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Introduction  Symmetry: Relationship between parts of an object with respect to size, shape and position.  Easy to recognize symmetry in nature: Flowers, leaves, animals etc….  Group Theory developed in the late 1700’s.  Early 1800’s Évariste Galois (1811-1832) invented much of the fundamentals of group theory.  This coincided with developments in matrix mathematics.  Chemists use a subset of group theory called representation theory.  Group characters were primarily the work of George Frobenious (1849-1917) Early chemical applications to quantum mechanics came from the work of Hermann Weyl (1885-1955) and Eugene Wigner (1902-1995)  
Symmetry Elements and Symmetry Operations  A symmetry element is a geometric entity (point, line or plane) A symmetry operator performs and action on a three dimensional object  
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Symmetry operators are similar to other mathematical operators (× , ÷ , + , log, cos, etc…)    We will be use only five types of operators in this subject  Operator SymbolIdentity ERotation CMirror plane σInversion iImproper rotation S All symmetry operators leave the shape (molecule) in an equivalent position, i.e. it is indistinguishable before and after the operator has performed its action. 
Identity (E)  This operator does nothing and is required for completeness.  Equivalent to multiplying by 1 or adding 0 in algebra.   
Rotation (C) Rotate clockwise around an axis by 2π/n if the rotation brings the shape (molecule) into an equivalent position.   The symmetry element is called the axis of symmetry.  For a 2π\n rotation there is an n-fold axis of symmetry.  This is denoted as Cn .  Many molecules have more than one symmetry axis.  The axis with the largest n is called the principal axis. 
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   Consider a square planar molecule like PtCl4. 

              possible rotations.    →  and  →  We classify this as E, 2C4, C2.  There are also two other C2 axes (along the bonds and between the bonds)   
Reflection (σ)  The shape (molecule) is reflected through a plane.  (spiegel is German for “mirror”) If a plane is ⊥ to the principal rotation axis then it is called σh (horizontal). If it is along the principal axis then it is called σv (vertical).  There may be more than one σv .  If the plane bisects an angle between 3 atoms then it is called σd (dihedral). The reflection plane is the symmetry element.  
Inversion (i) All points in the shape (molecule) are reflected though a single point.  The point is the symmetry element for inversion.  This turns the molecule inside out in a sense.  The symmetry element is the point through which the shape is inverted. 
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Improper Rotation (S)  Rotation by 2π/n followed by reflection, σ ⊥ to the rotation axis.  Since performing σ two times is the same as doing nothing (E), S can only be performed an odd number of time. =      if k is odd =      if k is even k must be an odd value e.g.    =   and =  Additionally… =  =      if n is odd =      if n is even  The symmetry element for S is the rotation axis.        
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Immediate Applications of Symmetry  Dipole Moments If a molecule has a dipole moment then the dipole must lie along the symmetry elements (lines, planes). 
• If a molecule has ⊥ axis of rotation, then no dipole exists. 
• If there is a σ , then the dipole must lie within the plane.  If there are multiple σ the dipole must lie at the intersection of the planes. 
• If a molecule has an inversion center (i) then no dipole exists. Examples with H2O, NH3, PtCl4. Optical Activity In general, if a molecule has an improper rotation (Sn), then it is optically inactive.  This is because, a molecule with an Sn is always superimposable on its mirror image.             
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Symmetry Operations Identifying all symmetry elements and operations in molecules. Cyclopropane – D3h  

E, 2C3, 3C2, σh, 2S3, 3σv   There is an  and an   (also called )  Ethane (staggered) – D3d 
   E, 2C3, 3C2, i, 2S6, 3σd  1,3,5-trihydroxybenzene (planar)  – C3h 

  E, 2C3, σh 2S3  There is an  and an   (also called )  
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Algebra of Operators An operator is a symbol for the operation (rotation, reflection, etc…) e.g. C3 is the operator for the operation of clockwise rotation by 2π/3 Operators can operate on functions f(x) to generate new functions e.g.  O ≡ multiply by 3 f(x) = 2+3x2  Then  Of(x) = 6+9x2 O can be defined any way we like, d/dx , ( )2 , etc…  
Special case of linear operators Linear operators have the following property O(f1 + f2) = Of1 + Of2 And O(kf1) = kOf1  where k is a constant Differentiation clearly is a linear operator  ( + ) = 2 + 1  or + = 2 + 1    and   3 = 3 = 6       
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Algebra of linear operators  1. Sum Law 2. Product Law 3. Associative Law 4. Distributive Law 
Sum Law ( + ) ( ) = ( ) +  ( )  
Product Law ( ) =  ( )   O2 operates first to produce a new function, then O1 operates to produce another new function. Note: the order of operations is important here.  O1O2 may not be the same as O2O1, i.e. operators do not necessarily commute with each other.  
Associative Law ( ) = ( )  2nd     1st             2nd   1st   
Distributive Law ( + ) =  +  and  ( + ) =  +   Do  symmetry operators obey these laws? (they do) 
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 consider acetone  E, C2, σv1 , σv2 Sum Law:  there is no process to “add” symmetry operators 
Algebra of Symmetry Operators Product Law:  We define the product of symmetry operators as: do one operation followed by another: e.g. PQf  means apply  Q to f and then apply P to the result where P and Q are some symmetry operation.  Or, alternatively PQ = R where R is also a symmetry operation.  (C2σv1)f = C2(σv1)f C2σv1 → σv2  and C2(σv1)f  results in the same configuration as σv2f  
Associative Law: C2(σv1 σv2)f   =  (C2σv1) σv2f σv1 σv2 → C2   C2σv1 → σv2 C2C2 → E   σv2 σv2→ E Generically  (PQ)R = P(QR)  
Distributive Law:    There is no process to “add” symmetry operators  
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Consider the ammonia molecule (C3v) 
E, 3C3, 3σv  Note here that =  If two operators combine to give the identity, we say that they are inverse to each other. =     =  =  It is also true that  = =   or generically PQ = QP = E i.e. symmetry operators that are inverse to one another commute. σhσh = E ii=E mirror planes are always inverse to themselves, likewise inversion is always inverse to itself. Generically we write (PQ)-1 = P-1Q-1         
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Definition of a Group There are four defining rules for groups. 1. The combination of any two elements as well as the square of each element must be in the group. Combining rule can be defined as anything (multiplication, differentiation, one followed by another, etc…)  PQ = R ; R must be in the group The commutative law may not hold  AB ≠ BA 2. One element must commute with all other elements and leave them unchanged.  That is, an identity element must be present. ER = RE =R  ; E must be in the group 3. The associative law must hold. P(QR) = (PQ)R ; for all elements 4. Every element must have an inverse which is also in the group. RR-1 = R-1R = E ; R-1 must be in the group 
Summary Definition of a group PQ = R   R must be in the groupER = RE =R   E must be in the groupP(QR) = (PQ)R   for all elementsRR-1 = R-1R = E   R-1 must be in the group  
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Example Groups With a combining rule of addition, all integers form a group. The identity element is 0, and the inverse of each element is the negative value.   This is an example of an infinite group. ============================================With a combining rule of multiplication, we can form a finite group with the following set {i, -i, 1, -1} The identity element is 1 in this case. ============================================ A set of matrices can also form a finite group with the combining rule of matrix multiplication.   1 0 0 00 1 0 00 0 1 00 0 0 1    0 1 0 01 0 0 00 0 0 10 0 1 0    0 0 0 10 0 1 00 1 0 01 0 0 0    0 0 1 00 0 0 11 0 0 00 1 0 0       
   The identity matrix is 1 0 0 00 1 0 00 0 1 00 0 0 1     
e.g. 0 1 0 01 0 0 00 0 0 10 0 1 0    0 0 0 10 0 1 00 1 0 01 0 0 0      =  0 0 1 00 0 0 11 0 0 00 1 0 0  

