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Abstract

Starting from the working hypothesis that both physics and the corre-
sponding mathematics have to be described by means of discrete concepts
on the Planck-scale, one of the many problems one has to face in this enter-
prise is to find the discrete protoforms of the building blocks of continuum
physics and mathematics. A core concept is the notion of dimension. In
the following we develop such a notion for irregular structures like (large)
graphs and networks and derive a number of its properties. Among other
things we show its stability under a wide class of perturbations which is im-
portant if one has ’dimensional phase transitions’ in mind. Furthermore we
systematically construct graphs with almost arbitrary ’fractal dimension’
which may be of some use in the context of ’dimensional renormalization’
or statistical mechanics on irregular sets.
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1 Introduction

In two recent papers ([1],[2]) we developed a certain framework in form of a
class of ’cellular network dynamics’ which are designed to mimic the dynamics
of the physical vacuum or space-time on the Planck-scale. In doing this our
working philosophy was that both physics and the corresponding mathematics are
genuinely discrete on this primordial level. The continuum concepts of ordinary
space-time physics are then supposed to emerge from certain discrete patterns via
a kind of ’renormalization group process’ on the much coarser scale of resolution
given by the comparatively small energies of present day high energy physics. It
is one of our aims to find these discrete protoforms.

A crucial concepts in this context is a version of ’intrinsic dimension’ of
such discrete irregular networks which geometrically are graphs. This concept
should be defined in an intrinsic way, without making open or implicit recourse
to continuum concepts whatsoever or kind of an embedding dimension, as we
want to understand, among other things, what properties actually are encoded
in a notion like dimension on the most fundamental physical level. On the other
side, we want to know how the continuum concept of dimension, which is to a
large extent of an a priori mathematical viz. geometrical origin, comes into being,
starting from an intrinsic property of discrete irregular systems like e.g. general,
typically very large and almost randomly organized graphs which are supposed
to encode the ‘geometrodynamics’ of space-time on Planck scale.

In section 5 of [1] we introduced such a concept which seems suitable to us
and which characterizes to some extent the ’wiring’ of the network. At the time
of writing [1] we scanned the literature accessible to us in vain for similar ideas
and got the impression that such lines of thought had not been pursued in this
context. Some time later we were kindly informed by Thomas Filk that a similar
concept had been studied by himself and a couple of other physicists (see [3],[4],[5]
and further references given there) in an however slightly different context. (They
typically investigated the simplicial resolution of continuous manifolds and their
numerical treatment via Monte Carlo simulations).

On the other side, at least as far as we can see, this concept had not been
systematically developed and many questions of principal interest remained open.
In the following we attempt to formulate and solve a couple of problems which
naturally emerge in this context, more specifically we embark on developing a full
fledged mathematical machinery around this concept which then may be applied
to quite diverse fields of physics and mathematics.

Among other things we clarify the somewhat hidden relations to certain parts
of ’fractal geometry’ and construct graphs with almost arbitrary ’fractal dimen-

sions’ along these lines. Furthermore we show that the two at first glance almost
identical definitions of dimension we introduced in [1] are actually different on
certain ’exceptional’ sets while, on the other side, being identical on ’generic’ sets.
This is a phenomenon also well known from the various notions of dimension in
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fractal geometry.
While the first one, which we will call ’internal scaling dimension’ in the

following (it is the version which occurs under this label in e.g. [3]), appears to
be more natural from a mathematical point of view, the second one, on the other
side, is in our opinion more fundamental as far as the encoding of physical data
as e.g. the wiring of the graphs under discussion is concerned. For this reason
we call it the ’connectivity dimension’ as it reflects to some extent the way the
node states are interacting with each other over larger distances via the various
bond sequences connecting them.

Another interesting point is the structural stability of such a concept under
local and extended perturbations. We showed e.g. that if we start from a given
graph with a dimension D this value remains stable under a rather large class
of bond insertions. As a consequence one has to add bonds between increasingly
distant nodes in order to change the dimension of a graph. This is of some
relevance if one wants to invent dynamical mechanisms which are designed to
trigger dimensional phase transitions.

Presently we pursue several lines of research concerning applications in quite
diverse fields of physics and mathematics as e.g. non-commutative geometry, di-
mensional phase transitions (see also [2]), statistical mechanics and functional
analysis.

2 Graph Theoretical Definitions

In this section we give the necessary definitions to define the internal scaling
dimension of graphs. Most of the notions are well known in graph theory but
we nevertheless want to repeat them to avoid any confusion concerning the exact
definitions.

