
  

Introduction to
Markov Chain Monte Carlo

● Monte Carlo: sample from a distribution
– to estimate the distribution
– to compute max, mean

● Markov Chain Monte Carlo: sampling using 
“local” information
– Generic “problem solving technique”
– decision/optimization/value problems
– generic, but not necessarily very efficient

Based on - Neal Madras: Lectures on Monte Carlo Methods; AMS 2002



  

Lecture Outline
● Markov Chains notation & terminology

– fundamental properties of Markov Chains
● Sampling from prob. distributions using MCMC

– uniform
– desired target distribution

● Problem solving using MCMC
– optimization

● Relevance to Bayesian Networks



  

Markov Chains
Notation & Terminology

● Countable (finite) state space Ω (e.g. N)
● Sequence of random variables {X

t
} on Ω for 

t =0,1,2,... 

● Definition: {X
t 
} is a Markov Chain if

P[X
t+1

= y |X
t
=x

t 
,...,X

0
=x

0 
] = P[X

t+1
=y | X

t
=x

t 
]

● Notation: P[X
t+1

= i | X
t
= j ] = p

ji

– time-homogeneous



  

Markov Chains
Examples

● Markov Chain
– Drawing a number from {1,2,3} with replacement. 

X
t
= last number seen at time t

● NOT a Markov Chain
– Drawing a number from {1,2,3} WITHOUT 

replacement. X
t
= last number seen at time t



  

Markov Chains
Notation & Terminology

● Let P = (p
ij
) – transition probability matrix 

– dimension |Ω|x|Ω|
● Let 

t
(j) = P[X

t
 = j]

– 
0
 – initial probability distribution

● Then 


t
(j) = ∑

i 


t-1
(i)p

ij
 = (

t-1
P)(j) = (

o
P t)(j)

● Example: graph vs. matrix representation



  

Markov Chains
Fundamental Properties

● Theorem:
– Under some conditions (irreducibility and 

aperiodicity), the limit lim
t →∞

 Pt
ij
 exists and is 

independent of i; call it (j). If Ω is finite, then

∑
j
(j) = 1 and (P)(j) = (j)

   and such  is a unique solution to xP=x  ( is called 
a stationary distribution)

● Nice: no matter where we start, after some time, 
we will be in any state j with probability ~ (j)

DEMO



  

Markov Chains
Fundamental Properties

● Proposition:
– Assume a Markov Chain with discrete state space 

Ω. Assume there exist positive distribution  on Ω 
( (i)>0 and ∑

i
(i) = 1) and for every i,j:

(i)p
ij 
= (j)p

ji
 (detailed balance property)

   then  is the stationary distribution of P
● Corollary:

– If transition matrix P is symmetric and Ω finite, then 
the stationary distribution is (i)=1/|Ω|

DEMO



  

Markov Chain Monte Carlo

● Random Walk on {0,1}m 
– Ω={0,1}m

– generate chain: pick J{1,...,m} uniformly at random 
and set X

t
=(z

1
,...,1-z

J 
,...,z

m
) where (z

1
,...,z

m
)=X

t-1

● Markov Chain Monte Carlo basic idea:
– Given a prob. distribution  on a set Ω, the problem 

is to generate random elements of Ω with 
distribution . MCMC does that by constructing a 
Markov Chain with stationary distribution  and 
simulating the chain.



  

MCMC: Uniform Sampler
● Problem: sample elements uniformly at random 

from set (large but finite) Ω

● Idea: construct an irreducible symmetric Markov 
Chain with states Ω and run it for sufficient time
– by Theorem and Corollary, this will work

● Example: generate uniformly at random a 
feasible solution to the Knapsack Problem



  

MCMC: Uniform Sampler Example
Knapsack Problem

● Definition
– Given: m items and their weight w

i
 and value v

i
, 

knapsack with weight limit b
– Find: what is the most valuable subset of items that 

will fit into the knapsack?
● Representation:

– z=(z
1
,...,z

m
){0,1}m, z

i 
means whether we take item i 

– feasible solutions Ω = { z{0,1}m ; ∑
i
w

i 
z

i
 ≤ b}

– problem: maximize ∑
i
v

i 
z

i 
subject to zΩ



  

MCMC Example:
Knapsack Problem

● Uniform sampling using MCMC: given current 
X

t
=(z

1
,...,z

m
), generate X

t+1 
by:

(1) choose J{1,...,m} uniformly at random
(2) flip z

J
, i.e. let y = (z

1
,...,1-z

J 
,...,z

m
)

(3) if y is feasible, then set X
t+1

= y, else set X
t+1

= X
t

● Comments:
– P

ij
 is symmetric ⇒ uniform sampling

– how long should we run it?
– can we use this to find a “good” solution?



