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ABSTRACT

This document covers various aspects the Heston model. The structure
and topics covered is as follows:

Chapter 1 introduces the model and provides theoretical and graphi-
cal motivation for its robustness and hence popularity. It also discusses

pricing using the Partial Differential Equation and Equivalent Martin-
gale Measure techniques

Chapter 2 discusses how the different components of the model can be
evaluated computationally and how this can be achieved with different
methods. These methods are then compared to each other.

Chapter 3 addresses the calibration problem. Different methods are

presented as well as practical implementation, results thereof, and com-
parisons.

All the MATLAB code required to implement the model is provided in
the appendix

il
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Introduction

The Heston Model is one of the most widely used stochastic volatility (SV)
models today. Its attractiveness lies in the powerful duality of its tractability and
robustness relative to other SV models.

This project initially begun as one that addressed the calibration problem of
this model. Attempting to solve such a problem was an impossible task due to the
lack of exposure to such ‘advanced’ models.

I, therefore, decided to take a slight digression into the world of Heston and
stochastic volatility. Enroute | realised that fundamental information that one
would require to gain an intuitive understanding of such a model was very dis-
joint and hence incomplete. This project, therefore, evolved into something that
could fill this gap.

A practical approach has been adopted since the focus of calibration is quite
practical itself. All the relevant tools are provided to facilitate this calibration
process, includind/ ATLAB code. This code has been confined to the appendix to
keep the main body clutter free and ‘quick-to-read’.

All the functions and spreadsheets herein mentioned are included on the at-
tached CD so that the reader is not confined to this document and has some sort
of practical reference when approaching this subject.



CHAPTER |

A Brief Overview

The purpose of this section is to give the reader a succinct overview of the Heston
Model. A ‘broad-brush’, pragmatic approach is adopted to give the reader an
intuitive understanding of the model, rather than an overly technical one, so that
the sections that follow are easily absorbed. If further technical details are desired,
the reader is directed to the relevant references.

14, The Heston Model

(Heston 1993) proposed the following the model:

dS, = pSydt + \/V,S;dW} (1.1)
AV, = k(0 —V,)dt + o\/V,dW? (1.2)
dWrdW? = pdt (1.3)

where{S;}:>o and{V; };> are the price and volatility processes, respectively, and
{W}}tiso, {W2}i>o are correlated Brownian motion processes (with correlation
parametep). {V;};>o iS @ square root mean reverting process, first used by (Cox,
Ingersoll & Ross 1985), with long-run meah and rate of reversior. o is
referred to as the volatility of volatility. All the parameters, vjz.x, 6, o, p, are
time and state homogenous.

1, Motivation and Parameters

There are many economic, empirical, and mathematical reasons for choosing a
model with such a form (see (Cont 2001) for a detailed statistical/ empirical analy-
sis).

Empirical studies have shown that an asset’s log-return distribution is non-
Gaussian. It is characterised by heavy tails and high peaks (leptokurtic). There
is also empirical evidence and economic arguments that suggest that equity re-
turns and implied volatility are negatively correlated (also termed ‘the leverage
effect’). This departure from normality plagues the Black-Scholes-Merton model
with many problems.

In contrast, Heston’s model can imply a number of different distributigns.
which can be interpreted as the correlation between the log-returns and volatility

2



1.2 Motivation and Parameters 3

of the asset, affects the heaviness of the tails. Intuitively,f 0, then volatility

will increase as the asset price/return increases. This will spread the right tail
and squeeze the left tail of the distribution creating a fat right-tailed distribution.
Conversely, ifp < 0, then volatility will increase when the asset price/return
decreases, thus spreading the left tail and squeezing the right tail of the distribution
creating a fat left-tailed distribution (emphasising the fact that equity returns and
its related volatility are negatively correlateqy, therefore, affects the skewness

of the distribution. Figure 1.1 shows this effect for different valpe$VATLAB

code for this simulation can be found in the appengi&, ;.
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Figure 1.1: The effect of p on the skewness of the
density function

The effect of changing the skewness of the distribution also impacts on the
shape of the implied volatility surface. Hengealso affects this. Figures 1.2,
1.3 and 1.4 show the effect of varying As can be seen, the model can im-
ply a variety of volatility surfaces and hence addresses another shortcoming of
the Black-Scholes-Merton model, viz., constant volatility across differing strike
levels. MATLAB code for generation of the volatility surfaces can be foungl in
Ao

o affects the kurtosis (peak) of the distribution. Whers 0 the volatility is
deterministic and hence the log-returns will be normally distributed. Increasing
will then increase the kurtosis only, creating heavy tails on both sides. Figure 1.5
shows the effect of varying. MATLAB code for this simulation can be found in
the appendix§ A. 1.
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Figure 1.2: Implied volatility surface, p = %, k=2,
0 =0.04, c =0.1, Vy = 0.04, r = 1%, Sy =1, strikes
: 0.8 — 1.2, maturities : 0.5 — 3 years
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Figure 1.3: Implied volatility surface, p = 0, k = 2,
0 =0.04, 0 =0.1, Vo =0.04, r = 1%, Sy =1, strikes
: 0.8 — 1.2, maturities : 0.5 — 3 years

Again, the effect of changing the kurtosis of the distribution impacts on the
implied volatility. Figures 1.6, 1.7 and 1.8 show hewaffects the ‘significance’
of the smile/skew. Highes# makes the skew/smile more prominent. This makes
sense relative to the leverage effect. Highemeans that the volatility is more
volatile. This means that the market has a greater chance of extreme movements.
So, writers of puts must charge more and those of calls, less, for a given strike.
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Figure 1.4: Implied volatility surface, p = —%, K=
2,0 =0.04, c =01, Vo = 0.04, r = 1%, So =1,
strikes : 0.8 — 1.2, maturities : 0.5 — 3 years
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Figure 1.5: The effect of o on the kurtosis of the
density function

MATLAB code for generation of the volatility smiles/skews can be fourtdAr,.

, the mean reversion parameter, can be interpreted as representing the degree
of ‘volatility clustering’. This is something that has been observed in the market,
viz., large price variations are more likely to be followed by large price variations
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Figure 1.6: Implied volatility surface, p = %, k=2,
0 =0.04, c =0.1, Vy = 0.04, r = 1%, Sy =1, strikes
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Implied volatility surface, p =0, kK = 2,

0 =0.04, c =0.1, V, = 0.04, r = 1%, So =1, strikes
: 0.8 — 1.2, maturities : 0.5 — 3 years

(Cont 2001).

A computationally convenient feature of the model is that it provides a closed-
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Figure 1.8: Implied volatility surface, p = —%, K=
2,0 =0.04, c = 0.1, Vo = 0.04, r = 1%, So =1,
strikes : 0.8 — 1.2, maturities : 0.5 — 3 years

form solution for European options, making it more tractable and easier to imple-
ment than other stochastic volatility models

The aforementioned features of this model enables it to produce a barrage of
distributions. This makes the model very robust and hence addresses the short-
comings of the Black-Scholes-Merton model. It provides a framework to price a
variety of options that is closer to reality.

13 Pricing Options

In the Black-Scholes-Merton model, a contingent claim is dependent on one or
more tradable assets. The randomness in the option value is solely due to the
randomness of these assets. Since the assets are tradable, the option can be hedged
by continuously trading the underlyings. This makes the market complete, i.e.,
every contingent claim can be replicated.

In a stochastic volatility model, a contingent claim is dependent on the ran-
domness of the assef{;}:>o) and the randomness associated with the volatil-
ity of the asset’s return{{;}:>0). Only one of these is tradable, viz., the asset.
\olatility is not a traded asset. This renders the market incomplete and has many

Imore specifically, it provides a closed-form solution for any value of p. Models like

Hull and White only provide such closed-form solutions for certain values of p.
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implications to the pricing of options.

1.3.1 PDE approach

For purposes of brevity, the derivation of the PDE is not done here. The reader
is directed to (Black & Scholes 1973), (Gatheral 2004), (Majmin 2005) or (Xu
2003) for further details. Under the Heston model, the value of any option,
U(S;, Vi, t,T), must satisfy the following partial differential equation,

92U PU_ 1, U OU
Tye2 oy ——
VS 95z TPV S 5say T30 Vaw 5%
+{k[0 — V] = A(S,V, t)a\/_}— —rU + a({)_(t] =0 (1.4)

A(S,V,t) is called themarket price of volatility risk Heston assumes that the
market price of volatility risk is proportional to volatility, i.e.