First of all we need to define an undirected simple graph. This will be our
primary object of interest.

Definition 2.1 Undirected Simple Graph. An undirected simple graph con-

sists of two countable sets N and B. We denote the elements of N as ni with

i ∈ I, I ⊆ N. The elements of B are denoted as bik, i, k ∈ I. The set B is

isomorphic to a subset of N ×N and the existence of bik implies the existence of

bki.

Remark. Many mathematicians use a slightly different notation. They denote N

(nodes) as V (vertices) and B (bonds) as E (edges).

In the following G = (N, B) will always be an undirected simple graph. We also
need the notion of the degree of a node ni ∈ N .
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Definition 2.2 Degree. The degree of a node ni ∈ N is the number of bonds

incident with it, i.e. the number of bonds which have ni at one end. We count

bik and bki only once as we interpret them as the same bond.

We assume the node degree of any node ni ∈ N of the graphs under consideration
to be finite. The next step is to define a metric structure on G. To this end we
need to define paths in G and their length.

Definition 2.3 Path. A path γ of length l in G is an ordered (l + 1) tuple of

nodes ni ∈ N , i ∈ I, I = {0, . . . , l} with the properties ni+1 6= ni and bi i+1 ∈ B.

Remark. A single node ni ∈ N is a path of length 0.

This definition encodes the obvious idea of a path in G allowing multiple transver-
sals of nodes or bonds. Jumps across non-existent bonds and stays at a single
node are not allowed. Sometimes this notion of a path is also called a bond

sequence.
Slightly different definitions are also quite common. The path often is re-

stricted to contain any bond in B at most once. Sometimes even the repetition
of nodes in a path is excluded. We will call a path with this property – that all
ni ∈ γ are pairwise different – a simple path.

The concept of paths on G now leads to a natural definition for the distance
of two nodes ni and nj ∈ N , namely the length of the shortest path connecting
ni and nj.

Definition 2.4 Metric. A metric d on G is defined by

d(ni, nj) :=

{

min{l(γ) : ni, nj ∈ γ} if such γ exist

∞ otherwise,
(1)

in which l(γ) denotes the length of γ.

That this actually defines a metric is easily established. Finally we need the
notion of neighborhoods which follows canonically from the metric.

Definition 2.5 Neighborhood. Let ni ∈ N be an arbitrary node in G. An n-

neighborhood of ni is the set Un(ni) := {nj ∈ N : d(ni, nj) ≤ n}.

Remark. The topology generated by the n-neighborhoods is the discrete topology
as should be expected from the construction and the discreteness of graphs.

We will denote the surface or boundary of the neighborhood Un(ni) as ∂Un(ni) :=
Un(ni) \ Un−1(ni), ∂U0(ni) = {ni} and the cardinality of Un(ni) and ∂Un(ni) as
|Un(ni)| and |∂Un(ni)| respectively.
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3 Dimensions of Graphs and Networks

Now we have all the tools to define the central notion of this paper, the notion
of the internal scaling dimension of G.

Definition 3.6 Internal Scaling Dimension. Let x ∈ N be an arbitrary node

of G. Consider the sequence of real numbers Dn(x) := ln |Un(x)|
ln(n)

. We say DS(x) :=

lim infn→∞ Dn(x) is the lower and DS(x) := lim supn→∞ Dn(x) the upper internal
scaling dimension of G starting from x. If DS(x) = DS(x) =: DS(x) we say G has

internal scaling dimension DS(x) starting from x. Finally, if DS(x) = DS ∀x,

we simply say G has internal scaling dimension DS.

A second notion of dimension we want to introduce is the connectivity dimension

which is based on the surfaces of neighborhoods ∂Un(ni) rather than on the whole
neighborhoods Un(ni).

Definition 3.7 Connectivity Dimension. Let x ∈ N again be an arbitrary

node of G. We set D̃n(x) := ln |∂Un(x)|
ln(n)

+ 1 and define DC(x) := lim infn→∞ D̃n(x)

as the lower and DC(x) := lim supn→∞ D̃n(x) as the upper connectivity dimen-
sion. If lower and upper dimension coincide, we say G has connectivity dimension
DC(x) := DC(x) = DC(x) starting from x. If DC(x) = DC for all x ∈ N we call

DC simply the connectivity dimension of G.

One could easily think that both notions of dimension are equivalent. This is
however not the case as one definition is stronger than the other which will be
shown in detail in 3.2.

