Transformations for Impertectly Nested Loops

Induprakas Kodukula
Keshav Pingali
Department of Computer Science,
Cornell University, Ithaca, NY 14853.
{prakas,pingali}@cs.cornell.edu

October 20, 1996

Abstract

Loop transformations are critical for compiling high-performance code for modern
computers. Existing work has focused on transformations for perfectly nested loops
(that is, loops in which all assignment statements are contained within the innermost
loop of a loop nest). In practice, most loop nests, such as those in matrix factorization
codes, are imperfectly nested. In some programs, imperfectly nested loops can be con-
verted into perfectly nested loops by loop distribution, but this is not always legal. In
this paper, we present an approach to transforming imperfectly nested loops directly.
Our approach is an extension of the linear loop transformation framework for per-
fectly nested loops, and it models permutation, reversal, skewing, scaling, alignment,
distribution and jamming.

1 Introduction

Modern compilers perform a variety of loop transformations, like permutation, skewing, re-
versal, scaling, distribution and jamming, to generate high quality code for high-performance
computers [14]. Determining an optimal sequence of loop transformations for enhanc-
ing parallelism or locality of reference is a very difficult problem. For perfectly nested
loops (that is, loops in which all assignment statements are contained within the innermost
loop), polyhedral methods can be used to synthesize sequences of linear loop transforma-
tions (permutation, skewing, reversal and scaling) for enhancing parallelism and locality
[1, 3,4, 13, 10, 12, 2]. The key idea is to model the iterations of the loop nest as points in an
integer lattice, and to model linear loop transformations as nonsingular matrices mapping
one lattice to another. A sequence of loop transformations is modeled by the product of
matrices representing the individual transformations; since nonsingular matrices are closed

!This research was supported by NSF grant CCR-9503199, ONR grant N00014-93-1-0103, and a grant
from Hewlett-Packard Corporation.

under product, this means that a sequence of linear loop transformations is also represented
by a nonsingular matrix. The problem of finding an optimal sequence of linear loop trans-
formations is thus reduced to the problem of finding an integer matrix that satisfies some
desired property. This formulation has permitted the full machinery of matrix methods and
lattice theory to be applied to the loop transformation problem for perfectly nested loops,
and the resulting technology is mature enough that it has been incorporated into many
industrial compilers.

Unfortunately, most loops in real programs are imperfectly nested — that is, the as-
signment statements are nested in some but not all of the loops in the loop nest. The
simplest examples are matrix factorization codes. For instance, Cholesky factorization is
usually written as an imperfectly nested loop with three loops. All six permutations of these
three loops compute the same result, but their performance, even on sequential machines,
can be quite different. The polyhedral methods that were developed for perfectly nested
loops cannot be applied directly to permute the loops in Cholesky factorization. In some
programs, loop distribution can be applied to transform an imperfectly nested loop into a
set of perfectly nested ones. However, loop distribution is not always legal; in particular, it
is not legal in any of the matrix factorization codes.

Therefore, we are faced with two problems. First, how do we specify transformations
of imperfectly nested loops? Second, how do we find legal and desirable transformations?
The usual way to solve the first problem is to use techniques developed by the systolic ar-
ray community for scheduling statements in loop nests on systolic arrays. These schedules
specify mappings from statement instances to processor/time axes; these mappings are usu-
ally restricted to be affine functions of loop variables [9]. Tt is straight-forward to interpret
these schedules or mappings as loop transformations in which each assignment statement
in a loop nest is transformed by a possibly different linear (or pseudo-linear) function to a
target iteration space. These techniques were extended by Feautrier in his theory of sched-
ules in multi-dimensional time [6, 7]; a related approach is Kelly and Pugh’s mappings[8].
The second problem — finding legal and desirable transformations — is solved by searching
the space of transformations. However, this process is usually very expensive for two rea-
sons. First, standard dependence abstractions like distance and direction cannot be used;
instead, relatively expensive tests based on techniques like parametric integer programming
are necessary. Second, the frameworks themselves provide little help in producing desirable
transformations. This should be contrasted with the case of perfectly nested loops. In that
case, determining a parallel outermost loop merely requires finding a vector in the null space
of the columns of the dependence matrix [3]. Similarly, general ‘completion procedures’ have
been developed for producing complete transformations from partial ones [10].

