Power Scope:
A Tool for Profiling the Energy Usage of Mobile Applications

Jason Flinn and M. Satyanarayanan
School of Computer Science
Carnegie Méellon University

{jflinn,satya} @cs.cmu.edu

Abstract

Inthis paper, we describe the design and implementation
of Power Scope, a tool for profiling energy usage by appli-
cations. Power Scope maps energy consumption to program
structure, in much the same way that CPU profilers map
processor cycles to specific processes and procedures. Our
approach combines hardware instrumentation to measure
current level with kernel software support to perform statis-
tical sampling of system activity. Postprocessing software
maps the sample data to program structure and produces
a profile of energy usage by process and procedure. Using
Power Scope, we have been able to reduce the energy con-
sumption of an adaptive video playing application by 46%.

1. Introduction

Energy isacritica resource for mobile computers[5, 8].
In spite of many improvements in low-power hardware de-
sign and battery life, there is now growing awareness that
a strategically viable approach to energy management must
include higher levels of the system [2]. For example, a net-
work application that offers acceptable service while tem-
porarily disconnected can save a considerable amount of
energy by suppressing non-essential wireless communica-
tion. The resulting savings add to those offered by energy-
efficient hardware. In contrast, efforts aimed solely at the
hardware cannot benefit from application-specific knowl-
edge.

Progress in energy-efficient software design requiresthe
ability to attribute energy consumption to specific software
components, in much the same way that CPU profilers such

This research was sponsored by the Defense Advanced Research Projects Agency
(DARPA), Air Force Materiel Command, USAF under agreement number F19628-
96-C-0061, the Intel Corporation, and AT& T Corporation. The views and conclu-
sions contained herein are those of the authorsand should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied,
of Intel, AT& T, DARPA, or the U.S. Government.

aspr of andgpr of help expose code components that are
wasteful of processor cycles. In this paper, we describe a
tool called Power Scope that we have built to profile energy
usage.

PowerScope maps energy consumption to program
structure. Using PowerScope, one can determine what frac-
tion of the total energy consumed during a certain time pe-
riod is due to specific processes in the system. Further, one
can drill down and determine the energy consumption of
different procedures within a process. By providing such
fine-grained feedback, PowerScope allows attention to be
focused on those system components responsible for the
bulk of energy consumption. Asimprovements are made to
these components, PowerScope quantifies their benefitsand
hel ps expose the next target for optimization. Through suc-
cessive refinement, a system can be improved to the point
where itsenergy consumption meets design goals.

Our initial experience with this tool has been rewarding.
By using PowerScope, we have obtained a 46% reduction
in total energy consumption when an adaptive video ap-
plication is run on the Odyssey platform for mobile com-
puting [6]. Some of the steps in the path to achieving this
reduction were counterintuitive— certain obvious changes
did not produce anticipated savings. Thus, although thisre-
search is dtill in its early stages, we are convinced that an
energy profiling tool such as PowerScope is indispensable
in building mobile computing systems. In the rest of this
paper, we present the design and implementation of Power-
Scope and describe its use in the adaptive video case study.

2. Design consider ations

The most important design consideration was for Power-
Scope to gather sufficient information to produce a detailed
picture of system activity. The usefulness of a profiling
tool is directly related to how definitively it assigns costs
to specific application events. Attributing costsin detail en-
ables attention to be focused quickly on problem areas in

the code. With this in mind, we felt it insufficient to map
energy costs only to specific processes — we also desired
to map costs to the procedure level.

A second consideration was that our tool monitor the ac-
tivity of all processes executing on a computer system. We
have found that profiling the activity of only a single pro-
cess omitscritical information about total energy usage. For
instance, a task which blocks frequently may expend large
amounts of energy on the screen, disk, and network when
the processor is idle. Furthermore, asynchronous activity,
such as network interrupts, can account for a significant
portion of energy consumption. An energy profiler which
monitors energy usage only when a specific processis ex-
ecuting will not account for the energy expended by these
activities.