The internal scaling dimension is rather a mathematical concept and is related
to well known dimensional concepts in fractal geometry as we will see in 4.2. The
connectivity dimension on the other hand seems to be a more physical concept
as it measures more precisely how the graph is connected and thus how nodes
can influence each other.

In the following section we want to establish the basic properties of the internal
scaling dimension of graphs.

3.1 Basic Properties of the Internal Scaling Dimension

The first lemma gives us a criterion for the uniform convergence of DS(x) or
DS(x) to some common DS or DS for all nodes x in G.

Lemma 3.8. Let x,y ∈ N be two arbitrary nodes in G with d(x, y) < ∞. Then
DS(y) = DS(x) and DS(y) = DS(x).

Proof. Let a := d(x, y) be the distance of the nodes x and y. We have

Un−a(y) ⊆ Un(x) ⊆ Un+a(y)(2)
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=⇒
ln |Un−a(y)|

ln(n)
≤

ln |Un(x)|

ln(n)
≤

ln |Un+a(y)|

ln(n)
(3)

=⇒
ln |Un−a(y)|

ln(n − a) + ln
(

n
n−a

) ≤
ln |Un(x)|

ln(n)
≤

ln |Un+a(y)|

ln(n + a) − ln
(

n+a
n

)(4)

=⇒ DS(x) = lim inf
n→∞

ln |Un(x)|

ln(n)
= lim inf

n→∞

ln |Un(y)|

ln(n)
= DS(y) .(5)

Similarly we get DS(x) = DS(y).
2

Another rather technical lemma provides us with a convenient method to
calculate the dimension of certain graphs, e.g. the self-similar or hierarchical
graphs we construct in 4.2. It shows that under one technical assumption the
convergence of a subsequence of Dn(x) is sufficient for the convergence of Dn(x)
itself.

Lemma 3.9. Let x ∈ N be an arbitrary node of G and let (|Unk
(x)|)k∈N be a sub-

sequence of (|Un(x)|)n∈N. There may exist a number 1 > c > 0 such that nk

nk+1
≥ c

holds for all k ≥ K ∈ N. Then lim infk→∞
ln |Unk

(x)|

ln(nk)
= lim infn→∞ Dn(x) = DS(x)

and similar for DS(x).

Proof. Let n ∈ N be an arbitrary natural number. We find a k ∈ N such that
nk ≤ n ≤ nk+1. As the sequence (|Un(x)|) is monotone this implies |Unk

(x)| ≤
|Un(x)| ≤ |Unk+1

(x)|. Therefore we get

ln |Unk
(x)|

ln(n)
≤

ln |Un(x)|

ln(n)
≤

ln |Unk+1
(x)|

ln(n)
(6)

=⇒
ln |Unk

(x)|

ln(nk) + ln
(

n
nk

) ≤
ln |Un(x)|

ln(n)
≤

ln |Unk+1
(x)|

ln(nk+1) + ln
(

n
nk+1

)(7)

=⇒
ln |Unk

(x)|

ln(nk) + ln(1
c
)
≤

ln |Un(x)|

ln(n)
≤

ln |Unk+1
(x)|

ln(nk+1) + ln(c)
(8)

=⇒ lim inf
n→∞

Dn(x) = lim inf
k→∞

ln |Unk
(x)|

ln(nk)
.(9)

The same proof holds for lim sup.
2

This result is well known in the context of calculation schemes for dimensions in
fractal geometry, see e.g. [6].

Naturally one also may ask how the internal scaling dimension behaves under
insertion of bonds into G. We were able to show that it is pretty much stable
under any local changes. We state this in the following lemma.
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Lemma 3.10. Let k ∈ N be a positive natural number and x ∈ N a node in
G. Insertion of bonds between arbitrary many pairs of nodes (y, z) obeying the
relation d(y, z) ≤ k does not change DS(x) or DS(x).

