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Abstract

We critically analyse and compare various recent thought experi-
ments, performed by Amelino-Camelia, Ng et al., Baez et al., Adler
et al., and ourselves, concerning the (thought)experimental accessibil-
ity of the Planck scale by space-time measurements. We show that a
closer inspection of the working of the measuring devices, by taking
their microscopic quantum many-body nature in due account, leads
to deeper insights concerning the extreme limits of the precision of
space-time measurements. Among other things, we show how certain
constraints like e.g. the Schwarzschild constraint can be circumvented
and that quantum fluctuations being present in the measuring devices
can be reduced by designing more intelligent measuring instruments.
Consequences for various phenomenological quantum gravity models
are discussed.
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1 Introduction

According to general folklore, originally mostly based on simple dimen-
sional considerations or qualitative reasoning and later supported by cer-
tain gedanken experiments combined with a couple of fundamental assump-
tions (to mention but a few sources see e.g. [1], [2], or the discussions in
[3],[4]), there existed widespread agreement that fundamental lower limits to
space-time measurements and resolution are roughly given by the respective
Planck values, e.g. the Planck length lP = (G~/c3)1/2. One must however
concede that in practice it seems to be presently impossible to come near
these values in real experiments. Therefore, most of the work is rather of a
thought-experimental character.

More recently it has been argued by various groups that these alluded
fundamental bounds are in fact much larger and are perhaps just at the
brink of becoming observable by using the most recent class of gravity-wave
interferometers, more specifically, by observing the effects of (geometric)
vacuum fluctuations in e.g. length measurements. As far as we can see,
this particular field started more or less with the two papers [5] and [6], a
precursor, having however a slightly different focus, being [7].

What is most puzzling is the claim of the authors that (lower bounds to
the) uncertainty of length measurement turn out to be proportional to the
square root or a simple fractional power of the length (or distance), l, to
be measured, i.e. the fundamental uncertainty in length measurement (or
rather the respective lower bound) seems to increase with l! This is, at first
glance, quite unusual and perhaps even counterintuitive. As it would repre-
sent quite a departure from (perhaps too naive?) general accepted wisdom
if these arguments turn out to be correct, it is of tantamount importance
to scrutinize the correctness of the arguments being advanced in favor of
this opinion. We note in passing that we are quite sympathetic in general
to such an enterprise of developing a, so to speak, semi-classical quantum
gravity phenomenology.

In contrast to earlier work, this more recent line of arguments is based
on a paper by Wigner and Salecker ([8]), in which distance measurements
in general relativity are analysed if effects of the Heisenberg uncertainty re-
lation are included (as a typical ingredient of quantum theory). Postponing
these more technical points to the following section, we continue with a brief
discussion of the historical evolution of the field.

While papers on this topic, essentially repeating the original arguments,
continue to appear up to quite recent times (see e.g. [9],[10],[11],[12],[13]),
one should note that there have been a couple of contributions which pro-
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vided arguments against the claimed inevitability of the fundamental mea-
surement limitations of Jack Ng, van Dam and Amelino-Camelia, in par-
ticular concerning the strange dependence on the (macroscopic) distance,
l, to be measured (see [14],[15],[16]). While the (technical) details of the
arguments given in the three papers are certainly slightly different and vary
with respect to the tightness and conclusiveness of the steps in the respec-
tive lines of reasoning, the overall focus of the papers is similar in spirit (see
below).

Remark: One should note that we were not aware of the two earlier papers
when we prepared our own contribution [16]!

As far as we can see, the original authors only reacted (in a quite negative
way) to the first paper [14] (see [17] and [18]). Apparently they considered
the topic to be then settled and, to our knowledge, did not even mention
the later (and more elaborate) accounts in [15] and [16] (cf. e.g. the recent
[13]). Therefore we feel obliged to give a considerably more careful and
detailed account in the present work of our counter arguments. This holds
the more so as we feel the whole matter is of extreme importance (both
experimentally and theoretically).

Before we proceed with the more technical analysis, some general re-
marks concerning the whole field and the logical structure of the various
arguments seem to be in order. Both the original analysis of e.g. Ng et
al. or Amelino-Camelia and our own contribution ([16]) actually consist
of roughly two parts (which are of course related). For one, the Salecker-
Wigner thought experiment, for another, a semi-phenomenological theory of
low-energy quantum gravity or space-time foam. We recently developed for
example certain aspects of such a theory in [19], based on the holographic
principle. The second half of [16] also deals with this special topic and conse-
quences drawn by e.g. Ng et al. Furthermore, in [20] we developed a theory
of random metric spaces and applied it to models of quantum space-time.
We agree with Amelino-Camelia that this is a very important and desirable
enterprise (cf. the abstract of [17]). It is however disputable and in fact a
different question if the claims concerning fundamental bounds derived from
the Salecker-Wigner thought experiment are really correct. We think, our
counter arguments have been too quickly brushed under the carpet and that
the situation is in fact considerably more subtle. In the present paper we
will only deal with this thought experiment and its implications in order to
keep the investigation within reasonable size. We plan to treat the question
of stochastic fluctuations of space-time in a forthcoming paper.
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We close this introduction with the mentioning of two particular points
which should be given a closer inspection as they are in fact crucial for the
logical coherence of the arguments being advanced in favor of the various
points of view. First, in these types of thought experiments where extreme
limit situations are studied (concerning the very possibility of the exper-
imental realisability), it is important to check how large or small certain
constants or parameters really are, to what extent they can be freely chosen
(e.g. in cases where they are assumed to approach zero or infinity), or, on
the other hand, whether there exist practical or fundamental constraints. A
typical case in point is the habit to tacitly replace an estimate containing the
relational symbols > or < by & or . and then proceed by assuming without
a more detailed discussion that the upper or lower bound can actually be
reached in practice while a closer technical inspection would rather show
that this is not! possible and that the relation is more adequately described
by the symbol ≫ or ≪.

This problem becomes for example aparent if one replaces the only ap-
proximatily correct continum models (e.g. elastic rods) describing the de-
vices, typically used in this context, by their more reliable microscopic coun-
terparts, based on the laws of many-body quantum theory (cf. our sections
3 and 4). It is easy to make adhoc assumptions about the possible physical
parameters of these devices as long as one does not go into their microscopic
and quantum mechanical details.

Second, and this concerns the second part of the usual argumenta-
tion, that is, the relation of the Salecker-Wigner thought experiment to the
claimed fundamentality of the measurement bounds: It is clear that the tech-
nical (thought) experiments alone are not sufficient to support this claim.
Both mentioned groups evidently seem to be intrigued by the functional
form of the terms l1/2 or l1/3, which apparently remind them of versions of
Brownian motion models (see e.g. section 4 of [10]). As to the occurrence of
these terms one should say that the Salecker-Wigner experiment alone does
by no means suggest such a deeper connection to quantum gravity effects.
It is evident that these terms occur in certain expressions because of the
quantum-uncertainty induced movement of clock and/or mirror. This is, in
a sense, a quite trivial effect and does not seem to have anything to do with
Planck fluctuations as long as one does not argue that quantum theory is a
large scale consequence of quantum gravity (which may in fact be the case).