Finally, we have taken care to minimize the overhead
generated by our tool. A profiler necessarily induces some
overhead on the system that it monitors. For an energy
profiler, thisis reflected both in additional CPU usage and
in additional energy expended during execution. We have
striven to reduce this overhead.

3. Implementation
3.1. Overview

The prototype version of PowerScope, shown in Fig-
ure 1, uses statistical sampling to profile the energy usage
of acomputer system. To reduce overhead, profiles are gen-
erated by a two-stage process. During the data collection
stage, the tool samples both the power consumption and
the system activity of the profiling computer. PowerScope
then generates an energy profile from thisdataduring alater
analysis stage. Because the analysis is performed off-line,
it creates no profiling overhead.

During data collection, we use a digital multimeter to
sample the current drawn by the profiling computer through
its external power input. We require that this multimeter
have an externa trigger input and output, as well as the
ability to sample DC current at high frequency. Our present
implementation uses a Hewlett Packard 3458a digital mul-
timeter, which satisfies both these requirements. A separate
data collection computer controls the multimeter and stores
current samples.

We considered an aternate implementation in which
measurement and data collection were performed on the
profiling computer using an on-board digital multimeter
withaPCl or PCMCIA interface. However, thisimplemen-
tation makes it very difficult to differentiate the energy con-
sumed by the profiled applications from the energy used by
data collection and by the operation of the on-board mul-
timeter. Further, our current implementation allows easy

Profiling Data
Computer Collection
Digital Computer
ADDS igita
ok Multimeter
== | oni
OO | Bus Monitor
System
Monitor
Trigger
PC /PID Correlated
Samples Current evels
v v
(a) Data Collection
Profiling
Computer
Symbol Bbles
PC / PID Sampleg Energy Energy Pofile |
Analyzer
Correlated
Current evels

(b) Off-Line Analysis

Thisfigure showshow PowerScope generatesan energy profile. As
applications executeon the profiling computer, the System Monitor
samples system activity and the Energy Monitor samples power
consumption. Later, the Energy Analyzer uses this information to
generate an energy profile.

Figure 1. PowerScope Architecture

switching of the measurement equipment among different
profiling targets.

Because our tool requires a small set of kernel modifi-
cations, we require that a source-available operating sys-
tem run on the profiling computer. At present, we are us-
ing the NetBSD operating system. There is no specific
operating system requirement for the data collection com-
puter; we currently use Windows 95 to take advantage of
manufacturer-provided device drivers for our multimeter.

The functionality of PowerScopeis divided among three
software components. Two components, the System Mon-
itor and Energy Monitor, share responsibility for data col-
lection. The System Monitor samples system activity on
the profiling computer by periodically recording informa
tion which includes the program counter (PC) and process
identifier (PID) of the currently executing process. The En-
ergy Monitor runs on the data-collection computer, and is
responsible for collecting and storing current samples. Be-
cause data collection is distributed across two monitor pro-
cesses, it isessential that some synchronization method en-

pscope_init (u_int size);
pscope_read (voi d* sanmpl e,
u_int size,
uint* ret_size);
pscope_start (void);
pscope_stop (void);

Figure 2. PowerScope API

surethat they collect samples closely correlated intime. We
have chosen to synchronize the components by having the
digital multimeter signal the profiling computer after taking
each sample.

Thefinal software component, the Energy Analyzer, uses
the raw sample data collected by the monitors to generate
the energy profile. The analyzer runs on the profiling com-
puter since it uses the symbol tables of the executables on
disk to map samples to specific procedures. Thereisan im-
plicit assumption in this method that the executables being
profiled are not modified between the start of profile collec-
tion and the running of the off-line analysis tool.

3.2. The System Monitor

The System Monitor consists of a user-level daemon pro-
cess and a small set of modificationsto the NetBSD kernel.
Its design is similar to the sampling components of contin-
uous profilers such as Morph [9] and DCPI [1]. Our current
implementation samples system activity when triggered by
the digital multimeter. Each twelve byte sample records the
value of the program counter (PC) and the process iden-
tifier (PID) of the currently executing process, as well as
additional information such as whether the system is cur-
rently handling an interrupt. This assumes that the profiling
computer is a uniprocessor — a reasonable assumption for
amobile computer.

