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ABSTRACT
We show how model checking and symbolic execution can
be used to generate test inputs to achieve structural cover-
age of code that manipulates complex data structures. We
focus on obtaining branch-coverage during unit testing of
some of the core methods of the red-black tree implementa-
tion in the Java TreeMap library, using the Java PathFinder
model checker. Three different test generation techniques
will be introduced and compared, namely, straight model
checking of the code, model checking used in a black-box
fashion to generate all inputs up to a fixed size, and lastly,
model checking used during white-box test input generation.
The main contribution of this work is to show how efficient
white-box test input generation can be done for code manip-
ulating complex data, taking into account complex method
preconditions.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Testing and Debugging—Symbolic Execution

General Terms: Algorithms, Verification

Keywords: Testing Object-oriented Programs, Model Check-
ing, Symbolic Execution, Coverage, Red-Black Trees

1. INTRODUCTION
Software testing, the most commonly used technique for

validating the quality of software, is a labor intensive pro-
cess, and typically accounts for about half the total cost
of software development and maintenance [9]. Automating
testing would not only reduce the cost of producing software
but also increase the reliability of modern software. A recent
report by the National Institute of Standards and Technol-
ogy estimates that software failures currently cost the US
economy about $60 billion every year, and that improve-
ments in software testing infrastructure might save one-third
of this cost [1].
Automated test case generation has been well studied in

the literature (see Section 6), but most of this work has
focused on the generation of test inputs containing simple
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(unstructured) data. In this paper we’ll address the problem
of doing test input generation for code that manipulates
complex data structures. The main research challenge in
this area is how to do efficient test input generation that
will obtain high code coverage — we will show how symbolic
execution over complex data can address this problem.
Model checking [13] has been hugely popular for the last

two decades. More recently the application of model check-
ing to the analysis of software programs has also come to the
fore [7,15,27,43]. Model checking programs however is hard
due to the complexity of the code and it often cannot com-
pletely analyze the program’s state space since it runs out of
memory. For this reason some of the most popular program
model checkers rely on (predicate) abstractions [7,27] to re-
duce the size of the state space, but these techniques are
not well suited for handling code that manipulates complex
data — they introduce too many predicates, making the
abstraction process inefficient. We will show that although
a program model checker (without relying on abstraction)
cannot always achieve good code coverage when dealing with
programs manipulating complex data, augmenting it with
symbolic execution (which can be seen as a form of abstrac-
tion), can result in the generation of tests that will achieve
high code coverage.
There has been an active research community investigat-

ing the generation of test inputs with the use of model check-
ing [3,4,21,26,28] — the focus is on specification-based test
input generation (i.e. black-box testing) where coverage of
the specification is the goal. Model checking lends itself
to test input generation, since one simply specifies as a set
of (temporal) properties that a specific coverage cannot be
achieved and the model checker will find counterexamples,
if they exist, that then can easily be transformed into test
inputs to achieve the stated coverage goal.
Symbolic execution has long been advocated as a means

for doing efficient test input generation [31], but most of the
ensuing research has focused on generating tests for simple
data types (integers for the most part).
In previous work [30] we developed a verification frame-

work based on symbolic execution and model checking that
handles dynamically allocated structures (e.g. lists and trees),
simple (primitive) data (e.g. integers and strings) and con-
currency. The framework uses method preconditions to ini-
tialize fields only with valid values and method postcondi-
tions as test oracles to test a method’s correctness.
We show here how we used and extended the symbolic

execution framework from [30] to perform automated test
input generation for unit testing of Java programs. To gen-
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erate inputs that meet a given testing criterion for a partic-
ular method under test, we model check the method. The
testing criterion is encoded as a set of properties the model
checker should check for. Counterexamples to the properties
represent paths that satisfy the coverage criterion. Symbolic
execution (which is performed during model checking) com-
putes a representation (a set of constraints) of all the inputs
that execute those paths. The actual testing requires solv-
ing the input constraints in order to instantiate test inputs
that can then be executed.
The framework uses lazy initialization, i.e. it initializes

the components of the method inputs on an “as needed”
basis, without requiring an a priori bound on input sizes.
While [30] describes in detail how symbolic execution and
lazy initialization are used during model checking, we high-
light here the use of complex preconditions during lazy ini-
tialization, to initialize the inputs only with valid values.
In particular, we highlight a key feature of our framework:

the use of preconditions that are conservative, i.e. they may
be evaluated on partially initialized structures and return
false only if the initialized fields of the input structure vio-
late a constraint in the precondition. This important feature
was mentioned briefly in [30]; we elaborate on it here.
We show how lazy initialization in combination with the

use of conservative preconditions during initialization to elim-
inate incorrect structures results in a powerful and efficient
way of performing symbolic execution of code that manip-
ulates complex structured data. We also show here how we
solve the input constraints in order to get the test inputs
that are necessary for the actual testing.
To illustrate the flexibility of our framework, we contrast

the above white-box technique with a black-box technique
where we use the method preconditions to systematically
generate all the (non-isomorphic) test inputs up to a given
size; this is done by symbolically executing the code for the
precondition. This latter approach has similarities to the
techniques employed in the Korat tool [10] which also ex-
ecutes the code for the precondition, but it does not use
symbolic execution (for the primitive data) and lazy initial-
ization.
We evaluate our approaches by generating tests for the

red-black tree [16] implementation in the Java TreeMap li-
brary. The contributions of our work are:

• A powerful and flexible test input generation frame-
work for unit testing. The framework uses an efficient
approach to the symbolic execution of code manipulat-
ing complex data structures, that takes into account
preconditions to stop the analysis of infeasible paths
as soon as possible. The framework can be used uni-
formly both for white-box and black-box testing.