Be that as it may, the original authors argue that the fundamental char-
acter of length fluctuations derives from the cooperative and correlated be-
havior of the individual grains of space-time. The above power laws would
then suggest a rather mild form of correlation. In the second part of our [16]
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we scrutinized these ideas and came to a different conclusion, that is, the
holographic principle and other observations rather suggest an extremely
strong form of, what we called, anticorrelation of the fluctuations of the
hypothetical individual grains of space-time. This means, the individual
fluctuations have the tendency of cooperating in such a way that the total
fluctuation in macroscopic regions remains small, i.e. just the opposite of a
central-limit or Brownian motion behavior. We later discussed this peculiar
fluctuation structure in greater detail in [19] (see also [20]).

That is, the real question in this context is the following, and this goes
beyond the question, mainly adressed in the present paper, which primarily
deals with the Salecker-Wigner thought experiment:

Observation 1.1 Are the geometric fluctuations in the quantum vacuum
near the Planck scale only weakly correlated, as suggested by the (Brownian-
motion) results of Amelino-Camelia or Ng et al., or are they strongly an-
ticorrelated as suggested by our own findings? The latter possibilty would
entail that e.g. length fluctuations are essentially independent of the length
to be measured.

2 A Brief Review of the Salecker-Wigner-

Amelino-Camelia-Ng-van Dam Thought Exper-

iment

In this section we will be very brief, only emphasizing certain more relevant
aspects, as the topic has meanwhile been described repeatedly (apart from
the original sources in e.g. [15] or [16]). We begin our analysis with a general
remark.

Remark: One should keep in mind that various of the more technical and
practical problems belonging to the special field of length and/or time metrol-
ogy, are not discussed in the cited papers and also not in the following as this
would become a quite cumbersome enterprise. To this belongs for example
the problem of the exact determination of the arrival time of light pulses or
individual photons, the inescapable microscopical roughness of the surface
of mirrors which neccessitates the use of light with wave lengths which are
sufficiently long so as to average over this roughness of surfaces etc. In the
following we rather try to concentrate on the more fundamental problems.
However, we show that such a fundamental analysis may nevertheless lead
to interesting technical suggestions (see section 4.3).
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The original Salecker-Wigner thought experiment deals (among other
things) with the quantum-uncertainty of length measurements in a gravi-
tational field. As has been rightly emphasized in [7], its main concern was
rather the construction of tight nets of coordinate lines in general relativity
if quantum effects are included. Therefore their reliance on freely falling
clocks, mirrors etc. was quite reasonable, as this is natural in this context.

Note that the definition of (true) spatial distance in e.g. a static gravi-
tational field is not completely trivial but nevertheless straightforward (for
a clear account see for example [22], the respective formulas can also be
looked up in [16]). In the Salecker-Wigner approach a light pulse is sent
from a small freely falling apparatus which also contains a clock towards
an also freely falling mirror where it is reflected. The distance can then be
inferred from the total arrival time needed, i.e.

2l = t · c (1)

with t the elapsed time.
If the quantum nature of clock and mirror is taken into account, their

positions at the respective arrival times of the light pulse are uncertain by
an amount

δl + δv · t = δl + ~/mδl · l/c = δl + ~l/mcδl (2)

with
δl · δp ≥ (1/2)~ , δv = δp/m (3)

m being the mass of clock or mirror, δl the original position uncertainty
or, rather, the position uncertainty after the emission of a light pulse; for
convenience we discuss only the case of the clock. This yields a minimal
uncertainty

δlmin = (~l/mc)1/2 = l1/2

c · l1/2 (4)

with lc the Compton wave length of clock or mirror.
One can now try to minimize the uncertainty in length or position mea-

surement by making m as large as possible. There are, obviously, prac-
tical limits, for example if one wants to create a dense coordinate net as
e.g. in [8] or [7]. But there exists also a fundamental limit given by the
Schwarzschild-bound as has been exploited in [6] or [5]. One should note
that such Schwarzschild-type arguments were of course already used in the
past in related contexts. For one, the uncertainty in position imparts also
a fluctuation in the gravitational field and the metric tensor ([6]). Further-
more, huge masses lead to a macroscopic distortion of the gravitational field
in the large. This, however, represents in our view rather a correction and
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not! an uncertainty and can be incorporated by a rigorous distance calcu-
lation as e.g. described in [22]. Really crucial seems to be, at first glance,
the Schwarzschild constraint.

If the geometric size of the clock-lightgun system (or mirror) is given by
s, a horizon will form around the clock (or mirror) if

m ≥ ms := const · (c2s/G) = const · ~/c · s/l2p (5)

for some constant of order one. By inserting this estimate in the preceding
expression, Amelino-Camelia derives a lower bound on the uncertainty, δl,
of the form

δl ≥ const · (l2p/s)
1/2 · l1/2 (6)

More specifically, one exploits the estimate in the opposite direction in order
that the measurement device is able to function as expected.

Remark: We will later comment on the relation of the size of the clock, s,
to the length, l, to be measured. Frequently the size is assumed to be very
small. This, however, does not seem to be necessary in our view.

Jack Ng and van Dam ([5]) get a slightly different estimate by using a light
clock. Again they make an estimate of the size of the light clock which
is in our view overly restrictive. In their example, photons bounces back
and forth in a cavity of size b. They correctly argue that the smallest time
interval one can resolve with this clock is of order tb = b/c. This induces
a length uncertainty of order δl & b. They then however assume that the
size of the clock apparatus is also of size b, i.e. that the whole mass, m, of
the clock is squeezed into this (small) region of size b. We do not see that
this restrictive assumption is really necessary. We think, one can envisage
a massive but extended clock system containing e.g. a small cavity of size
b while the size of the whole system, s, is considerably larger (see below).
They now conclude that it follows

δl ≥ b ≥ ls := const. · Gm/c2 (7)

i.e. with the rhs the corresponding Schwarzschild radius. They then get

δl ≥ const · l2/3

p · l1/3 (8)

Both estimates show the (at first glance) strange dependence of δl on the
length, l, to be measured. But in our view this is only the consequence of the
particular experimental set-up of the Salecker-Wigner experiment with its
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freely falling objects. It remains to be shown that it is of a more fundamental
significance.

