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1. Introduction 
A detailed understanding of thermal transport and 

management in layered systems is increasingly emerging 
as thrust area in the modern efficient energy technology 
and theorists are interestingly involved to explain this 
phenomenon. The study of heat transport in conventional 
and high temperature superconductors (HTS) emerged as 
an important tool to understand the scenario of phonon 
and electron energy spectrum along with various collision 
events. The thermal conductivity κ  was understood in 
such systems contributed both by electrons and phonons 
in the form of electronic thermal conductivity eκ  [1] and 
phonon conductivity phκ  [2] related by .e phκ κ κ= + At 
fairly low temperatures the Widemann-Franz law often 
breaks down severely and the metallic behavior of solids 
which become superconducting suggests that the 
electronic thermal conductivity starts to disappear and one 
can take 0eκ →  negligibly small with phκ κ  instead of 
the concept of isolated channels [3,4,5]. The layered high 
temperature superconductor structures are highly 
anisotropic in character and thus the in-plane and cross-
plane thermal transport becomes more and more important. 
Some investigations reveal [6,7] that scattering of 
electrons from phonons, impurities and interfacial 
roughness can be used to determine in-plane electron 
transport and resonant tunneling effects and the in plane 
scattering can be used to determine cross-plane transport 
[8,9,10] and this is further supported by the different 
phonon velocities in different directions [9]. Lattice 
vibrations can couple to each other and strongly couple 

with any structural defect, surface boundaries, dislocations 
or point defects [2,4,11,12,13,14,15].  

The thermal conductivity of layered structures based on 
Boltzmann transport equation approach has studied by 
many theorists [16,17,18] using the method of relaxation 
time approximation (RTA). The validity of RTA, however, 
suffers from many adequacies because of its derivation for 
low frequency phonons at low temperatures, additivity of 
lifetimes of individual scattering events and its 
incompatibility to explain inelastic phonon scattering 
processes [18-24]. Adopting the quantum mechanical 
approach these inadequacies have been successfully 
removed from the phenomenological theories of thermal 
conductivity [18,20,21]. The discrepancies involved due 
to the phonon dispersion relation and violation of 
Matthiessen’s rule of additivity of inverse relaxation time 
have been removed by introducing the equivalence 
between relaxation times and line widths [20,21]. The 
electron-phonon and the resonance scattering events are 
found to be highly sensitive in microstructures also, which 
successfully explain the abnormal behavior (dip and rise) 
of thermal conductivity curve at and above the critical 
temperature cT . In this region an utmost care has to be 
taken as the thermal transport takes place in the presence 
of pairons in HTS which do not contribute to thermal 
conductivity.  

In the present work we have investigated the role of 
various scattering processes based on many body quantum 
dynamics and the thermal conductivity is resolved into  
in-plane and cross-plane contributions which addresses the 
possibility of restricting the heat flow in a particular 
direction and allowing it in the another which can be 
exploited to the development of exotic technological HTS 
crystals for industrial use. In the present case in-plane 
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thermal conductivity is observed greater than cross-plane 
thermal conductivity.  

2. Formulation of the Problem 
The anisotropic considerations suggest that the thermal 

conductivity of a layered crystal can be resolved as a 
contribution of in-plane thermal conductivity ||κ  and cross 

-plane thermal conductivity κ⊥ as 

 ||κ κ κ⊥= +  (1) 

where ||κ and κ⊥ can be obtained from Callaway 
expression [2] using relaxation time approximation in the 
following form 
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where Dω  is the Debye Frequency, 1( )Bk Tβ −=  and in 
order to get rid of the inadequacies involved due to 
Matthiessen’s rule the relaxation times 1

|| ( )kτ ω−  and 

( )1
kτ ω−

⊥  are along in-plane and cross-plane directions 
which can be replaced by phonon line widths || ( )k ωΓ  and 

( )k ω⊥Γ  [18,20,21]. The evolution of || ( )k ωΓ  and 

( )k ω⊥Γ  can be obtained with the help of quantum 
dynamics of phonons [20,21,25,26,27,28]. 

