed the random schedule on  percent of the trials. We also note that

in over 99% of the randomly generated 50-actor chain-structured SDF graphs, the shared-

buffer cost for the naive single appearance schedule was worse than the cost of the nested

schedule given by the heuristic. Unfortunately, the heuristic does not perform well on the
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example of Figure 3-10 — it achieves a buffer memory requirement of , which is over

double of what is required by an optimum R-schedule. In comparison, the worst R-schedule

for Figure 3-10 has a buffer memory requirement of .

3.12   Extensions

In this section we present three useful extensions of the dynamic programming

solution developed in Section 3.9. First, the algorithm can easily be adapted to optimally

handle chain-structured graphs that have delays on one or more of the edges. This requires

that we modify the computation of , the amount of memory required to split the

subchain  between the actors  and . This cost now gets computed

as

,

where , if

;

otherwise (if ),  gets computed as .

Accordingly, if the optimum split extracted in a given invocation ofConvertSplits(Figure

3-9) corresponds to a split in which the latter condition applied in the computation of

, thenConvertSplitsreturns

; otherwise, ConvertSplits

returns , as in the original

version. This requires a method for keeping track of which condition applies to each of the

optimum subchain splits, which can easily be incorporated, for example, by varying the

sign of the associated entry in theSplitPositionsarray.

The technique applies to the more general class of well-ordered SDF graphs. A

well-ordered graph is one where the partial order is a total order; chain-structured graphs

are a special case of these. Again, this requires modifying the computation of . Here,

this cost gets computed as

565
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, (3.8)

where

; (3.9)

that is,  is the set of edges directed from one side of the split to the other side.

The dynamic programming technique of Section 3.9 can also be applied to reducing

the buffer memory requirement of a given single appearance schedule for an arbitrary

acyclic SDF graph (not necessarily chain-structured or well-ordered).

Suppose we are given a valid single appearance schedule  for an acyclic SDF

graph and again for simplicity, assume that the edges in the graph contain no delay. Let

 denote the sequence of lexical actor appearances in  (for example,

for the schedule , ). Thus, since  is a single appearance

schedule,  must be a topological sort of the associated acyclic SDF graph. The technique

of Section 3.9 can easily be modified to optimally “re-parenthesize”  into the optimal

single appearance schedule (with regard to buffer memory requirement) associated with the

topological sort . The technique is applied to the sequence , with  computed as

in (3.8). It can be shown that the algorithm runs in time , where  is the number

of vertices in the graph.

Thus, given any topological sort  for a consistent acyclic SDF graph, we can

efficiently determine the single appearance schedule that minimizes the buffer memory

requirement over all valid single appearance schedules for which the sequence of lexical

actor appearances is .

Another extension applies when we relax the assumption that each edge is mapped

to a separate block of memory, and allow buffers to be overlaid in the same block of

memory. There are several ways in which buffers can be overlaid; the simplest is to have

one memory segment of size
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(3.10)

for the subchain  (as explained in Section 3.2). We follow this

computation with

, (3.11)

to determine amount of memory to use for buffering in the subchain . In

general, this gives us a combination of overlaid and non-overlaid buffers for different sub-

chains. Incorporating the techniques of this section with more general overlaying schemes

is a topic for future work.

3.13   Extension to Arbitrary Topologies

The material reported in this section and the next is taken from [Bhat95]. DPPO can

be extended to efficiently handle graphs that are not necessarily delayless, although a few

additional considerations arise. We refer to this extension asGeneralized DPPO

(GDPPO). First, if delays are present, then , the lexical ordering of the input

schedule, is not necessarily a topological sort. As a consequence, generally not all

parenthesizations of the input schedule will be valid. For example, suppose that we are

given the valid schedule  for Figure 3-11. Then

 clearly is not a topological sort, and it is easily verified that the

schedule that corresponds to splitting the outermost parenthesization between  and  —

 — is not a valid schedule since there is not sufficient delay on the

edge  to fire 10 invocations of  before a single invocation of .
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Figure 3-11An SDF graph used to illustrate GDPPO applied to SDF graphs that
have nonzero delay on one or more edges. Here .A B C, ,( )q 6 15 10, ,( )=
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Thus, we see that when delays are present, the set  defined in equation (3.9) no

longer generally gives all of the edges that cross the parenthesization split. We must also

examine the set ofback edges

Each  must satisfy

; (3.12)

otherwise, the given parenthesization split will give a schedule that is not valid. To take into

account any nonzero delays on members in , and the memory cost of each of the back

edges, the cost expression of equation (3.8) for the given split gets replaced with the

forward split cost defined by

This expression gives the cost of splitting the subsequence

between  and  assuming that the subsequence  precedes

 in the lexical order of the schedule that will be implemented.

However, if (3.12) is satisfiedfor all “forward edges” , it may be advantageous to

interchange the lexical order of  and . Such a

reversal will be advantageous whenever thereverse split costdefined by

is less than the forward split cost — that is, whenever

. (3.13)

The possibility for reverse splits introduces a fundamental difference between

GDPPO and DPPO: if one or more reverse splits are found to be advantageous, then

GDPPO does not preserve the lexical ordering of the original schedule. If GDPPO changes

the lexical ordering, then the result computed by GDPPO will necessarily have a buffer
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memory requirement that is less than that of an order-optimal schedule for . In

such cases, GDPPO may be applied multiple times in succession to possibly yield more

benefit than a single application — that is, GDPPO can in general be applied iteratively,

where the iterative application terminates when the schedule produced by GDPPO

produces no improvement over the schedule computed in the previous iteration.

Although the iterative application of GDPPO is conceptually interesting, we have

found that for all of the practical SDF graphs that we have applied it to, termination

occurred after only  iterations, which means that no further improvement was ever

generated by a second application of GDPPO. This suggests that when compile-time

efficiency is a significant issue, it may be preferable to bypass iterative application of

GDPPO, and immediately accept the schedule produced by the first application.

GDPPO can be implemented efficiently by updating forward and reverse costs

incrementally. If we are examining the splits of the subsequence , and

we have computed the forward and reverse split costs  and  associated with the split

between  and , , then the splits costs  and  associated

with the split between  and  can easily be derived by examining the output and

input edges of . To ensure that we ignore reverse splits (forward splits) that fail to

satisfy (3.12) for all  ( ) a cost of

is added to the reverse (forward) split cost for any input edge (output edge)  of

whose source (sink) is a member of , and that does not satisfy (3.12).

Similarly, for each output (input) edge  of  whose sink (source) is contained in

, and that does not satisfy (3.12),  is subtracted from  ( )

since such an edge no longer prevents the split from being valid. Choosing  so large has

the effect of “invalidating” any cost  that has  added to it (without a corresponding

subtraction) since any minimal valid schedule has a buffer memory requirement less than

, and thus, any valid split will be chosen over a split that has cost .

If forward and reverse costs are updated in this incremental fashion, then GDPPO

attains a time complexity of  where  is the number of actors, if we can assume that
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the number of input and output edges of each actor is always bounded by some constant .

In the absence of such a bound, GDPPO has time complexity that is , where  is

the number of edges in the input graph.

3.14   Adaptation to Minimize Code Size for Arbitrary Schedules

We have applied the basic concept behind DPPO to derive an algorithm that

computes an optimally compact looped schedule (minimum code size) for an arbitrary

sequence of actor firings. For example, consider the SDF graph in Figure 3-12, and suppose

that we are given the valid firing sequence1  (this firing sequence

minimizes the buffer memory requirement over all valid schedules). If the code size cost

(number of program memory words required) for a code block for  is greater than the

code size cost for , then the optimally compact looped schedule for  is ,

whereas  is optimal if  has a greater code size cost than .

To understand how dynamic programming can be used to compute an optimally

compact loop structure, suppose that  is the given firing sequence, and let

 be any subsequence of  ( ). If the optimal loop structures

for all -length subsequences of  are available, then we determine the optimal loop

structure for  by first computing  for , where

 denotes the minimum code size cost for the subsequence . The value

of  that minimizes  gives an optimum point at which to “split” the subsequenceif

 are not to be executed through a single loop.

To compute the minimum cost attainable for  if  are to be executed

through a single loop, we first determine whether or not . If this holds, then

 can be executed through a single loop , and the code size cost is taken to

1.  By afiring sequence, we simply mean a schedule that contains no loops.

α

O nenv
3( ) ne

Figure 3-12An SDF graph used to illustrate the problem of finding an optimally compact
loop structure for an arbitrary firing sequence.
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be the code size cost of  plus the code size overhead  of a loop. If , we

determine whether or not , and if so, then  can be

implemented as , and the code size cost is taken to be the sum of

 and the costs of  and . Next, if  and

, then we determine whether or not

. If this holds then  can be implemented as

, where  is an optimal loop structure

for . It is easily seen that an optimal loop structure  for executing

 through a single loop can be determined (if one exists) by iterating this

procedure  times, where  denotes thefloor operator. If one or more

loop structures exist for executing through a single loop, then the code size

cost of the optimal loop structure  is compared to the minimum value of , , to

determine an optimal loop structure for ; otherwise the optimal loop structure

for  is taken to be that corresponding to the minimum value of .

The time complexity of this technique for finding an optimal loop structure for the

subsequence , given optimal looping structures for all -length

subsequences, is , and time complexity of the overall algorithm is ,

where  is the number of firings in the input firing sequence. Thus, the problem of

determining an optimal looping structure is of polynomial complexity when the size of a

problem instance is taken to be the number of firings in the given firing sequence. However,

it should be noted that there is no polynomial function  such that the number of firings

in a valid schedule (defined as the sum of the entries in the repetitions vector) is guaranteed

to be less than  for an arbitrary -actor SDF graph. Thus, unlike DPPO and GDPPO,

the algorithm developed in this section is not of polynomial complexity in the size of the

given SDF graph.

3.15   Complexity of the Buffer Minimization Problem

Here we show that the problem of constructing buffer-optimal single appearance

schedules for acyclic graphs with delays is NP-complete in general. In fact, we prove the

result for HSDF graphs. Since any schedule for an HSDF graph is a single appearance
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schedule, it follows that the problem for general acyclic SDF graphs, with delays allowed

on edges, is also NP-complete. It also follows that computing a minimum buffer schedule

for an arbitrary acyclic SDF graph with delays allowed, without the single appearance

restriction is also NP-complete. Finally, cyclic graphs are an even more general case, so

both the single appearance and non-single appearance, buffer minimal scheduling

problems for HSDF and SDF graphs are NP-complete (this was already shown in Chapter

2, but that proof is redundant in light of this stronger proof). The only remaining interesting

class of graphs is the set of delayless acyclic (but not well-ordered) SDF graphs (not

homogenous). For this class, the complexity of the minimum buffer scheduling problems

remains open.

To gain some intuition about why this problem might be difficult, note that if some

edges have delays, then in an HSDF graph, they do not impose any precedence constraints

since either the source actor of that edge or the sink actor of that edge can be fired before

the other. However, if the sink actor fires before the source actor (for an edge that has 1

delay), then the buffer size on that edge can be 1; otherwise, it has to be 2. This suggests

the following simple technique for getting a minimum buffer schedule: reverse all the edges

that have delays and remove the delays. If we can schedule this graph, then we will have a

minimum buffer schedule since on all reversed edge, the sink actor will fire before the

source actor. We will be able to schedule this new graph if and only if it does not have any

cycles. If it has cycles, then the problem is to determine a minimal set of edges that we

reversed, to remove, so that the resulting graph becomes acyclic and a schedule may be

found. The buffering requirement in that case will be increased by the size of the set of

edges removed. However, as the result below shows, finding a minimal set of edges from

the set of edges that have delays is not possible to do in polynomial time unlessP = NP.

Definition 3-5: The AHSDF MIN BUFFER problem is the following

Instance: An acyclic, directed graph  where every edge has 0 or 1 delays, and

an integer .

Question: Is there a schedule for  that has a total buffering requirement of  or

less?

G V A,( )=

K

G A K+
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Remark: Note that since we have a buffer on every arc, the buffering requirement has to

be at least .

Definition 3-6: The vertex cover (VC) problem is the following:

Instance: An undirected graph , and integer .

Question: Is there a subset , with , such that  covers every edge; that is,

for every edge , at least one of  is in ?

Remark: For an undirected graph, if  is an edge, so is .

Theorem 3-5: VC is NP-complete [Karp72].

Theorem 3-6: AHSDF MIN BUFFER is NP-complete.

Proof: Membership in NP is easy to see since we just have to simulate the schedule to see

if the buffering requirement is met; this can be done in linear time since the schedule has

length . Completeness follows from a reduction of vertex cover. From an arbitrary

instance , , of the VC problem, we construct the instance  of

AHSDF MIN BUFFER as follows. Let . Let

, , , and .

Each edge in  has one delay, and each edge in  has 0 delays. We refer to a vertex of

the form  as a “0” vertex and to a vertex of the form  as a “1” vertex. Clearly, this is

an instance of AHSDF MIN BUFFER; the graph is acyclic because all edges are directed

from a “1” vertex to a “0” vertex. We claim that this instance of AHSDF MIN BUFFER

has a solution iff the VC instance has a solution.

Suppose that there is a solution  to the VC instance. Let  be the set of edges

defined as . Note that . Delete these edges from ,

reverse the rest of the edges in , and remove the delays from them to get the graph .

Clearly  is delayless. We claim that it is also acyclic. Suppose that it were not acyclic.

Then there would be a directed cycle of the form  in .

Without loss in generality, assume that  for some . A “0” vertex of this type can

only have an outgoing edge directed to the vertex  in ; hence, . A “1” vertex

can only have an outgoing edge to some “0” vertex; hence,  for some .

Continuing this argument, it can be seen that the length of the cycle has to be even, and that
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there are  “0” vertices and for each such vertex ,  is also in the cycle. None of

these vertices  can be in  since all edges of the form  were deleted for  in ,

and only the remaining edges (from ) were reversed to yield edges of the form .

But since  is an edge in the above cycle, it follows that  is an edge in , but

it is not covered by . Hence,  cannot be a solution to the VC instance, giving us a

contradiction. Now, since  is acyclic and delayless, it has a valid schedule. This schedule

is also a valid schedule for  since it respects all the precedence constraints of the delayless

arcs in . On all arcs that were reversed, the sink actor in the original graph  is a source

actor in ; hence, on all these arcs, the buffer size is 1 in . For the deleted arcs, we could

have the source actor firing before the sink actor, and on these arcs the buffer size would

be 2. Since there are at most  deleted arcs, the total buffering requirement is at most

.

Now suppose that the AHSDF MIN BUFFER instance has a schedule with

buffering requirement of at most . This means that there are at most  arcs that

have delays where the source actor of the arc is fired before the sink actor in the schedule;

denote this set of arcs by . For all other arcs that have delays, the sink actor fires before

the source actor. Since any arc with a delay in  is of the form , let the set  be

defined as . Clearly, . We claim that  is a vertex

cover for . Indeed, suppose it were not. Then there would be an edge  in  where

neither  is in . This means that neither of  is in . This means that

in the schedule for ,  fires before , and  fires before . But since  is an

edge in ,  and  are delayless edges in , meaning that  must fire

before , and  must fire before  in any valid schedule. Putting this together, we see

that we have a cyclic dependency  that cannot possibly be

respected by the schedule, thereby contradicting our assumption that the set  is not a

vertex cover.■

Note that if buffer sharing is allowed, then the problem of determining a schedule

for an HSDF graph that minimizes the total number of “live” tokens at any point in the

schedule is exactly the REGISTER SUFFICIENCY problem proved to be NP-complete in

by Sethi [Seth75].
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In the next few sections, we develop heuristics for generating single appearance

schedules that attempt to minimize the amount of buffering memory required for acyclic

SDF graphs.

3.16   Recursive Partitioning by Minimum Cuts (RPMC)

The number of topological sorts in an acyclic graph can be an exponential function

of the size of the graph; for example, a complete bipartite graph with  vertices has

possible topological sorts. Each topological sort gives a valid flat single appearance

schedule. An optimal reparenthesization of this schedule is then computed by applying the

dynamic programming algorithm. The problem is therefore to determine the topological

sort that will give the lowest buffer memory requirement when nested optimally. For

example, the graph in Figure 3-13 shows a bipartite graph with 4 vertices. The repetitions

vector for the graph is given by , and there are 4 possible topological sorts

for the graph. The flat schedule corresponding to the topological sort  is given by

. This can be parenthesized as , and this

schedule has a buffer memory requirement of 208. The flat schedule corresponding to the

topological sort , when parenthesized optimally, gives the schedule

, with a buffer memory requirement of 120.

A heuristic solution for this problem can be formulated as follows: find thecut (a

partition of the set of actors) of the graph across which the minimum amount of data is

transferred and schedule the resulting halves recursively. The cut that is produced must

have the property that all edges that cross the cut have the same direction. This is to ensure

that all the vertices on the left side of the partition can be scheduled before scheduling any
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Figure 3-13A bipartite SDF graph to illustrate the different buffer
memory requirements possible with different topological sorts.
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on the right side. In addition, we would like to impose the constraint that the partition that

results be fairly evenly sized. This is to increase the possibility of having gcds that are

greater than unity for the repetitions of the vertices in the subsets produced by the partition,

thus reducing the buffer memory requirement. To see that having gcds greater than one for

the subsets produced is beneficial to memory reduction, consider Figure 3-13. If the

partition that had actor  on one side of the cut and actors  on the other side of the

cut were formed, then we would get the loop bodies  and  and

would not immediately see a reduction in buffering requirements since the repetitions of

 are co-prime. However, a partition with  on the same side of the cut

immediately gives us a reduction since the schedule body  can be

factored as , and this reduces the memory for the subgraph consisting

of actors . In general, by constraining the sizes of the partition, the probability of

being able to factor schedule bodies so that a reduction in memory is obtained in each stage

of the recursion is increased. Needless to say, this is a greedy approach which is likely to

fail sometimes but has proved to be a good rule of thumb for most instances.

Suppose that  is an SDF graph, and let  and . A

cut of  is a partition of the vertex set  into two disjoint sets  and . Define

 and  to be the subgraphs produced by the cut.

The cut islegal if for all edges crossing the cut (that is all edges that are not contained in

 nor ), we have  and . Given a

bounding constant , the cut results in bounded sets if it satisfies

, . (3.14)

The weight of an edge  is defined as

. (3.15)

The weight of the cut is the total weight of all the edges crossing the cut. The problem then

is to find the minimum weight legal cut into bounded sets for the graph with the weights

defined as in (3.15). Since the related problem of finding a minimum cut (not necessarily

legal) into bounded sets is NP-complete [Gare79], and the problem of finding an acyclic
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partition of a graph is NP-complete [Gare79], we believe this problem to be NP-complete

as well even though we have not discovered a proof. Kernighan and Lin [Kern70] devised

a heuristic procedure for computing cuts into bounded sets but they considered only

undirected graphs. Methods based on network flows [Corm90] do not work because the

minimum cut given by the max-flow-min-cut theorem may not be legal and may not be

bounded. The graph in Figure 3-14, where a weight on an edge denotes the capacity of that

edge, illustrates this. The maximum flow into vertex  is seen to be  (1 unit of flow along

the path , 1 unit along  and 1 unit along ) and this corresponds to the cut

where  and . The value of the cut is given by

 (note that the definition of the value of a cut in network flow theory is

defined as sum of the capacities of the edges crossing the cut in the  to  direction only)

but the cut is not legal because of the reverse edge from  to . Indeed, the minimum

weight legal cut for this graph has a value of , corresponding to the cut where

.

Therefore, a heuristic solution for finding legal minimum cuts into bounded sets is

given. The heuristic is to examine the set of cuts produced by taking a vertex and all of its

descendants as the vertex set  and the set of cuts produced by taking a vertex and all of

its ancestorsas the set . For each such cut, an optimization step is applied that attempts

to improve the cost of the cut.

Consider a cut produced by setting  for some vertex

. Consider the set  of independent,boundary vertices of  in . Aboundary

vertex in  is a vertex that is not the predecessor of any other vertex in . Following

Kernighan and Lin [Kern70], for each of these vertices, the cost difference that results if

the vertex is moved into  can be computed efficiently. This cost difference for a vertex
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Figure 3-14The min-cut given by the max-flow-min-cut theorem is not
equal to the min-legal cut for this graph.
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 in  is defined to be the difference between the total weight of all the edges out of

 and the total weight of all edges into . We then move those vertices across that reduce

the cost. We apply this optimization step for all cuts of the form  and  for

each vertex  in the graph and take the best one as the minimum cut. The algorithm is

shown in Figure 3-15. Since a greedy strategy is being used to move vertices across, and

only the boundary vertices are considered, examples can be constructed where the heuristic

will not give optimal cuts. Since there are  vertices in the graph,  cuts are examined.

Moreover, the cut produced will have bounded sets since cuts that produce unbounded sets

are discarded. For example, one of the cuts examined by the heuristic for the graph in

Figure 3-14, with bounding constant , is . This cut has a

value of 30. The set of independent, boundary vertices of  in  is , and the cost

difference for  is given by . Hence,  will not be moved over. The cut

produced by considering  has a value of 12. The cost difference

for the independent vertex  is given by ; hence,  is moved into  to

yield a cut of value 11, and thus, in this example, the heuristic finds the minimum weight

legal cut.

Delays on edges are handled as follows. If the number of delays on some edge

satisfies

, (3.16)

then the size of the buffer on this edge need not be any greater than . However, if

crosses the cut, then the size of the buffer will become . Hence, an edge

that satisfies equation (3.16), istagged; a tagged edge does not affect the legality of the cut

(in other words, the heuristic ignores tagged edges when it constructs the legal cut) but

affects the cost of the cut: if a tagged edge crosses the cut in the reverse direction, the cost

of the edge is given by , and if the tagged edge crosses the cut in the forward

direction, the cost is given by . This will discourage the heuristic from

choosing partitions where tagged edges cross the cut in the forward direction.