Proof. We denote the new graph built by insertion of new bonds into G as G′ and
accordingly the neighborhoods in G′ as U ′

n(·). Being a node in G, x is also a node
in G′. The restriction on the choice of additional bonds in G′ implies that even if
we connect every node y ∈ N with every node in Uk(y), which is the maximum
we are allowed to do, we still can’t get beyond Un(x) with less or equal ⌊n

k
⌋ steps,

U⌊n

k
⌋(x) ⊆ U ′

⌊n

k
⌋(x) ⊆ Un(x)(10)

=⇒
ln |U⌊n

k
⌋(x)|

ln(⌊n
k
⌋)

≤
ln |U ′

⌊n

k
⌋(x)|

ln(⌊n
k
⌋)

≤
ln |Un(x)|

ln(⌊n
k
⌋)

.(11)

Because ⌊n
k
⌋ ≥ n

2k
for sufficiently large n, we immediately get

ln |U⌊n

k
⌋(x)|

ln(⌊n
k
⌋)

≤
ln |U ′

⌊n

k
⌋(x)|

ln(⌊n
k
⌋)

≤
ln |Un(x)|

ln(n) − ln(2k)
(12)

=⇒ lim inf
n→∞

ln |U ′
n(x)|

ln(n)
= lim inf

n→∞

ln |Un(x)|

ln(n)
(13)

where in the last step lemma 3.9 has been used. The identical result holds for
lim sup.

2

Remark. Obviously the insertion of a finite number of additional bonds between
nodes y and z with d(y, z) < ∞ doesn’t change the internal scaling dimension
either. Therefore we can slightly generalize lemma 3.10 by changing our require-
ments to the following. Only bonds between nodes of finite distance and only
finitely many bonds between nodes of distance d(y, z) > k are inserted into G to
form G′. Then G′ still has the same internal scaling dimensions DS and DS as G.

Conclusions. We have seen that the internal scaling dimension does not de-
pend on the node from which we start our calculation and that under not too
strong conditions even the convergence of a subsequence of the relevant sequence
Dn(x) is sufficient to calculate DS and DS. Furthermore the dimension is stable
under local changes in the wiring of the graph. This is a very desirable feature for
physical reasons. Furthermore it shows that a mechanism inducing dimensional
phase transitions has to relate nodes of increasing distance, i.e. has to change
the graph non-locally. We will illustrate this fact with an example in 4.2.5.
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3.2 Relations Between Internal Scaling Dimension and

Connectivity Dimension

As already stated above the two concepts of dimension we introduced are not
equivalent. In the following lemma we show that the existence of the connectivity
dimension implies the existence of the internal scaling dimension and that they
then have the same value.

Lemma 3.11. Let x ∈ N again be an arbitrary node in G. In the case that
the limit limn→∞

ln |∂Un(x)|
ln(n)

=: DC(x) − 1 exists with DC(x) > 1, G has internal

scaling dimension DS(x) = DC(x) starting from x.

Proof. We know that DC(x) > 1 exists and have to show that this implies the

existence of limn→∞
ln |Un(x)|

ln(n)
and that the limit is DC(x). Let D := DC(x) and

ǫ > 0 be an arbitrary positive number small enough such that D − 1 − ǫ > 0.
From the convergence of ln |∂Un(x)|

ln(n)
we know that we can find N ∈ N such that

∣

∣

∣

∣

ln |∂Un(x)|

ln(n)
− D + 1

∣

∣

∣

∣

< ǫ ∀n ≥ N(14)

=⇒ − ǫ <
ln |∂Un(x)|

ln(n)
− D + 1 < ǫ(15)

=⇒ (D − 1 − ǫ) ln(n) < ln |∂Un(x)| < (D − 1 + ǫ) ln(n)(16)

=⇒ nD−1−ǫ < |∂Un(x)| < nD−1+ǫ .(17)

On the other hand we naturally have

|Un(x)| =
n

∑

j=0

|∂Uj(x)|(18)

=⇒ K(N) +

n
∑

j=N+1

jD−1−ǫ ≤ |Un(x)| ≤ K(N) +

n
∑

j=N+1

jD−1+ǫ(19)

in which K(N) =
∑N

j=0 |∂Uj(x)|. Now we can give a lower bound for the sum
on the left hand side and an upper bound for the one on the right hand side by
replacing them with integrals.

n
∑

j=N+1

jD−1−ǫ ≥

∫ n

N

jD−1−ǫdj =
jD−ǫ

D − ǫ

∣

∣

∣

∣

n

N

(20)

n
∑

j=N+1

jD−1+ǫ ≤

∫ n+1

N+1

jD−1+ǫdj =
jD+ǫ

D + ǫ

∣

∣

∣

∣

n+1

N+1

(21)
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Figure 1: Example of a graph with strange behavior of D̃n(x0) = ln |∂Un(x0)|
ln(n)

With these bounds we get

ln
(

K(N) + nD−ǫ−ND−ǫ

D−ǫ

)

≤ ln |Un| ≤ ln
(

K(N) + (n+1)D+ǫ−(N+1)D+ǫ

D+ǫ

)

