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Abstract. In this expository paper we introduce extended topological quantum field theories and
the cobordism hypothesis.

1. Introduction

The cobordism hypothesis was conjectured by Baez-Dolan [BD] in the mid 1990s. It has now

been proved by Hopkins-Lurie in dimension two and by Lurie in higher dimensions. There are many

complicated foundational issues which lie behind the definitions and the proof, and only a detailed

sketch [L1] has appeared so far.1 The history of the Baez-Dolan conjecture goes most directly

through quantum field theory and its adaptation to low-dimensional topology. Yet in retrospect it

is a theorem about the structure of manifolds in all dimensions, and at the core of the proof lies

Morse theory. Hence there are two routes to the cobordism hypothesis: algebraic topology and

quantum field theory.

Consider the abelian group ΩSO
0 generated by compact oriented 0-dimensional manifolds, that is,

finite sets Y of points each labeled with + or −. The group operation is disjoint union. We deem Y0

equivalent to Y1 if there is a compact oriented 1-manifold X with oriented boundary Y1 ∐ −Y0.

Then a basic theorem in differential topology [Mi1, Appendix] asserts that ΩSO
0 is the free abelian

group with a single generator, the positively oriented point pt+.2 This result is the cornerstone of

smooth intersection theory. From the point of view of algebraic topology the cobordism hypothesis

is a similar statement about a more ornate structure built from smooth manifolds. The simplest

version is for framed manifolds. The language is off-putting if unfamiliar, and it will be explained

in due course.

Theorem 1.1 (Cobordism hypothesis: heuristic algebro-topological version). For n ≥ 1, Bordfr
n is

the free symmetric monoidal (∞, n)-category with duals generated by pt+.

Received by the editors November 15, 2011; revised version September 14, 2012.
The work of D.S.F. is supported by the National Science Foundation under grant DMS-0603964.
1Nonetheless, we use ‘theorem’ and its synonyms in this manuscript. The foundations are rapidly being filled in

and alternative proofs have also been carried out, though none has yet appeared in print.
2Two important remarks: (1) we can replace orientations with framings; (2) for unoriented manifolds the group ΩO

0

is not free on one generator, but rather there is a relation and ΩO
0
∼= Z/2Z.
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The ‘Bord’ in Bordfr
n stands for ‘bordism’,3 and pt+ is now the point with the standard framing.

Bordfr
n is an elaborate algebraic gadget which encodes n-framed manifolds with corners of dimen-

sions ≤ n and tracks gluings and disjoint unions. One of our goals is to motivate this elaborate

algebraic structure.

An extended topological field theory is a representation of the bordism category, i.e., a homomor-

phism F : Bordfr
n → C. The codomain C is a symmetric monoidal (∞, n)-category, typically linear

in nature. In important examples F assigns a complex number to every closed n-manifold and a

complex vector space to every closed (n − 1)-manifold.

Theorem 1.2 (Cobordism hypothesis: weak quantum field theory version). A homomorphism

F : Bordfr
n → C is determined by F (pt+).

The object F (pt+) ∈ C satisfies stringent finiteness conditions expressed in terms of dualities, and

the real power of the cobordism hypothesis is an existence statement: if x ∈ C is n-dualizable, then

there exists a topological field theory F with F (pt+) = x. Precise statements of the cobordism

hypothesis appear in §6.

Our plan is to build up gradually to the categorical complexities inherent in extended field

theories and the cobordism hypothesis. So in the next two sections we take strolls along the

two routes to the cobordism hypothesis: algebraic topology (§2) and quantum field theory (§3).

Section 4 is an extended introduction to non-extended topological field theory. The simple examples

discussed there only hint at the power of this circle of ideas. In §5 we turn to extended field theories

and so also to higher categories. The cobordism hypothesis is the subject of §6, where we state

a complete version in Theorem 6.8. The cobordism hypothesis connects in exciting ways to other

parts of topology, geometry, and representation theory as well as to some contemporary ideas in

quantum field theory. A few of these are highlighted in §7.

The manuscript [L1] has leisurely introductions to higher categorical ideas and to the setting of

the cobordism hypothesis, in addition to a detailed sketch of the proof and applications. The original

paper [BD] is another excellent source of expository material. Additional recent expositions are

available in [L3], [Te1]. We have endeavored to complement these expositions rather than duplicate

them. I warmly thank David Ben-Zvi, Andrew Blumberg, Lee Cohn, Tim Perutz, Ulrike Tillmann,

and the referee for their comments and suggestions.

2. Algebraic topology

The most basic maneuvers in algebraic topology extract algebra from spaces. For example,

to a topological space X we associate a sequence of abelian groups
{
Hq(X)

}
. There are several

constructions of these homology groups, but for nice spaces they are all equivalent [Sp]. The

homology construction begins to have teeth only when we tell how homology varies with X. One

elementary assertion is that if X ≃ Y are homeomorphic spaces, then the homology groups are

isomorphic. Thus numerical invariants of homology groups, such as the rank, are homeomorphism

3‘Bordism’ replaces the older ‘cobordism’, as bordism is part of homology whereas cobordism is part of cohomol-
ogy [A1].
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invariants of topological spaces: Betti numbers. But it is much more powerful to remember the

isomorphisms of homology groups associated to homeomorphisms, and indeed the homomorphisms

associated to arbitrary continuous maps. This is naturally encoded in the algebraic structure of a

category. Here is an informal definition; see standard texts (e.g. [Mc]) for details.

