
Transformations for Imperfectly Nested Loops

Induprakas Kodukula

Keshav Pingali

Department of Computer Science�

Cornell University� Ithaca� NY ������

fprakas�pingalig�cs�cornell�edu

October �	� �

�

Abstract

Loop transformations are critical for compiling high�performance code for modern

computers� Existing work has focused on transformations for perfectly nested loops
�that is� loops in which all assignment statements are contained within the innermost
loop of a loop nest�� In practice� most loop nests� such as those in matrix factorization

codes� are imperfectly nested� In some programs� imperfectly nested loops can be con�
verted into perfectly nested loops by loop distribution� but this is not always legal� In

this paper� we present an approach to transforming imperfectly nested loops directly�
Our approach is an extension of the linear loop transformation framework for per�

fectly nested loops� and it models permutation� reversal� skewing� scaling� alignment�
distribution and jamming�

� Introduction

Modern compilers perform a variety of loop transformations� like permutation� skewing� re�
versal� scaling� distribution and jamming� to generate high quality code for high�performance
computers ����� Determining an optimal sequence of loop transformations for enhanc�
ing parallelism or locality of reference is a very di�cult problem� For perfectly nested
loops �that is� loops in which all assignment statements are contained within the innermost
loop	� polyhedral methods can be used to synthesize sequences of linear loop transforma�
tions �permutation� skewing� reversal and scaling	 for enhancing parallelism and locality
��� 
� �� �
� ��� ��� ��� The key idea is to model the iterations of the loop nest as points in an
integer lattice� and to model linear loop transformations as nonsingular matrices mapping
one lattice to another� A sequence of loop transformations is modeled by the product of
matrices representing the individual transformations
 since nonsingular matrices are closed

�This research was supported by NSF grant CCR��������� ONR grant N���������������� and a grant

from Hewlett�Packard Corporation�

�



under product� this means that a sequence of linear loop transformations is also represented
by a nonsingular matrix� The problem of �nding an optimal sequence of linear loop trans�
formations is thus reduced to the problem of �nding an integer matrix that satis�es some
desired property� This formulation has permitted the full machinery of matrix methods and
lattice theory to be applied to the loop transformation problem for perfectly nested loops�
and the resulting technology is mature enough that it has been incorporated into many
industrial compilers�

Unfortunately� most loops in real programs are imperfectly nested � that is� the as�
signment statements are nested in some but not all of the loops in the loop nest� The
simplest examples are matrix factorization codes� For instance� Cholesky factorization is
usually written as an imperfectly nested loop with three loops� All six permutations of these
three loops compute the same result� but their performance� even on sequential machines�
can be quite di�erent� The polyhedral methods that were developed for perfectly nested
loops cannot be applied directly to permute the loops in Cholesky factorization� In some
programs� loop distribution can be applied to transform an imperfectly nested loop into a
set of perfectly nested ones� However� loop distribution is not always legal
 in particular� it
is not legal in any of the matrix factorization codes�

Therefore� we are faced with two problems� First� how do we specify transformations
of imperfectly nested loops� Second� how do we �nd legal and desirable transformations�
The usual way to solve the �rst problem is to use techniques developed by the systolic ar�
ray community for scheduling statements in loop nests on systolic arrays� These schedules
specify mappings from statement instances to processor�time axes
 these mappings are usu�
ally restricted to be a�ne functions of loop variables ���� It is straight�forward to interpret
these schedules or mappings as loop transformations in which each assignment statement
in a loop nest is transformed by a possibly di�erent linear �or pseudo�linear	 function to a
target iteration space� These techniques were extended by Feautrier in his theory of sched�
ules in multi�dimensional time ��� ��
 a related approach is Kelly and Pugh�s mappings����
The second problem � �nding legal and desirable transformations � is solved by searching
the space of transformations� However� this process is usually very expensive for two rea�
sons� First� standard dependence abstractions like distance and direction cannot be used

instead� relatively expensive tests based on techniques like parametric integer programming
are necessary� Second� the frameworks themselves provide little help in producing desirable
transformations� This should be contrasted with the case of perfectly nested loops� In that
case� determining a parallel outermost loop merely requires �nding a vector in the null space
of the columns of the dependence matrix �
�� Similarly� general �completion procedures� have
been developed for producing complete transformations from partial ones �����

In this paper� we present an approach to transforming imperfectly nested loops that
trades o� generality for simplicity� Roughly speaking� if two assignment statements are
contained within the same set of loops� we require that they be transformed the same way
�although statement alignment may �shift� the iterations of these statements by di�erent
amounts	� Although this is more restrictive than schedules or mappings� it is su�cient
to reason about loop permutations in matrix factorization codes� The advantage of this
restriction is that it permits us to extend the technology for transforming perfectly nested
loops to imperfectly nested loops in a more or less straight�forward way� In particular� we can