(22)

=⇒ ln(nD−ǫ) + ln
(

K(N)
nD−ǫ + 1

D−ǫ

(

1 − ND−ǫ

nD−ǫ

))

≤ ln |Un|

(23)

≤ ln
(

(n + 1)D+ǫ
)

+ ln
(

K(N)
(n+1)D+ǫ + 1

D+ǫ

(

1 − (N+1)D+ǫ

(n+1)D+ǫ

))

Because the arguments of the second logarithm on each side are uniformly boun-
ded for any n ∈ N and limn→∞

ln(n+1)
ln(n)

= 1, we can find an N ′ ∈ N, N ′ ≥ N such

that ∀n ≥ N ′

D − ǫ +
ln

(

K(N)
nD−ǫ −

1
D−ǫ

(

1 − ND−ǫ

nD−ǫ

))

ln(n)
≥ D − 2ǫ and(24)

(D + ǫ)
ln(n + 1)

ln(n)
+

ln
(

K(N)
(n+1)D+ǫ + 1

D+ǫ

(

1 − (N+1)D+ǫ

(n+1)D+ǫ

))

ln(n)
≤ D + 2ǫ .(25)

From this we immediately find

∣

∣

∣

∣

ln |Un|

ln(n)
− D

∣

∣

∣

∣

≤ 2ǫ ∀n ≥ N ′ .(26)

2

Inversely, the existence of the internal scaling dimension does not imply the ex-
istence of the connectivity dimension. We illustrate this fact with the following
example.
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Example 3.1. We will construct a graph G with uniformly bounded node degree,
degree of x ∈ N less or equal d ≥ 3, which has internal scaling dimension DS =
D > 1 but the connectivity dimension limn→∞

ln |∂Un(x0)|
ln(n)

does not exist and even

lim supn→∞
ln |∂Un(x0)|

ln(n)
= D 6= D − 1, i.e. DC(x0) = DS(x0) + 1. To this end we

construct a “linear graph” in the fashion depicted in figure 1. In the figure d is
equal to 3. The main idea of the construction is to let |∂Un(x0)| oscillate so much
that limn→∞ D̃n(x0) does not exist any more but we still can have convergence
of Dn(x0) and thus the internal scaling dimension exists.

We choose the numbers nk such that nk+1 = c nk with some c > 0. For
technical reasons we choose c > d1/D. With this choice we already fulfill the
prerequisite to use lemma 3.9.

Let us denote the “leftmost” node as x0. All distances will refer to x0 as
the origin. The construction is determined by the following requirements. From
distance nk to nk + bk the graph is a simple string of nodes and from distance
nk + bk + 1 to nk+1 a complete1 (d − 1)-nary2 tree graph. bk is chosen to be
bk = max{b ∈ {0, . . . , nk+1 − nk} : |Unk+1

| ≥ (nk+1)
D}. This means that we start

the (d − 1)-nary tree as late as possible to still be sure to surpass our aim of
|Unk+1

| = (nk+1)
D. It is easily established that nk+1 − nk gets large enough for

nk ≥ N with some N ∈ N to contain the necessary (d−1)-nary tree. A necessary
and sufficient condition for this is

(d − 1)nk+1−nk ≥ nD
k+1 − nD

k(27)

⇐⇒ (d − 1)cnk−nk ≥ cDnD
k − nD

k(28)

⇐⇒ (d − 1)nk(c−1) ≥ (cD − 1)nD
k(29)

which certainly holds for any nk ≥ N with sufficiently large N ∈ N because the
exponential function grows faster than any polynomial. The part of the graph
where nk+1 − nk might be to small for the above construction, we choose to be
of arbitrary form with |Unk

| = ⌊nD
k ⌋.

Now we calculate the internal scaling dimension of the constructed graph. We
know ∀nk ≥ N

ln |Unk
(x0)|

ln(nk)
=

ln(nD
k + ∆k)

ln(nk)
,(30)

where ∆k is the additional number of nodes we get because of the usage of
complete tree graphs. From the construction principle we know

∆k ≤ |∂Unk
(x0)| ≤ (d − 1)|∂Unk−1(x0)| ≤ (d − 1)|Unk−1(x0)| ≤ (d − 1)nD

k ,(31)