Definition 2.1. A category C consists of a set4 C0 of objects {x}, a set C1 of morphisms {f : x → y},
identity elements {idx : x → x}, and an associative composition law f, g 7−→ g ◦ f for morphisms

x
f−→ y and y

g−→ z. If C,D are categories then a homomorphism5 F : C → D is a pair (F0, F1) of

maps of sets Fi : Ci → Di which preserves compositions.

More formally, there are source and target maps C1 → C0, identity elements are defined by a map

C0 → C1, and composition is a map from a subset of C1 ×C1 to C1—the subset consists of pairs of

morphisms for which the target of the first equals the source of the second. A homomorphism also

preserves the source and target maps. Topological spaces comprise the objects of a category Top

whose morphisms are continuous maps; abelian groups comprise the objects of a category Ab whose

morphisms are group homomorphisms. Some basic properties of homology groups are summarized

by the statement that

(2.2) Hq : (Top,∐) −→ (Ab,⊕)

is a homomorphism. We explain the ‘∐’ and ‘⊕’ in the next paragraph.

The homomorphism property does not nearly characterize homology, and we can encode many

more properties via extra structure on Top and Ab. We single out one here, an additional operation

on objects and morphisms. If X1,X2 are topological spaces there is a new space X1∐X2, the disjoint

union. The operation X1,X2 7→ X1 ∐ X2 has properties analogous to a commutative, associative

composition law on a set. For example, the empty set ∅ is an identity for disjoint union in the sense

that ∅ ∐ X is canonically identified with X for all topological spaces X. Furthermore, if fi : Xi →
Yi, i = 1, 2 are continuous maps, there is an induced continuous map f1 ∐ f2 : X1 ∐ X2 → Y1 ∐ Y2

on the disjoint union. An operation on a category with these properties is called a symmetric

monoidal structure, in this case on the category Top. Similarly, the category Ab of abelian groups

has a symmetric monoidal structure given by direct sum: A1, A2 → A1 ⊕ A2. The homology

maps (2.2) are homomorphisms of symmetric monoidal categories: there is a canonical identification

of Hq(X1 ∐ X2) with Hq(X1) ⊕ Hq(X2).

Remark 2.3. Homology is classical in that disjoint unions map to direct sums. We will see that

a characteristic property of quantum systems is that disjoint unions map to tensor products. The

passage from classical to quantum is (poetically) a passage from addition to multiplication, a kind

of exponentiation.

Our interest here is not in all topological spaces, but rather in smooth manifolds. Fix a positive

integer n.

4We do not worry about technicalities of set theory in this expository paper.
5The word ‘functor’ is usually employed here, but ’homomorphism’ is more consistent with standard usage else-

where in algebra.
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Definition 2.4. Let Y0, Y1 be smooth compact (n − 1)-dimensional manifolds without boundary.

A bordism from Y0 to Y1 is a compact n-dimensional manifold X with boundary, a decomposition

∂X = ∂X0 ∐ ∂X1, and diffeomorphisms Yi → ∂Xi, i = 1, 2.

X

Y
0

Y
1

Figure 1. A bordism X : Y0 → Y1

Figure 1 depicts an example which emphasizes that manifolds need not be connected. The empty

set ∅ is a manifold of any dimension. So a closed n-manifold—that is, a compact manifold without

boundary—is a bordism from ∅n−1 to ∅n−1. Note also that the disjoint union of smooth manifolds

is a smooth manifold, and the disjoint union of bordisms is a bordism.

To turn bordism into algebra we observe that bordism defines an equivalence relation: closed

(n − 1)-manifolds Y0, Y1 are bordant if there exists a bordism from Y0 to Y1. (Observe that to

prove transitivity it is convenient to modify Definition 2.4 so that boundary identifications are

between the manifolds [0, 1)×Y0, (−1, 0]×Y1 and open collar neighborhoods of ∂X0, ∂X1: smooth

functions glue nicely on open sets.) Disjoint union defines an abelian group structure on the

set ΩO
n−1 of equivalence classes. For example, ΩO

0
∼= Z/2Z is generated by a single point. Twice

a point is the disjoint union of two points, and as two points bound a closed interval, two points

are bordant to the empty 0-manifold. Life is more interesting when we consider manifolds with

extra topological structure. For example, there are bordism groups ΩSO
q of oriented manifolds. An

orientation on a 0-manifold consisting of a single point is a choice of + or −. Then ΩSO
0

∼= Z by the

map which sends a finite set of oriented points to the number of positive points minus the number

of negative points. This is a foundational result in differential topology which enables oriented

counts in intersection theory [Mi1]. Another interesting structure is a stable framing. It arises in

the Pontrjagin-Thom construction. Let f : Sq+N → SN be a smooth map. By Sard’s theorem there

is a regular value p ∈ SN , whence M := f−1(p) ⊂ Sq+N is a smooth q-dimensional submanifold.

