
Abstract Semantics for a Higher�Order Functional Language

with Logic Variables

Radha Jagadeesan

Imperial College�

London� UK SW� �BZ�

Keshav Pingali

Cornell University�

Ithaca� NY ������

Abstract

Although there is considerable experience in using lan�
guages that combine the functional and logic program�
ming paradigms� the problem of providing an adequate se�
mantic foundation for such languages has remained open�
In an earlier paper� we solved this problem for �rst�order
languages by reducing the problem to that of solving si�
multaneous �xpoint equations involving closure operators
over a Scott domain and showing that the resulting se�
mantics was fully abstract with respect to the operational
semantics ���� These results showed that the �rst�order
fragment could be viewed as a language of incremental
de�nition of data structures through constraint intersec�
tion� The problem for higher�order languages remained
open� in part because higher�order functions can interact
with logic variables in complicated ways to give rise to
behavior reminiscent of own variables in Algol���� We
solve this problem in this paper� We show that in the
presence of logic variables� higher�order functions may be
modeled extensionally as closure operators on function
graphs ordered in a way reminiscent of the ordering on
extensible records in studies of inheritance �	�� We then
extend the equation solving semantics of the �rst�order
subset to the full language� and prove the usual sound�
ness and adequacy theorems for this semantics� These
results show that a higher�order functional language with
logic variables can be viewed as a language of incremental
de�nition of functions�

� Introduction

The bene�ts of combining the functional and logic pro�
gramming paradigms are manifold
 for example� the pro�
grammer gets the power of incremental de�nition of data
structures� which goes a long way towards solving the

This research was performed at Cornell University un�
der an NSF Presidential Young Investigator award �NSF
grant CCR�
��
����� NSF grant CCR����
���� and a
grant from the Hewlett�Packard Corporation� Corre�
spondence regarding this paper should be sent to pin�
gali�cs�cornell�edu�

copy overhead of pure functional data structure construc�
tion ��� �� 	�� 		� ��� However� it has proved di�cult to
�nd a suitable semantic foundation for such hybrid lan�
guages� which is ironic since pure functional and logic
programs can be given simple abstract semantics as func�
tions and relations over values�

In previous work� we had provided such a foundation
for the �rst�order case by reducing the problem to that
of solving simultaneous �xpoint equations involving clo�
sure operators over a Scott domain ���� Using this device�
we were able to provide a denotational semantics that is
fully abstract with respect to the operational one� These
results showed that a �rst�order functional language with
logic variables can be viewed as a language in which data
structures are de�ned through constraint intersection��
For a number of reasons� the problem of giving such a se�
mantics to a higher�order functional language with logic
variables seemed intractable� As we show in Section ��
higher�order functions can interact with logic variables
in very complicated ways to give rise to behavior remi�
niscent of own variables in Algol���� Furthermore� these
languages are inherently parallel in the sense that any
correct interpreter must either be parallel or must sim�
ulate parallelism� Logic variable instantiation is like a
globally visible side�e�ect and modeling the combination
of concurrency and side�e�ects usually requires complex
notions like powerdomains� Inspite of these apparent dif�
�culties� we show here that in the presence of logic vari�
ables� higher�order functions may be modeled extension�
ally as closure operators on function graphs with an or�
dering reminiscent of the ordering on extensible records
in studies of inheritance �	�� Using this tool� we are able
to construct a pleasing equation solving semantics for
these languages and prove the usual soundness and ade�
quacy theorems� Our results extend the equation�solving
paradigm that underlies Kahn semantics for data�ow net�
works ��� to a more expressive setting with higher order
constructs and shared memory
 this allows the communi�
cation abilities of processes to change dynamically� unlike
the Kahn model of data�ow in which the channel struc�

�Although we did not consider non�determinism� it has been
shown recently that our results extend to a �rst�order language
with committed choice non�determinism �����

ture of networks is �xed and cannot be altered during
runtime�

The rest of the paper is organized as follows� In Sec�
tion �� we discuss two programs that serve to introduce
the main issues and shed light on some of the di�culties
in giving an abstract semantics for a functional language
with logic variables� These programs are written in Id� a
data�ow language that will serve as a concrete language
in this paper� Section � gives a formal state transition
semantics for Id programs� The abstract semantics is de�
�ned in Section �� The correspondence between the op�
erational and denotational semantics is described in Sec�
tion �� For lack of space� we omit proofs and detailed dis�
cussions from this paper and refer the interested reader
to a companion technical report for details ����

� Informal Introduction to the

Language

This section introduces Id ��� and its operational seman�
tics informally through a number of programming exam�
ples� The core of the language is functional and logic
variables are introduced through an array construct ����
An array with uninitialized logic variables as its elements
is allocated by the expression array�e� where e is an
integer�valued expression specifying the size of the array�
Array updating is performed by a de�nition of the form
A�i� � v� The value v is uni�ed with the value contained
in A�i� and the resulting value is stored into A�i�� Thus�
if A�i� was unde�ned �i�e�� it was an uninitialized logic
variable�� the execution of this de�nition results in the
value v being stored in A�i�� If uni�cation fails� the en�
tire program is considered to be in error� An element of
an array may be selected by A�i�� We permit an unini�
tialized variable to be returned as the result of executing
a program� Here is a simple Id program�

�A � array�����

A��� � 	�

fill
even�A����

fill
odd�A�
��

in A�

def fill
even�X�h� � �for i from � to h do

X�	�i� � X�	�i
���	 od�

def fill
odd�X�h� � �for i from � to h do

X�	�i��� � X�	�i��	 od�

When executed on a data�ow simulator� this program
produces an array of length 	� in which the i�th element is
�i� Procedure fill
even �lls in the even elements of ar�
ray A by reading the odd elements and multiplying them
by � and procedure fill
oddworks similarly� Notice that
this program cannot be executed �sequentially� �that is�
like a PASCAL or FORTRAN program�
 instead� compu�
tations in the calls to fill
even and fill
odd must be

interleaved� Fortunately� the viewpoint of constraints pro�
vides a nice way to mask this operational complexity� For
example� the de�nition A � array���� can be viewed as
a constraint that is satis�ed by any array A of size 	� �and
by an overde�ned element� �� which trivially satis�es all
constraints�� We can think of fill
even and fill
odd

as constraining the even and odd elements of the array A�
with A being produced by the intersection of these con�
straints with the constraints A � array���� and A��� �

	� The denotational semantics formalizes this viewpoint
of constraints�

Higher order functions and logic variables

This example illustrates the interaction between higher�
order functions and logic variables� Consider the pro�
gram�

�A � array�	��

g � f A�

t� � g ��

t	 � g 	�

in A�

def f X i � �X�i� � i in ��

The result of this program is the array �	���� In this pro�
gram� f is a curried function which takes its arguments
one at a time
 the �rst argument must be an array and
the second� an integer� When this function is applied to
an array� it returns a �function� that can be applied to an
integer
 if this new function is applied to the integer i�
element i of the array gets updated to i� In other words�
g� the result of applying f to A� has the array A embedded
inside it� and this array gets updated each time g is ap�
plied� This is reminiscent of the behavior of own variables
in a language like Algol���� Furthermore� the applications
of g need not be in the same scope as its introduction� we
can pass g to another function and apply it inside that
function�

Notice also that the right hand side of the de�nition
of A �that is� array�	�� cannot be substituted for A ev�
erywhere in the program without altering the meaning of
the program� Unlike in pure functional languages� object
identity is important
 in the operational semantics of Sec�
tion �� the de�nition of A will be allowed to take part in
constraint solving only after the right hand side has been
reduced to an array of two logic variables of the form
�L	�L���

Syntax

For the purpose of this paper� we de�ne a core language
whose syntax is shown in Figure 	� To avoid getting over�
whelmed by subscripts and ellipsis� we have made this lan�
guage very simple while retaining all essential constructs�
The main di�erences between Id � as presented earlier in
the examples� and the core language are as follows� The

program ��� exp
def�list ��� def j def
def�list
def ��� id � exp
exp ��� const j id j exp	 op exp�

j if exp	 then exp� else exp�
j array�exp� j exp	�exp��
j exp	 exp� j ��x� exp�
j def�list in exp

Figure 	� Syntax of Id

loop construct is eliminated since a loop can be replaced
by a tail recursive function� To simplify notation� we will
require that all functions return a result� It is convenient
to assume that the left�hand side of a de�nition is an iden�
ti�er
 a de�nition in Id of the form e��e	� � e� can be
replaced by two de�nitions x � e��e	�� x � e� where
x is a new identi�er� We will assume that all local vari�
ables have been made into parameters so that the body
of a function does not introduce any new names� We
assume that the language is simply typed� and that the
expressions are typed correctly in the usual sense� Arrays�
booleans and integers are considered to be of base type�
For de�nitions of the form x� e� x must have the same
type as e� In the rest of this paper� we will ignore the
details of typing� Since we do not perform uni�cation of
��abstractions� we impose syntactic restrictions to ensure
that there are no multiple de�nitions of functions� if x
in the abstraction �x�exp is of higher�order type� then x
cannot occur by itself on the left hand side or the right
hand side of a de�nition� We refer the interested reader
to the companion technical report ��� for details�

� Operational Semantics of Id

In this section� we give an operational semantics for Id us�
ing Plotkin�style �	�� state transition rules� The state of
the computation is represented by a con�guration where
a con�guration is a quintuple � D� e� �F � �� FL �� D con�
tains de�nitions whose right�hand sides have not yet been
completely reduced to an identi�er� constant� array� or an
abstraction of the form �x�exp� The expression e in the
con�guration is the expression whose value is to be pro�
duced as the result of the program� Con�gurations are
rewritten by reduction and by constraint solving� Once
the right�hand side of a de�nition in D has been reduced
completely� the de�nition can participate in constraint
solving� Con�gurations have two components named �F
and � which keep track of such de�nitions� When the right
hand side of a de�nition in D reduces to a ��abstraction�
it is moved into �F � the function environment� Since ��
abstractions are not uni�ed� an identi�er bound to a ��
abstraction by a de�nition cannot occur on the left hand
side of any other de�nition
 hence� �F is simply a list of
identi�er���abstraction pairs� The second component� ��

called the environment� keeps track of bindings between
identi�ers and base values �identi�ers� constants and ar�
rays� and has a more complex structure to permit uni�
�cation � it consists of a �possibly empty� set of alias�
sets where an alias�set is an equivalence class of base val�
ues� For example� fx� y� zg� fx� y� �g and fx� y� �L	� L��g
are alias�sets� If uni�cation fails� the con�guration is
rewritten to �Error� and computation aborts�

The transition rules for con�gurations are speci�ed in
terms of a binary relation � on the set of con�gura�
tions� In any program P� let expP be the expression to
be evaluated� The initial con�guration for program P
is � �� expP � �� �� Id �� We de�ne some syntactic cate�
gories required for the operational semantics� The nota�
tion �x�� ���� xn� for arrays represents a sequence of one or
more identi�ers�

C� Con�gurations ��� � D� e� �F � �� FL � j Error
D� Defs ��� �jdef�� ���� defn
e� expression
�F �Function env ��� �jff� � �x��e�� ���� fn � �xn�eng
�� Environment ��� �jfA�� ���� Ang
A� Alias�set ��� fB�� ���� Bng B� Base�value ��� xjcjAr
x� L� Id � set of identi�ers Ar� Array ��� �x�� ���� xn�
FL� Free�list � P�Id�

The uni�cation algorithm we use is similar to the one
in Qute �	��� No occurs�check is performed
 in�nite data
structures are considered to be legitimate objects of com�
putation� The uni�cation algorithm is de�ned in terms of
a binary relation � on environments�

De�nition � � is a binary relation on environments de�
�ned as follows�

�� If A� and A� are members of an environment �� and
A� and A� have an identi�er in common� then � �
�� � fA�g � fA�g� � fA� � A�g�

�� If f�x�� ���� xn�� �y�� ���� yn�g � A�� then � � � �
ffx�� y�g� ���� fxn� yngg�

Intuitively� these transformations leave the meaning of an
environment unchanged� If �� � �� and �� �n��� then
�� is said to be reducible
 otherwise� it is irreducible� Let
�
�be the re�exive and transitive closure of �� It can be
shown that for every environment �� there is a unique�
irreducible environment �� such that �

�
��� �	��� If � is

a syntactic environment and A is an alias�set� let U���A�
denote the unique� irreducible environment such that ���

fAg�
�
�U���A��

We will need an operation that is similar to environ�
ment look�up in functional languages� In a functional
language� an environment is considered to be a function
from identi�ers to values� In our system� the function
environment �F can be interpreted the same way� The

rewrite rules have been designed so that in any con�gu�
ration that is not Error� the environment � is irreducible�
This means that every identi�er that is not in the free�list
is an element of exactly one alias�set�

De�nition � Let � D� e� �F � �� FL � be a con�guration
and x be an identi�er not a member of FL� Let � be
consistent� The function V�x� is de�ned by cases on the
type of x�

�� x is a variable of base type� Let A be the �unique�
alias�set that contains x� V�x� is de�ned by cases
depending on A�

� All the elements of A are identi�ers� In this
case� V�x� is unde�ned�

� At least one element of A is a constant c� The
elements of A are either identi�ers or the con�
stant c� We de�ne V�x� to be c�

� At least one element of A is an array� The el�
ements of A are either identi�ers or arrays of
the same length� V�x� could be de�ned to be any
one of these arrays� To be precise� place a lexi�
cographical ordering on identi�ers and let V�x�
be the array whose �rst element is the least in
this ordering�

�� x is a variable of a function type� In this case� V�x�
is L where x � L is the unique de�nition of x in �F �

The operational semantics for Id is given in Figures �
and �� The �rst rule replaces free occurrences of a �rst
order variable x by V�x� in any context� if V�x� is de�ned�
Arbitrary contexts are denoted by C�� in this rule� Most
of the other clauses in this semantics are self�explanatory�
The two sides of a conditional expression play no role in
the computation until the predicate has been evaluated
to true or false� Unlike in functional languages� function
application cannot be implemented by a copy of the body
of the function in which occurrences of the formal param�
eter are substituted by copies of the actual parameter�
Instead� a de�nition is created for the actual parameter
and the actual parameter is substituted for the formal pa�
rameter only when it has been completely reduced to a
base value or function�

� Abstract Semantics

This section describes the abstract semantics for Id� First�
we give an informal overview of our approach� We discuss
the �rst�order semantics which views data structure con�
struction as constraint intersection� and we relate com�
puting with constraints to the solution of systems of si�
multaneous equations involving closure operators� This
part of the paper is a summary of results reported in an
earlier paper ���� Then� we show how the higher�order

case �ts into this picture� Next� we give a formal ac�
count of the construction of various domains needed for
the formal semantic account� Finally� we present the for�
mal semantics�

��� Informal Introduction

����� First�order Language

Consider the following Id program�

�A � array����

A��� � 	�

A�	� � ��

A��� � ��

in A�

The de�nition A � array��� is viewed as a constraint
that gives partial information about A � any array of
length � satis�es this constraint� Similarly� A��� � 	 is a
constraint satis�ed by any array whose �rst element is ��

How should we describe equational constraints for�
mally� The usual powerdomain constructions are of no
help here� For example� the Smythe powerdomain �	���
consisting of upward closed sets� is designed to describe
sets of values satisfying constraints of the form x v a�
The set of values in a domain satisfying an equational
constraint is not� in general� an element of the Smythe
powerdomain� Consider the constraint x � y� What sets
of pairs satisfy this constraint� Certainly not an upward
closed set because� for example� h���i satis�es the con�
straint but h���i does not satisfy it�

To motivate the formal model of constraints� note that
the basic mechanism by which constraints get imposed in
Id is through uni�cation� Each time uni�cation is per�
formed� new constraints are imposed on some variables
and this adds to the �information content of the vari�
ables� Such functions are obviously extensive functions�
Imposing a constraint twice is no di�erent from imposing
it once
 therefore� functions modeling imposition of con�
straints should be idempotent� Finally� we want the func�
tions to be monotonic and continuous since the process of
generating constraints is supposed to be computable�

First� we formalize the notion of �information content �
If B is the domain of elementary values such as integers
and booleans� consider the domain of both basic values
and arrays� which can be described informally by the do�
main equation�

W � B !W !W �W !W �W �W ! � � �

In the in�nite sum� the component B represents elemen�
tary values� the componentW represents arrays of length
	� the component W � W represents arrays of length ��
etc� Notice that array elements come from the domainW
itself
 therefore� array elements can be arrays themselves�
and the domain includes �in�nitely nested� arrays� To
this domain� we add an element labeled � which is a spe�
cial value that models error� the result of �contradictory�

B Arr4Arr3Arr2Arr1

B Arr4Arr3Arr2Arr1

The domain V

The closure operator for array���

Figure �� The Domain V and a Closure Operator

de�nitions� A pictorial representation of the resulting do�
main� which we call V � is shown in Figure �� Arrays of
di�erent lengths are incomparable� If a	 and a� are two
arrays of the same length� we say that a	 v a� if a� can
be obtained by replacing occurrences of � in a	 by other
values from W � For example� the least de�ned array of
length � is ������� and it is below ������� etc� The
error element � is above all other values in V � This do�
main is constructed formally in the companion technical
report ����
We can model constraints using closure operators �	���

De�nition � A closure operator� f � on a domain V is
a continuous function satisfying� �i� �x 	 V� x v f�x��
�ii� f
 f � f �

As an example� consider the de�nition x � array����
The elements of V that satisfy the constraint on
x are easily seen to be solutions of the equation
x � ��u�u t ��������x� Note that �u�u t ������� is a
closure operator� A pictorial representation of this func�
tion is shown in Figure � � it maps � to �������� the
least de�ned array of length �� it maps � and all arrays
of length � to themselves� and it maps all other values in
V �such as basic values and arrays of length other than
�� to ��

Now that we can model constraints as closure opera�
tors� we need to understand how to model simultaneous
imposition of constraints� The following lemma provides
the answer�

Lemma � If f � V � V and g � V � V are closure op�
erators� any solution to the system of simultaneous equa�
tions

x � f�x�
x � g�x�

is a solution of the equation x � f�g�x�� and vice versa�
The least common solution of the system of equations is
the limit of the sequence �� f�g����� f�g�f�g������� ���

This lemma lets us talk meaningfully about the least
solution of a set of �xpoint equations� One interpretation
of this lemma is that

F
�f
 g�n is the smallest closure

operator above f and g
 hence� simultaneous imposition
of constraints can be modeled using least upper bounds
of closure operators�

The abstract semantics of the �rst�order language mod�
els de�nitions as closure operators on environments where
environments are functions from identi�ers to V � The in�
terpretation of expressions is more subtle� From our pre�
vious discussion� the expression array��� can be inter�
preted as the function �u�u t �������� Thus� array���
is a closure operator of type V � V � In general� we have
to give meaning to an expression of the form array�e�

where e can impose constraints on the environment
 so�
the meaning of an expression is a closure operator of type
�V �ENV �� �V � ENV ��

����� Informal discussion of higher�order seman�

tics

Consider the following version of the example discussed
in Section ��

def f X i � �X�i� � i in ��

�A � array�	��

g � f A�

���

t� � g ��

���

t	 � g 	�

���

in A�

Function g� the result of applying f to A� has the array
A �embedded inside it� and this array gets updated each
time g is called� The result of the program is the array
�	� ���

In a pure functional language� higher�order functions
are modeled by currying �rst�order functions� It is worth
understanding why currying is inadequate for model�
ing the higher�order part of Id� Consider the function
F � �hx� yi�e�x� y� which represents a function that ac�
cepts as input a pair� say of type D� � D�� and returns
an element of type D�� If v is of type D�� the function
G � ��curry F � v� is of type D� � D�� This type does

{<1, > <1,0>, <1,0> <1,0>,

{<2, > <2, >}

t2

App

1

t1

App

array(2)

App

L

f A

g

2

[1,2]

0 0

2

g

Af

L

App

array(2)

App

t1

1

App

t2

[,]

{<1, > <1, >}

<2, > <2,0>,<2,0> <2,0>}

Figure �� Data�ow graph for example

not model the behavior of functions in the presence of
logic variables since it does not re�ect the fact that v can
get updated when the function G is applied� as in the ex�
ample above� In a pure functional language� the value of
v does not depend on what happens to G and the func�
tion G is determined entirely by F and v� This is not the
case once logic variables are introduced� in our example�
the value attained by array A depends on the arguments
that g has been applied to�

To capture this behavior� we extend the constraint
point of view developed for the �rst�order semantics to
functions� In the higher�order semantics� function sym�
bols like f and g are given meanings as graphs of input�
output pairs and lambda abstractions are given mean�
ings as closure operators on these graphs� For exam�
ple� the graph of g will be a set of elements of the form
hu� vi � hu�� v�i where the u�s and v�s are integers� The
intuition is that each such pair represents a piece of in�

formation about g � given an approximation u to the ar�
gument and v to the result� g re�nes the argument to u�

and the result to v�� Function graphs get re�ned through
application and this re�nement occurs in two ways � the
domain of the graph can increase or a particular element
hu� vi � hu�� v�i gets re�ned to hu� vi � hu��� v��i� where
hu�� v�ivhu��� v��i� As an example� consider Figure � which
shows a data�ow�like representation of the example� Ap�
plication nodes are made explicit as App� and the term
� X� � i� X�i��i in � is denoted by L�

Initially� the graphs of f and g are f g and all other
variables have the value �� The two applications of g
examine their arguments and results and add the elements
h	��i � h	��i and h���i � h���i to graph of g� Also�
the node array�	� makes its output array ������ the
array of two elements� both of which are unde�ned� These
values are shown at the top in Figure ��

The application node corresponding to g � f A col�
lects the information about the graph of g and ����� and
passes it up to the node labelled L� Note that the use of
graphs allows us to keep track of the arguments that the
function has been applied to� The graph passed to f is
h������ fh	��i� h	��i� h���i� h���igi �
h������ fh	��i� h	��i� h���i� h���igi�
This is re�ned by the node L to yield the graph
h������ fh	��i� h	��i� h���i� h���igi �
h�	� ��� fh	��i� h	� �i� h���i � h�� �igi
This graph is passed down to the application of f� This
application node in turn passes down a re�ned version of
the graph of g� namely fh	��i � h	� �i� h���i� h�� �ig�
Furthermore� it re�nes the value on the edge connected to
the node array�	� to �	� ��� The new value of the graph
of g is used to update values at the application sites of g�
For example� the application node corresponding to the
statement t	 �g 	 can now update t	 to �� The graphs
at this stage are shown at the bottom in Figure �� Re�
peating these steps again does not alter any values� Note
that the �nal result agrees with the answer that the op�
erational semantics speci�es�

The domain of graphs and the notion of application
for graphs is speci�ed formally in Section ���� As in the
�rst�order case� de�nitions in the full language are inter�
preted as closure operators on environments� The type
of expressions is also analogous to the �rst order case�
an expression that produces a value of higher�order type
�say �� � ��� will be interpreted as a closure operator on
the domainD�� � �� �ENV where D�� � �� is the do�
main of graphs of type �� � ��� This domain is speci�ed
more formally next�

��� The Domain of Function Graphs

The domains that arise in the semantic description are
complete algebraic lattices� We denote the �nite elements
of a domain D by B�D�� Given a set of ordered pairs S�
de�ne Dom�S� � fx j ��� hx� yi 	 Sg�

Let D�� D� be two domains� We �rst de�ne graphs
of functions from D� to D�� Informally� an element of
Graphs�D� � D�� can be thought of as the �partial
input�output relation of a continuous function from D�

to D��

De�nition � The set of graphs of functions from D� to
D�� denoted by Graphs�D� � D��� is de�ned as follows�
Members of this set are sets S of elements of the form
hx� x�i� where x 	 B�D��� x

� 	 B�D��� satisfying�

�� Function� fhx� x�i� hx� x��ig � S� hx� x�
F
x��i 	 S�

�� Monotonicity� �fhx� x�i� hy� y�ig � S
 yvx

x�vy��� hx� y�i 	 S�

	� Dom�S� is downward closed�

The �rst requirement ensures that we can view graphs as
encoding functions � given an element in the domain of
the graph� the corresponding output is the most de�ned
element associated with that element by the graph� Tak�
ing advantage of this� we will sometimes write x� � x�
when the pair hx�� x�i occurs in a graph� The second re�
quirement ensures that more input guarantees more out�
put� The �nal requirement clari�es the nature of the �par�
tiality � when an element appears in the domain of the
graph� all elements less than it also appear in the do�
main
 this is justi�ed from the operational intuition that
if we apply a function to an argument� we have in e�ect
applied it to all values less de�ned than the argument�
Note that there are elements S 	 Graphs�D� � D��
such that Dom�S� is not all of D�� Thus� elements of
Graphs�D� � D�� are to be distinguished from the �full
input�output relation of a continuous function fromD� to
D��

For the semantics� we need graphs of closure operators�
The following de�nition picks out the graphs that corre�
spond to closure operators by imposing the conditions of
extensivity and idempotence�

De�nition � Let D be a domain� Then� the domain
of graphs of closure operators on D� denoted CG�D�� is
de�ned as follows� Elements of this domain are sets
S 	 Graphs�D� that satisfy�

�� Extensivity� hx� x�i 	 S� �xvx�
 x� 	 Dom�S��

�� Idempotence� fhx� x�i� hx�� x��ig � S�hx� x��i 	 S

The ordering on elements of CG�D� is subset inclusion�

Suppose that we are given an element i in the domain
of the graph� the �rst condition ensures that the cor�
responding output o is more de�ned than the input el�
ement� It also ensures that the graph contains o in its
domain� Now� using the second condition� we can deduce
that the output for input o is no greater than the output
for i� thereby enforcing idempotence� Thus� an element
of CG�D� can be thought of as the �partial input�output

relation of some closure operator on D� As before� the
domains of elements of CG�D� are not required to encom�
pass the whole of D� In this light� the ordering S�vS�
among elements of CG�D� implies two �avors of informa�
tion� �rstly� the domain of the graph S� is contained in
the domain of S�� and secondly� on every input in the
domain of S� the graph S� yields more re�ned output�

Given a set S of pairs of elements from B�D�� let S
denote the closure of S under the requirements placed
on function graphs
 that is� it is the smallest element of
CG�D� containing S� If S is a singleton set fxg� we will
sometimes write x instead of fxg� It is easy to check that
CG�D� is a complete� algebraic lattice� with the empty
graph as the least element
 least upper bounds given by
S�� S� 	 CG�D��S�

F
S� � S� � S�
 and B�CG�D�� �

fSfing� where Sfin is any �nite set of pairs of elements
from B�D�� We can now de�ne the domains required
for the semantics� Let V be the domain of base values
de�ned earlier� The domains at various types are de�ned
inductively�

Base� Do � V �

Product spaces� D����� � D�� �D��

Function spaces� D�� � �� � CG�D�� � D��� Thus�
elements of D�� � �� are sets of elements of the
form hx� yi � hx�� y�i� where x� x� 	 B�D�� �� y� y