• We show how our framework can be used for gener-
ating tests for code manipulating complex data struc-
tures - specifically red-black trees.

• We illustrate the flexibility of model checking as a tool
for test input creation by comparing straight model
checking of the code under test, a black-box approach
and a white-box approach.

2. BACKGROUND
We describe here the Java PathFinder (JPF) model checker

[43] that has been extended with a symbolic execution ca-

int x, y;
1:if (x > y) {
2: x = x + y;
3: y = x - y;
4: x = x - y;
5: if (x > y)
6: assert(false);

} x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

x: Y, y: X
PC: X>Y & Y>X

FALSE!

x: Y, y: X
PC: X>Y & Y<=X

3

4

2

1

5 5

1

Figure 1: Code that swaps two integers and the cor-
responding symbolic execution tree, where transi-
tions are labelled with program control points

pability. We show in Section 4 how we use this extension of
JPF for white-box and black-box test input generation.

2.1 Java PathFinder
JPF is an explicit-state model checker for Java programs

that is built on top of a custom-made Java Virtual Machine
(JVM). JPF can handle all of the language features of Java
and it also treats nondeterministic choice expressed in an-
notations of the program being analyzed — annotations are
added to the programs through method calls to a special
class Verify. The following methods from the Verify class
will be used in this paper:

randomBool() returns a boolean value nondeterministically.

random(n) returns values [0, n] nondeterministically.

ignoreIf(cond) forces the model checker to backtrack when
cond evaluates to true.

JPF has previously been used to find errors in a number
of complex systems including the real-time operating system
DEOS from Honeywell [39] and a prototype Mars Rover
developed at NASA Ames (called K9) [11]. More recently
it was also used as a means for generating input plans that
the current K9 rover takes as input [5] — the plans were
generated in a black-box fashion similar to the technique
described in section 4.2.

2.2 Symbolic Execution in Java PathFinder
In this section we give some background on symbolic ex-

ecution and we present the symbolic execution framework
used for reasoning about Java programs.

2.2.1 Background: Symbolic Execution
The main idea behind symbolic execution [31] is to use

symbolic values, instead of actual data, as input values and
to represent the values of program variables as symbolic ex-
pressions. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs.
The state of a symbolically executed program includes the

(symbolic) values of program variables, a path condition (PC)
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and a program counter. The path condition is a (quantifier
free) boolean formula over the symbolic inputs; it accumu-
lates constraints which the inputs must satisfy in order for
an execution to follow the particular associated path. The
program counter defines the next statement to be executed.
A symbolic execution tree characterizes the execution paths
followed during the symbolic execution of a program. The
nodes represent program states and the arcs represent tran-
sitions between states.
Consider the code fragment in Figure 1, which swaps the

values of integer variables x and y, when x is greater than y.
Figure 1 also shows the corresponding symbolic execution
tree. Initially, PC is true and x and y have symbolic values X
and Y, respectively. At each branch point, PC is updated with
assumptions about the inputs, in order to choose between
alternative paths. For example, after the execution of the
first statement, both then and else alternatives of the if

statement are possible, and PC is updated accordingly. If
the path condition becomes false, i.e. there is no set of
inputs that satisfy it, this means that the symbolic state is
not reachable, and symbolic execution does not continue for
that path. For example, statement (6) is unreachable.

2.2.2 Generalized Symbolic Execution
In [30] we describe an algorithm for generalizing tradi-

tional symbolic execution to support advanced constructs
of modern programming languages, such as Java and C++.
The algorithm handles dynamically allocated structures, prim-
itive data and concurrency. We have since extended the
work in [30] by adding support for symbolic execution of
arrays.
The algorithm starts execution of a method on inputs with

uninitialized fields and uses lazy initialization to assign val-
ues to these fields, i.e. it initializes fields when they are first
accessed during the method’s symbolic execution. This al-
lows symbolic execution of methods without requiring an a
priori bound on the number of input objects.
When the execution accesses an uninitialized reference

field, the algorithm nondeterministically initializes the field
to null, to a reference to a new object with uninitialized
fields, or to a reference of an object created during a prior
field initialization; this systematically treats aliasing. When
the execution accesses an uninitialized primitive (or string)
field, the algorithm first initializes the field to a new sym-
bolic value of the appropriate type and then the execution
proceeds.
When a branching condition on primitive fields is eval-

uated, the algorithm nondeterministically adds the condi-
tion or its negation to the corresponding path condition
and checks the path condition’s satisfiability using a deci-
sion procedure. If the path condition becomes infeasible,
the current execution terminates (i.e. the algorithm back-
tracks).

2.2.3 Framework
Our symbolic execution framework is built on top of the

JPF model checker. To enable JPF to perform symbolic
execution (and lazy initialization), the original program is
instrumented by doing a source to source translation that
adds nondeterminism and support for manipulating formu-
las that represent path conditions1.