× = ( )  
Aik =element in the ith row and kth column   
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Lastly, the set of symmetry operators (not symmetry elements) present for a given molecular shape forms a group with the combining rule of one followed by another. These types of groups are called point groups. 
Group Multiplication Tables The number of elements in the group is called the order of the group (h)  
Rearrangement Theorem:   In a group multiplication table, each row and column lists each element in the group once and only once.  No two rows or two columns may be identical.  Consider a group of order 3 G3 E A B E E A B  A A ? ? B B ? ? There are two options for filling out the table AA = B or AA = E If AA = E then the table becomes… G3 E A B E E A B  A A E B B B A E  This violates the rearrangement theorem as the last two columns have elements that appear more than once.   
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 The only solution for group G3 is G3 E A BE E A B A A B EB B E A Note: The group G3 is a member of a set of groups called cyclic groups.  Cyclic groups have the property of being Abelian, that is all elements commute with each other.   A cyclic group is one which every element can be generated by a single element and it’s powers.  In this case A = A  and AA = A2 = B and AAA = A3 = E.  There are two possible groups of order 4 G4 E A B C E E A B C  A A B C E B B C E A C C E A B 
 

G4 E A B C E E A B C A A E C B B B C E A C C B A E  In the second case of G4 there is a subgroup of order 2 present. G2 E A E E A  A A E  The order of a subgroup (g) must be a divisor of the order of the main group (h), that is h/g = k, where k is an integer.  
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Classes  Groups can further be divided into smaller sets called classes. 
Similarity Transforms  If A, B and X are in a group and  X-1AX = B  we say that B is similarity transform of A by X.  We also can say that A and B are conjugate of each other. Conjugate elements have the following properties 1) All elements are conjugate with themselves A = X-1AX for some X 2) If A is conjugate to B, then B is conjugate to A A = X-1BX and B = Y-1AY  with X, Y in the group 3) If A is conjugate to B and C then B and C are also conjugates of each other. The complete set of elements (operations) that are conjugate to each other is called a class. Find the classes in G6 G6 E A B C D F E E A B C D F  A A E D F B C B B F E D C A C C D F E A B D D C A B F E F F B C A E D  E is in a class by itself of order 1 A-1EA = E etc.. 
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 Other classes in G6 E-1AE = A A-1AA = A B-1AB = C C-1AC = B D-1AD = B F-1AF = C We see here that the elements A,B and C are all conjugate to each other and form a class of order 3. E-1DE = D A-1DA = F B-1DB = F C-1DC = F D-1DD = D F-1DF = D We see here that the elements D and F are conjugate to each other and form a class of order 2.          



Introduction to the Chemical Applications of Group Theory  

  Page 22 

Homework Set 1  NAME :  (1) Below is one of the two possible group multiplication tables of order 6, G6(1).  Write the group multiplication table for G6(2).  Keep in mind the rearrangement theorem when building the new table. The result of “multiplication” of XY is the intersection of the X column and they Y row so that BC = F and CB = D in the given table below.  Hint, the group G6(2) is a cyclic group.  G6(1)   E A B C D F  G6(2)  E A B C D F E E A B C D F  E A A E D F B C  A B B F E D C A  B C C D F E A B  C D D C A B F E  D F F B C A E D  F  (2) Identify all of the subgroups within G6(2)   and write their group multiplication tables.            
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Point Groups  Consider all of the symmetry operations in NH3 
  E σv’ σv’’ σv’’’ C3 C   NH3 E σv’ σv’’ σv’’’ C3 CE E σv’ σv’’ σv’’’ C3 Cσv’ σv’ E C3 C σv’’ σv’’’σv’’ σv’’ C  E C3 σv’’’ σv’C σv’’’ C3 C  E σv’ σv’’C3 C3 σv’’’ σv’ σv’’ C EC  C  σv’’ σv’’’ σv’ E C3 Note that all of the rules of a group are obeyed for the set of allowed symmetry operations in NH3.   G6 E A B C D FE E A B C D F A A E D F B CB B F E D C AC C D F E A BD D C A B F EF F B C A E D Compare the multiplication table of NH3 to that of G6.     
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There is a 1:1 correspondence between the elements in each group E → E σv’ → A σv’’ → B  σv’’’ → C  C3 → D  C  → F Groups that have a 1:1 correspondence are said to be isomorphic to each other.  If there is a more than 1:1 correspondence between two groups, they are said to be homomorphic to each other.  All groups are homomorphic with the group E.  i.e. A → E , B → E, C → E etc…  
Classification of Point Groups Shoenflies Notation Group Name Essential Symmetry Elements* Cs one σ  Ci one i  Cn one Cn Dn one Cn plus nC2 ⊥ to CnCnv one Cn plus nσvCnh one Cn plus σhDnh those of Dn plus σhDnd those of Dn plus σdSn (even n) one Sn Td tetrahedron Special GroupsOh octahedron Ih icosahedrons Hh sphere    
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Systematic Method to Assign Point Groups 
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Assign the point groups to the following molecules 

    i  only  →  Ci 
 

H

 Cn → C3 

     C3h      C3v     
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Classes in Symmetry Point Groups  You can test all possible similarity transforms to find the conjugate elements. X-1AX = B , however this is tedious and with symmetry elements it is much easier to sort classes. Two operations belong to the same class if one may be replaced by another in a new coordinate system which is accessible by an allowed symmetry operation in the group. Consider the following for a D4h group 

   C4 [x,y] → [-y, x]  and [x,y] →[y,-x] Reflect the coordinate system by σd 

  [x,y] → [y, -x]  and [x,y] →[-y,x] By changing the coordinate system we have simply replace the roles that C4 and play.   That is →  and →   
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 More generally we can state the following 1. E, i  and σh are always in a class by themselves.  2.  and  are in the same class for each value of k as long as there is a plane of symmetry along the  axis or a C2 ⊥ to .  If not then  and   are in classes by themselves.  Likewise for  and .  3. σ’ and σ’’ are in the same class if there is an operation which moves one plane into the other.  Likewise for  and ′ that are along different axes.  Consider the elements of D4h (square plane) There are 10 classes in this group with order 14 

 

E  andi σh σv and σv’ σd and σd’ C2 (along z) and (xy) and  (x,y)  and       
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Homework Set 2 1. List all of the symmetry operations and symmetry elements for the following molecules. List the operations that commute with each other. Exclude E which always commutes with every element  - For example in water you could write C2σv(xy) = σv(xy)C2  , where σv(xy) is the mirror plane containing the H-O-H atoms.  σv(xz) is the mirror plane containing only the O atom. 

 2. Construct the group multiplication table for the symmetry operations of water.  3. Assign the following sets of geometric isomers to their respective point groups (ignore any hydrogen atoms when assigning the group) . 

 4. How many classes are in the point group assigned to sulfur cholorpentafluoride? 
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Properties of Matrices  Matrix: rectangular array of numbers or elements 
   aij   ith row and jth column 

 A vector is a one dimensional matrix 
    This could be a set of Cartesian coordinates (x,y,z) 

 
Matrix math basics  
Addition and Subtraction Matrices must be the same size cij  = aij ± bij       add or subtract the corresponding elements in each matrix  Multiplication by a scalar (k) k[aij] = [kaij]  every element is multiplied by the constant k     
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Matrix multiplication × =  
aik =element in the ith row and kth column   

 ×          =     
 Where  c11 = (a11b11 + a12b21)   c12 = (a11b12 + a12b22)   etc… matrix multiplication is not commutative  (ab ≠ ba)  
Matrix Division Division is defined as multiplying by the inverse of a matrix.  Only square matrices may have an inverse.  The inverse of a matrix is defined as  a∙a-1 = δij    δij → Kronecker delta    δij = 1 if i=j otherwise δij = 0 
  = 1 0 00 1 00 0 1     
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Special Matrices Block diagonal matrix multiplication 1 0 0 0 0 01 2 0 0 0 00 0 3 0 0 00 0 0 1 3 20 0 0 1 2 20 0 0 4 0 1
 

