Abstract Semantics for a Higher-Order Functional Language

with Logic Variables

Radha Jagadeesan
Imperial College,
London, UK SW7 2BZ.

Abstract

Although there is considerable experience in using lan-
guages that combine the functional and logic program-
ming paradigms, the problem of providing an adequate se-
mantic foundation for such languages has remained open.
In an earlier paper, we solved this problem for first-order
languages by reducing the problem to that of solving si-
multaneous fixpoint equations involving closure operators
over a Scott domain and showing that the resulting se-
mantics was fully abstract with respect to the operational
semantics [4]. These results showed that the first-order
fragment could be viewed as a language of incremental
definition of data structures through constraint intersec-
tion. The problem for higher-order languages remained
open, in part because higher-order functions can interact
with logic variables in complicated ways to give rise to
behavior reminiscent of own variables in Algol-60. We
solve this problem in this paper. We show that in the
presence of logic variables, higher-order functions may be
modeled extensionally as closure operators on function
graphs ordered in a way reminiscent of the ordering on
extensible records in studies of inheritance [1]. We then
extend the equation solving semantics of the first-order
subset to the full language, and prove the usual sound-
ness and adequacy theorems for this semantics. These
results show that a higher-order functional language with
logic variables can be viewed as a language of incremental
definition of functions.

1 Introduction

The benefits of combining the functional and logic pro-
gramming paradigms are manifold; for example, the pro-
grammer gets the power of incremental definition of data
structures, which goes a long way towards solving the

This research was performed at Cornell University un-
der an NSF Presidential Young Investigator award (NSF
grant CCR-8958543), NSF grant CCR-9008526, and a
grant from the Hewlett-Packard Corporation. Corre-
spondence regarding this paper should be sent to pin-
gali@cs.cornell.edu.

Keshav Pingali
Cornell University,

[thaca, NY 14853.

copy overhead of pure functional data structure construc-
tion [7, 9, 13, 11, 2]. However, it has proved difficult to
find a suitable semantic foundation for such hybrid lan-
guages, which is ironic since pure functional and logic
programs can be given simple abstract semantics as func-
tions and relations over values.

In previous work, we had provided such a foundation
for the first-order case by reducing the problem to that
of solving simultaneous fixpoint equations involving clo-
sure operators over a Scott domain [4]. Using this device,
we were able to provide a denotational semantics that is
fully abstract with respect to the operational one. These
results showed that a first-order functional language with
logic variables can be viewed as a language in which data
structures are defined through constraint intersection’.
For a number of reasons, the problem of giving such a se-
mantics to a higher-order functional language with logic
variables seemed intractable. As we show in Section 2,
higher-order functions can interact with logic variables
in very complicated ways to give rise to behavior remi-
niscent of own variables in Algol-60. Furthermore, these
languages are inherently parallel in the sense that any
correct interpreter must either be parallel or must sim-
ulate parallelism. Logic variable instantiation is like a
globally visible side-effect and modeling the combination
of concurrency and side-effects usually requires complex
notions like powerdomains. Inspite of these apparent dif-
ficulties, we show here that in the presence of logic vari-
ables, higher-order functions may be modeled extension-
ally as closure operators on function graphs with an or-
dering reminiscent of the ordering on extensible records
in studies of inheritance [1]. Using this tool, we are able
to construct a pleasing equation solving semantics for
these languages and prove the usual soundness and ade-
quacy theorems. Our results extend the equation-solving
paradigm that underlies Kahn semantics for dataflow net-
works [6] to a more expressive setting with higher order
constructs and shared memory; this allows the communi-
cation abilities of processes to change dynamically, unlike
the Kahn model of dataflow in which the channel struc-

T Although we did not consider non-determinism, it has been
shown recently that our results extend to a first-order language
with committed choice non-determinism [12].

ture of networks is fixed and cannot be altered during
runtime.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss two programs that serve to introduce
the main issues and shed light on some of the difficulties
in giving an abstract semantics for a functional language
with logic variables. These programs are written in Id, a
dataflow language that will serve as a concrete language
in this paper. Section 3 gives a formal state transition
semantics for Id programs. The abstract semantics is de-
fined in Section 4. The correspondence between the op-
erational and denotational semantics is described in Sec-
tion 5. For lack of space, we omit proofs and detailed dis-
cussions from this paper and refer the interested reader
to a companion technical report for details [5].

2 Informal Introduction to the
Language

This section introduces Id [9] and its operational seman-
tics informally through a number of programming exam-
ples. The core of the language is functional and logic
variables are introduced through an array construct [3].
An array with uninitialized logic variables as its elements
is allocated by the expression array(e) where e is an
integer-valued expression specifying the size of the array.
Array updating is performed by a definition of the form
A[i] = v. The value v is unified with the value contained
in A[i] and the resulting value is stored into A[i]. Thus,
if A[i] was undefined (i.e., it was an uninitialized logic
variable), the execution of this definition results in the
value v being stored in A[i]. If unification fails, the en-
tire program is considered to be in error. An element of
an array may be selected by A[i]. We permit an unini-
tialized variable to be returned as the result of executing
a program. Here is a simple Id program:

{A = array(10);
AT1] = 2;
fill-even(A,5);
fill-odd(A,4):;
in A}

def fill-even(X,h) = {for i from 1 to h do
X[2*i] = X[2*i-1]*2 od}

def fill-odd(X,h) = {for i from 1 to h do
X[2*i+1] = X[2*i]*2 od}

When executed on a dataflow simulator, this program
produces an array of length 10 in which the ¢’th element is
2!, Procedure fill-even fills in the even elements of ar-
ray A by reading the odd elements and multiplying them
by 2 and procedure £ill-odd works similarly. Notice that
this program cannot be executed ‘sequentially’ (that is,
like a PASCAL or FORTRAN program); instead, compu-

tations in the calls to fill-even and fill-odd must be

interleaved. Fortunately, the viewpoint of constraints pro-
vides a nice way to mask this operational complexity. For
example, the definition 4 = array(10) can be viewed as
a constraint that is satisfied by any array A of size 10 (and
by an overdefined element, T, which trivially satisfies all
constraints). We can think of fill-even and fill-odd
as constraining the even and odd elements of the array 4,
with A being produced by the intersection of these con-
straints with the constraints A = array(10) and A[1] =
2. The denotational semantics formalizes this viewpoint
of constraints.

Higher order functions and logic variables

This example illustrates the interaction between higher-
order functions and logic variables. Consider the pro-
gram:

{A = array(2);

g =1 A;
tl1 =g 1;
t2 = g 2;
in A}

def £ X i = {X[i] = i in 0}

The result of this program is the array [1,2]. In this pro-
gram, £ is a curried function which takes its arguments
one at a time; the first argument must be an array and
the second, an integer. When this function is applied to
an array, it returns a ‘function’ that can be applied to an
integer; if this new function 1s applied to the integer i,
element i of the array gets updated to i. In other words,
g, the result of applying £ to A, has the array A embedded
inside 1t, and this array gets updated each time g is ap-
plied. This is reminiscent of the behavior of own variables
in a language like Algol-60. Furthermore, the applications
of g need not be in the same scope as its introduction: we
can pass g to another function and apply it inside that
function.

Notice also that the right hand side of the definition
of A (that is, array(2)) cannot be substituted for 4 ev-
erywhere in the program without altering the meaning of
the program. Unlike in pure functional languages, object
tdentity is important; in the operational semantics of Sec-
tion 3, the definition of A will be allowed to take part in
constraint solving only after the right hand side has been
reduced to an array of two logic variables of the form

[L1,L2].

Syntax

For the purpose of this paper, we define a core language
whose syntax is shown in Figure 1. To avoid getting over-
whelmed by subscripts and ellipsis, we have made this lan-
guage very simple while retaining all essential constructs.
The main differences between Id , as presented earlier in
the examples, and the core language are as follows. The

program = exp

def-list = def | def;def-list

def = id = exp

exp = const | id | expl op exp2

| if expl then exp?2 else exp3
| array(exp) | expl[exp?2]

| expl exp2 | (Az. exp)

| def-list in exp

Figure 1: Syntax of Id

loop construct is eliminated since a loop can be replaced
by a tail recursive function. To simplify notation, we will
require that all functions return a result. It is convenient
to assume that the left-hand side of a definition is an iden-
tifier; a definition in Id of the form e1[e2] = e3 can be
replaced by two definitions x = ei1[e2]; x = e3 where
x 18 a new identifier. We will assume that all local vari-
ables have been made into parameters so that the body
of a function does not introduce any new names. We
assume that the language is simply typed, and that the
expressions are typed correctly in the usual sense. Arrays,
booleans and integers are considered to be of base type.
For definitions of the form x= e, x must have the same
type as e. In the rest of this paper, we will ignore the
details of typing. Since we do not perform unification of
A-abstractions, we impose syntactic restrictions to ensure
that there are no multiple definitions of functions: if x
in the abstraction Az.exp is of higher-order type, then z
cannot occur by itself on the left hand side or the right
hand side of a definition. We refer the interested reader
to the companion technical report [5] for details.

3 Operational Semantics of Id

In this section, we give an operational semantics for Id us-
ing Plotkin-style [10] state transition rules. The state of
the computation is represented by a configuration where
a configuration is a quintuple < D e, pp, p, FL >. D con-
tains definitions whose right-hand sides have not yet been
completely reduced to an identifier, constant, array, or an
abstraction of the form Az.exp. The expression e in the
configuration is the expression whose value is to be pro-
duced as the result of the program. Configurations are
rewritten by reduction and by constraint solving. Once
the right-hand side of a definition in D has been reduced
completely, the definition can participate in constraint
solving. Configurations have two components named pp
and p which keep track of such definitions. When the right
hand side of a definition in D reduces to a A-abstraction,
it is moved into pp, the function environment. Since A-
abstractions are not unified, an identifier bound to a A-
abstraction by a definition cannot occur on the left hand
side of any other definition; hence, pr is simply a list of
identifier /A-abstraction pairs. The second component, p,

called the environment, keeps track of bindings between
identifiers and base values (identifiers, constants and ar-
rays) and has a more complex structure to permit uni-
fication — it consists of a (possibly empty) set of alias-
sets where an alias-set is an equivalence class of base val-
ues. For example, {z,y,z},{2,y,4} and {x,y,[L1, L2]}
are alias-sets. If unification fails, the configuration is
rewritten to ‘Error’ and computation aborts.

The transition rules for configurations are specified in
terms of a binary relation — on the set of configura-
tions. In any program P, let exzpp be the expression to
be evaluated. The initial configuration for program P
18 < ¢,expp,d,¢,Id >. We define some syntactic cate-
gories required for the operational semantics. The nota-
tion [@1, ..., x,] for arrays represents a sequence of one or
more identifiers.