1The interested reader is referred to [30] for a detailed de-
scription of the code instrumentation

class Node {

int elem;

Node next;

}

/* precondition: acyclic() */

void foo() { ...

1: if (elem > t.elem)

2: next = t.next;

}

}

Figure 2: Simple example to illustrate generalized
symbolic execution

The model checker checks the instrumented program using
its usual state space exploration techniques — essentially,
the model checker explores the symbolic execution tree of
the program. A state includes a heap configuration, a path
condition on primitive fields, and thread scheduling. When-
ever a path condition is updated, it is checked for satisfia-
bility using an appropriate decision procedure, such as the
Omega library [40] for linear integer constraints. If the path
condition is unsatisfiable, the model checker backtracks.
The framework can be used for test input generation and

for finding counterexamples to safety properties. For test
input generation, the model checker generates paths that are
witnesses to a testing criterion encoded as a set of properties.
For every reported path, the model checker also reports the
input heap configuration (encoding constraints on reference
fields), the path condition for the primitive input fields, and
thread scheduling, which can be used to reproduce the error.
Note that performing (forward) symbolic execution on

programs with loops can explore infinite execution trees.
This is why, for systematic state space exploration, the frame-
work uses depth first search with iterative deepening or
breadth first search.
Although we concentrate in this paper on the analysis

of sequential code, it is worth mentioning that our sym-
bolic execution framework handles concurrency, as it uses
the model checker to systematically analyze thread inter-
leavings. Using a model checker as a search engine for our
framework allows us to also exploit other built-in capabil-
ities of the model checker, such as backtracking, different
search capabilities (e.g. heuristic search), and techniques
that combat state-explosion (e.g. partial order and sym-
metry reductions). We should also note that, although we
consider here branch coverage as a metric for testing, our
framework can handle other testing criteria that can be en-
coded as properties the model checker should check for (e.g.
data-flow based coverage).

2.2.4 Illustration
We illustrate the generalized symbolic execution on a sim-

ple example (see Figure 2). Class Node implements singly-
linked lists; the fields elem and next represent, respectively,
the node’s integer value and a reference to the next node.
Figure 3 gives (part of) the corresponding code that was

instrumented for symbolic execution: concrete types were
replaced with “symbolic types” (library classes that we pro-
vide) and concrete operations with method calls that im-
plement “equivalent” operations on symbolic types. Class
Expression supports manipulation of symbolic integers.

99



class Node {

Expression elem;

Node next;

boolean _next_is_initialized = false;

boolean _elem_is_initialized = false;

static Vector v = new Vector();

static {v.add(null);}

Node _new_Node() {

int i = Verify.random(v.size());

if(i<v.size()) return (Node)v.elementAt(i);

Node n = new Node();

v.add(n);

return n;

}

Node _get_next() {

if(!_next_is_initialized) {

_next_is_initialized=true;

next = Node._new_Node();

Verify.ignoreIf(!precondition());//e.g. acyclic

}

return next;

}

void foo() { ...

1: if(_get_elem()._GT(t._get_elem()))

2: _set_next(t._get_next());

}

}

Figure 3: Instrumented code
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Figure 4: Symbolic execution tree (excerpts)

Field reads and updates are replaced by get and set

methods (get methods implement the lazy initialization).
For each field in the original class declaration, boolean fields
(i.e. next is initialized and elem is initialized) are
added. These fields are set to true by get (set) methods.
Vector v stores the input objects that are created as a re-
sult of lazy initialization. The helper method new Node,
which is called by get node, uses the elements in vector v
to systematically initialize input reference fields, according
to different aliasing possibilities.
Figure 4 illustrates the paths that are generated during

the symbolic execution of the code of method foo, for a
given input structure. Each node of the execution tree de-
notes a symbolic state. Branching in the tree corresponds to
a nondeterministic choice that is introduced to build a path
condition or to handle aliasing. Edges labelled with numbers
refer to program statements and those without numbers to
lazy initialization steps. The value “?” for an elem field
indicates that the field is not initialized and the “cloud” in-
dicates that the next field is not initialized; null nodes are
not represented. Structures represent constraints on refer-
ence fields, e.g. the input structure in Figure 4 represents
all (cyclic or acyclic) lists with at least two nodes such that
t points to the second node.
As we will explain later in Section 4.3, method precon-

ditions can be used during lazy initialization: if the input
structure violates the precondition, the model checker back-
tracks (i.e. call to method Verify.ignoreIf in Figure 3).
For example, if we consider the precondition that the input
list should be acyclic, the algorithm does not explore the
transitions marked with an “X” in Figure 4.