4 1 0 0 0 02 3 0 0 0 00 0 1 0 0 00 0 0 0 1 20 0 0 3 0 20 0 0 2 1 1
=

4 1 0 0 0 08 7 0 0 0 00 0 3 0 0 00 0 0 13 3 100 0 0 10 3 80 0 0 2 5 9
      

Each block is multiplied independently i.e. 1 01 2 4 12 3 = 4 18 7         [3][1] = [3]   1 3 21 2 24 0 1  0 1 23 0 22 1 1 = 13 3 1010 3 82 5 9    
Square Matrices = ∑      This is the sum of the diagonal elements of a matrix (trace). χa is call the character of a matrix properties of χ   if c = ab and d = ba  then χc = χd conjugate matrices have identical χ r = b-1pb  then χr = χb    Operations that are in the same class have the same character.    
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Matrix Representations of Symmetry Operations We will now use matrices to represent symmetry operations.  Consider how an {x,y,z} vector is transformed in space  
Identity  E 1 0 00 1 00 0 1    =      
 
Reflection  σxy 1 0 00 1 00 0 −1    = −      
σxz 1 0 00 −1 00 0 1    = −      
 
Inversion i −1 0 00 −1 00 0 −1    = −−−      
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Rotation Cn about the z axis ? ? 0? ? 00 0 1    = ′′     The z coordinate remains unchanged.   
Consider a counter clockwise rotation by θ about the z axis 

 From trigonometry we know that = cos − sin  and  = sin + cos   Represented in matrix form this gives: cos  −sinsin cos =      For a clockwise rotation we find cos  sin− sin cos =      recall cos = cos(− )  sin =  − sin(− ) The transformation matrix for a clockwise rotation by ϕ is: cos sin 0− sin cos 00 0 1    = ′′  
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Improper Rotations Sn Because an improper rotation may be expressed as  σxyCn we can write the following since matrices also follow the associative law. 1 0 00 1 00 0 −1    cos sin 0− sin cos 00 0 1    = ′′′  
cos sin 0− sin cos 00 0 −1    = ′′′  

 The set of matrices that we have generated that transform a set of {x,y,z} orthogonal coordinates are called orthogonal matrices.  The inverse of these matrices is found by exchanging rows into columns (taking the transpose of the matrix). Consider a C3 rotation about the z-axis.  − √ 0− √ − 00 0 1 =     
exchanging rows into columns gives 
 − − √ 0√ − 00 0 1 = ( ) =      
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 Multiplying these two matrices gives the identity matrix − √ 0− √ − 00 0 1
− − √ 0√ − 00 0 1 = 1 0 00 1 00 0 1      

We know from symmetry that = =     Here we see that  and are inverse and orthogonal to each other. In general we can write a set of homomorphic matrices that from a representation of a given point group  For example, consider the water molecule which belongs to the C2v group. C2v contains E, C2, σxz , σyz The set of four matrices below transform and multiply exactly like the symmetry operations in C2v.  That is, they are homomorphic to the symmetry operations. 1 0 00 1 00 0 1    ,  −1 0 00 −1 00 0 1   ,  1 0 00 −1 00 0 1   ,  −1 0 00 1 00 0 1  
         E                          C2                            σxz                        σyz Show that C2 σxz  = σyz −1 0 00 −1 00 0 1 1 0 00 −1 00 0 1 = −1 0 00 1 00 0 1  
 The algebra of matrix multiplication has been substituted for the geometry of applying symmetry operations. 
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Vectors and Scalar Products Consider two vectors in 2D space 

 The scalar or “dot” product results in a scalar or number Defined as the length of each vector times each other times the cos of the angle between them:  A∙B = ABcos θ  If θ = 90° then A∙B = 0 If θ = 0° then A∙B = AB We can write the following: ϕ = angle to the x axis for A ψ = greater angle to the x axis for B  (ψ = θ + ϕ) Projections  Ax = A cos ϕ Ay = A sin ϕ  Bx = B cos ψ  By = B sin ψ   Using a trig identity we can write  
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A∙B  = AB(cos ϕ cos ψ + sin ϕ sin ψ ) Rearrange to A cos ϕ B cos ψ + A sin ϕ B sin ψ Substitute from above A∙B = AxBx + AyBy More generally 
∙ =      for n-dimensional space 

Orthogonal vectors are defined as those in which the following is true 
∙ =  = 0  

Representations of Groups The following matrices form a representation of the C2v  point group 1 0 00 1 00 0 1    ,  −1 0 00 −1 00 0 1   ,  1 0 00 −1 00 0 1   ,  −1 0 00 1 00 0 1  
         E                          C2                            σxz                        σyz Group Multiplication Table for C2v C2v E        C2 σxz σyz E        E C2 σxz σyz C2 C2 E σyz σxz σxz σxz σyz E C2 σyz σyz σxz C2 E   
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How many other representations exist for the C2v point group? A: As many as we can think up The set of numbers {1,1,1,1} transform like C2v etc… However, there are only a few representations that are of fundamental importance.  Consider the matrices E, A, B, C, …  and we perform a similarity transform with Q E’ = Q-1EQ A’ = Q-1AQ B’ = Q-1BQ Etc…   For example A’ = Q-1AQ  A’ = Q-1AQ =          The similarity transform of A by Q will block diagonalize all of the matrices All of the resulting subsets form representations of the group as well e.g.    ,  , … …. We say that E, A, B, C… are  reducible matrices that form a set of reducible representations. If Q does not exist which will block diagonalize all of the matrix representations then we have an irreducible representation.  
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The Great Orthogonality Theorem  The theorem states [Γ ( ) ] Γ ( ) ∗ = ℎ  
Terms  h = order of the group (# of symmetry operators) Γ  = ith representation 

    = dimension of Γ  ( e.g. 3 × 3 ,  = 3) R = generic symbol for an operator [Γ ( ) ] = the element in the mth row and nth column of an operator R in                         representation Γ    Γ ( ) ∗ = complex conjugate of the element in the m’th row and n’th                               column of an operator R in representation Γ   What does this all mean? For any two irreducible representations Γ  , Γ   Any corresponding matrix elements (one from each matrix) behave as components of a vector in h-dimensional space, such that all vectors are orthonormal.  That is, orthogonal and of unit length.     
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 Examine the theorem under various conditions… If vectors are from different representations then they are orthogonal [Γ ( ) ] Γ ( ) ∗ = 0  if i ≠ j 
 If vectors are from the same representation but are different sets of elements then they are orthogonal [Γ ( ) ][Γ ( ) ]∗ = 0  if m ≠ m'  or n ≠ n' 
 The square of the length of any vector is h/li   [Γ ( ) ][Γ ( ) ]∗ = ℎ 
Irreducible Representations  There are five important rules concerning irreducible representations  1) The sum of the squares of the dimensions of the irreducible representations of a group is equal to the order of the group = ℎ   

2) The sum of the squares of the characters in an irreducible representation is equal to the order of the group 
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[ ( )]   = ℎ  
  3) Vectors whose components are the characters of two irreducible representations are orthogonal [ ( )][ ( )]   = 0  when i ≠ j  

4)  In a given representation (reducible or irreducible) the characters of all matrices belonging to the same class are identical  5) The number of irreducible representations of a group is equal to the number of classes in the group.  Let’s look at a simple group , C2v (E, C2,  σv,  σv’) There are four elements each in a separate class.  By rule 5, there must be 4 irreducible representations.  By rule 1, the sum of the squares of the dimensions must be equal to h (4). + + + = 4 The only solution is = = = = 1 Therefore the C2v point group must have four one dimensional irreducible representations.  C2v E        C2 σv σv’ Γ1       1 1 1 1  
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All other representations must satisfy  ∑ [ ( )]   = 4   This can only work for χi = ± 1.  And for each of the remaining Γ to be orthogonal to Γ1 there must be two +1 and two –1.   Therefore, the remaining Γ must be  (E is always +1) C2v E C2 σv σv’Γ1       1 1 1 1Γ2 1 -1 -1 1Γ3 1 -1 1 -1Γ4 1 1 -1 -1 Take any two and verify that they are orthogonal Γ 1Γ2 = (1×1) + (1×-1) + (1×-1) +(1×1) = 0 These are the four irreducible representation of the point group C2v  Consider the C3v group (E, 2C3, 3σv) There are three classes so there must be three irreducible representations + + = 6 The only values which work are = 1 , = 1 , = 2 That is , two one dimensional representations and one two dimensional representation. So for Γ1 we can choose C3v E 2C3 3σv Γ1       1 1 1  For Γ2 we need to choose ± 1 to keep orthogonality 
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C3v E 2C3 3σv Γ1       1 1 1 Γ2 1 1 -1  Γ 1Γ2 = (1×1) + 2(1×-1) + 3(1×-1) = 0 C3v E 2C3 3σv Γ1       1 1 1 Γ2 1 1 -1 Γ3 2    To find Γ3 we must solve the following  [ ( )][ ( )]  = (1)(2) +  2(1)[ ( )] + 3(1)[ ( )] = 0 
[ ( )][ ( )]  = (1)(2) +  2(1)[ ( )] + 3(−1)[ ( )] = 0 