Ce Configurations ::= < D e, pp,p, FL > | Error
De Defs ::= ¢|defy, ..., def,

e€ expression

preFunction_env ::= ¢|{f1 = Azxy.e1, ..., fn = Azp.en}
pe Environment ::= ¢|{A1, ..., A, }

Ae Alias-set ::= { By, ..., B,} B¢ Base-value ::= z|c|Ar
z, Le Id = set of identifiers Are Array ::= [21, ..., 2]
F Le Free-list = P(Id)

The unification algorithm we use is similar to the one
in Qute [13]. No occurs-check is performed; infinite data
structures are considered to be legitimate objects of com-
putation. The unification algorithm is defined in terms of
a binary relation ~» on environments.

Definition 1 ~+ is a binary relation on environments de-
fined as follows:

1. If Al and A2 are members of an environment p, and
Al and A2 have an identifier in common, then p ~

(p- {A1} - {A2}) U {A1 U A2}

2. If {[xla"'axn]a[yla"'ayn]} g AEp then P~ pU

{{1‘1, yl}a SEE {xna yn}}

Intuitively, these transformations leave the meaning of an
environment unchanged. If p; ~ ps and p; Xps, then
p1 1s said to be reducible; otherwise, it is irreducible. Let
Lbe the reflexive and transitive closure of ~». It can be
shown that for every environment p, there is a unique,
irreducible environment p; such that pspy [13]. If p is
a syntactic environment and A is an alias-set, let U(p, A)
denote the unique, irreducible environment such that (pU
{A} U (p, A).

We will need an operation that is similar to environ-
ment look-up in functional languages. In a functional
language, an environment is considered to be a function
from identifiers to values. In our system, the function
environment pr can be interpreted the same way. The

rewrite rules have been designed so that in any configu-
ration that is not Error; the environment p is irreducible.
This means that every identifier that is not in the free-list
is an element of exactly one alias-set.

Definition 2 Let < D e, pp,p, FL > be a configuration
and x be an identifier not « member of FL. Let p be
consistent. The function V(z) is defined by cases on the

type of x:

1.z is a variable of base type: Let A be the (unique)
alias-set that contains x. V(z) is defined by cases
depending on A:

o All the elements of A are identifiers. In this
case, V(x) is undefined.

e At least one element of A s a constant c. The
elements of A are either identifiers or the con-

stant c. We define V(z) to be c.

o At least one element of A is an array. The el-
ements of A are either identifiers or arrays of
the same length. V(z) could be defined to be any
one of these arrays. To be precise, place a lexi-
cographical ordering on identifiers and let V(z)
be the array whose first element is the least in
this ordering.

2. x is a variable of a function type: In this case, V()
1s L where x = L is the unique definition of x in pp.

The operational semantics for Id is given in Figures 4
and 5. The first rule replaces free occurrences of a first
order variable x by V(x) in any context, if V(x) is defined.
Arbitrary contexts are denoted by C[] in this rule. Most
of the other clauses in this semantics are self-explanatory.
The two sides of a conditional expression play no role in
the computation until the predicate has been evaluated
to true or false. Unlike in functional languages, function
application cannot be implemented by a copy of the body
of the function in which occurrences of the formal param-
eter are substituted by copies of the actual parameter.
Instead, a definition is created for the actual parameter
and the actual parameter is substituted for the formal pa-
rameter only when it has been completely reduced to a
base value or function.

4 Abstract Semantics

This section describes the abstract semantics for Id. First,
we give an informal overview of our approach. We discuss
the first-order semantics which views data structure con-
struction as constraint intersection, and we relate com-
puting with constraints to the solution of systems of si-
multaneous equations involving closure operators. This
part of the paper is a summary of results reported in an
earlier paper [4]. Then, we show how the higher-order

case fits into this picture. Next, we give a formal ac-
count of the construction of various domains needed for
the formal semantic account. Finally, we present the for-
mal semantics.

4.1 Informal Introduction
4.1.1 First-order Language
Consider the following Id program:

{A = array(3);

AT1] = 2;
Af2] = 1;
A[3] = 3;
in A}

The definition A = array(3) is viewed as a constraint
that gives partial information about A - any array of
length 3 satisfies this constraint. Similarly, A[1] = 2is a
constraint satisfied by any array whose first element is 2.

How should we describe equational constraints for-
mally? The usual powerdomain constructions are of no
help here. For example, the Smythe powerdomain [15],
consisting of upward closed sets; is designed to describe
sets of values satisfying constraints of the form = C a.
The set of values in a domain satisfying an equational
constraint is not, in general, an element of the Smythe
powerdomain. Consider the constraint ¢ = y. What sets
of pairs satisfy this constraint? Certainly not an upward
closed set because, for example, (1, 1) satisfies the con-
straint but (2, 1) does not satisfy it.

To motivate the formal model of constraints, note that
the basic mechanism by which constraints get imposed in
Id 1s through unification. Each time unification is per-
formed, new constraints are imposed on some variables
and this adds to the “information content” of the vari-
ables. Such functions are obviously extensive functions.
Imposing a constraint twice is no different from imposing
it once; therefore, functions modeling imposition of con-
straints should be idempotent. Finally, we want the func-
tions to be monotonic and continuous since the process of
generating constraints is supposed to be computable.

First, we formalize the notion of “information content”.
If B is the domain of elementary values such as integers
and booleans, consider the domain of both basic values
and arrays, which can be described informally by the do-
main equation:

W=B4+W+WxW+WxWxW++...

