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ABSTRACT

Harmonic birdsong is often highly nonstationary, which sug-
gests that standard FFT representations may be of limited
suitability. Wavelet and chirplet techniques exist in the lit-
erature, but are not often applied to signals such as bird vo-
calisations, perhaps due to analysis complexity. In this pa-
per we develop a single-scale chirp analysis (computationally
accelerated using FFT) which can be treated as an ordinary
time-series. We then study a sinusoidal representation simply
derived from the peak bins of this time-series. We show that
it can lead to improved species classification from birdsong.

1. INTRODUCTION

Birdsong is extraordinarily varied in its characteristics across
the many species. In this paper we consider how best to rep-
resent harmonic bird vocalisation signals for tasks such as au-
tomatic classification. A large proportion of the energy in
many bird vocalisations is contained in the harmonics and es-
pecially in the fundamental, meaning that pitch analyses (sim-
ilar to pitch analyses of voice or music) are generally useful.
However, it is important to note that the pitch of bird vocalisa-
tions is often very fast-changing. Tierney et al. observed from
a broad dataset that birds tend to produce an arcing pitch con-
tour within each note of a vocalisation, and related this to mo-
tor constraints on the breathing and vocal apparatus [1]. This
fine detail is not only produced but also perceived: Gentner
demonstrated that European starlings can distinguish varia-
tions over short timescales (in the range 10–100ms) when
recognising song [2].

Recent years have seen a growth in the development of au-
tomatic analyses of bird vocalisation. These are motivated by
application tasks such as unattended migration monitoring,
species identification and so on, and generally use a signal
processing and classification framework similar to those ap-
plied to speech and music [3]. It is very common for the sig-
nal representation to be based on framewise “FFT” analysis,
i.e. dividing the signal into windowed frames and applying
the DFT to each frame. This approach implies an assumption
that the signal is stationary within each frame, representing
it as a sum of stationary sinusoidal components. FFT mag-
nitudes are often then converted into Mel-Frequency Cepstral

Coefficients (MFCCs), and/or represented in summary statis-
tics, before being used for classification tasks. Briggs et al.
evaluate different features extracted from the signal, reflect-
ing the feature types commonly used: spectrogram magni-
tudes, MFCCs, and spectral centroid and bandwidth [4]. Gra-
ciarena et al. explore variations on the MFC (such as varying
the number of filters) [5]. All of these features are based on
FFT magnitudes.

Considering the rapid pitch variation present in much bird
vocalisation, it becomes clear that the assumption of local sta-
tionarity is broken, and so the use of FFT-based features may
obscure some of the information present in the signal. As
summarised in [6, Section 4.4.1], estimation of a sinusoidal
trace from a spectrogram has error terms which are small only
if the temporal variations in pitch (and amplitude) have a long
timescale with respect to the window size.

In Figure 1 we demonstrate the issue graphically: we show
two short signals whose instantaneous frequencies change
very differently (one is a downward chirp and one is an up-
ward chirp), yet their magnitude spectra are the same. The
sinusoids’ energy has been “smeared” across many bins of
the FFT. Note that the phases of the two signals (not shown)
do differ; however, it is difficult to make use of such phase
information for any semantic purposes. The vast majority of
applications (including all MFCC-based applications) work
with magnitudes only, so are vulnerable to the kind of infor-
mation loss shown in Figure 1.

In recent decades there has been considerable develop-
ment of alternative bases for signal analysis, such as wavelets
and related multiscale analyses [6]. These are better able to
model nonstationary phenomena (transients, discontinuities)
than FFT, and so are used in many signal-processing applica-
tions such as radar. Selin et al. apply wavelets to bird sounds
for the specific purpose of addressing inharmonic and tran-
sient bird sounds, with promising results [7]. Multiscale rep-
resentations are useful but may be harder to interpret than a
vector time-series: e.g. it is less straightforward to recover a
continuous sinusoidal representation.

Related to the wavelet is the chirplet, which is a windowed
sinusoid with a monotonically time-varying frequency. For
harmonic bird vocalisations it is reasonable to suppose that
we might improve on the stationarity assumption of the win-
dowed FFT by modeling the signal as a series of very brief
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Fig. 1. Two non-stationary sinusoidal signals of N = 256
samples (upper) and their FFT magnitude spectra (lower; low-
est 80 bins shown). The frequency evolution is very differ-
ent (high-to-low vs. low-to-high), but the FFT magnitudes are
identical. The examples are synthetic, so units are arbitrary.

segments each with linear frequency modulation. Birdsong
pitch variation is not linear in general, but may be usefully
approximated as being piecewise linear. In this paper we pro-
pose a computationally efficient approach to modelling the
data under these assumptions, yielding a single-scale time-
series representation. We then demonstrate its application to
classification of bird species from audio, showing that this ap-
proach gives better results than an FFT-based equivalent.