Solving this set of two equation and two unknowns gives [ ( )] = −1  and [ ( )] = 0 Therefore the complete set of irreducible representations is C3v E 2C3 3σv Γ1       1 1 1 Γ2 1 1 -1 Γ3 2 -1 0  We have derived the character tables for C2v and C3v (check the book appendix)  C2v E C2 σv σv’  C3v E 2C3 3σv A1     1 1 1 1  A1    1 1 1A2 1 -1 -1 1  A2 1 1 -1
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B1 1 -1 1 -1 E 2 -1 0B2 1 1 -1 -1   We now know that there is a similarity transform that may block diagonalize a reducible representation. During a similarity transform the character of a representation is left unchanged. ( ) =  ( ) 
Where χ(R) is the character of the matrix for operation R and aj is the number of times that the jth irreducible representation appears along the diagonal. The good news is that we do not need to find the matrix Q to perform the similarity transform and block diagonalize the matrix representations.  Because the characters are left intact, we can work with the characters alone.  We will multiply the above by χi(R) and sum over all operations.  ( ) ( ) = ( ) ( ) = ( ) ( ) 
and ( ) ( ) = ℎ  
For each sum over j we have  ( ) ( ) = ( ) ( ) = ℎ  
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The characters for χi and χj form orthogonal vectors we can only have non-zero values when i ≠ j  
The Reduction Formula  The above leads to the important result called  “The Reduction Formula” = 1ℎ ( ) ( ) 
Where ai is the number of times the ith irreducible representation appears in the reducible representation. C3v E 2C3 3σv Γ1       1 1 1 Γ2 1 1 -1 Γ3 2 -1 0 Γa 5 2 -1 Γb 7 1 -3  Apply the reduction formula to Γa and Γb For Γa = 16 [(1)(1)(5) + (2)(1)(2) + (3)(1)(−1) = 1 

= 16 [(1)(1)(5) + (2)(1)(2) + (3)(−1)(−1) = 2 
= 16 [(1)(2)(5) + (2)(−1)(2) + (3)(0)(−1) = 1  For Γb 
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= 16 [(1)(1)(7) + (2)(1)(1) + (3)(1)(−3) = 0 
= 16 [(1)(1)(7) + (2)(1)(1) + (3)(−1)(−3) = 3 
= 16 [(1)(2)(7) + (2)(−1)(1) + (3)(0)(−3) = 2  Sum the columns… For Γa C3v E 2C3 3σv Γ1       1 1 1 Γ2 1 1 -1 Γ2 1 1 -1 Γ3 2 -1 0 Γa 5 2 -1      For Γb C3v E 2C3 3σv Γ2 1 1 -1 Γ2 1 1 -1 Γ2 1 1 -1 Γ3 2 -1 0 Γ3 2 -1 0 Γb 7 1 -3      
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Character Tables For C3v we find the following character table with four regions. C3v E 2 C3 3σv  A1 1 1 1 z x2+y2, z2A2 1 1 -1 Rz E 2 -1 0 (x,y)(Rx,Ry) (x2-y2, xy)(xz,yz)I  II  III IV 
Region I – Mulliken Symbols for Irreducible Representations  1) All 1×1 representations are “A” or “B”, 2×2 are “E” and 3×3 are “T” 2) 1×1 which are symmetric with respect to rotation by 2π/n about the principle Cn axis are “A” (i.e. the character is +1 under Cn). Those that are anti-symmetric are labeled “B” (the character is -1 under Cn). 3) Subscripts 1 or 2 are added to A and B to designate those that are symmetric (1) or anti-symmetric (2) to a C2 ⊥ to Cn or if no C2 is present then to a σv. 4) ′ and ″ are attached to those that are symmetric (′) or anti-symmetric (″)relative to a σh. 5) In groups with an inversion center (i), subscript g (German for gerade or even) is added for those that are symmetric with respect to i or a subscript u (German for ungerade or uneven) is added for those anti-symmetric with respect to i.  6) Labels for E and T representations are more complicated but follow the same general rules. 
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Region II – Characters This region list the characters of the irreducible representations for all symmetry operations in each group. 
Region III – Translations and Rotations The region assigns translations in x,y and z and rotations Rx, Ry, Rz to irreducible representations. E.g., in the group above (x,y) is listed in the same row as the E irreducible representation.  This means that if one formed a matrix representation based on x and y coordinates, it would transform (that is have the same characters as) identically as E. Recall that previously we looked at a C3 transformation matrix for a set of Cartesian coordinates − √ 0− √ − 00 0 1 = ′′′ =   
Notice that this matrix is block diagonalized.  If we break this into blocks we are left with − √− √ −  = =   and  [1][ ] = [ ] =  
Compare the characters of these matrices to the characters under C3 in the table above.  Notice that for (x,y) χ = -1 and for (z) χ = 1.  If you compared the characters for all of the other transformation matrices you will see that (x,y) → E and (z) → A1 as shown in region III of the table.  Similar analysis can be made with respect to rotations about x, y and z. 
Region IV– Binary Products This region list various binary products and to which irreducible representation that they belong.  The d-orbitals have the same symmetry as the binary products.  For example the dxy orbital transforms the same as the xy binary product. 
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Writing Chemically Meaningful Representations  We will begin by considering the symmetry of molecular vibrations.  To a good approximation, molecular motion can be separated into translational, rotational and vibrational components. Each atom in a molecule has three degrees of freedom (motion) possible.  An entire molecule therefore has 3N degrees of freedom for N atoms. 3 DOF are for translation in x, y and z. 3 DOF are for rotation in x, y and z  (note: linear molecules can only rotate in 2 dimensions) The remain DOF are vibrational in nature A molecule will have  3N – 6 possible vibrations  3N – 5 for linear molecules Using the tools of classical mechanics it is possible to solve for the energies of all vibrations (think balls and springs model for a molecule).  The calculations are tedious and complicated and as early as the 1960’s computers have been used to do the calculations.1 
Vibrations We can use the tools of group theory to deduce the qualitative appearance of the normal modes of vibration.  We’ll start with a simple molecule like H2O.                                                   1 For more information on these calculations, look up F and G matrices in a group theory or physical chemistry text. In summary this method sums up and solves all of the potential energies based on the force constants (bond strength) and displacement vectors (vibrations). = ∑ .  where, fik is the force constant and si and sk are displacements (stretching or bending).  The term fiisi2 represents the potential energy of a pure stretch or bend while the cross terms represent interactions between the vibrational modes. 
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For water we expect 3N-6 = 3 normal modes of vibration.  Water is simple enough that we can guess the modes.  
 symmetric  stretching        anti-symmetric stretching          bending  Assign these three vibrations to irreducible representations in the C2v point group. C2v E C2 σ(xz) σ'(yz)A1 1 1 1 1 zA2 1 1 –1 –1 RzB1 1 –1 1 –1 x, RyB2 1 –1 –1 1 y, Rx Consider the displacement vectors (red arrows) for each mode and write what happens under each symmetry operation. Symmetric stretching (Γν1) E → 1 , C2 → 1, σ(xz)→1,  σ'(yz) → 1 Anti – Symmetric stretching (Γν2) E → 1 , C2 → –1, σ(xz)→1,  σ'(yz) → –1 Bending (Γν3) E → 1 , C2 → –1, σ(xz)→1,  σ'(yz) → –1   
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 C2v E C2 σ(xz) σ'(yz)  A1 1 1 1 1 z A2 1 1 –1 –1 Rz B1 1 –1 1 –1 x, RyB2 1 –1 –1 1 y, RxΓν1 1 1 1 1  Γν2 1 –1 1 –1  Γν3 1 1 1 1   In a more complicated case we would apply the reduction formula to find the Γirr which comprise Γν .  However, in this case we see by inspection that Γν1 → A1 Γν2 → B1 Γν3 → A1  A more generalized approach to finding Γν will be discussed later.   
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Selection Rules for Vibrations Born-Oppenheimer approximation: electrons move fast relative to nuclear motion. =  
∗ ∗  Where:  is the electronic wavefunction and  is the nuclear wavefunction  is the dipole moment operator = (− ) +   