While our technical analysis will start with the following section, we
want in this section to comment on a simple example Ng et al. give in order
to corroborate their strange result. Furthermore it supports our suspicion
that the possibility of strong anticorrelations in this context is obviously
not seriously taken into account by some authors (whereas this possibility is
sometimes mentioned in passing). The reason is presumably that it seems to
be not so easy to imagine physical mechanisms which produce such strong
effects; see however the second part of [16] and the detailed analysis in [19].

We begin with some, as we hope, clarifying remarks for readers not so
familiar with solid state physics. Both real and harmonic crystals, which
we discuss in more detail in the next section, are not stable in one dimen-
sion. But as the periodicity in the harmonic model is put in by hand via an
explicitly given lattice constant, a, in the 1-dim. case, the unstable behav-
ior is reflected by the divergence of the fluctuations of the atomic positions
around their equilibrium values when the particle number, N , goes to infin-
ity. That is, with ui := xi −xi,0 we have in one dimension for non-vanishing
temperature:

〈u2

i 〉
1/2 ∼ N1/2 (9)

with N the number of atoms in the chain. By the same token, with l = N ·a
the average distance between, say, the atoms at positions x0,0 = 0 and
xN,0 = N · a, the respective distance fluctuation is

δl . 〈u2

0〉
1/2 + 〈u2

N 〉1/2 (10)

(apart from small possible boundary corrections which depend on the bound-
ary conditions being used).

In [5] Ng and van Dam argue that length fluctuations being proportional
to some simple fractional power of the length to be measured are typical and
natural and give the following example. They mention a one-dimensional
chain of N ions connected by springs (an example, they attribute to Wigner)
in the high-temperature limit. With b the lattice constant and δxi := xi −
xi−1 they argue that

〈(xN − x0)
2〉1/2 = δl ∼ (N · < δx2

i >)1/2 = l1/2 · (< δx2

i > /b)1/2 (11)

with l = N · b and < δx2

i > being independent of the position i (modulo
certain boundary conditions).

One should say this is a fairly unsurprising observation and does by no
means corroborate their general claim. For one, for very high temperatures
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the individual atoms fluctuate almost independently relative to each other.
The above result is then nothing but the well-known central limit theorem.
But even for ordinary (non-vanishing) temperatures we get a similar result
after some calculations (see the next section). On the other hand, in the
following sections we mainly deal with the nature of zero-point motions at
temperature zero. For a one-dimensional harmonic crystal at zero temper-
ature we then get

δl ∼ (ln N)1/2 (12)

On the other hand, we will see in the next section that in higher dimensions
atomic fluctuations remain small and finite and, by the same token, fluctu-
ations in distances. Therefore the one-dimensional harmonic chain is rather
exceptional and does not represent the typical case.

The scenarios, described by the above cited authors rather prevail in
gases or other disordered or weakly correlated systems. We remind the
reader of the observation at the end of the introduction. In this context
we again want to mention our results in the second part of [16] where we
already discussed in some detail the harmonic crystal and showed that it
is exactly an example from the realm of ordinary physics displaying these
strong anticorrelations we mentioned above. In this sense, we think, nothing
really follows from this example.

We conclude this section with some brief remarks concerning the different
scenarios employed by Amelino-Camelia, Ng et al., Adler et al., Baez et al. or
by ourselves, because this gives the motivation for our detailed investigation
into the behavior of real quantum solids in this field of quantum gravity
research. Most of the devices employed are made of such stuff and we think,
the at best approximately correct continuum models do perhaps not! give
the correct results in these extreme (high-precision) situations.

The original authors essentially used these devices in the way Salecker-
Wigner used them, i.e. clocks, lightguns and mirrors are designed and
treated as freely falling, relatively small (but possibly heavy) objects, the
microscopic structure of which does not play a crucial role and is more or less
neglected. In [14] the clock is assumed to be somehow bound in a harmonic
containing potential, the physical nature of which is not openly indicated
in detail. Its main purpose is to keep the clock (or mirror) from wandering
away under its original momentum uncertainty.

Baez et al. give a more detailed account by assuming the clock be-
ing fixed at the end of a (long) rod and then estimate its length oscilla-
tions within the framework of continuum mechanics. In [16] we fixed both
clock/lightgun and mirror on a solid understructure, the behavior of which
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we treated in a microscopic quantum mechanical way. Now the relative
mean-distance is fixed, because neither clock nor mirror can wander away,
but what is still present (as in the other treatments) are the unavoidable
quantum fluctuations of (in our case) the individual atomes of the crystal
lattice. What is however now avoided to an at least large extent are the
strong constraints, resulting from the Schwarzschild bound, which entered
in the treatment of the original authors because they assumed that the re-
spective devices are quite small.

Most of the authors seem to follow the original idea of independently
located devices in space (i.e. clock, mirror, other objects). They then auto-
matically have to struggle with the quantum-uncertainty induced movement
of the objects which introduces these funny terms, we have discussed above.
On the other hand, Ng et al. and Amelino-Camelia invoke the possible use-
fulness of gravity-wave interferometers. But as far as we have understood
the subject matter, these are very large and massive complex devices with
most of the equipment sitting on a rigid extended under-construction. There
exist of course certain parts which are suspended or are able to oscillate, but
nevertheless there relative mean distances and positions are essentially fixed
(see e.g. [21]). That is, in our view, these constructions seem to resemble
rather the experimental set-up we are suggesting, i.e. clock and mirror being
parts of a more or less rigid and complex measuring device.

While we have the impression that for example Amelino-Camelia seems
to have the opinion that the presence of such extended bodies will distort
the gravitational field in a perhaps uncontrollable way, we think, these per-
turbative effects can be incorporated in the calculations. Anyhow, we have
not found a really convincing argument in favor of this pessimistic opinion.
This holds the more so as ultimately most of our equipment happens to be
fixed to our planet earth or to some other huge body and this is certainly
the case for the mentioned interferometers. Furthermore, after all we are in
fact interested in matters of principle and not in numerical details. That
means, the minute fluctuations of space-time are expected to occur not only
in free space but as well in solids and other equipment (remember the solid
cylinders of the first gravity-wave experiments).

In [16] we assumed clock (or mirror) to be fixed to the rigid under-
structure by means of a trap (as in [14]), which was implemented by some
oscillator potential. We meanwhile think this additional source of uncer-
tainty is not really necessary. In the following we prefer to regard the clock
(and mirror) as being integrated parts of the rigid body itself. The task
is then to carefully check the various occurring physical parameters of the
different models, employed in this context, as to the possibilty of choosing
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them in such a way so that the final length fluctuations we are interested in
become as small as possible.

In this respect two, at least in our view, different questions have to
be dealt with. First, the claim of Amelino-Camelia and Ng et al. that
length fluctuations really have an intrinsic and unavoidable dependence on
the length to be measured, i.e.