In this paper, we present an approach to transforming imperfectly nested loops that
trades off generality for simplicity. Roughly speaking, if two assignment statements are
contained within the same set of loops, we require that they be transformed the same way
(although statement alignment may ‘shift’ the iterations of these statements by different
amounts). Although this is more restrictive than schedules or mappings, it is sufficient
to reason about loop permutations in matrix factorization codes. The advantage of this
restriction is that it permits us to extend the technology for transforming perfectly nested
loops to imperfectly nested loops in a more or less straight-forward way. In particular, we can

use standard dependence abstractions like distances and directions, and loop transformations
can be modeled by matrices. The rest of the paper is organized as follows. In Section 2,
we model the execution of statements in an imperfectly nested loop using integer vectors
called instance vectors which are a generalization of iteration vectors used in the context
of perfectly nested loops. In Section 3, we present our version of dependence distances and
directions, and show how these can be computed using standard integer linear programming
techniques. In Section 4, we show how permutation, skewing, reversal, scaling, alignment,
statement reordering, distribution and jamming can be modeled as linear transformations
in our framework. In the rest of the paper, we do not consider distribution and jamming.
In Section 5, we show how code can be generated from a matrix representing a sequence of
loop transformations. In Section 6, we discuss a completion procedure which generates a
complete transformation from a partial one; for lack of space, we omit details but show how
it works using permutation of the loops in Cholesky factorization. Finally, we discuss future
work in Section 7.

2 Iteration Space Formulation

Since a statement in a loop is executed many times, we need a way of identifying a particular
dynamic instance of a given statement. In the context of perfectly nested loops, it is standard
to use an iteration vector, which is simply a sequence of integers specifying the iteration
number for each loop in the loop nest. For imperfectly nested loops, we generalize this notion
to instance vectors; instance vectors carry additional information to identify the statement
under consideration. Like iteration vectors, instance vectors have two key properties. The
first property is that for a given program, all vectors have the same length, so it is meaningful
to add or subtract vectors. The second property is that the execution order between two
dynamic instances corresponds to lexicographic order on the corresponding instance vectors.

2.1 Program Order

We use the following pseudo-code as the running example in this section.

do I =1..N
do J = £(I)..g(I)
S1
S2
enddo
S3
enddo

Figure 1(a) shows the abstract syntax tree (AST) for this program. Internal nodes in
trees represent loops, while leaves represent ‘atomic’ statements (for example, assignment
statements or conditionals whose internal structure is of no interest for loop transformations).
As is standard, subtree structure reflects syntactic nesting while the left-to-right order of the
children of a node reflects the sequential execution order of those children. We now define a
reflexive relation <g that captures syntactic order in a program.

(@ (b)

Figure 1: Abstract Syntax Trees and Program Order

Definition 1 An atomic statement Sy s said to occur syntactically before an atomic state-
ment Sy, written as S1 =g So, if S1 is encountered before Sy in a depth-first walk of the

AST.

A dynamic instance of a statement in an imperfectly nested loop is specified by the
values of the loop index variables of loops surrounding that statement. In terms of the AST,
this corresponds to an assignment of integers to all internal nodes on the path in the AST
from root to that statement. It is convenient to view a dynamic instance of a statement as a
partially labeled AST. To identify the statement in the AST, the edges on the path from root
to that statement are labeled 1. The values of the relevant loop index variables are specified
by labeling the corresponding internal nodes on that path with integers. Figure 1 shows
some labeled AST’s for the running example. The leftmost AST in Figure 1(b) corresponds
to an execution of S2 with [=2 and J=3. The middle AST corresponds to an execution of
S3 with I=3 and the rightmost AST corresponds to execution of S3 with I=>5. These three
executions are ordered in time with respect to each other, as is shown in Figure 1(b). For
future reference, we define the < order on dynamic instances.

Definition 2 Let DI; and DIy be dynamic instances of statements S1 and Se respectively.
Let Py and P, be integer vectors containing the labels in DIy and DIy respectively for the
common loops of S1 and Sa, in outside-in order. DIy < DIy if (i) Py < Py or (ii) P, = Py

and S; <g Ss.
Dynamic instances are mapped to instance vectors by a function L. In the first step,

a partially labeled AST T is converted to a fully labeled AST F' by a procedure M whose
behavior can be described as follows.

OFR WEF ON
OO NOEFELEDN
O O o L U

Figure 2: Instance Vectors and Lexicographic Order

1. Every unlabeled edge in 7' is assigned the label 0.
2. Every leaf node in T is assigned the label e.
3. Every unlabeled internal node n is assigned the label of its nearest labeled

ancestor in 7.

If T is a partially labeled AST, the expression M(7T') will denote the fully labeled AST
generated by procedure M.

In the second step, we collect all labels in a fully labeled AST into a vector. This is
accomplished by walking over the tree in depth-first order, visiting the children of a node in
right to left order, and concatenating labels. This is defined formally using a function R(N),
defined below, which collects the labels in the subtree below node n.

R(N) =
€ if N is a leaf,
Label(N)//Label(en)//..] | Label(er)/ | R(nm)//..//R(n1) otherwise. (1)

where m is the number of children of node N, n;...n,, are the children of N in left to right
order in the AST, and edge e; is the edge from N to child n,. The operation // denotes
vector concatenation. R(root) is said to be the Instance vector representing the particular
statement execution.

Definition 3 The function L maps a partially labeled AST to an instance vector.
L(T: partially labeled AST) = R (root(M(T)));.