AS,V,t) = KV for some constant k
A(S,V,t)oVV = kaV,
= ASVit),  say

(S, V,t) therefore represents the market price of volatility risk. This parameter
does notappearin (1.1), (1.2) or (1.3) but does appear in the pricing formula, (2.1),
and hence needs to be approximated. This is no easy task as it well known that
the market price of volatility risk is nearly impossible to estimate. This problem is
overcome due to the parametric nature of the model and the existence of a closed-
form solution (se¢ 3.1 and§ 2.9).

1.3.0 Risk Neutral approach

Risk neutral valuation is the pricing of a contingent claim in an equivalent martin-
gale measure (EMM). The price is evaluated as the expected discounted payoff of
the contingent claif under the EMMQ, say. So,

Option Value = E2[e" D H(T)] (1.5)

where H(T') is the payoff of the option at tim&' andr is the risk free rate of
interest oveft, T'] (we are assuming, of course, that interest rates are deterministic
and pre-visible, and that the numeraire is the money market instrument).

2this is referred to as the ‘Law of the Unconscious Financial Mathematician’
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Moving from a real world measure to an EMM is achieved by Girsavov’s
Theorem. In particular, we have

AWL = AW} + 9t (1.6)

dWZ = dW}7 + A(S,V,t)dt

dQ Lt 2
B = @m{—ilk&;+Aﬂiws)Ms—
t t
/ 9, AW — / A(S,V,t)dwj} (1.8)
0 0
p—r
g — 1.9
4 \/vt ( )

whereP is the real world measure ar{d&}}tzo and{I/f/f}tZO areQ-Brownian
Motions. Under measur®, (1.1), (1.2), and (1.3) become,

dS, = rSdt+ \/V,SdW} (1.10)
AV, = k(0" = V,)dt + o/ V;dW? (1.11)
AWEW? = pdt (1.12)
where,
K = K+ A
. Kb
R+

This is an important result. Under the risk-neutral measutgs effectively been
‘eliminated’.

In a complete market, it can be shown that every asset/option has the same
market price of risk (i.e .5 “F ~ is constant for any assét). Since volatility isn’t a
traded asset, the market is incomplete a4, V, t) isn’t constant. Itis clear that
(1.6), (1.7), and (1.8) solely determine the EMM. This implies that the EMM is
not unique and is dependent on the value.o$, V', t).

The implications are that the different EMM’s will produce different option
prices, depending on the value &fS,V,¢). This, initially, poses a problem.
Again, due to the parametric nature of the model and the existence of a closed-
form solution, we can work around this (s¢&.; and§ 3.7).



CHAPTER ||

Computational Evaluation

In order to practically implement such a model, one needs to be able to compute
the price of vanilla options implied by it. This is used in the calibration process to
obtain parameter values, which in turn will be used to price other exotic options.
This section, therefore, provides the tools required to perform such calculations.

2., The Closed-Form Solution

The closed-form solution of a European call option on a non-dividend paying asset
for the Heston model is:

C(S, Vi, t,T) = S,P, — Ke "IV p, (2.1)
where,
1 1 [ e~ ) £i(2, Vi, T, ¢)
Pi(z,V,, T, K) = §+%/O Re< 0 )dgb (2.2)
r = ln (St)

file, Vi, T,¢) = exp{C(T —t,¢)+ DT —t,¢)Vi+ipx}

C(T—t¢) = r¢ir+% {(bj—pagbijtd)T_gln(11—96‘”)]

— g
DT —t,¢) = bj—00¢i+d(1_edr>

0—2 ]__gedr
b —pogi+d
T 7 b — podi—d

d = \/(pagbi —b;)? — 0%(2u;¢i — ¢?)
forj=1,2, where,

UlZ%, UQZ—%, a=krl, bj=kK+A—po, by=k+ A\

Such a formula looks intimidating, but in reality is quite ‘explicit’ and easy to
evaluate inMATLAB. The only part that poses a slight problem is the limits of
the integral in (2.2). This integral cannot be evaluated exactly, but can be approx-
imated with reasonable accuracy by using some numerical integration technique,
e.g., Gauss Lagendre or Gauss Lobatto integration.

10



2.2 Fast Fourier Transform (FFT) 11

Under the EMMQ some parameter simplification takes place viz,
a= K0, by = K" — po, by = K*
Again, it can be seen that, effectively, the paramatbas been eliminated.

A method to evaluate formulas in the form of (2.1) has been proposed by (Carr
& Madan 1999). This method is much quicker than using a numerical method for
the said integrals.

2o Fast Fourier Transform (FFT)
This method has been proposed by (Carr & Madan 1999). We first begin with
some basic definitions.

Definition 2.1. The Fourier transform (F{-} ) and inverse Fourier trans-
form (F~1{-}) of an integrable function, f(z), i

Fif@)} = /_ " e (e = F(0) (2:3)
FUFO) = 5 | e F@)s=f@ 24)

In our framework,f(x) is the risk neutral density function of the log-return
of the underlying and"(¢) is called the characteristic function ¢fz). It should
be noted that even if a random variable is absolutely continuousits charac-
teristic function exists. For absolutely continuous random variablesX9ayhe
characteristic function can be expressed as an expectation, viz.,

E [ei‘bX ]

FFT is an efficient algorithm used to calculate summations of the following
form:

N
= e R () (2.5)
=1

Itis a type of discrete approximation to a Fourier transform. Carr and Madan have
the following to say regarding their method:

‘...find that the use of the FFT is considerably faster than most avail-
able methods and furthermore, the traditional method described in
Heston , Bates , Bakshi and Madan , and Scott can be both slow and
inaccurate...

3A random variable is absolutely continuous if it has a density function.
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Option pricing lends itself well to this sort of application due to the form of (1.5).
Letz, := InS; andk := In K, whereK is the strike price of the option. Then the
value of a European call, with maturity, as a function of: is,

Cr(k)=e" /koo(e” — M fr(ar)dar (2.6)

where fr(z) is the risk neutral density function of, defined above. Carr and
Madan define a modified call price functign

cr(k) = e**Crp(k), a>0 (2.7)

We now expectr(k) to be square integrable for a rangecofialues and/ k. «
is referred to as thdampening factorThe Fourier transform and inverse Fourier
transform ofcr (k) is,

RM):/iMWWk (2.8)
k) = oo [ R (6)do (29)
Substituting (2.9) into (2.7),

Cr(k) = e cp(k) (2.10)

1 [~
= e—ak% /_ ) eTE, (¢)do (2.11)
N e_akl/ OO ¢ Fep (9)dg (2.12)

T Jo

Substituting (2.6) and (2.7) into (2.8),

Fo.(¢) = /_Oo e!etkerT /koo(exT — &) fr(zr)dzpdk

(e}

0 T
_ / e—rTfT(xT)/ (€IT+Oék _ e(a-i-l)k’)ewkdkde

(e} —00

efrT

— > (a+1+ig)zr d
(){2+O[—¢2+/L(20{+1)¢/_006 fT($T> X

e—rT

— = (—ai—it+@)izy d
a?+a—¢?+i2a+1)¢ /_Oo ‘ Jr(wr)der
e oy (6 — (a4 1))

a?+a—¢*+i2a+1)¢

“because Cr(k) is not square integrable
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whereF..(¢) is the characteristic function ef-, underQ, given by (Hong 2004):

Fo (¢) = eA@)+B(8)+C(¢)
A(Cb) = Z¢(x0+rT)
B 2¢(¢)(1 — e VOV
Bl = 30— (0(0) @) — v
K0 V(@) — (V(9) —7(¢))(1 — e VA7)
@) = 5 [mg( 20(0) )+
(¥() - v<¢>>T]
(6) = —5(é*+id)
P(g) = w 2 - 202((9)
(¢) = K—pogi
(Carr & Madan 1999) show that,
Crh) = T 3 RO g 0) U 4 (-1~ 0,) (29
TuN?T;l N rAIsg 3—11-
= pe
where,
vj = W(j_l)
=
¢ = 600
N = 4096
o T
n
ky, = —b+2—b(u—1), u=1,2,...,N+1

N

This is now a direct application of (2.5) and hence FFIATLAB can perform
FFT using thefft (X) function, whereX is the vector created from. fft(X)
returns a (1x N) vector whosej*" column corresponds to a log-strike eb +

2Nb(j — 1). The appendix§ A.3.1, contains the code for pricing a European Call
using FFT.