1In a complete tree graph every node has maximal degree.
2In a (d− 1)-nary tree graph every node has (d− 1) or less children such that the degree of

each node is bounded by d.
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which is a rather crude estimate. Nonetheless we get

ln(nD
k )

ln(nk)
≤

ln |Unk
(x0)|

ln(nk)
≤

ln(dnD
k )

ln(nk)
(32)

=⇒ lim
k→∞

ln |Unk
(x0)|

ln(nk)
= D .(33)

Using lemma 3.9 we get

DS(x0) = lim
n→∞

ln |Un(x0)|

ln(n)
= D .(34)

Finally we apply lemma 3.8 and get the dimension D starting from any node.
On the other hand we have to consider lim inf and lim sup of the sequence

ln |∂Un(x0)|
ln(n)

. The lim inf is trivial because |∂Unk+1(x0)| = 1 which implies that

lim infn→∞
ln |∂Un(x0)|

ln(n)
= 0. As far as the lim sup is concerned we know

|Unk+1
(x0)| − |Unk

(x0)| = bk +

ak
∑

j=0

(d − 1)j = bk +
(d − 1)ak+1 − 1

d − 2
(35)

with ak = nk+1 − (nk + bk). On the other hand

|Unk+1
(x0)| − |Unk

(x0)| = nD
k+1 + ∆k+1 − (nD

k + ∆k) .(36)

Using (35), (36), ∆k ≤ (d−1)nD
k , bk ≤ nk+1−nk, c > d1/D and |∂Unk+1

|(x0) =
(d − 1)ak , we get after a short calculation that

D +
ln

(

1
d−1

− d−2
d−1

(1 − 1
c
)n1−D

k+1

)

ln(nk+1)
≤

ln |∂Unk+1
(x0)|

ln(nk+1)
(37)

=⇒ lim sup
k→∞

ln |∂Un(x0)|

ln(n)
≥ D .(38)

But we always have

ln |∂Un(x0)|

ln(n)
≤

ln |Un(x0)|

ln(n)
(39)

=⇒ lim sup
n→∞

ln |∂Un(x0)|

ln(n)
≤ D .(40)

Taking this together with (38) we finally get

lim sup
n→∞

ln |∂Un(x0)|

ln(n)
= D .(41)

This example shows that we can’t get much information about the behavior of
|∂Un(x0)| from the existence and value of the internal scaling dimension DS of G.

The only always valid assertion is lim supn→∞
ln |∂Un(x)|

ln(n)
≤ DS(x) ∀x ∈ N .
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Figure 2: Example of a 5
3

dimensional conical graph

4 Construction of Graphs

In the following we want to show how to construct graphs of arbitrary real internal
scaling dimension. We also want to investigate the connections between the
internal scaling dimension of graphs and the box counting dimension of fractal
sets. As will been seen below there is a strong relationship between self similar
sets and what we also want to call self similar graphs with non-integer internal
scaling dimension.

4.1 Conical Graphs with Arbitrary Dimension

For the sake of simplicity we concentrate our discussion on graphs with dimension
1 ≤ D ≤ 2. Graphs with higher dimension are easily constructed using a nearly
identical scheme.

Let 1 ≤ D ≤ 2 be an arbitrary real number. Now we construct the graph like
in figure 2. On level m we use a width of ⌊(2m−1)D−1⌋ boxes. The construction

12



is continued “downwards” to infinity. To calculate the dimension we observe that
starting from x0 we reach level m after n = 2m − 1 steps. Thus we get with
nk := 2k − 1

|∂Unk
(x0)| = ⌊nD−1

k ⌋ =⇒ lim
k→∞

ln |∂Unk
(x0)|

ln(nk)
= D − 1 .(42)

Using lemmas 3.11, 3.8 and 3.9 we see that this graph has internal scaling di-
mension DS = D. If we close the construction horizontally, i.e. introduce bonds
between the leftmost and the rightmost nodes on each level we even can achieve
a completely homogeneous node degree d = 3.

Remark. 1. The constructed graph has privileged nodes, the one we denoted
as node x0 and its counterpart on the same level.

2. Locally the constructed conical graph is completely isomorphic to a two-
dimensional lattice. The non-integer dimension is only implemented as a
global property of the graph.

4.2 Self-Similar Graphs

It is well known in graph theory that it is notoriously difficult to construct large
graphs with prescribed properties. It also proved quite difficult to construct
graphs with a prescribed (internal scaling) dimension DS = D which don’t exhibit
the disadvantages of the conical graphs described above. The main idea which
solves the problem is to use the well known theory of self similar sets or fractals
and their dimension theory. In the following we want to show how this works
and that we indeed can construct adjoint graphs to self similar sets which have
internal scaling dimension equal to the box counting dimension of the self similar
sets.

Given a strictly self similar set in R
p we canonically construct an adjoint graph

which also will be called self-similar. The construction principle is based on an
algorithm to compute the box counting dimension of a self-similar set. We will
illustrate our proceedings with one main example. We construct a self-similar set
generated with the open unit square in R

2 with lower left corner at the origin
and the similarity transforms

S1 : x 7−→
1

3
x +

(

0

0

)

, S2 : x 7−→
1

3
x +

(

0
2
3

)

, S3 : x 7−→
1

3
x +

( 1
3
1
3

)

(43)

S4 : x 7−→
1

3
x +

(

2
3

0

)

, S5 : x 7−→
1

3
x +

(2
3
2
3

)

.

(44)
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Figure 3: Construction steps of the example self-similar set

This set is sometimes called Maltese Cross, cf. [7]. The first construction steps
are shown in figure 3. For details concerning self-similar sets and dimensions of
fractals see [6].

4.2.1 Construction Based on Self-Similar Sets

Let M be a strictly self-similar set with similarity transforms Si, i ∈ I, I ⊂ N

and |I| < ∞. The contraction factors ci of Si may all be equal, ci = c ∈ (0, 1).
Now we cover M with cubic lattices Ln ⊂ R

p with closed cubes of edge length
cn, n ∈ N, and replace every cube which has non-void intersection with M by a
node. Nodes will be connected iff the corresponding cubes in the covering cubic
lattices have a non-void intersection, i.e. have a common corner or edge.

By this construction we get a finite graph Gn for each n ∈ N. The degree of
these Gn is uniformly bounded because an n-dimensional cube can only touch a
finite number of neighbor cubes in the cubic lattice. The graph we are interested
in is G∞, the graph we get through infinite continuation of our construction. The
first steps of this construction scheme for our example are shown in figure 4.

Remark. 1. We will see later on, that no problems arise from the infinite con-
tinuation of the construction steps.

2. The self-similarity of M transfers to G in the sense that we can also define an
equivalent of the similarity transforms of the self-similar set M . Details will
become clear when we give a self-contained algorithm for the construction
of self-similar graphs.
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Figure 4: Construction of graphs from self-similar sets

3. Connected self-similar sets produce connected self-similar graphs. The in-
verse is not true in general as our example shows. Here G is connected but
the self similar set we started with is not.

4.2.2 Self-Contained Construction Algorithm

We want to illustrate two different views of a self-contained construction algo-
rithm for self-similar or hierarchical graphs.

1. Construction by insertion:

(a) We start with a single node, G0 = ({n0}, ∅).

(b) G1 is the so-called generator, some finite graph. We denote the number
of nodes in G1 as Ng.

(c) We construct Gn+1 from Gn by replacing every node in Gn by the gener-
ator G1 and interpret the original bonds in Gn as bonds between some
“marginal” nodes of the different copies of G1. In figure 5 we have
drawn the first construction steps of our example.

2. Construction by “copy and paste”:

(a) and (b) are identical to 1.

(c) We construct Gn+1 from Gn by copying Gn Ng times and pasting these
copies together in the same fashion as the nodes of the generator are

15



3

2

1
0

Figure 5: Self-contained construction

arranged. The construction steps can’t be distinguished from those in
figure 5.

Remark. 1. It becomes clear when looking at examples that the above con-
struction algorithms are equivalent.

2. The construction is – of course – not unique. The result strongly depends
on the choice of the nodes in Gn+1 which carry the bonds of Gn in the
first construction or G1 in the second one respectively. In our example all
“marginal” nodes of the generator are equivalent because of the symmetry
of the generator and therefore the construction is unique.

3. Seen from the viewpoint of the second construction it becomes clear that the
local neighborhood of any node doesn’t change in the course of the further
construction. Therefore we can investigate any property of G in some GN

with sufficiently large N . Thus the infinite continuation of construction
steps needn’t worry us at all.

4. The first construction scheme provides us with the analogon of the simi-
larity transforms of the self-similar set. These transforms correspond to
the mapping of G on G̃ where G̃ is formed from G like some Gn+1 from Gn.
Clearly G is invariant under this mapping.
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As we can see from our example, all three construction algorithms, the self-
contained ones as well as the one based on a self-similar set, are equivalent pro-
vided the self-similar set and the choice of the generator match. Seen in this light
we can use all the construction principles simultaneously in our arguments.