3. The Collision Processes 
In order to investigate the many body quantum 

dynamics to explore the various scattering mechanism, let 
us consider the Hamiltonian for a HTS in the form 

 p A e ep DH H H H H H= + + + +  (2) 

where, 
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In the above equations the symbols pH , AH , eH , 

epH  and DH respectively stand for harmonic phonon- 
[25], anharmonic phonon- [26,27,28], electron-[29,30], 
electron-phonon coupling- [29,30,31] and Defect- 
Hamiltonian [26,28,29,30,31]. This Hamiltonian can be 
used to evaluate the double time temperature dependent 
phonon Green’s function  
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here kω is the renormalized phonon frequency and 

( , ', )P k k ω is the self-energy operator or response function 
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Where ( )k ω∆  (real part of ( , ', )P k k ω ) is shift in the 
phonon frequency and the imaginary part is the phonon 
frequency line width at the half maximum of the phonon 
frequency peak and can be written in the form 

 ( ) ( ) ( ) ( ) ( )epA D AD
k k k kkω ω ω ω ωΓ = Γ + Γ + Γ  + Γ  (6) 

Here ( )D
k ωΓ , ( )A

k ωΓ , ( )AD
k ωΓ and ( )ep

k ωΓ are the 
individual contributions of line widths (life times) due to 
point defect scattering, phonon-phonon scattering, 
interference scattering and electron-phonon scattering, 
respectively, more details of every term are available in 
the references elsewhere [26,27,28,31] and will be 
discussed in the rest of the paper.  

The relaxation time as per Callaway formalism is given 
by 1 1

i
i

τ τ− −= ∑  for i  type of scattering processes not 

interacting with each other which in general is never 
found in a real system and addresses the wrong 
application of Matthiessen’s rule. The i  type of collision 
events may be described in terms of boundary scattering

1
CBτ − , impurity scattering ( )1

Dτ ω− , phonon-phonon 

collision ( )1
phτ ω− , interference scattering ( )1

ADτ ω− , 

electron-phonon ( )1
e pτ ω−
− , resonance scattering ( )1

Rτ ω−  
events, etc. The problem of use of adequate dispersion 
relations and the inverse additivity of relaxation times can 
be resolved by taking the concept of renormalized and 
perturbed mode frequencies [18,31] and 1 ( )kτ ω− = Γ  
[18,20,21,31] which in accordance with Eq. (1) can be 
resolved in the form  
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⊥⊥

= + = Γ + Γ = Γ




 (7) 



 International Journal of Physics 108 

 

where  

 
( ) ( ) ( )

( ) ( )

1

1

A AD
k CB k k

ep D
Rk k

τ ω τ ω ω

ω ω τ

−

−

= + Γ + Γ

+ Γ + Γ +





 



 

 (8a) 

 
( ) ( ) ( )

( ) ( )

1

1.

A AD
k CB k k

ep D
Rk k

τ ω τ ω ω

ω ω τ

−
⊥⊥ ⊥ ⊥

−
⊥⊥ ⊥

= + Γ + Γ

+ Γ + Γ +
 (8b) 

Despite of several serious objections in the numerically 
amenable Callaway model established wide acceptability 
to successfully analyze thermal conductivity by the use of 
the concept of the relaxation times which has convoluted 
dependence on frequency, temperature and various 
distribution functions in a large number of scattering 
processes involved and resorts it as a very sensitive 
quantity. However, this model was greatly modified by a 
large number of authors to shape it up in a physically 
justifiable format [1,4,19,20,21,22,23,35]. A brief account 
of these events for the layered systems is described as 
follows: 

3.1. Combined Boundary Scattering 
The concept of boundary scattering phenomenon 

[15,16,17,18,20,21,31,32] is based on the assumption that 
at low temperatures the long wavelength phonons of low 
frequency get excited and scatters from the crystal 
boundaries at the relaxation rate of 1 /B v Lτ − =  where 

1/2
1 2L 1.22( )l l= is the Casimir length [15] and 1 2,l l are 

cross sectional area of the specimen. Some limitations of 
Casimir theory which enforced to use L  as a parameter in 
most of the work on thermal conductivity and this was 
modified by considering the involvement of crystal micro 
boundaries due to micro scale fluctuations in the internal 
boundaries of the crystal [32] in the form of 

1 /CB p Bv Lτ − = , BL  being the modified Casimir length. 

