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1 Abstract

The COCOMO II research effort started in 1994 with the aim of updating software cost estimation models,
such as the 1981 COnstructive COst MOdel and its 1987 Ada update. Both the earlier models experienced
difficulties in estimating software projects of the 90s due to challenges such as non-sequential and rapid-
development process models; reuse-driven approaches involving commercial-off-the-shelf (COTS)
packages, reengineering, applications composition, and application generation capabilities; object-oriented
approaches supported by distributed middleware; software process maturity effects and process-driven
quality estimation. The COCOMO II research effort aims at alleviating these problems and is concentrated
on developing a model well-suited for the 1990s and then annually updating it for the forthcoming years.

The initial definition of the COCOMO II model and its rationale are described in [Boehm95]. The model
uses Source Lines of Code and/or Function Points for the sizing parameter, adjusted for reuse and breakage;
a set of 17 multiplicative effort multipliers and a set of 5 exponential scale factors.  The first calibration was
based on a dataset of 83 actual projects collected from Commercial, Aerospace, Government and FFRDC
organizations using a 10% weighted average multiple regression approach. It was published in 1997 and
became popular as COCOMO II.1997 [Clark98]. Since then, the COCOMO II database has grown to 161
datapoints. This paper focuses on the Bayesian approach used to calibrate the 1998 version of the model to
161 datapoints. It compares and contrasts the two successive versions, i.e. the 1997 and 1998 calibrations;
and concludes that the Bayesian approach used in the 1998 calibration is better and more robust than the
multiple regression approach used in the 1997 calibration.

Bayesian analysis is a mode of inductive reasoning that has been used in many scientific disciplines. A
distinctive feature of the Bayesian approach is that it permits the investigator to use both sample (data) and
prior (expert-judgement) information in a logically consistent manner in making inferences. This is done by
using Bayes’ theorem to produce a ‘post-data’ or posterior distribution for the model parameters. Using
Bayes’ theorem, prior (or initial) values are transformed to post-data views. This transformation can be
viewed as a learning process. The posterior distribution is determined by the variances of the prior and
sample information. If the variance of the prior information is smaller than the variance of the sampling
information, then a higher weight is assigned to the prior information. On the other hand, if the variance of
the sample information is smaller than the variance of the prior information, then a higher weight is
assigned to the sample information causing the posterior estimate to be closer to the sample information.

We note that the predictive performance of the Bayesian approach (i.e. COCOMO II.1998) is significantly
better than that of the multiple regression approach (i.e. COCOMO II.1997). COCOMO II.1998 gives
predictions that are within 30% of the actuals 71% of the time where as COCOMO II.1997 gives
predictions within 30% of the actuals only 52% of the time.

Although this paper gives a synopsis of the COCOMO II model structure, the reader is urged to read
[Boehm95] to attain a better understanding of COCOMO II and the differences from its predecessors.
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2 Calibration Techniques of Successive Versions of COCOMO II

This section discusses the two statistical approaches used to calibrate the successive versions of COCOMO
II, namely the ’Multiple Regression approach and the Bayesian approach.

Multiple Regression Approach
Multiple Regression expresses the response (e.g. Person Months) as a linear function of k predictors (e.g.
Source Lines of Code, etc.). This linear function is estimated from the data using the ordinary least squares
approach discussed in numerous books such as [Judge93, Weisberg85]. A multiple regression model may
be written as

y x xt t k tk t= + + + +β β β ε0 1 1 ....                    Eq. 1

where xt1 … xtk are the values of the predictor (or regressor) variables for the tth observation,
β 0  . . .  β κ  are the coefficients to be estimated, ε t is the usual error term, and yt is the response
variable for the tth observation.

The COCOMO II Post Architecture model has the following form
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where, A = Multiplicative Constant
Size = Size of the software project measured in terms of KSLOC (thousands of
Source Lines of Code [Park92], Function Points [IFPUG94] or Object Points
[Banker92])
SF = Scale Factor
EM = Effort Multiplier [refer to Boehm81, Boehm95 for further explanation of
COCOMO ’81 and COCOMO II respectively]

The COCOMO II model equation, can be linearized by taking logarithms on both sides of the equation as
shown:
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The 1997 calibration used a dataset consisting of 83 completed projects [Clark98]. The regression estimated
the β coefficients associated with the 5 scale factors and 17 effort multipliers; with some of the estimates
being counter intuitive.