Also, a basis of TpS
N pulls back under f to a global framing of the normal bundle to M in SN .

If we deform p to another regular value, then the framed manifold M undergoes a bordism. The

same is true if f deforms to a smoothly homotopic map. The precise correspondence works in the

stable limit N → ∞: the stably framed bordism group Ωfr
q is isomorphic to the stable homotopy

group of the sphere lim
N→∞

πq+N (SN ). This is the most basic link between bordism and homotopy

theory.
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S
q+N

S
N

p

Figure 2. The Pontrjagin-Thom construction

Bordism has a long history in algebraic topology. By 1950 it appears6 that Pontrjagin had

defined abelian groups based on the notion of a bordism, though it was Thom [T] who made

the first systematic computations of bordism groups using homotopy theory. There are many

variations according to the type of manifold: oriented, spin, framed, etc. Theory and computation

of bordism groups were an important part of algebraic topology in the 1950s and 1960s, and they

found applications in other parts of topology and geometry. For example, Hirzebruch’s 1954 proof

of the Riemann-Roch theorem was based on bordism computations, as was the first proof of the

Atiyah-Singer index theorem [Pa] in 1963.

The bordism group of d-dimensional manifolds arises when (d+1)-dimensional bordisms are used

to define an equivalence relation. Disjoint union of d-manifolds gives the abelian group structure.

One lesson from classical algebraic topology is that the passage from Betti numbers to homology

groups is very fruitful. The analog here is to track bordisms between closed manifold, not merely to

observe their existence—in our “categorified” world we encode the bordism as a map. Segal [Se2]

introduced a bordism category of Riemann surfaces in his axiomatization of 2-dimensional conformal

field theory, which inspired Atiyah [A2] to axiomatize topological field theories in any dimensions

using bordism categories of smooth manifolds with no continuous geometric structure (such as a

metric or conformal structure). Tillmann [Til1, Til2] observed that the classifying space of the

bordism category, which has the abelian group-like operation of disjoint union, is a spectrum in

the sense of stable homotopy theory. Together with Madsen [MT] they conjecturally identify

the classifying spectrum of an enriched bordism category—a step towards the ∞-categories we

meet in §5—and show that their conjecture implies Mumford’s conjecture [Mu] about the rational

cohomology of the mapping class group. The Madsen-Tillmann conjecture was subsequently proved

in [MW] and is now known as the Madsen-Weiss theorem. The relation with the spectra Thom

used to compute bordism groups is elucidated in [GMTW, §3], where another proof is given.

For now we restrict to manifolds with boundary—no corners—and so organize closed (n − 1)-

manifolds into a symmetric monoidal category which refines the abelian group Ωn−1.

Definition 2.5. Bord〈n−1,n〉 is the symmetric monoidal category whose objects are compact (n−1)-

manifolds and in which a morphism X : Y0 → Y1 is a bordism from Y0 to Y1, up to diffeomorphism.

The monoidal structure is disjoint union.

6According to [May, §6] a 1950 Russian paper of Pontrjagin contains bordism groups; see [P] for a later account.
Thom [T] also cites work of Rohlin relevant to computations of bordism in low dimensions, but I do not know if
Rohlin phrased them in terms of bordism groups.
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So now a bordism is a map—a morphism in a category—and the boundary is divided into incoming

(domain) boundary components and outgoing (codomain) boundary components. Heuristically, we

say there is an “arrow of time”, at least at the boundary; in pictures we draw a global arrow of

time. Composition (Figure 3) is defined by gluing bordisms. We identify diffeomorphic bordisms—

time

X X

Y
2

Y
1

Y
0

Figure 3. Composition of bordisms

the diffeomorphism must commute with the boundary identifications—and so obtain a strictly

associative composition law. The identity morphism Y → Y is the cylinder [0, 1] × Y with obvious

boundary identifications. There are variants BordSO
〈n−1,n〉 and Bordfr

〈n−1,n〉 for oriented and framed

manifolds, but with one important change: in Bordfr
〈n−1,n〉 the morphisms X carry framings of the

tangent bundle (not stabilized) and the objects Y carry framings of (1) ⊕ TY , where ‘(1)’ here

denotes the trivial real line bundle of rank one. Notice the contrast: traditional Pontrjagin-Thom

theory has stable framings of the normal bundle, whereas Bordfr
〈n−1,n〉 has unstable framings of the

tangent bundle.

By analogy to the homology homomorphism (2.2) we are led to the following definition.

Definition 2.6 ([A2]). An n-dimensional topological field theory is a homomorphism

(2.7) F : Bord〈n−1,n〉 −→ (Ab,⊗)

of symmetric monoidal categories.