In the infinite sum, the component B represents elemen-
tary values, the component W represents arrays of length
1, the component W x W represents arrays of length 2,
etc. Notice that array elements come from the domain W
itself; therefore, array elements can be arrays themselves,
and the domain includes ‘infinitely nested’ arrays. To
this domain, we add an element labeled T which is a spe-
cial value that models error, the result of (contradictory)

B Arrl Arr2 3 A4 [-=-=--

The domain V

The closure operator for array(3)

Figure 2: The Domain V and a Closure Operator

definitions. A pictorial representation of the resulting do-
main, which we call V| is shown in Figure 2. Arrays of
different lengths are incomparable. If al and a2 are two
arrays of the same length, we say that al C a2 if a2 can
be obtained by replacing occurrences of L in al by other
values from W. For example, the least defined array of
length 3 is [L, L, 1] and it is below [2, L, L] etc. The
error element T 1s above all other values in V. This do-
main is constructed formally in the companion technical
report [5].

We can model constraints using closure operators [14].

Definition 3 A closure operator, f, on a domain V is
a continuous function satisfying, (i)Ye € V. x C f(z),

(i) fof = f.

As an example, consider the definition x = array(3).
The elements of V' that satisfy the constraint on
x are easily seen to be solutions of the equation
= (AuwU[L, L, L])z. Note that Adu.w U[L, L, L]is a
closure operator. A pictorial representation of this func-
tion is shown in Figure 2 — it maps L to [L, L, 1], the
least defined array of length 3, it maps T and all arrays
of length 3 to themselves, and it maps all other values in
V' (such as basic values and arrays of length other than

3)to T.

Now that we can model constraints as closure opera-
tors, we need to understand how to model simultaneous
imposition of constraints. The following lemma provides
the answer.

Lemmal If f:V —V and g : V — V are closure op-
erators, any solution to the system of simultaneous equa-

tions
z=f(x)
r=g(x)

is a solution of the equation x = f(g(x)) and vice versa.
The least common solution of the system of equations is

the limit of the sequence L, f(g(L)), f(g(f(g(L)))),...

This lemma lets us talk meaningfully about the least
solution of a set of fixpoint equations. One interpretation
of this lemma is that | |(f o ¢)" is the smallest closure
operator above f and ¢; hence, simultaneous 1imposition
of constraints can be modeled using least upper bounds
of closure operators.

The abstract semantics of the first-order language mod-
els definitions as closure operators on environments where
environments are functions from identifiers to V. The in-
terpretation of expressions is more subtle. From our pre-
vious discussion, the expression array(3) can be inter-
preted as the function Aduw.w U [L, L, 1]. Thus, array(3)
is a closure operator of type V' — V. In general, we have
to give meaning to an expression of the form array(e)
where e can impose constraints on the environment; so,
the meaning of an expression is a closure operator of type

(V x ENV)— (V x ENV).

4.1.2 Informal discussion of higher-order seman-
tics

Consider the following version of the example discussed
in Section 2:

def £ X i = {X[i] = i in O}
{A = array(2);

g=1A4; -——=(5)
t1 = g 1; ---=(6)
t2 = g 2; -——=(7)
in A}

Function g, the result of applying £ to A, has the array
A “embedded” inside it, and this array gets updated each
time g is called. The result of the program is the array
[1,2].

In a pure functional language, higher-order functions
are modeled by currying first-order functions. It is worth
understanding why currying is inadequate for model-
ing the higher-order part of Id. Consider the function
F = Xz, y).e[z,y] which represents a function that ac-
cepts as input a pair, say of type Dy x Ds, and returns
an element of type Ds. If v is of type Dy, the function
G = ((curry F) v) is of type Dy — Dz. This type does

{<1, I> =<1,0>, <1,0> =<1,0>,
<2, 1s =<2,0>,<2,0> =<2,0>}

1 2
t1 0 !0

Figure 3: Dataflow graph for example

not model the behavior of functions in the presence of
logic variables since it does not reflect the fact that v can
get updated when the function G is applied, as in the ex-
ample above. In a pure functional language, the value of
v does not depend on what happens to G and the func-
tion G is determined entirely by /" and v. This is not the
case once logic variables are introduced: in our example,
the value attained by array A depends on the arguments
that ¢ has been applied to.

To capture this behavior, we extend the constraint
point of view developed for the first-order semantics to
functions. In the higher-order semantics, function sym-
bols like £ and g are given meanings as graphs of input-
output pairs and lambda abstractions are given mean-
ings as closure operators on these graphs. For exam-
ple, the graph of g will be a set of elements of the form
(u,v) — (v, v") where the u’s and v’s are integers. The
intuition is that each such pair represents a piece of in-

formation about g : given an approximation u to the ar-
gument and v to the result, g refines the argument to v’
and the result to v'. Function graphs get refined through
application and this refinement occurs in two ways — the
domain of the graph can increase or a particular element
(u,v) — (u',v') gets refined to {(u,v) — (u”,v"), where
(o', v"YC{u",v"). As an example, consider Figure 3 which
shows a dataflow-like representation of the example. Ap-
plication nodes are made explicit as App, and the term
AX. A i, X[il=i in 0 is denoted by L.

Initially, the graphs of £ and g are { } and all other
variables have the value L. The two applications of g
examine their arguments and results and add the elements
(I, LYy = {1, 1) and {2, L) — (2, L) to graph of g. Also,
the node array(2) makes its output array [L, L]: the
array of two elements, both of which are undefined. These
values are shown at the top in Figure 3.