3. CASE STUDY: RED-BLACK TREES
We have used our input generation techniques for test-

ing a variety of programs, including methods of classes in
the java.util package. Most of these programs manip-
ulate complex data structures. In particular, we illustrate
our techniques on the Java implementation of red-black trees
given in java.util.TreeMap from the standard Java libraries
(version 1.3). Red-black trees [16] are binary search trees
with one extra bit of information per node: its color, which
can be either red or black. By restricting the way nodes are
colored on a path from the root to a leaf, red-black trees
ensure that the tree is balanced, i.e. guarantee that basic
dynamic set operations on a red-black tree take O(log n)
time in the worst case.
A binary search tree is a red-black tree if:

1. Every node is either red or black.

2. The root is black.

3. If a node is red, then both its children are black.

4. Every simple path from the root node to a descendant
leaf contains the same number of black nodes.

All four of these red-black properties are expressible in
Java. We use these four properties together with the basic
properties of binary search trees to define a repOk method,
i.e. a Java predicate that checks the representation invariant
(or class invariant) of the corresponding data structure. In
this case, repOk checks if the input is a red-black tree. Fig-
ure 5 gives part of the java.util.TreeMap declaration and
Figure 6 gives a fragment of code from repOk representing
the third red-black tree property: red nodes have only black
children. The generation of red-black trees is particularly in-
teresting for our framework, due to their complex structure
(i.e. they have primitive fields, back pointers, etc.).
In the next section, we present different techniques that

we used to generate test inputs for the implementation of
red-black trees in java.util.TreeMap. We will illustrate
test input generation for several helper methods for the put
and remove methods in class java.util.TreeMap, which are
responsible for adding and deleting the node corresponding
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public class TreeMap {

Entry root;

static final boolean RED = false;

static final boolean BLACK = true; ...

static class Entry implements Map.Entry {

Object key;

Object value;

Entry left;

Entry right;

Entry parent;

boolean color; ...

}

/* precondition: repOk(root); */

public Object remove(Object key) {...}

public Object add(Object key) {...}

...

}

Figure 5: Declaration of java.util.TreeMap

boolean repOk(Entry e) {

...

// RedHasOnlyBlackChildren

workList = new LinkedList();

workList.add(e);

while (!workList.isEmpty()) {

Entry current=(Entry)workList.removeFirst();

Entry cl = current.left;

Entry cr = current.right;

if(current.color == RED) {

if(cl != null && cl.color == RED) {

return false;

}

if(cr != null && cr.color == RED) {

return false;

}

}

if (cl != null)

workList.add(cl);

if (cr != null)

workList.add(cr);

}

...

return true;

}

Figure 6: Method repOk (excerpts).

to a given key from the tree. We should note that deletion is
the most complex operation among the standard operations
on red-black trees and involves rotations. Together with
the auxiliary methods, addition together with deletion in
java.util.TreeMap are about 300 lines of Java code. The
(implicit) precondition for both put and remove methods
requires the input to satisfy its class invariant (i.e. repOk):
the input must be a red-black tree.

4. TEST INPUT GENERATION
In this section we will illustrate three applications of model

checking to the test input generation of software manipulat-
ing a complex data structure. We will focus on the imple-
mentation of the put and removemethods for red-black trees
in the Java TreeMap library. As a testing criterion we use
source code level branch-coverage since we want to compare
the black-box to the white-box approaches to test input gen-
eration. As mentioned in Section 2.2.3 our framework can
also handle other kinds of testing criteria.
We aim to generate a set of non-isomorphic tests, which

meets the desired coverage criteria. Isomorphism among
tests is defined as isomorphism among graphs where the
heap of a Java program is viewed as an edge-labeled graph:
node identities are permutable, while primitive values are
not [10]. Note that the Java semantics do not allow ob-
ject allocation to dictate the exact object identities, which
implies that initializing a test input (at the concrete rep-
resentation level by setting field values or at the abstract
level using a sequence of method invocations) more than
once (say for regression testing) does not generate identical
structures but it generates isomorphic structures.
First we show how a model checker can be used to do the

testing, by executing sequences of method calls in the data
structure’s interface. Secondly, we show how we can use our
symbolic execution framework to build all (non-isomorphic)
input trees up to a given small size that are to be used for the
(black-box) testing of the method. This is done by symbol-
ically executing the Java code of the method’s precondition
(in this case the code of repOk).
Lastly, we show how our framework can be used for white-

box test input generation and how conservative precondi-
tions are used during lazy initialization, to stop the analysis
of infeasible paths. We also show how the input constraints
computed by symbolic execution are solved to provide the
inputs for the actual testing.

4.1 Model Checking as Testing
When doing model checking there is a clear distinction

between the system being analyzed and the environment of
the system, i.e. the inputs that the system takes. Whenever
the environment is under-approximated (less behaviors are
considered than are present in the actual environment) dur-
ing model checking then model checking becomes a form of
testing. Note that more often than not this is the case dur-
ing the model checking of software, since the environment
is usually very large. Considering this connection, one can
therefore use a model checker to generate inputs and analyze
the code on those inputs.
To illustrate this idea we show how one can test the Java

TreeMap library by analyzing all sequences of put and remove
calls on a set with maximally N elements using the JPF
model checker (Figure 7). Note that, for this example, we
are more interested in the coverage of the code, rather than
correctness and hence we only use the model checker’s de-
fault properties (uncaught exceptions being the most im-
portant here) as an oracle — in general our approach allows
more general oracles, including method postconditions ex-
pressed as Java predicates.