δl & l1/2 or δl & l1/3 (13)

for length scales which can in principle be experimentally observed. Second,
good quantitative estimates of the numerical degree of length uncertainty
in the different experimental setups. We emphasize this latter point as we
suspect that the existing estimates are not very reliable and that certain
assumptions are perhaps too optimistic.

3 Solid State Physics meets Quantum Gravity

In the various thought experiments which have been introduced in the field
we are discussing, equipment has been employed which is in the last analysis
of the nature of quantum many-body systems. As we are, a fortiori, em-
ploying this measurement equipment in very extreme situations, we think it
is reasonable to take its microscopic many-body nature really into account
and not simply regard the measuring devices as being essentially classical
or structureless objects.

Take for example the one-dimensional rod introduced in [15], the behav-
ior of which is discussed, at least in the first steps, within the framework of
classical continuum mechanics. Its length is denoted by x, the velocity of
sound by cs, the elastic modulus by Y , its mass by m. With ρ = x/m the
mass density in one dimension, the general formula for cs is

cs = (Y/ρ)1/2 = (Y · x/m)1/2 (14)

With the apriori bound (c being the velocity of light)

cs ≤ c (15)

and the heuristic association of the rod with a harmonic oscillator having
spring constant

k = 2Y/x (16)

Baez et al. finally get the formula for the zero point length fluctuation of
the rod via the associated harmonic oscillator model.

∆x & (~x/mc)1/2 (17)
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with, at first glance, an explicit dependence of ∆x on x while written in the
form

∆x & (~/ρc)1/2 (18)

one sees that the length fluctuation, calculated in some oscillator ground
mode is actually independent of the length of the rod (at least as long as
the Schwarzschild constraint has not been introduced).

Remark: We surmise that the authors used some form of Hooke’s law in this
derivation. One should note that the correct form of Hooke’s law reads

∆l/l = Y −1 · F/A = Y −1 · σ (19)

with F the applied force, A the area of the cross section and σ the tension
in the rod. The other variant one frequently finds in the literature

∆l = k−1 · F (20)

has the disadvantage of hiding the explicit dependence of k on the length of
the rod, i.e. we have

k = Y/l · A (21)

We will show in the following that this (heuristic) fluctuation result,
based to a large part on classical physics, coincides with the rigorous mi-
croscopic result (for zero temperature!) apart from an (inessential) factor
of the form (ln N)1/2 with N the number of atoms. Note again that in a
strict sense the one-dimensional harmonic crystal is not stable in the limit
N → ∞. That means, the fluctuations of the individual atoms diverge in
this limit (but in an extremely slow manner in the case T = 0). We will
come back to the approach of Baez et al. in the following section in con-
nection with the Schwarzschild-constraint and the Hoop-conjecture. We will
then see more clearly the possible weaknesses of such continuum models.

As a typical candidate for a true many-body system serving as a model
for the possible macroscopic measuring devices we will employ in the follow-
ing we now discuss the harmonic crystal and the position fluctuations of its
atoms. We will later see that it may be advantageous to also use equipment
which is not entirely made of this rigid crystallic structure but contains also
parts which are capable of absorbing and damping various sources of exter-
nal and internal noise. To begin with, we assume the crystal to be cooled
down to T = 0. The qualitatively different behavior for non-vanishing T will
be discussed at the end of this section. This means, that only the so-called
zero-point motion of the atoms is taken into account. Various aspects of
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this model are e.g. discussed in [23] or [24], see also [25], the classical source
being [26]. But as the results are frequently widely scattered in these books
and as the quantum fluctuation results we are interested in, are either not
explicitly given or difficult to find, we will provide the necessary formulas in
the following. One should furthermore note that we are sometimes cavalier
concerning (in this context) uninteresting prefactors of order one.

In the following discussion we assume that the crystal as a whole is fixed
in the respective reference system or, rather, we consider it relative to its
center-of-mass system. Put differently, we neglect, for the time being, the
purely translatory mode. So, let ui be the momentary elongation of the i-th
atom from its equilibrium position and N the number of constituent atoms.
We then have in the quantum case

N−1 ·

N∑
i=1

< u
2

i >= N−1 ·
∑
k,s

~/(2M0 ωk,s) (22)

with the brackets in our present context (T = 0) denoting quantum averages.
For non-vanishing temperatures the formula has a slightly different form.
The sum on the rhs runs over the first Brillouin zone of the crystal and over
the different possible phonon branches ωk,s. M0 is the mass of the lattice
atoms. For k → 0 we have

ωk,s ∼ cs(k/|k|) · k (23)

with cs the (in general) branch and direction dependent velocity of sound.
To evaluate the sum we make some (harmless) approximations. We re-

strict ourselves to a single phonon branch, extend the linear dispersion law
of the (accoustic) phonon branch up to the boundary of the Brillouin zone,
assume cs to be independent of the direction and replace the first Bril-
louin zone by the so-called Debeye sphere. Furthermore, in space dimension
greater than one we replace the sum by an integral, using the conversion
factor (with a some lattice constant)

∑
k

= Na3/(2π)3
∫

(24)

We finally get in three or two dimensions

Observation 3.1 For the fluctuation of the position of the lattice atoms in
a harmonic crystal at T = 0, i.e. only zero-point fluctuations being taken
into account, we get
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1. 2,3-dim.:
∆ui ≈ const · (~a/csM0)

1/2 (25)

2. 1-dim.:
∆ui ≈ const · (~a/csM0)

1/2 · (ln N)1/2 (26)

with const being of order one. This implies that the fluctuations of the
distance between two arbitrary lattice sites is of the same order.

Proof: The three and two dimensional case follows from our above formulas.
The one-dimensional case has to be treated slightly differently. It is more
appropriate to directly calculate the discrete sum

(~/M0) · N
−1

∑
Brill.zone

(cs · |k|)
−1 (27)

as the integral version is singular at k = 0. This yields

∆u2

i ≈ (~a/csM0) · N
−1 ·

N∑
l=1

(2πl/Na))−1 ≈ const · (~a/csM0) · ln N (28)

Remark: In [16] we got already similar results (for space dimension greater
than one) with the help of a slightly different reasoning. Our main goal
in [16] was however to show how natural strong anticorrelations among in-
dividual position fluctuations are already in ordinary physics and that the
standard Brownian-motion type results or variants thereof, which all are
somehow inspired by the central limit behavior, and which are typically
invoked in this context, cannot always be expected.

It is now important to investigate the range within which the occurring
physical parameters can be chosen and, furthermore, if they can be inde-
pendently chosen. Note in this context that in the harmonic crystal model
the lattice constant is put in by hand. In the true many-body situation the
periodicity of certain states has in principle to be calculated (which is quite
difficult). Furthermore, the lattice constant is expected to change if M0 or
e.g. the temperature is varied.

