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Abstract: In this paper, a scenario based optimal power flow (OPF) is presented considering 
economic (operation cost minimization) and security objective functions. Security objective 
functions include both reliability and system transient stability improvement. Energy not 
supplied (ENS) cost is considered as the criterion for system reliability and critical clearing 
time (CCT) is considered as the criterion for power system dynamic stability. In order to 
reduce the computational burden of the proposed method, off-line training of neural network is 
used to determine CCT based on the system operating point. For this purpose, CCT parameter 
is calculated in Dig silent Software environment for various operating points of system and a 
data set is obtained to train neural network. In the proposed method, it is tried to improve 
dynamic stability of system, as well as decreasing the operation cost in post contingency state 
through optimal load shedding and generation rescheduling. Genetic algorithm (GA) is used as 
the optimization tool. The proposed framework is tested on IEEE 39-bus test system and 
results show efficiency of the proposed method. 
 
Index Terms; Transient stability, Critical clearing time, Dig silent, Neural network, Genetic 
algorithm 
 
1. Introduction 
 The dynamic aspect of power system has a direct relation with power system operation in a 
way that by increasing interactions between regions, power system stability seems more 
significant. In other words, balance between generating units for supporting predicted load, 
considering its economic aspect, makes some limitations for the power system. These 
behaviors highlight the importance of power system dynamic for stabilizing system. 
Consequently, power system operator should regard dynamic stability of system as well as its 
economic aspect [1-2]. In contingency condition such as generator outage or an outage in 
network, the first and the most important concern is maintaining the transient stability of the 
system. For this purpose, generation rescheduling and then load shedding are carried out. 
Rescheduling of load distribution and generation are among corrective measures in post 
contingency state. 
  A lot of researches have been done in the area of stochastic OPF and unit commitment. [3] 
presents an OPF in contingency conditions considering security constraints. In [4], the voltage 
stability is studied in post contingency state considering the generator and line outage. Besides, 
a new method of marginal calculation for determining voltage stability is proposed in [4]. In 
[5] load redistribution is used for voltage stability in contingency condition, so that the point 
which suffers from severe voltage fall can access more reactive power. [6] calculates maximum 
power that can be added to lines power flow considering CCT as a constraint. In this reference 
CCT is obtained by energy function method. [7] considers calculating CCT  using neural 
network from dynamic point of view. [8] presents a stochastic framework which may influence 
system operation from dynamic stability point of view. Besides stability indices are categorized 
and investigated using neural networks in this reference. Load redistribution is used in [9] to 
increase the transient stability in market framework. In [10] a day ahead market clearing is 
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presented considering dynamic security constraint. [11] proposes a load shedding method with 
the purpose of social welfare maximization. 
       In this paper, it is tried to help making decision in the contingency condition, so that the 
decision is made based on reality and present situation of network. As a result, a criterion of 
network needs to be available to inform the situation of the network in contingency condition. 
In this paper, critical clearing time is used as an index of network dynamic security. After load 
shedding and generation rescheduling, the system stability is analyzed. Generation and load 
dispatches are changed until desired transient stability is obtained, while reducing operation 
cost. In other words, an authentic and rational criterion is obtained to assess network status. For 
this purpose CCT is used as a criterion of system status assessment. In the proposed structure, 
transient stability is increased in the contingency condition through optimal power flow. The 
neural network which has been trained offline is employed to calculate CCT based on 
operating point of the system. For maintaining the system stability in contingency condition, 
genetic algorithm (GA) is used to determine optimal load shedding and generation 
rescheduling to minimize the operation cost and ENS cost.  
 
2. Problem formulation 
 In this study generator outage is considered as the uncertainty source. In contingency 
condition, corrective measures need to be applied to maintain the system security. Optimal load 
shedding and generation rescheduling are the corrective measures in the proposed framework. 
CCT is used as an index of system transient stability.  
 
A. Objective Functions 
Operation Cost: Operation cost (OC) of units is considered as the first objective function, as: 
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where α , β  and γ  are coefficients of generation cost, p is generating power of ith unit and n is 
the number of generating units. 
 
Energy Not Supplied (ENS): 
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where  is the load shed in bus, ns is the number of buses including load and h is the 
number of operation hours.  
 