4.2 Input Generation For Black-box Testing
Our framework can be used to automatically generate

Java data structures from a description of method precon-
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public static int N = 5;

public static TreeMap t = new TreeMap();

public static Integer[] elems;

static {elems = new Integer[N];

for (int i = 0;i< N; i++)

elems[i] = new Integer(i);

}

public static void main(String[] args) {

while (true) {

if (Verify.randomBool())

t.put(elems[Verify.random(N-1)],null);

else

t.remove(elems[Verify.random(N-1)]);

} }

Figure 7: Model checking as testing

ditions. Note that for sequential code, generalized sym-
bolic execution explores only paths on non-isomorphic in-
puts. Therefore, we can generate non-isomorphic input struc-
tures that satisfy a precondition, by applying generalized
symbolic execution to the code of the precondition. Once
we have an input structure, we use off-the-shelf constraint
solvers for solving the constraints in the path condition, thus
obtaining the test input. Test inputs can then be used for
black-box testing of the method under test. The drawback
of this approach is that there is no relationship between
the inputs and the code coverage. On the other hand, if one
would be interested in covering the input specification rather
than the code under test, this black-box method achieves full
coverage of the input structures up to a given bound.
In order to test the put and remove methods we auto-

matically generated all (non-isomorphic) input trees up to
a given small size from the Java description of the method’s
precondition (i.e. the structural invariant), thus eliminat-
ing the need to construct the inputs using a sequence of
method calls. Our framework symbolically executes repOk

and it generates the input structures whenever repOk returns
true. We put a limit on the number of generated objects:
whenever the size of the vector that stores the objects cre-
ated during lazy initialization (see Section 2) reaches that
limit, the model checker backtracks. As a result, all the in-
put structures satisfying repOk with size up to the specified
limit are created.
Our approach can be contrasted with a brute force ap-

proach, where one will first generate all possible trees up
to a given size according to the class definition, and then
would apply repOk to select only valid red-black trees. Our
approach scales better since we generate trees on demand
(with lazy initialization) and we backtrack as soon as a red-
black tree property is violated, thus pruning large portions
of the search space. It is important to note that the actual
structure of repOk is crucial to the efficiency of our method.
If repOk would first evaluate the tree and only at the end
determine whether the tree is valid, our approach would be
equivalent to generating all trees before pruning.

4.3 Input Generation for White-box Testing
Our symbolic execution framework can be used for input

generation during white box testing. To generate inputs
that meet a given testing criterion, our framework is used
to symbolically execute the method under test and to model

check it against properties that encode the testing criterion.
Counterexamples to the properties represent paths that sat-
isfy the criterion. For every path, our framework also reports
an input structure and a path condition on the primitive in-
put values, which together define a set of constraints that
the inputs should satisfy in order to execute that path2.
A particular characteristic of our framework is that it uses

method preconditions during two phases of the input gener-
ation to eliminate infeasible structures:

• a conservative precondition, that can deal with par-
tially initialized structures, is used during lazy initial-
ization (see Section 4.3.1)

• when a counterexample is found the structural con-
straint for the path is used as input to a concrete
precondition (the same one used in Section 4.2) to
solve the constraints with only valid inputs (see Sec-
tion 4.3.3)

4.3.1 Conservative Preconditions
We use preconditions in initializing fields (see Figure 3).

In particular, a field is not initialized to a value that violates
the precondition. Notice that we evaluate a precondition
on a structure that still may have some uninitialized fields,
therefore we require the precondition to be conservative, i.e.
return false only if the initialized fields of the structure
violate a constraint in the precondition.
Consider the analysis of the remove method in the red-

black tree implementations. The method has as precondi-
tion the class invariant of the red-black tree data structure
(i.e. the repOk Java predicate). The conservative version
of the precondition that we used during lazy initialization is
illustrated in Figure 8. Boolean flags left is initialized

and right is initialized were added by our code instru-
mentation to keep track of uninitialized input fields (see Sec-
tion 2.2.4). The code of conservative repOk is identical to
that of repOk, with the exception that the constraints en-
coded in repOk are only evaluated on initialized fields.
As an example, assume that there are three input trees as

illustrated in Figure 9 that are created during the analysis
of the remove method (at a lazy initialization step). Round
filled nodes represent entries colored black and empty nodes
represent entries colored red; null nodes are not represented.
As before, a “cloud” denotes an uninitialized field — intu-
itively representing a set of nodes, since it can be lazily
initialized to different nodes. For simplicity of presentation,
we omit to represent the key and value fields. Figure 9 also
shows the results of evaluating the conservative repOk on
the tree structures. The first tree violates the repOk, no mat-
ter what the concrete value of the “cloud” is, since red nodes
cannot have red children. In this case the model checker will
backtrack and it will not consider this structure any further.
The second tree is a concrete structure that satisfies repOk.
The third tree represents concrete trees that may or may not
satisfy repOk; conservative repOk returns true (or rather
Don’t Know), and the analysis continues.
We should note that the lazy initialization of input fields

in our framework is related to materialization of summary
nodes in shape analysis [33], while the conservative precon-
ditions can be formulated in the context of abstract interpre-
tation. We would like to explore these connections further.

2Our framework also reports the thread scheduling informa-
tion, in the case of multi-threaded code
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boolean conservative_repOk(Entry e) {

...