Instance vectors are integer vectors, and we will let < denote lexicographic order on these
vectors.

Theorem 1 L is one-to-one. Furthermore, if B, and Ey are two dynamic instances and E;
precedes Ey in execution order, then L(E;) < L(E»).

Proof: Follows immediately from the definition of L. O

Definition 4 For any dynamic instance DV, entries of the instance vector L(DV;) for
nodes labeled by procedure M are referred to as padded positions of that instance vector.

For example, in Figure 2, the entries for the J loop in instance vectors for dynamic instances
of 33 are padded positions. Intuitively, these instance vectors can be viewed as an embedding
of the iteration space of statement S3 into the ‘global’ iteration space of the nested loops
(for example, iteration I of statement S3 is mapped to iteration (7,) of the nested loop).
Given our choice of padding, this corresponds to a ‘diagonal’ embedding of the lower dimen-
sional space into the higher dimensional one. There are other reasonable ways to define this
embedding, but we have not explored these alternatives.

Lemma 1 All dynamic instances of a particular statement have the same padded positions

Proof: Follows from Definition 4 and Equation 1. O

Lemma 2 The instance vectors for a perfectly nested loop have no padded positions.

Proof: Follows from Definition 4 and Equation 1. O

In the rest of the paper, we use the term padded positions of S to mean the padded
positions of all the instance vectors of all the dynamic instances of S. For future discussion,
it is useful to define a function L' which converts an instance vector back to a dynamic
instance.

Definition 5 L’l(IV : InstanceVector, A : AST) takes an instance vector IV, and an
AST, and returns the partially labeled AST P corresponding to IV. It can be described as
follows.

1. Identify the relevant statement in the AST by examining IV .
2. Label all edges from the root of the AST to statement S with 1.
3. Label each loop surrounding S with the entry for that loop in IV .

2.2 Optimizing Single edges

A simple optimization on edge label assignment permits instance vectors to reduce to itera-
tion vectors for perfectly nested loops. As described above, edge labels serve to identify the
path from the root to a particular statement. However, if a node /N has only one edge F
coming out of it (i.e. the loop corresponding to N has only one statement), then a label on
FE is redundant. To eliminate this edge from the instance vector, we use ¢ for its label.

1 €
f (4)

1 €
S1 S1

' H

(S)

Figure 3: Optimizing Instance Vectors

do I =

do J
S1:
end do

end do

1..N
= I+1..N
ACT) = ACD) / A(D)

Figure 3 shows a perfectly nested loop, and instance vectors with and without this optimiza-
tion. Note that instance vectors are identical to iteration vectors once this optimization has
been carried out. In the rest of the paper, we will assume that this optimization has been
performed.

3 Dependence Analysis

We now discuss the representation of dependences in our framework, and show how de-
pendences may be computed. An advantage of our framework is that we can use standard
dependence tests for computing distance/direction vectors. The following highly simplified
version of Cholesky factorization is the running example in this section.

do I =1..N
S1: A(I) = sqrt (A(I))
do J = I+1..N
S2: A(J) = A(QJ) / A(D)
end do
end do

In this program, there is a flow dependence from S1 to S2 because S1 writes to A and S2
reads from A. Suppose that S1 writes to some array location in iteration I, of the outer loop,

and that this location is read by statement S2 in iteration (I,, J,). The instance vector for the
statement execution performing the write is [I,,0,1,I,]. Similarly, the instance vector for
the statement execution performing the read is [I,, 1,0, J,]'. The difference between these two
instance vectors is [I, — I,,,1,—1,J, — I,,]. To compute the appropriate distance/direction
vectors corresponding to this difference, we set up the following set of affine constraints.

1<I,<N,[,<J,<N,1<I, < N(loop bounds)
I, < I.(read after write)
I, = I,(same array location) (2)

Note that these are integer linear inequalities similar to those that arise in the con-
text of dependence analysis of perfectly nested loops. To obtain the appropriate direction
information, we introduce two new variables as follows:

Al=1, —I,,A2=J,— I, (3)

We treat Equations 2 and 3 as a single system of equations, and project the solution of
this system onto Al and A2, using any integer linear programming tool, such as the Omega
tool-kit [11]. In our example, it is easy to see that Al = 0 and A2 = +. Therefore, the flow
dependence in the above example will be represented in our framework as [0, 1, —1, +]".

Using a similar procedure, we can determine the other dependences in this code. These
dependences can be collected into a dependence matrix; for our example, this matrix is the

0 1 0
following: | 1 _11 8
+ 0 1

The general procedure for computing dependences performs this analysis for all pairs of
reads and writes in a program; for lack of space, a detailed description is omitted.

4 Transformations

In this section, we show how matrices may be used to model loop transformations in our
framework. The transformations we can model include (i) imperfectly nested loop permuta-
tion, skewing, reversal and scaling, (ii) statement reordering, (iii) statement alignment, and
(iv) distribution and jamming.