As an example, lets consider the ‘Develop for Reuse’ (RUSE) effort multiplier. This multiplicative
parameter captures the additional effort required to develop components intended for reuse on current or
future projects. As shown in table 1a, if the RUSE rating is Extra High (XH), i.e. developing for reuse
across multiple product lines, it will cause an increase in effort by a factor of 1.56. On the other hand, if the
RUSE rating is Low (L), i.e. developing with no consideration of future reuse, it will cause effort to
decrease by a factor of 0.89. This rationale is consistent with the results of twelve published studies of the
relative cost of developing for reuse compiled in [Poulin97]. But, the regression results produce a negative
coefficient for the β coefficient associated with RUSE. This negative coefficient results in the counter
intuitive rating scale shown in table 1b, i.e. an XH rating for RUSE causes a decrease in effort and a L
rating causes an increase in effort. Note the opposite trends followed in tables 1a and 1b.

Table 1a: RUSE – Expert-determined a-priori rating scale; consistent with 12 published studies
Develop for Reuse (RUSE) Low (L) Nominal (N) High (H) Very High (VH) Extra High

(XH)
Definition None Across

project
Across

program
Across product

line
Across multiple

product lines
1997 A-priori Values 0.89 1.00 1.16 1.34 1.56
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Table 1b: RUSE – Data-determined rating scale; contradicting 12 published studies
Develop for Reuse (RUSE) Low (L) Nominal (N) High (H) Very High (VH) Extra High

(XH)
Definition None Across

project
Across

program
Across product

line
Across multiple

product lines
1997 Data-Determined

Values
1.05 1.00 0.94 0.88 0.82

A possible explanation [discussed in a study by Mullet76 on "Why regression coefficients have the wrong
sign"] for this contradiction may be the distribution of the data used to calibrate RUSE. Unfortunately, the
data collection effort resulted in several responses such as, "I don’t know" or "It does not apply", being
recorded as ’Nominal’ (since a rating of ’Nominal’ on a multiplicative cost driver is always coded as 1.0
causing it to have no impact on effort).  A reason for the lack of clarity of RUSE is that RUSE is a relatively
new cost factor and the respondents did not have enough information to report its rating accurately during
the data collection process.  Hence, the data does not exhibit enough dispersion along the entire range of
possible values for RUSE. Note (in figure 1) that a little over 50 of the 83 datapoints have RUSE = Nominal
and we had no observations with RUSE = XH.

Figure 1: Distribution of RUSE

XHVHHNL

50

40

30

20

10

0

Other reasons for the counter intuitive results include the violation of some of the restrictions imposed by
multiple regression [Briand92, Chulani98]:
(i) The number of datapoints should be large relative to the number of model parameters (i.e. there are
many degrees of freedom). Unfortunately, collecting data has and continues to be one of the biggest
challenges in the software estimation field. This is caused primarily by immature processes and
management reluctance to release cost-related data.
(ii) There are no outliers. Extreme cases frequently occur in software engineering data because there is lack
of precision in the data collection process.
(iii) The predictor variables (cost drivers and scale factors) are not highly correlated. Unfortunately,
because cost data is historically rather than experimentally collected, correlations among the predictor
variables are unavoidable.

The above restrictions are violated to some extent by the COCOMO II dataset. To resolve some of the
counter intuitive results produced by the regression analysis (e.g. the negative coefficient for RUSE as
explained above), we used a weighted average of the expert-judgement results and the regression results,
with only 10% of the weight going to the regression results. We selected the 10% weighting factor because
models with 40% and 25% weighting factors produced less accurate predictions. This pragmatic calibrating
procedure moved the model parameters in the direction suggested by the sample data but retained the
rationale contained within the apriori values. An example of the 10% application using the RUSE effort
multiplier is given in figure 2. As shown in the graph, the trends followed by the a-priori and the data-
determined curves are opposite. The data-determined curve has a negative slope and as shown above in
table 1, it violates expert opinion, whose curve has a positive slope.
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Figure 2: Example of the 10% weighted average approach: RUSE Rating Scale

The resulting calibration of the COCOMO II model using the 1997 dataset of 83 projects produced
estimates within 30% of the actuals 52% of the time for effort. The prediction accuracy improved to 64%
when the data was stratified into sets based on the source of the data. The constant, A, of the COCOMO II
equation was recalibrated for each of these sets resulting in an improvement in prediction accuracy results.

Table 2: Prediction Accuracy of COCOMO II.1997
COCOMO II.1997 Before Stratification by Organization After Stratification by Organization

PRED(.20) 46% 49%
PRED(.25) 49% 55%
PRED(.30) 52% 64%

While the 10% weighted average procedure produced a workable initial model, it is desirable to have a
more formal framework for combining expert judgement and sample information. A Bayesian analysis with
an informative prior provides such a framework.