Sthese parameters have been specified by Carr and Madan so that a balance is struck
between computational time and accuracy.
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All that remains is to choose the value @f (Carr & Madan 1999) suggest
thata be chosen such that

E[ST] < oo (2.14)
= Fo . (—(a+1)i) < o0

Carr goes further to provide FFT for out-of the money options. He argues that
the above formula depends on the intrinsic value of the option. Since out-of-the-
money options have no intrinsic value, an FFT based on the time value of the
option has to be derived. The formula is presented here without derivation, for
completeness, as the author finds very little difference between the solutions of
the two methods. Th&IATLAB code can also be found §A.3.1.

N
1 e . |
C k,) ~ ——— 12X (j—1)(u—1) ,ibv; A 1Y 5.
rh) ~ g 2 )8+ (41— dm)
vV — o) — v+ ia
() = 2 >2¢T( )
1 T Fo(v—i)
_ —rT o Cr
er(v) = e L—l—iv w2 —

23 Numerical Integration - Quadrature Rules

Numerical integration can be used to evaluate the integral in (2.2). Two techniques
are briefly discussed together with their implementation.

2.3.14 Adaptive Simpson’s Rule
The following is adapted from (Cheney & Kincaid 1999). Tisic Simpson’s
Rulefor numerical integration of a functiory;(x), over two equal subintervals,

with partition pointsa,a + h, anda + 2h (we choose this form of partition for
ease of calculation and notation. A general formula will be given later), is

/a+ f(x)dw%g[f(a)+4f(a+h)+f(a—|—2h)] (2.15)

The error of the above approximate can be established with a basic “Taylor

5110 relation to the internal supervisor of this document.
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series. Consider,

1 1 1
flath) = fla)+hf'(a)+ 5" (@) + 5h*f"(a) + 5h* f P @) + ..
! " 4 " 24
fla+2h) = f(a)+2hf'(a)+2h°f (a)+§h3f (a)+zh4f(4)(a)+...
So,
2/43//24/// 205(4)
RHS of (2.15) = 2hf+2h°f +§hf +§hf +@hf (@) + ...
(2.16)
Now, define .
F(z) ::/ ft)dt
Again, using a Taylor series,
! 2 o 4 3 o 2 4 10(4) 2° 5 17(5)
F(a+2h) = F(a)+2hF'(a)+2h"F (a)+§h F (a)—i-gh F (a)+ah F®a)...

Noting, by the Fundamental Theorem of Calculus, th&t™) (a) = f™(a) and
F(a) = 0 we have

a+2h
/ f(zx)de = F(a+ 2h)

4 2

= 2hf(a) + 2R%f'(a) + §h3f"(a) + gh4f’”(a) S
(2.17)
Subtracting (2.16) from (2.17), we get,
5
Error in approximation = —— f® (&) = O(h°), € € (a,a+2h)

90
We now state a general result for thasic Simpson’s Rule

/ e~ P2 [f(a) +4f ( - b) + f(b)}

5
EI‘I‘OI’ = —i (b_a) f(4)<§)’ 56 (avb)

Q

2

An Adaptive Simpson’s Rutivides the interval of integration into more than
2 subintervals. The number of subintervals is dependent on the required accuracy
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of the estimate. This is quantified by the error term given above. The function
will, in general, behave differently over different parts of the interval and hence
the intervals chosen will not be of uniform length.

The MATLAB function quad (@fun,a,b) uses arAdaptive Simpson’s Rule
to numerically integrat@fun over [a,b]. It produces a result that has an error
less thanl0~° or a user defined tolerance level which is prescribed by a fourth
argument.

2.3.0 Adaptive Gaussian Quadrature Rules

Gaussian quadrature rules approximate the integral of a fungtien, over|a, b]
by:

b n
[t~y o) (2.18)

where,
b
A = /ﬁi(x)dx
- T — T,
H l’i—l’j

7=
J#i

where{z; }o<i<n, termednodesor abscissagare the zeros of bagrange interpo-
lating polynomial

A Lagrange interpolating polynomia a polynomial of orden—1 that passes
throughn given points. Examples can be seen in figure 2.1.

The approximation in (2.18) is a weighted average of the function at dis-
crete nodes{z; }o<;<,, With weights{4,}o<;<,. The interpolating polynomial,
pni1(z), of degreen + 1 must satisfy:

b
/ a*p(z)dr = 0, (0<k<n)

It is quite intuitive that the choice of the polynomials will determine the accuracy
of the estimate in (2.18). The most popular choice of these polynomials are the
Legendre polynomialsThese are generated by setting the interval of integration
to [—1, 1] and standardising, (x) such thap,,(1) = 1. The roots of these polyno-
mials will then be used as nodes in the Gaussian quadraturé-elgl. A simple
linear transformation can translate the original integral dwer to [—1, 1].
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Figure 2.1: Lagrange interpolating polynomials for
n =2, 3, 4 and 5 points. These polynomials are of
order 1, 2, 3 and 4 respectively.

TheMATLAB functionquadl (@fun,a,b) implements an adaptiv@auss Lo-
batto quadrature rule on the functi@fun over the intervala, b|. It's defined as
the Gaussian quadrature presented above, with a specific form for the weights and
nodes. The integral is evaluated oyerl, 1] with nodes that are from thieegen-
dre polynomials The nodes are symmetric about the origin and also include the
endpoints of the interval. The error in the estimate is given by,

n(n —1)322=1((n — 2)1)4
(2n —1)((2n — 2)1)3

Fer2()

Error = —

wheren = number of nodes, angde (—1,1). The rule is adaptive as it divides the
original integral into smaller subintervals and perfoi@auss Lobattantegration

with varying node quantities. This is performed to achieve an estimate whose error
is less thari0~% or a user defined tolerance level prescribed by a fourth argument.

2.3.3 Computation of the ‘Heston Integral

In order to evaluate (2.1) we need to compute the integral in (2.2), viz.:

11 [ [e@mUO)f (z VT
P](I7%7T7K):§+;/O' Re |:6 f;gm ty 7¢) d

o (2.19)
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for j = 1,2. This can be done iMATLAB with the 2 functionsquad (@fun

a,b) andquadl (@fun,a,b), discussed above. A problem arises as (2.19) is

an improper integral and the argumantannot be specified as ‘infinity’ i.e.,

quad (@fun,a,b) evaluates only proper integrals. A quick plot of the integrand

will reveal that it converges very quickly to zero. Figure 2.2 shows the effect of
changing the parameters on the integrand. The parameters that were changed were
those that had the most significant effect on the integrand.

So, for sufficiently largep, the integral of (2.19) can be evaluated with the
required accuracy. | have chosers 100 to be prudent.

MATLAB code to price a European call option using Heston’s modeAuip-
tive Gauss LobattantegrationSimpson’s Rulean be found in the appendi,

2.3.4 Comparison of Quadrature Rules

The purpose of this section is to gauge which quadrature rule to use. For a com-
plete discussion refer to (Gander & Gautschi 1998).

MATLAB defines the functiongjuad andquadl, as low order and high order
quadrature rules. One would therefore expeeidl to be superior.

(Gander & Gautschi 1998) say that for extremely small tolerance lguatsl
outperformsyuad in:

o efficiencyas measured by the number of recursive steps required to compute
an answer within a certain tolerance level.

e reliability as measured by the extent to which the required tolerance is
achieved.

For large tolerance levelguad is more efficient (faster) thaquadl, but less
reliable. Keeping in mind that we're pricing options, we require an extremely low
tolerance level. Hencguadl would be better suited for our purposes.

2., Comparison of FFT and Numerical Integration

It now remains to find which method is better suited for our purposes.

FFT is faster in a sense that it generates a matrix of prices with differing
strikes. Thousands of European call option prices are immediately available. The
quadrature rule evaluates the option price only for a given set of parameters, i.e.,
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X 10'3 0 = 0.1, strike = 100, maturity = 1 month g = 0.1, strike = 100, maturity = 1 year
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Figure 2.2: The Integrand of (2.19). Notice how
quickly this integrand converges to zero. Parame-
ters that were kept constant : k = 2,0 = 0.04,p =
—0.5,Vyp = 0.05, 5y = 100,r = 0.1

only for one strike price at a time. The time difference is extremely significant.
For a given set of parameters, FFT calculates prices for 4097 different strikes
in approximately 0.14 seconds. The quadrature rule takes approximately 281.89
seconds to perform the same calculation. FFT is faster by a factor of 2014.