� 	
B�D�� �� satisfying the requirements of De�nition ��

All of these domains are complete� algebraic lattices�
Next� we de�ne two useful auxiliary functions on the

domains of graphs�
The �rst function is an extension of the operator

that performs closure under the requirements on func�
tion graphs� Let u 	 B�D��� v 	 B�D� �� Let u� 	
D�� v

� 	 D� be such that uvu� and vvv�� Then� de�
note by hu� vi 	� hu�� v�i� the element of D� �
 de�ned
as follows�

fhu� vi � hxf � yf ijuvxfvu�� vvyfvvg

The second function� App� de�nes the notion of appli�
cation for graphs� It takes three inputs and re�nes them
to yield three outputs� view the �rst input as the graph of
the function� the second input as the argument and the
third input as the result� The argument and result co�
ordinates are updated in the natural way� Furthermore�
applying the graph of a function changes the graph of the
function itself� it is updated to �record the results of
this application� This is exactly the behavior we required
in our informal discussion in Section ��	��� We encourage
the reader to check that the de�nition matches the be�
havior of the application node described in our informal
discussion in Section ��	���

Let s 	 D�� � �� � t 	 D�� � u 	 D�� � Then�
App�s� t� u� � �s�� t�� u��� where

s� � s
F
fhxf � yf i � hxf � yf ij xfvt
 yfvug

ht�� u�i �
F
fhx�� y�ij hx� yi � hx�� y�i 	 s�� xvt� yvug

��� The Semantic Clauses

Figure � describes the denotations of de�nitions� The
environment in which all identi�ers are mapped to � is
called env�� Some of the constraints are inequalities of
the form a v x� where a is a constant and x is being con�
strained� These can be rewritten as x � ��x�a t x�x in
which the lambda�abstraction is obviously a closure op�
erator� The notation lcs in front of a set of simultaneous
equations involving closure operators stands for the least
common solution of that set of equations� Figures � and

describe the denotations of all expressions except lambda
abstraction� In the meaning of constants� the function K
maps syntactic constants to their abstract equivalents� In
the rule for conditionals� e� and e� play no role if e� is
unde�ned� Function application is tricky since applica�
tion may cause the graph of the function to change� To
understand this rule write the application e��e�� using
a pre�x Apply operator� App� the closure operator that
is the meaning of Apply� was de�ned in Section ��� and
enforces constraints between e�� e� and the output�
Figure � describes the denotation of lambda abstrac�

tion� By checking for a non�empty argument graph� the
denotational semantics captures the fact that the body of
a lambda expression is accessed only when it is applied
to an argument� If the argument graph is non�empty� we
�rst compute the updated environment using the function
UpdateEnv which essentially evaluates the body of the
lambda expression in each environment obtained by bind�
ing the formal parameter to an actual parameter obtained
from a� the approximation to the graph� The new envi�
ronment is used to compute the new value of the graph�
The case of recursion is handled implicitly by the de�ni�
tion of the denotation of equations� This is analogous to
the handling of feedback loops by a �xpoint iteration in
static determinate Kahn data�ow� The �xpoint iteration
in this case is performed in the computation of the least
common solution�

� Relating the Semantic De�ni�

tions

In this section we outline the proof that the denotational
semantics is correct for reasoning about the operational
semantics� The interested reader is referred to a compan�
ion technical report ��� for full details� The proof extends
extant proofs ��� for the �rst order language to a higher
order setting�

Reduction preserves meaning

As a prelude to the main adequacy result� we show that re�
duction preserves meaning� Once this is in hand� we prove
that the results obtained operationally are indeed those
predicted by the denotational semantics� These proofs
proceed by induction on the length of computation se�

quences using the basic fact that a single reduction step
preserves meaning�

In order to show that one�step reduction preserves
meaning we need to associate meanings with the basic
entities used in the operational semantics� i�e� with con�
�gurations� The semantic function M assigns to con�g�
urations a closure operator over the domain V � ENV �
We use the semantic functions E and C de�ned previously�
We de�ne M��hD� e� �F � �� FLi�� ha� envi

� lcs

��
�

ha� envi v hb� env�i
env� � C��D � � � �F �� env

�

hb� env�i � E ��e�� hb� env�i
in hb� env�i

The functionM represents the e�ect of the complete com�
putation on a con�guration� We prove that as we rewrite
a con�guration� the �rst order component of the result
given by M does not alter� In particular� we show that
�� �reduction does not alter the closure operator corre�
sponding to M� Thus the denotational semantics �at�
tains the �rst order results predicted by the operational
semantics�

The Adequacy Theorem

The hardest part of the proof of full abstraction is the
converse to what is outlined in the previous subsection

namely� that every value predicted by the denotational se�
mantics is attained by the operational semantics� Strictly
speaking� we show that for every �nite approximant to
the �rst�order results predicted by the denotational se�
mantics� there is a computation sequence that produces
a more re�ned value at a �nite stage�

We �rst de�ne a relationship � between �rst order
syntactic expressions� e� and closure operators� f � on
V � ENV � Intuitively� E ��e�� � e means that given any
�nite approximant to the result predicted by E ��e��� there
is a �nite sequence of reductions evaluating e in a suit�
able syntactic environment� that produces a more re�ned
value� In particular� if the result predicted by E ��e�� is ��
evaluating e in a suitable syntactic environment results in
error�

The proof that E ��e�� � e� for all �rst order expressions e
proceeds by structural induction on the expressions� and
its details may be found in our earlier paper ���� The sub�
tle case is when one has parallel imposition of constraints�
We make use of the fact that the semantic prescription for
determining the least common �xed point of a pair of clo�
sure operators suggests an interleaving of the reduction
sequences of the subterms� More precisely� suppose that
g� and g� are two closure operators that correspond to
the imposition of two constraints given as sets of equa�
tions E� and E�� Suppose that we know how to construct
reduction sequences corresponding to E� and E� individ�
ually� Then� since we know that the least common �xed
point of g� and g� is the least �xed point of �g�
 g���

we can construct an interleaved reduction sequence of E�

and E� corresponding to the computing the iterates of
�g�
 g��� In other words� the special form of the �xed
point iteration provides guidance about how to construct
the interleaved reduction sequence�
The �rst order result can be extended to the full higher

order language and the details are given in the accom�
panying technical report ���� This proof uses the idea of
logical relations used in proofs of adequacy in functional
languages� Previous work ��� showed that the semantics
for the �rst order fragment was fully abstract� We be�
lieve that with suitable restrictions on the graphs in the
environment� full�abstraction for the full language can be
achieved�

� Conclusions and Related Work

We have given formal operational and denotational se�
mantics for a higher order functional language with logic
variables and shown that the denotational semantics is
adequate with respect to the operational semantics�
The closest work along these lines is that of Mantha�

Lindstrom and George who have given a semantics for a
lazy functional language with logic variables �
�� How�
ever� this semantics encodes operational notions like sus�
pensions and in that sense� is somewhat less abstract than
our semantics which is phrased purely in terms of func�
tions over value domains� It is possible that such opera�
tional notions are needed to model laziness� which is not
required for the data�driven execution semantics of our
language�
Acknowledgments� We have had stimulating discussions

with Gary Lindstrom and Surya Mantha on functional
languages with logic variables� We would like to thank
Richard Hu� and Wei Li for reading the paper carefully
and correcting errors in the text�

References

�	� H� Ait�Kaci� A Lattice theoritic approach to compu�
tation based on a calculus of partially ordered type
structures� PhD thesis� University of Pennsylvania�
	�
��

��� H� Ait�Kaci� R� Boyer� P� Lincoln� and R� Nasr� Ef�
�cient implementation of lattice operations� ACM
Transactions on Programming Languages and Sys�
tems� 		�	��		��	��� January 	�
��

��� Arvind� R� Nikhil� and K� Pingali� I�structures� Data
structures for parallel computing� ACM Transactions
on Programming Languages and Systems� 		� Octo�
ber 	�
��

��� R� Jagadeesan� P� Panangaden� and K� Pingali� A
fully abstract semantics for a functional language

with logic variables� In Proc� of the �
�
 Logic in
Computer Science Conference� 	�
�� To appear in
ACM Transactions on Programming Languages and
Systems�

��� R� Jagadeesan and K� Pingali� An abstract seman�
tics for a higher�order functional language with logic
variables� Technical Report TR �	�	���� Cornell Uni�
versity� 	��	�

��� G� Kahn� The semantics of a simple language for
parallel programming� In Proc� of the IFIP Congress
�
� pages ��	����� 	����

��� G� Lindstrom� Functional programming and the log�
ical variable� In Proc� of the ��th ACM Symposium
on Principles of Programming Languages� 	�
��

�
� S� Mantha� G� Lindstrom� and L� George� A seman�
tic framework for functional programming with con�
straints� Unpublished Technical Report�

��� R� Nikhil� K� Pingali� and Arvind� Id Nouveau� Tech�
nical Report CSG Memo ���� M�I�T� Laboratory for
Computer Science� 	�
��

�	�� Gordon D� Plotkin� A structural approach to oper�
ational semantics� Technical Report DAIMI FN�	��
Aarhus University� 	�
	�

�		� U� Reddy� Logic Programming � Functions� Rela�
tions and Equations� chapter On the relationship be�
tween logic and funtional languages� Prentice�Hall�
	�
��

�	�� V� Saraswat� M� Rinard� and P� Panangaden� Seman�
tic foundations of concurrent constraint program�
ming� In Proc� of the conference on Principles of
Programming Languages� 	��	�

�	�� M� Sato and T� Sakurai� QUTE� a functional lan�
guage based on uni�cation� In Logic Programming�
functions� relations and equations� 	�
��

�	�� D� Scott� Data types as lattices� SIAM Journal of
Computing� 	����

�	�� M� B� Smythe� Powerdomains� Journal of Computer
and System Sciences� 	�������� 	��
�

Ident� 	� � D�C�x�� �F � �� FL � � � D�C�V�x��x�� �F � �� FL �
if V�x� is de�ned

Ops� 	� � D� e� op e�� �F � �� FL � � � D�� x� op x�� �F � �
�� FL� �

where fx�� x�g � FL� FL� � FL� fx�� x�g� �� � � � ffx�g� fx�gg
D� � D � fx� � e�� x� � e�g

�� � D�m op n� �F � �� FL � � � D� r� �F � �� FL �
if r � m op n

Cond� 	� � D� cond�e�� e�� e��� �F � �� FL � � � D�� cond�x�� e�� e��� �F � ��� FL� �
where x� 	 FL� FL� � FL� fx�g� �� � � � ffx�gg� D� � D � fx� � e�g

�� � D� cond�true� e�� e��� �F � �� FL � � � D� e�� �F � �� FL �
�� � D� cond�false� e�� e��� �F � �� FL � � � D� e�� �F � �� FL �

Arrays� 	� � D� array�e�� �F � �� FL � � � D � fx � eg� array�x�� �F � ��� FL� �
where x 	 FL� FL� � FL� fxg� �� � � � ffxgg

�� � D� array�n�� �F � �� FL � � � D� �L	� ���� Ln�� �F � ��� FL� �
where L	�����Ln � FL� �� � � � ffL	g����fLngg� FL� � FL� fL	� ���Lng