The application node corresponding to g = £ A col-
lects the information about the graph of g and [L, 1] and
passes it up to the node labelled L. Note that the use of
graphs allows us to keep track of the arguments that the
function has been applied to. The graph passed to £ is
(L, L], (1, 1) — (1, 1), (2, 1) — (2, 1)}) —

(L0 L0 ({1 1) — (1, 1) (2 1) — (2, 1)),

This is refined by the node L to yield the graph
(L, L1, (1, 1) — (1, 1), (2, 1) — (2, 1)}) —

(1,20, ({1, 1) — (1,0), (2, 1) = (2,0)})

This graph is passed down to the application of £. This
application node in turn passes down a refined version of
the graph of g, namely {{1, L) — (1,0}, (2, L) — (2,0} }.
Furthermore, it refines the value on the edge connected to
the node array(2) to [1,2]. The new value of the graph
of g 1s used to update values at the application sites of g.
For example, the application node corresponding to the
statement t2 =g 2 can now update t2 to 0. The graphs
at this stage are shown at the bottom in Figure 3. Re-
peating these steps again does not alter any values. Note
that the final result agrees with the answer that the op-
erational semantics specifies.

The domain of graphs and the notion of application
for graphs is specified formally in Section 4.2. As in the
first-order case, definitions in the full language are inter-
preted as closure operators on environments. The type
of expressions is also analogous to the first order case:
an expression that produces a value of higher-order type
(say o1 — o3) will be interpreted as a closure operator on
the domain Dy, — gy X ENV where Doy — ¢, 1s the do-
main of graphs of type 01 — 2. This domain 1s specified
more formally next.

4.2 The Domain of Function Graphs

The domains that arise in the semantic description are
complete algebraic lattices. We denote the finite elements
of a domain D by B(D). Given a set of ordered pairs S,
define Dom(S) ={x | (3) (x,y) € S}.

Let D1, Ds be two domains. We first define graphs
of functions from D to Ds. Informally, an element of
Graphs(Dy — D2) can be thought of as the “partial”
input-output relation of a continuous function from Dy
to Dz.

Definition 4 The set of graphs of functions from Dy to
Dy, denoted by Graphs(Dy — Da), is defined as follows.
Members of this set are sets S of elements of the form
(z, 2"y, where x € B(Dy),2" € B(D2), satisfying:

1. Function: {{x,z"),{x, 2"V} C S= {(x,2'| 2"} € S.

2. Monotonicity: [{{x,2"),{y,¢)} C S A yCx A
PCy]= (z,y) €S.

3. Dom(S) is downward closed.

The first requirement ensures that we can view graphs as
encoding functions — given an element in the domain of
the graph, the corresponding output is the most defined
element associated with that element by the graph. Tak-
ing advantage of this, we will sometimes write 1 — 22
when the pair {#1, 23) occurs in a graph. The second re-
quirement ensures that more input guarantees more out-
put. The final requirement clarifies the nature of the “par-
tiality”: when an element appears in the domain of the
graph, all elements less than it also appear in the do-
main; this 1s justified from the operational intuition that
if we apply a function to an argument, we have in effect
applied it to all values less defined than the argument.
Note that there are elements S € Graphs(D; — Da)
such that Dom(S) is not all of Dy. Thus, elements of
Graphs(Dy — Ds) are to be distinguished from the “full”
input-output relation of a continuous function from Dy to
Ds.

For the semantics, we need graphs of closure operators.
The following definition picks out the graphs that corre-
spond to closure operators by imposing the conditions of
extensivity and idempotence.

Definition 5 Let D be a domain. Then, the domain
of graphs of closure operators on D, denoted CG(D), is
defined as follows. FElements of this domain are sets
S € Graphs(D) that satisfy:

1. Extensivity: {x,2') € S= [¢Ca’ Az’ € Dom/(S)]
2. Idempotence: {{x,z"),{x',2")} C S={z,2") € S
The ordering on elements of CG(D) is subset inclusion.

Suppose that we are given an element ¢ in the domain
of the graph: the first condition ensures that the cor-
responding output o is more defined than the input el-
ement. It also ensures that the graph contains o in its
domain. Now, using the second condition, we can deduce
that the output for input o is no greater than the output
for ¢, thereby enforcing idempotence. Thus, an element
of CG(D) can be thought of as the “partial” input-output

relation of some closure operator on ID. As before, the
domains of elements of CG(D) are not required to encom-
pass the whole of D. In this light, the ordering S1C.55
among elements of CG(D) implies two flavors of informa-
tion: firstly, the domain of the graph S; is contained in
the domain of S, and secondly, on every input in the
domain of Sy the graph S5 yields more refined output.

Given a set S of pairs of elements from B(D), let S
denote the closure of S under the requirements placed
on function graphs; that is; it is the smallest element of
CG(D) containing S. If S is a singleton set {z}, we will
sometimes write T instead of {«}. It is easy to check that
CG(D) is a complete, algebraic lattice, with the empty
graph as the least element; least upper bounds given by
51,59 € CQ(D):>51|_|52 = 51 USy; and B(CQ(D)) =
{Stin}, where S, is any finite set of pairs of elements
from B(D). We can now define the domains required
for the semantics. Let V be the domain of base values
defined earlier. The domains at various types are defined
inductively:

Base: D, = V.