FFT, in this application, suffers from one drawback, i.e., accuracy. The solu-
tions produced are depend on the choice @igure 2.3 shows the price produced
by FFT as a function af). From (2.14) we can also see thais depend on the set
of parameters. The relationship betweeand these parameters is not as trivial
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to identify as is done in (Carr & Madan 1999) for the Variance-Gamma model.

We are therefore left with the quadrature rule as our primary tool for evalua-
tion. If an« can be found that satisfies (2.14), then FFT is far superior.

39

price

Figure 2.3: This illustrates how the price of an
option is depend on the choice of «



CHAPTER IlI

Calibration of the Model

3., The Calibration Problem

The price to pay for more realistic models is the increased complexity of model
calibration. Often, the estimation method becomes as crucial as the model itself
(Cont 2005).

The Heston model has six parameters that need estimationxviz g, V,
p, A\. Research has shown that the implied parameters (i.e. those parameters that
produce the correct vanilla option prices) and their time-series estimate counter-
parts are different (see (Bakshi, Cao & Chen 1997)). So one cannot just use
empirical estimates for the parameters.

This leads to a complication that plagues stochastic volatility models in gen-
eral. A common solution is to find those parameters which produce the correct
market pricesof vanilla options. This is called aimverseproblem, as we solve
for the parameters indirectly through some implied structure

The most popular approach to solving this inverse problem is to minimise the
error or discrepancy between model prices and market prices. This usually turns
out to be a non-linear least-squares optimisation problem. More specifically, the
squared differences between vanilla option market prices and that of the model
are minimised over the parameter space, i.e., we evaluate

N
. . 2
min S(£2) = min 5-1: w; [CP(K;, T;) — CM(K;, T3)] (3.1)

whereQ is a vector of parameter valuess}(K;, T;) andCM (K;, T;) are thei
option prices from the model and market, respectively, with stkikand maturity
T;. N is the number of options used for calibration, andhs are weights (the
choice of these weights will be discussed later).

The question now arises as to what market prices to use in this calibration
process, as for any given option there exists a bid and ask price. This may seem
as a problem but it actually allows flexibility in the calibration process.

"On the positive side, we need not estimate the market price of volatility risk, which
is near impossible to do in practice.
8eg. solving for a polynomial with given roots is an inverse problem.
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We will use the mid-price of the option but accept a parameteKtgtgiven
that

N N
Z Ww; [Ciﬂo (KZ, T;) - C{ZV[(KZ, T;)}g S Z wz[bld, - ELSkZ'}2 (32)
i=1 i=0

where big/ask are the bid/ask prices of th&" option. This means that we do

not require the model to match the mid-prices exactly, but fall, on average, within
the bid-offer spread. This is not an unreasonable relaxation of the calibration
process. We should bare in mind that the modeling process should produce the
requiredestimatesvithin a certain tolerance level. Accuracy beyond this could be
spurious and hence produce less accurate exotic prices.

The minimisation mentioned above is not as trivial as it would seem. In gen-
eral, S(€2) is neither convex nor does it have any particular structure. This poses
some complications:

e Finding the minimum ofS(€2) is not as simple as finding those parameter
values that make the gradient 5fQ2) zero. This means that a gradient
based optimisation method will prove to be futile.

e Hence, finding a global minimum is difficult (and very dependent on the
optimisation method used).

e Unique solutions to (3.1) need not necessarily exist, in which case only local
minima can be found. This has some implications regarding the stationarity
of parameter values which are important in these types of models. This is
discussed later.

The last two points make this altposedproblem. This is therefore an-
verse, ill-posegroblem termed thealibration problem.

Figure 3.1 plotsS(£2) as a function o ando. It is easy to see that gradient
based optimisers will struggle to find a global minimum. Notice, also, the number
of points that are non-differentiable. This poses a further problem for gradient
based optimisers. The graph presents a graphical idea of the natti(€pfas
a function of two of its parameters, but it is important to remember $H&X) is
5-dimensional and as such could be even nastier in its ‘true’ form.

The aim is therefore to identify optimisation methods that can deal with the
peculiarities of the calibration problem.

3., Calibration methods

Before discussing the calibration methods, we address some technical issues.
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Weighted Squared Errors

Figure 3.1: The Heston error surface as a function
of k and o

The calibration problem has a slight simplification when we price options un-
der an EMM, i.e., we can evaluate (3.1) using &8(K;, T;)’s under an EMM.
As mentioned ir§ 1.3., evaluation under an EMM effectively reduces the number
of estimated parameters to five. The following must therefore hold:

OptionValue® (x, 6, o, Vy, p, A) = OptionValue®(s*, 6%, o, Vo, p, 0)

We also address the choice of the weights in (3.1). We choose;théo be
m. This choice is quite intuitive. If the spread is great, we have a wider
range of prices that the model can imply. In other words the model is allowed to
imply a wider range of prices around the mid-price. This means that less weight
should be placed on such a price, and vice-versa. (Cont 2005) suggests using the
implied volatilities as weights.

We also need a constraint on the parameters to prevent the volatility reaching
zero. (Mikhailov & Nogel 2003) suggest that this constraintaé > o2

3.2.1 Regularisation

This method is discussed briefly for completeness. For a detailed discussion refer
to (Chiarella, Craddock & El-Hassan 2000).

Regularisation involves addingpenaltyfunction,p(£2), to (3.1) such that

S w [CR(K, T — CM (K, T)]” + ap(€) (3.3)

=1
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is convex.a, here, is called theegularisation parameter

The philosophy behind this strategy is one of pragmatism. We cannot hope
to determine the exact solution to our problem because of its very nature. Conse-
quently, we attempt to find an approximation which is as close to the true solution
as possible. To achieve this we are moved to replace our problem with one which
is close to the original, but does not possess the ill conditioning which the makes
the original intractable. In other words: Don't try and solve the given problem,
try and solve a different one whose solution is close to that of your problem. This
is the essence of all regularisation methods (Chiarella et al. 2000).

When applied to a given set of market prices, these methods yield a single
set of model parameters calibrated to the market but also require the extra step of
determining the regularisation paramete{Cont 2005).

(Mikhailov & N 6gel 2003) suggest usingn(2) = ||Q2 — Qo||*, where, is
an initial estimate of the parameters. This method is therefore dependent on the
choice of the the initial parameters. Itis, in a sense, a local minimum optimiser.

Equation (3.3) can be minimisedMiATLAB using the functionsqnonlin().

3.0.0 MATLAB’S 1sqnonlin

MATLAB’S least-squares, non-linear optimiser is the functiegnonlin(fun,
x0,1b,ub). It minimises the vector-valued functiotiyn, using the vector of
initial parameter values0, where the lower and upper bounds of the parameters
are specified in vecto® andub, respectively.

1sgnonlin uses arinterior-reflective Newton methoir large scaleprob-
lems. MATLAB defines darge scaleproblem as one containing bounded / un-
bounded parameters, where the system is not under-determined, i.e., where the
number of equations to solve is more than the required parameters. Given that the
underlying of the model is liquidly traded, there should exist a rich set of market
prices for calibration. So, hopefully, our system will never be under-deterrhined
MATLAB suggests (Coleman & Li 1996) and (Coleman & Li 1994) for further
reference on these methods.

The result produced ysgnonlin is dependent on the choicexdd, the initial
estimate. This is, therefore, not a global optimiser, but rather, a local one. We have
no way of knowing whether the solution is a global/local minimum, but if (3.2)
is satisfied, the solution is acceptable. If not, then the calibration process would
have to be rerun with a differembd.

9in fact, all one needs is five or more market prices
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The appendix§ A.4.q, contains information and code on usibggnonlin
for calibration.§ 3.3 contains a comparison of this method to the others presented
here.

3.0.3 Excel's Solver

The standardolversupplied with Excel contains an optimiser that can be used
for calibration under specific circumstances. It us€&eaeralized Reduced Gra-
dient (GRG) method and hence is a local optimiser (for more information go to
www.solver.com). The calibration results are therefore extremely sensitive to the
initial estimates of the parameters. This optimiser should only be used when one
is sure that the initial estimates are quite close to the optimal parameter set.

