
Attribute-Efficient Evolvability of Linear Functions
Extended Abstract

Elaine Angelino Varun Kanade
Harvard University UC Berkeley
elaine@eecs.harvard.edu vkanade@eecs.berkeley.edu

Darwin’s theory of evolution through natural selection has been a cornerstone of biology for over a century
and a half. Natural selection acts on phenotypes that are a result of molecular activities at the level of cells;
the molecular activities themselves are encoded in the DNA sequence, or genotype.1 Every cell is a computing
machine, sensing its environment and producing appropriate responses. Abstractly, cellular activity can be
viewed as computing a function; the input is an “internal representation” of the environment using proteins
and other molecules, and the output is the activation or repression of proteins expression. Yet, a quantitative
theory of the complexity of such functions that could arise through Darwinian mechanisms has remained
virtually unexplored. Here, complexity is viewed through the lens of theoretical computer science, e.g., the
size of the circuit required to compute the function (cf. Arora and Barak [2009], Papadimitriou [2003]).

To address this question, Valiant [2009] introduced a computational model of evolution.2 In this model, an
organism is an entity that computes a function of its environment. For simplicity, each organism computes
only one function, though in reality there may be thousands if not more. For example, consider an enzyme
that metabolizes sugars. The corresponding function computed by the cell could determine how much
of this enzyme to produce, as function of the concentrations of various sugar molecules present in the
environment. There is a (possibly hypothetical) ideal function indicating the best behavior in every possible
environment, e.g., the optimal amount of enzyme to produce, not necessarily to maximize the yield of its
products but rather the overall performance of the organism, including tradeoffs between some action and
its energetic costs. The performance of the organism is measured by how close the function it computes
is to the ideal. An organism produces a set of offspring, that may have mutations that alter the function
computed. The performance measure acting on a population of mutants forms the basis of natural selection.3

The resources allowed are the most generous while remaining feasible; the mutation mechanism may be any
efficient randomized Turing machine,4 and the function represented by the organism may be arbitrary as
long as it is computable by an efficient Turing machine.

Formulated this way, the question of evolvability can be asked in the language of computational learning
theory. For what classes of ideal functions, C, can one expect to find an evolutionary mechanism that gets
arbitrarily close to the ideal, within feasible computational resources? A function class captures a notion of
complexity, say for example,

f(x1, . . . , xn) = 2x1 + 3.7x4 − 0.7x9 + 6x12 + 1.8,

is a linear function, and one could consider the class of all such linear functions. In the toy example of the
enzyme that metabolizes sugars, the various xi could be different molecules in the environment, where those
appearing on the right hand side of the equation correspond to sugars. The different coefficients, if tuned by
natural selection, could reflect differences among the sugars with respect to their benefits versus costs to the
cell, and the positive additive constant corresponds to the baseline level of enzyme. A more complex class is
that of quadratic functions, where a function takes the form f(x1, . . . , xn) = 3.2x2

1 − 7.3x1x6 + 18x3 + 8.1.
The point here is that the highest degree of any term appearing the expression is 2. One expects that the
more complex the ideal function, the harder it is for evolution to succeed in approximating it. Here, the
notion of approximation is the following: Suppose there is a distribution D over inputs (x1, . . . , xn), the
ideal function is f and the organism computes some other function h. Then, the loss of the organism is

1There are epigenetic factors at play, but the general principle expounded in this document applies to those mechanisms as
well.
2Also, see Valiant [2013] for a very accessible treatment of computational learning theory in general, and this model in particular.
3Recombination may increase the speed of evolution, but it is understood that in Valiant’s model, it does not affect the

complexity that can arise in functions.
4A Turing machine is a mathematical model on which all modern computers are based; the widely believed Church-Turing
hypothesis states that any feasible computation in nature can be simulated by a Turing machine.



Ex∼D[(f(x) − h(x))2], the expected squared difference between the organism’s function and the ideal.5 An
evolutionary mechanism is successful if the loss becomes close to 0 (which is the best possible) in a relatively
small number of generations.

The reason for allowing mutations and representations of functions to be quite general in Valiant’s model
is primarily the lack of our current understanding of how mutations occur in nature and also the relationship
betewen changes in genotype to changes in phenotype.6 However, a consequence of this generality has been
that feasible evolutionary mechanisms in this model can be encodings of very sophisticated algorithms. These
computations have to be performed by “chemical computers” in cells, which could be severely restricted in
their computational capabilities. Thus, we are interested in understanding what evolutionary mechanisms
could succeed when they have limited computational power at their disposal. We illustrate our point with a
particular kind of biological circuit: transcription networks.

The view presented here is an exaggerated simplification of the actual transcription process, the goal being
to focus on the complexity of the circuit representation. A transcription network consists of interacting genes
and proteins that are involved in the production of new protein. Genes are transcribed to produce mRNA,
which is then translated into sequences of amino acids that ultimately fold into proteins.7 In a transcription
network, a gene’s transcription may be regulated by a set of proteins called transcription factors. These
factors may increase or decrease a gene’s transcription by physically binding to regions of DNA that are
typically close to the gene. In natural systems, only a small number of transcription factors regulate any
single gene, and so transcription networks are sparsely connected.