  

MCMC Example:
Knapsack Problem

● Can we use MCMC to find good solution?
– Yes: keep generating feasible solutions uniformly at 

random and remember the best one seen so far.
● this may take very long time, if number of good solutions 

is small
– Better: generate “good” solutions with higher 

probability => sample from a distribution where 
“good” solutions have higher probabilities

(z) = C -1exp( ∑
i
v

i 
z

i
 )



  

MCMC: Target Distribution Sampler
● Let Ω be a countable (finite) state space
● Let Q be a symmetric transition prob. matrix
● Let  be any prob. distribution on Ω s.t. (i)>0

– the target distribution

● we can define a new Markov Chain {X
i 
} such 

that its stationary distribution is 
– this allows to sample from Ω according to 



  

MCMC: Metropolis Algorithm
● Given such Ω, ,Q creates a new MC {X

t 
}:

(1) choose “proposal” y randomly using Q
P[Y=j | X

t
 = i ] = q

ij

(2) let  = min{1, (Y)/(i)} (acceptance probability)
(3) accept y with probability , i.e. X

t+1
=Y with prob. , 

X
t+1

=X
t
 otherwise

● Resulting p
ij
:

p
ij
=q

ij
min{1, (j)/(i)} for i ≠ j

p
ii 
= 1 - ∑

j≠i 
p

ij



  

MCMC: Metropolis Algorithm
● Proposition (Metropolis works):

– The p
ij
's from Metropolis Algorithm satisfy detailed 

balance property w.r.t   i.e. (i)p
ij 
= (j)p

ji

⇒ the new Markov Chain has a stationary distr. 

● Remarks:
– we only need to know ratios of values of 
– the MC might converge to  exponentially slowly



  

MCMC: Metropolis Algorithm
Knapsack Problem

● Target distribution:
(z) = C

b

-1exp( b ∑
i
v

i 
z

i
 )

● Algorithm:
(1) choose J{1,...,m} uniformly at random
(2) let y = (z

1
,...,1-z

J 
,...,z

m
)

(3) if y is not feasible, then X
t+1

 = X
t

(4) if y is feasible, set X
t+1

 = y with prob. , else X
t+1

 = X
t 

where  = min{1, exp( b ∑
i
v

i 
(y

i
-z

i
)}



  

MCMC: Optimization
● Metropolis Algorithm theoretically works, but:

– needs large b to make “good” states more likely
– its convergence time may be exponential in b

⇒ try changing b over time

● Simulated Annealing
– for Knapsack Problem:  = min{1, exp( b(t) ∑

i
v

i 
(y

i
-z

i
)}

– b(t) increases slowly with time (e.g. =log(t), =(1.001)t )



  

MCMC: Simulated Annealing
● General optimization problem: maximize function 

G(z) on all feasible solutions Ω
– let Q be again symmetric transition prob. matrix on Ω

● Simulated Annealing is Metropolis Algorithm with 
p

ij
=q

ij
min{1, exp( b(t) [G(j)-G(i)]) } for i ≠ j

p
ii 
= 1 - ∑

j≠i 
p

ij

● Effect of b(t): exploration vs. exploitation trade-off



  

MCMC: Gibbs Sampling
● Consider a factored state space

– zΩ is a vector z=(z
1 
,...,z

m 
)

– notation: z
-i 
= (z

1 
,...,z

i-1 
,z

i+1 
,... ,z

m 
)

● Assume that target  is s.t. P[Z
i 
|z

-i 
] is known

● Algorithm:
(1) pick a component i{1,...,m}
(2) sample value of z

i
 from P[Z

i 
|z

-i 
], set X

t
=(z

1 
,...,z

m 
)

● A special case of generalized Metropolis 
Sampling (Metropolis-Hastings)



  

MCMC: Relevance to 
Bayesian Networks

● In Bayesian Networks, we know
P[Z

i 
|z

-i 
] = P[Z

i 
| MarkovBlanket(Z

i 
)]

● BN Inference Problem: compute P[Z
i
=z

i 
|E=e]

– Possible solution:
(1) sample from worlds according to P[Z=z|E=e]
(2) compute fraction of those worlds where Z

i
=z

i

– Gibbs Sampler works:
● let (z) = P[Z=z

 
|E=e], then P[Z

i 
|z

-i 
] satisfies detailed 

balance property w.r.t (z) ⇒ (z) is stationary



  

MCMC: Inference in BN
Example

P[H | S=true, B=true]



  

MCMC: Inference in BN
Example

h,l

h,¬l

¬h,l

¬h,¬l

Smoking and Breathing difficulties are fixed

p
(h,l) (¬h,l)

=?



  

MCMC: Inference in BN
Example

● P[z
i 
| MB(Z

i 
)]  P[z

i
|Par(Z

i 
)] ∏

YChld(Z)
P[y|Par(Y)]

● p
(h,l) (¬h,l)

= P[h gets picked].P[¬h|MB(H)]

= ½.P[¬h|l,s,b]
= ½.αP[¬h|s].P[b|¬h,l]