4.1 An overview

There are three subtle issues that arise in transforming imperfectly nested loops, and we
discuss them using the simplified version of Cholesky factorization shown again below.

do I =1..N
S1: A(I) = sqrt (A(I))
do J = I+1..N
S2: A(J) = AQJ) / A(D)
end do
end do

We note first that in the context of imperfectly nested loops, transformations that op-
erate on multiple loops, such as permutation and skewing, are not uniquely defined. In the
example shown above, it is clear what permuting the I and J loops means for statement S2
since it is nested within both loops, but what does it mean for statement S1? A plausible
definition is that the index space of S1 should not be changed by this loop permutation.
However, there is no particular reason to prefer this definition; indeed, the commonly used
strategy of performing transformations after sinking all statements into the innermost loop
will in general change the index space of S1. We take a similar approach — as discussed
in Section 2, our instance vectors define an embedding of the iteration space of S1 into a
global iteration space, in effect, and transformations to this global iteration space may result
in transformations to the index space of S1. In particular, loop permutation is represented
simply by a permutation matrix which permutes instance vector positions that correspond
to the loops being interchanged. The matrix and transformed instance vectors for the inter-
change of the I and J loops are shown below. It is coincidental that instance vectors of S1
are left unchanged by permutation in this example.

*

0 001 I I I J
0100 0 1 0 1
0010 1 0| |10
1 000 I J I I

From this discussion, it should be clear how other loop transformations are represented
by matrices in our framework. For example, skewing the outer loop by the inner loop in our
running example is represented as follows:

100 —1 I T 0 I—J
010 0| |0 1|_|0 1
001 0 10 1 0
000 1 I J I J

Skewing transforms instance vectors of S2 just as it does in perfectly nested loops. How-
ever, its effect on instance vectors of S1 is subtle. First, note that the new outer loop index is
0; this means that all instances of S1 must be executed in the very first iteration of the new
outer loop. This may seem surprising but it is a consequence of the ‘diagonal embedding’ of
the iterations of S1 into the global iteration space: the new outer loop is orthogonal to this
diagonal, so all iterations of S1 are done in the very first iteration of the outer loop. Our
code generation procedure, described in Section 5, introduces an extra loop around S1 to
take case of this enumeration. A second point to note is that we do not require that padded
positions be transformed by the transformation matrix. In the transformed instance vectors

Transformation \ DI;

Figure 4: Role of Matrices in Representing Transformations

for S1, the entry in the outer loop position is 0, but the entry in the inner loop position is I,
and not 0. This has an impact on how we test for the legality of a transformation; clearly, it
is not sufficient to test that transformed dependence vectors are lexicographically positive,
as in the case of perfectly nested loops. The test for legality is described in Section 5.

The role of matrices in our framework is made precise in Figure 4. A loop transformation
T maps a dynamic instance of a statement in the source program (shown as DI,) to a
dynamic instance in the target program (shown as DI;). We can convert the dynamic
instance DI, into an instance vector IV, using the L operator discussed in Section 2. M, the
matrix representing the transformation 7', maps the old AST to a new AST, and maps every
instance vector IV, to a new instance vector /V; such that the dynamic instance obtained
by applying the L™ operator to IV, is precisely DI,. This is a weaker assertion than stating
that L(T(DI,) = M «L(DI,). As mentioned before, M is not required to transform padded
positions of iteration vectors consistently, so the entries in the padded positions of IV; may
be different in general from the entries in the padded positions of L(D1,).

We have already discussed permutation and skewing. For completeness, we note that
loop reversal is represented by an identity matrix with one change — the diagonal entry of
the row corresponding to the loop being reversed has a -1. Loop scaling is represented by an
identity matrix with one change — the diagonal entry of the row being scaled has an entry
equal to the scale factor.

4.2 AST Transformations

Statement reordering changes the structure of the AST. In our framework, it is represented
by a permutation matrix where the permutation matrix interchanges the positions corre-
sponding to the statements that are being interchanged. The following example shows the
matrix that reorders the J loop and S1 (both contained in the outer I'loop) from the Cholesky

10

example.

1000 I T I T
00 10| [0 1| |10
0100 1 0 0 1
000 1 I J I J

Loop distribution and jamming are represented by non-square matrices. Here is a version
of the simplified Cholesky fragment after loop distribution.

enddo
enddo

In the AST, loop distribution corresponds to splitting an edge of the AST into two and rep-
resents the replication of the edge and the entire subtree that may be split as a consequence.
In the particular case of distribution illustrated above, the transformation is given by

0100 0 1
0010 é i 1 0
1 00 0= 1 ol= I I
1 000 g I I
0001 I J

We illustrate how loop jamming works by transforming the simplified Cholesky code after
loop distribution back to its original form. Conceptually, this fuses two subtrees of the AST
into a single subtree. In this particular instance, the transformation is represented by the
matrix