The running time of the heuristic for computing the legal minimum cut into

bounded sets can be determined as follows. Computing the descendents or ancestors of a

vertex can be done by using breadth-first-search; this takes time . The breadth-
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procedure  MinimumLegalCutIntoBoundedSets

input : weighted directed graph , and a bound b. output : .

for each

/* Start with descendents */

,

for  each

,

/* Cost difference if this vertex is moved over */

end for

while  (  &  & )

end while

if  ( ), , end if

/* Start with ancestors */

,

/* Carry out the same type of steps as above to determine
the partition for the set starting from the ancestors */

end for

/*  correspond to the minimum legal cut. */
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Figure 3-15Procedure for computing legal minimum cuts.
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first-search will also give us the independent vertices in the complement set. Finding and

computing the cost difference for each of the boundary vertices in the set of independent

vertices takes at most  steps. Sorting the cost differences takes

steps, and moving the vertices that reduce the cost takes  time. Since a cut is

determined for every vertex twice, the total running time is .

The heuristic for generating a schedule for the acyclic graph now proceeds by

partitioning the graph by computing the legal minimum cut and forming the schedule body

 where ,  and

 are schedule bodies for  and  respectively. The schedule bodies  are

obtained recursively by partitioning  and . Once the entire schedule body has been

constructed, the dynamic programming algorithm is run to re-parenthesize the schedule to

possibly give a better nesting. Letting , the running time for this heuristic can be

determined by solving the recurrence

,

where  and . If the bound  in (3.14) is chosen to be a constant

factor of the graph size, for example, 3/4, then it can be shown easily that

. If the size of the sets is not bounded to be a constant

factor of the graph size, then the worst case running time is .

The reparenthesizing step that is run at the end uses the dynamic programming algorithm

and requires  running time. Thus the overall running time is given by

assuming that  is a constant factor of the graph size.

3.17   More Analysis of legalCutIntoBddSets

In this section, we describe some of the reasons why the problem of computing legal

minimum cuts into bounded sets optimally appears to be difficult. The type of graph that

presents problems is one where there are several independent vertices that can be moved

across. For example, consider the graph shown in Figure 3-16. It is clear that if the vertex

 is chosen as the starting point for the cut, then there  rows of independent vertices,

any of which can be chosen to be moved across. Another way to think about this is to
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consider a matrix filled with non-negative integers. The problem is to choose an element

from each row such that the sum of the elements is minimized and that the number of

elements to the right of the partition line that results is equal to the number of elements to

the left of the partition line. This corresponds to the special case of the bound on the sets

being exactly . This problem seems to be NP-complete but we have not discovered

a reduction that proves it.

3.18   Non-uniform Filterbank Example

Figure 3-17 shows the SDF graph abstraction of a non-uniform, near-perfect

reconstruction filterbank [Naye93]. The lowpass filters (vertices  etc.) retain 2/3 of the

spectrum while the highpass filters (vertices  etc.) retain 1/3 (instead of the customary

1/2,1/2 for the octave QMF). Rate changes in the graph are annotated wherever the number

produced or consumed is different from unity. The repetitions vector of this graph is given

by
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Figure 3-16a) An example of the type of graph for which computing the legal
minimum cut into bounded sets is challenging. b) The matrix interpretation of the
problem.
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The single appearance schedule obtained by the APGAN scheduling heuristic (discussed

in Section 3.19) on this system is

,

and the resulting buffer memory requirement is . After post-processing the schedule

with GDPPO, we obtain the schedule

,

which has a buffer memory requirement of  — a 10.5% improvement. Notice that in

this example, GDPPO has changed the lexical ordering, and thus, one or more reverse splits

were found to be beneficial.

The schedule returned by the RPMC scheduling heuristic has a buffer memory

requirement of , which is lower than that obtained by the combination of APGAN and

GDPPO. However, GDPPO is able to improve the schedule obtained by RPMC even

further. The result computed by GDPPO when applied to the schedule derived by RPMC is

,

which has a buffer memory requirement of .

For the same graph, if the delays are removed from the edges and instead

implemented as vertices, then the RPMC heuristic obtains a schedule with a buffering cost

of 100; the worst case flat schedule (for any topological sort) would have a buffering cost

of 438. The best of the various PGAN heuristics (discussed in Section 3.19) found a

schedule of cost 117. This shows that RPMC can be effective on graphs with irregular rate-

changes in practice. More extensive experimental results on several other practical

examples, and numerous random examples, are reported in Section 3.20 and 3.21.

3.19   Pairwise Grouping of Adjacent Nodes for Acyclic Graphs

In the originalPairwise Grouping of Adjacent Nodes (PGAN) technique for joint

code and data minimization, a cluster hierarchy is constructed by clustering exactly two

adjacent vertices at each step [Bhat93]. At each clustering step, a pair of adjacent actors is

q a … A, ,( ) 27 27 9 9 18 6 6 9 12 6 9 4 4 6 8 4 4 4 12 6 6 9 18 9 27 27 27, , , , , , , , , , , , , , , , , , , , , , , , , ,[ ]=
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chosen that maximizes , the repetition count of the adjacent pair, over all

clusterable adjacent pairs . Recall that  can be viewed as the number of times

a minimal periodic schedule for the subset of actors  is invoked in the given SDF graph,

and thus, we see that the PGAN technique repeatedly clusters adjacent pairs whose

associated subgraphs are invoked most frequently in a valid schedule.

The PGAN technique verifies whether or not an adjacent pair is clusterable by

checking whether or not its consolidation introduces a cycle in the Acyclic Precedence

Graph (APG). It is shown that this check can be performed quickly by applying a

reachability matrix, which indicates for any two APG vertices  and  whether or not there

is a path from  to .

Unfortunately, the cost to compute and store the reachability matrix can be

prohibitively high for multirate applications that involve large changes in sample rate.

Since the number of vertices in the APG of an SDF graph  is , where  is the

desired blocking factor,  is defined as

,

and the number of entries in the reachability matrix is quadratic in the number of APG

vertices, it is easily seen that the time and space required to maintain the APG can grow

exponentially with the number of actors in the given SDF graph. Although this is not a

problem for the large class of practical SDF graphs for which  is not much larger than the

number of elements in , practical examples can easily be constructed where the technique

consumes enormous amounts of resources relative to the size of the input SDF graph. For

example, for the 6-vertex SDF representation of a multi-stage sample-rate conversion

system between a compact disc player and a digital audio tape player discussed in Section

3.10, , which means that over  units of storage are required to implement

the reachability matrix for this 6-actor SDF graph.

Since a large proportion of DSP applications that are amenable to the SDF model

can be represented as acyclic SDF graphs, a simple adaptation of PGAN has been proposed

for acyclic graphs that maintains the cluster hierarchy and reachability matrix directly on

the input SDF graph rather than on the APG, and thus allows us to efficiently exploit the

advantages of the bottom-up clustering approach of the original PGAN technique. We refer

ρ A B,{ }( )

A B,{ } ρ Z( )

Z

x y

x y
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I
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to this adaptation of PGAN asAcyclic PGAN (APGAN). APGAN is exactly the original

PGAN technique specified in [Bhat93] with the exception that the input SDF graph is

assumed to be acyclic, and the cluster hierarchy and reachability matrix are maintained for

the input SDF graph rather than for the APG.

In an acyclic SDF graph , it is easily verified that if a subset  of actors is not

clusterable then  contains a cycle. Whether  introduces a cycle is easily

checked given a reachability matrix for  by examining each successor of a member of :

 contains a cycle if and only if there is an  such that  is a successor

of some member of ,and there is a path from  to some member of .

Since the existence of a cycle in  is only a necessary — but not

sufficient — condition for  not to be clusterable, the clusterability test that is applied in

APGAN is notexact; it must be viewed as a conservative test. It is even inexact if we

restrict ourselves to single appearance schedules. That is, it is possible for

to contain a cycle, and still have a valid single appearance schedule. A simple example is

shown in Figure 3-18. Here, the BMLB schedule  results if we first cluster

. However in APGAN, clustering  is not permitted since the resulting graph

contains a cycle. Instead, APGAN generates the schedule  or the schedule

, neither of which is a BMLB schedule. Thus, in this example, we see that the

inexact clusterization test prevents us from obtaining an optimal schedule.

In exchange for some degree of suboptimality in certain examples, the

clusterization test attains a large computational savings over the exact test based on the

reachability matrix of the APG, and this is the main reason for adopting it.

Figure 3-19 illustrates the operation of APGAN. Figure 3-19(a) shows the input

SDF graph. Here , and for ,  represents

G Z
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G Z
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Z X Z
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Figure 3-18An example of how a clusterization operation that introduces a
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the th hierarchical actor instantiated by APGAN. Each edge corresponds to a different

adjacent pair; the repetition counts of the adjacent pairs are given by

,

and

.

Thus, APGAN will select the one of the three adjacent pairs , , or

for its first clusterization step. Examination of the reachability matrix yields that

introduces a cycle due to the path , while the other two adjacent pairs do

not introduce cycles. Thus, APGAN chooses arbitrarily between  and  as

the first adjacent pair to cluster.

Figure 3-19(b) shows the graph that results from clustering  into the

hierarchical actor . In this graph, , and it is easily

verified that  uniquely maximizes  over all adjacent pairs. Since  does

not introduce a cycle, APGAN selects this adjacent pair for its second clusterization step.

Figure 3-19(c) shows the resulting graph.
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Figure 3-19An illustration of APGAN.
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In Figure 3-19(c), we have , and thus all three adjacent

pairs have . Among these, clearly, only  and  do not introduce

cycles, so APGAN arbitrarily selects among these two to determine the third clusterization

pair. Figure 3-19(d) shows the graph that results when  is chosen. This graph

contains only one adjacent pair , and APGAN will consolidate this pair in its

final clusterization step to obtain the single-vertex graph in Figure 3-19(e).

Figures 3-19(a-e) specify the sequence of clusterizations performed by APGAN

when applied to the graph of Figure 3-19(a). A more compact representation of this

sequence is shown in Figure 3-20. A valid single appearance schedule for Figure 3-19(a)

can easily be constructed by recursively traversing the hierarchy induced by this sequence.

We start by constructing a schedule for the top-level subgraph, the subgraph corresponding

to . The subgraph  corresponding to each  consists of only two actors  and ,

such that all edges in  are directed from  to . Thus, it is clear how an optimal

schedule can easily be constructed for the subgraph corresponding to each : if each edge

 in  satisfies , then we construct the schedule ,

and otherwise we construct . In Figure 3-19, This yields the “top-

level” schedule  (we suppress loops that have an iteration count of one) for the

subgraph corresponding to .

Next, we recursively descend one level in the cluster hierarchy to the subgraph

corresponding to , and we obtain the schedule . Since this subgraph contains no

hierarchical actors,  is immediately returned as the “flattened” schedule for the
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shown in Figure 3-19

Ω3 E 5D( )

E 5D( )



103

subgraph corresponding to . This flattened schedule then replaces its corresponding

hierarchical actor in the top-level schedule, and the top-level schedule becomes

.

Next, descending to , we construct the schedule  for the corresponding

subgraph. We then examine the subgraph corresponding to  to obtain the schedule

. Substituting this for , the schedule for the subgraph corresponding to

becomes . Finally, this schedule gets substituted for  in the top-level

schedule to yield the valid single appearance schedule  for

Figure 3-19(a).

From  and Figure 3-19(a) it is easily verified that  and

,

where  is the set of edges in Figure 3-19(a), are equal to , and thus in the execution of

APGAN illustrated in Figure 3-19, a BMLB schedule is constructed.

As seen in the above example, the APGAN approach, as has been defined here, does

not uniquely specify the sequence of clusterizations that will be performed, and it does not

in general, result in a unique schedule for a given SDF graph. The APGAN technique

together with an unambiguous protocol for deciding between adjacent pairs that are tied for

the highest repetition count form anAPGAN instance, which generates a unique schedule

for a given graph. For example, one tie-breaking protocol that can be used when actors are

labelled alphabetically, as in Figure 3-19, is to choose that adjacent pair that maximizes the

sum of the “distances” of the actor labels from the letter “A”. If this protocol is used to

break the tie between  (“distance sum” is ) and  (distance sum is

) in the first clusterization of step of Figure 3-19, then  is chosen.

We say that an adjacent pair is anAPGAN candidate if it does not introduce a

cycle, and its repetition count is greater than or equal to all other adjacent pairs that do not

introduce cycles. Thus, an APGAN instance is any algorithm that takes a consistent, acyclic

SDF graph as input, repeatedly clusters APGAN candidates, and then outputs the schedule

corresponding to a recursive traversal of the resulting cluster hierarchy.

In [Bhat96a], the following result is proven:
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Theorem 3-7: Suppose that  is a connected, consistent, acyclic SDF graph

that has a BMLB schedule;  for all ;  is an APGAN instance; and

 is the schedule obtained by applying  to . Then  is a BMLB schedule

for .

As a consequence, all graphs, such as that shown in Figure 3-19(a), for which

BMLB schedules exist, are handled optimally by any APGAN instance. For example, even

if in a certain APGAN instance,  is clustered instead of  in the first

clusterization step of Figure 3-19, we are still guaranteed that the final result achieved by

that APGAN instance will be a BMLB schedule. If the graph does not have a BMLB

schedule, then it is not necessary that APGAN will find the best possible schedule. In other

words, APGAN finds the best schedule whenever the achievable lower bound for the SDF

graph (that is, the smallest buffer-memory requirement that can be met by some valid single

appearance schedule) is equal to the BMLB. While the above result has considerable

intellectual interest by itself, we also demonstrate the practical relevance of this optimality

result in Section 3.20 by giving practical applications to which the result applies. Also,

experimental data will be presented that suggests that a particular APGAN instance

frequently produces excellent results even for applications that do not have BMLB

schedules, and it will be shown that it has exhibited encouraging performance on a large

collection of complex randomly-generated SDF graphs.

3.20   Examples

3.20.1 Tree-structured Filter Bank

Figure 3-17 shows an SDF graph abstraction of a uniform-tree structured QMF

filterbank [Vaid93]. This type of filterbank is commonly used in practice for audio coding

applications. Filterbanks like this, even with arbitrary “depth”, where depth is defined to be

the logarithm of the number of channels in the middle of the graph, fall into the class of

SDF graphs that have BMLB schedules; hence, APGAN will always return an optimal

buffer schedule for these graphs.
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3.20.2 Satellite Receiver

In the example above, the graph had a very symmetric and regular topology. Figure

3-22 shows an example where the topology is not as regular, but is still in the class of SDF

graphs that have a BMLB schedule. The graph is an abstraction for a satellite receiver

implementation and is taken from [Ritz95]. The graph is annotated with the produced/

consumed numbers wherever they are different from unity. It is interesting to note that a

shared-buffer implementation of an optimal flat single appearance schedule for this graph

would require a buffer of size 2040 [Ritz95] while APGAN generates a BMLB schedule

having a total buffering requirement of 1540 (using a seperate buffer on every edge of-

course).
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filterbank, b) Depth 2 filterbank. The produced/consumed numbers not
specified are all unity.
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3.20.3 Chain Structured Graph with Irregular Rate Changes

When sample rates are irregular, APGAN can do poorly even if the topology is very

simple. For the graph shown in Figure 3-23, it can be verified that APGAN will construct

the schedule , which has a buffering cost of 43, while the optimal

schedule, returned by GDPPO is , which has a cost of 30. The

optimal schedule would also be returned by RPMC (without GDPPO) in this case since

edge  is where the minimum amount of data is transferred in a complete period of the

schedule.

The tables in Section 3.21 have more examples illustrating the performance of the

APGAN algorithm. The tables have both the performance on practical examples and

performance on random graphs. As noted there, APGAN generally performs well when the

topology or rate changes are fairly regular. Such regularity arises frequently in practical

multirate SDF graphs. In graphs that contain significant irregularity, such as random graphs

and the non-uniform filterbanks, RPMC usually performs much better than APGAN.

Hence, these two heuristics complement each other well.

3.21   Experiments

Table 3-1 shows the results of applying GDPPO to the schedules generated by

APGAN and RPMC on several practical SDF systems. The columns labeled “% Impr.”

show the percentage of buffer memory reduction obtained by GDPPO. The QMF tree filter

banks fall into a class of graphs for which APGAN is guaranteed to produce optimal results,

and thus there is no room for GDPPO to produce improvement when APGAN is applied to

these two examples. Overall, GDPPO produces an improvement in 11 out of the 14

heuristic/application combinations. A “significant” (greater than 5%) improvement is

obtained in 9 of the 14 combinations; the mean improvement over all 14 combinations is

Figure 3-23A chain-structured SDF graph.
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9.9%; and from the CD-DAT and DAT-CD examples, we see that it is possible to obtain

very large reductions in the buffer memory requirement with GDPPO.

Table 3-2 shows experimental results on the performance of APGAN and RPMC

for several practical examples of acyclic, multirate SDF graphs. The column titled “average

random” represents the average buffer memory requirement obtained by considering 100

random schedules. A random schedule is generated by generating a random topological

sort. Corresponding to this topological sort is a flat single appearance schedule; this is a

BMUB schedule. Then GDPPO is applied to this schedule to get a single appearance

schedule whose buffer memory requirement is less than or equal to that of all single

appearance schedules having this particular topological ordering of the actors. All of the

systems shown in the table are acyclic graphs. The data for APGAN and RPMC also

includes the effect of GDPPO. As can be seen, APGAN achieves the BMLB on 5 of the 9

examples, outperforming RPMC in these cases. Particularly interesting are the last three

examples in the table, which illustrate the performance of the two heuristics as the graph

sizes are increased. The graphs represent a symmetric tree-structured QMF filterbank with

differing depths. APGAN constructs a BMLB schedule for each of these systems while

Table 3-1: Performance of GDPPO on several practical SDF systems.

Application
Apgan
only

Apgan
 +

Gdppo

%
Impr.

Rpmc
only

Rpmc
+

Gdppo

%
Impr.

Nonuniform filter bank
(1/3, 2/3 splits, 4 channels)

153 137 10.5 131 128 2.34

Nonuniform filter bank
(1/3, 2/3 splits, 6 channels)

856 756 11.7 690 589 14.6

 QMF tree filter bank

(8 channels)

78 78 0 92 87 5.43

QMF tree filter bank

(16 channels)

166 166 0 218 200 8.26

Two-stage fractional

decimation system

140 119 15.0 133 133 0

CD-DAT
sample rate conversion

396 382 3.54 535 400 25.2

DAT-CD
sample rate conversion

205 182 11.2 275 191 30.5
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RPMC generates schedules that have buffer memory requirements about 1.2 times the

optimal. Conversely, the third and fourth entries show that RPMC can outperform APGAN

significantly on graphs that have more irregular rate changes. These graphs represent

nonuniform filterbanks with differing depths. In the table, for each example, the cell

corresponding to the heuristic that gave the best buffer memory requirement has been

shaded. If the best performer equals the BMLB, then the shading is the same as the BMLB

column; otherwise a darker shade has been used.

Table 3-3 shows more detailed statistics for the performance of randomly obtained

topological sorts. For example, the column titled “APGAN < random” represents the

number of random schedules (again, these are obtained by starting with a BMUB schedule

for a random topological sort and applying GDPPO to this schedule) that had a buffer

memory requirement greater than that obtained by APGAN. The last two columns give the

mean number of random schedules needed to outperform these heuristics. A dash indicates

Table 3-2: Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB Apgan Rpmc Avg.
Rand.

# vert./
# edges

Fractional decima-
tion

61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filter-
bank (1/3,2/3

splits) (4 channels)

466 85 137 128 172 27/29

Nonuniform filter-
bank (1/3,2/3

splits) (6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-
tree filterbank

284 154 160 171 177 42/45

QMF filterbank
(one-sided tree)

162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filter-
bank (4 channels)

84 46 46 55 53 32/34

QMF Tree filter-
bank (8 channels)

152 78 78 87 93 44/50

QMF Tree filter-
bank (16 channels)

400 166 166 200 227 92/106
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that no random schedules were found that had a buffer memory requirement lower that

obtained by the corresponding heuristic.

While the above results on practical examples are encouraging, these heuristics

have also been tested on a large number of randomly generated 50-actor acyclic SDF

graphs. These graphs were sparse, having about 100 edges on average. The SDF parameters

were chosen randomly according to the following rules. Firstly, it is determined whether a

parameter is a “free variable” or not; it is a free variable if assigning an arbitrary number to

the parameter does not lead to sample rate inconsistency. If the parameter is a “free

variable”, then with probability 0.5, it is set to 1, and with probability 0.5, it is set to a

uniformly generated random number between 1 and 10. Table 3-4 summarizes the

performance of these heuristics, both against each other, and against randomly generated

schedules. As can be seen, RPMC outperforms APGAN on these random graphs almost

two-thirds of the time.These heuristics were compared against 2 random schedules because

Table 3-3: Performance of 100 random schedules against the heuristics

Comparison with
random schedules (100

trials)

Apgan<

random

Apgan=

random

Rpmc

<

random

Rpmc

=

random

Avg. to
beat
Apgan

Avg. to
beat
Rpmc

Fractional decimation 92% 8% 54% 13% ---- 3

Laplacian pyramid 74% 26% 74% 26% ---- ----

Nonuniform filterbank (1/
3,2/3 splits) (4 channels)

100% 0% 100% 0% ---- ----

Nonuniform filterbank (1/
3,2/3 splits) (6 channels)

100% 0% 100% 0% ---- ----

QMF nonuniform-tree
filterbank

100% 0% 81% 7% ---- 8

QMF filterbank (one-
sided tree)

100% 0% 77% 23% ---- ----

QMF analysis only 99% 1% 99% 1% ---- ----

QMF Tree filterbank (4
channels)

100% 0% 16% 13% ---- 1.4

QMF Tree filterbank (8
channels)

100% 0% 87% 3% ---- 9.1

QMF Tree filterbank (16
channels)

100% 0% 96% 1% ---- 22.3
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measurements of the actual running time on 50-vertex graphs showed that we can construct

and examine approximately 2 random schedules and post-optimize it by GDPPO in the

time it takes for either APGAN or RPMC to construct its schedule and have it post-

optimized by GDPPO. The comparison against 4 random schedules shows that in general,

the relative performance of these heuristics goes down if a large number of random

schedules are inspected. Of course, this also entails a proportionate increase in running

time. However, as shown on practical examples already, it is unlikely that even picking a

large number of schedules randomly will give better results than these heuristics since

practical graphs usually have a significant amount of structure (as opposed to random

graphs) that the heuristics can exploit well. Thus, the comparisons against random graphs

give a worst case estimate of the performance that can be expected from these heuristics.