As telegraphed in Remark 2.3, in a quantum field theory disjoint unions map to tensor products,

not direct sums. There are many variations on this definition. The domain can be a bordism

category of smooth manifolds with extra structure, or even of singular manifolds. The codomain

may be replaced by any symmetric monoidal category, algebraic or not. We introduce a more

drastic variant of Definition 2.6 in §5. A typical choice for the codomain is (VectC,⊗), the category

of complex vector spaces under tensor product. A topological field theory with values in VectC is

a linearization—a linear representation—of manifolds.

We have been led naturally to Definition 2.6 by combining basic ideas in homology and bordism.

But this is hardly the historical path! For that we turn in the next section to notions in quantum

field theory. Before leaving bordism, though, we pause to remind the reader of the connection with

Morse theory.
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Intuitively, a Morse function refines the arrow of time to a particular time function. Let X : Y0 →
Y1 be an n-dimensional bordism. A function f : X → R is compatible with the bordism structure

if there exist t0 < t1 such that t0, t1 are regular values of f , the image of f is contained in [t0, t1],

and Yi = f−1(ti). Furthermore, f is a Morse function if it has finitely many isolated nondegenerate

critical points. The main theorems in Morse theory [Mi2] assert that slices f−1(t) and f−1(t′)

are diffeomorphic if there are no critical values between t and t′, and at an isolated critical point

there is a topology change which is described by a standard surgery. For example, in Figure 4 the

time

Figure 4. An elementary bordism

local slice evolves from the two parallel line segments at the bottom to the two curves at the top;

the saddle depicts the elementary bordism which connects the two local slices. Figure 5 displays

f

RI

Figure 5. A Morse function

the standard example of a Morse function on the torus—the height function—and embeds the

elementary bordism of Figure 4 into a neighborhood of one of the critical points of index 1.

Remark 2.8. The local description of the topology change at a critical point uses a manifold with

corners, as in Figure 4. Manifolds with boundary and no corners do not suffice. The additional

locality afforded by admitting corners—and eventually higher codimensional corners—is a crucial

idea for the cobordism hypothesis; see §5.

Morse functions exist, as a consequence of Sard’s theorem. This means that any bordism can be

decomposed as a composition of elementary bordisms, one for each critical point. Manipulations

with Morse functions are a key ingredient in Milnor’s presentation [Mi3] of Smale’s h-cobordism

theorem [Sm]. The space of Morse functions on a fixed bordism has many components: Morse

functions in different components induce qualitatively different decompositions into elementary

bordisms. Cerf [C] relaxed the Morse condition to construct a connected space of functions. This

enables a systematic study of transitions between decompositions. For example, Cerf theory is the

basis for Kirby calculus [K], which describes links in 3-manifolds and 4-manifolds. As we shall see

it is also a crucial tool for constructing topological field theories.
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An elementary illustrative example of a Cerf transition is the family of functions

(2.9) ft(x) =
x3

3
− tx, x, t ∈ R.

For t > 0 this is a Morse function with nondegenerate critical points at x = ±
√

t. For t < 0 it

is a Morse function with no critical points. At t = 0 the function fails to be Morse: x = 0 is a

degenerate critical point. So as t increases from negative to positive two critical points are born

on the x-line, and they separate at birth. In the other direction, as t decreases from positive to

negative the two critical points collide and annihilate. This simple “birth-death transition” is all

that is needed to connect different components of Morse functions.

3. Quantum field theory

For much of its history quantum field theory was tied to four spacetime dimensions and a handful

of physically realistic examples. As opposed to quantum mechanics, where the underlying theory

of Hilbert spaces and operator theory has been fully developed, the analytic underpinnings of

quantum field theory remain unsettled. Still, there has been a huge transformation over the past

three decades. Quantum field theorists now study a large set of examples in a variety of dimensions,

not all of which are meant to be physically relevant. A deeper engagement with mathematicians and

mathematics has led physicists to study models whose consequences are more relevant to geometry

than to accelerators. Topological and algebraic aspects of quantum field theories have come to the

fore. From another direction string theory has illuminated the subject, and there are new ties to

condensed matter theory as well.

In this section we briefly sketch how Definition 2.6 of a topological quantum field theory emerges

from physics. Our exposition is purely formal, extracting the structural elements which most

directly lead to our goal. Let’s begin with quantum mechanics, which is a 1-dimensional quantum

field theory. (The dimension of a theory refers to spacetime, and at least in mainstream theories

there is a single time dimension. Thus a 1-dimensional theory only has time; space is treated

externally.) The basic ingredients are a complex separable Hilbert space H and for each time

interval of length t a unitary operator

(3.1) Ut = e−itH/~.

Here H : H → H is the self-adjoint Hamiltonian which describes the quantum system, and ~ is

Planck’s constant. The pure states of the system are vectors (really complex lines of vectors) in H,

and the unitary operators (3.1) describe the evolution of a state in time. Self-adjoint operators O
on H act on the system—they are the observables—and the physics is encoded in expectation values

(3.2) 〈Ω, UtnOn · · ·Ut2O2Ut1O1Ut0Ω〉.
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x x x

O
1 O

2
On

Ω Ωt
0

t
1

tn

Figure 6. Vacuum expectation value in quantum mechanics

In this expression the state Ω evolves for time t0, is acted on by the operator O1, then evolves for

time t1, then is acted on by the operator O2, etc. See Figure 6 for a pictorial representation. We

recommend [Ma, Fa] for structural expositions of mechanics which elucidate the pairing of states

and observables.