�� � D� e��e��� �F � �� FL � � � D�� x��x��� �F � �
�� FL� �

where fx�� x�g � FL� FL� � FL� fx�� x�g� �� � � � ffx�g� fx�gg
D� � D � fx� � e�� x� � e�g

�� � D� �L	� ���� Ln��i�� �F � �� FL � � � D�Li� �F � �� FL �
where 	 � i � n�

Function� 	�� D� e��e��� �F � �� FL � � � D � fx� � e�� x� � e�g� x��x��� �F � �� FL� �
where fx�� x�g � FL� FL� � FL� fx�� x�g

�� � D� ��x�e��e�� �F � �� FL � � � D� y � e� in e�
�
� �F � �

�� FL� �
where y 	 FL� FL� � FL� fyg
where e�

�
� e��y�x�� �� � � � ffygg

�� � D� x � e� in e�� �F � �� FL � � � D�� e	� �F � �� FL �
D� � D � fx � e�g

Figure �� Structured Operational Semantics of Id� Expressions

Defs� 	�
� D� e� �F � �� FL ��� D�� e�� ��F � �

�� FL� �
� D � fx � eg� e�� �F � �� FL ��� D� � fx � e�g� e�� ��F � �

�� FL� �
�� � D � fx � yg� e� �F � �� FL ��� D� e� �F �U��� fx� yg�� FL �

if x� y �rst order� U��� fx� yg� is consistent�
� D � fx � yg� e� �F � �� FL �� Error

if x� y �rst order� U��� fx� yg� inconsistent�
�� � D � fx � cg� e� �F � �� FL ��� D� e� �F �U��� fx� cg�� FL �

if x �rst order� U��� fx� cg� is consistent
� D � fx � cg� e� �F � �� FL �� Error

if x �rst order� U��� fx� cg� inconsistent�
�� � D � fx � �L	� ���� Ln�g� e� �F � �� FL ��� D� e� �F �U��� fx� �L	� ���� Ln�g�� FL �

�if U��� fx� �L	� ���� Ln�g� is consistent�
� D � fx � �L	� ���� Ln�g� e� �F � �� FL �� Error �otherwise�
�� � D � fF � �x�e�g� e� �F � �� FL ��� D� e� �F � fF � �x�e�g� �� FL �

Figure �� Structured Operational Semantics of Id� De�nitions

C��x � e�� env � lcs

��
�

env v env�

hb� env�i � E ��e�� hb� env�i
env��x� � b

in env�

C��def�
 def��� env � lcs

��
�

env v env�

env� � C��def��� env�

env� � C��def��� env�

in env�

Figure �� Denotational Semantics of Id� De�nitions

E ��const�� ha� envi � lcs

�
ha� envi v hb� env�i
K�const�vb

in hb� env�i

E ��x�� ha� envi � lcs

�
ha� envi v hb� env�i
env��x� � b

in hb� env�i

E ��cond�e�� e�� e���� ha� envi � lcs

�
envv env�

hb� env�i � E ��e��� hb� env�i

in

case b of

�� ha� env�i

true � E ��e��� ha� env�i

false � E ��e��� ha� env�i

otherwise �� �� env� �

endcase

E ��e� op e��� ha� envi � lcs

����
���

ha� envi v hb� env�i
hb�� env�i � E ��e��� hb�� env�i
hb�� env�i � E ��e��� hb�� env�i
b� op b�v b

in hb� env�i

E ��e��e���� ha� envi � lcs

����
���

ha� envi v hb� env�i
�at� aarg� b� � App�at� aarg� b�
haarg � env

�i � E ��e��� haarg � env
�i

hat� env�i � E ��e��� hat� env�i

in hb� env�i

Figure �� Denotational semantics of Id� Expressions

E ��array�e��� ha� envi � lcs

��
�

ha� envi v hb� env�i
hb�� env

�i � E ��e�� hb� env�i
Array�b��v b

in hb� env�i

E ���L	 � � �Ln��� ha� envi � lcs

�
ha� envi v hb� env�i
b�i� � env��Li�
 i � 	 � � �n

in hb� env�i

E ��e��e���� ha� envi � lcs

����
���

ha� envi v hb� env�i
hb�� env�i � E ��e��� hb�� env�i
hb�� env�i � E ��e��� hb�� env�i
b��b�� � b

in hb� env�i

Figure
� Denotational Semantics of Id� Array expressions

E ���x�e�� ha� envi � if �a � ��

then h�� envi
else let env� � UpdateEnve�a��env�

in hUpdateGraphe�env���a�� env�i

UpdateEnve�hu� vi � hu�� v�i� � � env�

lcs

��
�

env�x �� u�� v env�

v�vb
hb� env�i � E ��e�� hb� env�i

in env��x �� env�x��

UpdateEnve�fg� � � � gng� � � env�

lcs

�
envvenv�

env� � UpdateEnve�gi�� i � 	 � � �n

in env�

UpdateEnve�S� �
F
fUpdateEnve�Sf � j SfvfSg

UpdateGraphe�env���hu� vi � hu�� v�i� � lcs

��
�

env��x �� u��venv�

v�vbr
hbr� env�i � E ��e�� hbr� env�i

in �hu� vi 	� henv��x�� bri�

UpdateGraphe�env���fg� � � � gngji � 	 � � �ng� �
F

ifUpdateGraph
e�env���gi� ji � 	 � � �ng

UpdateGraphe�env���S� �
F
fUpdateGraphe�Sf � j SfvfSg

Figure �� Denotational Semantics of Id� Lambda terms

