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To provide a sense of how the typical these behavior are, we can plot parameter space 
location of the optima for various variables.  Figure 5 shows a three-dimensional 
visualization of these optima as a function of three of the parameters. Note that these are 
only determined along one-dimensional parameter slices, but they provide a sense of what 
might happen in the process of optimizing in three dimensions simultaneously. Optima 
such as those seen in Figures 4 and 5 are each indicated by a dot, color-coded according 
to the climate variable for which the optimum was obtained. Optima occurring at the ends 
of the permissible range are very common.  Furthermore, the optima often occur at 
substantially different parameter values for different climate variables.  Fortunately, there is 
considerable tendency for a given variable to optimize a similar location in different 
seasons, although this is not guaranteed.

The tendency for optima of different variables to occur at different parameter space 
locations may be described as a "tension" among different metrics for the accuracy of the 
model simulation. It implies that determination of a global optimum would depend strongly 
on the weighting of each variable in the cost function. For instance,   a cost function that 
gave heavy weight to the quality of the precipitation simulation would yield optimization to a 
different set of parameters than one that gave more weight to low-level wind simulation. In 
essence, this helps to quantify a frustration long known to climate modelers of improving 
one aspect of simulation while making another aspect worse. Together with the very high 
cost of evaluation of the simulation at each point in parameter space, this points toward 
developing optimization strategies that retain a large amount of model information at 
selected parameter values and consider a range of potential cost functions that reflect the 
requirements of different climate model users.

To illustrate the parameter space dependence, four parameters are chosen that are known to 
have significant impacts on different aspects of the model solution. These are: a sub-
gridscale wind speed gustiness parameter that creates a minimum wind speed in the bulk 
formula for surface fluxes; a relative humidity parameter from the deep convective 
parameterization that controls the moisture towards which convection adjusts the column; a 
cloud albedo parameter; and a viscosity parameter, here measured by the damping time 
implied for the shortest spatial scale. For each of these parameters, an “admissible range” is 
chosen. In most climate model parameterizations, the modeler has external information 
regarding the range through which the parameters may reasonably be varied.  In some 
cases, there is an absolute limit, such as 100% relative humidity, in some cases information 
from past runs regarding a viscosity below which numerical instability tends to be 
encountered, and in some cases a sense from observations that led to the parameterization 
that values beyond these limits become increasingly implausible.  Here, the limits represent 
the judgment of the values beyond which we would be uncomfortable tuning the 
parameterization based on a combination of such grounds, combined with the desire to have 
a reasonable span on either side of the standard value that has been established by past 
tuning and evaluation of the model. Four values are chosen equally spaced on either side of 
the standard parameter value, providing a slice with nine parameter values in each 
parameter direction spanning this admissible range. An ensemble of 10 simulations of 25 
years each, forced with observed sea surface temperature, is carried out for each parameter 
value. National Center for Environmental Prediction (NCEP) reanalysis (Kalnay et al 1996) is 
used for observational comparison.

Figures 2 and 3 provide examples of model parameter dependence. Figure 2 shows root-
mean-square error of the simulation relative to NCEP, and Figure 3 shows spatial correlation 
to NCEP, using the example of June-August precipitation climatology, with both values 
evaluated over the whole globe. One issue facing climate model evaluation can immediately 
be seen in the spread among the ensemble members, even for global correlations on a 
climatological quantity.  This limits the precision to which any cost function can be evaluated.  
It is worth noting that this cannot be entirely overcome by increasing the ensemble size, 
because the observations themselves have comparable error. 

The ensemble mean values (squares) are seen to typically evolve smoothly as a function of 
parameter, for these global measures, and to this precision. This is apparent good news for 
potential optimization procedures, since it implies that there may be substantial ranges for 
which a reasonable cost function constructed from climatological variables is not too rough. 
However, there are a number of other features which signal caution. In Figures 2a and 3a, 
the optimum solution, i.e., the minimum rms error and the maximum correlation to 
observations, respectively, are achieved within the admissible parameter range. A roughly 
quadratic parameter dependence occurs about this optimum, again a factor that might favor 
optimization procedures. However, the optimum determined by minimum rms and that 
determined by maximum correlation do not occur at exactly the same parameter value, an 
indication that there will be some dependence on how the cost function is constructed.  