Product spaces: D, xo, = Dy, X Dy,

Function spaces: Dg; — ¢, = CG(D,, x Dy,) Thus,
elements of Dy, — o, are sets of elements of the
form (x,y) — (&', y'), where z,2" € B(D,,), v,y €
B(D,,), satisfying the requirements of Definition 5.

All of these domains are complete, algebraic lattices.

Next, we define two useful auxiliary functions on the
domains of graphs.

The first function is an extension of the operator
that performs closure under the requirements on func-
tion graphs. Let u € B(D,),v € B(D;). Let v/ €
Dy, v € D, be such that uCu' and vCv'. Then, de-
note by {u,v) — (v, v'), the element of Dy — 7 defined
as follows:

{{w,v) = (x5, ys)|luCa;Cu’, vEy; Co}

The second function, App, defines the notion of appli-
cation for graphs. It takes three inputs and refines them
to yield three outputs: view the first input as the graph of
the function, the second input as the argument and the
third input as the result. The argument and result co-
ordinates are updated in the natural way. Furthermore,
applying the graph of a function changes the graph of the
function itself: 1t is updated to “record” the results of
this application. This is exactly the behavior we required
in our informal discussion in Section 4.1.2. We encourage
the reader to check that the definition matches the be-
havior of the application node described in our informal
discussion in Section 4.1.2.

Let s € Doy — o9, t € Dy, u € D,,.
App(s,t,u) = (', 1/, u’), where

s = sU{(zs) — (2p)| @Bt Ay Cu}
{t', ') L y)| (2, y) — (@', ¢/) € 8", 2T, yCu}

Then,

4.3 The Semantic Clauses

Figure 6 describes the denotations of definitions. The
environment in which all identifiers are mapped to T is
called envt. Some of the constraints are inequalities of
the form a C x, where a 1s a constant and « is being con-
strained. These can be rewritten as z = (Az.a U 2)z in
which the lambda-abstraction is obviously a closure op-
erator. The notation lcs in front of a set of simultaneous
equations involving closure operators stands for the least
common solution of that set of equations. Figures 7 and 8
describe the denotations of all expressions except lambda
abstraction. In the meaning of constants, the function K
maps syntactic constants to their abstract equivalents. In
the rule for conditionals, e5 and e3z play no role if e; is
undefined. Function application is tricky since applica-
tion may cause the graph of the function to change. To
understand this rule write the application ej(e2) using
a prefix Apply operator. App, the closure operator that
is the meaning of Apply, was defined in Section 4.2 and
enforces constraints between ey, es and the output.

Figure 9 describes the denotation of lambda abstrac-
tion. By checking for a non-empty argument graph, the
denotational semantics captures the fact that the body of
a lambda expression is accessed only when it is applied
to an argument. If the argument graph is non-empty, we
first compute the updated environment using the function
Update Env which essentially evaluates the body of the
lambda expression in each environment obtained by bind-
ing the formal parameter to an actual parameter obtained
from a, the approximation to the graph. The new envi-
ronment is used to compute the new value of the graph.
The case of recursion is handled implicitly by the defini-
tion of the denotation of equations. This i1s analogous to
the handling of feedback loops by a fixpoint iteration in
static determinate Kahn dataflow. The fixpoint iteration
in this case is performed in the computation of the least
common solution.

5 Relating the Semantic Defini-
tions

In this section we outline the proof that the denotational
semantics is correct for reasoning about the operational
semantics. The interested reader is referred to a compan-
ion technical report [5] for full details. The proof extends
extant proofs [4] for the first order language to a higher
order setting.

Reduction preserves meaning

As a prelude to the main adequacy result, we show that re-
duction preserves meaning. Once this is in hand, we prove
that the results obtained operationally are indeed those
predicted by the denotational semantics. These proofs
proceed by induction on the length of computation se-

quences using the basic fact that a single reduction step
preserves meaning.

In order to show that one-step reduction preserves
meaning we need to associate meanings with the basic
entities used in the operational semantics, i.e. with con-
figurations. The semantic function M assigns to config-
urations a closure operator over the domain V x ENV.
We use the semantic functions £ and C defined previously.

We define M[(D, e, pp, p, FL}] {a,env)

(a, env) C (b, env')
env' = C[DUpUpp] env
(b, env’y = &[e] (b, env")

in (b, env’)

= les

The function M represents the effect of the complete com-
putation on a configuration. We prove that as we rewrite
a configuration, the first order component of the result
given by M does not alter. In particular, we show that
“B”-reduction does not alter the closure operator corre-
sponding to M. Thus the denotational semantics “at-
tains” the first order results predicted by the operational
semantics.

The Adequacy Theorem

The hardest part of the proof of full abstraction is the
converse to what is outlined in the previous subsection,;
namely, that every value predicted by the denotational se-
mantics is attained by the operational semantics. Strictly
speaking, we show that for every finite approzimant to
the first-order results predicted by the denotational se-
mantics, there is a computation sequence that produces
a more refined value at a finite stage.

We first define a relationship < between first order
syntactic expressions, e, and closure operators, f, on
V x ENV. Intuitively, £Je] < e means that given any
finite approximant to the result predicted by E[e], there
i1s a finite sequence of reductions evaluating e in a suit-
able syntactic environment, that produces a more refined
value. In particular, if the result predicted by E[e] is T,
evaluating e in a suitable syntactic environment results in
error.