The experimental results presented in this section show that APGAN and RPMC

complement each other. For the practical SDF graphs that were examined, APGAN

performs well on graphs that have a simple structure topologically and regular rate changes,

like the uniform QMF filterbanks, and RPMC performs well on graphs that have more

irregular rate changes and irregular topologies. Since large random graphs can be expected

to consistently have irregular rate changes and topologies, the average performance on

random graphs of RPMC is better than APGAN by a wide margin — although, from the

Table 3-4: Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) <

min(4 random)

87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%
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last two rows of Table 3-4, it can be seen that there is a significant proportion of random

graphs for which APGAN outperforms RPMC by a margin of over 10%, which suggests

that APGAN is a useful complement to RPMC even when mostly irregular graphs are

encountered. However, the main advantage of adopting both APGAN and RPMC as a

combined solution arises from complementing the strong performance of RPMC on

general graphs with the formal properties of APGAN, as specified by Theorem 3-7, and the

ability of APGAN to exploit regularity that arises frequently in practical applications.

There is a variation of APGAN that achieves significantly better performance on

random graphs than the original version, although still significantly worse performance as

compared to RPMC. This variation arises from changing the “priority function” associated

with an edge  from  to the product

. (3.17)

In other words, the variation repeatedly clusters the source and sink vertices of

edges that maximize the measure given by (3.17). Thus, an adjacent pair is given more

weight if a large amount of data is transferred between it as compared to other adjacent

pairs.

We have found that on the random graphs that were used to generate Table 3-4, this

modification of APGAN outperforms two random schedules (“min(2 random)”) 76.5

percent of the time, which indicates a level of performance intermediate to APGAN and

RPMC. Furthermore, its performance equaled the performance of APGAN on all of the

practical examples except the six channel nonuniform filter bank, where it achieved a

buffer memory requirement of 696 (8% better than APGAN), and the four channel

nonuniform filter bank, where it achieved 136 (0.7% better than APGAN).

Interestingly, however, the modification of APGAN corresponding to (3.17) does

not preserve the formal properties specified by Theorem 3-7. This is easily seen from the

example in Figure 3-24. Here, , and thus  and

, and if we let  denote the measure defined by (3.17), then

, while . We see then that APGAN

clusters  in its first clusterization step, which leads to the final schedule ,

and a buffer memory requirement of , while in the variation of APGAN,  is

e ρ e( )src e( )snk,{ }( )

e( )TNSE ρ× e( )src e( )snk,{ }( )

W X Y, ,( )q 2 2 1, ,( )= ρ W X,{ }( ) 2=

ρ W Y,{ }( ) 1= ρ̂

ρ̂ W X,{ }( ) 2 2× 4= = ρ̂ W Y,{ }( ) 6 1× 6= =

W X,{ } 2WX( )Y

7 W Y,{ }
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clustered first, and the resulting schedule  gives a buffer memory requirement

. It is easily verified the BMLB for this graph is , and thus, APGAN generates a BMLB

schedule, while the variation generates a suboptimal result.

Thus, the variation of APGAN introduces a trade-off between provable optimality

for a class of graphs, and average-case performance. Since we are proposing to complement

a heuristic — RPMC — whose average case performance significantly outweighs that of

both APGAN and its variation, it is intuitively more appealing to choose the original

version of APGAN since it adds a feature that RPMC lacks — optimality for a restricted,

but useful, class of graphs. For the practical examples that were examined, the variation of

APGAN outperformed the original APGAN only in cases where RPMC outperformed both

APGAN and the APGAN variation, and thus adopting the new version of APGAN does not

improve the final result of any of these examples when a combined solution with RPMC is

employed.

3.22   Extension to Arbitrary Graphs

As shown in Chapter 2, the problem of constructing single appearance schedules

that minimize buffer memory usage for arbitrary SDF graphs is NP-hard since the problem

is NP-hard for HSDF graphs (where any valid schedule of blocking factor 1 is a single

appearance schedule). However, we can use the heuristics introduced in this chapter to a

limited extent on arbitrary SDF graphs as well.

First we review some pertinent results about single appearance scheduling for

arbitrary graphs from [Bhat94b].

Figure 3-24An example in which APGAN achieves the BMLB, but
the modified version corresponding to (3.17) does not.

W

Y

3

6

X
1 1

2W( )Y 2X( )
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Definition 3-7: Suppose that  is a connected, sample rate consistent SDF graph. If

and  are disjoint nonempty subsets of , we say thatis subindependentof

in  if for every edge  in  such that  and , we have

. (3.18)

We occasionally drop the “in ” qualification if  is understood from context. Also, if

, then we say that is

subindependent in , and we say that  and  form asubindependent partitionof .

Definition 3-8: A graph is called loosely interdependent if it does not have a

subindependent partition and tightly interdependent otherwise.

The subindependent partition can be computed for a graph in time linear in the total

number of edges of the graph [Bhat94b]. It basically removes from the graph, all edges that

satisfy (3.18). Figure 3-25 shows the subindependent partition of an SDF graph.

Intuitively, the idea behind subindependent partitioning is that the strongly connected

components that result after edges satisfying (3.18) have been removed can each be

clustered together, to give a graph that is acyclic. Hence, this acyclic graph has a single

appearance schedule if each of the strongly connected components has a single

appearance schedule. In fact, the following stronger result is proven in [Bhat94b]:

Theorem 3-8: A nontrivial, strongly connected, consistent SDF graph  has a single

appearance schedule if and only if every nontrivial strongly connected subgraph of  is

loosely interdependent.

This idea forms the basis of the loop scheduling framework developed in

[Bhat94b] where the SDF graph is recursively broken up into strongly connected

G Z1

Z2 G( )actors Z1

Z2 G α G α( )src Z2∈ α( )snk Z1∈

α( )del α G,( )TNSE≥

G G

Z1 Z2is subindependent of( ) Z1 Z2∪ G( )actors=( )and Z1

G Z1 Z2 G

Figure 3-25An illustration of algorithmSubindependentPartition.
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components via subindependent partitioning until either no more strongly connected

components are encountered or a strongly connected component no longer has a

subindependent partition. The loop scheduling framework makes use of 3 algorithms:

the subindependence partitioning algorithm, the acyclic scheduling algorithm, and the

tight interdependence scheduling algorithm. It is shown in [Bhat94b] that the loop

scheduling framework is modular in the sense that the three algorithms do not interact

with one another either destructively or constructively; in other words, the acyclic

scheduling algorithm cannot affect the performance of the subindependence

partitioning algorithm or vice-versa insofar as the existence of single appearance

schedules are concerned.Thus, a loose interdependence algorithm always obtains an

optimally compact solution when a single appearance schedule exists. When a single

appearance schedule does not exist, strongly connected graphs are repeatedly decomposed

until tightly interdependent subgraphs are found.

The algorithms and heuristics described in this chapter for buffer-memory-optimal

single appearance schedules can be used as the acyclic component in the loop scheduling

framework to yield schedules better optimized for buffer-memory usage. However, this

approach will not even be able to optimize over the space of all possible single appearance

schedules; hence, there is no hope of optimality at all. Figure 3-26 makes this point clearer.

The repetitions vector is given by . The

Subindependence algorithm will produce the graph on the right after deleting the arcs

and . The acyclic algorithm will now construct the schedule , and

this schedule can be optimally nested by GDPPO at the top-most level. Hence, the only two

schedules that GDPPO could construct would be  or .

It is easy to verify that the  have the schedules , , and

A B C D E F, , , , ,( )q 12 16 18 6 18 9, , , , ,[ ]=
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FD
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Figure 3-26An example to illustrate the inability of the scheduling framework in
[Bhat94b] to yield buffer-optimal single appearance schedules when combined with
techniques presented in this chapter.
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respectively for , and the overall schedule returned by the loop scheduling

framework has these schedules substituted in the two top-level schedules for the ,

. However, the schedule  has lower buffering

requirements since only 600 locations are needed on arc AC instead of the 1800 or more

required by the other two schedules. It is easy to see that there is no way to get this schedule

from the loop scheduling framework as described. So, our optimization for buffer memory

usage is being done over a proper subset of the space of all possible single appearance

schedules, and this is clearly sub-optimal. Hence, to fully incorporate buffer-memory

considerations when constructing single appearance schedules for arbitrary SDF graphs,

either the subindependence algorithm has to be modified non-trivially, or a new framework

has to be designed. It would be interesting to investigate this issue in the future; however,

the interest might be largely theoretical since there seem to be few practical SDF systems

that have several multirate cycles.

3.23   Related Work

Some work has been done with SDF scheduling by other researchers; in this

section, we describe some of these results and the specific objectives addressed

3.23.1 Minimum Activation Schedules

At Aachen, Professor Heinrich Meyr’s group has studied the problem of

constructing single appearance schedules that attempt to minimize context-switch

overhead. These schedules are called minimum activation schedules and have been used in

the COSSAP environment, now marketed by Synopsys. In a schedule, each time a new

actor is invoked, there is a context switch; this overhead includes saving the contents of

registers, and loading state variables and buffer pointers. In the code generation

environment described in [Ritz93], this overhead includes all the usual ones associated with

function calls since the code generated by their system is not inline. Hence, the objective

in minimum activation scheduling is to minimize the number of actor invocations that

occur in the schedule. For example, the schedule  has 5 invocations per

i 1 2 3, ,=

Ωi

i 1 2 3, ,= 2 3 2A3C( )8B 3D( ) 9 2E( ) F( )

2 2B( ) 5A( )( ) 5C( )
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schedule period while the “flat” version of the schedule,  has 3

invocations per schedule period. The average rate of activations for a periodic schedule is

defined to be the number of activations divided by the blocking factor of the schedule. If

we increase the blocking factor to 2, it is easily verified that the average activation rate for

the two schedules above become 4.5 and 1.5 respectively. In general, for any consistent

acyclic graph, we can make the average activation rate arbitrarily close to zero by using a

flat single appearance schedule of arbitrarily high blocking factor. Thus, the problem

becomes more interesting when the SDF graph has cycles. Algorithms (that in general are

not polynomial time) are given in [Ritz93] that attempt to find minimum activation

schedules for arbitrary SDF graphs. However, it turns out that non-single appearance

schedules can have a lower average activation, but because code-size is also a primary

constraint in the COSSAP code-generation system, Ritz et. al. only consider single

appearance schedules.

As pointed out before, we favor nested single appearance schedules over flat

schedules because our secondary concern was for buffer minimization, while Ritz et. al.

have the average activation rate as the secondary objective. In [Ritz95], an attempt is made

to address the buffering requirements by introducing it as a tertiary objective. The strategy

is to focus on delayless acyclic graphs and construct flat single appearance schedules (flat

because this minimizes the average activation rate) that minimize the total amount of buffer

memory required when buffer-sharing techniques are used. Of-course, computing a

schedule that minimizes the total number of live tokens at any stage in the schedule is an

NP-hard problem even for acyclic HSDF graphs [Seth75]. The heuristic given in [Ritz95]

is not even guaranteed to run in polynomial time, is not optimal, and it is not clear whether

the complicated buffer-sharing strategy for a multirate SDF graph can be implemented

easily in practice. Also, as pointed out in Section 3.2, buffer-sharing with flat single

appearance schedules can yield total buffering requirements that are much greater than

buffering requirements without buffer sharing but allowing nested schedules. Moreover,

the presence of delays causes additional problems; for this reason, the technique in [Ritz95]

applies only to delayless SDF graphs. The satellite receiver example of Section 3.20.2

shows that the APGAN+DPPO combination is able to achieve lower requirements than the

heuristic presented in [Ritz95]. Hence, if buffer minimization is a secondary criterion, then

4B( ) 10A( ) 5C( )
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the techniques developed in this chapter will in general be superior to those in [Ritz95].

There is clearly a trade-off in buffering requirements, context-switch overhead, generality

of various buffering schemes, code size, and latency; in practice, it is likely that each of

these considerations will be important sometimes. Hence, a good design tool should have

a suite of all these schedulers so that the appropriate one may be chosen by the designer.

3.23.2 Retiming for State Minimization

Retiming is a technique that moves delays around in the graph in order to minimize

the critical path in the graph. This technique was originally proposed [Leis91] in the context

of optimizing the throughput of synchronous circuits, and in this context, the critical path,

that is, the longest delay-free path in the circuit, determines the smallest period with which

the circuit can be clocked. It is shown in [Leis91] that a secondary criterion of minimizing

the total number of state; that is, delays on the arcs, can be incorporated into the retiming

framework, and retimings that minimize the clock period along with total state can be

computed efficiently. These techniques are not that useful to the problem that we have

considered in this chapter since they do not attempt to construct schedules that minimize

the total amount of buffering required. They also do not apply to multirate SDF graphs.

3.23.3 Lee’s Trellis-based Formulation

In [Lee86], Lee presents a technique by which schedules that minimize the amount

of buffering can be constructed, both under the model where a separate buffer is assigned

to each arc, or to the case where buffer sharing is employed. Lee associates a vector with

the graph with dimension of the vector equalling the number of vertices. Each element of

the vector represents the number of times each vertex has been invoked in a partial

schedule. Starting from the 0 vector, we explore all the next vectors that result from firing

one of the firable vertices. If we represent the vector by a vertex, and associate an edge

between the vertex corresponding to a vector and the vertex corresponding to its successor,

the edge can be weighted by the amount of buffering required until then using either of the

buffer requirement criteria. Once all of the vectors have been computed, the minimum
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memory schedule is simply the least-weight path through this graph. The chief drawback

of this approach is the exponential number of vectors that could be visited, even for an

HSDF graph; hence, this approach would not be practical for large graphs. Of-course, for

an multirate SDF graph, this approach does not even yield single appearance schedules.

3.24   Summary

In this chapter, we have tackled the problem of computing schedules that minimize

code size as a primary goal, with buffer memory minimization as a secondary goal. Code-

size minimization is achieved by restricting our attention to single appearance schedules.

Buffer minimization is achieved by factoring single appearance schedules; that is, by

organizing nested loops in the schedule. We have argued in favor of a buffering model

where there is a buffer on each edge in the graph. We have shown that when the graph is

well-ordered, meaning there is only one topological sort, the problem of finding a single

appearance schedule that minimizes the total buffer memory can be solved in polynomial

time by a dynamic programming algorithm. We show that the dynamic programming

algorithm can be extended in several interesting ways to apply to arbitrary schedules (both

single appearance and non-single appearance). We also show how it can be extended to

apply to a restricted model of buffer sharing. We have shown that the buffer minimization

problem becomes NP-complete for general acyclic graphs, and hence heuristics must be

used. We give two heuristics: RPMC, and APGAN, and present an extensive experimental

study to demonstrate the strengths and weaknesses of these two heuristics. The APGAN

heuristic is optimal for a certain class of acyclic SDF graphs; this class is shown to be of

practical value since several practical SDF systems fall into the class. Finally, we extend

all of the algorithms to apply to cyclic graphs in certain restricted ways.

These algorithms have all been implemented in the Ptolemy programming

environment. The APGAN approach has been implemented by the Alta Group of Cadence

Design Systems Inc. in their Signal Processing Worksystem programming environment.

Most of the work reported in this chapter has been done in collaboration with Dr.

Shuvra Bhattacharyya, a researcher at the Hitachi Systems Research Laboratories in San

Jose, Ca. In addition, various subsets have appeared, or will appear, in published form in
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journals and conferences: [Bhat95, Bhat96b, Murt94a, Murt94c]. The original loop

scheduling problem (without the goal of joint buffer minimization) was developed in

[How90], [Bhat93] and [Bhat94b]. The approach in [Ho88a] had serious limitations and

flaws; see [Bhat94b] for a summary. Most of the work in [Bhat94b, Bhat95, Bhat96b,

Murt94a, Murt94c] can be found in the book [Bhat96a].
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4
Multidimensional Synchronous Dataflow

The Synchronous dataflow model suffers from the limitation that its streams are

one-dimensional. For multidimensional signal processing algorithms, it is necessary to

have a model that where this restriction is not there, so that effective use can be made of

the inherent data-parallelism that exists in such systems. As for one-dimensional systems,

the specification model for multidimensional systems should expose to the compiler or

hardware synthesis tool as much static information as possible so that run-time decision

making is avoided as much as possible, and so that effective use can be made of both

functional and data parallelism. Most multidimensional signal processing systems also

have a predictable flow of control, like one-dimensional systems, and for this reason, an

extension of SDF, called multidimensional synchronous dataflow was proposed in [Lee93].

4.1 Multidimensional Dataflow

The standard dataflow model suffers from the limitation that its streams are one

dimensional. Although a multidimensional stream can be embedded within a one

dimensional stream, it may be awkward to do so [Chen94]. In particular, compile-time

information about the flow of control may not be immediately evident. The

multidimensional SDF model is a straightforward extension of one-dimensional SDF.

Figure 4-1 shows a trivially simple two-dimensional SDF graph. The number of tokens
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produced and consumed are now given as -tuples. Instead of one balance equation for

each edge, there are now . The balance equations for figure 4-1 are

(4.1)

(4.2)

These equations should be solved for the smallest integers , which then give the

number of repetitions of actor  in dimension .

4.1.1 Application to Multidimensional Signal Processing

As a simple application of MD-SDF, consider a portion of an image coding system

that takes a  pixel image and divides it into  blocks on which it computes a

DCT. At the top level of the hierarchy, the dataflow graph is shown in figure 4-2. The

solution to the balance equations is given by

, , . (4.3)

A segment of the index space for the stream on the edge connecting actor A to the

DCT is shown in the figure. The segment corresponds to one firing of actor A. The space

is divided into regions of tokens that are consumed on each of the five vertical firings of

A B

Figure 4-1A simple MD-SDF graph.
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Figure 4-2An image processing application in MD-SDF.
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each of the 6 horizontal firings. The precedence graph constructed automatically from this

shows that the 30 firings of the DCT are independent of one another, and hence can proceed

in parallel. Distribution of data to these independent firings can be automated.

4.1.2 Flexible Data Exchange

While the utility of MDSDF to image processing is obvious, a less obvious

application of MDSDF is a flexible data exchange mechanism. Consider the graph in figure

4-3. This graph shows that an interesting type of control flow can be specified using an SDF

graph. Figure 4-3 shows two actors with a 2/3 producer/consumer relationship. The

precedence graph is shown on the right. Note that the first firing of A produces two samples

consumed by the first firing of B. Suppose instead that we wish for firing A1 to produce the

first sample for each of B1 and B2. This can be obtained using MD-SDF as shown in figure

4-4. Here, each firing of A produces data consumed by each firing of B, resulting in a

pattern of data exchange quite different from that in figure 4-3. The precedence graph in

figure 4-4 shows this. Also shown is the index space of the tokens transferred along the

2 3
A B

A1

B1

B2

A2

A3

Figure 4-3An SDF graph and its corresponding precedence graph.

1 1

Figure 4-4Data exchange in an MD-SDF graph.

2,1 1,3
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A1,1 B1,1

B2,1

A1,2
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edge, with the shaded regions indicating the tokens produced by the first firing of A and

consumed by the first firing of B.

A DSP application of this more flexible data exchange is shown in figure 4-5. Here,

ten successive FFTs are averaged. Averaging in each frequency bin is independent and

hence may proceed in parallel. The ten successive FFTs are also independent, so if all input

samples are available, they too may proceed in parallel. Notice here that the second

dimension is being used as a temporary dimension to lay out data in a way more suitable to

the particular application. The analogy is that a pancake cannot be flipped over without

throwing it up in the air; that is, by using a third dimension. Hence, extra dimensions are

needed sometimes as “workspace”; this is exactly one of the uses in Lucid as well. The

matrix multiplication specification in [Lee93] is another example where a third dimension

is used to lay out data in a form more amenable to the inner product computation involved

in matrix multiplication.

4.1.2.1 Multilayer Perceptron

A more complicated example of how the flexible data-exchange mechanism in an

MDSDF graph can be useful in practice is shown in figure 4-6, which shows how a

multilayer perceptron (with  nodes in the first layer,  nodes in the second layer etc.) can

be specified in a succinct way. However, as the precedence graph shows, none of the

parallelism in the network is lost; it can be easily exploited by a good scheduler. Note that

the net specified below is used only for computation once the weights have been trained.

Specifying the training mechanism as well would require feedback edges with the

appropriate delays and some control constructs; we do not develop such a system here.

FFT
1,10128 128,1

Average
1

Figure 4-5Averaging successive FFTs using MD-SDF.

a b



124

4.1.3 Computing Inner Products [Lee93]

Consider the problem of repeatedly computing an inner product on a stream of

vectors. This can be easily generalized into an FIR filter, although for conciseness we will

stick to the generic inner product. In particular, suppose we wish to express the inner

product at its finest level of granularity, and further that we require the graphical

representation to have a structure that is independent of the size of the vectors. To express

this using 1D-SDF, we might try the configuration shown in figure 4-7. Actors A and B

each supply vectors of length 8 by producing 8 tokens when they fire. The small white

diamond is a “delay”, which in a dataflow context is simply an initial, zero-valued token

on the edge. The actor with the downward arrow is a “downsample.” It simply consumes 8

tokens and outputs one of them, discarding the rest. This configuration will correctly

compute the first inner product, but when the second set of vectors are generated by

1,b a,1
A B C D

c,1 1,b 1,d c,1
E

1,de,1

A1,1
B1,1

B1,b

A2,1

Aa,1
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C3,1

Cc,1

Figure 4-6a) Multilayer perceptron expressed as an MDSDF graph.
b) The precedence graph

a)

b)

1

1

1 18

8

A

B
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1 8 1

Figure 4-7An attempt to use 1D-SDF to repeatedly compute inner products.
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repeated firings of A and B, the delay on the feedback path will not be re-initialized. Hence,

subsequent inner products will be incorrect.

A delay in MD-SDF in associated with a tuple as shown in figure 4-8. It can be

interpreted as specifying boundary conditions on the index space. Thus, for 2D-SDF, as

shown in the figure, it specifies the number of initial rows and columns. It can also be

interpreted as specifying the direction in the index space of a dependence between two

single assignment variables, much as done in reduced dependence graphs [Kung88].