Where:  ri is the radius vector from the origin to a charge qi (an electron in this case) –e is the proton charge Zα  is the nuclear charge rα is the radius vector for a nucleus  Integrals of this type define the overlap of wavefunctions.  When the above integral is not equal to 0, a vibrational transition is said to be allowed. That is, there exists some degree of overlap of the two wavefunctions allowing the transition from one to the other. In 1800 Sir William Herschel put a thermometer in a dispersed beam of light.  When he put the thermometer into the region beyond the red light he noted the temperature increased even more than when placed in the visible light.  He had discovered infrared (IR) light.    
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Similar to electronic transitions with visible and UV light, IR can stimulate transitions from ν1 → ν2.    A simplified integral describing this transition is  
∗   which is allowed when the integral does not equal zero. In this integral ∗ = vibrational ground state wavefunction and  is the ρth fundamental vibrational level wavefunction.  What this all means is that a vibrational transition in the infrared region is only allowed if the vibration causes a change in the dipole moment of the molecule. Dipole moments translate just like the Cartesian coordinate vectors x, y and z.  Therefore only vibrations that have the same symmetry as x, y or z are allowed transitions in the infrared.  

Selection Rules for Raman Spectroscopy In Raman spectroscopy, incident radiation with an electric field vector  may induce a dipole in a molecule.  The extent of which depends on the polarizability of the molecule (  polarizability operator). 
∗   Transitions in Raman spectroscopy are only allowed if the vibration causes a change in polarizability. Polarizability transforms like the binary product terms (xy, z2 etc…) and therefore vibrations that have the same symmetry as the binary products are allowed transitions in Raman spectroscopy.  For water, all three vibrations are IR and Raman active.  
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Normal Coordinate Analysis Let’s find all of the vibrational modes for NH3.  We expect 3N – 6  = 6 vibrations.  A simple way to describe all possible motions of a molecule is to consider a set of three orthonormal coordinates centered on each atom.  For NH3, this results in a set of 12 vectors.  Any motion will be the sum of all twelve components. 

         As performed previously for a set of three x, y and z vectors we can write a transformation matrix that describes what happens to each of the vectors for each symmetry operation in the group. We now need to find the characters of Γ3N C3v E 2 C3 3σv  A1 1 1 1 z x2+y2, z2A2 1 1 -1 RzE 2 -1 0 (x,y)(Rx,Ry) (x2-y2, xy)(xz,yz) Γ3N ? ? ?  The transformation matrices will be 12×12.  However, we are only interested in the characters (χ) of each matrix.   For E the character will be 12 since all elements remain unchanged.    Consider a C3 rotation:  
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Only vectors on the N atom will go into ± themselves.  From our previous results we know that x, y and z transform like… 
− 12 √32  0 0 0 0 0 0 0 0 0 0 

− √32  − 12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  All other components are off diagonal and do not contribute to the character of the matrix.   Here,  χ = 0 for C3.   
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For the vertical mirror plane, σv  Four vectors remain unchanged (on N and H) and two go into -1 of themselves (on N and H).  The other 6 on the out of plane H atoms all become off diagonal elements.  χ = 2  (1+1–1+1+1–1+0+0+0+0+0+0)
 Now we can write Γ3N C3v E 2 C3 3σv  A1 1 1 1 z x2+y2, z2A2 1 1 -1 RzE 2 -1 0 (x,y)(Rx,Ry) (x2-y2, xy)(xz,yz) Γ3N 12 0 2   Apply the reduction formula to find what Γirr comprise Γ3N 

= 1ℎ ( ) ( ) 
 aΓ = 16 [(1)(1)(12) + (2)(1)(0) + (3)(1)(2)] =  3 

aΓ = 16 [(1)(1)(12) + (2)(1)(0) + (3)(−1)(2)] =  1 
aΓ = 16 [(1)(2)(12) + (2)(−1)(0) + (3)(0)(2)] =  4   
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We write the following Γ =  3Γ ⊕ Γ ⊕ 4Γ  However, Γ3N describes all possible motion, including translation and rotation.  Inspection of the character table reveals that Γ =  Γ ⊕ Γ  Γ =  Γ ⊕ Γ  This leaves the vibrations as Γ =  2Γ ⊕ 2Γ   notice we predicted 6 normal modes and we have 6 dimensions represented (two 1×1 and two 2×2).  Now we will write pictures representing what the vibrations look like.  Γ  is symmetric with respect to all operations 

                  Γ  – symmetric stretching                                 Γ  – symmetric bending      
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The E modes are degenerate.  That is they are made up of vibrations that are of equal energy.  Γ  – asymmetric stretching 

  The third possible way of drawing an asymmetric stretch is just a linear combination of the two above (add the two vibrations).  Γ  – asymmetric bending 

 As with the stretches, the third bend is formed from a linear combination of the other two and is not unique (subtract the two bends).      
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IR and Raman Spectra of CH4 and CH3F Methane CH4 belongs to the Td point group Perform the normal coordinate analysis for methane and determine the number and symmetry of all IR and Raman active bands There will be 3(5)-6 = 9 normal modes of vibration in both molecules Normal Coordinate Analysis of CH4 1st write the characters for Γ3N Td E 8C3 3C2 6S4 6σd  A1 1 1 1 1 1  x2+y2+z2A2 1 1 1 -1 -1  E 2 -1 2 0 0  2z2-x2-y2T1 3 0 -1 1 -1 (Rx,Ry,Rz) x2-y2T2 3 0 -1 -1 1 (x,y,z) (xy,xz,yz)Γ3N 15 0 -1 -1 3   Reduce Γ3N into its irreducible representations. Γ = 124 (15 + 0 − 3 − 6 + 18) = 1 
Γ = 124 (15 + 0 − 3 + 6 − 18) = 0 
Γ = 124 (30 + 0 − 6 + 0 + 0) = 1 
Γ = 124 (45 + 0 + 3 − 6 − 18) = 1 
Γ = 124 (45 + 0 + 3 + 6 + 18) = 3   
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 Γ = Γ ⊕ Γ ⊕ Γ ⊕ 3Γ  Γ = Γ   and Γ = Γ  Subtracting the translational and rotational irreducible representations we are left with Γ = Γ ⊕ Γ ⊕ 2Γ  IR active modes are the 6 modes in 2Γ  All 9 modes are Raman active Calculated IR and Raman spectra for CH4 are shown below2 

 