00110 (1) (1) I I
1 0000 70l = 01
01 00O 0 T 110
0 0001 0 J 0 J

4.3 Statement Alignment

Statement alignment of a particular statement with respect to a loop surrounding it is the
identity matrix with one additional entry. The additional entry appears in the row positions
corresponding to the loop and the column position corresponding to the column. The value
of the entry corresponds to the amount that the statement gets aligned with respect to the
loop. Here is alignment of S1 in the Cholesky code fragment with respect to the I loop by
+1:

11

1100 I I I+1 T
0100 |01 |_| 0 1
0010 10 1 0
0001 I J I J

5 Code Generation

In this section, we restrict our discussion to statement reordering, and permutation,skewing,reversal
and scaling of imperfectly nested loops. We describe how to check for legality of transforma-
tions, and then show how to generate code from matrices that represent legal transformations.

More generally, using our framework, we can show that all six permutations of the loops in
Cholesky factorization are legal.

5.1 Legality

Given an initial AST (say AST;), a dependence matrix D, and a transformation matrix M,
how do we check that M is a legal transformation? Intuitively, M is legal if (i) we can
generate a new AST from it, (ii) dependent dynamic instances in the source program are
properly ordered in the transformed program, and (iii) there is a one-to-one and onto map
between dynamic instances in the source and transformed programs. We explain each of
these points in detail next.

5.2 Generating the new AST

Since statement reordering is the only transformation that changes the AST, we can show
that a legal transformation matrix M must have a certain ‘block structure’ from which the
AST can be recovered easily. The key observation is the following. The first row of M
describes how the outermost loop is transformed. If this loop has ¢ children, the submatrix
P = M[2.(c+ 1),2..(c+ 1)] must be an ¢ x ¢ permutation matrix that describes how the
children of the root node are permuted by statement reordering. The rest of the matrix M
(that is, M[(c+2)..n,(c+2)..n]) describes how these ¢ children are themselves transformed;
therefore, this submatrix can be decomposed into ¢ block matrices, such that the block
structure of this submatrix has the same shape as the permutation matrix P. From these ¢
block matrices, we can recursively determine the portion of new AST structure rooted at each
of the ¢ children of the root node. Figure 5 shows the case when ¢ = 3. Any transformation
matrix M that does not have this block structure is clearly illegal.
The pseudo-code for generating the transformed AST is given in Figure 6.

12

3 1
2

Pem: [2 [3] 1]

[l e
= O Qg
O O

9\

Figure 5: Block Structure of Transformation Matrix

Procedure NewAST (M,n) : returnsAST

PIASTR RS

25:

/* Discover the AST structure for the given transformation */
/* M is the transformation matrix and n is the “current” node */
Create a new node N N to represent node n in new AST;
if (n is not a leaf node)
let ¢ = number of children of node n;
Assert P=T(2:(c+1),2: (c+ 1)) is a permutation matrix;
Construct vector Perm|l..c|] where Perml[j| =i if
child j in old AST becomes child ¢ in new AST;
ColumnPtr = c+2;
for j =1tocdo
/*Identify column of M where submatrix for child Perm][j] starts*/
ColumnStart[Perm[j]] = ColumnPtr;
/*Size(q) = size of instance vector for subtree rooted at q*/
ColumnPtr = ColumnPtr + Size(Child(Perm[j])) +1

RowPtr = c+2;
for j = 1to cdo
SubM =

M[RowPtr:RowPtr+Size(Child(j)),ColumnStart[j]: ColumnStart[j]+Size(Child(j))];
NewTree = NewAST (SubT, Child(j));
Make NewTree into Perm/[j] child of N N;
RowPtr = RowPtr + Size(Child(j)) +1;

endif;
return NN;

Figure 6: Algorithm to discover structure of transformed AST

13

5.3 Dependences

In addition to ensuring that a transformation matrix M has the proper block structure
for generating a new AST, we must ensure that dependent dynamic instances are ordered
properly in the transformed code. Recall from Section 4 that a dynamic instance DI in the
source program is mapped to a dynamic instance L '(M(L(DI)), AST;) where AST} is the
AST of the transformed program. Suppose that there is a dependence vector d where the
source of the dependence is statement S1 and the target is statement S2. In the case of
perfectly nested loops, we would check that 7'---d > 0. For imperfectly nested loops, the
only relevant loops are the ones that are common to both S1 and S2, so we can project
T'.d onto these common loops, and verify that this projection is a positive vector. With one
caveat, this is essentially the test we use. The caveat is that even if the projection of T.d
onto the common loops is 0, the dependence may still be satisfied by the syntactic ordering
of S1 and S2 in the new AST. This motivates the following definition.

Definition 6 Let D be the dependence matriz for some program, and let M be a transfor-
mation matriz for this program. M is said to be legal if it has the block structure described
in Section 5.2, and if following condition is true for all dependences d in D.