Critical clearing time(CCT): 

 3F max[ ]CCT=  (3) 
 
B. Problem Constraints 
Power balance: 
 Units generating power should always be equal to sum of the power consumed by loads and 
network active losses, as eq. (4). 
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where Pgi is the generating power of ith unit, Ng is the number of units, Pdj is consumed power 
of dth load, Nl is the number of loads and Ploss is the network active losses. 
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Power flow constraints: 
, ∑ . . .  (5) 
, ∑ . . . cos  (6) 

 
Vk and δkare the magnitude and angle of the voltage of Kth bus. Yki and θki are the magnitude 
and angle of ki element of admittance Matrix. 
 
Security Constraints: 

 
max max
l l lS S S− ≤ ≤  (7) 

 
Sl isthe apparent power flow of line l and   is the maximum capacity of line l. 

 
min max

k k kV V V≤ ≤  (8) 
 

 and  are the maximum and minimum voltages of  bus, respectively. 
 
Operation constraints of units: 

 
min max

gi gi giP P P≤ ≤
 

(9) 

 
min max
gi gi giQ Q Q≤ ≤                                                  (10) 

 
 and  are respectively maximum and minimum active power of  unit and  

and    are respectively maximum and minimum reactive power of  unit. 
 
System Reliability: 
To enhance the system reliability, the maximum load shedding at each bus is restricted % 50 of 
total active load of that bus, as: 
 

 
,max 0.5shed

j djP P≤  
(11) 

 
3. Critical clearing Time (CCT) 
 The third objective (F3) is to increase the power system dynamic security by improving its 
transient stability under contingency conditions. To this end, differential equations are solved 
to procure rotor angles and angular velocities of the generators at each time [8]. Under 
contingency conditions, the generators synchronism may be lost by increasing the values of 
relative rotor angles. Here, time-domain simulations are carried out to evaluate the CCT for 
each contingency, which is one of the most important indices of the system transient stability 
assessment. As for transiently stable operation, CCT should be greater than the actual operating 
time of circuit breakers, maximizing the CCT as the objective of the power system operation 
problem considerably enhances the power system transient stability. It is assumed that three-
phase-to-ground faults occur at buses with generators, and are cleared by tripping the lines. 
Furthermore, the same conditions are considered for both the fault-cleared and pre-fault 
situations of the system [8], [12]. Using CCT index a reliable assessment of system status can 
be fulfilled. For this purpose, CCT index is calculated for various operating point of the system 
in the environment of Dig silent software. Then the obtained data set is used to train the neural 
network. Now, using the trained neural network CCT index can be quickly computed 
according to the operating point of the system.  
 
A. Providing Data set for the neural network 
 In this paper a multi layered feed forward network (MLFFN) which is a common type of 
neural network is used to determine the CCT according to the power system operating point. 
Due to the effect of this event on the performance of surrounding generators and consequently 
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the effect of these generators behavior on the system stability, voltage, rotor angle and the 
generating power of these generators have been used as input data of the neural network. CCT 
is the output data of the neural network. As aforementioned data set required for training the 
MLFFN, are provided by simulation in the environment of Dig silent software. For this 
purpose, it is assumed that an outage occurs in the network and it is cleared after a certain 
period of time (Relay Performance Time). This outage has its own CCT index denoting the 
opportunity to clear the outage. In fact, CCT defines the importance of an outage, so that the 
smaller CCT index of an outage means the more important outage and there is less opportunity 
to clear it. Consequently, it is more probable to make system instable. Therefore, to maintain 
network stability after clearing the outage, outage clearing time (Relays Performance time) is 
required to be shorter than CCT. 
The generator power-phase curve is shown in Figure 1. The steps of calculating CCT index 
using simulation in the environment of Dig silent software are as follows:  
• First, two regions of A1 and A2 are equalized as eq. (12) and the critical clearing angle 

(δCCT) is obtained. 
• CCT is calculated as in eq. (13).  

 

 
Figure 1.Generator Power-Phase curve 
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 By changing loads and generating power of generators, various operating points of system 
are created in a way that power balance constraint is satisfied in each operating point. In each 
operating point, faults are considered on the generators and the data set is obtained for these 
faults [6-7]. 
 