Bayesian Approach: Basic Framework - Terminology and Theory

The Bayesian approach provides a formal process by which a-priori expert-judgement can be combined
with sampling information (data) to produce a robust a-posteriori model. Using Bayes’ theorem, we can
combine our two information sources as follows:
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where ß is the vector of parameters in which we are interested and Y is the vector of sample observations
from the joint density function f Y( | )β . In equation 4,f Y( | )β is the posterior density function

for ß summarizing all the information about ß, f Y( | )β is the sample information and is algebraically

equivalent to the likelihood function for ß, andf ( )β  is the prior information summarizing the expert-

judgement information about ß.  Equation 4 can be rewritten as

f Y l Y f( | ) ( | ) ( )β β β∝            Eq. 5

In words, equation 5 means
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In the Bayesian analysis context, the “prior” probabilities are the simple “unconditional” probabilities to the
sample information; while the “posterior” probabilities are the “conditional” probabilities given sample and
prior information.

The Bayesian approach makes use of prior information that is not part of the sample data by providing an
optimal combination of the two sources of information. As described in many books on Bayesian analysis
[Leamer78, Box73], the posterior mean, b**, and variance, Var(b**), are defined as
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   Eq. 6

where X is the matrix of predictor variables, s is the variance of the residual for the sample data; and H*
and b* are the precision (inverse of variance) and mean of the prior information respectively.

From equation 6, it is clear that in order to determine the Bayesian posterior mean and variance, we need to
determine the mean and precision of the prior information and the sampling information. The next two
subsections describe the approach taken to determine the prior and sampling information, followed by a
subsection on the Bayesian a-posteriori model.

Bayesian Approach: Prior Information

To determine the prior information for the coefficients (i.e. b* and H*), one of the authors conducted a
Delphi exercise [Helmer66]. Eight experts from the field of software estimation were asked to
independently provide their estimate of the numeric values associated with each COCOMO II cost driver.
The author summarized the results of the first round and distributed them back to the participants to get
further consensus. Each of the participants got a second opportunity to independently refine his/her
response based on the responses of the rest of the participants in round 1. The a-priori mean and variance
for each of the 22 parameters were computed from the round 2 results.

Table 3 provides the a-priori set of values for an example effort multiplier, Required Software Reliability,
RELY. This multiplicative parameter is the measure of the extent to which the software should perform its
intended functions satisfactorily over its execution time. If the effect of a failure is simply slight
inconvenience, then the RELY rating is set to Very Low (VL) resulting in a decrease in effort by a factor of
0.75. On the other hand, if the effect of a software failure can be the loss of human life, then the
corresponding RELY rating is set to Very High (VH) resulting in an increase in effort by a factor of 1.41.
The resulting range of productivity for RELY is 1.91 where a change in the rating from VL to VH will
cause an increase in effort by a factor of 1.91.

Table 3: COCOMO II.1998 “A-Priori” Rating Scale for Required Software Reliability (RELY)
Required Software
Reliability (RELY)

Productivity
Range

Very Low Low Nominal High Very High

Definition Highest Rating/

Lowest Rating

Slight
inconvenience

Low, easily
recoverable

losses

Moderate,
easily

recoverable
losses

High
financia

l loss

Risk to
human life

1998 A-priori Values 1.41/0.74 = 1.91 0.74 0.88 1.0 1.16 1.41

Similarly the a-priori rating scale for each of the COCOMO II parameters was determined by the outcome
of the 2-round Delphi.
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Bayesian Approach: Sample Information

The sampling information is the result of a data collection activity initiated in September 1994, soon after
the initial publication of the COCOMO II description [Boehm95]. Affiliates of the Center for Software
Engineering at the University of Southern California provided most of the data. These organizations
represent the Commercial, Aerospace, and FFRDC (Federally Funded Research and Development Center)
sectors of software development.

Data of completed software projects is recorded on a data collection form that asks between 33 and 59
questions depending on the degree of source code reuse [USC-CSE94]. A question asked very frequently is
the definition of software size, i.e., what defines a line of source code? Appendix B in the Model Definition
Manual [USC-CSE97] defines a logical line of code using the framework described in [Park92]. In spite of
the definitions, the data collected to date exhibits local variations caused by differing interpretations of the
counting rules. These variations result in local calibration producing better estimates. The local calibration
results are discussed in the following subsection (see table 4).