The proof that £[e] < e, for all first order expressions e
proceeds by structural induction on the expressions, and
its details may be found in our earlier paper [4]. The sub-
tle case 1s when one has parallel imposition of constraints.
We make use of the fact that the semantic prescription for
determining the least common fixed point of a pair of clo-
sure operators suggests an interleaving of the reduction
sequences of the subterms. More precisely, suppose that
g1 and g- are two closure operators that correspond to
the 1mposition of two constraints given as sets of equa-
tions £y and F». Suppose that we know how to construct
reduction sequences corresponding to £ and E5 individ-
ually. Then, since we know that the least common fixed
point of g1 and g2 is the least fixed point of (g1 o ga),

we can construct an interleaved reduction sequence of F
and Fs corresponding to the computing the iterates of
(91 ©g2). In other words, the special form of the fixed
point iteration provides guidance about how to construct
the interleaved reduction sequence.

The first order result can be extended to the full higher
order language and the details are given in the accom-
panying technical report [5]. This proof uses the idea of
logical relations used in proofs of adequacy in functional
languages. Previous work [4] showed that the semantics
for the first order fragment was fully abstract. We be-
lieve that with suitable restrictions on the graphs in the
environment, full-abstraction for the full language can be
achieved.

6 Conclusions and Related Work

We have given formal operational and denotational se-
mantics for a higher order functional language with logic
variables and shown that the denotational semantics is
adequate with respect to the operational semantics.

The closest work along these lines is that of Mantha,
Lindstrom and George who have given a semantics for a
lazy functional language with logic variables [8]. How-
ever, this semantics encodes operational notions like sus-
pensions and in that sense, is somewhat less abstract than
our semantics which is phrased purely in terms of func-
tions over value domains. It is possible that such opera-
tional notions are needed to model laziness, which is not
required for the data-driven execution semantics of our
language.

Acknowledgments: We have had stimulating discussions
with Gary Lindstrom and Surya Mantha on functional
languages with logic variables. We would like to thank
Richard Huff and Wei Li for reading the paper carefully
and correcting errors in the text.

References

[1] H. Ait-Kaci. A Lallice theorilic approach to compu-
tation based on a calculus of partially ordered type
structures. PhD thesis, University of Pennsylvania,

1984.

[2] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Ef-
ficient implementation of lattice operations. ACM
Transactions on Programming Languages and Sys-

tems, 11(1):115-146, January 1989.

[3] Arvind, R. Nikhil, and K. Pingali. I-structures: Data
structures for parallel computing. ACM Transactions
on Programming Languages and Systems, 11, Octo-

ber 1989.

[4] R. Jagadeesan, P. Panangaden, and K. Pingali. A
fully abstract semantics for a functional language

[14]

[15]

with logic variables. In Proc. of the 1989 Logic in
Computer Science Conference, 1989. To appear in
ACM Transactions on Programming Languages and
Systems.

R. Jagadeesan and K. Pingali. An abstract seman-
tics for a higher-order functional language with logic
variables. Technical Report TR 91-1220, Cornell Uni-
versity, 1991.

G. Kahn. The semantics of a simple language for
parallel programming. In Proc. of the IFIP Congress
74, pages 471-475, 1974.

G. Lindstrom. Functional programming and the log-
ical variable. In Proc. of the 12th ACM Symposium
on Principles of Programmaing Languages, 1985.

S. Mantha, G. Lindstrom, and L. George. A seman-
tic framework for functional programming with con-
straints. Unpublished Technical Report.

R. Nikhil, K. Pingali, and Arvind. Id Nouveau. Tech-
nical Report CSG Memo 265, M.I.T. Laboratory for
Computer Science, 1986.

Gordon D. Plotkin. A structural approach to oper-
ational semantics. Technical Report DAIMI FN-19,
Aarhus University, 1981.

U. Reddy. Logic Programming — Functions, Rela-
tions and Fquations, chapter On the relationship be-
tween logic and funtional languages. Prentice-Hall,

1986.

V. Saraswat, M. Rinard, and P. Panangaden. Seman-
tic foundations of concurrent constraint program-
ming. In Proc. of the conference on Principles of
Programming Languages, 1991.

M. Sato and T. Sakurai. QUTE: a functional lan-
guage based on unification. In Logic Programming:
functions, relations and equations, 1986.

D. Scott. Data types as lattices. SIAM Journal of
Computing, 1976.

M. B. Smythe. Powerdomains. Journal of Computer
and System Sciences, 16:23-36, 1978.

Ident:

Ops:

Cond:

Arrays:

1. < D,Clz],pp,p, FL > — < D,CV(2)/2], pr,p, F L >
if V(x) is defined

1. < D,eyopes,pr,p, 'L> — < D* xy0p xa, pp,p", FL* >
where {#1, 22} C FL, FL* = FL — {&1, 22}, p* = pU {{z1}, {x2}}
D*IDU{l‘lIel,l‘zzez}

2. <Dmopn,pr,p, FL> — < D,r pp,p, FL>
ifr=mopn

1. < D,cond(ey,ea,€e3), pr,p, FL > — < D* cond(x1,ea,e3), pp,p*, FL* >
where 21 € FL, FL* = FL —{x1}, p* = pU {1}, D" =DU{z; = €1}

2. < D,cond(true,ea,e3), pp,p, FL > — < D ea, pp,p, F'L>

3. < D,cond(false,ea,e3), pr,p, FL > — < D es, pp,p, F'L>

1. < D,array(e),pr,p, FL > — < DU{x = e}, array(x), pp, p*, FL* >
where x € FL, FL* = FL —{z}, p* = pU{{z}}
2. < D,array(n), pp,p, FL> — < D|[L1,...,Ln], pp, p*, F L* >
where L1,...Ine FL, p* = pU {{L1},..{In}}, FL* = FL —{L1,...Ln}
3. < D,eilea],pr,p, FL > — < D" wq[a3), pr, p*, FL* >
where {#1, 22} C FL, FL* = FL — {&1, 22}, p* = pU {{z1}, {x2}}
D”< :DU{xlzel,xzzez}
4. < D,[L1,...,La][d), pp,p, FL > — < D,Li, pp,p, FL >
where 1 <1< n.