Using MD-SDF delays, the repeated inner product can be specified as shown in

figure 4-9. The only significant difference between this and figure 4-8 is the

multidimensional delay. Its effect is illustrated schematically in figure 4-9, where the index

space for the output of the delay is shown. The shaded area is the initial condition specified

by the delay.

4.1.4 Multirate Actors

Some key multirate actors used in MDSDF specifications are shown in Figure 4-10.

These are:

d1 d2,( )

Figure 4-8A delay in MD-SDF is multidimensional.
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1 1(8,1)

(8,1)
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1
1 1
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X

Index space for variable X:

Figure 4-9Repeated inner products in MD-SDF.
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• Upsample: In specified dimension(s), consumes 1 and produces N,

inserting zero values.

• Repeat: In specified dimension(s), consumes 1 and produces N,

repeating values.

• Downsample: In specified dimension(s), consumes N and produces 1,

discarding samples.

• Transpose:Consumes and M-dimensional block of samples and

outputs them with the dimensions rearranged.

These are identified in figure 4-10. Note that all of these actors simply control the

way tokens are exchanged and need not involve any run-time operations. Of course, a

compiler then needs to understand the semantics of these operators.

4.1.5 State

State in dataflow models of computation can be maintained by permitting actors to

have self-loops. Consider the three actors with self loops shown in figure 4-11. Assume that

dimension 1 indexes the row in the index space, and dimension 2 the column, as shown in

figure 4-2. Then each firing of actor A requires state information from the previous row of

(L,M,N)(L,M,1)
Upsample

(L,M,1)(L,M,N)
Downsample

(L,M,N)(L,M,1)
Repeat

(M,N,L)(L,M,N)
Transpose

Parameter: (2,3,1)

T

Figure 4-10Some key MD-SDF actors that affect the flow of control.

A

(1,0)

B

(0,1)

C

(1,1)

Figure 4-11Three macro actors with state represented as a self-loop.
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the index space for the state variable. Hence, each firing of A depends on the previous firing

in the vertical direction, but there is no dependence in the horizontal direction. The first row

in the state index space must be provided by the delay initial value specification. Actor B,

in contrast, requires state information from the previous column in the index space. Hence

there is horizontal, but not vertical dependence among firings. Actor C has both vertical and

horizontal dependence, implying that both an initial row and an initial column must be

specified. Note that this does imply that there is no parallelism, since computations along

a diagonal wavefront can still proceed in parallel. Moreover, this property is easy to detect

automatically in a compiler.

4.2 Scheduling

All of the scheduling techniques discussed in chapter 3 extend to the MDSDF

model. We assume 2 dimensions for notational simplicity throughout this section unless

otherwise stated. We use the notation  to mean the th invocation of actor  in

a complete periodic schedule. In a MDSDF schedule, a single appearance schedule like

 means

for x = 0 to 3
for y = 0 to 1

fire

end fory, forx

for x = 0 to 5
for y = 0 to 3

fire

end fory, forx.

4.2.1 Self-loops

As mentioned before, delays in MDSDF represent boundary conditions. A delay

 means that there are  initial rows and  initial columns. Suppose that  has a self

loop. For the following discussion, we will assume that  will not write over any of the

initial tokens on the edges. This is not a restriction since self-loops are usually used to

specify states explicitly as inputs and outputs and actual implementations do not show these

A i j,[ ] i j,( ) A

4 2,( )A 6 4,( )B

A x y,[ ]

B x y,[ ]

a b,( ) a b A

A
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self-loops. In other words, we do not need to actually do things like buffer allocation for

self-loops at the dataflow graph level; the codeblock inside the actor is responsible for

managing its state. However, it is still conceptually important to consider the effect of this

state since it imposes precedence constraints between different invocations of . So we can

ask whether a schedule like  a valid schedule loop. Also, does the order of the loop

nesting matter? We can state the following lemmas about self-loops:

Lemma 4-1: Suppose that an actor  has a self-loop as shown in figure 4-12. Actor

deadlocks iff  and  both hold.

Proof: If the inequalities both hold, then  cannot fire since it requires a rectangle of

data larger than that provided by the initial rows and columns intersected. The forward

direction follows by looking at figure 4-12(b). If  deadlocks because  cannot fire,

then the inequalities must hold. If  does fire, then it means that either  or

. If , then clearly  can fire for any  since the initial rows provide the

data for all these invocations. Then,  can all fire since there are  rows of data

now, and . Continuing this argument, we can see that  can fire as many

times as it wants. The reasoning if  is symmetric; in this case,  can all fire,

and then  can all fire and so on. So actor  deadlocks iff  is not firable, and

 is not firable iff the condition in the lemma holds.QED

Corollary 4-1: In  dimensions, an actor  with a self-loop having  delays

and producing and consuming hypercubes  deadlocks iff .

Let us now consider the precedence constraints imposed by the self-loop on the

various invocations of . Suppose that  fires  times. Then, the total array of data

consumed is an array of size . The same size array is written, but shifted to the

A

4 2,( )A

A

A

(d1,d2)

(a1,a2)(a1,a2)

Figure 4-12(a) An actor with a self loop. (b) Data space on the edge.
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A 0 0,[ ] a1 d1≤

a2 d2≤ a1 d1≤ A 0 j,[ ] j

A 1 j,[ ] a1 d1+

2a1 a1 d1+≤ A

a2 d2≤ A i 0,[ ]
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A 0 0,[ ]
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right and down of the origin by . In general, the rectangle of data read by a node is

up and to the left of the rectangle of data written on this edge since we have assumed that

the initial data is not being overwritten. Hence, an invocation  can only depend on

invocations  where . This motivates the following lemma:

Lemma 4-2: Suppose that actor  has a self-loop as in the previous lemma, and suppose

that  does not deadlock. Then, the looped schedule  is valid, and the order of

nesting the loops does not matter. That is,

for x = 0 : -1

for y = 0 :

fire

end fory, forx.

and

for y = 0 :

for x = 0 : -1

fire

end forx, fory.

give the same result.

Proof: We have to show that the ordering of the  in the loop is a valid linearization

of the partial order given by the precedence constraints of the self-loop. Suppose that in

the first loop, the ordering is not a valid linearization. This means that there are indices

 and  such that  precedes  in the partial order but  is

executed before  in the loop. Then, by the order of the loop indices, it must be that

. But then  cannot precede  in the partial order since this violates the

right and down precedence ordering. The other loop is also valid by a symmetric

argument.QED.

The above two lemmas allow us to dispense with self-loops since as long as  does

not deadlock due to a self-loop, the precedence constraints imposed by the self-loop can be

met by the schedules we are interested in, namely, uniprocessor, single appearance

schedules. Of-course, care must be exercised for multiprocessor scheduling but we are not

concerned with multiprocessor scheduling in this chapter because standard multiprocessor

d1 d2,( )

A i j,[ ]

A i' j',[ ] i' i j ' j≤,≤

A

A r1 r2,( )A

r1

r2 1–

A x y,[ ]

r2 1–

r1

A x y,[ ]

A x y,[ ]

i1 j1,( ) i2 j2,( ) A i2 j2,[ ] A i1 j1,[ ] A i1 j1,[ ]

A i2 j2,[ ]

i1 i2≤ A i2 j2,[ ] A i1 j1,[ ]
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scheduling techniques can be applied on the precedence graph of the MDSDF graph, and

the precedence graph can be constructed in an analogous manner to the construction for

SDF graphs.

4.2.2 GDPPO for MDSDF Graphs

The loop factoring process proceeds identically to SDF, with the factoring done in

each dimension separately. For example, a looped schedule of the form  can

be factored as . GDPPO can be extended to single appearance

schedules in order to yield buffer-optimal nested hierarchies. However, it is not enough to

apply GDPPO on each dimension separately since the nesting hierarchies may be different

for each dimension, meaning that we cannot combine the schedules into one schedule for

the MDSDF graph.

Consider the simple graph shown in figure 4-13. If  fires  times, then

the total buffer size on the edge is . Consider a chain-structured

MDSDF graph with actors . Then, the relevant formulation for the dynamic

programming algorithm (see Chapter 3) is given by

(4.4)

where

(4.5)

Clearly, all of the extensions of the above basic dynamic programming algorithm presented

in Chapter 3 can also be applied to MDSDF graphs, but we omit them here since the main

challenge is the notation, more than anything else. In particular, given any single

4 2,( )A 6 4,( )B

2 2,( ) 2 1,( )A 3 2,( )B( )

Figure 4-13A simple MD-SDF graph.
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r A 1, r A 2, OA 1, OA 2,

A1 … An, ,

b i j,[ ] b i k,[ ] b k 1+ j,[ ] ci j, k[ ]+ +( ) i k j<≤( ){ }( )min=

ci j, k[ ]
r Ak 1, r Ak 2, OAk 1, OAk 2,

r Am 1, i m j≤ ≤( ){ }( ) r Am 2, i m j≤ ≤( ){ }( )gcdgcd
----------------------------------------------------------------------------------------------------------------------------=



131

appearance schedule for an MDSDF graph, a buffer-optimal loop hierarchy can be

determined by the dynamic programming algorithm in polynomial time.

4.2.3 BMLB for MDSDF Graphs

The BMLB can be computed similarly, with a product of gcds in the denominator.

First define

Then, the BMLB is defined as

(4.6)

4.2.4 RPMC for MDSDF Graphs

The same cost function given in equation 4.5 can be used as the weighting function

for the edges in a weighted graph; applying RPMC to this will then give us a heuristic

procedure for generating a topological sort of an acyclic MDSDF graph, for which an

optimal loop hierarchy can be computed using GDPPO.

4.2.5 APGAN for MDSDF Graphs

APGAN can be used on an acyclic MDSDF graph in the following way. Define the

following two quantities:

 and (4.7)

The clustering function is a tuple and is given by

(4.8)

x AB( )
r A 1,

gcd rA 1, r B 1,,( )
-------------------------------------OA 1, y AB( ),

r A 2,
gcd rA 2, r B 2,,( )
-------------------------------------OA 2,= =

BMLB AB( )
x AB( ) d1+( ) y AB( ) d2+( ) d1 x d2 y<∨<

d1d2 d1 x d2 y≥∧≥



=

ρ1 A B,{ }( ) gcd rA 1, r B 1,,( )= ρ2 A B,{ }( ) gcd rA 2, r B 2,,( )=

ρ A B,{ }( ) ρ1 A B,{ }( ) ρ2 A B,{ }( ),( )≡
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At each step in the algorithm, we cluster the adjacent pair  that maximizes

 component-wise. This means that for any other adjacent clusterable pair

, with  we should have

. If such a pair does not exist, we pick the adjacent clusterable pair

 that maximizes . Now, for an SDF graph, we define the

proper clustering condition in the following way:

Definition 4-1: If  is a connected, consistent SDF graph, and  is an adjacent

pair in  that does not introduce a cycle, we say that  satisfies theproper

clustering condition in  if for each actor  that is adjacent to a member of

, we have that  divides , for each  that  is

adjacent to.  is the clustering function and is defined as

.

Similarly, we define this condition for an MDSDF graph:

Definition 4-2: If  is a connected, consistent MDSDF graph, and  is an adjacent

pair in  that does not introduce a cycle, we say that  satisfies theproper

clustering condition in  if for each actor  that is adjacent to a member of

, we have that  divides , , and for each

 that  is adjacent to.

The proper clustering condition plays a key role in the proof that an APGAN instance

returns a schedule for an acyclic SDF graph with buffer memory requirement equal to the

BMLB if such a schedule exists [Bhat96a]. Essentially, it is shown in [Bhat96a] that

clustering an adjacent pair that satisfies the proper clustering condition results in a graph

where the BMLB on each edge is the same as the BMLB on the corresponding edge in the

graph before clustering. If the adjacent pair that is clustered does not satisfy the proper

clustering condition, then there is at least one edge in the clustered graph where the BMLB

is greater than the BMLB on the corresponding edge in the graph before clustering. Hence,

if the graph has a BMLB schedule, then the pair chosen for clustering at each step has to

satisfy the proper clustering condition; otherwise, the BMLB on some edge will be

increased and there is no hope of getting the optimal schedule. Fortunately, for a graph that

A B,( )

ρ A B,{ }( )

X Y,{ } ρ' X Y,{ }( ) ρ'1 X Y,{ }( ) ρ'2 X Y,{ }( ),( )=

ρ1 ρ'1≥ ρ2 ρ'2≥,

U V,{ } ρ1 U V,{ }( )ρ2 U V,{ }( )

G X Y,{ }

G X Y,{ }

G Z X Y,{ }∉

X Y,{ } σ Z P,{ }( ) σ X Y,{ }( ) P X Y,{ }∈ Z

σ X Y,{ }( )

σ X Y,{ }( ) qG X( ) qG Y( ),{ }( )gcd=

G X Y,{ }

G X Y,{ }

G Z X Y,{ }∉

X Y,{ } ρi Z P,{ }( ) ρi X Y,{ }( ) i 1 2,=

P X Y,{ }∈ Z
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has a BMLB schedule, the adjacent pair that maximizes  also satisfies the proper

clustering condition.

Unfortunately, it is not enough to ensure that the clustered pair always satisfies the

proper clustering condition. This is because even though the BMLB is preserved on each

edge, theexistence of a BMLB schedule may be cancelled in the clustered graph. The

proper clustering condition is a local property, affecting only the edges adjacent to the

actors in the clustered pair, while the existence of a BMLB schedule is a global property of

the graph. Hence, the clustered pair has to not only satisfy the proper clustering condition,

but it has to also ensure that the clustered graph has a BMLB schedule. Fortunately,

clustering the adjacent pair that maximizes  also ensures that the existence of

the BMLB schedule is not cancelled. Hence, this allows us to show that APGAN will return

a BMLB schedule whenever one exists. All of the above results are non-trivial and are

proven in detail for SDF graphs in [Bhat96a].

We can extend all of these results to MDSDF graphs using the definition of proper

clustering given in definition 4-2. Using similar proof techniques, it can be shown that

clustering an adjacent pair that satisfies the proper clustering condition in an MDSDF graph

preserves all of the BMLBs, and clustering an adjacent pair that does not satisfy the proper

clustering condition increases the BMLB on at least one edge. Hence, a graph that has a

BMLB schedule will have the property that there is a clusterable adjacent pair at each step

that maximizes the clustering function componentwise. If there is no such pair, then the

graph does not have a BMLB schedule. It can be shown that the rest of the steps described

above also hold for MDSDF graphs, and hence APGAN on an MDSDF graph will return a

BMLB schedule whenever one exists.

Consider the example graph shown in figure 4-14. The repetitions vector is given

by . The clusterable pairs are ,

, and . The clustering function values are ,

, and . Hence,  is the pair chosen for

clustering since its clustering function has maximum component-wise value over the three

clusterable pairs. Similarly, at the next step, there are two clusterable pairs,  and

, and the clustering function values are  and

. So  is clustered next, and the final schedule is

σ A B,{ }( )

σ A B,{ }( )

r A B C D, , ,( ) 2 8,( ) 6 4,( ) 4 2,( ) 1 3,( ), , ,{ }= A B,{ }

B C,{ } C D,{ } ρ A B,{ }( ) 2 4,( )=

ρ B C,{ }( ) 2 2,( )= ρ C D,{ }( ) 1 1,( )= A B,{ }

W1 C,{ }

C D,{ } ρ W1 C,{ }( ) 2 2,( )=

ρ C D,{ }( ) 1 1,( )= W1 C,{ }
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, and it can be verified that this is

indeed a BMLB schedule.

The graph in figure 4-15 shows an example where there is no adjacent pair whose

clustering function has the maximum-componentwise value. Hence, the graph does not

have a BMLB schedule either, as is verified by looking at the two possible single

appearance schedules. The repetitions vector is given by . The

clustering function values for the two clusterable pairs are  and

. The two possible single appearance schedules are

 and  and neither of

these is a BMLB schedule. The APGAN algorithm in this case will choose to cluster

 first because ; this results in the first of the two schedules given

A

B

C D

(3,1)

(1,2)

(2,1)

(1,4)

(2,1)

(3,2)

(1,3) (4,2)

Figure 4-14An MDSDF graph that has a BMLB schedule.
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C D
(2,2)
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(6,1)

W2 D
(2,3) (4,2)

2 2,( ) 1 2,( ) 1 2,( )A 3 1,( )B( ) 2 1,( )C( ) 1 3,( )D

A B
(3,3) (2,1)

C
(3,1) (2,5)

Figure 4-15An example of a graph that does not have a BMLB schedule.
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above. The first schedule has higher buffering requirements than the second; hence,

APGAN is not optimal when the graph does not have a BMLB schedule.

4.3 Related Work

In [Watl95], Watlington and Bove discuss a stream-based computing paradigm for

programming video processing applications. Rather than dealing with multidimensional

dataspaces directly, as is done in this chapter, the authors sketch some ideas of how

multidimensional arrays can be collapsed into one-dimensional streams using simple

horizontal/vertical scanning techniques. They propose to exploit data parallelism from the

one-dimensional stream model of the multidimensional system. While these ideas are

interesting, it has been our experience that going to a one-dimensional model usually incurs

extensive overhead since, often, extraneous actors that merely rearrange data have to be

inserted into the system description to ensure correct operation. For example, in order to

represent a 2-dimensional FFT operation using only 1 dimensional FFTs operating on one-

dimensional streams, actors that transpose arrays have to be inserted into the algorithm

[Chen94]. These actors are not only an unnecessary computational burden, but also

obfuscate the semantics of the algorithm since they are an artifact of the model being used

and not inherently part of the algorithm itself. Watlington and Bove also propose using

dynamic (run-time) scheduling for their systems. However, our experience suggests that a

great many signal processing systems can be modeled using SDF and MDSDF graphs since

they seldom involve any data-dependent actors or control operations; these graphs can be

scheduled statically. Systems that do involve control actors and data-dependent actors can

be modeled by the more general boolean dataflow (BDF) model. Although the BDF model

is Turing-complete, it is often possible to construct static schedules by graph clustering

techniques [Buck93], and only when these techniques fail does one resort to dynamic

scheduling. Even when dynamic scheduling becomes necessary, clustering techniques can

still reduce the number of modules that have to be scheduled at run-time since significantly-

sized subgraphs can often be scheduled statically even if the entire graph cannot be. Hence,

a multidimensional extension of boolean dataflow would be desirable as this would allow
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us to have static schedules in many cases, with dynamic scheduling used only when the

techniques of [Buck93] fail.

The Philips Video Signal Processor (VSP) is a commercially available processor

designed for video processing applications. A single VSP chip contains 12 arithmetic/logic

units, 4 memory elements, 6 on-chip buffers, and ports for 6 off-chip buffers. These are all

interconnected through a full cross-point switch. Philips provides a programming

environment for developing applications on the VSP. Programs are specified as signal flow

graphs. Streams are one-dimensional, as in [Watl95]. Multirate operations are supported by

associating a clock period with every operation. Because all of the streams are

unidimensional, data-parallelism has to be exploited by inserting actors like multiplexors

and de-multiplexors into the signal flow graphs.

4.3.1 AOL

There has been interesting work done at Thomson-CSF in developing the Array-

Oriented language (AOL) [Deme94]. AOL is a specification formalism that tries to

formalize the notion of array access patterns. The observation is that in many

multidimensional signal processing algorithms, a chief problem is in specifying how

multidimensional arrays are accessed. For example, in a 3 dimensional array of data, an

FFT may be performed on blocks of input data taken in one dimension. Furthermore, these

input blocks may overlap each other. It is observed that the computations themselves are

often no different from similar computations in 1 dimensional signal processing. For

example, a sum-of-products computations behaves the same way regardless of whether the

dimension of samples it is computing on belongs to the time dimension (where it is called

FIR filtering) or in spatial dimensions (in which case, the computation is called “beam-

forming”).

It is assumed that computations are specified by a precedence graph in which actors

represents computations (called “elementary transformations”), and the edges represent

precedence constraints. The goal of the AOL formalism is to separate the computational

aspects from the array-access aspects so that computations need not know about how the

data they are operating on is arranged. This is done by associating a “template” for each
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input and each output of a computational node; the node simply assumes that the data it

needs is in this template. These templates often are simply 1 dimensional arrays. Each edge

also has the multidimensional array from which the elements of the template will be drawn

from. It is the job of the user to specify how this multidimensional data object should

actually feed the template (in the case of any input), and how data written into templates by

the computation should be arranged in the multidimensional array (for an output). To this

end, a graphical user interface (GUI) has been developed that allows the user to specify

these access patterns graphically.

A few assumptions are made about the geometry of the templates in order to make

the specification problem easier. It is observed that these assumptions are usually valid in

practice. Access patterns are specified through two definitions: a “fitting” relationship, and

a “paving” relationship.

The fitting relationship specifies how elements of the multidimensional array map

into an input template (and conversely, how elements of an output template map into an

output multidimensional array). This relationship is assumed to be affine, meaning that if

two “examples” are given; that is, if two points and their mappings are specified, then the

mapping for filling in the rest of the template can be inferred by extrapolation. Formally,

let  and  be the first two elements of the input template. Then, the user specifies,

using the GUI, the two points  and  in the multidimensional array that map to  and

. By extrapolating the line from  to  in the multidimensional array, the remaining

elements of the template can be filled in.

The paving relationship specifies how translations of the template in the input

multidimensional array affect the translations of the output template in the output

multidimensional array. This relationship is also assumed to be affine so that two examples,

specified graphically in the GUI, are sufficient to specify the entire tiling of the input and

output multidimensional arrays. The execution of the graph then proceeds by firing each

computational node as many times as needed to completely fill its output multidimensional

arrays.

The approach of AOL is different from dataflow-oriented models such as

multidimensional synchronous dataflow (MDSDF) where no attempt has been made to

address the access issue. Although it appears that all of the operations specifiable through

x 0( ) x 1( )

y z x 0( )

x 1( ) y z
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AOL are also specifiable in MDSDF, specifications in MDSDF might need extraneous

nodes (such as repeaters, transposers, and commutators) to take care of the data

manipulation. Although an intelligent compiler could in principle recognize the function of

these extraneous data-manipulation actors and perform optimizations accordingly, so that

little overhead is incurred for including them, their very presence in the graph might

obscure the meaning of the algorithm, making it more difficult to modify it or maintain it.