The data collected includes the actual size in KSLOC (thousands of Source Lines of Code adjusted for
breakage and reuse) which is a predictor variable; and the actual effort in PM (Person Months; 1 PM = 152
hours), which is the response variable. The database has grown from 83 datapoints in 1997 to 161
datapoints in 1998.

The distributions of effort and size for the 1998 database of 161 datapoints are as shown in figure 3. It was
important to check the distributions to ensure that the log transformations (taken to go from eq. 2 to eq. 3)
are indeed valid and they yield the normality essential for multiple regression.

Figure 3: Distribution of Effort and Size: 1998 dataset of 161 observations

As can be noted, both the histograms are positively skewed with the bulk of the projects in the database
with effort less than 500 PM and size less than 150 KSLOC. Since the multiple regression approach based
on least squares estimation assumes that the sample is from a multivariate normal population, the positively
skewed histograms indicate the need for a transformation. As depicted in figure 4, log transformations
achieve the desired normality in the data. This is consistent with the transformations we took to go from eq.
2 to eq. 3.

Figure 4: Distribution of log transformed Effort and Size: 1998 dataset of 161 observations
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The regression analysis done in RCode (statistical software developed at University of Minnesota,
[Cook94]) on the log transformed COCOMO II parameters using a dataset of 161 datapoints yield the
following results:

Data set = COCOMOII.1998
Response      = log[PM]
Coefficient Estimates
Label        Estimate        Std. Error    t-value
Constant_A  0.961552        0.103346        9.304
log[SIZE]    0.921827        0.0460578      20.015
PMAT*log[SIZE]   0.684836        0.481078        1.424
PREC*log[SIZE] 1.10203         0.373961        2.947
TEAM*log[SIZE]    0.323318        0.497475        0.650
FLEX*log[SIZE]    0.354658        0.686944        0.516
RESL*log[SIZE]   1.32890         0.637678        2.084
log[PCAP]    1.20332         0.307956        3.907
log[RELY]    0.641228        0.246435        2.602
log[CPLX]    1.03515         0.232735        4.448
log[TIME]    1.58101         0.385646        4.100
log[STOR]    0.784218        0.352459        2.225
log[ACAP]    0.926205        0.272413        3.400
log[PEXP]    0.755345        0.356509        2.119
log[LTEX]    0.171569        0.416269        0.412
log[DATA]    0.783232        0.218376        3.587
log[RUSE]        -0.339964        0.286225       -1.188
log[DOCU]   2.05772         0.622163        3.307
log[PVOL]    0.867162        0.227311        3.815
log[AEXP]    0.137859        0.330482        0.417
log[PCON]    0.488392        0.322021        1.517
log[TOOL]    0.551063        0.221514        2.488
log[SITE]    0.674702        0.498431        1.354
log[SCED]    1.11858         0.275329        4.063

The above results provide the estimates for the β coefficients associated with each of the predictor variables
(see eq. 3). The t-value (ratio between the estimate and corresponding standard error; where standard error
is the square root of the variance) may be interpreted as the signal-to-noise ratio associated with the
corresponding predictor variables. Hence, the higher the t-value, the stronger the signal (i.e. statistical
significance) being sent by the predictor variable.

While the regression produced intuitively reasonable estimates for most of the predictor variables; the
negative coefficient estimate for RUSE (as discussed earlier) and the magnitudes for the coefficients on
AEXP (Applications Experience), LTEX (Language and Tool Experience), FLEX (Development
Flexibilit), and TEAM (Team Cohesion), violate our prior opinion about the impact of these parameters on
Effort (i.e. PM).  The quality of the data probably explains some of the conflicts between the prior
information and sample data.

Bayesian Approach: Combining Prior and Sampling Information

As a means of resolving the above conflicts, we will now use the Bayesian paradigm as a means of formally
combining prior expert judgment with our sample data.

Equation 6 reveals that if the precision of the a-priori information (H*) is bigger (or the variance of the a-
priori information is smaller) than the precision (or the variance) of the sampling information (1 2s X X’ ),

the posterior values will be closer to the a-priori values.  This situation can arise when the gathered data is
noisy as depicted in figure 5 for an example cost factor, Language and Tool Experience. Figure 5 illustrates
that the degree-of-belief in the prior information is higher than the degree-of-belief in the sample data. As a
consequence, a stronger weight is assigned to the prior information causing the posterior mean to be closer
to the prior mean. On the other hand (not illustrated), if the precision of the sampling information
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(1 2s X X’ ) is larger than the precision of the prior information (H*), then a higher weight is assigned to the

sampling information causing the posterior mean to be closer to the mean of the sampling data. The
resulting posterior precision will always be higher than the a-priori precision or the sample data precision.