It is convenient and powerful to analytically continue time t from the real line to the complex line

with the restriction Im t < 0. Real times are now at the boundary of allowed complex times. If the

Hamiltonian H is nonnegative, and Im t < 0, then the evolution operator e−itH/~ is a contracting

operator. Wick rotation to imaginary time is the further restriction to purely imaginary t =

τ/
√
−1, where the Euclidean time τ is strictly positive. We associate the Euclidean contracting

evolution Fτ = e−τH/~ to an interval of length τ , that is, to a compact, connected Riemannian

1-manifold with boundary whose total length is τ . The evolution obeys a semigroup law

(3.3) Fτ2+τ1 = Fτ2 ◦ Fτ1 ,

as illustrated in Figure 7. This is already reminiscent of bordism. We can imagine a bordism

τ
1

τ
2

τ
1
 + τ

2

Figure 7. Composition of 1-dimensional bordisms

category BordRiem
〈0,1〉 whose objects are compact oriented 0-manifolds and whose morphisms are com-

pact Riemannian oriented 1-manifolds with boundary. The semigroup law for the evolution of a

quantum mechanical system is encoded in the statement that

(3.4) F : BordRiem
〈0,1〉 −→ Hilb

is a homomorphism to the category of Hilbert spaces and contracting linear maps. Notice that

F encodes more than evolution. For example, we demand that F be a homomorphism of symmetric

monoidal categories mapping disjoint unions to tensor products, which encodes the idea that the

state space of the union of quantum mechanical systems is a tensor product. Exotic “evolutions”

are now possible; see Figure 8. In a more careful axiomatization [Se1] one takes the codomain to be

a category of topological vector spaces; then the Hilbert space structure emerges more organically

from the geometry, as do the operator insertions in (3.2).
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τ

τ τ

Figure 8. Exotic evolutions in quantum mechanics

It is a small step now to pass from the formal description (3.4) of a quantum mechanical system

to the assertion that an n-dimensional quantum field theory is a homomorphism

(3.5) F : BordRiem
〈n−1,n〉 −→ Hilb

from the bordism category of Riemannian n-dimensional bordisms (“Riemannian spacetimes”) to

the category of Hilbert spaces (better: topological vector spaces). If X is such a bordism, and x ∈ X

a point not on the boundary, then the boundary sphere of the geodesic ball of sufficiently small

radius r maps under F to a topological vector space Hr, and the limit as r → 0 is a topological

vector space of operators associated to the point x. We can approximate it by the topological

vector space at some small finite radius r0. Remove an open ball of radius r0 about x. Choose

the arrow of time so that the new boundary component—the sphere of radius r0 about x—is

incoming. For example, the bordism in Figure 9 has incoming boundary Y0 union the spheres

X

Y
0

Y1

x
1

x
2

x
3

time

Figure 9. Operator insertions

about x1, x2, and x3 and outgoing boundary Y1. A field theory F determines topological vector

spaces F (Y0), F (Y1) for the boundary components and then topological vector spaces V1, V2, V3

associated to the points x1, x2, x3. The bordism X goes over to a linear map

(3.6) F (X) : V1 ⊗ V2 ⊗ V3 −→ Hom
(
F (Y0), F (Y1)

)
.

This is the sense in which the topological vector spaces Vi attach a space of operators to xi,

analogously to the operators which appear in (3.2) as illustrated in Figure 6. In case Y0 = Y1 = ∅n−1,
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then F (X) is called a correlation function between “operators” at the points xi. If in addition there

are no points xi, then F (X) is a complex number, the partition function of the closed manifold X.

This geometric formulation of quantum field theory developed in the 1980s out of the interac-

tion between mathematicians and physicists centered around 2-dimensional conformal field theory.

Graeme Segal’s samizdat manuscript The definition of conformal field theory, now published [Se2],

was widely distributed and very influential among both mathematicians and physicists. Segal’s re-

cent series of lectures [Se1] explores and expands on these ideas in the context of general quantum

field theories. More traditional mathematical treatments of quantum field theory [SW], [H], [GJ]

are set in four-dimensional Minkowski spacetime and focus on analytic aspects. The geometric for-

mulation set the stage for the advent of topological field theories. In 1988 Witten [W1] introduced

twistings of supersymmetric quantum field theories on Minkowski spacetime which allow them to

be formulated on arbitrary oriented Riemannian manifolds. Special correlation functions in twisted

theories are topological invariants. Witten’s first application was to a supersymmetric gauge theory

in four dimensions—a theory whose principal field is a connection on a principal bundle—where

he showed that Donaldson’s polynomial invariants of 4-manifolds [D] are correlation functions in

that twisted supersymmetric gauge theory. Two-dimensional supersymmetric σ-models—whose