Samplesare writtento acircular buffer residing in kernel
memory. This buffer is emptied by the user-level daemon,
which writes the samples to disk. The daemon istriggered
when the buffer grows more than 7/8 full, or at the end of
data collection.

The System Monitor records a small amount of addi-
tional information to assist in the generation of energy pro-
files. The kernel f or k() , exec(),andexi t () routines
are instrumented to record the pathname associated with
each currently executing process. The NetBSD run-time
system loader is also instrumented to record the loading
of shared libraries. Thisinformation is written to the sam-
ple buffer during data collection, and is used during off-line

analysis to associate each sample with a specific executable
image on disk.

We created a small number of system calls, shown in
Figure 2, to alow applications to control profiling. The
user-level daemon calls pscope.i nit () to set the size
of the kernel sample buffer. Since there is a tension be-
tween excessive memory usage and frequent reading of the
buffer by the user-level daemon, the buffer size has been
left flexible to allow efficient profiling of different work-
loads. The pscope_read() system call is used by the
user-level daemon to read samples out of the buffer. The
pscopestart() and pscope._stop() system cadls
allow application programs to precisely indicate the period
of sample collection. Multiple sets of samples may be col-
lected one after the other; each sample set is delineated by
start and end markers written into the sampl e buffer.

3.3. The Energy Monitor

The Energy Monitor runs on the data collection com-
puter and communicates with the digital multimeter. It con-
figures the multimeter to sample the current being drawn
by the laptop from its external power source. In our expe-
rience, the voltage variation is extremely small (measured
at less than 0.25%). Therefore, current samples aone are
sufficient to determine the energy usage of the system. The
battery is removed from the laptop while measurements are
taken to avoid extraneous power drain caused by charging.
Current samples are transmitted asynchronously to the En-
ergy Monitor which stores them on disk for later analysis.

Sample collection is driven by the multimeter clock.
Synchronization with the System Monitor is provided by
connecting the multimeter’s external trigger input and out-
put to pins on the parallel port of the profiling computer.
Immediately after the multimeter takes a current sample, it
toggles the value of a parallel port pin. This causes a sys-
tem interrupt on the profiling computer, during which the
System Monitor samples system activity. Upon completion,
the System Monitor triggersthe next sample by toggling an-
other parallel port pin (unless profiling has been halted by
the pscope_st op system call). The multimeter buffers
thistrigger until the time to take the next sample arrives.

Our original design used the clock of the profiling com-
puter to drive sample collection. Although simpler to im-
plement, that design had the disadvantage of biasing the
profile values of activities correlated with the system clock.
Using the multimeter clock aso allows usto generate inter-
rupts at a finer granularity then that allowed by the kernel
st at cl ock routine. The user may specify the sample
period as a parameter when the Energy Monitor is started.
For al measurements reported in this paper, we used a sam-
ple period of approximately 1.6 ms.

El apsed Tot al Aver age
Process Time () Energy (J) Power (W
/ usr/ odyssey/ bi n/ xani m 66. 57 643. 17 9. 66
/usr/ X11R6/ bi n/ X 35.72 331.58 9.28
/ netbsd (kernel) 50. 89 328.71 6. 46
I nterrupts-WavelLAN 18. 62 165. 88 8.91
[usr/ odyssey/ bi n/ odyssey 12.19 123. 40 10. 12
Tot al 183. 99 1592. 75 8. 66

(a) Summary of Energy Usage by Process

Energy Usage Detail for process /usr/odyssey/bin/ odyssey

User -1 evel procedures:

El apsed Tot al Aver age
Procedur e Tinme (s) Energy (J) Power (W
_Di spat cher 0.25 2.53 10. 11
_|I OMCR_CheckDescriptors 0.17 1.74 10. 23
_sftp_DataArrived 0.16 1.68 10. 48
_rpc2_RecvPacket 0.16 1.67 10. 41
_Exam nePacket 0.16 1. 66 10. 35

(b) Partial Detail of Process Energy Usage

Energy Usage Detail for process I|nterrupts-WaveLAN

Kernel -1 evel procedures:

El apsed Tot al Aver age
Procedur e Tinme (s) Energy (J) Power (W
_xf er DMAbuf f er 16. 66 147. 38 8.85
_pwl read 0. 30 2.90 9. 65
_pw get 0. 30 2.68 8.93
_pwintr 0.24 2.31 9.62

(c) Partial Detail of WaveL AN Interrupt Energy Usage

This figure shows a sample eneréz]al profile for an adaptive video playing application. Part (a) summarizesthe energy usage by process. Part
(b) shows a portion of the detailed profile for asingle process, while part c? shows a portion of the detailed profile for WaveL AN interrupts.

Figure 3. Sample Energy Profile

3.4. The Energy Analyzer

The Energy Analyzer generates an energy profile of sys-
tem activity. Total energy usage can be calculated by inte-
grating the product of the instantaneous current and voltage
over time. We can approximate this value by simultane-
ously sampling both current, 7, and voltage, V;, at regular
intervals of time At. Further, in our current implementa-
tion, V; is constant within the limits of accuracy for which
we are striving. We therefore calculate total energy over n
samples using a single measured voltage value, V,,cqs, 8
follows:

E & Vieas y_ LA (1)
t=0

The Energy Analyzer reads the raw data generated by
the monitors and associates each current sample collected
by the Energy Monitor with the corresponding sample col-
lected by the System Monitor. The analyzer assigns each
sample to a process bucket using the recorded PID value.
Samples that occurred during the handling of an asyn-
chronous interrupt, such as the receipt of a network packet,
are not attributed to the currently executing process but are
instead attributed to a bucket specific to the interrupt han-
dier. If no process was executing when the sample was
taken, the sample is attributed to a kernel bucket. The en-
ergy usage of each process is calculated as in Equation 1
by summing the current samples in each bucket and mul-
tiplying by the measured voltage (V;,,.q4s) @and the sample
interval (At).

The analyzer then generates a summary of energy usage
by process, such as the one shown in Figure 3(a). Each
entry displays the total time spent executing the process,
thetotal energy usage of the process, and the average power
usage (simply calculated by dividing the energy value by
the time value). We envision extending this summary to
include histograms of energy usage over time.

The analyzer repesats the above steps for each process to
determine the energy usage by procedure. The process and
shared library information stored by the System Monitor is
used to reconstruct the memory address of each procedure
from the symbol tables stored on disk. Then, the PC value
of each sample is used to place the sample in a procedure
bucket. When the profile is generated, procedures that re-
side in shared libraries and kernel procedures can be dis-
played separately. Figure 3(b) showsa partial profile of one
typical process, and Figure 3(c) shows a partial profile of
WaveL AN interrupts.

4. Case study: adaptivevideo

We decided to test the effectiveness of our tool by using
it to reduce the energy consumption of an adaptive video-

Odyssey

Viceroy
. dysse; RPC Video
Xanim [T Server
Video|
Warden|

P 8N

X Server [z

Thisfigure showsthe architecture of an adaptive video-playing ap-
plication. Odyssey prefetchesframes from the remote server. They
a;rqe)szubsequently decoded by the xanim process and displayed by
the X server.

Figure 4. Video Application

player. The application, first described in an earlier paper
on Odyssey [6], is based on xanim, a public-domain soft-
ware package that can generate video animation from data
stored in various formats in a local file. As shown in Fig-
ure 4, we split its monolithic implementation into a client
and server. Video frames are prefetched from the remote
server by Odyssey, decoded by the xanim client, and dis-
played by the X server.

The application currently adapts to changing network
conditions by varying the video quality. When bandwidth
drops, the client playstracks encoded with agreater amount
of lossy compression. We were curious to see if the adap-
tivity could be extended to conserve client energy usage. In
this design, when battery life is low, the player would use
less energy by displaying a degraded version of the current
video. Therefore, one of the goals of our case study was to
identify a method for creating significant energy savings by
slightly degrading the quality of the video. Of course, we
also sought to reduce the total energy consumption of the
video player across all track qualities.

