Introduction to Markov Chain Monte Carlo

- Monte Carlo: sample from a distribution
 - to estimate the distribution
 - to compute max, mean
- Markov Chain Monte Carlo: sampling using "local" information
 - Generic "problem solving technique"
 - decision/optimization/value problems
 - generic, but not necessarily very efficient

Lecture Outline

- Markov Chains notation & terminology
 - fundamental properties of Markov Chains
- Sampling from prob. distributions using MCMC
 - uniform
 - desired target distribution
- Problem solving using MCMC
 - optimization
- Relevance to Bayesian Networks

Markov Chains Notation & Terminology

- Countable (finite) state space Ω (e.g. N)
- Sequence of random variables $\{X_{t}\}$ on Ω for t = 0, 1, 2, ...
- Definition: $\{X_t\}$ is a Markov Chain if

$$P[X_{t+1} = y | X_t = x_t, \dots, X_o = x_o] = P[X_{t+1} = y | X_t = x_t]$$

- Notation: $P[X_{t+1} = i | X_t = j] = p_{ji}$
 - time-homogeneous

Markov Chains Examples

- Markov Chain
 - Drawing a number from $\{1,2,3\}$ with replacement. X_t = last number seen at time t

- NOT a Markov Chain
 - Drawing a number from {1,2,3} WITHOUT replacement. X_t = last number seen at time t

Markov Chains Notation & Terminology

• Let $P = (p_{ij})$ – transition probability matrix

– dimension $|\Omega| x |\Omega|$

• Let
$$\pi_t(j) = P[X_t = j]$$

– π_0 – initial probability distribution

• Then

$$\pi_{t}(j) = \sum_{i} \pi_{t-1}(i) p_{ij} = (\pi_{t-1} P)(j) = (\pi_{o} P^{t})(j)$$

• Example: graph vs. matrix representation

Markov Chains Fundamental Properties

- Theorem:
 - Under some conditions (irreducibility and aperiodicity), the limit $\lim_{t\to\infty} P^t_{ij}$ exists and is **independent** of *i*; call it $\pi(j)$. If Ω is finite, then $\sum_i \pi(j) = 1$ and $(\pi P)(j) = \pi(j)$

and such π is a **unique** solution to xP=x (π is called a **stationary distribution**)

• Nice: no matter where we start, after some time, we will be in any state *j* with probability $\sim \pi(j)$

Markov Chains Fundamental Properties

- Proposition:
 - Assume a Markov Chain with discrete state space Ω . Assume there exist positive distribution π on Ω ($\pi(i)>0$ and $\sum \pi(i) = 1$) and for every *i*,*j*:

 $\pi(i)p_{ij} = \pi(j)p_{ji}$ (detailed balance property)

then π is the stationary distribution of P

- Corollary:
 - If transition matrix *P* is symmetric and Ω finite, then the stationary distribution is $\pi(i)=1/|\Omega|$

Markov Chain Monte Carlo

- Random Walk on {0,1}^m
 - $\Omega = \{0, 1\}^m$
 - generate chain: pick $J \in \{1, ..., m\}$ uniformly at random and set $X_t = (z_1, ..., 1 - z_j, ..., z_m)$ where $(z_1, ..., z_m) = X_{t-1}$
- Markov Chain Monte Carlo basic idea:
 - Given a prob. distribution π on a set Ω , the problem is to generate random elements of Ω with distribution π . MCMC does that by constructing a Markov Chain with stationary distribution π and simulating the chain.

MCMC: Uniform Sampler

• Problem: sample elements uniformly at random from set (large but finite) Ω

• Idea: construct an irreducible symmetric Markov Chain with states Ω and run it for sufficient time

- by Theorem and Corollary, this will work

• Example: generate uniformly at random a feasible solution to the Knapsack Problem

MCMC: Uniform Sampler Example Knapsack Problem

- Definition
 - Given: *m* items and their weight w_i and value v_i , knapsack with weight limit *b*
 - Find: what is the most valuable subset of items that will fit into the knapsack?
- Representation:

 $- z = (z_1, \dots, z_m) \in \{0, 1\}^m$, z_i means whether we take item *i*

- feasible solutions $\Omega = \{ z \in \{0,1\}^m ; \sum_i w_i z_i \le b \}$
- problem: maximize $\sum_{i} v_i z_i$ subject to $z \in \Omega$

MCMC Example: Knapsack Problem

• Uniform sampling using MCMC: given current $X_t = (z_1, ..., z_m)$, generate X_{t+1} by:

(1) choose $J \in \{1, ..., m\}$ uniformly at random

(2) flip
$$z_{j}$$
, i.e. let $y = (z_{1}, ..., 1 - z_{j}, ..., z_{m})$

(3) if y is feasible, then set $X_{t+1} = y$, else set $X_{t+1} = X_t$

- Comments:
 - P_{ij} is symmetric \Rightarrow uniform sampling
 - how long should we run it?
 - can we use this to find a "good" solution?