2. HETERODYNE CHIRP ANALYSIS

Our approach aims to model the signal as a series of win-
dowed chirp functions, whose frequency is confined to a par-
ticular bandwidth of interest. Given an input signal, we divide
it into overlapping frames as with standard spectral analysis:
for example, for 44.1 kHz audio, 1024-sample (23 ms) frames
with 50% overlap. The question then is how to detect chirp-
like signals within each frame, with frequency varying within
some bandwidth of interest. In this paper we will restrict our
attention to linear chirps, which we express as:

xn = A sin(2πfnn− φ), 0 ≤ n < N (1a)

fn = fc +
θ

fs
(n− N

2
) (1b)

where fn is the time-varying frequency, fs the sample rate,
and N the frame length in samples; free parameters which
allow us to model different chirps are the centre frequency fc,
frequency slope θ (in Hz/s), amplitude A and phase offset φ.

To detect a chirp given this model, one could use para-
metric optimisation, or an explicit dictionary search such as
matching pursuit. However the former would not be a simple
optimisation since the effects of the free parameters interact
with each other, and the latter would require an extremely
large (or continuous) dictionary to account for all possible
frequency and phase possibilites. Instead we will describe
an approach which allows us to use a compact dictionary of
atoms and to account for linear frequency shifts and phase
differences in a parametric manner, which we now describe.

Under standard FFT analysis, fast modulation will smear
energy across bins. If we could transform chirp-like signal
frames such that energy was concentrated in a single bin for a
given modulation pattern, this would improve representation.

Heterodyning (ring modulation) is multiplying an input
signal by some designed signal, to generate a result with new
frequency content: difference tones (with frequencies equal
to the difference between input frequencies) and sum tones
(with frequencies equal to the sum of input frequencies). The
technique is widely used in signal processing such as in the
demodulation of radio signals. When considered in the fre-
quency domain, the operation is a convolution of the two sig-
nals’ spectra [8, Section 5.5].

If we are modelling our signal frame as a linear chirp within
a particular frequency range of interest, then we know the
range of possible slopes of the frequency. For example, it may
be reasonable to expect a chirp with a slope of−100 kHz/s. In
that case, if we multiply the input by an artificial signal which
also has a slope of −100 kHz/s, we can produce a difference
tone with a stationary frequency (Figure 2). The actual fre-
quency produced will vary with the frequency offset fc of the
input; so if we perform FFT on the heterodyne signal then we
should detect energy in the appropriate bin. As shown in the
lower part of Figure 3, this requires some care in selecting the
bandwidth of interest, so that the sum tones do not alias into
the frequency range in which difference tones are expected,
or else spurious detections may occur.

We add one further modification to this approach, which is
that our probe signals will be analytic chirps rather than real-
valued chirps, which brings two particular benefits. Firstly,
we wish to respond equally strongly to an input signal irre-
spective of its phase offset: if heterodyning two real-valued
signals, the amplitude of the difference tone can depend on
the relative phase. By using an analytic chirplet, we guaran-
tee that when heterodyned with a real signal having a match-
ing frequency-slope, there is some “slice” of the probe in
the complex plane which has the phase offset to produce the
strongest response; after performing FFT on the heterodyned
result, the magnitudes will reflect this. Secondly, an analytic
signal has no negative-frequency components, whereas a real-



Fig. 2. Chirp heterodyning: multiplying two signals with the
same slope will produce a difference tone with zero slope.

Fig. 3. Multiplying two signals is equivalent to convolving
their spectra; here shown for a real and an analytic signal.
Shaded regions represent the bandwidths of interest: the in-
put and probe bandwidths combine to determine the detection
region to be used (the difference-tone region, the left shaded
area in the product spectrum).

valued signal has negative frequency components mirroring
the positive frequency components. Since heterodyning is
equivalent to a convolution of spectra, by using analytic probe
signals we can avoid potential issues due to convolution with
negative-frequency components intruding into the frequency
range of interest (Figure 3).

In framewise spectral analysis it is standard to multiply
each frame by a tapered window function to minimise bound-
ary effects. We also do this, using a Tukey window, a tapered
cosine window with full amplitude in the central 50% of the
frame. For efficiency we build the windowing function into
the pre-computed chirp dictionary.