It is hoped that the AOL formalism will eliminate or at least ameliorate this problem. This

should result in faster design times, visual programs that are understood more easily, which

can then be maintained or modified or debugged much more easily.

The development of AOL has been in response to actual needs of signal processing

systems designers at Thomson, and thus, should be of help to such designers. The

formalism also opens up several research issues such as designing efficient schedulers,

exploiting data parallelism effectively, implications for code generation for programmable

video signal processing architectures, (none of which have been dealt with yet in

[Deme94]), and better visualization techniques for these access patterns. Currently, in order

to specify the fitting and paving relationships through the GUI, a multidimensional array

has to be visualized using 2 dimensional projections. Since arrays with dimensions of upto

7 are not uncommon, the number of 2 dimensional projections can become too large; it

would be cumbersome to have to deal with each of these sequentially for the designer (for

example, a 7 dimensional array has 21 2-dimensional projections). Although it is not clear

whether we can do any better than dealing with 2 dimensional projections, it certainly

seems to be an interesting research issue.
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5
Generalized Multidimensional Synchronous Dataflow

The multidimensional dataflow model presented in the previous chapter has been

shown to be useful in a number of contexts including expressing multidimensional signal

processing programs, specifying flexible data-exchange mechanisms, and scalable

descriptions of computational modules. Perhaps the most compelling of these uses is the

first one: for specifying multidimensional, multirate signal processing systems; this is

because such systems, when specified in MDSDF have the same intuitive semantics that 1

dimensional systems have when expressed in SDF. However, the MDSDF model described

so far is limited to modeling multidimensional systems sampled on the standard rectangular

lattice. Since many multidimensional signals of practical interest are sampled on non-

rectangular lattices [Mers83][Vaid90], for example, 2:1 interlaced video signals [Dubo85],

and many multidimensional multirate systems use non-rectangular multirate operators like

hexagonal decimators (see [Bamb90][Bosv92][Mand93] for examples), it is of interest to

have an extension of the MDSDF model that allows signals on arbitrary sampling lattices

to be represented, and that allows the use of non-rectangular downsamplers and

upsamplers.
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5.1 Multidimensional Signal Processing Fundamentals1

A multidimensional signal of dimension , , is a real-valued function

of  real variables . This signal can be sampled to generate a discrete time signal.

However sampling a multidimensional signal is fundamentally more complicated than

sampling a unidimensional signal because of the many different ways the sampling

geometry can be chosen. The straightforward extension of unidimensional sampling would

result in the sequence  where we have considered the

case for simplicity. Thus all values of  that areinteger multiples of the sampling

periods  are retained by the sampler. Figure 5-1 shows the samples that are retained

for the case where . As can be seen, the samples are arranged in a

rectangular pattern, and thus this sampling scheme is known asrectangular sampling. A

more general sampling scheme is to consider the sequence generated by

(5.1)

Notice that the sample locations retained are given by the equation

(5.2)

The matrix  is called the sampling matrix. Every sample location  is of the form

(5.3)

where

1.  The notation is taken from [Vaid93]

m xa t1 … tm, ,( )

m t1 … tm, ,

x n1 n2,( ) xa n1T1 n2T2,( )= m 2=

t1 t2,

T1 T2,

t0

t1

2

1

Figure 5-1An illustration of rectangular sampling.
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, and

 are integers. That is, the sample locations are vectors  that are linear combinations

of the columns of the sampling matrix . Given the sampling matrix, the sample locations

can be obtained graphically by first drawing the two vectors ,  from the origin. Then

draw two sets of equispaced parallel lines such that the two vectors form two sides of a

parallelogram generated by these lines. The sample points are then located at the

intersections of these lines. Figure 5-2(a) shows an example.

Note that the sampling matrix need not be an integer matrix but must be real and

non-singular. Using the above terminology, rectangular sampling can be represented by a

diagonal sampling matrix:

In fact, rectangular sampling is defined to be a sampling scheme for which the sampling

matrix is diagonal.

The set of all sample points , , where  is the set of natural

numbers; that is, the set of vectors

,

v1
ˆ a11

a21

v2
ˆ,

a12

a22

= =

n1 n2, t̂

V

v1
ˆ v2

ˆ

Figure 5-2Sampling on a non-rectangular lattice. a) The samples on the lattice. b)
The renumbered samples of the lattice.
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is the set of all integer linear combinations of the columns  of the sampling matrix

. This set is called thelattice generated by , and is denoted . The columns of

the matrix  form thebasis that generates the lattice . The basis for a lattice is not

unique; for example,

The set of matrices that generate the same lattice can be characterized as follows.

Definition 5-1: A unimodular integer matrix  is a matrix with integer entries such that

. Note that the inverse of  is also a unimodular integer matrix.

Lemma 5-1: Let  be a an  real non-singular matrix generating the lattice

. Then, for any integer unimodular matrix , . If  is

any other basis for , then there exists an integer unimodular matrix  such that

.

Proof: This proof can be found in [Vaid93].

5.1.1 Numbering on a Lattice

Suppose that  is a point on . Then there exists an integer vector  such

that . The points  are called therenumbered points of . Figure 5-2(b)

shows the renumbered samples for the samples on  shown in figure 5-2(a).

5.1.2 Sampling Density

The determinant of the sampling matrix plays a role in the sampling of an MD

signal. Thesampling density , defined as the number of sample points per unit volume

(or area in the 2-dimensional case), is given by . The sampling density is

an important concept that plays a role in the multidimensional sampling theorem.

Intuitively, for an MD signal that is bandlimited in some fashion, we expect the sampling

density to be above some minimum if we expect to retain all of the information in the
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signal. However, the sampling density depends on the sampling matrix, and hence the

sampling geometry, and thus, by a judicious choice of sampling geometry, we can make

sampling density as low as possible. An example of this is the sampling of an -

dimensional signal that is bandlimited to a hyperspherical region in the frequency plane.

The savings in sampling density by using a particular non-diagonal sampling matrix

(“hexagonal” sampling) over a diagonal sampling matrix (rectangular sampling) for

sampling this hyperspherically bandlimited signal is a factor of 1.15 for . The

savings factor goes up to a factor of 2 for 4 dimensional signals, and a factor of 16 to 8

dimensional signals [Dudg84]. Hence, there is a practical reason to favor non-rectangular

sampling schemes over rectangular ones because of the potential savings in storage

requirements and processing rates due to the lower sampling density that can result

[Mers83]. Some applications that favor non-rectangular sampling schemes include 2:1

interlaced TV scanning [Dubo85], hierarchical video coding applications [Bosv92], and

filterbanks for doing directional decomposition [Bamb90]. Filter design techniques for

non-rectangular lattices have also been maturing as evidenced by many publications in the

area [Karl90][Visc91][Ansa88][Bamb90][Vaid90][Vaid93].

5.1.3 The Fundamental Parallelepiped

Given a sampling matrix , suppose that the column vectors are sketched from the

origin, as shown in figure 5-3 for the example from figure 5-2. The completed

parallelogram resulting from these vectors is called the fundamental parallelepiped of ,

denoted . The points which fall inside  can be represented as the set

where , with . The entire lattice  can be thought of as

m

m 2=

V

Figure 5-3The fundamental parallelepiped for a matrix V
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1 2
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a tiling of the plane by copies of  shifted so that there is no overlap with other tiles,

with the points of the lattice always falling on the corners of these tiles.

From geometry it is well known that the volume of  is given by .

Since only one integer sample point falls inside , namely the origin, we can see

why the sampling density is given by the inverse of the volume of .

Definition 5-2: Denote the set of integer points within  as the set . That is,

 is the set of integer vectors of the form .

The following lemma characterizes the number of integer points that fall inside ,

or the size of the set . Even though the lemma is well known, we have not found a

satisfactory proof for it anywhere; hence, we give a proof here. But before that, we state

another lemma that is required for the proof of the lemma characterizing .

Lemma 5-2: For any integer matrix , there exists an integer, unimodular matrix  such

that  is upper triangular.

Proof: See [Nemh88]; it also gives a polynomial time algorithm for finding .

Lemma 5-3: Let  be an integer matrix. The number of elements in  is given by

(5.4)

Proof: Consider an upper triangular matrix . In two dimensions,

,

and this corresponds to a parallelogram with one of its sides on the x-axis. Since the side

that is on the x axis has integer length , the number of integer points on the x axis that lie

inside  is just . It is easy to see that there are  such rows of integer points in

, and each of these corresponds to the vector  being shifted by an integer

vector. Hence the number of integer points in each row is also , making the total number

of points in  equal to . This argument can be extended to higher

dimensions in the same way; the number of points will be the product of all the entries in

 along the diagonal. Hence the lemma is true for integer, upper triangular matrices.
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By lemma 5-2, we can always find an integer unimodular matrix  such that

is upper triangular for any integer matrix . Let  be an integer point in . The point

 is an integer point and is in . Hence, for every integer point  in , there

is a unique integer point  in . For every integer point  in , there is a

unique integer point  in . Hence, the size of  equals the size of .

Since  is upper triangular, , where the last equality

follows from the unimodularity of .QED

5.1.4 Multidimensional Decimators

The two basic multirate operators for multidimensional systems are the decimator

and expander. For an MD signal  on , the -fold decimated version is given

by  where  is an  non-singular integer matrix,

called thedecimation matrix. Figure 5-4 shows two examples of decimation. The example

on the left is for a diagonal matrix ; this is called rectangular decimation because

 is a rectangle rather than a parallelepiped. In general, a rectangular decimator is

one for which the decimation matrix is diagonal. The example on the right is for a non-

diagonal  and is loosely termed “hexagonal” decimation. Note that
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Figure 5-4a) Rectangular decimation. b) Hexagonal decimation
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Thedecimation ratio for a decimator with decimation matrix  is defined to be the

number of points thrown away for every point kept from the input and is given by

. The decimation ratio for the example on the left in figure 5-4 is 6,

while it is 4 for the example on the right.

5.1.5 Multidimensional Expanders

In the multidimensional case, the “expanded” output  of an input signal

is given by:

(5.5)

where  is the input lattice to the expander. Note that . The

expansion ratio, defined as the number of points added to the output lattice for each point

in the input lattice, is given by . Figure 5-5 shows two examples of expansion. In

the example on the left, the output lattice is also rectangular and is generated by
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.

The example on the right shows non-rectangular expansion, where the lattice is generated

by

An equivalent way to view the above diagrams is to plot the renumbered samples.

Notice that the samples from the input will now lie on  (figure 5-6).Some of the

points have been labeled with letters to show where they would map to on the output signal.

5.2 Semantics of the Generalized Model

Consider the system depicted in figure 5-7, where a source actor produces an array

of  samples each time it fires ((6,6) in MDSDF parlance). This actor is connected to

the decimator with a non-diagonal decimation matrix. The circled samples indicate the

samples that fall on the output lattice of the decimator; these are retained by the decimator.

In order to represent these samples on the output of the decimator, we will think of the

buffers on the arcs as containing the renumbered equivalent of the samples on a lattice. For

a decimator, if we renumber the samples at the output according to , then the

samples get written to a parallelogram-shaped array rather than a rectangular array. To see

what this parallelogram is, we introduce the concept of a “support matrix” that describes
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L
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Figure 5-6Renumbered samples from the output of the expander.
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precisely the region of the rectangular lattice where samples have been produced. Figure 5-

7 illustrates this for a decimation matrix, where the retained samples have been renumbered

according to  and plotted on the right. The labels on the samples show the

mapping. The renumbered samples can be viewed as the set of integer points lying inside

the parallelogram that is shown in the figure. In other words, thesupport of the renumbered

samples can be described as  where

We will call  thesupport matrix  for the samples on the output arc. In the same way, we

can describe the support of the samples on the input arc to the decimator as  where

It turns out that .

Definition 5-3: Thecontainability condition: let  be a set of integer points in . We

say that  satisfies thecontainability condition if there exists an  rational-valued

matrix  such that .

Definition 5-4: We will assume that any source actor in the system produces data in the
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Figure 5-7Output samples from the decimator renumbered to illustrate concept of
support matrix. The circled samples on the left are labeled as shown.
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following manner. A source  will produce a set of samples  on each firing such that

each sample in  will lie on the lattice . Hence, the set  is a

set of integer points, consisting of the points of  renumbered by . We assume

that the set  satisfies the containability condition.

Given a decimator with decimation matrix  as shown in figure 5-8, we make the

following definitions and statements. Denoting the input arc to the decimator as  and the

output arc as ,  are the bases for the input and output lattice respectively.

 are the support matrices for the input and output arcs respectively, in the sense

that samples, numbered according to the respective lattices, are the integer points of

fundamental parallelepipeds of the respective support matrices. Similarly, we can also

define these quantities for the expander depicted in figure 5-8. With this notation, we can

state the following theorem:

Theorem 5-1: The relationships between the input and output lattices, and the input and

output support matrices for the decimator and expander depicted in figure 5-8 are:

Decimator , .

Expander , .

Proof: The relationships between the input and output lattices follow from the definition

of the expander and decimator. Consider a point  on the decimator’s input lattice. There

exists an integer vector  such that . If  is an integer vector, then this point

will be kept by the decimator since it will fall on the output lattice; i.e,  where

. This point  is renumbered as  by the output lattice.

Since  was the renumbered point corresponding to  on the input lattice, and hence in

, every point  in  that is kept by the decimator is mapped to  by the

output lattice. Now, . So

because . Conversely, let  be any point in . Then,
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Figure 5-8Generalized expander and decimator with arbitrary input lattices and
support matrices.
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. Since , we have that . Also, the

corresponding point to this on the input lattice is  implying that the point is retained

by the decimator. Hence, . The derivation for the expander is identical,

only with different expressions.QED

Corollary 5-1: In an acyclic network of actors, where the only actors that are allowed to

change the sampling lattice are the decimator and expander in the manner given by

theorem 5-1, and where all source actors produce data according to definition 5-4, the set

of samples on every arc, renumbered according to the sampling lattice on that arc, satisfies

the containability condition.

Proof: Immediate from theorem.

In the following, we develop the semantics of a model that can express these non-

rectangular systems by going through a detailed example. In general, our model for the

production and consumption of tokens will be the following: an expander produces

 samples on each firing where  is the upsampling matrix. The decimator

consumes a “rectangle” of samples where the “rectangle” has to be suitably defined by

looking at the actor that produces the tokens that the decimator consumes.

Definition 5-5: An integer  rectangle is defined to be the set of integer points in

, where  are arbitrary real numbers.

Definition 1: Let  be a set of points in , and  be two positive integers such that

.  is said to be organized as ageneralized  rectangle of points, or just a

generalized  rectangle, by associating arectangularizing function with  that

maps the points of  to an integer  rectangle.

Example 5-1: Consider the system below, where a decimator follows an expander (figure

5-9(a))

We start by specifying the lattice and support matrix for the arc . Let

 and .
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So the source produces (3,3) in MDSDF parlance. For the system above, we can compute

the lattice and support matrices for all other arcs given these. We will need to specify the

scanning order for each arc as well that tells the node the order in which samples should be

consumed. Assume for the moment that the expander will consume the samples on arc SA

in some natural order; for example, scanning by rows. We need to specify what the

expander produces on each firing. The natural way to specify this is that the expander

produces  samples on each firing; these samples are organized as a generalized

 rectangle. This allows us to say that the expander produces  samples per

firing; this is understood to be the set  of points organized as a generalized

 rectangle.

Suppose we choose the factorization  for . Consider figure 5-9(b)

where the samples in  are shown. One way to map the samples into an integer

 rectangle is as shown by the groupings. Notice that the horizontal direction for

MS

M 1 1

2 2–
=

L
SA AB

A B

T

L 2 2–

3 2
=

Figure 5-9An example to illustrate balance equations and the need for some additional
constraints. a) The system. b) Ordering of data into a 5x2 rectangle inside FPD(L).
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 is the direction of the vector  and the vertical direction is the direction of

the vector . We can number the samples as follows:

Hence,  is a generalized  rectangle if we associate the function given in the

table above with it as the rectangularizing function. Given a factoring of the determinant of

, the function given above can be computed easily; for example, by ordering the samples

according to their Euclidean distance from the two vectors that correspond to the horizontal

and vertical directions. The scanning order for the expander across invocations is

determined by the numbering of the input sample on the output lattice. For example, the

sample at (1,0) that the source produces maps to location (2,3) in the re-numbered lattice at

the expanders output. Hence, consuming samples in the [1 0] direction on arc SA results in

5x2 samples (i.e,  samples but ordered according to the table) being produced

along the vector [2 3] on the output. Similarly, the sample (0,1) produced by the source

corresponds to (-2,2) on the output. A global ordering on the samples is imposed by

renumbering the sample at (2,3) as (5,0) since the first  of samples produced ended

with sample (4,1). With this global ordering, it becomes clear what the semantics for the

decimator should be. Again, choose a factorization of , and consume a

“rectangle” of those samples, where the “rectangle” is deduced from the global ordering

imposed above. For example, if we choose 2x2 as the factorization, then the (0,0)

invocation of the decimator consumes the (original) samples at (0,0), (-1,1), (0,1), and (-

1,2). The (0,2)th invocation of the decimator would consume the (original) samples at (1,3),

(0,4), (2,3) and (1,4). The decimator would have to determine which of these samples falls

on its lattice; this can be done easily.

We have already mentioned the manner in which the source produces data. We add

that the subsequent firings of the source are always along the directions established by the

vectors in the support matrix on the output arc of the source.

Now we can write down a set of “balance” equations using the “rectangles” that we

have defined. Denote the repetitions of a node  in the “horizontal” direction by  and

Table 5-1: Ordering the samples produced by the expander

Original
sample

(0,0) (0,1) (0,2) (1,2) (1,3) (-1,1) (-1,2) (-1,3) (0,3) (0,4)

Renumbered
sample

(0,0) (1,0) (2,0) (3,0) (4,0) (0,1) (1,1) (2,1) (3,1) (4,1)

FPD L( ) 2 3
T

2– 2
T
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the “vertical” direction as . These directions are dependent on the geometries that have

been defined on the various arcs. Thus, for example, the directions are different on the input

arc to the expander from the directions on the output arc. We have

(5.6)

where we have assumed that the sink actor  consumes (1,1) for simplicity. We have also

made the assumption that the decimator produces exactly (1,1) every time it fires. This

assumption is usually invalid but the calculations done below are still valid as will be

discussed later. These equations can be solved to yield

(5.7)

Figure 5-10 shows the data space on arc AB with this solution to the balance

equations. As we can see, the assumption that the decimator produces (1,1) on each

invocation is not valid; sometimes it is producing no samples at all and sometimes 2

samples or 1 sample. Hence, we have to see if the total number of samples retained by the

decimator is equal to the total number of samples it consumes divided by the decimation

ratio.

In order to compute the number of samples output by the decimator, we have to

compute the support matrices for the various arcs assuming that the source is invoked (2,1)

times (so that we have the total number of samples being exchanged in one schedule

period). We can do this symbolically using  and substitute the values later. We get

r X 2,
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,

, and

(5.8)

Recall that the samples that the decimator produces are the integer points in

. Hence, we want to know if

(5.9)
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4 } Samples retained by
decimator
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expander, discarded by
decimator

Original samples
produced by source

2x2 rectangle
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decimator

Figure 5-10Total amount of data produced by the source in one iteration of
the periodic schedule determined by the balance equations in equation 5.7.
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is satisfied by our solution to the balance equations. By lemma 5-3, the size of the set

for an integer matrix  is given by . Since  is an integer matrix for any value

of , we have . The right hand side of

equation 5.9 becomes . Hence, our first requirement is

that . The balance equations gave us

; this satisfies the requirement. With these values, we get

.

Since this matrix is not integer-valued, lemma 5-3 cannot be invoked to calculate the

number of integer points in . For non-integer matrices, the only way to

compute  appears to be by brute force: by drawing this out on graph paper, it can

be determined that there are 47 points inside. Hence, equation 5.9 is not satisfied! One way

to satisfy equation 5.9 is to force  to be an integer matrix. This implies that

 and . The smallest values that make

integer valued are . From this, the repetitions of the other nodes are also

multiplied by 2, thus increasing theblocking factor to 2, where the definition of the

blocking factor is as in the MDSDF case. Note that the solution to the balance equations by

themselves are not “wrong”; it is just that for non-rectangular systems equation 5.9 gives a

new constraint that must also be satisfied.

We can formalize the ideas developed in the example above in the following.

Lemma 5-4: The support matrices in the network can each be written down as functions

of the repetitions variables of one particular source actor in the network.

Proof: Immediate from the fact that all of the repetitions variables are related to each other

via the balance equations.

Lemma 5-5: In a multidimensional system, the  column of the support matrix on any

arc can be expressed as a matrix that has entries of the form , where  is the

repetitions variable in the  dimension of some particular source actor  in the network,

and  are rationals.

Proof: Without loss of generality, assume that there are 2 dimensions. Let the support
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matrix on the output arc of source  for one firing be given by

.

For  firings in the “horizontal” and “vertical” directions (these are the directions

of the columns of ), the support matrix becomes

(in multiple dimensions, the right multiplicand would be a diagonal matrix with  in

row).

Now consider an arbitrary arc  in the graph. Since the graph is connected,

there is at least one undirected path  from source  to node . Since the only actors that

change the sampling lattice (and thus the support matrix) are the decimator and expander,

all of the transformations that occur to the support matrix  along  are left

multiplications by some rational valued matrix. Hence, the support matrix on arc , ,

can be expressed as , where  is some rational valued matrix. The claim of

the lemma follows from this.

Theorem 5-2: In an acyclic network of actors, where the only actors that are allowed to

change the sampling lattice are the decimator and expander in the manner given by

theorem 5-1, and where all source actors produce data according to definition 5-4,

whenever the balance equations for the network have a solution, there exists a blocking

factor vector  such that increasing the repetitions of each node in each dimension by the

corresponding factor in  will result in the support matrices being integer valued for all

arcs in the network.