// RedHasOnlyBlackChildren

workList = new LinkedList();

workList.add(e);

while (!workList.isEmpty()) {

Entry current=(Entry)workList.removeFirst();

Entry cl = current.left;

Entry cr = current.right;

if (current.color == RED) {

if (current._left_is_initialized &&

cl != null && cl.color == RED) {

return false;

}

if (current._right_is_initialized &&

cr != null && cr.color == RED) {

return false;

}

}

if (current._left_is_initialized &&

cl != null)

workList.add(cl);

if (current._right_is_initialized &&

cr != null)

workList.add(cr);

}

...

return true;

}

Figure 8: Predicate conservative repOk

FALSE TRUE TRUE (Don’t Know)

Figure 9: Evaluation of conservative repOk on 3
structures

4.3.2 Handling Destructive Updates
The lazy initialization algorithm builds the input struc-

tures on an as needed basis, when they are first accessed
during symbolic execution. If the code under analysis per-
forms destructive updates, the structure of the inputs can be
lost. To create test inputs we therefore need to reconstruct
these input structures. As an example, consider the struc-
tures in the leaves of the symbolic execution tree depicted in
Figure 4, which are the result of a destructive update; these
structures no longer contain the information that in the in-
put structure, there is a link between the first two nodes. In
order to recover the original input structures, we keep map-
pings between objects with uninitialized fields and objects

Symbolic input structure
satisfying conservative_repOK()

satisfies repOK()
Solution that

Not a solution!
(Constraint 4 violated.)

Figure 10: Concretization of symbolic structures

that are created when those fields are initialized; these map-
pings are used to reconstruct input structures. Note that
whenever the precondition needs to be evaluated during lazy
initialization, we first reconstruct the input structures and
then we evaluate the precondition on these reconstructed
input structures.

4.3.3 Solving Constraints
The result of symbolically executing a particular program

path is a heap structure, that encodes constraints on refer-
ence fields, and a path condition, that encodes constraints
on primitive data. These constraints define the inputs that
will allow the execution of the path. In order to obtain the
actual test inputs, we have to solve these constraints, i.e. we
have to build actual Java data structures that can be used
during testing. In our framework, we solve these constraints
separately for structures and primitive data.
We first “convert” symbolic structures to concrete struc-

tures that have no uninitialized fields and that also satisfy
the method’s precondition. If there are no method pre-
conditions, this amounts to simply setting all the uninitial-
ized fields to null. Otherwise, the symbolic input struc-
ture (which satisfies the conservative precondition) is used
as input to the code for the concrete precondition which is
symbolically executed to obtain the concrete structure, in a
way similar to the test input generation method described
in Section 4.2. The constraints in the path condition are
then solved using an off-the-shelf constraint solver.
We should note that not all the concretizations of a sym-

bolic structure that satisfies the conservative precondition,
are valid solutions. An example is given in Figure 10.

5. EXPERIMENTS
As mentioned before we measured branch-coverage for the

methods of the TreeMap class and for simplicity we will
only consider here 3 helper methods: deleteEntry (del),
fixAfterDeletetion (fixD) and fixAfterInsertion (fixI).
The optimal3 branch-coverage that can be achieved for these
methods are 86% (19 out of 22) for deleteEntry, 100% (20
out of 20) for fixAfterDeletion and 88% (14 out of 16) for
fixAfterInsertion. Note that 100% statement coverage
can be obtained for all 3 methods - the uncovered branches
are all for missing else branches where the if option is
always taken.

3The rest of the branches can be shown to be infeasible.
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Resources % Coverage
N Time Mem States del fixD fixI

1 1.7 2.2 28 18 0 0
2 1.9 2.2 104 68 5 6
3 2.4 2.3 730 68 5 75
4 7.8 3 10109 86 90 88
5 127 8.8 194525 86 90 88
6 Out of Memory

Table 1: Model Checking as Testing

All results were obtained using the JPF model checker
(version 3.1.1) on a 2.2 Ghz dual processor Pentium with 1
Gb of memory running Windows 2000 with Java 1.4.2.

5.1 Model Checking as Testing
The results in Table 1 show the coverage achieved in the

three methods when model checking the code in Figure 7 for
different values of N (the number of entries to be added to
the TreeMap). The coverage numbers were gathered using
JPF’s facility to calculate branch-coverage on the bytecode
level during execution — a simple transformation was done
to obtain branch-coverage on the source code level. Note
that this technique is also used for the branch-coverage cal-
culations in the rest of the section. The table also contains
the time taken (in seconds), the memory consumed (in Mb)
and the number of states generated during model checking.
The results indicate that this approach does not scale

well. Until size 4 the results give the appearance of ac-
tually being very good (fast, low memory and reasonable
coverage), but the exponential explosion becomes apparent
at size 5 and size 6 cannot be handled in its entirety. For
fixAfterDeletion, 100% branch-coverage is not achieved;
fixAfterDeletion is called from deleteEntry hence it is
not too surprising that there is a large jump in its coverage
from size 3 to 4.
An advantage of the model checking approach is that it

obtains good path (behavioral) coverage for small input do-
mains as well as for systems where testing is fundamentally
hard, such as concurrent systems. In the domain considered
here, namely (sequential) programs manipulating complex
data, this technique of testing could be an appropriate first
pass at finding errors, but to obtain good structural coverage
one needs a more sophisticated approach.

5.2 Black-box
Table 2 shows the results for black-box structural cover-

age up to a fixed size (N). The input trees were generated
by doing a symbolic execution of the repOk method using
JPF. For each of the input trees all possible node deletions
and one new insertion were then executed (Tests) and the
code coverage measured. We also report the total number
of trees created (Structs) up to a specific size N (in paren-
thesis only the number of trees of size N is given) as well
as how many structures where considered (Candidates) by
the lazy initialization of the code within repOk. Since the
memory consumption was minimal (less than 10Mb for the
cases shown) we only report on the time taken to generate
the trees — the time for running the tests were negligible.
Note that since the structures are generated up to a given
size, the results include all the smaller structures as well.