Having motivated the heterodyning approach, we are now
ready to summarise our feature analysis procedure. To pre-
pare a dictionary of probe chirps:

1. Select the analysis parameters: audio sample rate fs,
input frequency range of interest, frame size N , probe
chirp centre frequency fc, probe chirp maximum abso-

lute slope θmax, and the size of the dictionary, i.e. the
granularity of possible slopes.

2. For each θ ∈ [−θmax, θmax] create a pre-windowed probe
chirp using (1b) and the windowed analytic equivalent
of (1a):

an = wne
i2πfnn , 0 ≤ n < N (2)

where wn is the window function, and amplitude and
phase offset terms are not needed (held constant).

3. Normalise each probe chirp to an L2 norm of 1.
To analyse an audio signal, first (optionally) bandpass filter it
to the frequency range of interest. Then, for each audio frame:

1. Multiply the frame separately by each probe chirp.

2. Take the FFT of each of these heterodyned results.

3. Take the magnitude of these results, within the detection
range, for further processing.

The range for detecting the difference tones will be the chirp
centre frequency minus the input frequency range.

To illustrate the result of the procedure, Figure 4 shows
the analysis of the two signals from Figure 1. Each column
shows spectral magnitudes (within the range of interest) after
heterodyning with one of the dictionary atoms. The columns
are plotted in descending order of slope. The central columns
(zero slope, equivalent to what could be detected by ordinary
FFT magnitudes) for the two plots are indistinguishable from
one another, but each plot clearly shows a strong detection in
a different region, showing that the chirp analysis makes it
possible to distinguish the two signals.

Our procedure yields a matrix of magnitudes for each
frame, meaning that for a given audio signal the result is a
matrix time-series, not a multiscale representation.

2.1. Derived measures

Various features could be derived from the analysis depicted
in Figure 4, or indeed the raw analysis frame could be used for
classification and other tasks. In the present work we will fo-
cus simply on taking the peak bin (the bin with highest mag-
nitude) from each frame. This gives us a three-dimensional
feature [fc, θ, A] where A is the peak magnitude.

In the next section we will demonstrate that this simple fea-
ture derived from the chirp analysis is a useful feature for clas-
sification tasks. However, the time-series nature must also
be taken into consideration: when comparing audio files of
differing lengths, and containing different numbers of calls,
comparison of two time-series using frame-by-frame similar-
ity is suboptimal, since the audio recordings might not be
aligned meaningfully to each other. This is why techniques
such as cross-correlation and dynamic time warping (DTW)
are used in the literature [3][9]. However, these are most use-
ful for single-syllable or single-phrase matching; it is desir-
able to be able to analyse bird vocalisations without needing



1050510
Slope (bins)

0

5

10

15

20

25

30

De
te

ct
io

n 
bi

n

1050510
Slope (bins)

0

5

10

15

20

25

30

De
te

ct
io

n 
bi

n

Fig. 4. Chirp heterodyne plots of the two signals of Figure 1.
The central column (marked with a white line) is θ = 0,
equivalent to what could be detected using ordinary FFT mag-
nitude analysis.

a prior segmentation step, and in a way which can compare
recordings which may contain different numbers of syllables.

Our aim is to derive a feature representation which reflects
short-time detail of unsegmented birdsong for classification.
We will use a summary of time-series data designed to cap-
ture this detail, by creating a histogram of short-time temporal
sequences (bigrams) within a recording. We first quantise the
frequency scale into a small number of b bins within the re-
gion of interest (such as 2–5 bins). For a single chirp frame,
this is applied to its starting and ending frequencies, giving
b2 possible trajectories. For the time-series of chirp frames
we then construct bigrams, meaning every adjacent pair of
frames is considered. Bigrams with strong magnitude (we
use the top 50-percentile) are then histogrammed, with their
magnitudes being summed onto b4 histogram bins. We sug-
gest a small value for b because there are b4 bins, meaning the
histogram may be unhelpfully sparse with large b.

This procedure yields a single 4D histogram for an audio
recording of any length, indicating the characteristic patterns
of short-term frequency variation. Histograms can be com-
pared using a measure such as Jensen-Shannon divergence.