Here the term 1
CBτ −  can be modified for the layered systems 

as 1 1 1
|| ,CB CB CBτ τ τ− − −

⊥= +  where ( )1
|| || ||/CB pv L Bτ − =  and

( )1 / .CB pv L Bτ −
⊥ ⊥ ⊥= These microscale fluctuations 

incorporated in BL  offer significant resistance for longer 
wavelengths and strong phonon-boundary scattering is 
indeed the reason for increased thermoelectric 
performance of nanostructures and silicon nanowires in 
particular [33]. 

3.2. Impurity Scattering 
The contribution of scattering from defect events starts 

as the temperature starts rising and higher frequency 
phonons begin to excite with shorter wavelengths. 
Phonons get localized around the impurity sites and 
interact with impurities offering much thermal resistance. 
However, the point impurity scattering was described by 
Klemens [4] for mass change parameter but when one 
develops the same problem with the help of many body 
quantum dynamical theory the lifetime can be obtained in 
the following forms [16-21] 

 

( )
( ) ( ) ( ) ( )* 2 2

1 1 11
4 2

1

8 , , k

D
k

k
k

R Rk k k k

A A

ω

πε ω ω δ ω ω

ω ω

Γ

= − − −

≈ +

∑  (9) 

It is noteworthy here that apart from the Klemens 
expression there arises force constant change term 
depending on square of frequency which of course is 
highly sensitive in the description of heat capacity. This 
result can further be obtained for a layered crystal in the 
form  
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( ,  )jA j = ⊥  being layered system constants. The 
variation of defect scattering rates with temperature and 
reduced frequency for in plane and cross plane cases is 
shown in Figure 1 dissimilar trend for both the cases, i.e., 
for cross plane defects contribute dominatingly as 
compared to in plane scenario heralding that the cross 
plane heat conduction can be limited significantly. 

 
Figure 1. Behavior of 1

Dτ − vs T [ inset 1
Dτ − vs x] for in-plane and cross-

plane references.  

3.3. Phonon-Phonon Processes 
With further rise in temperature more and more 

phonons with higher frequencies get excited and start 
interacting with the cubic and quartic phonon fields of 
each other giving rise to phonon-phonon scattering. In 
HTS the quartic phonon scattering does not take place as it 
is a phenomenon generally operative at high temperatures 
and one can restrict to ( ) ( )3A A

k kω ωΓ = Γ . In the earlier 
work the phonon-phonon scattering relaxation time was 
mostly taken to vary arbitrarily with the powers of 
frequency and temperature and their multiplier 
coefficients which couldn’t justify the physics of the 
problem. This problem was systematically undertaken to 
study quantum dynamically [18,20,21,31] and revealed the 
following exact frequency and temperature dependence: 
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Where ( ,  )jB j = ⊥ are constants for a layered system.  

 
Figure 2. Behavior of 1

3 pτ − vs T [inset 1
3 pτ − vs x] for in-plane and cross-

plane references 

Figure 2 depicts the variation of phonon-phonon life 
times in plane and cross plane references with T  and x . 
Apart from defects this scattering infers that the trend for 
in plane and cross plane cases is similar but the thermal 
resistance offered by cross planes is certainly higher and 
may enable one to technological exploitation of the idea 
that in cross plane direction the system is cold and in the 
in plane scene it is hot giving way for heat transport.  

3.4. Interference Scattering 
At elevated temperatures the phonons of localized 

fields start interacting with those of anharmonic fields 
giving rise to impurity-anharmonicity interaction modes 
and interference scattering [18,20,21,31]. Taking these 
interactions with cubic anharmonicity only the related line 
width takes the form 
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This interaction is portrayed in Figure 3 and well 
prophesied that the cross plane behavior of thermal 
resistance is much more dominant above the transition 
temperature as compared to the in-plane heat transport. 