Proof: By lemma 5-5, a term in an entry in the  column of the support matrix on any

arc is always a product of a rational number and repetitions variable  of source . We

force this term to be integer valued by dictating that each repetitions variable  be the

lcm of the values needed to force each entry in the  column to be an integer. Such a

value can be computed for each support matrix in the network. The lcm of all these values
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and the balance equations solution for the source would then give a repetitions vector for

the source that makes all of the support matrices in the network integer valued and solves

the balance equations.QED

5.2.2 The Rectangular Case

Here we show that the constraint of the type in equation 5.9 is always satisfied by

the solution to the balance equations when all of the lattices and matrices are diagonal.

Since we are only interested in these additional constraints for arcs between an expander

and decimator, consider the system in figure 5.12. The balance equations for arc AB are

(5.10)

The support matrix for arc AB is given by

since the input lattice and support matrix on the expanders input are both diagonal. The

support matrix for arc BT is given by

We have . A solution to the balance equations in equation 5.10

implies that the matrix  is an integer matrix; hence,

Figure 5-11For a rectangular system, the constraint of equation 5.9 is always met.

ML

A B

M
M1 0

0 M2

=L
L1 0

0 L2

=

(L1,L2) (M1,M2)(1,1) (1,1)

L1r A 1, M1r B 1,=

L2r A 2, M2r B 2,=

WAB
L1r A 1, 0

0 L2r A 2,

=

WBT M
1–
WAB

M1
1–

0

0 M2
1–

L1r A 1, 0

0 L2r A 2,

M1
1–
L1r A 1, 0

0 M2
1–
L2r A 2,

= = =

N WAB( ) L1L2r A 1, r A 2,=
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 and we see that equation 5.9 is

satisfied since . So we see that the rectangular MDSDF case is a special

case of the more general set of constraints needed for non-rectangular systems.

The fact that the decimator produces a varying number of samples per invocation

might suggest that it falls nicely into the class of cyclostatic actors. However, there are a

couple of differences. In the CSDF model of [Lauw94], the number of cyclostatic phases

are assumed to be known beforehand, and is only a function of the parameters of the actor,

like the decimation factor. In our model for the decimator, the number of phases is not just

a function of the decimation matrix; it is also a function of the sampling lattice on the input

to the decimator (which in turn depends on the actor that is feeding the arc), and the

factorization choice that is made by the scheduler. Secondly, in CSDF, SDF actors are

represented as cyclostatic by decomposing their input/output behavior over one invocation.

For example, a CSDF decimator behaves exactly like the SDF decimator except that the

CSDF decimator does not need all  data inputs to be present before it fires; instead, it has

a 4-phase firing pattern. In each phase, it will consume 1 token, but will produce one token

only in the first phase, and produce 0 tokens in the other phases. In our case, the cyclostatic

behavior of the decimator is arisingacross invocations rather than within an invocation. It

is as if the CSDF decimator with decimation factor 4 were to consume {4,4,4,4,4,4} and

produce {2,0,1,1,0,2} instead of consuming {1,1,1,1} and producing {1,0,0,0}.

One way to avoid dealing with constraints of the type in equation 5.9 would be to

choose a factorization of  that ensured that the decimator produced one sample on

each invocation. For example, if we were to choose the factorization 1x4 for the example

above, the solution to the balance equations would automatically satisfy equation 5.9. As

we show later, we can find factorizations where the decimator produces one sample on

every invocation in certain situations but generalizing this result appears to be a difficult

problem since there does not seem to be an analytical way of writing down the re-

numbering transformation that was shown in table 1.

N WBT( ) det WBT( ) M1
1–
L1r A 1, M2

1–
L2r A 2,= =

det M( ) M1M2=

M

det M( )
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5.2.3 Implications of the Above Example for Streams

In SDF, there is only one dimension, and the stream is in that direction. Hence,

whenever the repetitions of a node is greater than unity, then the data processed by that

node corresponds to data along the stream. In MDSDF, only one of the directions is the

stream. Hence, if the repetitions of a node, especially a source node, is greater than unity

for the non-stream directions, the physical meaning of invocations in those directions

becomes unclear. For example, consider a 3-dimensional MDSDF model for representing

a progressively scanned video system. Of these 3 dimensions, 2 of the dimensions

correspond to the height and width of the image, and the third dimension is time. Hence, a

source actor that produces the video signal might produce something like (512,512,1)

meaning 1 512x512 image per invocation. If the balance equations dictated that this source

should fire (2,2,3) times, for example, then it is not clear what the 2 repetitions each in the

height and width directions signify since they certainly do not result in data from the next

iteration being processed, where an iteration corresponds to the processing of an image at

the next sampling instant. Only the repetitions of 3 along the time dimension makes

physical sense. Hence, there is potentially room for great inefficiency if the user of the

system has not made sure that the rates in the graph match up appropriately so that we do

not actually end up generating images of size 1024x1024 when the actual image size is

512x512. In rectangular MDSDF, it might be reasonable to assume that the user is capable

of setting the MDSDF parameters such that they do not result in absurd repetitions being

generated in the non-stream directions since this can usually be done by inspection.

However for non-rectangular systems, we would like to have more formal techniques for

keeping the repetitions matrix in check since it is much less obvious how to do this by

inspection. The number of variables are also greater for non-rectangular systems since

different factorizations for the decimation or expansion matrices give different solutions for

the balance equations.

To explore the different factoring choices, suppose we use  for the decimator

instead of . The solution to the balance equations become

1 4×

2 2×
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(5.11)

From equation 5.8,  is given by

and it can be determined that , as required. So in this case, we do not need

to increase the blocking factor to make  an integer matrix, and this is because the

decimator is producing 1 token on every firing as shown in figure 5-12.

However, if the stream in the above direction were in the horizontal direction (from

the point of view of the source), then the solution given by the balance equations (eq. 5.11)

rS 1, 1 rS 2,, 2= =

r A 1, 3 r A 2,, 6= =

r B 1, 15 r B 2,, 3= =

rT 1, 15 rT 2,, 3= =

WBT

WBT
21 4⁄ 3–

3 4⁄ 9–
=

N WBT( ) 45=

WBT

0 1 2-1-2

1

2

3

4
} Samples retained by

decimator

Samples added by
expander, discarded by
decimator

Original samples
produced by source

1x4 rectangle
consumed by
decimator

Figure 5-12Total amount of data produced by the source in one iteration of the
periodic schedule determined by the balance equations in equation 5.11. The
samples that are kept by the decimator are the lightly shaded samples.
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may not be satisfactory for reasons already mentioned. For example, the source may be

forced to produce only zeros for invocation (0,1). One way to incorporate such constraints

into the balance equations computation is to specify the repetitions vector instead of the

number produced or consumed. That is, for the source, we specify that  but leave

the number it produces in the vertical direction unspecified. The balance equations will

give us a set of acceptable solutions involving the number produced vertically; we can then

pick the smallest such number that is greater than or equal to three. Denoting the number

produced vertically by , our balance equations become

(5.12)

The solution to this is given by

(5.13)

and we see that  satisfies our constraint. Recalculating the other quantities,

and we can determine that  as required (i.e., ). Hence,

we get away with having to produce only one extra row rather than three, assuming that the

source can only produce 3 meaningful rows of data (and any number of columns).

rS 2, 1=

yS

3rS 1, 1r A 1,=

yS1 1r A 2,=

5r A 1, 1r B 1,=

2r A 2, 4r B 2,=

r B 1, rT 1,=

r B 2, rT 2,=

rS 1, 1 yS, 2k= = k 1 2 …, ,=

r A 1, 3 r A 2,, 2k= =

r B 1, 15 r B 2,, k= =

rT 1, 15 rT 2,, 3= =

k 2=

WBT M
1–
WAB

1
4
---

21rS 1, 8rS 2,–

3rS 1, 24rS 2,–

21 4⁄ 2–

3 4⁄ 6–
= = =

N WBT( ) 30= 3 4 10×× 4⁄ 30=
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5.3 Eliminating Cyclostatic Behavior

The fact that the decimator does not behave in a cyclostatic manner in figure 5-12

raises the question of whether factorizations that result in non-cyclostatic behavior in the

decimator can always be found. The following example and lemma give an answer to this

question for the special case of a decimator whose input is a rectangular lattice.

Example 5-2: Consider the system in figure 5-13 where a 2-D decimator is connected to

a source actor that produces an array of (6,6) samples on each firing. The black dots

represent the samples produced by the source and the circled black dots show the samples

that the decimator should retain; these are the samples that lie on  intersected

with the samples produced by the source. Since , there are three possible

ways to choose . With  we see that the  array can be tiled

with  arrays such that 1 sample is produced in each  array (figure 5-13 (b)).

However, since some of the  blocks retain the sample on the left-bottom corner and

some the sample on the right-bottom corner, a time-varying phase would have to be used

to determine which sample should be output on a given invocation. There are two other

ways to choose  so that their product is 4:  and

. Figures 5-13 (b),(c) illustrate the tiling with these choices. For both

M (1,1)(M1,M2)
S

(6,6)M 1 1

2 2–
=

Figure 5-13An example to illustrate that two factorizations always exist that result in
non-cyclostatic behavior with the decimator. a) The system. b) M1=2, M2=2. c)
M1=1, M2=4. d) M1=4, M2=1

a)

b) c) d)

LAT M( )

det M( ) 4=

M1 M2, M1 M2 2= = 6 6×

2 2× 2 2×

2 2×

M1 M2, M1 1 M2, 4= =

M1 4 M2, 1= =
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these choices, the repetitions of the source is different than (1,1); hence the tiling isn’t

complete but can be completed if the source produces more data as specified by the

solution to the balance equations ((2,1) and (1,2) respectively). In figure 5-13 (c) also, we

see that for every (1,4) consumed, (1,1) is produced, although again, a time-varying phase

will be required. However, in figure 5-13(d), we see that on some invocations,no samples

are produced (that is, (0,0) samples are produced) while in some invocations, 2 samples

are produced. This raises the question of whether there is always a factorization that

ensures that the decimator produces (1,1) for all invocations. The following lemma

ensures that for any matrix, there are always two factorizations of the determinant such

that the decimator produces (1,1) for all invocations. Also, this example illustrates two

other points: it is onlysufficient that the decimator produce 1 sample on each invocation

for the additional constraints on decimator outputs to be satisfied by the balance equation

solution. It is onlysufficient that the support matrix on the decimators output be integer

valued for the additional constraints to be satisfied. Indeed, we have

, ,

where  is the support matrix on the decimators output. For the case where

, we have , making  non-integer valued.

However, we do have that , despite the fact that

is non-integer valued and the decimator is cyclostatic.

Lemma 5-6: If

is any non-singular, integer 2x2 matrix, then there are at most two factorizations (and at

least one) of ,  and  such that if

 or  in figure 5-13, then the decimator produces

(1,1) for all invocations. Moreover,

, and

WSM
6rS 1, 0

0 6rS 2,

= WMO
3rS 1, 1.5rS 2,

3rS 1, 1.5– rS 2,

=

WMO

M1 4 M2, 1= = rS 1, 2 rS 2,, 1= = WMO

N WMO( ) N WSM( ) det M( )⁄= WMO

M a b

c d
=

det M( ) A1B1 det M( )= A2B2 det M( )=

M1 A1 M2, B1= = M1 A2 M2, B2= =

A1 gcd a b,( ) B1, det M( )
gcd a b,( )
-----------------------= = A2

det M( )
gcd c d,( )
----------------------- B2, gcd c d,( )= =
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Remark: Note that ; hence, if  is diagonal, the two factorizations are the

same and there is only one unique factorization. This implies that for rectangular

decimation, there is only one way to set the MDSDF parameters and get non-cyclostatic

behavior.

Proof: Firstly, note that since ,  divides  and

 divides . The decimator keeps samples with coordinates given by

(5.14)

or  and ; hence,  and  have to be multiples of

and  respectively. Suppose . Then, with a little algebra, it can be seen that

the smallest positive, non-zero value of  that solves equation 5.14 (meaning that

are integers) is given by . Similarly, if , the smallest non-

zero, positive value of  is given by . Hence, any rectangle

consumed by the decimator cannot have a vertical dimension of greater than  or

a horizontal dimension of greater than  since if it did, then at least two samples

that are kept by the decimator will fall inside the rectangle based at the origin. So it remains

to show that the two factorizations given in the statement of the lemma do in fact result in

one sample being kept onall invocations. Fix some value for  that is a multiple of; call it

. Let  be the smallest positive integer solution to equation 5.14. Then, the next positive

integer  that solves equation 5.14 is given by . To see this, note

that and  are both integers. We want to determine the smallest

positive constant  such that makes

 and

also integers. Rearranging the above expressions, we get

 and

gcd a 0,( ) a= M

det M( ) ad bc–= gcd a b,( ) det M( )

gcd c d,( ) det M( )

M
k1

k2

x

y
=

ak1 bk2+ x= ck1 dk2+ y= x y gcd a b,( )

gcd c d,( ) y 0=

x k1 k2,

x det M( ) gcd c d,( )⁄= x 0=

y y det M( ) gcd a b,( )⁄=

gcd c d,( )

gcd a b,( )

x

x0 y0

y y0 det M( ) gcd a b,( )⁄+

k2 ay0 cx0–( ) ad bc–( )⁄=

j

k1'
dx0 b y0 j+( )–

ad bc–
-------------------------------------= k2'

a y0 j+( ) cx0–

ad bc–
------------------------------------=

k1' k1
bj

ad bc–
------------------–= k2' k2

aj
ad bc–
------------------+=
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Clearly,  makes both  and  integers. It is also the smallest:

let . Then, we have that  for some integer  and  for

some integer . Hence,  giving us the claimed value of  as the smallest such

value.

A symmetric argument shows that if  is fixed, then the values of  that solve

equation 5.14 differ by .

Without loss in generality, consider the rectangle of dimensionality given by the

first of the factorings in the statement of the lemma. When this rectangle is placed at the

origin, only the sample at the origin falls inside it and is output by the decimator (see figure

5-14). Invocation (0,1) of the decimator would consume the rectangle whose lower left

corner is at , ; this also contains only one sample that is

output by the decimator (namely, the lower left corner sample). Clearly, as the rectangle is

moved up along the y-axis by steps of , the sample kept is always the

one on the lower left corner. Now consider moving the rectangle to the right in steps of

. None of these rectangles can contain two samples which do not have the same

x coordinate. This is because the x coordinate in the solution equation 5.14 has to be a

multiple of . These rectangles cannot contain two samples which have the same

x coordinate either because, as was shown, when  is fixed, the  values differ by

. Hence, all of the rectangles that the decimator consumes will contain

exactly one sample that falls on the output lattice, allowing the decimator to be non-

cyclostatic.QED.

j det M( ) gcd a b,( )⁄= k1' k2'

m ad bc–= bj m⁄ i1= i1 aj m⁄ i2=

i2 i1a i2b= j

y x

det M( ) gcd c d,( )⁄

gcd(a,b)

det(M)
gcd(a,b)

x

y

Figure 5-14Figure to illustrate proof of lemma 5-6.

Decimator consumes
these set of samples

These are the samples
that fall on the output
lattice of the decimator.

y det M( ) gcd a b,( )⁄= x 0=

det M( ) gcd a b,( )⁄

gcd a b,( )

gcd a b,( )

x y

det M( ) gcd a b,( )⁄
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For the example matrix in the figure 5-13, we can see that the two factorizations that

work from the above equation are  and ; this is what we

see from figure 5-13 (b),(c).

5.4 Delays in the Generalized Model

Delays can be interpreted as translations of the buffer of produced values along the

vectors of the support matrix (in the renumbered data space) or along the vectors in the

basis for the sampling lattice (in the lattice data space). Figure 5-15 illustrates a delay of

(1,2) on a non-rectangular lattice.

5.5 Summary of Generalized Model

In summary, our generalized model for expressing non-rectangular systems has the

following semantics:

• Sources produce data in accordance with definition 5-4. The support

matrix and lattice-generating matrix on the sources output arcs are specified by the

source. The source produces a generalized  rectangle of data on each

firing.

• An expander with expansion matrix  consumes (1,1) and produces the

set of samples in  that is ordered as a generalized  rectangle of

data where  are positive integers such that .

• A decimator with decimation matrix  consumes a rectangle

of data where this rectangle is interpreted according to the way it has been ordered

(by the use of some rectangularizing function) by the actor feeding the decimator.

It produces (1,1) on average. Unfortunately, there does not seem to be any way of

making the decimators output any more concrete.

A1 1 B1, 4= = A2 2 B2, 2= =

S1 S2,( )

L

FPD L( ) L1 L2,( )

L1 L2, L1L2 det L( )=

M M1 M2,( )
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• On any arc, the global ordering of the samples on that arc is established

by the actor feeding the arc. The actor consuming the samples follows this

ordering.

A set of balance equations are written down using the various factorizations.

Additional constraints for arcs that feed a decimator are also written down. These are

solved to yield the repetitions matrix for the network. A scheduler can then construct a

static schedule by firing firable nodes in the graph until each node has been fired the

requisite number of times as given by the repetitions matrix.

A B
(2,2) (1,3)

(1,2)

V 2 1

0 1
=

.....

W 1 2–

0 4
=

..... .....

(1,2)

(1,2)

Sampling lattice

Renumbered samples

Figure 5-15Delays on non-rectangular lattices
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5.6 Multistage Sampling Structure Conversion Example

In this section, we illustrate another example; this is a practical example of a system

that does sampling structure conversion for video signals. We will show how the semantics

developed above can be used to specify and determine a schedule for the system. This

example is drawn from [Mand93].

5.6.1 Video Signals

A video signal can be thought of as a three-dimensional signal where two of the

dimensions correspond to the height(vertical) and width(horizontal) of the image while the

third dimension is time. The current practice is to sample the signal in two of the

dimensions and keep the third dimension continuous. The vertical and temporal directions

are sampled (this processed is called scanning) while the horizontal direction is not. Hence,

as a discrete-time signal, a video signal is two-dimensional, with samples occupying the

vertico-temporal plane. Note that an actual video signal is one-dimensional since the

resulting lines (from the scanning) are abutted to form a one-dimensional signal [Dubo85].

There are currently two types of vertico-temporal lattices in use: the progressively scanned

signal, which corresponds to a rectangular lattice, and the 2:1 interlaced signal, which

corresponds to a “quincunx” lattice. There are trade-offs between using these two lattices

in various types of distortions and interline flicker but in general, 2:1 interlaced scanning

is preferable to sequential scanning for a given scanning density [Dubo85]1. The two

lattices are shown in figure 5-16.

5.6.2 Sampling Structure Conversion

An application of considerable interest in current television practice is the format

conversion from 4/3 aspect ratio to 16/9 aspect ratio for 2:1 interlaced TV signals. It is well

known in one-dimensional signal processing theory that sample rate conversion can be

1.  The Advisory Committee on Advanced Television Service, a committee formed by the FCC in 1987 to assist
the FCC in establishing an HDTV standard for the United States, tested 4 all-digital HDTV proposals (DigiCipher,
DSC-HDTV, AD-HDTV, CCDC) and found that systems using interlaced scanning (DigiCipher and AD-HDTV) had
the best quality overall.[Hopk93].



169

done efficiently in many stages [Rams84]. Similarly, it is more efficient to do both

sampling rate and sampling structure conversion in stages for multidimensional systems.

The two aspect ratios and the two lattices are shown in figure 5-17.

The relationship between the height and width for the two aspect ratios is given by

 and . Since the number of lines  is the same in both

cases, the interline distances  and , corresponding to the 16/9 and 4/3 aspect ratios

respectively, are related as . Thus the bases

for the lattices for the two aspect ratios are given by

 and (5.15)

for the 4/3 and 16/9 aspect ratios respectively. By the CCIR System M standard 625/2:1/

50,  and . One way to do the conversion between the two lattices

T=1/50 s T=1/50 s
timetime

Figure 5-16Progressive scanning and 2:1 interlaced scanning in the vertico-temporal
plane

Pw

PhPh’

dy
dy’

Tf

y

time

Figure 5-17Picture sizes and lattices for the two aspect ratios 4/3 and 16/9

Ph 3 4⁄( )Pw= Ph' 9 16⁄( )Pw= N
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dy' Ph' N⁄ 3 4⁄( ) Ph N⁄( ) 3 4⁄( )dy= = =
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0 dy

= A'
2T f T f
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=
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above is as shown below in figure 5-18 [Mand93]. Below each arc, the desired lattice on

that arc is shown. For simplicity, the filters that are needed between the upsampling and

downsampling stages are omitted. From the lattices shown, we can compute the required

values for :

, , , and

Since using realistic values for  will make all the calculations rather ugly, we will

just use  without any loss in generality.

By theorem 5-1,

, , and

. Note that these matrices do not depend on  and .

Suppose

, , and

S L1 L2 M T

A B C

Figure 5-18System for doing multistage sampling structure conversion
from 4/3 aspect ratio to 16/9 aspect ratio for a 2:1 interlaced TV signal.
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0 dy
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0 dy 4⁄
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2T f T f

0 3dy 4⁄
= =

T f dy,

T f 1 dy, 1= =

L1 VAB
1–

VSA
1 T f⁄ 0

0 2 dy⁄

2T f T f

0 dy

2 1

0 2
= = = L2 VBC
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1 0

0 2
= =

M VBC
1–

VCT
2 1

0 3
= = T f dy

det L1( ) 4 2 2×= = det L2( ) 2 1 2×= = det M( ) 6 3 2×= =
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Let us assume that  produces samples in . The support matrix for

this can be computed as

Suppose further that the samples that the source produces are rectangularized in the

following obvious way: sample at (0,0) is (0,0); sample at (1,1) is (1,0); sample at (0,2) is

(0,1); sample at (1,3) is (1,1) etc. So  produces (2,8) where the rectangle is understood to

be as above. We can write down the following balance equations:

(5.16)

These solve to

(5.17)

Again, we can calculate the various support matrices symbolically in order to verify

whether

(5.18)

We have

S LAT VSA( ) N 2 0

0 8 
 
 

∩

VSA
1– 2 0

0 8

1
2
--- 1 1–

0 2

2 0

0 8

1 4–

0 8
= =

S

2rS 1, 1r A 1,=

8rS 2, 1r A 2,=

2r A 1, 1r B 1,=

2r A 2, 1r B 2,=

1r B 1, 3rC 1,=

2r B 2, 2rC 2,=

rC 1, rT 1,=

rC 2, rT 2,=

rS 1, 3 rS 2,, 1= =

r A 1, 6 r A 2,, 8= =

r B 1, 12 r B 2,, 16= =

rC 1, 4 rC 2,, 16= =

N WCT( ) N WBC( ) det M( )⁄=
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, and

With the values obtained from the balance equations, equation 5.18 turns out to be not

satisfied because ! In actuality, since there are 625 lines vertically, a more

accurate model for the source is that it produces samples in (2,625), again according to the

rectangle defined above. However, the resulting matrix

presents a rather nasty challenge for determining the number of integer points inside its

FPD (since it is not an integer matrix with the solution to the balance equations). However,

in the model where the source produces (2,8), we can force  to be an integer matrix

by making  a multiple of 3. If the source is in fact trying to produce 625 lines vertically,

then the smallest multiple of 3 that is greater than or equal to 625 is given by 209; we can

make this the vertical blocking factor. As in the previous example, we can try to find better

models for the source, one that will allow it to cover exactly 625 lines vertically for

example. Of-course, this is assuming that the source actor can be coded in a flexible way

that allows it to produce as much data or as little as desired.