In a first step one can try to make cs as large as possible. We evidently
have an apriori upper bound

cs ≤ c (29)

with c the velocity of light, which is however quite crude as typical values
for cs are of order 103[m]/[s]. As to the lattice constant a, it seems to be
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difficult in ordinary matter to have it smaller than the average distance in
dense nuclear matter (e.g. neutron stars), i.e. we may assume

a ≥ a0 ≈ 10−15[m] (30)

There exists another relation between cs,M0, a and the coupling constant,
α, of the harmonic oscillator potential between neighboring atoms

cs = (α/M0)
1/2 · a (31)

which, when choosing the extreme values cs = c and a = a0, yields a relation
between α and M0.

We see that the following estimates hold.

Observation 3.2 In ordinary matter the expression (~ a/M0 cs)
1/2 is lower

bounded by

(~ a/M0 cs)
1/2 & lc(M0)

1/2 a1/2 & lc(M0)
1/2 a

1/2

0
(32)

with lc(M0) the Compton wavelength of the lattice atoms.

It is instructive to calculate this bound numerically. With M0 ≈ 10−25[kg]
for ordinary atoms, we get

lc(M0)
1/2 · a

1/2

0
≈ 10−16[m] (33)

On the other hand, for ordinary matter with a ≈ 10−10[m] and cs ≈
103[m]/[s] we get

(~ a/M0 cs)
1/2 ≈ 10−11[m] (34)

Conclusion 3.3 A reasonable lower bound for the length fluctuations in
three, two, or one space dimensions is (with (ln N)1/2 = O(1))

∆ui & 10−16[m] (35)

This lower bound on ∆ui is obviously still far above the Planck scale, but
it is a reliable value as long as we do not take special measures. One should
compare this bound with the bound of Baez et al. for the one-dimensional
elastic rod. One should note that in [15] only a single ground frequency
was used in the idealized model. In our microscopic rigorous approach we
integrated over all occurring phonon frequencies. The effect is however only
an extra numerical prefactor.
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Observation 3.4 Relating the estimate in the approach of Baez et al. with
our rigorous microscopic calculation we get (without the additional Schwarzschild
constraint)

∆x & (~ x/m c)1/2 & (~ N · a0/N · M0 c)1/2 = lc(M0)
1/2 · a

1/2

0
(36)

i.e., the two estimates give roughly the same value. It is however crucial that
the rhs of the above estimate shows that the length fluctuation is completely
independent of the parameters x and/or m. So there seems to be no room left
to make ∆x small by choosing x or m appropriately (see the next section).

Before we proceed we mention the corresponding results for non-vanishing
temperature. In this case we have

N−1 ·
∑

i

< u2

i >= N−1 ·
∑

k

(~/2M0 ωk) cot(β ~ ωk/2) (37)

with β the inverse temperature. For small k we get

cot(β ~ ωk/2) ≈ 2/β ~ cs · |k|
−1 (38)

and
N−1 ·

∑
i

< u2

i >= N−1 ·
∑

k

(β M0 cs)
−1 · |k|−2 (39)

Conclusion 3.5 For T 6= 0 we get the estimate

∆ui ≈ (β M0 cs)
−1 · a (40)

in three or two dimensions and

∆ui ≈ (β M0 cs)
−1 · a · N1/2 (41)

in one dimension

To sum up what we have learned in this section; we have seen that,
due to the atomic structure of ordinary matter, it is rather academic to
make incompatible assumptions in certain thought experiments as to various
occurring physical parameters of objects or equipment to be employed in
some of the arguments. It is for example problematic to assume that very
small but sufficiently heavy objects do actually exist. It may turn out that
in the far future some exotic matter may be found having such properties
but at the moment it seems to be difficult to pack ordinary matter denser
than with interatomic distance a0 ≈ 10−15[m]. If we assume that a typical
atomic mass is of order M0 ≈ 10−25[kg], we have the following constraint.
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Observation 3.6 For the size, s, and mass, m, of a typical object in our
discussion we have the following relation (with N the number of atomic
constituents):

1. If the object is essentially three-dimensional we have

s & N1/3 a0 , m = N · M0 (42)

or
s & (m/M0)

1/3 a0 (43)

2. In two dimensions we get

s & (m/M0)
1/2 a0 (44)

3. In one dimension for a rod-like shape we get

s & N a0 , m = N · M0 (45)

and
s & (m/M0) a0 (46)

These bounds will have certain consequences for the discussion in the fol-
lowing section.

4 Commentary on the various Thought Experi-

ments

In the light of our previous observations we will comment on the thought
experiments by Baez et al. and Ng et al and will compare them with our
own approach.

4.1 The Modified Thought Experiment of Baez et al. and

the Hoop Conjecture

In [15] the Schwarzschild constraint is used for an essentially one-dimensional
rod of length x by invoking the so-called Hoop conjecture (see e.g. [27] or
[1]). If m is the mass of the rod it roughly says that a horizon will form
around the rod if

m ≥ ms = const · c2 x/G (47)

with some constant of order one.
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To make the length fluctuation of the rod as small as possible Baez et
al. chose the length of the rod to be roughly the size of the corresponding
Schwarzschild radius or, rather, a little bit larger, that is

x ≈ ls = const m G/c2 (48)

Then the product x1/2 l
1/2

c , occurring in their derivation, would become
approximately

l1/2

s l1/2

c = lp (49)

and they finally concluded (by incorporating the additional uncertainty of
the center of mass of the rod and by choosing m arbitrarily large)

∆x & lp (50)

We already derived in the preceding section a lower bound on ∆x for the
particular experimental set-up used by Baez et al and which is completely
independent of x and/or m but is much larger than the Planck length, that
is

∆x & lc(M0)
1/2 · a

1/2

0
(51)

This implies, that something must be wrong in the reasoning of Baez et al.
We will show now that it is not possible for the length of an essentially one-
dimensional rod made from ordinary matter to come near the Scharzschild
radius of the rod. At the end of the preceding section we got a relation
between mass and length of a one-dimensional rod

N · a = l & m/M0 · a0 = N · a0 (52)

with a the real lattice constant, a0 its minimal value. This implies

l/ls = a c2/(M0 G) & a0 c2/(M0 G) (53)

With our standard assumptions M0 ≈ 10−25[kg], a0 ≈ 10−15[m] we get

M0 G/c2 = ls(M0) ≈ 10−53[m] and hence l/ls & 1038 (54)

Observation 4.1 For ordinary matter the linear extension of e.g. a rod
exceeds its Schwarzschild radius by a factor of & 1038. One should note that
this holds for the rather extreme parameter, a0, we have chosen. For a more
realistic parameter the factor happens to be even larger.
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Conclusion 4.2 For the above term x1/2 · l
1/2

c it holds

∆x & x1/2 · l1/2

c & 1019l1/2

s · l1/2

c = 1019 lp (55)

That is, there seems to be no chance that the length fluctuations of a one-
dimensional rod really come near the respective Planck value.