Furthermore, another typical behavior is seen in Figures 2b and 3b as a function of the 
convective relative humidity parameter. The optimum occurs at one end of the permissible 
parameter range. Pragmatically, this may be taken to indicate that blind optimization may 
often lead to the model operating near the limits of validity of some of the parameterizations. 
Figures 2c,d and Figure 3c,d reinforce both of these points.  The optima occur very close to 
the limit of the admissible range. Furthermore, in the case of cloud albedo, the optimum 
determined by correlation occurs near the low end, while the optimum determined by 
minimum rms occurs near the high end.
 
How do these parameter dependences compare for different climatological variables? Figure 
4 shows correlations for several variables as a function of the four parameters. The situation 
ones hopes for is typified by the dependence on the viscosity, in which multiple parameters 
tend to have the correlation improve as one moves towards lower viscosity (longer damping 
time).  However, the situation for cloud albedo appears to be more typical.  The optima for 
different variables occur at different parameter values.
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A general circulation model with simplified parameterizations and course vertical 
resolution is used to perform systematic slices in parameter space to explore 
basic issues in the dependence on model parameters. Even for climatological 
variables, a fairly large ensemble simulations is required to define the parameter 
space dependence with reasonable precision. For each of several selected 
parameters, an admissible range of variation is chosen a priory, and then a series 
of simulations is conducted over this range. For global measures such as root 
mean square error relative to reanalysis data sets, or correlation of simulated 
fields to reanalysis, the parameter dependence tends to be relatively smooth over 
the admissible range. Defining local optima along each parameter slice, it is 
found that these often occur at the end of the range. Furthermore, optima for 
different variables tend to occur at substantially different parameter values. This 
is a symptom of the well-known problem of improving one aspect of a simulation 
while causing degeneration in another aspect, and implies that a global 
optimization procedure would have a strong dependence on the weighting given 
to each variable when defining the cost function. 

A number of basic issues in the dependence of climate model simulations on model 
parameters are poorly understood.  A fast climate model with simple parameterizations, 
known as Speedy (Molteni 2003; Bracco et al. 2004), is being used to do parameter space 
exploration with the aim of the elucidating these issues. These include: How typical is it to 
encounter sudden changes in response for a small change in a parameter, as opposed to 
smooth evolution in parameter space?  There has been interest in use of formal or informal 
optimization methods to tune parameters for climate simulations (Severijns and Hazeleger 
2005; Jones et al. 2005; Kunz et al. 2008) --- can one lay a more thorough groundwork for 
such applications?  The optimization problem for climate has considerable ambiguity in 
terms of how to weight individual variables in the cost function --- is this likely to be a 
crucial issue? 

Figure 1 shows Speedy precipitation climatology for reference, since precipitation is often 
one of the more challenging variables to simulate accurately. Compared to observations 
from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data set, may 
be seen that many major features are well simulated at large scales, although as with 
many climate models, departures are easily found at regional scales.
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Figure 2   Root-mean-square error of Speedy simulated June-August precipitation relative to NCEP 
reanalysis, as a function of model parameter. (a) sub grid scale wind speed gustiness parameter; 
(b) relative humidity parameter from the deep convective parameterization; (c) cloud albedo 
parameter; and (d) viscosity time scale parameter. Results from each of an ensemble of 10 
simulations are shown for each parameter value.  Squares connected by lines show the ensemble 
mean values.
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Figure 3   As in Figure 2, but for correlation of Speedy simulated June-August precipitation to 
NCEP reanalysis, as a function of the same model parameters. The optimum within each 
parameter slice, here as measured by maximum correlation, is indicated by a circle.
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Figure 1  Climatology of precipitation from Speedy simulations with observed sea surface 
temperature for (a) December-February; (c). June-August compared to  observed precipitation 
from the CMAP data set for (b) December-February; (d) June-August.
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Figure 4   Correlation of Speedy simulated variables to NCEP reanalysis, as a function of the 
same model parameters as in Figures 2 and 3, but showing values for several variables. Variable 
names follow the convention: u925 zonal wind at a near surface level, u200 indicates the zonal wind 
upper troposphere, and similarly for v meridional wind, T temperature, Φ geopotential and Ω 
vertical pressure velocity.
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Figure 5  Local optima determined  as maxima in correlation of ensemble mean simulated 
values to NCEP for individual climate variables along three directions in parameter space. These 
are determined separately for (a) December-February, and (b) June-August. Dots indicate the 
positions of the optima, colors indicate the climate variable as shown in the legend (variable 
names as in Figure 4). 
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