The author has used ATLAB ' s Excel Linkto link the functionHestonCall-
Quad between Excel anMATLAB . The spreadsheeli@stonCalibrationi and
HestonCalibration2 use this function to calculate the model prices. Solver can
then be run to calibrate the model.

The attractiveness of using Excel and Solver is that most people are comfort-
able with them and they are available on almost every computer in a workplace.
On the down side, Excel is useless at handling calculations with very small num-
bers. These sort of calculations do appear during the calibration process, e.g.,
calculating the boundxf > o2, and hence can make your result suspect!

Overall, Excel provides a quick and dirty solution to our problem, under cer-
tain conditions. These conditions must be met in order to motivate its use. An
advanced version of Solver can be purchased which contains a global optiniser.
3.3 contains a comparison of this method to the others presented here.

3.0.4 Simulated Annealing (SA)

Simulated Annealing is a probability-based, non-linear, optimiser inspired by the
physical process ainnealing Its attractiveness lies in the fact that it can:

e process objective functions (eg. (3.1)) possessing quite arbitrary degrees of
nonlinearities, discontinuities, and stochasticity.

e process quite arbitrary boundary conditions and constraints imposed on
these objective functions.

e be implemented quite easily with the degree of coding quite minimal, rela-
tive to other nonlinear optimisation algorithms.
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e statistically guarantee finding an optimal solution.

Annealing is a formal term for the ancient art of heating and/or cooling mate-
rials to forge pottery, tools, weapons, and works of art (Frost & Heineman 1997).
In a typical annealing process melted metal is allowed to cool subject to differ-
ing temperatures and pressures. The different combinations of these temperatures
and pressures determine the structural properties of the cooled product. Simulated
Annealing was borne out of the need to model such processes thereby advancing
the types of said materials produced. Annealing has played a key role in human
history: entire nations have been won and lost on the abilities of craftsmen to
produce fit materials (Frost & Heineman 1997).

The algorithm was first developed by (Metropolis, Rosenbluth, Rosenbluth,
Teller & Teller 1953) as a means of finding the equilibrium configuration of a
collection of atoms at a given temperature for the actual annealing process. It
was (Kirkpatrick, Jr. & Vecchi 1983) who realised the algorithms application to
optimisation in general.

The algorithm works in the following way:

1. First the objective function is evaluated at the user-specified initial parame-
ter estimates.

2. Next a random set of parameters is generated based on point 1 above.

3. If the value of the objective function is less than that of point 1, then we
‘accept’ the parameter set from point 2, else, the parameter set is accepted
with probability exp{—%}, whered f is the difference between the ob-
jective functions using the parameter sets in points 1 and 2;7ansl the
temperaturé’ parameter at iteration k, specified by the algorithm.

4. This process is iterated, with themperaturgparameter decreased at each
iteration, until a termination condition is met (usually a specified value of
thetemperaturgparameter).

The above algorithm not only ‘accepts’ parameter sets that decrease the ob-
jective function, but also that which increases it (subject to the probability con-
straints). This ensures that the algorithm does not get stuck in a local minimum.

It helps to imagine the objective function, that we want to minimise, as a
geographical terrain. We want to find the deepest valley of this terrain. Simulated
Annealing approaches this problem in the same way that a bouncing ball can

0termed this because of obvious historical reasons.
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bounce over mountains, from valley to valley. Initially, when temperatures

high, the ball has a lot of energy and can bounce from any valley to any other
valley. As time progresses, and ttemperatureparameter decreases, the ball
loses energy and settles down in relatively smaller ranges of valleys.

The algorithm requires only the value of the objective function for a given set
of parameters. It does not require the form of this objective function. This, in
a sense, makes the function a ‘black-box’ to the optimiser. Constraints are en-
capsulated within the ‘black-box’. This means that the objective function should
be able to tell the optimiser whether a set of parameters lies within the required
parameter space (in our case, whethet > o?), and hence limits the search to a
feasible space.

Parameters that are determined by the model (egtethperaturegparameter)
are collectively known as thannealing schemeThe annealing scheme broadly
determines the efficiency and accuracy of the algorithm. For example, it deter-
mines the degree of ‘uphill movement and the rate of decreasengberature
which in turn affects how long the algorithm runs for. It is therefore obvious that
the annealing scheme be optimally specified. Such a specification isn’t obvious
since parameters likeemperaturedon’t have an explicit/implicit mathematical
relationship with the objective function. This sort of specification has therefore
become an art form.

To reduce the subjective nature of the aforementioned specification, adaptive
methods of Simulated Annealing have been developed. The most famous and
widely used of these i&dpative Simulated Annealing

3.0.5 Adaptive Simulated Annealing (ASA)

ASA was developed by the theoretical physicist Lester Ingber. ASA is similar to
SA except that it uses statistical measures of the algorithm’s current performance
to modify its control parameters i.e. the annealing scheme.

A proof is provided by that Ingber shows that ASA iglabal optimiser. He
also provides arguments for ASA's computational effeciency and accuracy.

The C++ code is open-source and available fram . ingber.com. It has
always been open-source and hence Ingber has had a lot of feedback from users
of ASA. Over the years it has, therefore, been modified to a point where it is now
perfect. ASA works quite well in it’s ‘standard’ form, but also allows the user to
tweak the annealing scheme for greater efficiency. For a detailed discussion on
ASA the reader is referred to (Ingber 1993) and (Ingber 1995).
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ASA can be implemented IMATLAB by downloading the functioasamin,
written by Shinichi Sakataasamin is aMATLAB gateway function to ASA. This
means thaksamin uses the actual C++ code of Ingeber's ASA throldiT-

LAB. Detailed instructions on how to install and use ASA on one’s computer and
asamin into MATLAB can be found in (Moins 2002). THAATLAB code for cal-
ibrating the model using ASA can be found§m. 4.o.

Given the thin requirements of the objective function, ASA lends itself well to
a variety of applications in different disciplines. Ingber has consulted on projects,
where he has successfully implemented ASA, in the following fields:

e Circuit design

e Mathematics/combinatorics
e Data analysis

e Imaging

¢ Neural networks

¢ Biology

e Physics

e Geophysics

e Finance

e Military

3.3 Calibration Results

Having an artillery of calibration methods at our disposal we can proceed to cali-
brate the model and compare the results. Vanilla call&mmglo Americarshares,

listed on the LSE, was used as market data. An example of this data can be found
atthe end of A.4.1.

lsgnonlin, Solver and ASA were run with the same initial estimates on 2
sets of data. The results are as follows:
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Method K 0 o p Vo S() Time

11 October 2005

Initial Estimate 3 0.05 0.5 -0.5 0.15 386.10

lsqnonlin 4.0481 0.0487 0.6066 -0.8061 0.1450 87.50 62.63 sec
ASA 21.3108 0.1034 2.0099 -0.4998 0.1583 81.80 4.7 hrs
Solver 5.7369 0.0579 0.8141 -0.74783 0.1568 78.10 10 mins
20 October 2005

Initial Estimate 5 0.057 0.7 -0.75 0.16 148.32
lsqnonlin 15.096 0.1604 2.0859 -0.7416 0.1469 88.58 6 mins
ASA 10 0.1072 1.4189 -0.8236 0.1829 77.38 3.5 hours
Solver 7.3284 0.0745 1.0227 -0.7670 0.1938 89.88 20 mins

whereTime is the running time of the calibration procéss As can be seen,
ASA gives the best result in minimising(€2), on average, but is far more com-
putationally demanding. At this point it should be noted that ASatistically
guarantees to find an optimal solution. On the 11 October ASA doesn’t produce
the lowestS(Q2), but is very close. Although Solver produces the best parameter
set, the results will be quite different for a different set of initial estimates. ASA
will provide the best estimate if the annealing scheme is optimised.

The reason that ASA runs so long is because it searches the entire parameter
space for a global minimum, unlikesgnonlin and Solver which settles down
quite quickly into a local minimum. Figures 3.2 and 3.3 illustrate this point. No-
tice thatlsqnonlin drops down very quickly to a local minimum whereas ASA
keeps on searching for other minima and hence oscillates.