MCMC Example: Knapsack Problem

- Can we use MCMC to find good solution?
 - Yes: keep generating feasible solutions uniformly at random and remember the best one seen so far.
 - this may take very long time, if number of good solutions is small
 - Better: generate "good" solutions with higher probability => sample from a distribution where "good" solutions have higher probabilities

$$\pi(z) = C^{-1} \exp(\sum_{i} v_{i} z_{i})$$

MCMC: Target Distribution Sampler

- Let Ω be a countable (finite) state space
- Let Q be a symmetric transition prob. matrix
- Let π be any prob. distribution on Ω s.t. π(i)>0
 the target distribution
- we can define a new Markov Chain {X_i} such that its stationary distribution is π
 - this allows to sample from Ω according to π

MCMC: Metropolis Algorithm

• Given such Ω , π , Q creates a new MC $\{X_{t}\}$:

(1) choose "proposal" *y* randomly using Q $P[Y=j | X_t = i] = q_{ij}$

(2) let α = min{1, π(Y)/π(i)} (acceptance probability)
(3) accept *y* with probability α, i.e. X_{t+1} = Y with prob. α, X_{t+1} = X_t otherwise

• Resulting *p*_{ii}:

$$p_{ij} = q_{ij} \min\{1, \pi(j)/\pi(i)\}$$
 for $i \neq j$
 $p_{ii} = 1 - \sum_{j \neq i} p_{ij}$

MCMC: Metropolis Algorithm

- Proposition (Metropolis works):
 - The p_{ij} 's from Metropolis Algorithm satisfy detailed balance property w.r.t π i.e. $\pi(i)p_{ij} = \pi(j)p_{ij}$

 \Rightarrow the new Markov Chain has a stationary distr. π

- Remarks:
 - we only need to know *ratios* of values of π
 - the MC might converge to π exponentially slowly

MCMC: Metropolis Algorithm Knapsack Problem

• Target distribution:

$$\pi(z) = C_{\beta}^{-1} \exp(\beta \sum_{i} v_{i} z_{i})$$

• Algorithm:

(1) choose J∈{1,...,m} uniformly at random
(2) let y = (z₁,...,1-z_j,...,z_m)
(3) if y is not feasible, then X_{t+1} = X_t
(4) if y is feasible, set X_{t+1} = y with prob. α, else X_{t+1} = X_t where α = min{1, exp(β∑_iV_i(y_i-z_i)}

MCMC: Optimization

- Metropolis Algorithm theoretically works, but:
 - needs large β to make "good" states more likely
 - its convergence time may be exponential in β
- \Rightarrow try changing β over time

- Simulated Annealing
 - for Knapsack Problem: $\alpha = \min\{1, \exp(\beta(t) \sum_{i} v_i (y_i z_i))\}$
 - $\beta(t)$ increases slowly with time (e.g. =log(t), =(1.001)^t)

MCMC: Simulated Annealing

- General optimization problem: maximize function G(z) on all feasible solutions Ω
 - let Q be again symmetric transition prob. matrix on Ω
- Simulated Annealing is Metropolis Algorithm with $p_{ij} = q_{ij} \min\{1, \exp(\beta(t) [G(j) - G(i)])\}$ for $i \neq j$ $p_{ij} = 1 - \sum_{i \neq i} p_{ij}$
- Effect of $\beta(t)$: exploration vs. exploitation trade-off

MCMC: Gibbs Sampling

- Consider a factored state space
 - $z \in \Omega$ is a vector $z = (z_1, \dots, z_m)$
 - notation: $z_{i} = (z_{1}, \dots, z_{i-1}, z_{i+1}, \dots, z_{m})$
- Assume that target π is s.t. $P[Z_i | z_j]$ is known
- Algorithm:

(1) pick a component $i \in \{1, ..., m\}$ (2) sample value of z_i from $P[Z_i | z_{-i}]$, set $X_t = (z_1, ..., z_m)$

 A special case of generalized Metropolis Sampling (Metropolis-Hastings)