                                                 2 Spectra calculated by GAMESS using Hartree-Fock methods 
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Raman Spectrum
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 Normal Coordinate Analysis of CH3F Now we perform the identical analysis for CH3F which belongs to the C3v point group. 1st write the characters for Γ3N C3v E 2C3 3σv  A1 1 1 1 z x2+y2, z2A2 1 1 -1 Rz E 2 -1 0 (x,y) (Rx,Ry) (x2-y2, xy)(xz,yz)Γ3N 15 0 3   Reduce Γ3N into its irreducible representations. Γ = 16 (15 + 0 + 9) = 4 
Γ = 16 (15 + 0 − 9) = 1 
Γ = 16 (30 + 0 + 0) = 5  
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Γ = 4Γ ⊕ Γ ⊕ 5Γ  Γ = Γ ⊕ Γ   and Γ = Γ ⊕ Γ  Subtracting the translational and rotational irreducible representations we are left with Γ = 3Γ ⊕ 3Γ  All 9 modes are IR active All 9 modes are Raman active Calculated IR and Raman spectra for CH3F are shown below 
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Alternate Basis Sets To help draw pictures of the vibrational modes we can use a basis set that relates to vibrations.   For CH4 we can use CH bond stretches as a basis and HCH bends as a basis. Td E 8C3 3C2 6S4 6σd ΓCH 4 1 0 0 2 Stretches ΓHCH 6 0 2 0 2 bends Γ = Γ ⊕ Γ  Γ = Γ ⊕ Γ ⊕ Γ  If we add this up we find that this is 10 normal modes but we expect only 9. Looking at the bending modes we see an A1 representation.  Since there is no way to increase all the bond angles at once in CH4 this must be discounted.  In order to visualize the vibrations be must make linear combinations of our basis set elements that are orthonormal (symmetry adapted).   
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Homework Set 3 1. Construct the set of 3×3 matrices that transform a set of {x,y,z} coordinates for the following operations : E, C2, i, σh.  Show that these matrices form a reducible representation of the C2h point group.  2. Consider the following molecule (tetrachloroplatinate)  
ClPtCl ClCl  Write the characters for Γ3N  Find all of the irreducible representations that form Γ3N  Indicate which irreducible representation correspond to Γtran, Γrot and Γvib  How many vibrations are infrared active and what are their symmetries?   How many vibrations are Raman active and what are their symmetries?   3. Hydrogen peroxide (H2O2) is non-planar with both H atoms lying above the plane.  

O O HH  Assign the point group and determine the symmetry of the vibrations for this molecule.   Sketch what the vibrations might look like.  After you’ve finished, check your results using the 3DNormalModes program (link on the course website).  How well do your predictions match?   
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Projection Operator  The projection operator allows us to find the symmetry adapted linear combinations we need to visualize the vibrational modes in CH4 and CDH3. = ℎ ( )( ) 
Where  = the dimension of the irreducible representation Γi ℎ = the order of the group ( )= character of operation R  = result of the symmetry operation R on a basis function Project out the A1 mode for methane (recall Γ = Γ ⊕ Γ ) Td E 8C3 3C2 6S4 6σd A1 1 1 1 1 1 

 Now we must label our basis functions and keep track of what happens to them under each operation. ( ) = 124 ( + + + + + + + + + + + ++ + + + + + + + + + + )  
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( ) = (6 + 6 + 6 + 6 ) = ( + + + )   As you would predict this is the totally symmetric stretch 

 A1 stretching mode Do the same for the T2 mode Td E 8C3 3C2 6S4 6σdT2 3 0 -1 -1 1( ) = 324 (3 + 0( + + + + + + + ) − − −− − − − − − + + + + + + ) ( ) = 324 (6 − 2 − 2 − 2 ) = 14 (3 − − − ) This is an asymmetric stretching mode that is triply degenerate.  

 T2 stretching modes One must project out two other basis functions to find the other two modes.  They will look identical but be rotated relative to the mode drawn here. Notice the ν1 function is displaced 3 times more than the other 3 basis functions. 
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In an analogous manner the bending modes may be projected to reveal the following: 

                  E bending modes       T2 bending modes  Animations of these vibrations can be seen online here: http://www.molwave.com/software/3dnormalmodes/3dnormalmodes.htm             
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Bonding Theories  
Lewis Bonding Theory Atoms seek to obtain an octet of electrons in the outer shell (duet for hydrogen). A single bond is formed when two electrons are shared between two atoms  e.g.  H:H A double bond is formed when two pairs of electrons are shared e.g.  O∷O Lewis theory works well for connectivity but does not give predictions about three dimensional shape.  
VSEPR – Valence Shell Electron Pair Repulsion Theory Predicts shape by assuming that atoms and lone electron pairs seek to maximize the distance between other atoms and lone pairs. Works well for shapes but must be combined with Lewis theory for connectivity and bond order. e.g.  An atom with four “things” (i.e. bonds or lone pairs) would adopt a tetrahedral geometry with respect to the things.  The molecular shape is described relative to the bonds only.   NH3 has three bonds and one lone pair on the N atom, giving a tetrahedral geometry.  However, the shape of NH3 is described as trigonal pyramidal when only the bonds are considered.   
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Valance Bond Theory VB theory was developed in the 1920’s and was the first quantum mechanical description of bonding.  In VB theory bonds are formed from the overlap of atomic orbitals between adjacent atoms.  This theory predicted different shapes for single (σ) and multiple (π) bonds.   Consider the overlap of an electron in  hydrogen 1s1 orbital and an electron in a carbon 2p1 orbital 

 The resulting overlap of wavefunctions results in continuous electron density between the atoms which is classified as a bonding interaction.  The resulting σ bond has cylindrical symmetry relative to the bond axis.     Double and triple bonds form from the overlap of adjacent parallel p-orbitals. The result is shown below. 

 A double bond consists of one σ bond and one π bond.  A triple bond is a σ bond and two π bonds.  
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Hybrid Orbital Theory VB theory gets us started but we know that other geometries exist in molecules.  Consider carbon with a ground state electron configuration of [He]2s2sp2.  With the addition of a small amount of energy one 2s electron is promoted to the 2p shell and the following configuration results [He]2s12px12py12pz1.  This leaves four half filled orbitals that can overlap with other orbitals on adjacent atoms.  Will this result in different types of bonds?  Overlap of an s-orbital and a p-orbital will not be the same.  However, we know that in CH4 all of the bonds are equivalent. The solution is to create hybrid orbitals that are formed when we take linear combinations of the four available atomic orbitals. The four unique linear combinations that can be formed are as follows h1 = s + px + py + pz h2 = s – px – py + pz h3 = s – px + py – pz h4 = s + px – py – pz Graphically the results are shown below: 
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These linear combination give rise to four new orbitals that have electron density pointed along tetrahedral angles.  The orbitals are named sp3 hybrid orbitals. Other hybrid orbitals are possible with differing geometry Orbital Shapesp Linearsp2 Trigonal planarsp3 Tetrahedralsp3d Trigonal pyramidalsp3d2 octahedral Overlap of the hybrid orbitals with other orbital (hybrid or atomic) describe the σ bonding network in molecule.  Multiple bonds are formed with unused p-orbitals overlapping to form π bonds as described in VB theory. 
Molecular Orbital Theory MO theory was also developed during the 1920’s and is a quantum mechanical description of bonding.  All of the preceding bonding models are termed localized electron bonding models because it is assumed that a bond is formed when electrons are shared between two atoms only.  MO theory allows for delocalization of electrons.  That is, electrons may be shared between more than two atoms over longer distances. Similarly to VB theory, MO’s are formed from the interaction of atomic orbitals.  Here we form linear combinations of atomic orbitals.  When we combine two AO’s we must form two MO’s = +  = −    
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 Constructive interference leads to the MO shown in the top example and the resulting MO is said to be bonding.  Destructive interference gives the second example is termed anti-bonding.  For O2 the MO diagram is shown  below.  This correctly predicts that O2 has two unpaired electrons.  None of the previous theories could accommodate for this fact. 