If dependence d is from an instance of statement S1 to an instance of statement S2, let
P be the projection of the vector M.d onto that subset of dimensions containing only the
loops common to S1 and S2. Then, either (i) P > 0, or (ii) P =0 and S1 =g Ss in the new

AST.

Note that a transformation matrix M is legal even if there is a dependence d such that
P =0and S; = S, (in this case, we say that d is left unsatisfied by M). In other words, two
dependent instances of a statement S; may be mapped by M to the same dynamic instance
of S7 in the AST produced by the algorithm in Figure 6. As explained in Section 4.1,
the mapping induced by a transformation matrix M from dynamic instances in the source
program to dynamic instances in the transformed program is not necessarily one-to-one;
therefore, we will in general need to add extra loops around atomic statements to enumerate
over all dynamic instances. Definition 6 implies that these extra loops must satisfy all
dependences not satisfied by the loops in the AST constructed by the algorithm in Figure 6.
The following result states this precisely.

Theorem 2 Let M be a legal transformation matrix for some program, and let AST, and
AST; be the source and transformed abstract syntaz trees. Suppose that in the source program,
there is a dependence from instance DI of a statement Sy to instance DIy of a statement
Sy. Let Tl and T be the dynamic instances in the transformed program corresponding to
DIy and D15 respectively.

1. T <TlI.
2. If TI; =TI, then S and S are identical.

14

Proof:

1. Follows from Definition 2, and Definition 6 of a legal transformation.
2. Follows from the definition of dynamic instances.

5.4 Augmentation with extra loops

Once the AST has been constructed, the next step in code generation is to add extra loops
around an atomic statement if multiple instances of it in the source program get mapped
to a single instance of that statement in the new AST. We show how to add the additional
loops, using the following program as an example.

do I =1..N
S1: B(I) = B(I-1) + A(I-1,I+1)
do J =1..N
S2: A(I,J) = £Q);
enddo
enddo

Executions of S1 and S2 are represented by initial instance vectors [I,0, 1, I]" and [I, 1,0, J|'

1 1
. . . . —1
respectively. Dependence analysis on this code produces the matrix D = 8 e Sup-
1 -1
1 00 —1
. . 001 0 . .
pose that the transformation matrix M = 010 0| It is easy to verify that both
000 1

the transformed dependence vectors are legal, and that M is a legal transformation. Note
that all instances of S1 are mapped to iteration 0 of the transformed loop nest.

Therefore, we must add an extra loop around S1; since S1 has self-dependences, this loop
must carry these dependences. We do this augmentation in two stages. For each statement,
we first determine how the iteration space of that statement is transformed by M; this can
be expressed compactly by a matrix which we call the per-statement transformation for
that statement. In our example, the per-statement transformations Mg; and Mg, are
1 -1
0 1
appropriate columns of M and projecting onto loop positions. For example, for S1, we note
that the general instance vector is [I,0, 1, I]". Therefore, we add the first and fourth columns
of M and project onto loop I; this gives us the matrix [0] as desired. For lack of space, we
omit the details of the general algorithm.

respectivel 0 | and . In general, these matrices can be computed by addin
y g g

Definition 7 For any statement S nested in k loops, let Is = [i1,...,ix] denote the loop
values corresponding to an dynamic instance DI of S. Let M be any legal transformation

15

matriz. Let AST; and ASTy be the initial and transformed ASTs respectively. Then, the per-
statement transformation My is defined as a k X k matrix which satisfies the condition:

Mg * Is = L Y (M % L(DI, AST;), ASTy) (4)

The equation in Definition 7 means that the entry for a loop L in the left hand side
vector is the same as the label for that loop in the dynamic instance represented by the
right hand side. As in our example, the per statement transformation for a statement
nested in k£ loops need not have rank k; therefore, we need to add additional loops. It is
obvious that these additional loops around a statement S do not violate any inter-statement
dependendences involving S — we only need to ensure that they carry any self-dependences
of S left unsatisfied by M. The algorithm for adding these loops is identical to the completion
procedure given by Li and Pingali in the context of perfectly nested loops [10], and is shown
in Figure 7.

Theorem 3 Let M be a legal transformation. For a statement S, let Dy, = dy,ds, ..., ds
be the set of self dependences of S unsatisfied by M. Let Ts be the per-statement trans-
formation corresponding to S. Let D, be the set dy,dy, ..., d, obtained by projecting each
element of D, onto the entries corresponding to loops surrounding S. Then the following are
true:

1.Vd €D, T,«xd =0

2. If rank(T,) = r, k-r rows can be added at the end of T, to augment it to T,, such that
vd € DS,T; x d 1is lexicographically positive, and T; has rank k.

Proof:

1. Follows trivially from the fact that all these vectors correspond to dependences that have
not been satisfied and M is legal.