5.7 Computing the Integer Volume of a Rational Matrix

Since the augmented balance equations frequently require the quantity

(which we call theinteger volume of ) for a non-integer matrix (but rational) , we

develop a method in this section that is better than the brute force method of simply

counting the integer points. First we note that obvious methods do not work and that the

problem appears to be more difficult than it would appear.

N WBC( ) det
2rS 1, 0

0 32rS 2, 
 
 

64rS 1, rS 2,= =

WCT M
1–
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rS 1, 16 3⁄( )rS 2,–
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N WCT( ) 33=
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=
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5.7.1 Some simple approaches

5.7.1.1 Scaling

The most obvious technique to try is to scale the matrix by an appropriate constant

to make all the entries integer valued and deduce the integer volume from that of the

resulting integer valued matrix. If we scale the matrix  by  to make it integer valued,

then the determinant, and thus the integer volume, of  is given by , and this

is an integer. However, this tells us nothing about the integer volume of  since in general,

 may not even be an integer. Even if  is an integer, it is not the case that

its integer volume is equal to ; for example, consider  (  means

a diagonal matrix). The integer volume of  is 2, not 1.

5.7.1.2 Rounding

However, for a diagonal matrix  it is easy to see that the integer volume

is actually given by , where  is the ceiling operator. Hence, we might

wonder whether there is some way of rounding the entries of an arbitrary matrix so that the

resulting integer matrix has the same number of integer points in its  as the original

matrix. However, this does not seem to be the case. Consider the matrix

.

It can be verified that this matrix has an integer volume of 3. However, there is no way of

rounding the entries (either floors or ceilings) of this matrix to get an integer matrix that has

a determinant of 3.

5.7.1.3 Smith Form Decomposition

Another approach is to try to use the Smith form decomposition. The Smith form

decomposition of an integer matrix  gives two integer, unimodular matrices  such

that , where  is a diagonal matrix, and this decomposition can be computed

A c

cA c2 det A( )

A

det A( ) det A( )

det A( ) diag 1 2⁄ 2,( ) diag

diag 1 2⁄ 2,( )

diag p q,( )

p q •

FPD

5 3⁄ 1 2⁄
0 5 3⁄

A U V,

UAV Λ= Λ
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in polynomial time by the Lenstra-Lenstra-Lovasz algorithm. If  is a rational-valued

matrix, then we can simply represent it as a constant times an integer matrix, and use the

Smith form decomposition to get a rational-valued diagonal matrix, the integer volume of

which is easy to compute as shown above. However, the integer volume of this diagonal

matrix is not equal to the integer volume of the original matrix in general as the following

counter-example shows. Consider the matrix (it has an integer volume of 47):

(5.19)

.

The Smith form decomposition is given by

.

The integer volume of the diagonal matrix is given by 8*6=48, and this is not equal to the

integer volume of the original matrix. The problem with the Smith form approach is that

the unimodular matrix transformations do not result in a one-to-one mapping of the integer

points in  to .

5.7.2 A Method for Computing the Integer Volume of a Rational Matrix

More insightful techniques are clearly needed. The development here is based on

the proof we gave for the integer matrix case; namely, we develop the method for an upper

triangular matrix and use lemma 5-2 to transform any matrix to an upper triangular matrix.

Fact 5-1: For any rational-valued matrix , there is an integer unimodular matrix  such

that  is a rational-valued, upper triangular matrix.

Proof: Immediate from the fact that we can write any rational matrix as a constant times

an integer matrix, and apply lemma 5-2 to the integer matrix.QED

A

21 2⁄ 3 2⁄–

3 2⁄ 9 2⁄–

21 3–

3 9–

1
2
---=

1
2
--- 2 1

1 1

21 3–

3 9–

1 1

2 3

1
2
--- 15 0

0 12–
=

FPD A( ) FPD Λ( )

A C

CA
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Fact 5-2: Given a rational-valued matrix , and a corresponding integer unimodular

matrix  such that  is upper-triangular, .

Proof: Similar to the last part of the proof of lemma 5-3. Let . Then

 s.t. . Since  is an integer vector, every point in

maps to some point in . Similarly, if , then  s.t.

. So , and  is an integer vector since  is integer valued and

unimodular. So every point in  maps to some point in ; this shows that the

mapping is one-to-one.QED

Hence, the problem is to compute the integer volume of a rational-valued, upper

triangular matrix. From now on, we only consider 2x2 matrices. Let the rational-valued,

upper triangular matrix be given by .

Fact 5-3: Let . In the interval , the number of integers in the interval

is  if  and  otherwise.

Since the first column of  is aligned with the horizontal axis, we imagine moving

the interval  along the vector . We are interested in intervals

 for  since these are the intervals for which the vertical

dimension is an integer (along the vector ). Clearly, the number of integers in

 is the same as the number of integers in

. Hence, by fact 5-3, whenever

, (5.20)

the number of integers for that  is  and  for the rest. Therefore, we want to know

the number of values of ,  for which equation 5.20 is satisfied; define this

number to be . Define  and , where  are integers and

the fractions are in reduced form. Define , , and

. Also define  in reduced form with  integers. The

left hand side of equation 5.20 becomes

.

Moreover, since  for integers , we have

A

C CA N CA( ) N A( )=

k̂ N A( )∈

x̂ 0 1)2,[∈∃ Ax̂ k̂= CAx̂ Ck̂= N A( )

N CA( ) k̂ N CA( )∈ x̂ 0 1)2,[∈∃

CAx̂ k̂= C
1–
k̂ Ax̂= C

1–
k̂ C

N CA( ) N A( )

a b

0 c

x 0 1,[ ]∈ x x a+ ),[

a 0 x a a–≤< a

A

0 a,[ ] b c
T

bk c⁄ bk c⁄ a+,[ ] k 0 1 … c, , ,=

b c
T

bk c⁄ bk c⁄ a+,[ ]

bk c bk c⁄–⁄ bk c⁄ a bk c⁄–+,[ ]

bk c bk c⁄–⁄ a a–≤

k a a

k k 1 … c, ,=

K b b1 b2⁄≡ c c1 c2⁄≡ b1 b2 c1 c2, , ,

gc gcd b1c2 b2c1,( )= e1 b1c2 gc⁄=

e2 b2c1 gc⁄= a a a1 a2⁄≡– a1 a2,

e1k e2 e1k e2⁄–⁄

x mod y x x y⁄ y–≡ x y,
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.

As  increases, the above equation is periodic with period ; hence, it suffices to

determine the number  of  in  that satisfies

. (5.21)

and to determine the number  of  in  that satisfies equation 5.21.

(If  is an integer, then  is the number of  in  that satisfies

equation 5.21. This is because if  is an integer, then the very last interval vertically is right

on the side of the  and does not therefore count). From this, .

Since  are coprime,  takes each value in the set  as

varies in . Hence, . However, it is not clear whether

can be determined efficiently. However, if  is sufficiently small, then

enumeration is not as big of a problem, and in practice, the development above leads to a

more efficient way of computing the integer volume, although the formula is rather messy.

We can collect the results above into the following lemma:

Lemma 5-7: The integer volume  of a rational-valued, upper triangular 2x2

matrix

is given by the formula

where , , ,  are all as defined

before. Note that if  is an integer, then  as expected since it is  that

determines how many points there are in each horizontal interval.

5.7.3 Examples

Example 5-3: Consider the matrix in equation 5.19:

e1k e2 e1k e2⁄–⁄ e1k mod e2( ) e2⁄=

k e2

K' k 1 2 … e2 1–, , ,{ }

e1k mod e2( ) e2⁄ a1 a2⁄≤

K'' k 0 … c mod e2, ,{ }

c K'' k 0 … c mod e2 1–, ,{ }

c

FPD K K' c e2⁄ K''+=

e1 e2, e1k mod e2 1 … e2 1–, ,{ } k

1 … e2 1–, ,{ } K' a1e2( ) a2⁄= K''

c mod e2

N A( )

A a b

0 c
=

N A( ) K a c K–( ) a+=

K K' c e2⁄ K''+= K' a1e2( ) a2⁄= K'' a1 a2 e2, ,

a N A( ) a c= a
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.

This can be transformed to an upper triangular matrix as:

.

The various quantities are:

, , , , and

.

To compute , we need the number of  in  that satisfy

.

By counting, . Hence . So

.

Example 5-4: This is a more dramatic example where the counting step in the above

method is extremely small. Consider

.

The various quantities are:

, , , , and

.

To compute , we need the number of  in  that satisfy

.

Since , we just need to check one value of , namely  to determine

. Since , . Hence ,

and

A 21 2⁄ 3 2⁄–

3 2⁄ 9 2⁄–
=

1
2
--- 1 6–

1 7–

21 3–

3 9–

3 2⁄ 51 2⁄
0 30

=

a a a1 a2⁄≡– 1 2⁄= b b1 b2⁄≡ 51 2⁄= e1 17 e2, 20= = c e2⁄ 1=

K' a1e2( ) a2⁄ 10= =

K'' k 0 … 30 mod 20 1–, , 9={ }

17k mod 20 10≤

K'' 3= K K' c e2⁄ K''+ 13= =

N A( ) K a c K–( ) a+ 47= =

A 125 3⁄ 61 7⁄
0 122 3⁄

=

a a a1 a2⁄≡– 1 3⁄= b b1 b2⁄≡ 61 7⁄= e1 3 e2, 14= = c e2⁄ 2=

K' a1e2( ) a2⁄ 4= =

K'' k 0 … 40 mod 14, , 12={ }

3k mod 14 4≤

e2 1– 13= k k 13=

K'' 39 mod 14 11 4>= K'' K' 4= = K K' c e2⁄ K''+ 12= =
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,

and this has been verified by counting.

5.7.4 Some Final Thoughts on the Problem

The method given above, although much more efficient in practice than a brute

force method, is not efficient in the technical sense of giving us a polynomial time

algorithm for the problem. This is because the complexity of the above method is

dominated by the counting step where there are potentially  steps. Since

, where these quantities were defined before,  is not bounded by a

logarithmic function of any of the quantities that appear in the problem. However, unlike

the brute force method, where counting has to be done in both directions, the counting step

above is only along the vertical direction and is hence considerably more efficient than the

brute force method in general.

Finally, the method above results in a formula that is messy and very non-intuitive,

and is far from elegant. Perhaps there is no elegant solution to this problem at all, and it

might even be NP-hard if the counting step turns out to be NP-hard (we would still have to

give a reduction). Also, the generalization to higher dimensions will only be messier since

we have relied on operations on the individual entries of the matrix, and not on matrix

operations. Perhaps an algorithm can be developed, but we do not pursue it here.

5.8 Conclusions and Open Problems

We have described an extension of MDSDF to handle arbitrary sampling lattices.

The key extensions have been to associate two parameters for each arc in the graph: the

sampling lattice for the data on that arc, and a “support matrix” that describes the region of

the space where current data has been produced. Equivalently, these two parameters can be

specified for source actors, and can be determined for the other arcs by tracing the

operations that each node in the graph performs. Since decimation and expansion are the

only two actors (of signal processing interest) that change lattices, it should be

straightforward to determine the lattice and support matrix for every arc in the graph given

N A( ) K a c K–( ) a+ 12 41 29 42×+× 1710= = =

e2 2⁄

e2 b2c1 gc⁄= e2
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the information at the source (assuming that there are no cycles in the graph). Given these

two parameters, we have shown how we can compute a global ordering for the data on the

arcs, and how generalized “rectangles” can be defined. Using these, we can derive a set of

decoupled balance equations in an analogous manner to the rectangular case. However, this

is not enough; for decimators, some other constraints must also be satisfied. The directions

of the repetitions of a node is also generalized to depend on the lattice and support matrix

on outgoing and incoming arcs; that is, the direction can be different for an input arc from

an output arc.

There are many open problems and issues that have not been tackled yet. Some of

these are listed below:

• The issue of buffering efficiency and buffer implementations has not

been addressed. It would be desirable to have systematic ways of

determining schedules that minimize for code size and buffer-usage, as

was done in the SDF case for well-ordered graphs and general acyclic

graphs. The techniques in can be easily applied to the rectangular

MDSDF case since rectangular MDSDF can be thought of as several

independent SDF graphs (one for each dimension); with non-

rectangular systems, it is less obvious how to extend the techniques of.

The buffers would probably have to be implemented directly as linear

arrays but indexed appropriately (at least for simulation) since

techniques like using matrix and submatrix data-structures [Chen94]

may not be feasible for non-rectangular support matrices.

• An extension of lemma 5-6 to arbitrary support regions would be

desirable. This would give us a way of choosing factorizations that do

not have the cyclostatic behavior that an arbitrary factorization

generally does. This would also ensure that solving balance equations

is sufficient and constraints of the type in equation 5.18 do not have to

be solved. However, this appears to be difficult since there does not

seem to be a clean, analytical way of expressing the ordering of
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samples as done in table 1. Since the understanding of how points on

, where  is the decimation matrix, map to the rectangle

under this ordering is needed before a claim of the sort made in lemma

5-6, this extension would be non-trivial.

• Methods of choosing factorizations that lead to the smallest solution to

the balance equations are desirable, provided of-course that the

direction of the resulting streams is acceptable.

• More complicated examples. The examples presented in this report

have been those of simple, chain-structured graphs. Concrete examples

of acyclic graphs that represent non-rectangular systems with a lot of

inherent functional parallelism include directional decomposition

filterbanks as described in [Bamb90], and hierarchical video coding

applications [Bosv92].

• Examination of higher dimensions. The examples in this report have all

been for 2-D MDSDF; generalizations to higher dimensions may be

trickier. A concrete example of a 3 dimensional digital signal is a fully

scanned TV signal (where the horizontal direction is scanned also).

• There are many other ways of doing the sampling-structure conversion

[Mand93]. If more decimation stages are used, more of the constraints

of the type in equation 5.18 have to be solved. Some of these ways of

doing the conversion might be better in computational terms than other

ways in that the repetitions of the various actors in between are lower

for some ways than others. It would be interesting to explore systematic

ways of evaluating the various ways.

LAT M( ) M
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6
Conclusion and Future Work

In this thesis, we have solved several scheduling problems for programs expressed

as SDF and MDSDF graphs. Since the potentially large rate changes in SDF and MDSDF

specifications can result in a code and buffer-memory size explosion, a primary focus has

been on generating schedules that minimize code and data memory size. Code size

optimality is obtained by generating single appearance schedules. Algorithms and

heuristics are given that generate single appearance schedules optimized for buffering

memory. In particular, three basic algorithms are developed and discussed: a dynamic

programming algorithm that is used for post-optimization, and two heuristics: RPMC and

APGAN. These two algorithms are complementary in the way they approach the problem,

and an extensive experimental study confirms this by showing that for graphs that have

irregular topologies and rate changes, RPMC exhibits better performance, while for graphs

having regular topologies and rate changes, APGAN performs better. In addition APGAN

is optimal for a class of SDF graphs that includes several practical systems. All these

algorithms are shown to extend to MDSDF also. The three algorithms discussed have all

been implemented in the Ptolemy framework, in the SDF domain.

In Chapter 5, the thesis shifts focus to a rather different type of problem: namely,

generalizing the MDSDF model to permit arbitrary sampling lattices. Multidimensional

multirate systems sampled on non-rectangular lattices are interesting and useful, and it is

desirable to have a dataflow model capable of expressing such systems. We generalize the

MDSDF model, and show that the key property of compile-time schedulability can be

retained in the generalized model. In particular, we show that in the generalized model, the
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problem of solving balance equations becomes much more challenging, and we give an

algorithm for solving the augmented balance equations that arise in this model. We also

show a practical system using this model.

Below we outline some future directions for research in these areas.

6.1 Trading Code Size and Memory Size.

Our approach to joint code and data minimization in SDF graphs has been to

minimize the amount of buffering memory required by single appearance schedules. While

single appearance schedules are optimal with respect to program memory, it might be

desirable in some instances to allow non-single appearance schedules in order to gain lower

buffer requirements. As shown in Chapter 2, the lower bound on the amount of memory

required byany schedule on an edge  that has , , and 0 delays is

. The BMLB for this edge, the lower bound if we restrict the schedules

to besingle appearance schedules, is given by . Clearly, there is a large gap

between these two quantities. Correspondingly, the length of a schedule that achieves the

first bound can be as high as  while the length for the single appearance schedule is

only  (neglecting looping code overhead). Hence, there is potential for trading-off these

two parameters in interesting ways. The graph in figure 6-1 illustrates this trade-off rather

dramatically. The BMLB for the graph is  while the lower bound on the buffer size

for any schedule is . The schedule  also has a buffering requirement of

200, and is in fact the same schedule generated by the minimum buffer scheduling heuristic

given in Chapter 2, except that it has been looped (or “compressed”) optimally (the

dynamic programming algorithm given in Chapter 3 can accomplish this for example). The

schedule is a 2-appearance schedule, and is likely to be much more useful in practice than

the single appearance schedule because the increase in code size is negligible compared to

e e( )prd a= cns e( ) b=

a b gcd a b,( )–+

ab gcd a b,( )⁄

a b+

2

A B
100 101

Figure 6-1A graph to illustrate the dramatic decrease in
buffering memory by allowing 2-appearance schedules.

10100

200 A 100 AB( )
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the decrease in buffering memory. Hence, it would be interesting to develop systematic

ways of generating -appearance schedules optimized for buffering memory usage, where

no actor appears more than  times and  is fairly small. One approach is to simply use the

heuristic from Chapter 2 and use the dynamic programming algorithm to generate an

optimal looping hierarchy. However, in addition to this algorithm taking exponential time,

it is not clear whether the optimal looping structure will ensure that each actor appears only

a “few” times. More desirable would be an algorithm that can systematically expand a

single appearance schedule until the buffering requirement has been lowered suitably.

While it is easy to devise heuristics to do this right away, it would be more interesting to

develop algorithms that are optimal, at least for a restricted class of graphs.

6.2 Some Open Complexity Issues

As mentioned in Chapter 3, the complexity of thelegalCutIntoBddSets

problem remains open although we strongly suspect it to be NP-complete. If it turns out to

be polynomial time solvable, it would be interesting to see its impact on the RPMC

heuristic; whether RPMC would exhibit better performance. Recall that

legalCutIntoBddSets  is used by RPMC, which is itself a heuristic.

The complexity of generating buffer-optimal single appearance schedules for

delayless, multirate SDF graphs also remains open. The NP-completeness result given in

Chapter 3 allows delays on edges; however, the presence of rate changes should more than

make up in difficulty whatever is lost by not allowing delays. Recall that the NP-

completeness result of Chapter 3 applied to homogenous graphs with delays allowed. In a

homogenous graph without delays, all schedules have the same buffer memory

requirement; namely, , the number of edges. However, if the graph is not homogenous,

and rate changes are allowed, then different topological sorts result in different buffering

costs (even if there are no delays of-course), and the problem appears to be quite difficult;

we strongly suspect that the problem is NP-complete.

There is also the interesting question of whether all SDF graphs have a valid

schedule of length polynomial in the size of the graph. For example, it might be the case

that for some strongly connected, tightly interdependent graph,all schedules have the

k

k k

E
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property that they cannot be compressed to a polynomial length by the dynamic

programming algorithm presented in Chapter 3. For instance, consider a string like

. This string is incompressible in the sense that no loops (of iteration counts

more than 1) can be organized in it in order to shorten its length. This issue might in fact

be a rather deep problem, that might require Kolmogorov complexity-theoretic or

information theoretic arguments. We recall that there are proofs as to why an arbitrary

integer  requires  bits in general to encode it; it is based on the argument that

most binary strings have maximum entropy, and are incompressible in a Kolmogorov-

complexity theoretic sense [Cove91]. Perhaps, the strings corresponding to SDF schedules

can be mapped to integers in some manner in order to apply these arguments to SDF

schedules. In any case, we suspect that this problem is not simple.

6.3 MDSDF and GMDSDF Scheduling

SDF is a fairly mature model of computation now, at least compared to MDSDF. It

is not yet clear whether MDSDF will prove to be as useful and intuitive to use as SDF is.

Certainly, many specifications in MDSDF (for example, the matrix multiplication

specification in [Lee93]) are cryptic and require considerable work to understand. Even so,

a number of multiprocessor scheduling problems have to be solved for MDSDF graphs. It

might be possible to extend techniques discussed in Chapter 2 to MDSDF. Some recent

work on multidimensional retiming [Pass94][Denk96] appears to be promising. Also, we

outlined several open issues in the GMDSDF model at the end of Chapter 5.

ABCBACBC

k Θ k( )log( )



185

REFERENCES

[Aho88]

A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Principles, Techniques, and

Tools, Addison-Wesley, 1988.

[Alli86]

L. Allison, A Practical Introduction to Denotational Semantics, Cambridge Uni-

versity Press, 1986.

[Alur95]

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, and others, “The Algo-

rithmic Analysis of Hybrid Systems,”Theoretical Computer Science, Vol. 138,

No.1, February 1995.