This is a case in point for what we said in the introduction about esti-
mates using frequently the symbol & where rather the symbol ≫ would be
appropriate.

On the other hand, for three or two dimensions we got lower bounds at
the end of the preceding section of the kind (s being the linear extension of
the object)

s & (m/M0)
1/3 · a0 , s & (m/M0)

1/2 · a0 (56)

yielding

s/ls & const (c2/M
1/3

0
G)·a0·m

−2/3 , s/ls & const (c2/M
1/2

0
G)·a0·m

−1/2

(57)
respectively. Setting s/ls = 1 on the lhs yields:

Conclusion 4.3 While it seems to be impossible to confine a rod-like object
of ordinary (atomic) matter within its Schwarzschild sphere or to come at
least near this goal, this can be achieved in two or three space dimensions
for sufficiently large mass. For three dimensions the mass scale such that
s = ls is m = ms ≈ 1030[kg] which is approximately the mass of the sun.
The Schwarzschild radius is s ≈ ls ≈ 103[km]. This result holds for the
assumed extreme limit value a0 we have chosen as a lower bound. Note that
for a fixed value of the parameter a both ls and ms are also fixed by the above
formulas. Furthermore, for an a > a0 both ms and ls become also larger.

Remark: Note that in general, by neglecting the atomic microscopic struc-
ture of matter, we can calculate for each given s the Schwarzschild mass,
ms, so that s = ls. In the above calculations we assumed that the average
density or, put differently, the average interatomic distance, a, is fixed or
even minimal. i.e. a = a0. Then we get another relation between size and
mass and the identity s = ls can only hold for a single mass value.

4.2 A Comparism of the Ng-van Dam Thought Experiment

with our Approach

The approach of Ng et al. (see section 2) is based on the Salecker-Wigner
method of freely falling (small) clocks and mirrors. In a first step one gets

δl & l1/2 · l1/2

c (58)
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In a second step they add the certainly correct assumption that the size, s, of
the clock has to be larger than its own Schwarzschild radius. They then make
however an additional assumption which in our view is too restrictive. For
the time measurement they choose a so-called light-clock in which a photon
bounces between the mirrored walls of a cavity. This is also reasonable as
c represents a limiting velocity and a large velocity makes the period of the
clock short which, by the same token, is responsible for a technical lower
bound on the uncertainty of length measurement, i.e. we have

δltech. & b (59)

with b the diameter of the cavity. They then however make the assumption
that the size of the clock is roughly of the order of the diameter of the cavity,
b. They hence get

δl & b ≈ s & ls = const · Gm/c2 (60)

with m the mass of the clock (or mirror). That is, they assume that the
whole mass of the clock is concentrated within a sphere roughly of the size
b. Combining the two estimates they finally get

δl & l1/3 l2/3

p (61)

This may be contrasted with the estimate by Amelino-Camelia (see sec-
tion 2) in which no light clock was explicitly used:

δl ≥ const · lp · (l/s)
1/2 (62)

and in which the size of the clock-lightgun system still explicitly appears.
The form of the Ng-van-Dam estimate seems to convey a deep (functional)
relation between length measurement and Planck scale physics, in particular
as it contains the symbol & instead of, say, ≫. We first should investigate if
this connection does really exist or, on the other hand, if it is only apparent.

We have seen that, first of all, in the approach of Ng et al. the precision
of length measurement is fundamentally limited by the period of the light
clock or, by the same token, by b. The smallest conceivable clock of the kind
Ng et al. are envisioning is, in our opinion, a clock consisting of one atom
or atomic nucleous. With our rough approximation, a0, we thus get

δl & δltechn. ≈ b & a0 = 10−15[m] (63)

We previously calculated ls for such an atom and got

ls(M0) ≈ 10−53[m] (64)
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That is, for such an atomic clock its natural size exceeds its Schwarzschild
radius by many orders of magnitude, put differently, for such a clock it would
be inappropriate to use the symbol & in the respective estimates.

On the other hand, we derived in the preceding sections a relation be-
tween the size of an object, made from ordinary matter, and its mass. In
three dimensions it reads (by assuming a = a0):

s & (m/M0)
1/3 · a0 (65)

That is, if we make the clock heavier, the Schwarzschild radius would also
increase but, by the same token, the size of the clock would increase too. As
ls grows linearly with m while s is proportional to m1/3 in three dimensions,
there exists a unique value where ls and s become identical. In the Ng-
van Dam approach the size of the clock is however rigidly related to the
parameter b which is a lower bound to the uncertainty δltechn. which is
smaller than δl. So we arrive at a certain dilemma as the uncertainty in
time measurement would also increase with mass and size of the light clock.

Conclusion 4.4 In our view it is reasonable to use clocks with the parame-
ters s and b being decoupled, that is, one should use clocks with the diameter
of the mirrored cavity as small as possible in order to make δltechn. as small
as possible but making their mass and, by the same token, their size large.
Or, what seems to be even better, to use clocks with ltechn. not limited by
som geometric parameter b.

Remark: As we are no expert in time metrology we do not know if there
perhaps exist ingenious methods to make the period of the time clock shorter
than the value we assumed, i.e. ∆t ≈ 10−15[m]/c. This seems to be, at least
in our view, difficult for the type of light clock Ng et al. are employing
but may be possible for other types of clocks. One can learn from e.g. the
analysis in [21] that the sensitivity of the modern interferometers can be
increased by various ingenious methods, but this seems to apply rather to
the observation of the (qualitative) change in interference patterns, not so
much to the exact measurement of distances.

If we loosen the connection between the size of the mirrored cavity, b,
and the size of the whole clock system, s, we have more possibilities. We
can try to make b as small as we can, or even better, use a different sort of
clock, and, on the other hand, make s as large as possible in order to avoid
the Schwarzschild constraint while we make lc as small as possible. We then
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fall back on the relations derived in section 2, i.e.

δl & l1/2

c l1/2 , m ≤ const (c2 s/G) = ms (66)

as long as we insist on independent freely falling clock and mirror systems.
One should however remark that so far these devices are treated as essen-
tially structureless objects. The kind of internal fluctuations being always
present in these objects if their quantum nature is taken into account has
been treated in section 3 and will further be treated in the following.