34 Comparisons, Considerations and Shortcomings

Relative to ASA,1sqnonlin and Solver don’t perform that badly in minimising
S(€2) . Given that they are far quicker than ASA, the differencé {f2) is accept-

able. This conclusion can only be made for the given set of initial parameters. One
should be careful and not generalise such a conclusion as the solutions presented
by 1sqnonlin and Solver are very dependent on the initial parameters. If these
were chosen differently, thelsqnonlin and Solver’s solutions could have been
very far off from ASA's. There have been trial runs where the differences between
1sgnonlin, Solver and ASA were quite significant (ASA producing the best es-
timate). As mentioned abovesqnonlin and Solver should only be used when

one is confident that the solution to (3.1) isn't very far from the initial estimates.

'This was run on a Pentium M 1.6 Ghz, 512MB RAM.
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Figure 3.2: This illustrates how the objective func-
tion is minimised when using 1sqnonlin.
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Figure 3.3: This illustrates how the objective func-
tion is minimised when using ASA.

It should also be noted that ASA is being used in its raw form. There has been
no tweaking of the annealing schedule which can result in a significant decrease
in run-time. Also, for a random guess of the initial parameters (e.g. this would be
done when the model is calibrated for the very first time), ASA is the best option
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The obvious question is, which method do we use? There isn't a straight
answer to this. The choice of method should be dependent on the amount of in-
formation available related to parameter values and the state of the market. If a
global minimum was obtained yesterday (by using ASA), and the market condi-
tions are quite normal (i.e. no crashes or dramatic movements since yesterday)
thenlsgnonlin and Solver can quite safely be used. We expect that today’s para-
meters are in a small neighborhood around yesterday’s. If there has been a crash
or dramatic market movement then such an expectation is unreal. In this case ASA
would have to be used. So, there should be a marriage of the different methods to
create efficiency and not sacrifice accuracy.

Another issue to consider is the stationarity of parameters. Due to time con-
straints placed on such an honours project, such a task wasn’t able to perform. But,
(Mikhailov & N 6gel 2003) say that the parameters aren't stationary, and hence the
comment above about calibrating the model each day. The stationarity that most
practitioners on this topic refer to is that of the parameters that solve (3.1). But, a
parameter set that we use need not be this set. An acceptable set is one that satis-
fies (3.2). An initial problem with ASA]lsqnonlin and Solver is that they don’t
tell us anything about the multiplicity of solutions of the calibration problem. But
we can employ a clever trick and adapt ASA anrdnonlin to do this.

First, calculate the RHS of (3.2). Call this valgemBidOffer. Remem-
ber that the objective function is the LHS of (3.2) that is evaluated at each itera-

tion. By adding the following logical test in functiorestonDifference and
HestonCostFunc we can store those parameter sets that satisfy (3.2):

if (sum(PriceDifference.”2) < SumBidOffer
PossibleSolutions{j} = input;
j = j+1

end

wherej is the appropriate index of theell matrix'? PossibleSolutions. The
model should now be calibrated every day/month until enoBig#sibleSo-
lutions matices are available. Comparing théssibleSolutions matrices

over the different days/months it could be possible to extract a set of parameters
that are more or less an element of e®elssibleSolutions. This creates a
stationary set of parameters that satisfy (3.2).

Extracting the common set of parameters is not as trivial as it may seem. We
seek a 5-dimensionaktof stationary parameters and hence the usual arguments

125 cell matrix in MATLAB is a matrix of matrices
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that are used in such stationarity tests, in the 1-dimensional case, are not that
helpful.

35 Other Methods

For completeness a few of the other calibration methods will be presented.

(Shu & Zhang 2004) propose a 2-stbpdirect Inference method of cal-
ibrating the model. First, the recently developed simulation-based “indirect in-
ference method” (time-series relative) is used to estimate the parameters for the
dynamics of the asset. A non-linear least squares method is then used to calibrate
the remaining parameters, similar to what is presented above.

As mentioned before, the parameters have no relation to their time-series
counterparts, so it seems counter-intuitive to estimate some of the parameters us-
ing some time-series method. But it is exactly for this reason that we can estimate
a few of the parameters by some other method and then use a non-linear least
squares method to fit the model. This effectively reduces the dimension over
which (3.1) has to be minimised.

This seems like an extension to the method presented here and could be an
interesting extension to this project.

(Johnson & Lee 2004) proposes calibrating the model usinB@semble
method. This method does not involve fitting the parameters to market data as
most methods do. Rather, it uses an ensemble of parameter sets. Each set of
the ensemble is assigned a weight which is attained by just one matrix inversion.
The calibrated ensemble will then reproduce exact market prices. (Johnson & Lee
2004) state that the attractiveness in the model lies in it's simplicity and robustness
in being able to calibrate to any type of instrument, e.g., barrier options, forward
starting options, etc. Also, hedge ratios are easily calculated.

Lastly, while reading through thé&ilmottforums, it seems that the calculation
of (3.1) can be carried out usiggnetic algorithms. MATLAB contains some
genetic algorithms in thBirect Search Toolbowhich is an extension of th@p-
timisation ToolboxHowever, (Ingber 1993) notes that these algorithms are much
slower that ASA, though.



Conclusion

As Mathematicians (or students thereof) we can get caught up in the magic of
Mathematics. It is important to remember that the Heston model is, essentially, a
model. It is a mathematical tool that models something that is infinitely complex.
It therefore cannot wholly capture the complicated and diverse dynamics that exist
in reality, of volatility.

Calibration of the model is an important task. Energy should not be wasted,
though, on over-fitting the model. Such efforts can lead to spurious results. After
all, one is trying to perfectly fit a model that doesn’t perfectly explain the real
world.

This doesn’t make stochastic models, in general, useless. If the underlying
assumptions are carefully understood and its application carefully applied then
stochastic models are powerful tools. They are the best that we have in an unpre-
dictable world without which we would be far worse off!



Appendix

A.1 Simulation of Probability Densities

Monte Carlo simulation was performed by discretising the stochastic processes
using the Euler-Maruyama method. This resulted in,

Sy = Sy +7Sdt +/Vi 1S, VdtZ}
Vi = Vioi+ k(0 = Viy)dt + o/ViVat Z}

where{Z}!}:~, and{Z?}>, are standard normal random variables with correla-
tion p. The above can be made computationally easier by expre§&jig-, and
{Z2}:>0, as a function of independent standard normal random variables, using
the Cholesky decomposition,

Z, = &

Z; = po+ V1= p]

where{¢, };>o and {¢?},>, are independent standard normal random variables.
MATLAB code for the simulation of figure 1.1 is as follows:

S0 = 10; VO = .01; r = 0; k = 2;
theta =.01; sigma= .1; delT = .02; rho =-0.9;
number0fSimulations = 1000000;

i = 1:number0fSimulations;
NormRandl = randn(1,number0OfSimulations);
NormRand?2 randn(1,number0OfSimulations);

S = zeros(1,number0fSimulations);

V = zeros(1,number0OfSimulations);

V(i) = VO + k*(theta - VO)*delT + sigma*sqrt(VO)=* ...
(rho*NormRandl + sqrt(l- rho~2)*NormRand2)*sqrt(delT);

V = abs(V); %prevents negative volatilities

S(i) = SO0 + r*S0*delT + SO0*V."(0.5).*NormRandl*sqrt(delT);

The code is broadly similar for the simulation of figure 1.5.
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A.o Generating Volatility Surfaces and Skews

Prices of the European call options are calculated, using the Heston closed-form
solution § 2.1), at different maturities and strikes. These prices are then equated
to the Black-Scholes-Merton (BSM) solution and the volatility that satisfies this
equation is evaluated. The functibbsimpv returns the BSM implied volatility

for a given set of parameters. The following script filelSmile .m generates the
volatility surfaces of; 1., (figures 1.3, 1.2, 1.4).

strikes = linspace(.8,1.2,11);

mats = linspace(.3,3,11); Ymaturities
for i = 1:11
for j = 1:11
price = HestonCallQuad(2,.04,.1,0.5,.04,.01,mats(i),1...

,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,
mats(i), price);
end
end

[strike mat] = meshgrid(strikes,mats);
surf (mat,strike,Volatility) ,xlabel(’Maturity(years)’),
ylabel(’Strike’),Title(’\rho = 0.5’),zlabel(’Implied ...

Volatility’);
figure;
for i = 1:11
for j = 1:11
price = HestonCallQuad(2,.04,.1,0,.04,.01,mats(i),1...
,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,
mats (i), price);
end
end

surf (mat,strike,Volatility) ,xlabel (’Maturity(years)’),
ylabel(’Strike’),Title(’\rho = 0’),zlabel(’Implied ...