3. CLASSIFICATION EXPERIMENTS

We are particularly interested in recognising bird species from
recordings that may not already be segmented, and in recog-

Binomial name Common name Num
Chloris chloris Greenfinch 4
Cyanistes caeruleus Blue tit 4
Erithacus rubecula European robin 7
Parus major Great tit 4
Periparus ater Coal tit 4
Phylloscopus trochilus Willow warbler 6
Pica pica Magpie 4
Turdus merula Blackbird 5
Turdus viscivorus Mistle thrush 7

Table 1. Summary of our dataset of amateur recordings.
(Xeno-canto IDs: XC28961, XC28962, XC55008, XC91122; XC29705,
XC32937, XC42178, XC44203; XC29285, XC39870, XC40009, XC41056,
XC44440, XC64958, XC70124; XC43598, XC71454, XC91115, XC91116;
XC24884, XC30158, XC42515, XC70209; XC24902, XC28531, XC29731,
XC29765, XC77113, XC83301; XC29527, XC40006, XC43147, XC92051;
XC30569, XC31864, XC70123, XC72861, XC72862; XC26978, XC30280,
XC31594, XC46750, XC56007, XC71867, XC91147.)

nising common UK bird species. Hence we collated a small
dataset of recordings from the volunteer-curated xeno-canto
website,1 and performed classification on this dataset.

Our dataset is described in Table 1. It contains multiple
examples from each of nine species (M = 45 instances in
total). The examples were chosen by a search of the xeno-
canto database, initially for bird species with multiple song
examples recorded in the UK, and later extended with Euro-
pean recordings of the same species to give more instances per
species. We downloaded the audio for each example and con-
verted it to a monophonic wave file. Durations vary widely:
average duration is 54 s, ranging from 4 to 173 s. The data
can be downloaded from xeno-canto using the recording IDs.

We analysed these data by applying our framewise chirp
analysis (plus an analogous FFT analysis for comparison).
Settings used were fs = 44.1kHz, fc = 8kHz, θmax =
172kHz/s, N = 1024, giving atoms for 187 different slope
angles for an input bandwidth of 2–8 kHz. We then calculated
the peak-bin histogram for each audio recording separately,
and used the histograms for classification. We performed
leave-one-out cross-validation to evaluate classification per-
formance, using a simple k-nearest neighbours (kNN) clas-
sifier together with the Jensen-Shannon divergence measure.
We performed this experiment for kNN settings of k ∈ 1, 3, 5
and frequency quantisation settings of b ∈ 2, 3, 4, 5 (recall
that a histogram has b4 bins).

Results are shown in Figure 5. They show that the bin res-
olution can strongly affect classification performance: b = 2
shows the poorest performance, presumably reflecting the
poverty of the two-bin frequency scale. The choice of k does
not have a consistent effect on our results. The framewise
chirp representation yields a general improvement over the

1http://www.xeno-canto.org/
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Fig. 5. Classification results for 9-class dataset of unseg-
mented birdsong, using kNN classifier applied to peak-bin
histograms derived from FFT (dashed lines) or chirp analysis
(solid lines). Results are average correct classification rate,
calculated using leave-one-out cross-validation. Baseline rate
(assigning all queries to the most populous class) is 16%.

FFT-based representation: around 8 percentage points on av-
erage, with strongest classification (78%) observed when us-
ing the chirp representation with b = 4 and k = 1.

This level of recognition using a dataset of unsegmented
amateur audio recordings, with widely varying durations, is
encouraging. Our analysis can be implemented efficiently,
having a fixed complexity for a single frame, yielding com-
plexityO(L) for a recording of L frames. The kNN classifier
can also be implemented efficiently e.g. using a k-d tree data
structure having search complexity O(logM).

4. CONCLUSIONS

We have argued for an improved feature representation of bird
vocalisation signals, given the importance of fast temporal
pitch variation. To facilitate appropriate analysis we have in-
troduced an efficient approach to framewise chirp analysis of
audio, using FFT to detect difference tones after heterodyn-
ing audio frames with dictionary atoms. This yields a matrix
time series of amplitudes which represents the instantaneous

slope as well as frequency of signal components. The partic-
ular approach we use is related to other chirplet analysis tech-
niques, but with a simple time-series representation which can
be computed in a highly parallel fashion.

For classification, we reduced the matrix time-series to a
simpler peak-bin representation, and used a histogramming
approach to summarise short-term frequency variations in an
audio excerpt. We showed that our chirp-based representation
can lead to improved species recognition, even with unseg-
mented audio.

We have evaluated our representation using simple distance
metrics and standard classification algorithms. In future work
it would be useful to explore whether the representation also
improved the performance of custom distance metrics such
as that of [9]. We would also like to study performance with
a larger data set, and explore aspects of the framewise chirp
representation beyond the peak-bin feature.
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