Inserting now (as e.g. Amelino-Camelia did) m ≈ ms in lc = ~/m c, we
get

δl & const · lp (l/s)1/2 (67)

From our previous calculations with a = a0 we learned that both ms and
s are of considerable size. On the other hand, we think, this is not totally
unrealistic as in our framework these devices can be considered to be more or
less rigidly fixed onto for example the earth itself. This is certainly the case,
as we already emphasized above, for the large interferometers the authors
themselves invoked in their arguments. That is, there is in our view no real
need to resort to small clocks and mirrors. Even if the length to be measured
is small, the clock-mirror system can ultimately be taken to have the size of
the earth.

Conclusion 4.5 With clock and mirror being parts of some large devices
which, on their side, being rigidly attached to e.g. the earth itself, both the
Schwarzschild-constraint and the wandering-away effect can be essentially
avoided so that, in the end, we get at least thought-experimentally an esti-
mate of the kind

δl & const · lp (68)

Even if in practice the term const may not really be of order one but some
small power of ten, the result is certainly independent of the length l itself.

4.3 The Statistical Mechanics of Relative Position Fluctua-

tions of the Components of Large Measuring Devices

What we and also the other authors have so far only superficially discussed
are the relative position fluctuations of parts of a larger device relative to
each other or relative to the larger device they are embedded in. If, for
example, the mirror is part of a larger device or is used as a component in a
clock system, the uncertainty of distance mesurement is of course enhanced
by the unavoidable statistical movements of these parts relative to each
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other. To formulate this problem in a more general way we will analyse in
the following the relative statistical movement of parts of a larger many-body
system, more precisely, of the respective centers of mass or of the movement
of the center of mass of a subsysten with respect to the total system.

One should note that there exist in the literature various quite heuristic
statements concerning this point which are however not satisfying in our
context as they usually only apply to freely moving objects. In our context
the subsystem is in contact with a larger system and, furthermore, there
exist delicate and even long-range correlations among the constituents of
the object. Under such conditions the problem is no longer totally trivial.

In section 3 we got already estimates on the individual fluctuations of
the atoms of a crystallic body. At zero temperature and ordinary densities
and velocities of sound we had roughly

∆ ui ≈ 10−11[m] (69)

while for the extreme values, cs = c a = a0, we got

∆ ui ≈ 10−16[m] (70)

In [16] we already introduced the idea to attach e.g. clock and/or mirror
to larger parts of the under-structure in order to further reduce the degree
of position fluctuations, as in general the center of mass of a subsystem,
containing itself a substantial number of atoms, is expected to display a
smaller degree of fluctuations than its individual constituent atoms. The
quantitative analysis will however depend on the general context.

Let us start with our standard example, the harmonic crystal. We will
see that in this case the problem turns out to be quite intricate. We take a
subcluster, S, of, say, N atoms in the crystal with N ≫ 1. The correspond-
ing center of mass coordinate is

R =
N∑

i=1

M0 xi/NM0 (71)

The expected fluctuation of this coordinate can then be written as

〈(R − R0)
2〉 = N−2 〈(

N∑
i=1

(xi − xi,0))
2〉 (72)

with xi,0 the equilibrium positions of the atoms and R0 the corresponding
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position of the center of mass. This yields

〈(R − R0)
2〉 = N−1 〈N−1 (

N∑
i=1

ui)
2〉 =

N−1 (N−1

N∑
i=1

u
2

i + 2N−1

N∑
i6=j=1

ui · uj) (73)

As

N−1 (

N∑
i=1

ui)
2) = ∆u2

i ≈ const (~ a/cs M0) (74)

(see section 3), the first term would essentially yield the result which also
follows from general handwaving arguments, i.e.

∆R ≈ N−1/2 ∆ui (75)

Problematical is however the second sum, as we know that the ui happen
to be long-range correlated in a crystal with the correlations in 3-dim. only
decaying in leading order proportional to |xi−xj|

−1. On the other hand, we
know that there is a tendency of an oscillating behavior of correlations, that
is, to some extent the individual terms may compensate each other. But it
is very difficult to estimate this in a rigorous way.

The whole section 4 of [16] was devoted to this point in connection with
the question of (anti)correlations in the geometric fluctuations of space-
time on the Planck scale. We furthermore mentioned in that section some
older literature where such questions have been systematically treated in the
framework of statistical mechanics and quantum field theory. The general
problem consists in estimating the behavior of autocorrelations of certain
space-integrals (or sum) over some physically relevant (operator)density,
q(x), i.e.

QV :=

∫
V

q(x)d3x or
∑
V

q(xi) (76)

In many cases one is interested in the behavior of 〈QV ·QV 〉 when V becomes
large or approaches the whole space, R

3. Obviously the correlation function

〈q(x) q(y)〉 or rather 〈(q(x) − 〈q〉) (q(y) − 〈q〉)〉 (77)

enters in this expression with 〈q〉, the expectation of q(x), being subtracted.
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If the individual fluctuations are uncorrelated or only weakly correlated
(an integrable decay of correlations is sufficient) we get a behavior

〈QV · QV 〉 ∼ R3 (78)

in 3-dim. with R the diameter of the integration volume. The situation
frequently becomes better if certain covariance properties are present (for
example, q(x) being the zero-component of a conserved current); see section
4 of [16]. On the other hand, if the correlations are of long-range character,
the situation becomes more complicated. Such a problem was for example
analysed in [28] section 3 or [29] section 5 in the field of the statistical
mechanics of phase transitions.

In that case we got roughly a result that

〈QV /V · QV /V 〉 . R−1 (79)

for correlations decaying weakly like

〈q(x) q(y)〉 ∼ |x − y|−1 (80)

in 3-dim. and with q(x) normalized to 〈q(x)〉 = 0. In the above fluctuation
result possible anticorrelation effects (i.e. oscillations) are not included, only
the decay property has been used. That is, it is possible that the situation
is actually better but we do not know for sure.

Replacing now q(x) by our ui and the integral by the corresponding
sum, this result can be taken over for the calculation of the fluctuation of
our center of mass variable, i.e. we have

Conclusion 4.6 As the atomic position fluctuations in our crystal are long-
range correlated, we get the rigorous bound

〈(R −R0)
2〉1/2 . N−1/6 · ∆ui (81)

with R denoting the center of mass of some macroscopic part of the whole
crystal and R ∼ N1/3. It is however possible that the estimate is better if
(anti)correlations do effectively cooperate.

We learned however from our analysis in section 4 of [16] that one can
reduce the noise of the position fluctuations in solids, that is, by the same
token, in our measuring devices, if one uses substances with short-range po-
sition fluctuations. Macroscopically these short-range correlations work as
damping mechanisms. So our idea is to embed e.g. clocks and mirrors in
components of the total measuring system which display short-range correla-
tions. These may be for example viscous fluids or some dissordered systems.
For such systems we can use the results in section 4 of [16].
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Conclusion 4.7 For systems with e.g. integrable correlations we get the
much better result for the center of mass motion

〈(R −R0)
2〉1/2 ∼ N−1/2 · ∆ui (82)

with ∆ui being of atomic order. This implies that for sufficiently large N
the random movement of mirrors and clocks become very small compared
to typical atomic values and may come near the Planck scale under ideal
conditions.