B. Neutral network 
 To decrease the computational burden of the proposed method, a MLFFN is used to 
calculate the value of CCT based on the operating point of the power system. As a matter of 
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fact, MLFFN is employed to determine the value of CCT for each solution of GA population 
based on the related power system operating point. As described in Section 3.1, a data set 
including 1600 data pairs is obtained using the simulations. 70 %, 15 % and 15 % of the 
obtained data pairs are respectively considered for Training, testing and validation of the 
proposed MLFFN. The generators power output and rotor angles and voltage magnitude of the 
buses are taken as the inputs to the MLFFN. The number of inputs depends upon the topology 
of the network under consideration. MLFFN includes two hidden layers and nodes with 
nonlinear activation function [7]. Figure 2 shows the structure of the proposed neural network. 
As can be seen from Figure 2, each node in a layer is joined to other nodes in adjacent inputs 
with weighted coefficients. 
 

 
Figure 2.The structure of the proposed neural network 

 
 For neural network such inputs must be selected so that as a parameter of network possess 
sufficient information about network status for determining CCT [8, 12]. The used active 
function in hidden layers is tangent hyperbolic and in output layer the linear function is used as 
the active function. “Leven berg-Marquardt” back propagation algorithm [8] is employed to 
train the network due to its good convergence characteristic. For the optimal selection of the 
number of neurons in the hidden layers, it is assumed that the number of neurons is varied from 
12 to 50 in the first hidden layer and from 2 to 11 in the second hidden layer. Changing the 
number of neurons in hidden layer, the square amount of error which is a feature of neural 
network correct function, can be changed. The final structure of MLFFN includes the number 
of neurons with minimum mean square error [8]. 
 
C. Fuzzy-weighting approach[13] 
 In this paper, weighting method based on fuzzy approach is used to transform the multi 
objective problem to a single objective one. In the proposed method, a fuzzy function is used to 
transfer the objectives to a fuzzy domain. For this purpose, Eq. (14) is used to normalize the 
objective functions which should be minimized and Eq. (15) is used to normalize the objective 
functions which should be maximized. Eq. (16) shows total fitness value of the proposed 
problem which should be maximized. 
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Figure 4. The  flow diagram of the proposed scenario based OFF using GA 
 

 1 2 3Oc ENS CCTMax F k k kμ μ μ= + +   (16) 
 
k1, k2 and k3 are weighting coefficients with the condition k1+k2+k3=1. These coefficients can be 
set by the system operator according to the specific preference. Actually these coefficients 
determine the importance of the objective functions for the system operator. 
 
4. Scenario based OPF using Genetic Algorithm (G.A) 
 In this paper, a binary GA is employed to optimize the scenario based OPF problem. The 
proposed structure of the GA chromosomes is shown in Figure 3. See [14] for more details 
about GA. Figure 4 illustrates the flow diagram of the proposed scenario based OPF using GA. 
 

LS1 LS2 LS3 … LS37 LS38 LS39

Figure  3. GA chromosome structure 
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5. Numerical Results 
 The proposed method is studied on IEEE 39-bus test system which includes 10 generators, 
39 buses and 46 transmission lines [15]. Figure 5 shows the single diagram of the IEEE 39 bus 
test system. The total available generation capacity and the total system load of the system are 
7367 MW and 6254.23 MW, respectively. In this paper, outage of the unit located on 38th bus 
has been considered as a scenario. This outage has also been simulated in the simulation 
environment of Dig silent software. This simulation has been carried out in different operating 
points. Due to the effect of this event on the performance of surrounding generators and 
consequently the effect of these generators behavior on the system stability, voltage, rotor 
angle and the generating power of these generators have been used as input data of the neural 
network. CCT is the output data of the neural network. A data set including 1600 data pairs are 
obtained using the simulations. 70 %, 15 % and 15 % of the obtained data pairs are 
respectively considered for Training, testing and validation. Regression which is an important 
criterion in assessment of neural network performance clearly shows the difference between  
 

 
Figure 5. IEEE 39-bus test system 

 
 

 
Figure 6. Neural network regression gragh 
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the amount of objective and the output of network. Figure 6 shows the regression criterion for 
the proposed neural network of this paper. As can be seen from Figure 6, the fulfilled test has 
91% of precision which is a relatively acceptable one. It should be noted that the precision will 
increase by increasing the number and the diversity of the operating points. 
 The GA population size and the number of algorithm iterations are considered equal to 50 
and 200, respectively.  The convergence manner of the GA is shown in Figure 7. As it can be 
seen from this figure the algorithm is converged in 59th iteration and the total objective 
function is fixed at the value of 04575.  