principal field is a map Σ → M from a 2-manifold into a Riemannian target manifold—also admit

topological twistings in case there is enough supersymmetry (which constrains the target mani-

fold to be Kähler in the basic case). These 2-dimensional topological field theories [W2] have had

profound consequences for algebraic geometry in the form of Gromov-Witten invariants and mir-

ror symmetry. By late 1988 Witten realized [W3] that the Jones polynomials of knots and links

in S3 are encoded in a 3-dimensional field theory—called Chern-Simons theory after the classi-

cal action functional of connections which defines it—and he used it to introduce new invariants

of 3-manifolds. This theory, as opposed to the topologically twisted supersymmetric models, is

topological at the classical level and has an immediate connection to combinatorially accessible

invariants. For many mathematicians it served as an accessible entrée into quantum field theory.

In early 1989 Atiyah [A2] introduced a set of axioms for topological quantum field theory which

essentially amount to Definition 2.6.

4. Topological quantum field theory

In this section we flesh out Definition 2.6 for simple 1-dimensional and 2-dimensional theories.

The constructions and theorems give a taste of what is possible in more complicated and interesting

situations. We include a rigorous finite version of the Feynman path integral; the nonrigorous

infinite version is one of the main tools in a quantum field theorists’ arsenal.

1-dimensional theories

Let us begin our exploration of Definition 2.6 with a 1-dimensional topological field theory of

oriented manifolds. Recall that the domain of such a theory is the bordism category BordSO
〈0,1〉 in

which an object is a compact oriented 0-manifold—a finite set of points, each with a ‘+’ or ‘−’
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attached—and a morphism is an oriented 1-dimensional bordism. In more detail, if X : Y0 → Y1 is

an oriented bordism, then X is a manifold with boundary and so at x ∈ ∂X we have a short exact

sequence of real vector spaces

(4.1) 0 −→ Tx∂X −→ TxX −→ TxX/Tx∂X −→ 0

The normal bundle carries a canonical orientation: vectors which exponentiate to curves leaving

the manifold are positively oriented. However, when interpreted as a bordism we use the arrow

of time to orient the normal bundle. Namely, outgoing boundary components have the canonical

orientation and incoming boundary components the opposite to the canonical orientation. Then

using (4.1) an orientation of X induces one on ∂X, and we require that the diffeomorphisms

Yi → ∂Xi in Definition 2.4 preserve the induced orientation. There is a time-reversal operation

which reverses the arrow of time (swaps incoming and outgoing), hence the orientation of the

normal bundle at the boundary and so too the induced boundary orientation.

There are two basic objects in BordSO
〈0,1〉: the + point and the − point. Any other object is

a tensor product (disjoint union) of these. Some basic morphisms are illustrated in Figure 10.

The arrow of time points to the right, whereas the orientation is notated by an arrow on each

time

id id coev ev

+ +
+

+

_ _

_

_

Figure 10. Elementary oriented 1-dimensional bordisms

component of the bordism. Notice that there is a correlation between the orientation, the arrow

of time, and the boundary orientation. The first two morphisms are identities. The third is called

coevaluation and the fourth evaluation. The second bordism is obtained from the first by time-

reversal, and the same holds for the third and fourth bordisms. In this case time reversal is a duality

operation: the − point is the dual of the + point and the evaluation is dual to the coevaluation.

The coevaluation and evaluation are evolutions in 1-dimensional topological field theory which go

beyond the standard evolutions in quantum mechanics (Figure 8). Also, in quantum mechanics

the closed intervals are Riemannian, so have a length τ , whereas in the topological theory all

closed intervals are diffeomorphic and lead to the identity evolution. Comparison with (3.1) shows

that the Hamiltonian vanishes in a topological field theory. There is no local evolution: all of the

non-identity behavior comes from topology.

Now suppose F is a 1-dimensional oriented topological field theory (2.7) with values in complex

vector spaces:

(4.2) F :
(
BordSO

〈0,1〉,∐
)
−→

(
VectC,⊗

)
.
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The notation recalls that F is a homomorphism of symmetric monoidal categories, so maps disjoint

unions to tensor products. The homomorphism F assigns a vector space F (pt+) = V+ to the

+ point and a vector space F (pt−) = V− to the − point. This determines the value of F on all

compact oriented 0-manifolds as they are disjoint unions of + and − points. Also, since the empty

0-manifold ∅0 is the tensor unit for disjoint union, it maps under the homomorphism F to the

tensor unit for complex vector spaces under tensor product, which is the complex line C. Next,

consider F evaluated on the bordisms in Figure 10. As F is a homomorphism it sends identities

to identities, so the first two bordisms map to idV+
and idV−

, respectively. The last two bordisms

map under F to linear maps

(4.3)
V+

c : C −→ ⊗
V−

V−

e : ⊗ −→ C

V+

where we have written the tensor product vertically to match the figure. The sense in which

time

+ +

+ +

+

+

_

++__

_ _

__ _

Figure 11. The S-diagrams

coevaluation and evaluation give rise to duality is illustrated in Figure 11. The left figure is the

composition of two 1-dimensional bordisms, each with two components. The first maps a single

+ point to the tensor product (disjoint union) of 3 points: +, −, +. The second maps these 3 points

back to the + point. The composition is computed by gluing at the 3 points in the middle. The

result is diffeomorphic to the identity map on the + point. Recall that morphisms in BordSO
〈0,1〉

are 1-dimensional bordisms up to diffeomorphisms which preserve the boundary identifications.