For the following study, the client machineisa 75MHz
486 IBM 701C laptop with 24MB of memory and the
server is a 200MHz Pentium Pro with 64MB of mem-
ory. The client and server communicate using a wireless
900MHz Lucent WaveL AN network. Figure 5 shows the
measured power consumption for key components of the
client machine.

4.1. Effect of lossy compression

We first used PowerScope to measure the energy used to
play three video tracks which varied only in the amount of
lossy compression used for encoding. Each track was gen-
erated from the same 184 second 320x240 pixel video clip
using Adobe Premiere. For reference, we have labeled these
compression levels Premiere-A, Premiere-B, and Premiere-
C. Premiere-A is the highest quality track, and Premiere-C

Component | State Power (W)
Display Bright 4.87
Dim 3.99
WeaveL AN Idle 157
Standby 0.15
Disk Idle 1.06
Standby 0.17
Other Idle 111

Thisfigure showsthe measured power consumption of components
of the IBM 701C laptop in their various power states. Power con-
wmﬁtion is slightly but consistently superlinear; for example, the
machine consumes 8.69 W when the screen is at its brightest and
thedisk and network areidle, whichis0.08 W morethan the sum of
the individual power consumption of each component when mea-
sured separately. The last row displaysthe power consumed by the
laptop whenthe disk, screen, and network are all powered off. Each
reported value is the mean of five trials — in al cases, the sample
standard deviationislessthan 0.01W.

Figure 5. Power Measurements for IBM 701C

Encoding Display Size Data Rate
Premiere-A | 320x240 | 12.1 MB | 515Kb/s
Premiere-B | 320x240 | 7.0MB | 296 Kb/s
Premiere-C | 320x240 | 2.8 MB | 120Kb/s
Premiere-A | 160x120 | 49MB | 206 Kb/s
Premiere-C | 160x120 | 1.0 MB 44 Kb/s

Thisfigure showsthe characteristics of thefivevideo tracksusedin
this case study. All trackswere generated from the samevideo clip
and are 184 secondsin length. From left to right, the columns de-
scribe the amount of lossy compression used to encode the video,
the size of the video display (in pixels), the size of the video (in
megabytes) and the data rate (in kilobits per second). All tracks
were encoded in QuickTime CinePak format using Adobe Pre-
Imi ere. Premiere-A is the highest quality track. Premiere-C is the
owest.

Figure 6. Video Track Characteristics

isthe lowest. The basic characteristics of the video tracks
are shown in thefirst three rows of Figure 6.

The results of this experiment are shown in Figure 7(a).
To our surprise, playing tracks with greater compression re-
sults in only a small (13.5%) reduction in energy usage.
Analysis of the energy usage by process reveaed that com-
pression significantly reduces the energy used by network-
related activities (the Odyssey process and asynchronous
WaveL AN interrupts) and the xanim video player. How-
ever, the energy consumed by the X server remains rela
tively unaffected by the amount of compression, most prob-
ably because it operates only on data that has already been
decoded.

4.2. Effect of display size

We next decided to try to reduce the X server's en-
ergy usage by reducing the size of the video display from
320x240 pixels to 160x120. We therefore generated two
160x120 tracks, one encoded at Premiere-A and one en-
coded at Premiere-C, from the same video clip used in the
previous experiment. Figure 7(b) shows the effects of re-
ducing the display size for both encodings.

Despite having a greater data rate, the Premiere-A
160x120 video consumes less energy than the Premiere-
C 320x240 video. The greater energy usage for network-
related activities is more than compensated for by an ap-
proximately 75% reductionin energy usage by the X server.
When the Premiere-C 160x120 video track is played, the
largest energy reduction (24.3%) is achieved. The majority
of the energy consumption for this track occurs when the
CPU isidle.

We conjectured that this behavior indicated that most of
the energy was now being consumed by keeping hardware
devices such as the network and disk in their idle states. To
test this, we measured the power expended by the profiling
computer with the screen on, and the CPU, network, and
disk idle. This configuration uses 7.80 Watts, which pro-
jected over the length of the video accounts for 1434 Joules,
or 94% of the total energy consumed by the Premiere-C
160x120 track. Clearly, this value represents the upper
bound on the energy savings that can be achieved by de-
grading the video without changing the power state of client
hardware components.