Function: 1.< D,ej(e2),pr,p, FL> — < DU{x1=e1,22 = e}, x1(x2),pr,p, FL* >

Defs:

where {1, 22} C FL, FL* = FL — {21, 22}
2. < D,(Az.er)es, pr,p, FL> — < D,jy=eqinel, pp,p*, FL* >
where y € FL, FL* = FL — {y}
where ¢} = exly/z], 5" = pU {{y})
3. < D,xz=eginey, pp,p, 'L> — < D* el pp,p, F'L>
D = DU {x = ez}

Figure 4: Structured Operational Semantics of Id: Expressions

1 < D,e,pp,p, FL>=<D* e pp, p*, FL* >
"< DU{z=¢},e1,pp,p, FL>—< D" U{z=¢"} e1,p%,p", FL* >
2. < DU{x=vy}l,e,pr,p, FL >=< D e, prp,U(p,{z,y}), FL >
if @,y first order, U(p, {x,y}) is consistent.
< DU{x =y}, e, pp,p, FL >— Error
if #,y first order, U(p, {®,y}) inconsistent.
3. <DU{x=cle,pp,p, FL >—=< D, e, pr,U(p,{x,c}), FL >
if first order, U(p, {x,c}) is consistent
<DU{x=c¢c}e pp,p, FL>— Error
if first order, U(p,{x, ¢}) inconsistent.
4. < DU{z=[L1,...Lnl},e,pp,p, FL >—< D e, prp,U(p,{x,[L1, ..., Ln]}), FL >
(f U(p,{=,[L1,..., Ln]}) is consistent)
< DU{x=[L1,.., Lnl}, e, pr,p, FL >— Error (otherwise)
5. < DU{F =Az.e1},e,pp,p, FL>—=< D e, pp U{F = Az.e1},p, FL>

Figure 5: Structured Operational Semantics of Id: Definitions

Clz = €] env

Cldef, ; defs] env

env C env’

les< (b, env’) = E[e] (b, env')
env'[2] = b

in env’
env C env’

les < env' = C[defi] env'
env' = C[defa] env’

in env’

Figure 6: Denotational Semantics of Id: Definitions

E[const] {a, env)

Elx] {a, env)

Elcond(eq, 2, e3)] {a, env)

Ele1 op e2] {a, env)

Elei(e2)] {a, env)

(a, env) C (b, env')
les { K (const)Cbh

in (b, env’)
(a, env) C (b, env')
lcs{ env'[z] = b

in (b, env’)

1 envC env’
s (b, env’y = E[e1] (b, env’)

in

case b of
L:{a,env')
true : Ees] {a, env’)
false : E[es] {a, env’)
otherwise < T, envt >

endcase

(a, env) C (b, env')

(b1, env’y = Efe1] (b1, env’)
(b2, env’) = E[ea] {ba, env’)
bl op bzg b

in (b, env’)

(a, env) C (b, env')

(ata a(M‘ga b) = App(ata aarga b)

les

les

(ar, env'y = E[e1] {as, env’)

in (b, env’)

Figure 7: Denotational semantics of Id: Expressions

<aarg, env’) = 5[[62]] <aarga env')

Elarray(e)] {(a,env) =

(a, env) C (b, env')

les ¢ (by,env’) = E[e] (b, env’)
Array(b)E b

in (b, env’)

(a, env) C (b, env')

bli] = ent'[Li];i=1...n

in (b, env’)

(a, env) C (b, env')

(b1, env’y = E[e1] (b1, env’)

(b2, env')y = E[ea] {ba, env’)

bi[bs] = b

in (b, env’)

EMNLL...Ln]] {a,env) = lcs{

Eleile2]] {a,env) = lcs

Figure 8: Denotational Semantics of Id: Array expressions

E[rz.e] {a,env) = if (a=10)
then (0, env)
elselet env’' = Update Enve(a)(env)
in (UpdateGraph®(env')(a), env’)

Update Env®({u,v) — (u/,v")) = Xenv.
env[r — u'] C env’
les< v'Cb
(b, env’y = E[e] (b, env')

in env'[z — envlz]]
Update Enve({g1...9n}) = Xenv.

les envCenv’
env' = Update Env®(g;), i=1...n

in env’

Update Enve(S) = | [{UpdateEnv®(Sy) | S;CS}

env' [z — u']Cenv®
UpdateGraph®(env')((u,v) — (u/,;v')) = les{ v'Cb,

(by, env*) = E[e] (by, env™)
in ((U, U) — (env*[x], bT>)

UpdateGraph®(env')({g1...gn}i=1...n}) = || {UpdateGraph®(env')(gi)|i =1...n}
UpdateGraph®(env')(S) = | {UpdateGraph®(St) | S;C;S}

Figure 9: Denotational Semantics of Id: Lambda terms