�



use standard dependence abstractions like distances and directions� and loop transformations
can be modeled by matrices� The rest of the paper is organized as follows� In Section ��
we model the execution of statements in an imperfectly nested loop using integer vectors
called instance vectors which are a generalization of iteration vectors used in the context
of perfectly nested loops� In Section 
� we present our version of dependence distances and
directions� and show how these can be computed using standard integer linear programming
techniques� In Section �� we show how permutation� skewing� reversal� scaling� alignment�
statement reordering� distribution and jamming can be modeled as linear transformations
in our framework� In the rest of the paper� we do not consider distribution and jamming�
In Section �� we show how code can be generated from a matrix representing a sequence of
loop transformations� In Section �� we discuss a completion procedure which generates a
complete transformation from a partial one
 for lack of space� we omit details but show how
it works using permutation of the loops in Cholesky factorization� Finally� we discuss future
work in Section ��

� Iteration Space Formulation

Since a statement in a loop is executed many times� we need a way of identifying a particular
dynamic instance of a given statement� In the context of perfectly nested loops� it is standard
to use an iteration vector� which is simply a sequence of integers specifying the iteration
number for each loop in the loop nest� For imperfectly nested loops� we generalize this notion
to instance vectors
 instance vectors carry additional information to identify the statement
under consideration� Like iteration vectors� instance vectors have two key properties� The
�rst property is that for a given program� all vectors have the same length� so it is meaningful
to add or subtract vectors� The second property is that the execution order between two
dynamic instances corresponds to lexicographic order on the corresponding instance vectors�

��� Program Order

We use the following pseudo�code as the running example in this section�

do I � ���N

do J � f�I���g�I�

S�

S�

enddo

S�

enddo

Figure ��a	 shows the abstract syntax tree �AST	 for this program� Internal nodes in
trees represent loops� while leaves represent �atomic� statements �for example� assignment
statements or conditionals whose internal structure is of no interest for loop transformations	�
As is standard� subtree structure re�ects syntactic nesting while the left�to�right order of the
children of a node re�ects the sequential execution order of those children� We now de�ne a
re�exive relation �S that captures syntactic order in a program�






S3

S1 S2

I

J

(a) (b)

< <

S2

2

3

I

J S3

2I

J

1

1

1

S3

5I

J

1

Figure �� Abstract Syntax Trees and Program Order

De�nition � An atomic statement S� is said to occur syntactically before an atomic state�

ment S�� written as S� �S S�� if S� is encountered before S� in a depth��rst walk of the

AST�

A dynamic instance of a statement in an imperfectly nested loop is speci�ed by the
values of the loop index variables of loops surrounding that statement� In terms of the AST�
this corresponds to an assignment of integers to all internal nodes on the path in the AST
from root to that statement� It is convenient to view a dynamic instance of a statement as a
partially labeled AST� To identify the statement in the AST� the edges on the path from root
to that statement are labeled �� The values of the relevant loop index variables are speci�ed
by labeling the corresponding internal nodes on that path with integers� Figure � shows
some labeled AST�s for the running example� The leftmost AST in Figure ��b	 corresponds
to an execution of S� with I�� and J�
� The middle AST corresponds to an execution of
S
 with I�
 and the rightmost AST corresponds to execution of S
 with I��� These three
executions are ordered in time with respect to each other� as is shown in Figure ��b	� For
future reference� we de�ne the � order on dynamic instances�

De�nition � Let DI� and DI� be dynamic instances of statements S� and S� respectively�

Let P� and P� be integer vectors containing the labels in DI� and DI� respectively for the

common loops of S� and S�� in outside�in order� DI� � DI� if �i� P� � P� or �ii� P� � P�

and S� �S S��

Dynamic instances are mapped to instance vectors by a function L� In the �rst step�
a partially labeled AST T is converted to a fully labeled AST F by a procedure M whose
behavior can be described as follows�

�



S3

2

3

2

S3

5

2

1

0

0

0 0

10

1

0

0 0

1

5

S2

< <

< <

2
0
1
3
1
0

2
1
0
2
0
0

5
1

0
5
0
0

Figure �� Instance Vectors and Lexicographic Order

�� Every unlabeled edge in T is assigned the label ��

�� Every leaf node in T is assigned the label ��

�� Every unlabeled internal node n is assigned the label of its nearest labeled

ancestor in T �

If T is a partially labeled AST� the expression M�T 	 will denote the fully labeled AST
generated by procedure M�

In the second step� we collect all labels in a fully labeled AST into a vector� This is
accomplished by walking over the tree in depth��rst order� visiting the children of a node in
right to left order� and concatenating labels� This is de�ned formally using a function R�N	�
de�ned below� which collects the labels in the subtree below node n�

R�N	 �

� if N is a leaf�

Label�N	��Label�em	������Label�e�	��R�nm	������R�n�	 otherwise� ��	

where m is the number of children of node N � n����nm are the children of N in left to right
order in the AST� and edge ei is the edge from N to child ni� The operation �� denotes
vector concatenation� R�root	 is said to be the Instance vector representing the particular
statement execution�

De�nition � The function L maps a partially labeled AST to an instance vector�
L�T� partially labeled AST� � R�root�M�T�����

Instance vectors are integer vectors� and we will let � denote lexicographic order on these
vectors�

�



Theorem � L is one�to�one� Furthermore� if E� and E� are two dynamic instances and E�

precedes E� in execution order� then L�E�	 � L�E�	�

Proof� Follows immediately from the de�nition of L� �

De�nition � For any dynamic instance DVs� entries of the instance vector L�DVs	 for
nodes labeled by procedure M are referred to as padded positions of that instance vector�

For example� in Figure �� the entries for the J loop in instance vectors for dynamic instances
of S� are padded positions� Intuitively� these instance vectors can be viewed as an embedding
of the iteration space of statement S� into the �global� iteration space of the nested loops
�for example� iteration I of statement S� is mapped to iteration �I� I	 of the nested loop	�
Given our choice of padding� this corresponds to a �diagonal� embedding of the lower dimen�
sional space into the higher dimensional one� There are other reasonable ways to de�ne this
embedding� but we have not explored these alternatives�

Lemma � All dynamic instances of a particular statement have the same padded positions

Proof� Follows from De�nition � and Equation �� �

Lemma � The instance vectors for a perfectly nested loop have no padded positions�

Proof� Follows from De�nition � and Equation �� �

In the rest of the paper� we use the term padded positions of S to mean the padded
positions of all the instance vectors of all the dynamic instances of S� For future discussion�
it is useful to de�ne a function L�� which converts an instance vector back to a dynamic
instance�

De�nition � L���IV � InstanceV ector� A � AST 	 takes an instance vector IV � and an
AST � and returns the partially labeled AST P corresponding to IV � It can be described as
follows�

	� Identify the relevant statement in the AST by examining IV �

� Label all edges from the root of the AST to statement S with ��
�� Label each loop surrounding S with the entry for that loop in IV �

��� Optimizing Single edges

A simple optimization on edge label assignment permits instance vectors to reduce to itera�
tion vectors for perfectly nested loops� As described above� edge labels serve to identify the
path from the root to a particular statement� However� if a node N has only one edge E
coming out of it �i�e� the loop corresponding to N has only one statement	� then a label on
E is redundant� To eliminate this edge from the instance vector� we use � for its label�

�



ε

ε

2

4

S1 S1

2

1

1

2

4

2

4

2

1

4

1

Figure 
� Optimizing Instance Vectors

do I � ���N

do J � I����N

S�� A�J� � A�J� 	 A�I�

end do

end do

Figure 
 shows a perfectly nested loop� and instance vectors with and without this optimiza�
tion� Note that instance vectors are identical to iteration vectors once this optimization has
been carried out� In the rest of the paper� we will assume that this optimization has been
performed�

� Dependence Analysis

We now discuss the representation of dependences in our framework� and show how de�
pendences may be computed� An advantage of our framework is that we can use standard
dependence tests for computing distance�direction vectors� The following highly simpli�ed
version of Cholesky factorization is the running example in this section�

do I � ���N

S�� A�I� � sqrt �A�I��

do J � I����N

S�� A�J� � A�J� 	 A�I�

end do

end do

In this program� there is a �ow dependence from S� to S� because S� writes to A and S�
reads from A� Suppose that S� writes to some array location in iteration Iw of the outer loop�

�



and that this location is read by statement S� in iteration �Ir� Jr	� The instance vector for the
statement execution performing the write is �Iw� �� �� Iw�

�� Similarly� the instance vector for
the statement execution performing the read is �Ir� �� �� Jr�

�� The di�erence between these two
instance vectors is �Ir � Iw� ����� Jr � Iw�

�� To compute the appropriate distance�direction
vectors corresponding to this di�erence� we set up the following set of a�ne constraints�

� � Ir � N� Ir � Jr � N� � � Iw � N�loop bounds	

Iw � Ir�read after write	

Ir � Iw�same array location	 ��	

Note that these are integer linear inequalities similar to those that arise in the con�
text of dependence analysis of perfectly nested loops� To obtain the appropriate direction
information� we introduce two new variables as follows�

�� � Ir � Iw��� � Jr � Iw �
	

We treat Equations � and 
 as a single system of equations� and project the solution of
this system onto �� and ��� using any integer linear programming tool� such as the Omega
tool�kit ����� In our example� it is easy to see that �� � � and �� � �� Therefore� the �ow
dependence in the above example will be represented in our framework as ��� ���������

Using a similar procedure� we can determine the other dependences in this code� These
dependences can be collected into a dependence matrix
 for our example� this matrix is the

following�

�
����

� � �
� �� �
�� � �
� � �

�
�����

The general procedure for computing dependences performs this analysis for all pairs of
reads and writes in a program
 for lack of space� a detailed description is omitted�

� Transformations

In this section� we show how matrices may be used to model loop transformations in our
framework� The transformations we can model include �i	 imperfectly nested loop permuta�
tion� skewing� reversal and scaling� �ii	 statement reordering� �iii	 statement alignment� and
�iv	 distribution and jamming�

��� An overview

There are three subtle issues that arise in transforming imperfectly nested loops� and we
discuss them using the simpli�ed version of Cholesky factorization shown again below�

�



do I � ���N

S�� A�I� � sqrt �A�I��

do J � I����N

S�� A�J� � A�J� 	 A�I�

end do

end do

We note �rst that in the context of imperfectly nested loops� transformations that op�
erate on multiple loops� such as permutation and skewing� are not uniquely de�ned� In the
example shown above� it is clear what permuting the I and J loops means for statement S�
since it is nested within both loops� but what does it mean for statement S�� A plausible
de�nition is that the index space of S� should not be changed by this loop permutation�
However� there is no particular reason to prefer this de�nition
 indeed� the commonly used
strategy of performing transformations after sinking all statements into the innermost loop
will in general change the index space of S�� We take a similar approach � as discussed
in Section �� our instance vectors de�ne an embedding of the iteration space of S� into a
global iteration space� in e�ect� and transformations to this global iteration space may result
in transformations to the index space of S�� In particular� loop permutation is represented
simply by a permutation matrix which permutes instance vector positions that correspond
to the loops being interchanged� The matrix and transformed instance vectors for the inter�
change of the I and J loops are shown below� It is coincidental that instance vectors of S�
are left unchanged by permutation in this example�

�
����
� � � �
� � � �
� � � �
� � � �

�
���� �

�
����
I I
� �
� �
I J

�
���� �

�
����
I J
� �
� �
I I

�
����

From this discussion� it should be clear how other loop transformations are represented
by matrices in our framework� For example� skewing the outer loop by the inner loop in our
running example is represented as follows�

�
����
� � � ��
� � � �
� � � �
� � � �

�
���� �

�
����
I I
� �
� �
I J

�
���� �

�
����
� I � J
� �
� �
I J

�
����

Skewing transforms instance vectors of S� just as it does in perfectly nested loops� How�
ever� its e�ect on instance vectors of S� is subtle� First� note that the new outer loop index is
�
 this means that all instances of S� must be executed in the very �rst iteration of the new
outer loop� This may seem surprising but it is a consequence of the �diagonal embedding� of
the iterations of S� into the global iteration space� the new outer loop is orthogonal to this
diagonal� so all iterations of S� are done in the very �rst iteration of the outer loop� Our
code generation procedure� described in Section �� introduces an extra loop around S� to
take case of this enumeration� A second point to note is that we do not require that padded
positions be transformed by the transformation matrix� In the transformed instance vectors

�



L
��

L

M

TransformationDIs DIt

IVs IVt

ASTs

ASTs

ASTt

ASTt

Figure �� Role of Matrices in Representing Transformations

for S�� the entry in the outer loop position is 
� but the entry in the inner loop position is I�
and not 
� This has an impact on how we test for the legality of a transformation
 clearly� it
is not su�cient to test that transformed dependence vectors are lexicographically positive�
as in the case of perfectly nested loops� The test for legality is described in Section ��

The role of matrices in our framework is made precise in Figure �� A loop transformation
T maps a dynamic instance of a statement in the source program �shown as DIs	 to a
dynamic instance in the target program �shown as DIt	� We can convert the dynamic
instance DIs into an instance vector IVs using the L operator discussed in Section �� M � the
matrix representing the transformation T � maps the old AST to a new AST� and maps every
instance vector IVs to a new instance vector IVt such that the dynamic instance obtained
by applying the L�� operator to IVt is precisely DIt� This is a weaker assertion than stating
that L�T �DIs	 � M �L�DIs	� As mentioned before� M is not required to transform padded
positions of iteration vectors consistently� so the entries in the padded positions of IVt may
be di�erent in general from the entries in the padded positions of L�DIt	�

We have already discussed permutation and skewing� For completeness� we note that
loop reversal is represented by an identity matrix with one change � the diagonal entry of
the row corresponding to the loop being reversed has a ��� Loop scaling is represented by an
identity matrix with one change � the diagonal entry of the row being scaled has an entry
equal to the scale factor�

��� AST Transformations

Statement reordering changes the structure of the AST� In our framework� it is represented
by a permutation matrix where the permutation matrix interchanges the positions corre�
sponding to the statements that are being interchanged� The following example shows the
matrix that reorders the J loop and S� �both contained in the outer I loop	 from the Cholesky

��



example� �
����
� � � �
� � � �
� � � �
� � � �

�
���� �

�
����
I I
� �
� �
I J

�
���� �

�
����
I I
� �
� �
I J

�
����

Loop distribution and jamming are represented by non�square matrices� Here is a version
of the simpli�ed Cholesky fragment after loop distribution�

do I � ���N

S��

enddo

do I � ���N

do J � I����N

S��

enddo

enddo

In the AST� loop distribution corresponds to splitting an edge of the AST into two and rep�
resents the replication of the edge and the entire subtree that may be split as a consequence�
In the particular case of distribution illustrated above� the transformation is given by

�
�������

� � � �
� � � �
� � � �
� � � �
� � � �

�
�������
�

�
����
I I
� �
� �
I J

�
���� �

�
�������

� �
� �
I I
I I
I J

�
�������

We illustrate how loop jamming works by transforming the simpli�ed Cholesky code after
loop distribution back to its original form� Conceptually� this fuses two subtrees of the AST
into a single subtree� In this particular instance� the transformation is represented by the
matrix �

����
� � � � �
� � � � �
� � � � �
� � � � �

�
���� �

�
�������

� �
� �
I �
� I
� J

�
�������
�

�
����
I I
� �
� �
� J

�
����

��� Statement Alignment

Statement alignment of a particular statement with respect to a loop surrounding it is the
identity matrix with one additional entry� The additional entry appears in the row positions
corresponding to the loop and the column position corresponding to the column� The value
of the entry corresponds to the amount that the statement gets aligned with respect to the
loop� Here is alignment of S� in the Cholesky code fragment with respect to the I loop by
���

��



�
����
� � � �
� � � �
� � � �
� � � �

�
���� �

�
����
I I
� �
� �
I J

�
���� �

�
����
I � � I
� �
� �
I J

�
����

� Code Generation

In this section� we restrict our discussion to statement reordering� and permutation�skewing�reversal
and scaling of imperfectly nested loops� We describe how to check for legality of transforma�
tions� and then show how to generate code from matrices that represent legal transformations�
More generally� using our framework� we can show that all six permutations of the loops in
Cholesky factorization are legal�

��� Legality

Given an initial AST �say ASTi	� a dependence matrix D� and a transformation matrix M �
how do we check that M is a legal transformation� Intuitively� M is legal if �i	 we can
generate a new AST from it� �ii	 dependent dynamic instances in the source program are
properly ordered in the transformed program� and �iii	 there is a one�to�one and onto map
between dynamic instances in the source and transformed programs� We explain each of
these points in detail next�

��� Generating the new AST

Since statement reordering is the only transformation that changes the AST� we can show
that a legal transformation matrix M must have a certain �block structure� from which the
AST can be recovered easily� The key observation is the following� The �rst row of M
describes how the outermost loop is transformed� If this loop has c children� the submatrix
P � M �����c � �	� ����c � �	� must be an c � c permutation matrix that describes how the
children of the root node are permuted by statement reordering� The rest of the matrix M
�that is� M ��c��	��n� �c��	��n�	 describes how these c children are themselves transformed

therefore� this submatrix can be decomposed into c block matrices� such that the block
structure of this submatrix has the same shape as the permutation matrix P � From these c
block matrices� we can recursively determine the portion of new AST structure rooted at each
of the c children of the root node� Figure � shows the case when c � 
� Any transformation
matrix M that does not have this block structure is clearly illegal�

The pseudo�code for generating the transformed AST is given in Figure ��

��



0
0 0

01
1

100 1
2

3

1
2 3

2 13Perm: 

Figure �� Block Structure of Transformation Matrix

Procedure NewAST �M�n� � returnsAST
f
�� 	
 Discover the AST structure for the given transformation 
	

�� 	
 M is the transformation matrix and n is the �current� node 
	
�� Create a new node NN to represent node n in new AST

�� if �n is not a leaf node�
�� let c � number of children of node n


�� Assert P � T �� � �c� ��� � � �c� ��� is a permutation matrix

�� Construct vector Perm����c� where Perm�j� � i if
�� child j in old AST becomes child i in new AST

	� ColumnPtr � c��


�
� for j � � to c do
��� 	
Identify column of M where submatrix for child Perm�j� starts
	

��� ColumnStart�Perm�j�� � ColumnPtr


��� 	
Size�q� � size of instance vector for subtree rooted at q
	

��� ColumnPtr � ColumnPtr � Size�Child�Perm�j��� ��

���

��� RowPtr � c��


��� for j � � to c do
��� SubM �
�	� M�RowPtr�RowPtr�Size�Child�j���ColumnStart�j��ColumnStart�j��Size�Child�j���

�
� NewTree � NewAST �SubT� Child�j��


��� Make NewTree into Perm�j� child of NN 

��� RowPtr � RowPtr � Size�Child�j�� ��

���

��� endif

��� return NN 

g

Figure �� Algorithm to discover structure of transformed AST

�




��� Dependences

In addition to ensuring that a transformation matrix M has the proper block structure
for generating a new AST� we must ensure that dependent dynamic instances are ordered
properly in the transformed code� Recall from Section � that a dynamic instance DI in the
source program is mapped to a dynamic instance L���M�L�DI		� ASTf	 where ASTf is the
AST of the transformed program� Suppose that there is a dependence vector d where the
source of the dependence is statement S� and the target is statement S�� In the case of
perfectly nested loops� we would check that T � � � d � �� For imperfectly nested loops� the
only relevant loops are the ones that are common to both S� and S�� so we can project
T�d onto these common loops� and verify that this projection is a positive vector� With one
caveat� this is essentially the test we use� The caveat is that even if the projection of T�d
onto the common loops is �� the dependence may still be satis�ed by the syntactic ordering
of S� and S� in the new AST� This motivates the following de�nition�

De�nition � Let D be the dependence matrix for some program� and let M be a transfor�

mation matrix for this program� M is said to be legal if it has the block structure described

in Section ��
� and if following condition is true for all dependences d in D�

If dependence d is from an instance of statement S� to an instance of statement S�� let

P be the projection of the vector M�d onto that subset of dimensions containing only the

loops common to S� and S�� Then� either �i� P � �� or �ii� P � � and S� �S S� in the new

AST�

Note that a transformation matrix M is legal even if there is a dependence d such that
P � � and S� � S� �in this case� we say that d is left unsatis�ed by M	� In other words� two
dependent instances of a statement S� may be mapped by M to the same dynamic instance
of S� in the AST produced by the algorithm in Figure �� As explained in Section ����
the mapping induced by a transformation matrix M from dynamic instances in the source
program to dynamic instances in the transformed program is not necessarily one�to�one

therefore� we will in general need to add extra loops around atomic statements to enumerate
over all dynamic instances� De�nition � implies that these extra loops must satisfy all
dependences not satis�ed by the loops in the AST constructed by the algorithm in Figure ��
The following result states this precisely�

Theorem � Let M be a legal transformation matrix for some program� and let ASTs and
ASTt be the source and transformed abstract syntax trees� Suppose that in the source program�
there is a dependence from instance DI� of a statement S� to instance DI� of a statement
S�� Let TI� and TI� be the dynamic instances in the transformed program corresponding to
DI� and DI� respectively�

	� TI� � TI��

� If TI� � TI�� then S� and S� are identical�

��



Proof�

�� Follows from De�nition �� and De�nition � of a legal transformation�
�� Follows from the de�nition of dynamic instances�

�

��� Augmentation with extra loops

Once the AST has been constructed� the next step in code generation is to add extra loops
around an atomic statement if multiple instances of it in the source program get mapped
to a single instance of that statement in the new AST� We show how to add the additional
loops� using the following program as an example�

do I � ���N

S�� B�I� � B�I��� � A�I��
I���

do J � I��N

S�� A�I
J� � f���

enddo

enddo

Executions of S� and S� are represented by initial instance vectors �I� �� �� I�� and �I� �� �� J ��

respectively� Dependence analysis on this code produces the matrix D �

�
����
� �
� ��
� �
� ��

�
����� Sup�

pose that the transformation matrix M �

�
����
� � � ��
� � � �
� � � �
� � � �

�
����� It is easy to verify that both

the transformed dependence vectors are legal� and that M is a legal transformation� Note
that all instances of S� are mapped to iteration � of the transformed loop nest�

Therefore� we must add an extra loop around S�
 since S� has self�dependences� this loop
must carry these dependences� We do this augmentation in two stages� For each statement�
we �rst determine how the iteration space of that statement is transformed by M 
 this can
be expressed compactly by a matrix which we call the per�statement transformation for
that statement� In our example� the per�statement transformations MS� and MS� are

respectively
h
�
i
and

�
� ��
� �

�
� In general� these matrices can be computed by adding

appropriate columns of M and projecting onto loop positions� For example� for S�� we note
that the general instance vector is �I� �� �� I��� Therefore� we add the �rst and fourth columns
of M and project onto loop I
 this gives us the matrix ��� as desired� For lack of space� we
omit the details of the general algorithm�

De�nition 	 For any statement S nested in k loops� let IS � �i�� � � � � ik�
� denote the loop

values corresponding to an dynamic instance DI of S� Let M be any legal transformation

��



matrix� Let ASTi and ASTf be the initial and transformed ASTs respectively� Then� the per�
statement transformation MS is de�ned as a k � k matrix which satis�es the condition�

MS � IS � L���M � L�DI�ASTi	� ASTf	 ��	

The equation in De�nition � means that the entry for a loop L in the left hand side
vector is the same as the label for that loop in the dynamic instance represented by the
right hand side� As in our example� the per statement transformation for a statement
nested in k loops need not have rank k
 therefore� we need to add additional loops� It is
obvious that these additional loops around a statement S do not violate any inter�statement
dependendences involving S � we only need to ensure that they carry any self�dependences
of S left unsatis�ed byM � The algorithm for adding these loops is identical to the completion
procedure given by Li and Pingali in the context of perfectly nested loops ����� and is shown
in Figure ��

Theorem � Let M be a legal transformation� For a statement S� let Ds � d�� d�� � � � � dk
be the set of self dependences of S unsatis�ed by M � Let TS be the per�statement trans�

formation corresponding to S� Let Ds be the set d
�

�
� d

�

�
� � � � � d

�

k obtained by projecting each
element of Ds onto the entries corresponding to loops surrounding S� Then the following are
true�

	� �d
�

� Ds� Ts � d
�

� ��


� If rank�Ts� � r� k�r rows can be added at the end of Ts to augment it to T
�

s� such that
�d

�

� Ds� T
�

s � d
�

is lexicographically positive� and T
�

s has rank k�

Proof�

�� Follows trivially from the fact that all these vectors correspond to dependences that have
not been satis�ed and M is legal�

�� From part �� it is easy to see that all the rows of Ts are orthogonal to all the vectors in
Ds� We use the procedure in Figure � to add the remaining k�r rows to Ts�

�

For our example� the augmentation procedure will complete the per�statement transfor�

mation for S� to produce the rank�� matrix

�
�
�

�
� For S�� the corresponding matrix is�

� ��
� �

�
�

��� Generating Loop Bounds

The �nal step in code generation is to determine for each statement what are the loop bounds
and steps for the surrounding loops� We deal with it in this section�

De�nition 
 Let TS be an l� k transformation matrix of rank k produced by the procedure
in Figure 
� From TS� construct a new matrix NS by deleting every row that is either zero or
is a linear combinations of previous rows in TS� This new matrix is called the non�singular
per�statement transformation for statement S�

��



Procedure Complete �Ts�Ds�

f
�� 	
 Complete Ts into a rank k matrix 
	
�� NumNewRows � �


�� for �i � �
 i � k�r
 i���
�� 	
Height returns row number of �rst non�zero row of a matrix� 
	
�� h � Height�Ds�

�� eh � unit vector of length k� with a � at position h


�� Append eh to Ts

�� Delete all vectors of height h from Ds

	� NumNewRows � NumNewRows ��

�
� if Ds has no more entries� then

��� break

��� endfor

��� 	
 if NumNewRows �� �k�r�� we need to add �k�r�NumNewRows rows� 
	

��� if �NumNewRows �� �k�r�� then
��� Append rows spanning the null space of rows of Ts

��� endif

��� return

g

Figure �� Adding loops around statements

Theorem � NS is a k � k non singular matrix�

Proof� Obvious from the fact that TS is of rank k and from the construction of NS� �

In our skewing example� matrix NS� is ���� while NS� is

�
� ��
� �

�
�

De�nition � The loops surrounding S in the transformed AST �after augmentation� corre�
sponding to the rows of TS that are retained in NS are called the non�singular loops of S�
Any other loop surrounding S is de�ned to be a singular loop surrounding S�

Theorem � Any dynamic instance of S in the initial program is transformed to a unique
set of loop labels for the non�singular loops surrounding S in the transformed program�

Proof� Let �i�� i�� � � � � ik�
�

correspond to the loop labels of a dynamic instance of S in the
initial program� Let �i

�

�
� i

�

�
� � � � � i

�

k�
� represent the loop labels of a dynamic instance of S in the

transformed program corresponding to the non�singular loops of S� Then� it is easy to verify
that �i

�

�� i
�

�� � � � � i
�

k�
� � NS � �i�� i�� � � � � ik�

�

� The theorem follows from the nonsingularity of NS �

Lemma � Given NS� and the initial loop bounds of all loops surrounding S� we can deter�
mine the bounds and steps of all non�singular loops surrounding S after transformation�

Proof� As we have already mentioned� NS is an integer non�singular matrix that represents the
transformation from the loops surrounding S initially to the non�singular loops surrounding

S after transformation� We can use an approach identical to the one in ���� used for perfectly
nested loops for this purpose� �

��



Thus� for any statement� we can generate the loop bounds and steps for all non�singular
loops surrounding it after transformation� The only remaining issue is regarding the singular
loops surrounding S� We deal with it as follows� Let k be the row number of TS corresponding
to a singular loop of S� represented by rk� Rk is a linear combination of a certain number
�l	 of linearly independent rows preceding it in TS�and all of which appear in NS	� Let
r�� � � � � rl denote these rows and let rk � m� � r� � � � �mk � rk� Given m�� � � � �mk� and given
the loop bounds corresponding to r�� � � � � rk� it is easy to determine the bounds for the loop
corresponding to rk� In addition� a particular iteration of this singular loop is executed
only if for that iteration� the value of the loop index variable �ik	 satis�es the condition�
ik �

Pl
j��mj � ij � where ij corresponds to the value of the loop index variable corresponding

to rj �
For our running example� the �nal code generated is the following�

do I � ��N��


do J � ��I��min�N
N�I�

A�I�J
J� � f��

enddo

if �I � 
� then

do I� � ���N

B�I�� � B�I���� � A�I���
I����

enddo

endif

enddo

which� using standard optimizations� can be simpli�ed to

do I � ��N����

do J � ��I��N

A�I�J
J� � f��

enddo

enddo

do J � ���N

A�J
J� � f���

enddo

do I� � ���N

B�I�� � B�I���� � A�I���
I����

enddo

� Completion Procedure

A major advantage of the matrix�based technology for perfectly nested loop transforma�
tions is that it provides a way to generate desired loop transformations� For example� in
earlier work� Li and Pingali ���� have described a completion procedure which� given a
dependence matrix and the �rst few rows of a desired transformation� automatically appends
additional rows to the matrix to produce a complete transformation matrix that satis�es all