4.3. Effect of network power management

These results led us to explore the feasibility of power-
ing down hardware components when they are not in use.
Although the display accounts for the magjority of the en-
ergy consumed by the client, it is difficult to imagine how
it could be disabled while the video is playing. Our efforts
therefore concentrated on the network interface and the hard
drive.

As shown in Figure 5, completely powering down the
WaveL AN interface achieves a power savings of 1.57 Watts.
However, restarting the interface from this state requires
137 milliseconds, which is less than ideal for a network-
intensive application like our video player. Fortunately, our
WaveL AN hardware supports the ability to disable only
those components that can be quickly restarted, includ-
ing the RF-modem. We modified our NetBSD WaveL AN
driver by adding i oct | operations which support transi-
tions to and from this standby mode. Our measurements
indicate that the interface consumes only 0.15Watts while
in standby mode and requires only 0.81 milliseconds to re-
sume transmission.

C——didle
@FZFF4 xanim

[X server
I Odyssey
WaveLan
I kernel
2000 2000
o 1500 > 1500 /
[} 7 [J]
= y =
S S
g 1000 / > g 1000 A =
2% : %
w 7] A 7
500 500 /
/i
= =
: il .
Premiere-A Premiere-B Premiere-C Premiere-A Premiere-C Premiere-A Premiere-C
320x240 320x240 320x240 320x240 320x240 160x120 160x120
(a) Effect of Lossy Compression (b) Effect of Display Size
2000 2000
7
~~ 1500 ~~ 1500 7
2 / g %
> >
3 % E /
g 1000 + g 1000 —
5 Z. 5
2 2
L L 7
500 500 A V/
0- 04
Premiere-A Premiere-C Premiere-A Premiere-C Premiere-A Premiere-C Premiere-A Premiere-C
320x240 320x240 160x120 160x120 320x240 320x240 160x120 160x120
(c) Effect of Network Power Management (d) Effect of Disk Power Management

This figure shows the amount of energy used by the video player when various power saving strategies are applied. Part (a) shows the effect
of varying the amount of lossy compression. Part (b) shows the effect of reducing the size of the video display. Part (c) shows the effect of
switching the network interface to standby mode when not in use. Part (d) shows the effect of powering down the disk. Note that the effects
are applied cumulatively, so that part (d) shows the aggregate effect of all four power-saving strategies. Each reported result is the mean of

five IIrials. The number of dropped or late frameswas less than 4% in every trial. Refer to Figure 6 for the size and datarate of each video
track.

Figure 7. Reducing the Energy Consumption of a Video Player

We next modified Odyssey to manage the power state
of the WaveL AN interface. Odyssey fetches frames from
the server using a RPC protocol. After each RPC com-
pletes, Odyssey puts the interface into standby mode until it
isready to initiate the next RPC. Here, we assume that the
video player isthe only application using the network.

As shown in Figure 7(c), network power management
reduces the energy consumption of al tracks, achieving
greater reductionsfor tracks which reguire less network ac-
tivity. The video player consumes 33.1% less energy play-
ing the Premiere-C 160x120 track (the rightmost bar in
Figure 7(c)) compared to playing the Premiere-A 320x240
track (the leftmost bar in Figure 7(c)). When compared
to playing the Premiere-A 320x240 track with no network
power management (the leftmost bar in Figure 7(a)), the en-
ergy reduction is 36.9%.

4.4. Effect of disk power management

Since the video player buffers frames entirely in mem-
ory, the disk is not required when playing a video. We
therefore modified Odyssey to power down the disk when
the video first starts to play. As shown in Figure 7(d), this
reduces the amount of energy needed to play each track
by approximately 195 Joules. With both network and disk
power management, degrading the quality of the video pro-
vides an energy savings of 36.3%. This valueis calculated
by comparing the Premiere-C 160x120 track (the right-
most bar in Figure 7(d)) with the 320x240 Premiere-A track
(the leftmost bar in Figure 7(d)). Cumulatively applying
all optimizations in this case study achieves a 46.2% en-
ergy savings compared to playing the Premiere-A 320x240
track without power management (the leftmost bar in Fig-
ure7(a)).