4.2.3 Dimension of Self-Similar Graphs

Now we calculate the dimension of the graphs we get by the above construction
using some self-similar set M . For the sake of simplicity we assume that G1

has a central node x0 in the sense that all “marginal” nodes which carry the
“outer” bonds have all the same distance r to this node. We further assume
that 1

c
(c the contraction parameter) is a natural number which is true in most

of the well known examples of self-similar sets and finally that the self-similar
set produces a connected adjoint graph. Then it is easy to see that starting
from node x0 we can exactly reach all nodes of construction step k + 1 after
nk+1 = r + 2r nk + nk = (2r + 1) nk + r steps in the graph, with - of course -
n0 = 0. Thus |Unk

(x0)| is equal to the number of nodes in construction step k,
i.e. |Unk

(x0)| = Nδk
= Nck.3 Explicitly we get for nk

nk =

k−1
∑

j=0

(2r + 1)j r = r
(2r + 1)k − 1

2r
∀k ≥ 1(45)

Now let us relate r to the contraction parameter c of the self-similar set. We
assumed that the graph constructed from the self-similar set is connected. This
implies that there are 1

c
nodes on the “diagonal” of the generator, i.e. 2r+1 = 1

c
.

Now we have for the internal scaling dimension of G

lim
k→∞

Dnk
(x0) = lim

k→∞

ln(Nck)

ln
(

r
(2r+1)k−1

2r

)(46)

= lim
k→∞

ln(Nck)

ln((2r + 1)k) + ln
(

1−(2r+1)−k

2r

)(47)

= lim
k→∞

ln(Nck)

− ln(ck) + ln
(

1−(2r+1)−k

2r

) = dimB(M)(48)

in which dimB(M) is the box counting dimension of M . Of course lemmas 3.8
and 3.9 provide us with the knowledge that this is the dimension of G starting
from any node.

Thus we established equality of the box counting dimension of self-similar
sets and the internal scaling dimension of the adjoint self-similar graphs under
the assumptions stated above.

3Nδk
is the number of cubes of edge length δk intersecting M, see the calculation of the box

counting dimension in e.g. [6].
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Figure 6: Some generators

Remark. The assumed existence of a central node x0 is not essential for the equal-
ity of the dimensions of the fractal and the graph. The equality still holds in a
more general context, e.g. for fractals like the Sirpinski Triangle. It is difficult
though to give a general proof for arbitrary self-similar sets.

4.2.4 Approximation of a Two Dimensional Lattice

In this paragraph we want to show how it now becomes possible to do a di-
mensional approximation of a n-dimensional cubic lattice. Again, for the sake
of simplicity, we discuss the idea only with a two-dimensional lattice but the
generalization to n dimensions is obvious.

We introduce generators as shown in figure 6. With these we get graphs of
dimensions

D
(l)
S =

ln(2l2 + 2l + 1)

ln(2l + 1)
(49)

in which l is the number which labels the generators in figure 6. Obviously we
have

lim
l→∞

D
(l)
S = lim

l→∞

ln(2l2 + 2l + 1)

ln(2l + 1)
= lim

l→∞

2 ln(l) + ln(2 + 2
l
+ 1

l2
)

ln(l) + ln(2 + 1
l
)

= 2 .(50)

In this sense we have a dimensional approximation of a two-dimensional lattice as
alleged above. This might have some relevance in connection with the dimensional
regularization used in many renormalization approaches to quantum field theory.

Remark. The generators above correspond to fractal sets known as “sponges”,
see e.g. [7]. We can construct such “sponges” for any dimension n, we just need
to modify the generators appropriately.

4.2.5 How to Change the Dimension of a Graph

To enlarge the dimension of a graph it is necessary to add either bonds or nodes to
the graph. In the former case we showed that adding only bonds between nodes
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Figure 7: Deforming a one-dimensional graph into a two-dimensional one

with original distance less than some k ∈ N does not change the dimension. We
want to illustrate this with an example. Let us try to get a two-dimensional
lattice starting from an one-dimensional one. The procedure is shown in figure
7. The dotted bonds are those we added. As is easily seen, the former distance
between the newly connected nodes grows unboundedly with n, the number of
the nodes in the original graph.

If we choose to add nodes instead, it is equivalent to adding bonds to new
nodes which formerly had infinite distance to the nodes of the original graph. This
also illustrates the general result because adding finitely many nodes certainly
doesn’t change the dimension.
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