��



S2

S3

S1

S3

S1

S2

Initial AST Transformed AST

Figure �� Initial and Final AST for Cholesky

dependences ����� We have developed a similar procedure for imperfectly nested loops� For
lack of space� we do not describe this procedure here� but illustrate its behavior using code
for Cholesky factorization �as mentioned earlier� one of the goals of our work was to permit
us to reason about loop permutations in matrix factorization codes	�

do K � ���N

S�� A�k��k� � sqrt �A�k��k���

do I � K����N

S�� A�i��k� � A�i��k� 	 A�k��k��

enddo

do J � K����N

do L � K����J

S�� A�j��l� � A�j��l� � A�j��k� � A�l��k��

enddo

enddo

enddo

This code fragment is represented before transformation by the AST on the left in
Figure �� Dependence analysis on this code fragment produces the dependence matrix�
������������

� � � �
� � � ��
� �� � �
�� � � �
� � � �
� � � �
� � � �

�
������������
� A partial transformation with the intention of interchanging the k

and j loops produces a �rst row of transformation equal to
h
� � � � � � �

i
� Our

��



completion procedure completes this transformation to

�
������������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
������������
� The AST

produced after transformation is the AST on the right in Figure �� It turns out that the
per�statement transformation in this case is non�singular for each statement and no augmen�
tation is necessary� The �nal code produced by the code generation is shown below� �this
corresponds to the traditional left looking Cholesky code	�

do K � ���N

do J � K��N

do L � ���K��

S�� A�j��k� � A�j��k� � A�j��l� � A�k��l��

enddo

enddo

S�� A�k��k� � sqrt �A�k��k���

do I � K����N

S�� A�i��k� � A�i��k� 	 A�k��k��

enddo

enddo

� Conclusions

We have described an approach to transforming imperfectly nested loops which trades o�
generality for simplicity� We require that all atomic statements contained in the same set
of loops be transformed identically �except for statement alignment	� Although this is more
restrictive than other approaches� it is su�ciently general to capture permutation of imper�
fectly nested loops in matrix factorization codes� which constitute a signi�cant proportion
of imperfectly nested loops in scienti�c codes� The advantage of this restriction is that it
permits us to extend the technology for transforming perfectly nested loops to imperfectly
nested loops in a more or less straight�forward way� In particular� we can use standard depen�
dence abstractions like distances and directions� and loop transformations can be modeled
by matrices� The linear framework allows us to look for good transformation e�ciently �for
example� parallelizing a loop requires �nding a row in the nullspace of the dependence ma�
trix	 and also permits automatic completion in an e�cient manner� In short� by drawing on
the same factors that made the matrix based approach practical for transforming perfectly
nested loops� we hope to obtain a practical approach to transforming imperfectly nested
loops�

We would like to extend this work to incorporate loop distribution and loop fusion into
the completion procedure� Currently� these two transformation can be expressed in our

��



framework� but we do not make use of these two transformations in our completion procedure�
We are also implementing our loop transformations in the Polaris compiler test�bed ����

References

��� C� Ancourt and F� Irigoin� Scanning polyhedra with do loops� In Principle and

Practice of Parallel Programming� pages 
����� April �����

��� E� Ayguad e and Jordi Torres� Partitioning the statement per iteration space using non�
singular matrices� In ���� ACM International Conference on Supercomputing�
pages �������� Tokyo� jul ���
�

�
� Uptal Banerjee� A theory of loop permutations� In Languages and compilers for

parallel computing� pages ������ �����

��� Uptal Banerjee� Unimodular transformations of double loops� In Languages and

compilers for parallel computing� pages �������� �����

��� W� Blume� R� Eigenmann� K� Faigin� J� Grout� J� Hoe�inger� D� Padua� P� Petersen�
W� Pottenger� L� Rauchwerger� P� Tu� and S� Weatherford� Polaris� The next generation
in parallelizing compilers� Technical Report �
��� Center for Supercomputing Research
and Development �CSRD	� University of Illinois Urbana�Champaign�

��� Paul Feautrier� Some e�cient solutions to the a�ne scheduling problem � part i� one
dimensional time� International Journal of Parallel Programming� October �����

��� Paul Feautrier� Some e�cient solutions to the a�ne scheduling problem � part ii� multi�
dimensional time� International Journal of Parallel Programming� December
�����

��� Wayne Kelly� William Pugh� and Evan Rosser� Code generation for multiple mappings�
In The �th Symposium on the Frontiers of Massively Parallel Computation�
pages 

��
��� McLean� Virginia� feb �����

��� S�Y� Kung� VLSI Array Processors� Prentice�Hall Inc� �����

���� Wei Li and Keshav Pingali� A singular loop transformation based on non�singular
matrices� International Journal of Parallel Programming� ����	� April �����

���� William Pugh� The omega test� A fast and practical integer programming algorithm
for dependence analysis� In Communications of the ACM� pages �������� August
�����

���� J� Ramanujam� Optimal code parallelization using unimodular transformations� In
Proceedings of Supercomputing� �����

��
� M� E� Wolf and M� S� Lam� An algorithmic approach to compound loop transformations�
In Languages and compilers for parallel computing� pages ��
���
� �����

��



���� M�Wolfe�High Performance Compilers for Parallel Computing� Addison�Wesley
Publishing Company� �����

��


