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Abstract. This paper considers the problem of designing a controller for an unknown plant

based on input/output measurements. The new design method we propose is direct (no model

identification of the plant is needed) and can be applied using a single set of data generated by the

plant, with no need for specific experiments nor iterations. It is shown that the method searches for

the global optimum of the design criterion and that, in the case of restricted complexity controller

design, the achieved controller is a good approximation of the restricted complexity global optimal

controller. A simulation example shows the effectiveness of the method.

1 Introduction

In many practical control applications, a mathematical description of the plant is not available,

and the controller has to be designed on the basis of measurements. This problem has attracted

the attention of control engineers since the forties with the pioneering work by Ziegler and Nichols

[24], which focuses on the design of industrial PID controllers. After [24], many more techniques

started to appear, partly as modifications and extensions of the Ziegler and Nichols method, partly

as developments in new directions (see e.g. [2, 8, 3, 15, 1]). The main characteristic of these tech-

niques is that they can be easily implemented: simple experiments on the plant are performed and

some pre-specified rule is applied to the corresponding outcome.

This paper describes a new controller tuning method called Virtual Reference Feedback Tuning

(VRFT). Similarly to the above mentioned tuning techniques, VRFT only requires a single exper-

iment on the plant.

Problem formulation

It is assumed that the plant is a linear SISO discrete-time dynamical system described by the ra-

tional transfer function P (z). Such a transfer function is unknown and a set of I/O data, collected

during an experiment on the plant, is available for design purposes.
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Figure 1: The control system

The control specifications are assigned via a reference model M(z). This describes the desired

transfer function of the closed-loop system (see Fig.(1)). Attention is restricted to controllers

which linearly depend on the parameter vector, namely the controller class {C(z; θ)} takes the

form C(z; θ) = βT (z)θ, where β(z) = [β1(z) β2(z) · · · βn(z)]T is a known vector of linear discrete-

time transfer functions, and θ = [ϑ1 ϑ2 · · · ϑn]T is the n-dimensional vector of parameters.

The control objective is the minimization of the following model-reference criterion:

JMR(θ) =

∥

∥

∥

∥

(

P (z)C(z; θ)

1 + P (z)C(z; θ)
− M(z)

)

W (z)

∥

∥

∥

∥

2

2

, (1)

where W (z) is a weighting function chosen by the user.

Motivation and Original Contributions

VRFT builds on a general idea for controller selection originally proposed in [6]. In [6] only the

bare idea was set up, with no concern for fundamental implementation and performance issues.

The aim of this paper is to develop a complete ready-to-use technique for the controller design.

This will be done by addressing two crucial issues:

• the design of a pre-filter of the data, in order to generate a controller that minimizes (1);

• the treatment of data affected by noise.

Comparison with other methods

By comparing VRFT with the tuning rules presented in [24, 2, 8, 3, 15, 1], it can be noted that

the control problem addressed by VRFT is a model reference control problem, where the user

can specify his control objectives by a suitable selection of a reference model M(z). This is a

nontrivial advantage over existing methods for the tuning of industrial controllers, where the control

specifications are given empirically, or assigned in a very simple and limited fashion. Moreover, the

range of applicability of VRFT is not restricted to PID controllers.

It is worth noticing that VRFT has some similarities with some iterative schemes for the controller

design of unknown plants recently developed in the literature (see e.g. [20, 5, 11, 9, 21, 23, 4, 10]).

Among them, the innovative Iterative Feedback Tuning (IFT) method proposed by Hjalmarsson

and coauthors ([11, 10]) shares with VRFT the characteristic of being direct; namely both VRFT

and IFT do not make use of any intermediate model construction step, and point directly to the



controller selection. Using a very smart idea for reconstructing the cost criterion gradient from data,

IFT performs a fine tuning of the controller through an iterative procedure. In contrast, VRFT is

not iterative and its main characteristic is its ease of use. On the other hand, VRFT is suboptimal

for restricted controller classes. As we can see, IFT and VRFT are in a sense complementary

methods with their own area of applicability.

Outline of the paper

The structure of the paper is as follows. In Section 2 the Virtual Reference idea is introduced.

Starting from this basic idea, the VRFT technique is developed by addressing two main issues: the

problem of selecting a suitable pre-filter in order to obtain a controller that minimizes (1) (Section

3), and the problem of dealing with noise (Section 4). A simulation example ends the paper.

2 The Virtual Reference Framework

In this section the Virtual Reference framework, as it was originally introduced in [6], is briefly

recalled. A similar idea, though in a special setting, has also been used in the context of control

with neural networks, see [17]. The Virtual Reference approach has been applied in a nonlinear

setting in [18, 19, 16, 7].

The basic idea

Suppose that a controller C(z; θ) results in a closed-loop system whose transfer function is M(z).

Then, if the closed-loop system is fed by any reference signal r(t), its output equals M(z)r(t).

Hence, a necessary condition for the closed-loop system to have the same transfer function as the

reference model is that the output of the two systems is the same for a given r̄(t).

Standard model reference design methods try to impose such a necessary condition by first selecting

a reference r̄(t) and then by choosing C(z; θ) such that the condition is satisfied. However, for a

general selection of r̄(t), the above task is difficult to accomplish if a model of the plant is not

available. The basic idea of the Virtual Reference approach is to perform a wise selection of r̄(t)

so that the determination of the controller becomes easy.

Suppose that we have in our hands two files collected from the plant, one containing u measurements

and the other one the corresponding output y (how these files have been generated is immaterial

for the discussion to come. Suppose, however, that the system is noise-free. This is for ease of

explanation and the noisy case will be dealt with in Section 4 of this paper). Given the measured

y(t), consider a reference r̄(t) such that M(z)r̄(t) = y(t), where M(z) is the desired reference model

for the closed-loop system we wish to design. Such a reference is called ”virtual” because it was

not used to generate y(t). Notice that y(t) is the desired output of the closed-loop system when the

reference signal is r̄(t). Then, compute the corresponding tracking error e(t) = r̄(t) − y(t). Even

though plant P (z) is not known, we know that when P (z) is fed by u(t) (the actually measured

input signal), it generates y(t) as an output. Therefore, a good controller is one that generates u(t)

when fed by e(t). The idea is then to search for such a controller. Since both signals u(t) and e(t)

are known, this task reduces to the identification problem of describing the dynamical relationship



between e(t) and u(t). 2

The above idea can be implemented by the following 3-step algorithm (where a filtering of data

through a user-chosen filter L(z) is also considered). It represents the bulk of the VRFT method.

Given a set of measured I/O data {u(t), y(t), t = 1, . . . , N}, do the following:

1. calculate:

• a virtual reference r̄(t) such that y(t) = M(z)r̄(t), and

• the corresponding tracking error e(t) = r̄(t) − y(t) (we assume M(z) 6= 1, otherwise

e(t) = 0);

2. filter the signals e(t) and u(t) with a suitable filter L(z):

eL(t) = L(z)e(t), uL(t) = L(z)u(t);

3. select the controller parameter vector, say θ̂N , that minimizes the following criterion

JN
V R(θ) =

1

N

N
∑

t=1

(uL(t) − C(z; θ)eL(t))2 . (2)

Note that when C(z; θ) = βT (z)θ, the criterion (2) can be given the form

JN
V R(θ) =

1

N

N
∑

t=1

(uL(t) − ϕT
L(t)θ)2, ϕL(t) = β(z)eL(t), (3)

and the parameter vector θ̂N is given by

θ̂N =

[

N
∑

t=1

ϕL(t)ϕL(t)T
]−1 N

∑

t=1

ϕL(t)uL(t).

In the next section we show that, by a suitable selection of the pre-filter L(z), the controller

C(z; θ̂N ) is nearly-optimal for the cost criterion (1) and it is in fact optimal provided that the

selected controller class contains a controller that gives perfect matching between the closed-loop

transfer fucntion and M(z).

3 Shaping the filter

Consider the performance index JMR(θ) of the model reference control problem (eqn.(1)) and the

criterion of the Virtual Reference approach (eqn.(2)): they look different. In this section it will

be shown that their minimum arguments can in fact be made close to each other by a suitable

selection of the filter L(z). In this way, the Virtual Reference approach can be used to solve the

model reference control problem stated in the introduction.

It is important to note that in the derivations below we do not make the assumption that a controller



exists in the controller class that leads to perfect matching. This would be unrealistic. As for the

presence of noise, in this section we assume that u(t) and y(t) are noise-free. This is for ease of

explanation and the presence of noise will be treated in the next section.

The choice of the filter

To start with, note that, using the definition of 2-norm of a discrete-time linear transfer function,

JMR(θ) can be written as:

JMR(θ) =
1

2π

∫ π

−π

∣

∣

∣

∣

∣

P (ejω)C(ejω; θ)

1 + P (ejω)C(ejω; θ)
− M(ejω)

∣

∣

∣

∣

∣

2

|W (ejω)|2dω,

or, more compactly, by dropping the argument ejω:

JMR(θ) =
1

2π

∫ π

−π

∣

∣

∣

∣

PC(θ)

1 + PC(θ)
− M

∣

∣

∣

∣

2

|W |2dω. (4)

Introduce now the rational function C0(z) which exactly solves the model-matching problem,

namely C0(z) is such that (C0(z) exists because M(z) 6= 1)

P (z)C0(z)

1 + P (z)C0(z)
= M(z). (5)

Note that, in general, C0(z) does not belong to the family of parameterized controllers {C(z; θ)}

and, even more so, it need not be a proper rational function. Such a C0(z) is only used for analysis

purposes.

Using C0(z), after some manipulations, the performance index (4) can be rewritten as:

JMR(θ) =
1

2π

∫ π

−π

|P |2|W |2

|1 + PC(θ)|2
|C(θ) − C0|

2

|1 + PC0|2
dω. (6)

Consider now the criterion JN
V R(θ). It is well-known that, if the measured signals u(t) and y(t)

can be considered realizations of stationary and ergodic stochastic processes, when the number of

available data grows (N → ∞), the following holds:

JN
V R(θ) −→ JV R(θ) = E[(uL(t) − C(z; θ)eL(t))2]. (7)

JV R(θ) is the asymptotic counterpart of JN
V R(θ). Accordingly, as N → ∞, the minimum θ̂N of

JN
V R(θ) will converge to the minimum of JV R(θ), say θ̂. In the rest of the paper, for analysis

purposes, JV R(θ) will be used extensively in place of JN
V R(θ).

Using the definitions of uL(t) and eL(t) given in the previous section, the definition of C0(z) in

(5), and the Parseval theorem (see e.g.[14]), the asymptotic criterion (7) can be given the following

frequency domain representation:

JV R(θ) =
1

2π

∫ π

−π
|P |2|C(θ) − C0|

2|1 − M |2
|L|2

|M |2
Φudω, (8)

where Φu is the spectral density of u(t).

Comparing JMR(θ) and JV R(θ) (eqn.(6) and eqn.(8), respectively), the following observation can

be made:



• If C0(z) ∈ {C(z; θ)} and JV R(θ) has a unique minimum, minimizing JV R(θ) gives C0(z), no

matter what L(z) is.

• Suppose instead that C0(z) 6∈ {C(z; θ)}. If the following identity holds

|L|2 =
|M |2|W |2

|1 + PC(θ)|2
1

Φu

, ∀ω ∈ [−π;π], (9)

then JV R(θ) = JMR(θ). As a consequence, minimizing JV R(θ) is the same as minimizing

JMR(θ).

Clearly, the choice of the filter L(z) suggested by equation (9) is not feasible since P (z) is not

known and it also depends on θ. Here, the following choice of L(z) is instead proposed:

• Select L(z) such that

|L|2 = |1 − M |2|M |2|W |2
1

Φu

, ∀ω ∈ [−π;π]. (10)

First notice that all quantities in the right-hand-side of equation (10) are known and therefore L(z)

can be actually computed (in fact Φu can be considered known only when the input signal has been

selected by the designer. In other situations, Φu needs to be estimated). Moreover, it is readily

seen that expression (10) is equivalent to

|L|2 =
|M |2|W |2

|1 + PC0|2
1

Φu

, ∀ω ∈ [−π;π].

Hence, choice (10) corresponds to substituting |1 +PC(θ)|2 with |1 +PC0|
2 in equation (9), which

appears to be a sensible selection since we expect that |1 + PC(θ)|2 ≈ |1 + PC0|
2 for θ = θ̄, where

θ̄ is the minimum of JMR(θ). In Proposition 1 below, we show that choice (10) is in fact optimal

in a sense precisely stated in the Proposition.

Remark. One should note that the analysis is based on asymptotic results. Should the signals be

poorly exciting over certain frequency ranges of interest, the asymptotic results would start to hold

for a very large amount of data points.

Analysis of the proposed filter

Set ∆C(z) = C0(z) − βT (z)θ̄, where θ̄ is the parameter vector which minimizes JMR(θ). Note

that ∆C(z) is the part of C0(z) which cannot be explained by the chosen family of controllers.

Obviously, if C0(z) ∈ {C(z; θ)}, then ∆C(z) = 0.

Introduce now the following extended vector of transfer functions

β+(z) = [β1(z) β2(z) ... βn(z) ∆C(z)]T ,

and the following extended parameter vector

θ+ = [ϑ1 ϑ2 ... ϑn ϑn+1]
T .



Then, define an extended family of controllers C+(z; θ+) = β+(z)T θ+. Clearly, C0(z) ∈ {C+(z; θ+)}

with θ̄+ = [θ̄T 1]T . Finally, consider the extended performance index

J+

MR(θ+) =

∥

∥

∥

∥

∥

(

P (z)C+(z; θ+)

1 + P (z)C+(z; θ+)
− M(z)

)

W (z)

∥

∥

∥

∥

∥

2

2

.

Note that the difference between JMR(θ) and J+

MR(θ+) is that the latter is parameterized by the

family of extended controllers {C+(z; θ+)}. The second order Taylor expansion around its global

minimizer θ̄+ is denoted by J̄+

MR(θ+), namely:

J+

MR(θ+) = J̄+

MR(θ+) + o(‖θ+ − θ̄+‖2
2).

We have now the following result.

Proposition 1. The parameter vector θ̄ which minimizes the performance index JMR(θ), and the

parameter vector θ̂ which minimizes JV R(θ) when L(z) is selected according to (10) are such that:

θ̄ = arg min
θ

J+

MR([θT 0]T ). (11)

θ̂ = arg min
θ

J̄+

MR([θT 0]T ). (12)

proof: see the Appendix. 2

The above result is interesting since it provides a formal relationship between the parameter vector

θ̂ obtained using the Virtual Reference approach and the ”optimal” parameter vector θ̄, which min-

imizes the original performance index JMR(θ). In particular, Proposition 1 states that θ̄ minimizes

the restriction - over the n-dimensional vector space of the first n elements of θ+ - of J+

MR(θ+),

whereas θ̂ minimizes the restriction over the same vector space of the 2-nd order expansion (around

θ̄+) of the extended performance index J+

MR(θ+). The reason why this is so is that, by the choice

(10), JV R(θ) is in fact equal to J̄+

MR([θT 0]T ). Based on this result, we conclude that if the trans-

fer function ∆C(z) plays a marginal role in determining C0(z), namely the family of controllers

{C(z; θ)} is only slightly under-parameterized, then C(z; θ̂) is a good approximation to C(z; θ̄) since

J+

MR(θ+) is well approximated in a neighborhood of its minimum by its second order expansion

J̄+

MR(θ+).

Example 1. Consider a plant, a reference model, and a family of controllers characterized by the

following transfer functions:

P (z) =
z−1

1 − 0.6z−1
, M(z) =

0.6z−1

1 − 0.4z−1
, C(z; θ) =

θ

1 − z−1
.

Notice that C(z; θ) can be rewritten as C(z; θ) = β(z)T θ, where β(z) = 1/(1 − z−1). The ”ideal”

controller which exactly solves the model-matching problem is given by

C0(z) =
0.6 − 0.36z−1

1 − z−1
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Figure 2: Contour plots of J+

MR
(θ+) (continuous line) and J̄+

MR
(θ+) (dashed line); (O)=θ̄+; (X)=[θ̂ 0];

(+)=[θ̄ 0].

(note that C0(z) 6∈ {C(z; θ)}). The global minimum of the model-reference criterion JMR(θ) is

achieved by θ̄ = 0.34, whereas the global minimum of JV R(θ) (when the filter is chosen as in (10))

is achieved by θ̂ = 0.44. Correspondingly, JMR(θ̄) = 1.35, and JMR(θ̂) = 1.45. Using the definitions

introduced above, the extended controller class is given by C+(z; θ+) = β+(z)T θ+, where

β+(z) =

[

1

1 − z−1

0.26 − 0.36z−1

1 − z−1

]T

, θ+ = [ϑ1 ϑ2]
T ,

and C0(z) = β+(z)T θ̄+, with θ̄+ = [θ̄T 1]T = [0.34 1]. A graphical interpretation of the results

is given in Fig.(2), where the contour plots of J+

MR(θ+) and J̄+

MR(θ+) are displayed. As stated in

Proposition 1, it is apparent that θ̄ is the minimum of the extended performance index restricted

to ϑ2 = 0, whereas θ̂ is the minimum of the quadratic approximation around θ̄+ of the extended

performance index restricted to ϑ2 = 0. 2

4 The use of noisy data

In this section we discuss the behavior of the VRFT method when the plant output y(t) is affected

by additive noise d(t), namely

ỹ(t) = P (z)u(t) + d(t).

We make the assumption that the processes u(·) and ξ(·) are uncorrelated, namely that the data

are collected when the plant is working in open-loop configuration. Closed-loop data collection is

not dealt with in detail in this paper for space limitations; however, extending the presented ideas

to a closed-loop setting is straightforward and briefly discussed at the end of the present section.

If the Virtual Reference algorithm of Section 2 is applied to the data-set {u(t), ỹ(t)}t=1,..,N , one

obtains a biased parameter vector and this results in a significant deterioration of the performance.



This can be easily understood by inspecting the frequency-domain expression of the asymptotic

criterion JV R(θ), when using noise-free and noisy data:

• Asymptotic criterion using noise-free data {u(t), y(t)}t=1,..,N :

JV R(θ) =
1

2π

∫ π

−π
|P |2|C(θ) − C0|

2|1 − M |2
|L|2

|M |2
Φudω. (13)

• Asymptotic criterion using noisy data {u(t), ỹ(t)}t=1,..,N :

JV R(θ) =
1

2π

∫ π

−π

[

|P |2|C(θ) − C0|
2|1 − M |2

|L|2

|M |2
Φu +

|C(θ)|2

|P |2|C0|2
|L|2Φd

]

dω (14)

(Φd is the spectral density of the noise).

Apparently, the minima of (13) and (14) are different because the term due to d(·) in (14) depends

on θ.

In the following, we propose the use of an Instrumental Variable method to counteract the effect

of noise ([14]).

Introduce the symbol

ϕ̃L(t) = β(z)L(z)(M(z)−1 − 1)ỹ(t),

which denotes the regressors when the system is affected by noise (compare with (3)). Letting ζ(t)

be the instrumental variable, the parameter is estimated according to equation

θ̂IV
N =

[

N
∑

t=1

ζ(t)ϕ̃L(t)T
]−1 [ N

∑

t=1

ζ(t)uL(t)

]

. (15)

Choice of the instrumental variables

We propose two different choices for the instrumental variables. The first one guarantees that

asymptotically θ̂IV = θ̂. However an additional experiment on the plant is required. The second

one does not guarantee that θ̂IV = θ̂ rigorously, but the residual error is expected to be small. It

does not require an additional experiment on the plant.

The proposed choices are as follows:

• Repeated experiment

Perform a second experiment on the plant using the same input {u(t)}t=1,..,N and collect the

corresponding output sequence {ỹ(t)′}t=1,..,N . Then construct the instrumental variables as:

ζ(t) = β(z)L(z)(M(z)−1 − 1)ỹ′(t). (16)

Notice that {ỹ(t)′}t=1,..,N will be different from {ỹ(t)}t=1,..,N since the two sequences are

affected by two different realizations of the noise in the two experiments. If we assume,

as it is reasonable, that the noise signals in the two experiments are uncorrelated, then,

asymptotically, (15) gives θ̂, the same result as in the noiseless case.



• Identification of the plant

Identify a model P̂ (z) of the plant from the set of data {u(t), ỹ(t)}t=1,..,N and generate the

simulated output ŷ(t) = P̂ (z)u(t). Then construct the instrumental variables as:

ζ(t) = β(z)L(z)(M(z)−1 − 1)ŷ(t). (17)

The identification of the plant is a standard open-loop identification problem. The model P̂ (z)

can be estimated using different techniques among which a high-order ARX model ([14]), or

a high-order state space model ([22]).

Due to the possible inaccuracy of the estimated P̂ (z), this second method does not guarantee

that the estimate asymptotically tends precisely to θ̂.

The following remarks are in order.

- Using (16) is possible only if two independent experiments characterized by the same input signal

can be made on the plant.

- When (17) is used, strictly speaking, we can no longer claim that the method is fully direct since

P̂ (z) has to be estimated. However, it is important to note that the estimated plant is used with

the only objective of generating an instrumental variable signal and its actual expression is not

directly used to design the controller. This in particular implies that a high order model can be

used in the identification of P (z) without affecting the controller complexity.

We conclude this section by summarizing the complete VRFT algorithm in the case when choice

(17) is made.

VRFT ALGORITHM

• Set L(z) = M(z)(1 − M(z))U(z)−1W (z), where U(z) is such that |U(ejω)|2 = Φu(ω).

• Compute uL(t) as: uL(t) = L(z)u(t).

• Compute ϕ̃L(t) as: ϕ̃L(t) = β(z)L(z)(M(z)−1 − 1)ỹ(t).

• Identify a high-order model P̂ (z) from {u(t)}t=1,..,N to {ỹ(t)}t=1,..,N .

• Compute ζ(t) as: ζ(t) = β(z)L(z)(M(z)−1 − 1)P̂ (z)u(t).

• Compute the parameter vector of the controller as:

θ̂IV
N =

[

N
∑

t=1

ζ(t)ϕ̃L(t)T
]−1 N

∑

t=1

ζ(t)uL(t).

Closed-loop noisy data

The VRFT method can be successfully applied to data collected in closed-loop as well. An extended

discussion on the use of closed-loop data goes beyond the scope of this paper. Here, it suffices to

say that the above procedure can still be used by replacing the identification step of P̂ (z) with the
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Figure 3: (a) Layout of the flexible transmission; (b) Bode magnitude plots: the plant (thin line) and the
reference-model (bold line).

identification of the complementary sensitivity of the closed-loop system. The reader is referred to

[13] for details and comments.

5 A simulation example

In order to better illustrate the main features of the VRFT technique, a simulation example is now

presented.

The plant we consider is the flexible transmission system proposed in [12] as a benchmark for

digital control design. Here the unloaded case is considered. The flexible transmission consists of

three horizontal pulleys connected by two elastic belts (see Fig.(3.a)). The system input is the

angular position of the first pulley; the system output is the angular position of the third pulley.

The control objective is to make the angular position of the third pulley as close as possible, over

a suitable bandwidth, to the angular position of the first one.

The input-output dynamic behavior of the plant can be described by the following discrete-time

linear transfer function P (z):

P (z) = z−3B(z)/A(z)

A(z) = 1 − 1.41833z−1 + 1.58939z−2 − 1.31608z−3 + .88642z−4

B(z) = .28261 + .50666z−1,

which is the discrete-time model (using a sampling time Ts = 0.05s) of the system described in

[12]. The control objective is expressed by:

M(z) =
z−3(1 − α)2

(1 − αz−1)2
, α = e−Tsω̄, ω̄ = 10,



where ω̄ is the desired bandwidth. The magnitude Bode plots of P (z) and M(z) are shown in

Fig.(3.b). The weighting factor is W (z) = 1 and the class of controllers is:

C(z; θ) =
ϑ0 + ϑ1z

−1 + ϑ2z
−2 + ϑ3z

−3 + ϑ4z
−4 + ϑ5z

−5

1 − z−1
.

Note that, being P (z) nonminimum-phase, a perfect model matching would lead to an unstable

closed-loop. In order to compute θ̂N via the VRFT method, a set of data have been obtained by feed-

ing P (z) in open loop with N = 512 samples of a zero-mean Gaussian white noise (Φu(ω) = 0.01).

In the following, we will present three different VRFT design cases. The first two cases aim to

illustrate the effect of a bad/good shaping of the filter L(z). Specifically, in Case 1 the trivial filter

L(z) = 1 is used, whereas in Case 2 L(z) is designed as proposed in Section 2. The third design

case is instead characterized by the presence of noise.

Case 1: L(z) = 1 - no noise.

The estimated parameter vector is θ̂1
N =[0.14724 -0.25016 0.29166 -0.25678 0.18587 -0.03717]. We

obtain JMR(θ̂1
N ) = 0.232. The magnitude Bode plot and step response of the corresponding closed-

loop transfer function are shown in Fig.(4). Apparently, the control system has a behavior which

remarkably differs from that of M(z).

Case 2: L(z) = M(z)(1 − M(z)) - no noise.

The estimated parameter vector is θ̂2
N =[0.32905 -0.59771 0.70728 -0.64010 0.46499 -0.11763]. In

this case we obtain JMR(θ̂2
N ) = 0.0343. The magnitude Bode plot and step response of the

achieved closed-loop transfer function are shown in Fig.(5). Note that the so-obtained control

system tracks almost perfectly the behaviour of the reference model. It is interesting to com-

pare the performance of the controller C(z; θ̂2
N ) obtained via VRFT with the optimal controller

C(z; θ̄), for which θ̄ =[0.33324 -0.60964 0.72401 -0.66020 0.48204 -0.12508], JMR(θ̄) = 0.0340. Since

JMR(θ̂2
N ) = 0.0343, the sub-optimality of C(z; θ̂2

N ) is negligible.

Case 3: L(z) = M(z)(1 − M(z)) - noisy data.

In this case the output signal has been corrupted by a zero mean white disturbance such that the

signal to noise ratio is SNR = 10. (SNR is the ratio between the variance of y(t) = P (z)u(t)

and the variance of the noise signal). The filter L(z) has been chosen as in Case 2. The controller

parameter vector θ̂3
N = [0.07069 -0.03865 -0.00191 0.00767 0.02166 -0.0077] is estimated without

paying attention to the presence of noise. The step response of the achieved control system is shown

in Fig.(6.a). Notice the degradation of the performance with respect to the noise-free case (Case

2). The influence of noise can be counteracted via the use of instrumental variables as explained in

Section 4. The parameter vector obtained through (15) with the choice (17) (where P̂ (z) is a 4th

order ARX model) is θ̂4
N=[0.28381 -0.43055 0.39188 -0.28544 0.23083 -0.04599]. The step response

of the so-designed control system is shown in Fig.(6.b).

Note that in the example the unstable zero of the plant gives no problems since it is located in

the high frequency region, well beyond the closed-loop bandwidth, and therefore does not tend to

be canceled by the controller. Should this be not the case, stability problems could have arisen.
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Figure 4: (a) Magnitude Bode plots: the control system with θ̂1
N

(thin line) and the reference-model (bold

line); (b) Step responses: the control system with θ̂1
N

(thin line) and the reference-model (bold line);
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Figure 5: (a) Magnitude Bode plots: the control system with θ̂2
N
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Figure 6: Step responses: (a) the control system with θ̂3
N

(thin line) and the reference-model (bold line);

(b) the control system with θ̂4
N

(thin line) and the reference-model (bold line).



6 Conclusions

In this work a design technique called Virtual Reference Feedback Tuning has been presented.

VRFT has many attractive features, which can be summarized as follows:

• it allows the direct global minimization of standard model-reference performance indices using

I/O measurements;

• it can be used to tune controllers with a prescribed structure (e.g. PID);

• it does not require a parameter initialization;

• it does not require iterations.

The main application realm of VRFT is represented by applications where a quick (low-cost) con-

troller design has to be performed. However, it can be also regarded as a powerful and effective

initialization tool for gradient-based iterative algorithms (like IFT) designed for the ”fine-tuning”

of controllers.
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Appendix

Proof of Proposition 1. Since JMR(θ) = J+

MR([θT 0]T ) result (11) is trivially true. As for

(12) we start by calculating the Taylor expansion of J+

MR(θ+) around θ̄+. After some cumbersome

calculations we obtain:

[

J+

MR(θ+)
]

θ+=θ̄+
= 0,

[

d

dθ+
J+

MR(θ+)

]

θ+=θ̄+

= 0,

[

d2

dθ+2
J+

MR(θ+)

]

θ+=θ̄+

=
1

2π

∫ π

−π

2|P |2|W |2

|1 + PC0|4
β+β+T dω.

The second order expansion is then given by:

J̄+

MR(θ+) = (θ+ − θ̄+)T
[

1

2π

∫ π

−π

|P |2|W |2

|1 + PC0|4
β+β+T dω

]

(θ+ − θ̄+)

=
1

2π

∫ π

−π
|P |2|C+(θ+) − C0|

2 |W |2

|1 + PC0|4
. (18)

Consider now the cost function JV R(θ).

If the filter L(z) is chosen as in (10) then JV R(θ) is given by:

JV R(θ) =
1

2π

∫ π

−π
|P |2|C(θ) − C0|

2 |W |2

|1 + PC0|4
dω. (19)

Notice, by comparing (18) and (19), that:

if the filter L(z) is chosen as in (10) then J̄+

MR([θT 0]T ) = JV R(θ),

from which we obtain the result (12). 2