MCMC: Relevance to Bayesian Networks

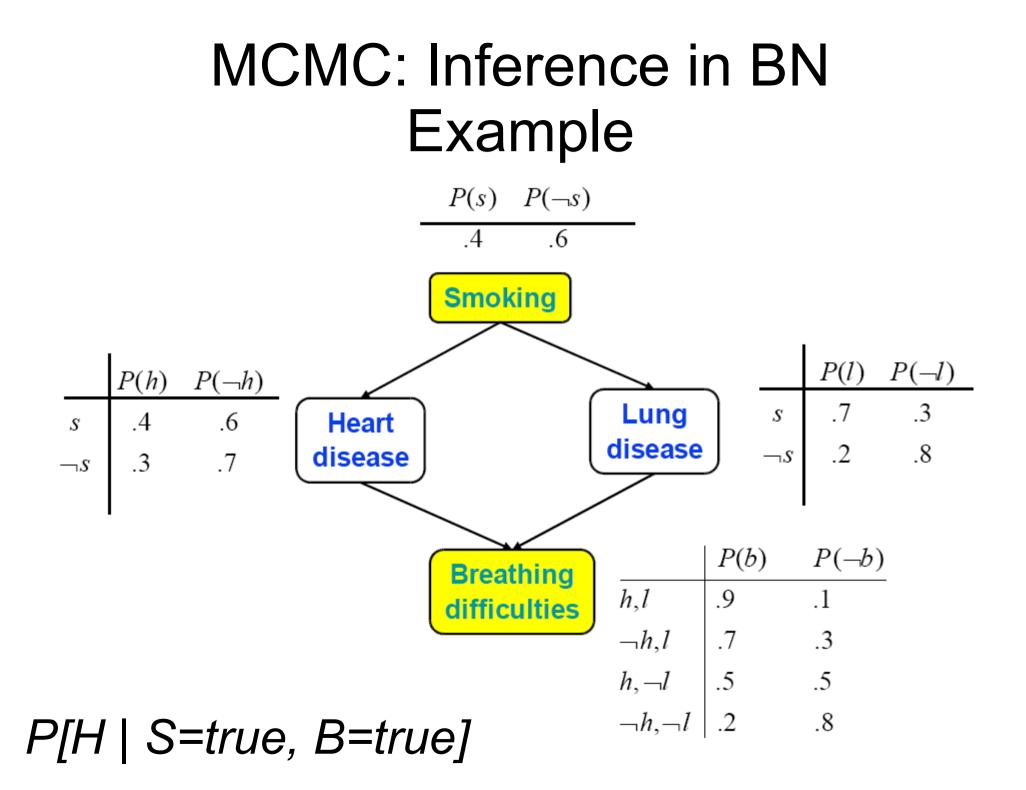
• In Bayesian Networks, we know

 $P[Z_i | z_i] = P[Z_i | MarkovBlanket(Z_i)]$

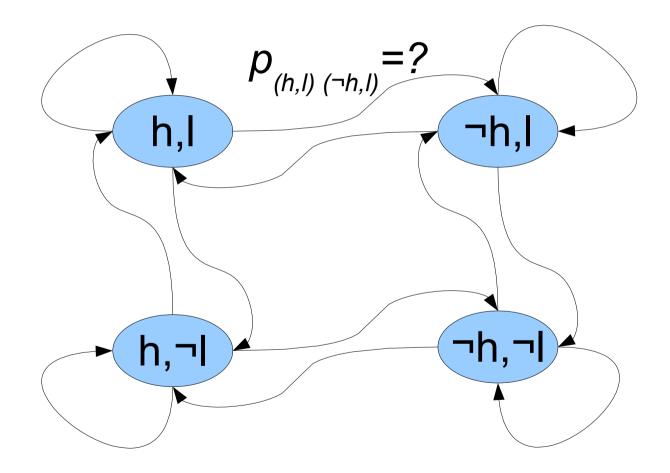
- BN Inference Problem: compute $P[Z_i = z_i | E = e]$
 - Possible solution:

(1) sample from worlds according to *P*[*Z*=*z*|*E*=*e*]

- (2) compute fraction of those worlds where $Z_i = z_i$
- Gibbs Sampler works:
 - let $\pi(z) = P[Z=z | E=e]$, then $P[Z_i | z_i]$ satisfies detailed balance property w.r.t $\pi(z) \Rightarrow \pi(z)$ is stationary



MCMC: Inference in BN Example



Smoking and Breathing difficulties are fixed

MCMC: Inference in BN Example

• $P[z_i | MB(Z_i)] \propto P[z_i | Par(Z_i)] \prod_{Y \in Chld(Z)} P[y | Par(Y)]$

• $p_{(h,l)(\neg h,l)} = P[h \text{ gets picked}].P[\neg h|MB(H)]$ = $\frac{1}{2}.P[\neg h|I,s,b]$ = $\frac{1}{2}.\alpha P[\neg h|s].P[b|\neg h,l]$