  
Quantum mechanical description of orbitals Erwin Schrödinger proposed a method to find electron wavefunctions.  The time-independent Schrödinger equation in one dimension is    

− ℏ2 + ( ) =  where ψ is the wavefunction and  



Introduction to the Chemical Applications of Group Theory  

  Page 74 

ℏ = ℎ2 = 1.054 × 10  V(x)ψ is the potential energy of the electron at position x and  and  − ℏ   is the kinetic energy of the electron.  This equation is often simplified as  ℋ =  where ℋ is called the Hamiltonian operator.  Written in this form we see that this is an Eigen value equation.  The total energy of the electron becomes the Eigen value of the Hamiltonian and ψ is the Eigen function. ψ describes the dynamic information about a given electron.  The probability of finding an electron in a given volume of infinitely small size is = | |  =   With regard to specifically identifying the dynamic information about an electron we are limited by the following: Δ ∙ Δ ≥ 12 ℏ This is known as the Heisenberg uncertainty principle and states that we cannot know both the position and momentum of a particle with arbitrary precision. Δx is the error (uncertainty) in position and Δp is the error in momentum.       
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Group Theory and Quantum Mechanics  If we exchange any two particles in a system by carrying out a symmetry operation, the Hamiltonian must remain unchanged because we are in an equivalent state. In other words, the Hamiltonian commutes with all R for a group ℋ = ℋ  There are cases in which multiple Eigen functions give the same Eigen value. ℋ =  ℋ =  :               ∶ ℋ =  We say that the Eigen value is degenerate or n-fold degenerate.  In these cases the Eigen functions are a solution to the Schrödinger equation and also any linear combination of the degenerate Eigen functions ℋ =  
We will construct the Eigen functions (and subsequently the linear combinations) so that they are all orthonormal to each other. 

∗ =   The set of orthonormal Eigen functions for a molecule can form the basis of an irreducible representation of the group.  For a non-degenerate Eigen function we have  ℋ =  so that Rψi is an Eigen function of the Hamiltonian. 
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Because ψi is normalized Rψi  = ± 1ψi .  Therefore if we apply all R in a group to a non-degenerate ψi, we get a representation were each matrix element, Γi(R) will be ± 1.  A one-dimensional matrix is by definition irreducible.  A similar analysis for n-fold degenerate Eigen functions will result in an n-dimensional irreducible representation. How do we find the linear combination of wavefunctions that result in a set of orthonormal Eigen functions? The projection operator discussed previously for vibrational analysis is useful again here. = ℎ ( )( ) 
Construction of basis sets to project is the subject of theoretical chemistry and physics.  Because we cannot solve the Schrödinger equation directly we must make approximations. Hartree-Fock Approximation – write MO’s for each electron independently of the others.  The error that is introduced here is that the electron position depends on the position of all of the other electrons (electron-electron repulsion).  A correction factor must be applied after solving the problem to account for this.  This is called the “correlation energy”. Rules for Molecular Orbitals  1) Wavefunctions cannot distinguish between electrons 2) If electrons exchange positions, the sign of the wavefunction must change. 
LCAO Approximation  Molecular Orbitals are linear combinations of atomic orbitals. 
π electron Approximation  – assume that σ and π bonds are independent of each other.  That is, σ bonds are localized, while π bonds may be delocalized. 
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Hückel π Orbital Method  We will use a redefined Hamiltonian called the effective Hamiltonian. 

, ( ) = ℎ + {2 ( ) − ( )} 
where J and K are the Coulomb and exchange integrals respectively.  The Coulomb integral takes into account the electron-electron repulsion between two electrons in different orbitals, and the exchange integral relates to the energy when electrons in two orbitals are exchanged with each other.3   In the Hückel π orbital method we construct new MO’s as follows 

Φ ( ) = ( ) 
where N is the number of atoms in the π orbital system, ϕs is a pz orbital on a given atom and Csj is a coefficient (determined by projection). Hückel theory makes the following approximations: , =  

, =     (if r and s are nearest neighbors)0 (otherwise)                                           α is the Coulombic integral which raises the energy of a wavefunction (positive value) and β is the resonance integral which lowers the energy of a wavefunction (negative value).   These integrals can be evaluated numerically but are beyond the scope of what we hope to accomplish here.3 
                                                 3 For more information on bonding theory consult an appropriate text on quantum mechanics.  



Introduction to the Chemical Applications of Group Theory  

  Page 78 

 
 As it stands so far, we have a method for finding the energies of N π orbitals for N atoms. The result is an N-dimensional polynomial.  Problems of this type can be solved but application of symmetry to the system greatly reduces the amount of work to be done. 
Hückel Orbitals for Nitrite Consider the π orbital system for the nitrite anion ( )  

O
N

O

-

O
N

O

-  This molecule belongs to the C2v point group.  We will use a pz orbital on each atom to construct the π orbital system for nitrite. This forms the basis for a reducible representation, ΓAO 

 We must write the characters for ΓAO in an analogous manner as we wrote the characters for Γ3N. Keep in mind the sign of the wavefunctions when performing the symmetry operations. C2v E C2 σ(xz) σ'(yz)A1 1 1 1 1A2 1 1 –1 –1B1 1 –1 1 –1B2 1 –1 –1 1
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ΓAO 3 -1 1 -3  Next we reduce ΓAO to find the irreducible components. = 14 [(1)(3) + (1)(−1) + (1)(1) + (1)(−3)] = 0 
= 14 [(1)(3) + (1)(−1) + (−1)(1) + (−1)(−3)] = 1 
= 14 [(1)(3) + (−1)(−1) + (1)(1) + (−1)(−3)] = 2 
= 14 [(1)(3) + (−1)(−1) + (−1)(1) + (1)(−3)] = 0 Γ = Γ ⊕ 2Γ   Next we project the basis functions out of the irreducible representations.  Because ϕ1 and ϕ3 are equivalent it doesn’t matter which one we pick.  However, ϕ2 is unique and must also be projected each time. ( ) = 14 ( − − + ) = 12 ( − ) 

( ) = 14 ( − − + ) = 0  (i.e. no contribution) 
( ) = 14 ( + + + ) = 12 ( + ) 

( ) = 14 ( + + + ) =   There are two orbitals with B1 symmetry. So we will take linear combinations of the two projected orbitals to find the orthogonal results Φ =  12 ( − ) 
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Φ = 12 + + 12  
Φ = 12 − + 12  Lastly we must normalize the orbitals since it is assumed that  Φ∗Φ =   There is a normalization factor N that is found as follows for Φ1 12 ( − )∗ 12 ( − ) = 1 14 ( − )∗( − ) = 1 

14 ( − )∗( − ) = 1 
Note that the sums here give δij for the individual ϕiϕj terms. There are four integrals in this case involving overlap of <ϕ1,ϕ1> , <ϕ1,-ϕ3> , <-ϕ3,ϕ1> ,      <-ϕ3,-ϕ3>.  These give 1 + 0 + 0 + 1 respectively. 14 × 2 = 1 solving for N we find N = √2 our normalized Φ1 is then  Φ =  √ ( − ) (A2 symmetry)  Similarly we find the normalized Φ2 and Φ3 to be Φ = + +   (B1 symmetry) 
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Φ = − +   (B1 symmetry)   If we evaluate ,  for each new orbital we find that 
( ) , = √22 ( − )∗ , √22 ( − )  Distributing the ϕi across the Hamiltonian and separating the integrals we are left with the following sum 

√22 ( )∗ , √22 ( ) + √22 ( )∗ , √22 (− ) + √22 (− )∗ , √22 ( ) + √22 (− )∗ , √22 (− )  These integrals evaluate according to Hückel approximations as 
( ) , = 12 + 0 + 0 + 12  Simplifying leaves us with: 

( ) , = 12 ( + ) =  A similar analysis for Φ2 and Φ3 yields: 
( ) , = + + + + + + = +   
( ) , = − − + − − + = −    In order of increasing energy we find Φ2 < Φ1 < Φ3  Recall that β is a negative term and lowers the energy of the orbital. 
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  Drawing pictures of the orbitals helps to visualize the results 

 B1 anti-bonding orbital  − 43       A2 non-bonding orbital         B1 bonding orbital  + 43  
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Nitrite π orbitals calculated using ab initio methods. 