5 Commentary

To sum up what we have finally attained; we have shown that by using com-
pound systems as measuring devices, in which critical parts like clocks and
mirrors are embedded in components which effectively damp the unavoid-
able random fluctuations of atomic positions via short-range correlations, we
can reach, at least in principle, a level of precision regarding distance mea-
surements, which may come near the Planck level. In any case, we think,
we have convincingly shown that experimentally there is no indication that
the precision of distance measurements displays a functional dependence on
the distance to be measured, as has been claimed by e.g. Amelino-Camelia
and Ng-van Dam.

These authors attributed this dependence to some Brownian-motion like
behavior of the geometric fluctuations in the micro-structure of space-time.
This is certainly a very interesting topic, but we will show in a forthcoming
paper (and have already argued in this direction in previous work, cited
above) that due to strong anticorrelations these microscopic fluctuations
have rather the tendency to compensate each other, so that in the end we
get a result which corroborates our above analysis.

Acknowledgement: Fruitful discussions with H.J. Wagner about harmonic crystals

are gratefully acknowledged.

References

[1] C.W.Misner,K.S.Thorne,J.A.Wheeler: “Gravitation”, Freeman, N.Y. 1973,
chapt. 43.4

[2] T.Padmanaban: “Limitations on the operational definition of space-time
events and quantum gravity”, Class.Quant.Grav. 4(1987)L107

25



[3] L.J.Garay: “Quantum Gravity and Minimum Length”, Int.J.Mod.Phys.
A10(1995)145

[4] R.J.Adler,D.I.Santiago,: “On Gravity and the Uncertainty Principle”,
Mod.Phys.Lett. A14(1999)1371

[5] Y.Jack Ng,H.van Dam: “Limitation to Quantum Measurements of Spacetime
Distances”, Mod.Phys.Lett. A9(1994)335

[6] G.Amelino-Camelia: “Limits on the Measurability of Space-Time Distances
in Quantum Gravity”, Mod.Phys.Lett. A9(1994)3415

[7] L.Diosi,B.Lukacs: “On the Minimum Uncertainty of Space-Time Geodesics”,
Phys.Lett. A142(1989)331

[8] H.Salecker,E.P.Wigner: “Quantum Limitations of the Measurement of Space-
Time Distances”, Phys.Rev. 109(1958)571

[9] G.Amelino-Camelia: “Gravity-Wave Interferometers as Quantum-Gravity De-
tectors”, Nature 398(1999)216

[10] G.Amelino-Camelia: “Are We at the Dawn of Quantum-Gravity Phenomenol-
ogy?”, Proc.Karpacz Winter School of Theor.Phys., Polonica, Febr.1999

[11] Y.Jack Ng,H.van Dam: “Measuring the Foaminess of Space-Time with
Gravity-Wave Interferometers”, Found.Phys. 30(2000)795

[12] Y.Jack Ng: “Selected Topics in Planck-Scale Physics”, Mod.Phys.Lett.
A18(2003)1073

[13] M.Arzano,T.W.Kephart,Y.Jack Ng: “From Space-Time Foam to Holographic
Foam Cosmology”, Phys.Lett. B649(2007)243

[14] R.J.Adler,I.M.Nemenman,J.M.Overduin,D.I.Santiago: “On the Detectability
of Quantum Space-Time Foam with Gravitational-Wave Interferometers”,
Phys.Lett. B477(2000)424, gr-qc/9909017

[15] J.C.Baez,S.J.Olson: “Uncertainty in Measurement of Distance”,
Class.Quant.Grav. 19(2002)L121, gr-qc/0201030

[16] M.Requardt: “Planck Fluctuations, Measurement Uncertainties and the Holo-
graphic Principle”, Mod.Phys.Lett. A22(2007)791, gr-qc/0505019

[17] G.Amelino-Camelia: “On the Salecker-Wigner Limit and the Use of Interfer-
ometers in Space-Time Foam Studies”, Phys.Lett. B477(2000)436

[18] Y.Jack Ng,H.van Dam: “On Wigner’s Clock and the Detectability of
Space-Time Foam with Gravitational-Wave Interferometers”, Phys.Lett.
B477(2000)429

26

http://arXiv.org/abs/gr-qc/9909017
http://arXiv.org/abs/gr-qc/0201030
http://arXiv.org/abs/gr-qc/0505019


[19] M.Requardt: “The Statistical Mechanics of Microscopic Long-Range
Bulk-Boundary Dependence in Black-Hole Physics and Holography”,
arXiv:0708.0901 [hep-th]

[20] M.Requardt,S.Roy: “(Quantum) Space-Time as a Statistical Geometry
of Fuzzy Lumps and the Connection with Random Metric Spaces”,
Class.Quant.Grav. 18(2001)3039, gr-qc/0011076

[21] J.Hough,S.Brown: “The Search for Gravitational Waves”, J.Phys.B
38(2005)S497

[22] L.D.Landau,E.M.Lifschitz: “Lehrbuch der Theoretischen Physik II”,
Akademie-Verlag, Leipzig 1966

[23] J.M.Ziman: “Principles of the Theory of Solids”, Cambridge Univ.Pr., Cam-
bridge 1972

[24] N.W.Ashcroft,N.D.Mermin: “Solid State Physics”, Saunders Comp., Philadel-
phia 1976

[25] R.Becker: “Theorie of Heat” 2nd ed., Springer, Berlin 1967

[26] R.Peierls: “Quantum Theory of Solids”, Clarendon Pr., London 1955

[27] K.Thorne in “Magic Without Magic: John Archibald Wheeler”, ed.
J.R.Klauder, Freeman, San Francisco 1972

[28] M.Requardt: “The Decay of Correlation of the Two-Particle Distribution
Function in a Phase-Separating Layer”, J.Stat.Phys. 31(1983)679

[29] M.Requardt,H.J.Wagner: “Poor Decay of Correlations in Inhomogeneous Flu-
ids and Solids”, J.Stat.Phys. 45(1986)815

27

http://arXiv.org/abs/0708.0901
http://arXiv.org/abs/gr-qc/0011076

	Introduction
	A Brief Review of the Salecker-Wigner-Amelino-Camelia-Ng-van Dam Thought Experiment
	Solid State Physics meets Quantum Gravity
	Commentary on the various Thought Experiments
	The Modified Thought Experiment of Baez et al. and the Hoop Conjecture
	A Comparism of the Ng-van Dam Thought Experiment with our Approach
	The Statistical Mechanics of Relative Position Fluctuations of the Components of Large Measuring Devices

	Commentary