 
Figure 3. Behavior of 1

3Dτ − vs T [inset 1
3Dτ − vs x] for in-plane and cross-

plane references 

3.5. Electron-phonon Scattering 
Ziman [13] successfully explored the problem of heat 

transport by electrons which was developed later quantum 

mechanically [31] and found it a highly sensitive quantity 
by describing the electron energy line width in the form  
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with / ,Bx k Tω=  / ;  ( , ).j j Bx k T jω= = ⊥  The details 
of various symbols appearing in the above equations are well 
described in the references elsewhere [16,17,18,19,20,28,30,32] 
and needs no reproduction. Electron-phonon interaction 
events are highly sensitive to the frequency variations and 
helps in understanding the fact that the pairons or cooper 
pairs do not contribute to the thermal transport and this 
typical behavior of electron-phonon events is shown in 
Figure 3. 

 
Figure 4. Behavior of 1

e pτ −
− vs T [inset 1

e pτ −
− vs x] for in-plane and 

cross-plane references 

3.6. Resonance Scattering 
Pohl [33] associated the dip just above the maximum 

peak of thermal conductivity with impurity and resonance 
scattering and the related relaxation rate was described by 
him is given by 
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which gives its form for layered systems as follows: 
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where R


, R⊥ are the in-plane and cross-plane 
proportionality constants related to the impurity 
concentration. 0ω



 and 0ω ⊥  are respective resonance 
frequencies and Ω  is the damping constant. 

4. Analysis of Thermal Conductivity 
In order to justify the outcome of the above findings we 

have taken up the numerical analysis of thermal 
conductivity of high temperature oxide superconductor 
La-Sr-Cu-O samples. The experimental results of Uher [5] 
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for the samples La2SrCuO4, La1.8Sr0.2CuO4, and 
La1.85Sr0.15CuO4 have been taken for the purpose of 
analysis for different temperature ranges 0 70 ,K−  
0 100K−  and 0 140 ,K− respectively. The values of 
various constants and parameters used in the analysis of 
in-plane and cross-plane thermal conductivity are 
furnished in Table 1, separately for each sample. The 
numerical estimation has been carried out in the light of 
Eqs. (1), (1a) and (1b) have been portrayed in Figure 5 
through 7, which reveal excellent agreements between 
theory and experimental observations throughout all the 
temperature ranges. The phonon velocity can be replaced 
by the group velocity p gv v≈  which can be further 
resolved via simplest dispersion relation of the form 

2 2 2 2 2 2 2
g gv k v kω ω ω⊥ ⊥⊥

= + = +
 



 with 2 2 2 ,k k k= +
 

 

2 2 2
x yk k k= +



 and zk k⊥ = in the Debye approximation 
[18]. This concept is well supported by Holland’s two 
mode analysis [35]. During the numerical computation it 
is observed that the contribution of combined boundary 
and impurity scattering events is highly effective at low 
temperatures but their significance gradually diminishes 
with the rise of temperature and these processes are 
eventually replaced by the phonon-phonon scattering and 
interference processes. The findings of Kristoffel et al that 
the impurities play a very essential role in the cuprate 
superconductors [36] is well supported in the present work. 

 
Figure 5. Analysis of thermal conductivity of La2SrCuO4 sample 

The phonon-phonon interactions and higher order 
collision events certainly take place in the system when 
the temperature is continuously elevated resulting in the 
excitation of higher and higher frequency phonons with 
considerably smaller wavelength enabling the collisions at 
smaller distances and the thermal resistance continuously 
becomes more and more severe. Obviously, 

 
Figure 6. Analysis of thermal conductivity of La1.8Sr0.2 CuO4 sample 

The situation becomes so intense that the phonons of 
anharmonic phonon fields start interacting with the 
phonons of localized fields giving rise to the interference 
interactions with higher magnitude of thermal resistance. 
The varied frequency and temperature dependence for 
phonon processes by earlier worker at their choice thus 
gets proper justification through phonon-phonon and 
interference processes and work at and above the thermal 
conductivity maxima.  