2. From part 1, it is easy to see that all the rows of T, are orthogonal to all the vectors in
D;. We use the procedure in Figure 7 to add the remaining k-r rows to T%.

a

For our example, the augmentation procedure will complete the per-statement transfor-

mation for S1 to produce the rank-1 matrix [(1]] For S2, the corresponding matrix is
1 -1
0 1

5.5 Generating Loop Bounds

The final step in code generation is to determine for each statement what are the loop bounds
and steps for the surrounding loops. We deal with it in this section.

Definition 8 LetTs be an | X k transformation matriz of rank k produced by the procedure
win Figure 7. From Ts, construct a new matrix Ng by deleting every row that is either zero or
s a linear combinations of previous rows in Ts. This new matrix is called the non-singular
per-statement transformation for statement S.

16

Procedure Complete (T, D)

/* Complete T into a rank k matrix */
NumNewRows = 0;
for (i=1;i < k-r; i++)
/*Height returns row number of first non-zero row of a matrix. */
h = Height(D;);
ey, = unit vector of length k, with a 1 at position h;
Append ey, to Ty;
Delete all vectors of height A from Dy;

PASTHR DI

9: NumNewRows = NumNewRows +1;

10: if D, has no more entries, then

11: break

12: endfor

13: /* if NumNewRows != (k-r), we need to add (k-r-NumNewRows rows) */
14: if (NumNewRows != (k-r)) then

15: Append rows spanning the null space of rows of Ty;

16: endif

17: return

}

Figure 7: Adding loops around statements

Theorem 4 Ng is a k X k non singular matriz.

Proof: Obvious from the fact that T is of rank k and from the construction of Ng. O

In our skewing example, matrix Ng; is [1], while Ngs is l (1) _11]

Definition 9 The loops surrounding S in the transformed AST (after augmentation) corre-
sponding to the rows of Ts that are retained in Ng are called the non-singular loops of S.
Any other loop surrounding S is defined to be a singular loop surrounding S.

Theorem 5 Any dynamic instance of S in the initial program is transformed to a unique
set of loop labels for the non-singular loops surrounding S in the transformed program.

Proof: Let [il,ig,...,ik]l correspond to the loop labels of a dynamic instance of S in the
initial program. Let [i'l,ilg, . ,i'k]’ represent the loop labels of a dynamic instance of S in the
transformed program corresponding to the non-singular loops of S. Then, it is easy to verify
that [iy, s, . ..,1;) = Ng*[i1,12,...,i] . The theorem follows from the nonsingularity of Ng O

Lemma 3 Given Ng, and the initial loop bounds of all loops surrounding S, we can deter-
mine the bounds and steps of all non-singular loops surrounding S after transformation.

Proof: As we have already mentioned, Ng is an integer non-singular matrix that represents the
transformation from the loops surrounding S initially to the non-singular loops surrounding
S after transformation. We can use an approach identical to the one in [10] used for perfectly
nested loops for this purpose. O

17

Thus, for any statement, we can generate the loop bounds and steps for all non-singular
loops surrounding it after transformation. The only remaining issue is regarding the singular
loops surrounding S. We deal with it as follows. Let k& be the row number of T's corresponding
to a singular loop of S, represented by ri. Ry is a linear combination of a certain number
(1) of linearly independent rows preceding it in Ts(and all of which appear in Ng). Let
ri,...,7; denote these rows and let r, = my xry +...mg *x 7. Given myq, ..., mg, and given
the loop bounds corresponding to 7y, ..., s, it is easy to determine the bounds for the loop
corresponding to 7. In addition, a particular iteration of this singular loop is executed
only if for that iteration, the value of the loop index variable (i;) satisfies the condition:
ik = E;Zl m; * i;, where 4; corresponds to the value of the loop index variable corresponding
to r;.
For our running example, the final code generated is the following:

do I = 1-N..0
= 1-

do J I..min(N,N-I)
AC(TI+7,0) = £O)

enddo
if (I = 0) then
do I2 = 1..N
B(I2) = B(I2-1) + A(I2-1,I2+1)
enddo
endif
enddo

which, using standard optimizations, can be simplified to

do I = 1-N..-1
do J = 1-1I..N
ACI+3,7) = £0O
enddo
enddo
do J =1..N
ACJ,]) = £0O);
enddo
do I2 = 1..XN
B(I2) = B(I2-1) + A(I2-1,I2+1)
enddo

6 Completion Procedure

A major advantage of the matrix-based technology for perfectly nested loop transforma-
tions is that it provides a way to generate desired loop transformations. For example, in
earlier work, Li and Pingali [10] have described a completion procedure which, given a
dependence matrix and the first few rows of a desired transformation, automatically appends
additional rows to the matrix to produce a complete transformation matrix that satisfies all

18

st () st

Initial AST Transformed AST

Figure 8: Initial and Final AST for Cholesky

dependences [10]. We have developed a similar procedure for imperfectly nested loops. For
lack of space, we do not describe this procedure here, but illustrate its behavior using code
for Cholesky factorization (as mentioned earlier, one of the goals of our work was to permit
us to reason about loop permutations in matrix factorization codes).