Statistics % Coverage
N Structs Candidates Time Tests del fixD fixI

1 1(1) 5 2.4 2 18 0 6
2 3(2) 24 2.9 8 68 5 6
3 5(2) 103 4.7 16 72 50 88
4 9(4) 432 12 36 86 90 88
5 17(8) 1830 44 84 86 100 88
6 33(16) 7942 212 196 86 100 88

Table 2: Black-box Structural Tests

Statistics % Coverage
Time Mem Tests del fixD fixI

72 5 11 (53) 86 100 88

Table 3: White-box Tests

After 1 minute all the trees required to achieve optimal
coverage of the code were generated — size 5. Note that
the trees of size N created by analyzing all sequences of
put and remove operations (Section 5.1) are a subset of the
trees of size N allowed by repOk — we believe this is due
to the class invariant (repOk) being more permissive than
the property maintained by sequences of put/remove op-
erations. Indeed (say for performance concerns) methods
may maintain properties that are stronger than the stated
class invariant, thereby disallowing certain structures that
are otherwise valid from being generated during executions
of method sequences.

5.3 White-box
The results from doing a white-box analysis of the meth-

ods of TreeMap to obtain a set of test inputs to achieve
optimal branch-coverage of the three methods is given in
Table 3. We report on the time taken in seconds, memory
usage in Mb, the number of tests run (with the number of
tests generated before removing duplicates in parenthesis)
and the coverage obtained. Although we only mention the
input trees we are considering, each test input consists of an
input tree as well as the node to put/remove.
Note that here we don’t parameterize the results with the

size of the trees (as in Table 2), since the goal is to cover all
branches and that is achieved with different size trees. We
do however limit the size of the trees that we are looking
for to size 5 and smaller. As to be expected the coverage
obtained is optimal. There are many duplicates amongst
the input trees generated to cover all the 53 branches in the
code — only 11 unique input trees are required. The 11
trees are made up of all trees of size 1, 2, 3 and 4, but only
two trees of size 5 (out of the 8 possible trees).

5.4 Discussion
The lazy initialization of repOk that we use for black-box

test input generation can be compared to the approach taken
by Korat [10]. Korat generates inputs from constraints given
as Java predicates and it uses backtracking (as we also do)
but it monitors executions of repOk on fully initialized inputs
within an a priori given input size. For the example used
here the number of candidate structures the two techniques
consider is very similar. However, if one also introduces in-
teger values in the structures, our approach considers a lot
fewer structures, since it uses symbolic execution together
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with integer constraint solving whereas Korat has to enu-
merate the integer fields.
The fact that in the white-box approach only 11 test in-

puts are required versus the 84 to obtain the same (optimal)
coverage in the black-box approach illustrates the power of
using a goal-directed white-box approach over a blind black-
box approach to test input generation for obtaining high
coverage. We believe that for more complicated structural
invariants the difference in test input size for the black and
white box approach would be even more pronounced.
A drawback of our current approach is that we cannot de-

termine whether code is unreachable when the code contains
cycles — as is the case in the red-black tree examples consid-
ered here. We are considering techniques such as automatic
invariant generation [38] and the use of shape-predicates
and abstraction to address this problem. An inherent draw-
back of symbolic execution is the strength of the decision
procedures used to check for infeasible path conditions. Cur-
rently we can only deal with linear integer constraints, but
we hope to add more powerful decision procedures in the
near future.
We should note that we have experimented with different

approaches to representing data structures, e.g. they could
be completely symbolic or represented as partially initial-
ized Java structures, as in the context of the work presented
here. We used this latter approach because it facilitates the
evaluation of preconditions written as Java predicates.

6. RELATED WORK

6.1 Specification-based Testing
The idea of using constraints to represent inputs dates

back at least three decades [14, 29, 31, 41]; the idea has
been implemented in various tools including EFFIGY [31],
TEGTGEN [32], and INKA [24]. But most of the prior work
has been to solve constraints on primitive data, such as inte-
gers and booleans, and not to solve constraints on complex
structures, which requires very different constraint solving
techniques.
Some recent frameworks, most notably TestEra [35] and

Korat [10,34], do support non-isomorphic generation of com-
plex structures, such as red-black trees. TestEra generates
inputs from constraints given in Alloy, a first-order declara-
tive language based on relations. TestEra uses off-the-shelf
SAT solvers to solve constraints. We have already discussed
about Korat in Section 5.4. The Korat algorithm has re-
cently been included in the AsmL Test Generator [20] to
enable generation of structures. TestEra and Korat focus
on solving structural constraints. They do not directly solve
constraints on primitive data and instead, systematically try
all primitive values within given bounds, which may be in-
efficient. Further, TestEra and Korat have been used for
black-box testing and not in a white-box setting.
An early paper by Goodenough and Gerhart [23] empha-

sizes the importance of specification-based testing. Various
projects automate test case generation from specifications,
such as Z specifications [18], UML statecharts [37], ADL
specifications [12], or AsmL specifications [25]. These speci-
fications typically do not involve structurally complex inputs
and they do not address object-oriented programs.
Doong and Frankl [19] use algebraic specifications to gen-