Volatility’);
figure;
for i = 1:11
for j = 1:11

price = HestonCallQuad(2,.04,.1,-0.5,.04,.01,mats(i),...
1,strikes(j));
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prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,...
mats(i), price);
end
end

surf (mat,strike,Volatility) ,xlabel(’Maturity(years)’),
ylabel(’Strike’),Title(’\rho = -0.5’),zlabel(’Implied...
Volatility’);

The following script,HestonVolSmileVolVol.m, generates figures 1.6, 1.7
and 1.8 of§ 1.,.

strikes = linspace(.8,1.2,11);
volvols = [.1:.1:.4];

StyleV = {[}_7][7__)] [J_.)] [):7]};
colourV = {[’k’] [’b’] [’r’] [’m’1};

for i = 1:4
for j = 1:11
price = HestonCallQuad(2,.04,volvols(i),0.5,.04,

.01,1,1,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,
1, price);
end
plot(strikes,Volatility(i,:), [char(colourV(i)),
char(styleV(i))]),ylabel(’Implied Volatility’),
xlabel (’Strike’),Title(’\rho = 0.5’);
hold on;
end

legend(’\sigma = 0.1°,’\sigma = 0.2’,’\sigma = 0.37,
’\sigma = 0.4’) figure;

for i = 1:4
for j = 1:11
price = HestonCallQuad(2,.04,volvols(i),0,.04,

.01,1,1,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,
1, price);
end

plot(strikes,Volatility(i,:), [char(colourV(i)),
char(styleV(i))]),ylabel(’Implied Volatility’),
xlabel (’Strike’),Title(’\rho = 0’);
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hold on;
end

legend(’\sigma = 0.1’,’\sigma = 0.2’,’\sigma = 0.3’,
’\sigma = 0.4’) figure;

for i = 1:4
for j = 1:11
price = HestonCallQuad(2,.04,volvols(i),-0.5,.04,...
.01,1,1,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(l, strikes(j), 0.01 ,
1, price);
end

plot(strikes,Volatility(i,:), [char(colourV(i)),
char(styleV(i))]),ylabel(’Implied Volatility’),
xlabel (’Strike’),Title(’\rho = -0.5);
hold on;
end

legend(’\sigma = 0.1’,’\sigma = 0.2’,’\sigma = 0.3’,
>\sigma = 0.4°)

A.3 Evaluation of the Closed-Form Solution

Presented here are the two methods discussg@ jand§ 2.3 for computation-
ally evaluating the closed-form solution for a European call.

A.3.1 European Call using FFT

The following function calculates at-the-money and in-the-money European call
prices using FFT.

function CallValue = HestonCallFft(kappa,theta,sigma,rho,r ...
,v0,s0,strike,T)

%kappa = rate of reversion
%theta = long run variance

%sigma = Volatility of volatility
%vO0 = initial Variance

%rho = correlation

AT = Time till maturity
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%r
%s0

interest rate
initial asset price

x0 = log(s0);

alpha = 1.25;

N= 4096;

c = 600;

eta = c/N;

b =pi/eta;

u = [0:N-1]x*eta;

lambda = 2%*b/N;

position = (log(strike) + b)/lambda + 1; Yposition of call
Y%value in FFT
fmatrix

v = u - (alpha+1)x*i;
zeta = —.5%(v."2 +i*v);
gamma = kappa - rho*sigmaxv*i;
PHI = sqrt(gamma. 2 - 2*sigma”2*zeta);
A i*vk(x0 + rxT);
B = vOx((2*zeta.*(1-exp(-PHI.*T)))./(2*PHI - ...
(PHI-gamma) . * (1-exp (-PHI*T))));
C = -kappaxtheta/sigma”2*(2*xlog((2*PHI - ...
(PHI-gamma) . * (1-exp(-PHI*T)))./ ...
(2%PHI)) + (PHI-gamma)*T);

charFunc = exp(A + B + C);
ModifiedCharFunc = charFunc*exp(-r*T)./(alpha”2 ...

+ alpha - u.”2 + i*(2*alpha +1)*u);
SimpsonW = 1/3%(3 + (-i)."[1:N] - [1, zeros(1,N-1)1);
FftFunc = exp(ixbxu).*ModifiedCharFunc*eta.*SimpsonW;
payoff = real(fft(FftFunc));
CallValueM = exp(-log(strike)*alpha)*payoff/pi;
format short;
CallValue = CallValueM(round(position));

The following function calculates out-of-the-money European call prices us-
ing FFT.

function CallValue = HestonCallFftTimeValue(kappa,theta,...
sigma,rho,r,v0,s0,strike,T)

%kappa = rate of reversion

%theta = long run variance

%sigma = Volatility of volatility
%vO0 initial Variance
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%rho = correlation
%T = Time till maturity
%r = interest rate
%s0 = initial asset price
x0 = log(s0);
alpha = 1.25;
N= 4096;
c = 600;
eta = c¢/N;
b =pi/eta;

u = [0:N-1]*eta;

lambda = 2xb/N;

position = (log(strike) + b)/lambda + 1; Yposition of call
%value in FFT matrix

wl = u-i*alpha;
w2 = uti*alpha;
vl = u-i*alpha -i;
v2 = uti*alpha -i;

zetal = -.5x(vl1.72 +ixvl);
gammal = kappa - rho*sigma*vlxi;
PHI1 = sqrt(gammal.”2 - 2*sigma”2+*zetal);
Al = i*xvi*(x0 + rx*T);
Bl = vO*((2*zetal.*(l-exp(-PHI1.*T)))./(2*PHI1 - ...
(PHI1-gammal) .*(1-exp(-PHI1%T))));
Cl = -kappa*theta/sigma”2*(2xlog((2*xPHI1 - ...
(PHI1-gammal) .*(1-exp(-PHI1%T)))./(2*PHI1))
+ (PHIl-gammal)*T);
charFuncl = exp(Al + Bl + C1);
ModifiedCharFuncl = exp(-r*T)*(1./(1+ixwl) - ...
exp(r*T)./(i*wl) - charFuncl./(wl1.72 - i*wl));

zeta2 = -.5%x(v2.72 +i*v2);

gamma? = kappa - rho*sigma*v2*i;

PHI2 = sqrt(gamma2.”2 - 2*sigma”2+*zetal);
A2 = i*v2%(x0 + r*T);

B2 = vO*((2xzeta2.*(1l-exp(-PHI2.*T)))./(2*PHI2 - ...
(PHI2-gamma?2) . * (1-exp (-PHI2*T))));
C2 = -kappax*theta/sigma”2*(2*log((2+«PHI2 - ...

(PHI2-gamma2) . * (1-exp(-PHI2*T))) ./ (2+PHI2))
+ (PHI2-gamma2)*T) ;
charFunc2 = exp(A2 + B2 + C2);
ModifiedCharFunc2 = exp(-r*T)*(1./(1+i*w2) - ...
exp (r*T)./(i*w2) - charFunc2./(w2.72 - i*w2));

ModifiedCharFuncCombo = (ModifiedCharFuncl - ...
ModifiedCharFunc2)/2 ;



A.3 Evaluation of the Closed-Form Solution 40

SimpsonW = 1/3*(3 + (-1).7[1:N] - [1, zeros(1,N-1)1);

FftFunc = exp(ix*b*u).*ModifiedCharFuncComboxeta.*. ..
SimpsonW;

payoff = real(fft(FftFunc));

CallValueM = payoff/pi/sinh(alpha*log(strike));

format short;

CallValue = CallValueM(round(position));

A.3.o European Call using Numerical Integration

The functionHestonCallQuad (kappa,theta,sigma,rho,v0,r,T,s0,K) cal-
culates the value of a European call. It callsstonP (kappa,theta,signa,
rho,v0,r,T,s0,K,type), Wheretype = 1,2, which evaluates (2.19), either us-
ing an adaptivé&auss Lobattoule or adaptivesimpson’s RuleThis, in turn, calls
HestonPIntegrand(phi,kappa,theta,sigma,rho,v0,r,T,s0,K,type), wh-
ich evaluates the integrand of (2.19). This, in turn dadlstf (phi,kappa, theta,
sigma,rho,v0,r,T,s0,type), which evaluates thef* function in the integrand
of (2.19). All variable names are the same as used in (Heston 1993).