do K =1..N
S1: A[k][k] = sqrt (A[k][k]);
do I = K+1..N
S2: A[il[k] = A[il[k] / Alk][k];
enddo
do J = K+1..N
do L = K+1..J
$3: A[G1[1] = A[GI[1] - ACGI[R] * A[1][k];
enddo
enddo
enddo

This code fragment is represented before transformation by the AST on the left in
Figure 8. Dependence analysis on this code fragment produces the dependence matrix

0o 0 + 1
0 1 0 -1
1 -1 0 0
—1 0 0 1 |. A partial transformation with the intention of interchanging the k
0O + 0 0
0O + 0 0
I

and j loops produces a first row of transformation equal to | 0 0 0 0 1 0 0 |. Our

19

000O0O1O0O0
001 0O0O0O
0001000

completion procedure completes this transformationto | 0 1 0 0 0 0 O |. The AST
1000000
000O0O0OT1SO
000O0O0TO 01

produced after transformation is the AST on the right in Figure 8. Tt turns out that the
per-statement transformation in this case is non-singular for each statement and no augmen-
tation is necessary. The final code produced by the code generation is shown below: (this
corresponds to the traditional left looking Cholesky code).

do K =1..N
do J = K..N
do L =1..K-1
S3: A[j1[k] = A[j1[k] - A[j1[1] = A[k][1];
enddo
enddo

S1: Al[k][k] = sqrt (A[k][k]);
do I = K+1..N
S2: A[il[k] = A[il[k] / Alk][k];
enddo
enddo

7 Conclusions

We have described an approach to transforming imperfectly nested loops which trades off
generality for simplicity. We require that all atomic statements contained in the same set
of loops be transformed identically (except for statement alignment). Although this is more
restrictive than other approaches, it is sufficiently general to capture permutation of imper-
fectly nested loops in matrix factorization codes, which constitute a significant proportion
of imperfectly nested loops in scientific codes. The advantage of this restriction is that it
permits us to extend the technology for transforming perfectly nested loops to imperfectly
nested loops in a more or less straight-forward way. In particular, we can use standard depen-
dence abstractions like distances and directions, and loop transformations can be modeled
by matrices. The linear framework allows us to look for good transformation efficiently (for
example, parallelizing a loop requires finding a row in the nullspace of the dependence ma-
trix) and also permits automatic completion in an efficient manner. In short, by drawing on
the same factors that made the matrix based approach practical for transforming perfectly
nested loops, we hope to obtain a practical approach to transforming imperfectly nested
loops.

We would like to extend this work to incorporate loop distribution and loop fusion into
the completion procedure. Currently, these two transformation can be expressed in our

20

framework, but we do not make use of these two transformations in our completion procedure.
We are also implementing our loop transformations in the Polaris compiler test-bed [5].

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Principle and
Practice of Parallel Programming, pages 39-50, April 1991.

[2] E. Ayguadé and Jordi Torres. Partitioning the statement per iteration space using non-
singular matrices. In 1993 ACM International Conference on Supercomputing,
pages 407415, Tokyo, jul 1993.

[3] Uptal Banerjee. A theory of loop permutations. In Languages and compilers for
parallel computing, pages 54-74, 1989.

[4] Uptal Banerjee. Unimodular transformations of double loops. In Languages and
compilers for parallel computing, pages 192-219, 1990.

[5] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: The next generation
in parallelizing compilers. Technical Report 1375, Center for Supercomputing Research
and Development (CSRD), University of Illinois Urbana-Champaign.

[6] Paul Feautrier. Some efficient solutions to the affine scheduling problem - part i: one
dimensional time. International Journal of Parallel Programming, October 1992.

[7] Paul Feautrier. Some efficient solutions to the affine scheduling problem - part ii: multi-
dimensional time. International Journal of Parallel Programming, December
1992.

[8] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple mappings.
In The 5th Symposium on the Frontiers of Massively Parallel Computation,
pages 332-341, McLean, Virginia, feb 1995.

[9] S.Y. Kung. VLSI Array Processors. Prentice-Hall Inc, 1988.

[10] Wei Li and Keshav Pingali. A singular loop transformation based on non-singular
matrices. International Journal of Parallel Programming, 22(2), April 1994.

[11] William Pugh. The omega test: A fast and practical integer programming algorithm
for dependence analysis. In Communications of the ACM, pages 102-114, August
1992.

[12] J. Ramanujam. Optimal code parallelization using unimodular transformations. In
Proceedings of Supercomputing, 1992.

[13] M. E. Wolf and M. S. Lam. An algorithmic approach to compound loop transformations.
In Languages and compilers for parallel computing, pages 243-273, 1990.

21

[14] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, 1995.

22