erate tests (including oracles) for object oriented programs.
Their ASTOOT tool generates sequences of interface events

and checks whether the resulting objects are observation-
ally equivalent (as specified by the algebraic specification).
Although here we were only interested in generating tests
covering the input structures (black-box) and code (white-
box), using an algebraic specification to create additional
tests and check the functional requirements of the code is a
straight-forward extension.
Gargantini and Heitmeyer [21] use a model checker to

generate tests that violate known properties of a specifica-
tion given in the SCR notation. Ammann and Black [3,
4] combine model checking and mutation analysis to gen-
erate test cases from a specification. Rayadurgam et al.
use a structural coverage based approach to generate test
cases from specifications given in RSML−e by using a model
checker [26]. Lee et al. [28] define a framework for using tem-
poral logic to specify data-flow test coverage.

6.2 Static Analysis
The Three-Valued-Logic Analyzer (TVLA) [33, 42] is the

first static analysis system that can verify preservation of
the list structure in programs that perform list reversals via
destructive updates to the input list. TVLA has been used
to analyze small programs that manipulate doubly linked
lists and circular lists, as well as some sorting programs.
Recently, the TVLA system was extended to also deal with
preconditions on shape-graphs [44]. The pointer assertion
logic engine (PALE) [36] can verify a large class of data
structures that can be represented by a spanning tree back-
bone, with possibly additional pointers. These data struc-
tures include doubly linked lists, trees with parent pointers,
and threaded trees.
While static analysis of program properties is a promising

approach for ensuring program correctness in the long run,
the current static analysis techniques can only verify limited
program properties. For example, none of the above tech-
niques can verify correctness of implementations of balanced
trees, such as red-black trees. Testing, on the other hand,
is very general and can verify any decidable program prop-
erty for realistically large implementations, but for bounded
inputs.

6.3 Software Model Checking
There has been a lot of recent interest in applying model

checking to software [7,8,15,17,22,27,43]. Most of this work
has focused on checking event sequences, specified in tempo-
ral logic or as “API usage rules” in the form of finite state
machines. These approaches offer strong guarantees: if a
program is successfully checked, there is no input/execution
that would lead to an error. However, they typically did not
consider linked data structures or considered them only to
reduce the state space to be explored and not to check the
data structures themselves.
Our work shows how to enable an off-the-shelf model checker

to check for properties of complex structures, taking into ac-
count complex preconditions. Our algorithms can be imple-
mented in a straightforward fashion to enable other model
checkers that support dynamic structures to check structural
properties too.
Recently two popular software model checkers BLAST

and SLAM, both based on predicate abstraction, were used
to do white-box test input generation [2, 6]. In both cases
the goal is to generate tests that will cover a specific pred-
icate or a combination of predicates. These techniques do
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not focus on generating complex test inputs and they can
not handle complex preconditions.

7. CONCLUSION
The main contribution of this work was to show how com-

plex preconditions can be used to allow efficient symbolic
execution of code manipulating complex data to generate
test inputs obtaining high code coverage. In particular we
illustrated how to use a conservative precondition that eval-
uates symbolic structures (i.e. structures that are not fully
initialized) to eliminate structures that cannot lead to valid
concrete inputs that will achieve the stated coverage. This
conservative precondition can be seen as an abstract ver-
sion of the concrete precondition, since it will disallow in-
valid structures, but might accept structures that can be
instantiated to concrete structures that will fail the con-
crete precondition. Although we created the conservative
precondition by hand, we would like to investigate how to
generate it directly from the concrete precondition by using
techniques from abstract interpretation. In our experiments
the precondition was the class invariant, but the approach
can handle any precondition expressed as a Java predicate.
We also showed two other approaches to using model

checking and symbolic execution for testing. Firstly, the
most traditional approach from a model checking perspec-
tive, where one simply applies model checking to the sys-
tem under test. This approach can obtain high levels of be-
havioral coverage, but only for small configurations of data
structures. Secondly, we showed that by symbolically exe-
cuting the code for the precondition one can efficiently ob-
tain tests suitable for black-box testing. This second ap-
proach shows the flexibility of our lazy initialization ap-
proach to symbolic execution, and it resembles the algo-
rithm employed by the Korat tool [10] that has been highly
successful in generating test inputs.
We believe that a flexible approach to testing complex

software is very important. To this end we think the tech-
niques covered here can be seen as a continuum in the fol-
lowing fashion. If the code to be analyzed doesn’t have a
full specification, one can use the black-box approach that
only considers the structure of the inputs to generate tests.
Note that the structure of the inputs must be known and in
our case given as a Java predicate. If a specification does
exist (for example an algebraic specification as used in [19])
then a specification centered approach to test input genera-
tion can be used to augment the above. Note, this requires
the specification to be given in a notation acceptable to a
model checker, again Java in our case. At this point the
black-box approach has been exhausted and one needs to
consider the code (white-box) to generate additional tests.
Although we only considered simple coverage criteria here
to drive the symbolic execution based test input generation,
one can specify any criteria that can be expressed as prop-
erties to the model checker, for example, predicate coverage
[2,6]. Lastly, testing is not sufficient in all cases, for example
testing a concurrent program is notoriously incomplete, and
a more powerful technique such as program model checking
can then be used.
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