[Ambl92]

A. L. Ambler, M. M. Burnett, and B. A. Zimmerman, “Operational Versus Defini-

tional: A Perspective on Programming Paradigms,”IEEE Computer Magazine,

Vol. 25, No. 9, September, 1992.

[Ansa88]

R. Ansari, S. H. Lee, “Two Dimensional Nonrectangular Interpolation, Decimation

Filterbanks”,Proceedings of the ICASSP ‘88, New York, USA, 1988.

[Ashc95]

E. A. Ashcroft, A. A. Faustini, R. Jagannathan, W. W. Wadge,Multidimensional

Programming, Oxford University Press, 1995.

[Bacc93]

F. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat,Synchronization and Linearity,

Prentice Hall, 1993.

[Back78]



186

J. Backus, “Can Programming be Liberated from the Von-Neumann style? A func-

tional style and its algebra of programs,”Communications of the ACM, Vol.21,

No.8, August, 1978.

[Bamb90]

R. H. Bamberger, “The Directional Filterbank: a Multirate Filterbank for the

Directional Decomposition of Images”, Ph.D. Thesis, Georgia Institute of Tech-

nology, November 1990.

[Bane88]

U. Banerjee,Dependence Analysis for Supercomputing, Kluwer Academic Pub-

lishers, 1988.

[Barr91]

B. Barrera and E. A. Lee, “Multirate Signal Processing in Comdisco’s SPW,”Pro-

ceedings of the International Conference on Acoustics, Speech, and Signal Pro-

cessing, Toronto, April, 1991.

[Beec95]

M. Von der Beeck, “A Comparison of Statecharts Variants,”Formal Techniques in

Real-Time and Fault-Tolerant Systems, Third International Symposium Proceed-

ings, Germany, September 1994.

[Benv91]

A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-

Time Systems,”Proceedings of the IEEE, Vol.79, No. 9, September 1991.

[Berr85]

G. Berry and P-L Curien, “Theory and Practice of Sequential Algorithms: the Ker-

nel of the Programming Language CDS,” Algebraic Methods in Semantics, Cam-

bridge University Press, pp35-88, 1988.

[Bhat93]

S. Bhattacharyya and E. A. Lee, “Scheduling synchronous dataflow graphs for effi-



187

cient looping”,Journal of VLSI Signal Processing, Vol. 6, No. 3, December, 1993.

[Bhat94a]

S. S. Bhattacharyya and E. A. Lee, “Memory management for dataflow program-

ming of multirate signal processing algorithms”,IEEE Transactions on Signal

Processing, Vol. 42, No. 5, May, 1994.

[Bhat94b]

S. S. Bhattacharyya,Compiling Dataflow Graphs for Signal Processing, Ph.D. the-

sis, Memorandum No. UCB/ERL M94/52, Electronics Research Laboratory, Uni-

versity of California at Berkeley, July, 1994.

[Bhat95]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Optimal Parenthesization of

Lexical Orderings for DSP Block Diagrams,”IEEE Workshop on VLSI Signal Pro-

cessing, Osaka, Japan, October 1995.

[Bhat96a]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis from Data-

flow Graphs, Kluwer Academic Publishers, Norwood, Massachusetts, 1996.

[Bhat96b]

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “APGAN and RPMC: Compli-

mentary Heuristics for Translating DSP Block Diagrams into Efficient Software

Implementations”,to appear in the Design Automation for Embedded Systems

Journal, 1997.

[Bier95]

J. C. Bier, P. D. Lapsley, and E. A. Lee,Design Tools and Methodologies for DSP

Systems — Volumes 1 & 2: DSP Design Challenges, Methodologies, and Tools,

Berkeley Design Technologies, Inc., Fremont, California, 1995.

[Bosv92]

F. Bosveld, R. L. Lagendijk, J. Biemond, “Compatible Spatio-Temporal Subband



188

Encoding of HDTV”,Signal Processing, Vol. 28, No. 3, September 1992.

[Buck91]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Process-

ing In Ptolemy,” Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, Toronto, April, 1991.

[Buck93]

J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using

the Token Flow Model, Ph.D. thesis, Memorandum No. UCB/ERL M93/69, Elec-

tronics Research Laboratory, University of California at Berkeley, September,

1993.

[Buck94]

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for

Simulating and Prototyping Heterogeneous Systems,”International Journal of

Computer Simulation, Vol. 4, April, 1994.

[Cass93]

C. Cassandras,Discrete Event Systems, Irwin, 1993.

[Chan96]

W. -T. Chang, S. Ha, and E. A. Lee, “Heterogenous Simulation -- Mixing Discrete

Event Models with Dataflow,”to appear, invited paper in the RASSP special issue

of theJournal on VLSI Signal Processing, 1996.

[Chen94]

M. C. Chen, “Developing a Multidimensional Synchronous Dataflow Domain in

Ptolemy”, MS Report, UC Berkeley, June 1994.

[Corm90]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms,

McGraw-Hill, 1990.

[Cove91]



189

T. Cover, J. Thomas,Elements of Information Theory, Wiley, 1991.

[Covi87]

C. D. Covington, G. E. Carter, and D. W. Summers, “Graphic Oriented Signal Pro-

cessing Language — GOSPL,”Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Dallas, April, 1987.

[Cubr93]

M. Cubric and P. Panangaden, “Minimal Memory Schedules for Dataflow Net-

works,” CONCUR ‘93, Hildesheim, Germany, August, 1993.

[Deme94]

A. Demeure, “Formalisme de Traitement du Signal: Array-OL,” Technical report,

Thomson SINTRA ASM, Sophia Antipolis, Valbonne, 1994.

[Denk96]

T. C. Denk, M. Majumdar, and K. K. Parhi, “Two-Dimensional Retiming with

Low Memory Requirements,”Proceedings of the ICASSP ’96, Atlanta, Ga, May

1996.

[Denn75]

J. B. Dennis,First Version of a Data Flow Procedure Language, MAC Technical

Memorandum 61, Laboratory for Computer Science, Massachusetts Institute of

Technology, May, 1975.

[Denn80]

J. B. Dennis, “Dataflow Supercomputers,”IEEE Computer Magazine, Vol. 13, No.

11, November 1980.

[Desm93]

D. Desmet and D. Genin, “ASSYNT: Efficient Assembly Code Generation for

DSPs Starting from a Data Flowgraph,”Proceedings of the International Confer-

ence on Acoustics, Speech, and Signal Processing, Minneapolis, April, 1993.

[Dubo85]



190

E. Dubois, “The Sampling and Reconstruction of Time-varying Imagery with

Applications in Video Systems”,Proceedings of the IEEE, Vol. 73, April 1985.

[Dudg84]

D. E. Dudgeon, R. M. Mersereau,Multidimensional Digital Signal Processing,

Prentice Hall, 1984.

[Epst89]

R. L. Epstein, W. A. Carnielli,Computability Computable Functions, Logic, and

the Foundation of Mathematics, Wadsworth & Brooks/Cole, 1989.

[Gao92]

G. R. Gao, R. Govindarajan, and P. Panangaden, “Well-Behaved Programs for

DSP Computation,”Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, San Francisco, March, 1992.

[Gare79]

M. R. Garey and D. S. Johnson,Computers and Intractability, W. H. Freeman and

Co., NY, 1979.

[Geni89]

D. Genin, J. De Moortel, D. Desmet, and E. Van de Velde, “System Design, Opti-

mization, and Intelligent Code Generation for Standard Digital Signal Processors,”

Proceedings of the International Symposium on Circuits and Systems, Portland,

Oregon, May, 1989.

[Henz96]

T. A. Henzinger, “The theory of hybrid automata,”Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science,New Brunswick, NJ, USA, July

1996.

[Ho88a]

W. H. Ho, Code Generation for Digital Signal Processors Using Synchronous

Dataflow, Master’s project report, Department of Electrical Engineering and Com-



191

puter Sciences, University of California at Berkeley, May, 1988.

[Ho88b]

W. H. Ho, E. A. Lee, and D. G. Messerschmitt, “High Level Dataflow Program-

ming for Digital Signal Processing,”VLSI Signal Processing III, IEEE Press, 1988.

[Hopk93]

R. Hopkins, “Progress on HDTV Broadcasting Standards in the United States”,

Signal Processing:Image Communication, Vol. 5, December 1993.

[How90]

S. How,Code Generation for Multirate DSP Systems in Gabriel, Master’s project

report, Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, May, 1990.

[Huda89]

P. Hudak, “Conception, evolution, and application of functional programming lan-

guages”Computing Surveys, Vol. 21, No. 3, September, 1989.

[Iver62]

K. E. Iverson,A Programming Language, Wiley, 1962.

[Kahn74]

G. Kahn, “The Semantics of a Simple Language for Parallel Programming,”Pro-

ceedings of the IFIP Congress 74, North-Holland Publishing Co., 1974.

[Kahn93]

G. Kahn, G. D. Plotkin, “Concrete Domains,”Theoretical Computer Science, Vol.

121, No. 1-2, December, 1993.

[Kala93]

A. Kalavade, and E. A. Lee, “A Hardware/Software Codesign Methodology for

DSP Applications,”IEEE Design and Test, Vol. 10, No. 3, September 1993.

[Kapl87]

D. J. Kaplan,et al., Processing Graph Method Specification Version 1.0, Unpub-



192

lished memorandum, Naval Research Laboratory, Washington D.C, December,

1987.

[Karj88]

M. Karjalainen and S Helle, “Block Diagram Compilation and Graphical Editing

of DSP Algorithms in the QuickSig System”,Proceedings of the International

Symposium on Circuits and Systems, Espoo, Finland, June, 1988.

[Karl90]

G. Karlsson, M. Vetterli, “Theory of Two Dimensional Multirate Filter Banks”,

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-38,

June 1990.

[Karp66]

R. M. Karp and R. E. Miller, “Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing,”SIAM Journal of Applied Mathematics,

Vol. 14, No. 6, November, 1966.

[Karp69]

R. M. Karp, and R. E. Miller, “Parallel Program Schemata,”Journal of Computer

and System Sciences, Vol. 3, 1969.

[Karp72]

R. M. Karp, “Reducibility Among Combinatorial Problems,” Symposium on the

Complexity of Computer Computations, Raymond E. Miller and James W.

Thatcher editors, Plenum Press, 1972.

[Kell61]

J. Kelly, Lochbaum, and V. Vyssotsky, “A Block Diagram Compiler,”Bell System

Technical Journal,Vol. 40, No. 3, May, 1961.

[Kern70]

B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning

Graphs,”Bell System Technical Journal, Vol. 49, No.2, February 1970.



193

[Kons94]

K. Konstantinides and J. R. Rasure, “The Khoros Software Development Environ-

ment for Image and Signal Processing,”IEEE Transactions on Image Processing,

Vol. 3, No. 3, May, 1994.

[Kung88]

S. Y. Kung,VLSI Array Processors, Prentice-Hall, Englewood Cliffs, New Jersey,

1988.

[Lauw90]

R. Lauwereins, M. Engels, J.A. Peperstraete,   E. Steegmans, and J. Van Ginder-

deuren, “GRAPE: A CASE Tool for Digital Signal Parallel Processing,”IEEE

ASSP Magazine, Vol. 7, No. 2, April, 1990.

[Lauw94]

R. Lauwereins, P. Wauters, M. Ade, and J. A. Peperstraete, “Geometric Parallelism

and Cyclo-Static Data Flow in GRAPE-II,”IEEE Workshop on Rapid System Pro-

totyping, Grenoble, June, 1994.

[Lear90]

K. W. Leary and W. Waddington, “DSP/C: A Standard High Level Language for

DSP and Numeric Processing,”Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, Albuquerque, April, 1990.

[Lee86]

E. A. Lee,A Coupled Hardware and Software Architecture for Programmable

Digital Signal Processors, Ph.D. thesis, Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley, May, 1986.

[Lee87]

E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow

Programs for Digital Signal Processing,”IEEE Transactions on Computers, Vol.

C-36, No. 2, February, 1987.



194

[Lee89]

E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. Bhattacharyya, “Gabriel: A Design

Environment for DSP,”IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, Vol. 37, No. 11, November, 1989.

[Lee91]

E. A. Lee, “Consistency in Dataflow Graphs,”IEEE Transactions on Parallel and

Distributed Systems, Vol. 2, No. 2, April, 1991.

[Lee93]

E. A. Lee, “Multidimensional Streams Rooted in Dataflow,”Proceedings of the

IFIP Working Conference on Architectures and Compilation Techniques for Fine

and Medium Grained Parallelism, Orlando, January, 1993.

[Lee95]

E. A. Lee and T. M. Parks, “Dataflow Process Networks,”Proceedings of the

IEEE, Vol. 83, No. 5, May, 1995.

[Lee96]

E. A. Lee, and A. Sangiovanni-Vincentelli, “The Tagged Signal Model —A Pre-

liminary Version of a Denotational Framework for Comparing Models of Compu-

tation,” UCB/ERL Memo. M96/33, Electronics Research Laboratory, UC

Berkeley, Ca, June 1996.

[Lee96b]

E. A. Lee,EE290N—Specification and Modeling of Reactive Real-Time Systems,

class notes, Dept. of EECS, University of California, Berkeley, http://

ptolemy.eecs.berkeley.edu/~eal/ee290n/notes.html, Fall semester, 1996.

[Leis91]

C. E. Leiserson, J. B. Saxe, “Retiming Synchronous Circuitry, ”Algorithmica,

Vol.6, No.1, 1991.

[Liao95]



195

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, “Code Optimization

Techniques for Embedded DSP Microprocessors,”Proceedings of the 32nd Design

Automation Conference, June, 1995.

[Mand93]

R. Manduchi, G. M. Cortelazzo, and G. A. Mian, “Multistage Sampling Structure

Conversion of Video Signals”,IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 3, No. 5, October 1993.

[McGr83]

J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I. Dobes,

and P. Hohensee,SISAL: Streams and Iteration in a Single Assignment Language:

Language Reference Manual Version 1.1, Lawrence Livermore Laboratory, July,

1983.

[Mers83]

R. M. Mersereau, T. C. Speake, “The Processing of periodically sampled Multidi-

mensional Signals”,IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, Vol. ASSP-31, Feb 1983.

[Mess84]

D. G. Messerschmitt, “Structured Interconnection of Signal Processing Programs,”

Proceedings of Globecom, Atlanta, 1984.

[Mull91]

Arrays, Functional Languages, and Parallel Systems, editted by L. M. R. Mullin,

M. Jenkins, G. Hains, R. Bernecky, G. Gao, Kluwer Academic Publishers, 1991.

[Murt93]

P. K. Murthy, Multiprocessor DSP Code Synthesis in Ptolemy, Master’s project

report, Memorandum No. UCB/ERL M93/66, Electronics Research Laboratory,

University of California at Berkeley, August, 1993.

[Murt94a]



196

P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Minimizing Memory Require-

ments for Chain Structured Synchronous Dataflow Graphs”,Proceedings of the

ICASSP ‘94, Adelaide, Australia, April, 1994.

[Murt94b]

P. K. Murthy and E. A. Lee, “On the Optimal Blocking Factor for Blocked, Non-

Overlapped Schedules”, ERL Memo No. UCB/ERL M94/46, Electronics Research

Lab, UC Berkeley, Ca 94720, June 1994; condensed version inProceedings of the

28th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, USA, November, 1994.

[Murt94c]

P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Combined Code and Data Min-

imization for Synchronous Dataflow Programs”, ERL Memo No. UCB/ERL M94/

93, Electronics Research Lab, November 1994, UC Berkeley, CA 94720, andto

appear in theFormal Methods in System Design Journal, 1997.

[Murt95]

P. K. Murthy, E. A. Lee, “A Generalization of Multidimensional Synchronous

Dataflow to Arbitrary Sampling Lattices”,Proceedings of the ICASSP ‘96,

Atlanta, USA, May, 1996.

[Naye93]

K. Nayebi, T. P. Barnwell, and M. J. T. Smith, “Nonuniform Filter Banks: A

Reconstruction and Design Theory,’’IEEE Transactions on Signal Processing,

Vol. 41, No. 3, March, 1993.

[Nemh88]

G. L. Nemhauser, L. A. Woolsey,Integer and Combinatorial Optimization, Wiley,

1988.

[Ohal91]

D. R. O’Hallaron,The Assign Parallel Program Generator, Memorandum CMU-



197

CS-91-141, School of Computer Science, Carnegie Mellon University, May, 1991.

[Olso92]

T. J. Olson, N. G. Klop, M. R. Hyett, and S. M. Carnell, “MAVIS: a Visual Envi-

ronment for Active Computer Vision,” Proceedings of the 1992 IEEE Workshop on

Visual Languages, Seattle, September, 1992.

[Parh91]

K. K. Parhi, D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative

Data-Flow Programs via Optimum Unfolding,”IEEE Transactions on Computers,

February, 1991.

[Pass94]

N. Passos, E. H. -M. Sha, and S. Bass, “Schedule-based Multidimensional Retim-

ing on Data Flow Graphs,”Proceedings of the 8th International Parallel Process-

ing Symposium, April 1994.

[Petr81]

J. L. Peterson,Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.

[Pino95a]

J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using

Ptolemy,” invited paper inJournal of VLSI Signal Processing, January, 1995.

[Pino95b]

J. Pino, S. S. Bhattacharyya, and E. A. Lee, “A Hierarchical Multiprocessor Sched-

uling System for DSP Applications,’’Proc. IEEE Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, November, 1995.

[Powe92]

D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Optimized DSP

Assembly Code from Signal Flow Block Diagrams,”Proceedings of the Interna-

tional Conference on Acoustics, Speech, and Signal Processing, San Francisco,

March, 1992.



198

[Rams84]

T. A. Ramstad, “Digital Methods for Conversion between Arbitrary Sampling Fre-

quencies”,IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.

ASSP-32, June 1984.

[Reek92]

H. J. Reekie, “Integrating Block-Diagram and Textual Programming for Parallel

DSP,” Proceedings of the 3d International Symposium on Signal Processing and

its Applications,Queensland, Australia, August, 1992.

[Reit68]

R. Reiter, “Scheduling Parallel Computations,”Journal of the ACM, Vol. 15, No.

4, October, 1968.

[Ritz92]

S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Pro-

cessing Systems,”Proceedings of the International Conference on Application

Specific Array Processors, Berkeley, August, 1992.

[Ritz93]

S. Ritz, M. Pankert, and H. Meyr, “Optimum Vectorization of Scalable Synchro-

nous Dataflow Graphs,”Proceedings of the International Conference on Applica-

tion-Specific Array Processors, Venice, October, 1993.

[Ritz95]

S. Ritz, M. Willems, H. Meyr, “Scheduling for Optimum Data Memory Compac-

tion in Block Diagram Oriented Software Synthesis,”Proceedings of the ICASSP

95, Detroit, Michigan, May 1995.

[Seth75]

R. Sethi, “Complete Register Allocation Problems,”SIAM Journal on Computing,

Vol. 4, No. 3, September, 1975.

[Shan87]



199

K. S. Shanmugan, G. J. Minden, E. Komp, T. C. Manning, and E. R. Wiswell,

Block-Oriented System Simulator (BOSS), Telecommunications Laboratory, Uni-

versity of Kansas, Internal Memorandum, 1987.

[Sih91]

G. C. Sih,Multiprocessor Scheduling to Account for Interprocessor Communica-

tion, Ph.D. thesis, Memorandum No. UCB/ERL M91/29, Electronics Research

Laboratory, University of California at Berkeley, April, 1991.

[Stoy77]

J. Stoy,Denotational Semantics : the Scott-Strachey Approach to Programming

Language Theory, MIT Press, 1977.

[Tow88]

J. Tow, S. L. Gay, and J. Hartung, “Implementation of DSP Applications Using the

AT&T DSP32C Compiler and Application Library,”Proceedings of the Interna-

tional Symposium on Circuits and Systems, Espoo, Finland, June, 1988.

[Vaid90]

P. P. Vaidyanathan, “Fundamentals of Multidimensional Multirate Digital Signal

Processing,”Sadhana, vol. 15, pp. 157-176, Nov. 1990.

[Vaid93]

P. P. Vaidyanathan,Multirate Systems and Filter Banks, Prentice Hall, 1993.

[Veig90]

M. Veiga, J. Parera, and J. Santos, “Programming DSP Systems on Multiprocessor

Architectures,”Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, Albuquerque, April, 1990.

[Verk96]

D. Verkest, K. Van Rompaey, I. Bolsens, H. De Man, “POPE — A Design Envi-

ronment for Heterogeneous Hardware/Software Systems,” to appear,Design Auto-

mation for Embedded Systems, 1996.



200

[Visc91]

E. Viscito, J. P. Allebach, “The Analysis and Design of Multidimensional FIR Per-

fect Reconstruction Filterbanks for Arbitrary Sampling Lattices”,IEEE Transac-

tions on Circuits and Systems, Vol. CAS-38, January 1991.

[Watl95]

J. A. Watlington, V. M. Bove Jr., “Stream-based Computing and Future Televi-

sion”, Proceedings of the 137th SMPTE Technical conference, September 1995.

[Yates93]

R. K. Yates, “Networks of Real-Time Processes,” in Concur ‘93,Proc. of the 4th

Int. Conf. on Concurrency Theory, E. Best, ed., Springer-Verlag LNCS 715, 1993.

[Yu93]

K. H. Yu and Y. H. Hu, “Optimized Code Generation for Programmable Digital

Signal Processors,”Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, Minneapolis, April, 1993

[Zima90]

H.Zima and B.Chapman,Supercompilers for Parallel and Vector Computers,

ACM Press, 1990.

[Ziss87]

M. A. Zissman, G. C. O’Leary, and D. H. Johnson, “A Block Diagram Compiler

for a Digital Signal Processing MIMD Computer,”Proceedings of the Interna-

tional Conference on Acoustics, Speech, and Signal Processing, Dallas, April,

1987.

[Zivo95]

V. Zivojnovic, H. Schraut, M. Willems, and R. Schoenen, “DSPs, GPPs, and Mul-

timedia Applications — An Evaluation Using DSPStone,”Proceedings of ICSPAT,

November, 1995.