5. Related wor k

To the best of our knowledge, PowerScope is the first
tool that maps energy consumption to program structure. At
the same time, our development of the tool was motivated
by previouswork in CPU profiling. In particular, theimple-
mentation of the System Monitor is closely related to sim-
ilar components of continuous profilers such as Morph [9]
and DCPI [1].

Several researchers have previously investigated power
management in the context of wireless networks and disks.
Stemm and Katz [7] measured the power consumption of
several network interfaces. They also presented simula-
tion results showing how powering down the network inter-
face could reduce energy consumption for e-mail and web-
browsing applications. Kravets and Krishnan [4] proposed
a transport-level protocol which powers down the network
interface for short periods and measured the reduction in

energy consumption for communication patterns typical of
common applications. Dougliset al. [3] investigated the en-
ergy implications of various strategies for powering down
the disk.

6. Conclusion

We believe PowerScope is a valuable tool that can fa-
cilitate further research in developing energy-efficient mo-
bile applications. We are greatly encouraged by our initial
study which reduced the energy consumption of an adaptive
movie player by 46%. Our current plansfor thetool include
several enhancements.

In the short-term, we plan to repeat the movie player case
study for at least one additional laptop computer. This will
have the dual purpose of verifying the robustness of our tool
across multiple hardware platforms and allowing us to ob-
tain measurements for a more modern computer. We aso
plan additional experiments to carefully calibrate the per-
formance of the tool.

In the longer-term, we plan to incorporate a more de-
tailed model of the relationship between energy usage and
battery life. In addition to total energy usage, other fac-
tors such as peak power levels can significantly effect bat-
tery life. Our enhancement would be mostly to the analyzer
component since we currently collect sufficiently detailed
sample data to support more complex analysis.

Finally, we plan to use our tool to investigate the behav-
ior of multipleadaptive applicationswhich concurrently ac-
cess hardware components such as the network and disk. In
thisand other areas of investigation, PowerScope promises
to be of considerable assistance.

Acknowledgements

Tom Martin helped us considerably with his many useful sug-
gestions and his assistance with our experimental setup. Bob
Baron provided us with his NetBSD kernel expertise. Dushyanth
Narayanan, David Petrou, Eric Tilton, and Kip Walker provided
much useful feedback during the course of this project.

References

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous Profiling:
Where Have All the Cycles Gone? In Proceedings of the
16th ACM Symposium on Operating Systems and Principles,
Saint-Malo, France, October 1997.

[2] Board on Army Science and Technology, National Research
Council. Energy-Efficient Technologies for the Dismounted
Soldier, 1997.

(3]

[4]

(5]

(6]

[7]

(8]

(9]

F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-
Hungry Disk. In Proceedings of 1994 Winter USENIX Con-

ference, January 1994.
R. Kravets and P. Krishnan. Power Management Techniques

for Mobile Communication. In Proceedings of The Fourth
Annual ACM/IEEE International Conferenceon Mobile Com-

puting and Networking (MOBICOM'’ 98), October 1998.
J. R. Lorch and A. J. Smith. Software Strategies for Portable

Computer Energy Management. |EEE Personal Communica-
tions, 5(3), June 1998.

B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile Application-Aware Adapta-
tion for Mobility. In Proceedingsof the 16th ACM Symposium
on Operating Systems and Principles, Saint-Malo, France,

October 1997.
M. Stemm and R. H. Katz. Measuring and Reducing En-

ergy Consumption of Network Interfaces in Hand-Held De-
vices. |EICE Transactions on Communications, Special Issue
on Mobile Computing, 80(8), August 1997.

M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for Reduced CPU Energy. |n Proceedingsof the First USENIX
Symposium on Operating System Design and Implementation

(ODI), Monterey, CA, November 1994.
X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith.

System Support for Automated Profiling and Optimization. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tems and Principles, Saint-Malo, France, October 1997.