B1 anti-bonding orbital  

A2 non-bonding orbital   

B1 bonding orbital   
  



Introduction to the Chemical Applications of Group Theory  

  Page 84 

Hückel MO’s for Cyclobutadiene Find the π orbitals for cyclobutadiene using the Hückel π orbital method.  Cyclobutadiene belongs to the D4h point group.  This group has an order of 16.  To reduce the work, we can use a subgroup of D4h, D4 which has an order of 8.  In doing so we lose information about the odd or even nature of the orbital (g or u).  However, once the MO’s are constructed we can easily determine an MO’s g or u status through examination of symmetry operations on the new MO’s. The basis set will be the four pz orbitals perpendicular to the molecular plane. 

 Writing ΓAO for D4 we find;  D4 E 2C4 C2 2C2’ 2C2’’A1  1  1 1 1 1A2  1  1 1 -1 -1B1  1 -1 1 1 -1B2  1 -1 1 -1 1E  2  0 -2 0 0ΓAO  4  0 0 -2 0 Reducing ΓAO results in ΓAO = Γ ⊕ Γ ⊕ Γ   
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Now we must project out  the symmetry adapted linear combinations and then normalize the resulting functions. ( ) = 18 ( + + + + + + + ) 
Φ = 14 ( + + + ) 

( ) = 18 ( − − + + + − − ) 
Φ = 14 ( − + − ) 

( ) = 28 (2 − 2 ) = 12 ( − ) Because E is two-dimensional, we must project an additional orbital. ( ) = 28 (2 − 2 ) = 12 ( − ) The two E MO’s will be the linear combination (sum and difference) of the two projections we have just made. Φ = 12 ( + − − ) 
Φ = 12 ( − − + )       
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Normalizing the MO’s results in the following orthonormal set of functions Φ = ( + + + )     A2 symmetry Φ = ( − + − )    B2 symmetry Φ = ( + − − )   E symmetry Φ = ( − − + )   E symmetry  To put the orbital in the correct order energetically, we evaluate ,  for each MO. 
( ) , = + 2  
( ) , = − 2  
( ) , =  
( ) , =  Because the E orbital is degenerate, both orbitals must have the same energy.  We find the in order of increasing energy, Φ1 < Φ3, Φ4 < Φ2. Lastly we can look at how the each of these orbitals transforms in the D4h point group and assign the g or u subscript.  For example, the B2 orbital could be B2u or B2g.  Under inversion (i) the orbital goes into -1 of itself so it must be B2u (the character under i for B2g is +1 and -1 for B2u).  Analysis of the remaining orbits gives A2u and Eg. 
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B2u anti-bonding  − 2    Eg bonding     A2u bonding  + 2   π molecular orbitals as calculated by ab initio methods 
B2u 

 
Eg 

A2u 
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A note of caution.  We might be tempted to view cyclobutadiene as an aromatic ring system based upon the appearance of the A2u π orbital.  However, examination of the electron density color mapped with the electrostatic potential (red = negative, blue = positive) reveals a non-uniform electron density distribution.  This indicates that cyclobutadiene is not aromatic but rather alternating double and single bonds. 

   If the structure is geometry optimized, we see that the symmetry is no longer D4h, but rather that of a rectangle, D2h.  The electrostatic potential map places extra electron density along the shorter double bonds we would predict. The Hückel rule for aromaticity requires 4n + 2 π electrons and here we have only 4 π electrons, so the lack of aromaticity is expected. 

 If the symmetry changes, the symmetry of the molecular orbitals also changes. Calculations of the new orbitals are shown on the following page. 
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Ab initio calculations for the π orbitals in geometry optimized cyclobutadiene. 
Au 

B3g 

B2g 

B1u 
Notice that the general shape of the MO’s is similar to what we calculated for the molecule under D4h symmetry, but the Eg orbital has split into the non-degenerate B2g and B3g orbitals shown above.     
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Hückel MO’s for Boron Trifluoride 

 

D3h E 2C3 3C2 σh 2S3 3σv A1’ 1 1 1 1 1 1 A2’ 1 1 -1 1 1 -1 E’ 2 -1 0 2 -1 0 A1’’ 1 1 1 -1 -1 -1 A2’’ 1 1 -1 -1 -1 1 E’’ 2 -1 0 -2 1 0 
 

Construct the Hückel π molecular orbitals for carbonate and compare to the results for semi-empirical calculations of all molecular orbitals for carbonate. Step 1. Find ΓAO D3h E 2C3 3C2 σh 2S3 3σvΓAO 4 1 -2 -4 -1 2  Step 2. Apply the reduction formula to find the irreducible representations. = 112 (4 + 2 − 6 − 4 − 2 + 6) = 0 
= 112 (4 + 2 + 6 − 4 − 2 − 6) = 0 
= 112 (8 − 2 + 0 − 8 + 2 + 0) = 0 
= 112 (4 + 2 − 6 + 4 + 2 − 6) = 0 
= 112 (4 + 2 + 6 + 4 + 2 + 6) = 2 
= 112 (8 − 2 + 0 + 8 − 2 + 0) = 1 Γ = 2Γ ⊕ Γ   
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 Step 3. Project the new MO’s Because ϕ1 is on the center atom we must project ϕ1 and one of the others and make linear combinations to be sure to have complete orbitals. 
( ) = 112 ( + + + + + + + + + + + ) =  

( ) = 112 ( + + + + + + + + + + + )= 13 ( + + ) Taking the linear combinations of these two we obtain the following: Φ = + 13 + 13 + 13  
Φ = − 13 − 13 − 13  Normalizing these results gives: 

Φ = √32 ( + 13 + 13 + 13 ) 
Φ = √32 ( − 13 − 13 − 13 ) Now project the E’’ orbitals… 

( ) = 112 (2 − − + 2 − − ) = 0 Because ϕ1 does not contribute to the E’’ orbital we must project two other basis functions and take their linear combinations.  
( ) = 212 (2 − − + 2 − − ) = 16 (2 − − ) 
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( ) = 212 (2 − − + 2 − − ) = 16 (2 − − )  Φ = 16 ( + − 2 ) 
Φ = 16 (3 − 3 ) After normalization we are left with Φ = 1√6  ( + − 2 ) 
Φ = 1√2  ( − ) Step 4. Determine the energy of each orbital by evaluating Heff,π.  

( ) , = 34 + 13 + 13 + 13 + 19 + 13 + 19 + 13 + 19 + 13= + 32  
( ) , = 34 − 13 − 13 − 13 + 19 − 13 + 19 − 13 + 19 − 13= − 32  
( ) , = 16 ( + + 4 ) =  
( ) , = 12 ( + ) =     
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 Step 5. Construct the MO diagram and draw pictures of the MO’s A2’’ ( − )       E’’( )       A2’’ ( + )These sketches are a top-down view.  The sign of the wavefunction is opposite on the bottom side.          
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 Ab initio calculations give the following MO pictures and the corresponding energy (in Hartree).  
A2’’   0.0418 Ha  

 
E’’  −0.9073 Ha 

A2’’   −0.9411 Ha 
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Homework Set 4 – Final Exam Take home final.  You may use your book and class notes but please work on your own.  Exams are due Friday before noon.  Turn them in to my chemistry department mailbox.  You must clearly show all of your work for full credit.  1. Construct the orthonormal Hückel π molecular orbitals for benzene using the subgroup D6 (given below) and a basis set of the six pz orbitals that lie perpendicular to the plane of the ring.  2. Determine the correct ordering of the MO’s energetically and construct the MO diagram for the π system.  Refer to the full D6h point group character table to assign ‘g’ and ‘u’ designations to the orbitals.  3. Sketch each of the six orbitals.  D6 E 2 C6 2 C3 C2 3 C2’ 3 C2’’A1 1 1 1 1 1 1A2 1 1 1 1 -1 -1B1 1 -1 1 -1 1 -1B2 1 -1 1 -1 -1 1E1 2 1 -1 -2 0 0E2 2 -1 -1 2 0 0ΓAO              
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    Ab initio calculations for the π orbitals of benzene are shown below  
B2g 0.3480 Ha 

 
E2u 0.1322 Ha 

 
E1g –0.3396 Ha 

A2u –0.5073 Ha 
 