 

 The weighting coefficients of k1, k2 and k3 are considered equal to 2/3, 1/6 and 1/6 (the 
importance of economic objective function is four times of security objective functions and the 
importance of EIC and transient stability is the same). By preparing the data set using the 
simulation environment of Dig silent software, then training the neural network using the 
obtained data set and finally running the GA, the optimal solution of scenario based OPF is 
obtained. Table 1 presents the generation schedule of the generating units. As it can be seen 
from Table 1, all available units are almost fully committed due to the outage of unit located on 
Bus 38. The load shed at the buses are presented in Table 2. As it cab ne concluded from Table 
1 and Table 2, the total generating active power of the units and the total load shed at the buses 
are respectively obtained as 3910.31 MW and 2370 MW, using the proposed scenario based 
OPF. From Table 2, it also can be seen that the loads located on the buses next to Bus 38, 
which includes the outage, are considerably shed. That is to compensate the lost power of the 
interrupted unit. Table 3 shows the values of the objective functions associated with the 
obtained solution by the GA. The normalized values of the objective functions and the total 
fitness value are also shown in this table. 
 

Table 1. Generation schedule of units 
Unit No Bus No Active Power (MW) 

1 30 437.91 
2 31 439.7 
3 32 437.38 
4 33 428.1 
5 34 427.21 
6 35 431.72 
7 36 429.79 
8 37 434.29 
9 38 0 

10 39 444.21 

Figure7. GA convergence manner 
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Table 2. Load shed at the buses 
Bus No Load Shed (MW) Bus No Load Shed (MW) 

1 35.06 21 104.85 
3 131.09 23 116.12 
4 81.37 24 149.32 
7 85.58 25 105.86 
8 173.23 26 24.59 
9 0.069 27 136.65 

12 0.012 28 60.71 
15 145.29 29 125.67 
16 142.47 31 3.75 
18 17.68 39 462.42 
20 268.21 - - 

 
 As in power system the relays function time is 100 ms, for maintaining the system stability, 
clearing time must be more than this interval, so that relays and breakers can see and clear the 
fault. As it can be seen from Table 3, CCT is more than relays’ function time in this study, 
which demonstrates the system stability.  
 

Table 3. The results of objective functions of the solution obtained by the GA 

Objective OC ($) ENS (MW) CCT (ms) Total fitness value 

Real value 18167.43 331815.7 356.49 - 
Normalized value 0.534 0.105 0.5022 0.4572 

 
 Since, the scenario based OPF is run $24$ hours prior to the real happening time, it is vital 
to use a fast method. The proposed scenario based OPF problem with about 200 iterations, 
takes about 17 min of the CPU time in a PC computer (2.13-GHz) processor with 2 GB of 
RAM, which is an acceptable time. This is because of using the offline MLFFN training in the 
proposed scenario based OPF method than the traditional method. 
 
6. Conclusion 
 Power system operation in contingency condition is of great importance and needs proper 
decisions in order to maintain system stability and prevent system black out. In this paper, a 
scenario based OPF including load shedding and generation rescheduling is proposed to 
maintain the system stability in contingency condition. The operation cost, ENS and transient 
stability are the objective functions of the problem. A generator outage is simulated by Dig 
silent software and data set are provided for CCT calculating. The a neural network is 
employed to train the obtained data set. The genetic algorithm is used as the optimization tool.  
The proposed method are tested on the IEEE 39-bus test system. The following results are 
concluded: 
• Combination of load shedding and generation rescheduling in OPF scenario based problem 

may result in a more secure and economic system in contingency conditions. 
• Using off line training of neural network for specifying the transient stability criteria of 

power system decrease the computational burden of the scenario based OPF problem and 
leads to a faster OPF. 

The research work is under way in order to include a stochastic framework for OPF problem. 
Besides, more advanced neural networks such as ANFIS can be used for training the data set. 
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