Table 1. Constants and parameters used in the analysis of thermal 
conductivity of high temperature superconductor La2xSxCuO4 
samples 
Sample La2SrCuO4 La1.8Sr0.2CuO4 La1.85Sr0.15CuO4 

Tc (K) 37 37 37 

θ (K) 410 400 410 

g║ 0.7 0.7 0.7 

g⊥ 1.6 0.6 0.6 

L║(B)(×10-3 cm) 0.155 0.153 0.155 

L⊥ (B)(×10-3 cm) 0.275 0.145 0.145 

Am║ (×10-43 s3) 17.9197 83.6587 53.6597 

Am⊥(×10-43 s3) 20.0659 70.6197 350.6197 

B║ (×10-22 sK-1) 20.8982 20.8972 50.8982 

B⊥ (×10-22 sK-1) 218.6982 20.6972 90.6982 

D║ (×10-45 s3K-1) 7.14134 7.14134 7.84134 

D⊥ (×10-45 s3K-1) 110.4134 7.41344 60.4134 

ν║ (×105 cms-1 ) 6.2 6.4 7.5 

ν⊥ (×105 cms-1) 4.0 6.1 7.5 

A║1e(×102erg-2K-2) 9.89 9.89 9.89 

A⊥1e(×102erg-2K-2) 19.89 2.091 9.89 

A║2e(×102erg-2K-2) 9.8909 9.89 9.89 

A⊥2e(×102erg-2K-2) 19.85 2.07 9.85 

R║ (×1032s3) - - 0.80 

R⊥ (×1032s3) - - 1.41 

||0ω (×1012s-1) - - 3.11 

0ω⊥ (×1012s-1) - - 3.05 

The electron-phonon interactions primarily participate 
in the thermal transport above the conductivity maximum 
in the case of high temperature superconductors where 
conductivity curve shows a cusp like trend near the 
transition temperature. This cusp is more and more 
pronounced in case of YBaCuO superconductors [5,31,37]. 

 

Figure 7. Analysis of thermal conductivity of La1.85Sr0.15CuO4 sample 

Since the pairons are generated as a result of phonon 
mediated effects of electrons and never contribute in the 
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thermal transport and may be attributed to negative 
thermal resistance (Figure 4 inset) in this region giving 
cusp like behavior. 

Coming to the case of in plane and cross plane thermal 
transport the various parameters used in computation 
show that in plane values are always smaller than those of 
cross plane values. Before going into further details let us 
define the thermal conductivity functions for in-plane ζ



 
and cross-plane ζ ⊥  contributions as  
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The variation of conductivity function for in-plane and 
cross plane have been portrayed with x



, T is depicted in 
Figure 8 and Figure 9. 

 
Figure 8. Variation of in-plane thermal conductivity function

||( , )x Tζ


 versus x


and T for all collision process 

For reduced frequencies between 1jx <  the thermal 
conductivity function shows sharp peak and the behavior 
becomes more pronounced at higher temperatures and as 
is clear from contour lines at the frequencies 1jx > the 
contribution remains almost constant, notably the curve 
flattens very rapidly in case of cross plane reference. 

 
Figure 9. Variation of cross-plane thermal conductivity function

( , )x Tζ ⊥ ⊥  versus x⊥ and T for all collision process 

The curves in Figure 5 – Figure 7 show that the nature 
of κ



 almost follows the nature of experimental curves 
but the behavior of κ⊥  is completely different and 
slightly rising trend at initial low temperatures but 

immediately becomes constant for elevated temperatures 
inferring that it becomes least temperature sensitive.  

5. Conclusions 

Present investigations successfully describe the behavior 
of thermal conductivity of cuprate superconductors and is 
applicable to the all types of high temperatures 
superconductors. Further, the present study supports that 
the thermal conductivity in both directions i.e. parallel to 
the layers and perpendicular to the layers is always 
smaller than that of bulk materials. It is also inferred that 
the thermal transport is quite efficient parallel to the layers 
and along the growth axis or in the cross-plane direction is 
found quite small compared to the in-plane direction of 
La2-xSrxCuO4 superconductors. This idea can be 
technologically exploited in fabrication/design of the 
devices in which the system should not respond to 
temperature in a particular direction whereas shows 
maximum response to temperature in the rest of the 
directions. In other words, the theory concludes that it is 
possible to develop the devices which is hot in the in plane 
direction but cold in the cross plane direction. 
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