function call = HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,...
s0,K)
warning off;
call = sO*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,1) - ...
K*exp (-r*T) *HestonP (kappa,theta,sigma,rho,v0,r,T,s0,K,2);

function ret = HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,type)
ret = 0.5 + 1/pi*quadl(@HestonPIntegrand,0,100, [], [],kappa,
theta,sigma,rho,v0,r,T,s0,K,type);

function ret = HestonPIntegrand(phi,kappa,theta,sigma,rho,
v0,r,T,s0,K,type)

ret = real(exp(-i*phix*log(K)) .*Hestf (phi,kappa,theta,signma,
tho,v0,r,T,s0,type) ./ (i*phi));

function f = Hestf(phi,kappa,theta,sigma,rho,v0,r,T,s0,type);

if type ==

u = 0.5;

b = kappa - rho*sigma;
else

u = -0.5;

b = kappa;
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end

= kappaxtheta; x = log(s0);

sqrt ((rho*sigma*phi.*i-b) . 2-sigma”2* (2*uxphi.*i-phi."2));

(b-rho*sigma*phi*i + d)./(b-rho*sigma*phixi - d);

C = r*phi.*i*T + a/sigma”2.*((b- rho*sigmaxphi*i + d)*T - ...

2xlog((1-g.*exp(d*T))./(1-g)));

D = (b-rho*sigma*phi*i + d)./sigma"2.*x((l-exp(d*T))./ ...
(1-g.xexp(d*T)));

a
d
g
f = exp(C + D*v0O + i*phi*x);

A., Calibration

The following contains th&1ATLAB code for calibrating the Heston model.

A.4.1 Using MATLAB’S 1sgnonlin

The script fileHestonLsCalibration.m initiates the calibration process. It cre-
ates a handle on the functitiestonDifferences that calculates the differences
between the model and market prices with#gnonlin. The 1load OptionD-
ata.txt’ line imports the strikes, maturities, market prices, bid and offers, etc.
of the options and underlying from the fil@tionData.txt!?. The first parame-
ter of input that MATLAB sends intdlestonDifference is 2x0 — o2. Itis done
here in this way because it is easier to encapsulate the congdint o2 > 0.
Reasonable bounds on the parameters were chosen relative to this.

(@]

clear;

global OptionData;
global NoOfOptions;
global NoOfIterations;
global PriceDifference;

NoOfIterations = 0;

load OptionData.m ;
%0ptionData = [r,T,S0,K,Option Value,bid,offer]

Size = size(OptionData) ;
NoOfOptions = Size(1);

13an example of the composition of OptionData.m is presented at the end of this sub-

section
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%input sequence in initial vectors [2xkappa*theta - sigma®2,...
% theta,sigma,rho,vO0]

x0 [6.5482 0.0731 2.3012 -0.4176 0.1838];

lb = [0 0 0 -1 0];

ub [20 1 5 0 1];

options = optimset(’MaxFunEvals’,20000) ;
%sets the max no. of iteration to 20000 so that termination
%doesn’t take place early.

tic;
Calibration = lsqnonlin(@HestonDifferences,x0,lb,ub);
toc;

Solution = [(Calibration(1)+Calibration(3)~2)/ ...
(2%Calibration(2)), Calibration(2:5)];

function ret = HestonDifferences(input)

global NoOfOptions;
global OptionData;
global NoOfIterations;
global PriceDifference;

NoOfIterations = NoOfIterations + 1;
%counts the no of iterations run to calibrate model

for i = 1:NoOfOptions
PriceDifference(i) = (OptionData(i,5)-HestonCallQuad( ...
(input (1) +input (3) ~2) / (2*input (2) ) ,input(2),
input (3),input(4),input(5),
OptionData(i,1),0ptionData(i,2),0ptionData(i,3),
OptionData(i,4)))/sqrt((abs(OptionData(i,6)- ...

OptionData(i,7))));

%input matrix = [kappa theta sigma rho vO]

end

ret = PriceDifference’;

As mentioned before, the filgptionData.m is a text file containing the mar-
ket data for calibration. Vanilla calls written on Anglo American shares that trade
on the LSE have been used. For illustrative purpo8gsionData contains the
following information:
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r-q

Term

Spot

Strike Mid Price

Bid

Offe

r

2.2685%
2.2685%
2.2685%
2.2685%
2.2685%
2.2342%
2.2685%
2.2342%
2.2685%
2.2342%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%
2.2685%
2.2342%
2.1947%

0.126027
0.126027
0.126027
0.126027
0.126027
0.375342
0.126027
0.375342
0.126027
0.375342
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397
0.126027
0.375342
0.627397

1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50
1544.50

1000.00
1050.00
1100.00
1150.00
1200.00
1200.00
1250.00
1250.00
1300.00
1300.00
1350.00
1350.00
1350.00
1400.00
1400.00
1400.00
1450.00
1450.00
1450.00
1500.00
1500.00
1500.00
1600.00
1600.00
1600.00
1700.00
1700.00
1700.00
1800.00
1800.00
1800.00
1900.00
1900.00
1900.00

559.00
509.50
460.00
411.00
362.50
386.00
315.00
345.50
269.50
300.50
223.00
259.00
281.00
179.00
221.00
244.00
140.00
180.00
207.50
105.00
149.50
173.00
56.50
96.00
121.00
23.50
57.25
81.50
10.00
32.50
50.50
4.50
18.25
35.50

553.00
503.50
454.00
405.00
356.50
378.50
309.00
338.00
263.50
293.00
217.00
251.50
272.00
176.00
213.50
235.00
136.00
174.00
198.50
102.00
145.00
166.00
51.50
92.00
114.00
20.50
51.00
77.00
7.00
28.00
44.50
2.00
14.50
29.50

565.00
515.50
466.00
417.00
368.50
393.50
321.00
353.00
275.50
308.00
229.00
266.50
290.00
182.00
228.50
253.00
144.00
186.00
216.50
108.00
154.00
180.00

6

1.50

100.00
128.00
26.50

6

8.50

86.00

1
3

3.00
v.00

56.50

7

.00

22.00

4

1.50

A.4.o Adaptive Simulated Annealing (ASA) in MATLAB

The scheme that controls the ‘acceptance’ of new solutions is so simple that the
cost of implementing ASA is purely dependent on the computational efficiency of
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evaluating the objective function. In our case, calculation of the objective function
for a given set of parameters entails the evaluation of a large number of options.
This makes ASA very computationally demanding and time consuming. The fol-
lowing script,HestonASACalibration, calibrates the model using ASA. It uses
the functionHestonCostFunc

clear;

global OptionData;
global NoOfOptions;
global NoOfIterations;
global PriceDifference;
global ObjectiveFunc;

NoOfIterations = 0;

load OptionData.m ;
%0ptionData = [r,T,S0,K,Option Value,bid,offer]

Size = size(OptionData) ;
NoOfOptions = Size(1);

%input sequence in initial vectors [kappa,theta,sigma,rho,vO0]

x0 = [0.030854841 0.999999922 0.248415019 -1 0.08977599];
1b = [0 0 0 -1 0];
ub = [10 1 5 0 1];

asamin(’set’,’test_in_cost_func’,0)

tic;

[fstar, xstar, grad, hessian, state] = asamin(’minimize’,...
’HestonCostFunc’,x0’,1b’ ,ub’,-1%ones(5,1));

toc;

function [cost , flag] = HestonCostFunc(input)
global NoOfOptions;

global OptionData;

global NoOfIterations;

global PriceDifference;

global ObjectiveFunc;

%input matrix = [kappa theta sigma rho vO]
NoOfIterations = NoOfIterations + 1;

if (2*input(1)*input(2)<=input(3)~2) Ytest for constraint
flag = 0; %flag = 0 if contraint is violated, else = 1
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els

end

cost = 0
e

for i = 1:NoOfOptions
PriceDifference(i) = (OptionData(i,5)-HestonCallQuad(...
input (1), input(2),input(3),input(4),input(5),
OptionData(i,1),0ptionData(i,2),0ptionData(i,3),...
OptionData(i,4)))/sqrt((abs(OptionData(i,6)- ...
OptionData(i,7))));
end

cost = sum(PriceDifference."2)
ObjectiveFunc(NoOfIterations) = cost; %stores the path of
flag = 1; %the optimiser
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