The number of transcription factors varies from hundreds in a bacterium to thousands in a human cell.
Some transcription factors are always present in the cell and can be thought of as representing a snapshot
of the environment (cf. Alon [2006]). For example, the presence of sugar molecules in the environment
may cause specific transcription factors to be activated, enabling them to regulate the production of other
proteins. One of these proteins could be an end-product, such as an enzyme that catalyzes a metabolic
reaction involving the sugar. Alternatively, the transcription factor could regulate another transcription
factor that itself regulates other genes – we view this as intermediate computation – and may participate
in further “computation” to produce the desired end-result. While transcription networks may include
cycles (loops), here for simplicity we focus on systems that are directed acyclic graphs, and the resulting
computation can be viewed as a circuit. These circuits are by necessity shallow due to a temporal constraint,
that the time required for sufficient quantities of protein to be produced is of the same order of magnitude
as cell-division time.8

In our work, we look at linear functions, e.g., f(x) = 3x1 +7x3−5x8. A model to compute linear functions
is an arithmetic circuit with one addition gate and several input wires. Each input wire can have a positive
or negative weight associated with it. Thus, the linear function f(x) = 3x1 + 7x3 − 5x8, can be computed
by a simple circuit that has one addition gate and three input wires having weight 3, 7 and −5 respectively.
We now want to know that if the ideal function is sparse, i.e., most of the weights are zero, does there exist
an evolutionary mechanism that would be successful, while having the property that the “cellular circuit” at
each stage of evolution is itself a sparse one? Under rather mild assumptions on the distribution of inputs, we
show that this is indeed the case. A further interesting property of this mechanism is that the main resource
required, the number of generations, depends only on the number of relevant variables in the ideal function,
and not on the total number of variables. The population required for evolution to succeed depends on the
total number of variables, not just the relevant ones.

5The closer h is to f , the smaller the loss. Here, we are simply assuming that the performance depends on the approximation in
terms of squared error. It is possible to use other loss functions and indeed a very interesting (and largely unresolved) question
is how robust these evolutionary mechanisms are to changes in the loss function.
6It also has the added advantage that this allows one to talk about computationally feasible Darwinian evolution of any type,
not just restricted to that observed on earth.
7In reality, this is a dynamical system where the rates of production are important. Note that this process need not be linear:
a gene (mRNA transcript) can be transcribed (translated) multiple times, not only in series but also in parallel fashion.
8Other kinds of networks, such as signaling networks, operate by changing the shapes of proteins. The fact that these trans-
formations are rapid may allow for much larger depth. Note that fast conformational changes govern how transcription factors
directly process information from the environment in order to regulate gene expression. In our example, a sugar molecule binds

to a transcription factor and changes its shape in a way that alters its ability to bind to DNA.

2



Of course, a linear function may be a very restrictive model of what actually goes on in the cell. As part
of future work, we think it is worth investigating whether other functions such as the sigmoid operating on
linear functions can also be evolved, assuming that the number of relevant variables is much smaller than
the total number of variables.

Bibliographic Note

From the point of view of computer science, there have been very interesting developments in understanding
the power of Valiant’s model. We have largely left these out of this document for reasons of brevity and
accessibility. Apart from Valiant’s original paper [Valiant 2009], the interested reader is referred in particular
to the work of Vitaly Feldman and Paul Valiant [Feldman 2008; 2009; 2011; Valiant 2012]. The second
author’s thesis contains an exposition of some of these results and other work [Kanade 2012].

In the case of biological literature, our omissions are even greater. The companion paper to this note [An-
gelino and Kanade 2014] contains a more complete bibliography. Our main purpose here is to introduce the
computational framework in a language that is more widely understood.

Acknowledgments

We would like to thank Leslie Valiant for helpful discussions and comments on an early version of this
paper. We are grateful to Frank Solomon for discussing biological aspects related to this work. EA was
supported by a grant from the National Library of Medicine (4R01LM010213-04). VK is supported by a
Simons Postdoctoral Fellowship.

REFERENCES

Alon, U. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall/CRC, Boca

Raton, FL.

Angelino, E. and Kanade, V. 2014. Attribute-efficient evolvability of linear functions. In Innovations in Theoretical Computer

Science. To appear.

Arora, S. and Barak, B. 2009. Computational complexity: a modern approach. Cambridge University Press.

Feldman, V. 2008. Evolution from learning algorithms. In Proceedings of the Symposium on the Theory of Computation

(STOC).

Feldman, V. 2009. Robustness of evolvability. In Proceedings of the Conference on Learning Theory (COLT).

Feldman, V. 2011. Distribution-independent evolution of linear threshold functions. In Proceedings of the Conference on

Learning Theory (COLT).

Kanade, V. 2012. Computational questions in evolution. Ph.D. thesis, Harvard University.

Papadimitriou, C. H. 2003. Computational complexity. John Wiley and Sons Ltd.

Valiant, L. 2013. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World.
Basic Books, New York, NY.

Valiant, L. G. 2009. Evolvability. Journal of the ACM 56, 1, 3:1–3:21.

Valiant, P. 2012. Evolvability of real-valued functions. In Proceedings of Innovations in Theoretical Computer Science (ITCS).

3