Figure 5: A-Posteriori Bayesian Update in the Presence of Noisy Data (Language and Tool
Experience, LTEX)
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The complete Bayesian analysis on COCOMO II yields the Productivity Ranges (ratio between the least
productive parameter rating, i.e. the highest rating, and the most productive parameter rating, i.e. the lowest
rating) illustrated in figure 6. Figure 6 gives an overall perspective of the relative Software Productivity
Ranges (PRs) provided by the COCOMO II parameters. The PRs provide insight on identifying the high
payoff areas to focus on in a software productivity improvement activity. For example, CPLX (Product
Complexity) is the highest payoff parameter and FLEX (Development Flexibility) is the lowest payoff
parameter in the Bayesian Calibration of the COCOMO II model.

                 Figure 6: Bayesian A-Posteriori Productivity Ranges
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The resulting COCOMO II.1998 model calibrated to 161 datapoints produces estimates within 30% of the
actuals 71% of the time for effort. If the model’s multiplicative coefficient is calibrated to each of the major
sources of project data, the resulting model produces estimates within 30% of the actuals 76% of the time. It
is therefore recommended that organizations using the model calibrate it using their own data to increase
model accuracy and produce a local optimum estimate for similar type projects. From table 4 it is clear that
the prediction accuracy of the COCOMO II.1998 model is better than the prediction accuracy of the
COCOMO II.1997 model.

Table 4: Prediction Accuracies of COCOMO II.1997 and COCOMO II.1998
COCOMO II Prediction Accuracy Before Stratification After Stratification

PRED(.20) 46% 49%

1997 PRED(.25) 49% 55%

PRED(.30) 52% 64%

PRED(.20) 56% 66%

1998 PRED(.25) 65% 74%

PRED(.30) 71% 76%

Cross Validation of the COCOMO II.1998 Calibrated Model

The COCOMO II.1998 Bayesian calibration discussed above uses the complete dataset of 161 datapoints.
Thus, the prediction accuracies of COCOMO II.1998 (depicted in table 4) are based on the same dataset of
161 datapoints. That is, the calibration and validation datasets are the same. A natural question that arises in
this context is how well will the model predict new software development projects? To address this issue,
we randomly selected 121 observations for our calibration dataset with the remaining 40 becoming assigned
to the validation dataset (i.e. “ new” data).  We repeated this process 15 times creating 15 calibration and 15
validation datasets each of size 121 and 40 respectively.

We then developed a prediction equation for each of the 15 calibration datasets. We used the resulting a-
posteriori models to predict the development effort of the 40 “new” projects in the validation datasets. This
validation approach, known as out-of-sample validation, provides a true measure of the model’s predictive
abilities. This out-of-sample test yielded an average PRED(.30) of 69%; indicating that on average, the out-
of-sample validation results produced estimates within 30% of the actuals 69% of the time. Hence, we
conclude that our Bayesian model has reasonably good predictive qualities.

3 Conclusions

The Bayesian approach discussed in this paper resolves one of the biggest problems faced by the software
engineering community; the challenge of making good decisions using data that is usually scarce and
incomplete. Most of the current software cost estimation models, including COCOMOII.1997, are
calibrated using some form of the Multiple Regression approach, which doesn’t resolve this and other
problems of existing software engineering data. The Bayesian approach alleviates this problem by making
use of experience-based expert judgement data along with sampling information in a logically consistent
manner.

The Bayesian estimating procedure used to calibrate COCOMO II.1998 incorporated a formal process to
merge prior information with existing software engineering data.  In many models, such prior information is
informally used to evaluate the "appropriateness" of results. An important aspect of formalizing the use of
prior information is that when others know what prior production functions are being used they can repeat
the calibration calculations (or can incorporate different prior information in a similar way).

Using the prior information obtained from a 2-Round Delphi (a consensus of experts in the software
estimation field) and the sampling information obtained from the COCOMO II dataset of 161 observations,
the Bayesian approach produced estimates within 30% of the actuals 71% of the time for effort. Cross
validation of the posterior model on 15 randomly selected datasets yielded comparable results.  This
accuracy was further improved by locally calibrating the model’s multiplicative coefficient to produce
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estimates within 30% of the actuals 76% of the time. It is therefore recommended that organizations using
the model calibrate it using their own data to increase model accuracy and produce a local optimum
estimate for similar type projects.
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