Comparing the first composition in Figure 11 with the first bordism in Figure 10 we see that the

composition is the identity. To see the relation to duality we apply the homomorphism F . Now

the homomorphism property has two consequences: (1) F sends a disjoint union of bordisms to the

tensor product of the corresponding linear maps, and (2) F sends a composition of bordisms to the

corresponding composition of linear maps. Using these rules we see that F sends the compositions

in Figure 11 to compositions of linear maps

(4.4)

V+

idV+−−−−−−→
⊗

c

V+

⊗
V−

⊗
V+

e
⊗

idV+−−−−−−−→ V+

V−

idV
−−−−−−−→

⊗

c

V−

⊗
V+

⊗
V−

e
⊗

idV+−−−−−−−→ V−
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(Note that we have used the symmetry in the first diagram to exchange the order of the tensor

product in the maps c, e from (4.3).)

Lemma 4.5. If the compositions (4.4) are identity maps, then V+, V− are finite dimensional vector

spaces and e is a nondegenerate duality pairing.

Proof. Set c(1) =
N∑

i=1
vi
+ ⊗ vi

− for some vi
± ∈ V± and some positive integer N . Then the first

composition in (4.4) is the map ξ 7→ ∑
e(vi

−, ξ)vi
+. Since this is the identity map, it follows

that {vi
+}N

i=1 spans V+, whence V+ is finite dimensional. The same argument with the second

composition proves that V− is finite dimensional. If ξ ∈ V+ satisfies e(v−, ξ) = 0 for all v− ∈ V−,

then ξ =
∑

e(vi
−, ξ)vi

+ = 0. Similarly, using the second composition in (4.4) we deduce that if

η ∈ V− satisfies e(η, v+) = 0 for all v+ ∈ V+, then η = 0. Hence e is a nondegenerate pairing. �

Remark 4.6. A similar argument for a field theory F :
(
BordSO

〈0,1〉,∐
)
−→

(
Ab,⊗

)
with values in

abelian groups proves that F (pt+) is finitely generated and free.

Lemma 4.5 illustrates an important finiteness principle in topological field theories: the vector

space attached to an (n − 1)-manifold in an n-dimensional topological field theory with values

in VectC is finite dimensional. We derived this finiteness from duality: the + point and − point are

duals, and that duality is expressed as the existence of coevaluation and evaluation maps. Notice

that any vector space V has a dual space, defined algebraically as the space of linear maps V → C,

which comes with a canonical evaluation map. However, the coevaluation map exists if and only if

V is finite dimensional.

This notion of finiteness generalizes to any symmetric monoidal category.

Definition 4.7. Let C be a symmetric monoidal category and x ∈ C. Then duality data for x is a

triple (x′, c, e) consisting of an object x′ ∈ C, a coevaluation c : 1 → x⊗x′, and an evaluation e : x′⊗
x → 1 such that the compositions

(4.8) x
c⊗idx−−−→ x ⊗ x′ ⊗ x

idx ⊗e−−−−→ x x′ id
x′

⊗c−−−−→ x′ ⊗ x ⊗ x′ e⊗id
x′−−−−→ x′

are identity maps. We say x is dualizable if there exists duality data for x.

The argument in Lemma 4.5 with the S-diagrams in Figure 11 applies in any n-dimensional field

theory—take the Cartesian product of the S-diagrams with a fixed (n− 1)-manifold—which shows

that objects in the image of a field theory F are always dualizable. In the next section we define

an extension of the notion of a field theory and there is a corresponding extension of dualizability,

which we take up in §6.

At this point we can state and prove a very simple special case of the cobordism hypothesis.

Theorem 4.9. Let V be a finite dimensional complex vector space. Then there is a homomor-

phism F as in (4.2) such that F (pt+) = V .

Proof. If Y is an oriented compact 0-manifold set

(4.10) F (Y ) =
⊗

y∈Y :y=pt+

V ⊗
⊗

y∈Y :y=pt
−

V ∗.
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Referring to the third and fourth bordisms in Figure 10 define F (coev) as the map C → V ⊗ V ∗

which takes 1 ∈ C to the identity map idV ∈ End(V ) ∼= V ∗ ⊗ V and F (ev) as the duality pairing

V ∗ ⊗ V → C. A Morse function on a 1-dimensional bordism decomposes it as a composition of

the elementary bordisms coev and ev: a nondegenerate critical point of a real-valued function on a

1-manifold is either a local maximum or a local minimum. The only Cerf move (Figure 12) cancels

a local maximum against a local minimum, and the proof that this does not change the value of F

is the statement that the S-diagrams in Figure 11 map to the identity. �

Figure 12. Cerf move in dimension one

2-dimensional theories

Next, consider a 2-dimensional oriented topological field theory

(4.11) F :
(
BordSO

〈1,2〉,∐
)
−→

(
VectC,⊗

)
.

There is only one compact connected oriented 1-manifold up to diffeomorphism: a circle has

orientation-reversing diffeomorphisms (reflection). Let V = F (S1). Elementary 2-dimensional

m 1 τ

Figure 13. Some elementary oriented 2-dimensional bordisms

bordisms, as depicted in Figure 13, give extra structure on V , namely linear maps

(4.12) m : V ⊗ V V

1: C V

τ : V C

The multiplication m gives V an algebra structure with respect to which the image of 1 ∈ C under

the linear map 1 is an identity element. The linear map τ is a trace on V .7 Standard arguments with

oriented surfaces and their diffeomorphisms prove that m is associative and commutative and that

the trace is nondegenerate in the sense that the pairing v1, v2 7→ (τ ◦m)(v1, v2) is a nondegenerate

pairing on V . For example, the composition of the bordisms labeled m and τ in Figure 13 is the

7Note that the bordism τ is the time-reversal of 1. There is also a time-reversal of m, which may be expressed as
a composition of the maps in (4.12) together with the inverse to the nondegenerate bilinear pairing τ ◦ m.
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product of the circle with the bordism labeled ev in Figure 10; then the argument of Lemma 4.5

with the S-diagram proves that the pairing τ ◦m is nondegenerate. Thus an oriented 2-dimensional

topological field theory determines a commutative Frobenius algebra, a commutative algebra with

a nondegenerate trace. The converse is also true.

Theorem 4.13. Let V be a commutative Frobenius algebra. Then there is a homomorphism

(4.14) F :
(
BordSO

〈1,2〉,∐
)
−→

(
VectC,⊗

)

with F (S1) = V .

This is one of the oldest theorems in the subject. In the physics literature the statement dates at

least to Dijkgraaf’s thesis [Di]. There are several proofs in the mathematics literature, for example

in [Ab, Ko]. The appendix to [MS] contains a proof of Theorem 4.13 as well as several important

variations. As in the proof of Theorem 4.9 we first extend F to all closed oriented 1-manifolds via

tensor products. The data (4.12) which defines the Frobenius structure on V tells what to attach to

elementary 2-dimensional bordisms arising from critical points of a Morse function of index 1,0,2.

It remains to verify that different Morse functions lead to the same linear map. That check, for

which we refer to the reader to [MS], uses the basic properties of a commutative Frobenius algebra.

These explicit arguments with Morse functions quickly become tedious and difficult to execute.

The situation simplifies for extended field theories (§5) which are more local. They are the province

of the cobordism hypothesis. The cobordism hypothesis is proved using on the one hand more

powerful results about spaces of Morse functions and on the other more sophisticated algebra to

organize the argument.

One example of a commutative Frobenius algebra is the cohomology algebra H•(M ; C) of a com-

pact oriented n-manifold M . The trace is pairing with the fundamental class [M ] ∈ Hn(M). If

there is odd cohomology, then it is commutative in the graded sense because of signs in the com-

mutation rule for cup products. For example, if M = S2 then we obtain the truncated polynomial

algebra C[x]/(x2). The corresponding 2-dimensional topological field theory plays a role in the

construction of Khovanov homology for links [Kh, B-N]. If the Frobenius algebra V is semisimple,

then we can simultaneously diagonalize the multiplication operators Ma(b) = ab, a, b ∈ V and so

find a basis of commuting idempotents e1, e2, . . . , en ∈ V : thus eiei = ei and eiej = 0 if i 6= j. The

Frobenius algebra is determined up to isomorphism by nonzero complex numbers λ1, λ2, . . . , λn de-

fined by τ(ei) = λi. In this case everything in the field theory F with F (S1) = V is easily computed

in terms of the basis {ei} and the numbers λi. For example the 2-holed torus in Figure 14 maps

to the endomorphism ei 7→ λ−1
i ei of V and a closed surface Xg of genus g maps to the complex

number

(4.15) F (Xg) =
∑

λ1−g
i .

These computations are made by chopping the surfaces into the elementary bordisms in Figure 13

and their time-reversals.
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time

Figure 14. Torus with incoming and outgoing boundary circles

Let G be a finite group and A = Map(G, C) the vector space of complex-valued functions on G.

Then A is an associative algebra under the convolution product

(4.16) (f1 ∗ f2)(g) =
∑

g1g2=g

f1(g1)f2(g2), g, g1, g2 ∈ G, f1, f2 : G → C.

We also define the trace

(4.17) τ(f) =
f(e)

#G
,

where e ∈ G is the identity element. The product is not commutative if G is not abelian. Let V be

the center of A, the space of class functions on G; it is a commutative Frobenius algebra which can

be identified with the complexification R(G)⊗C of the representation ring of G. Let FG denote the

2-dimensional oriented topological field theory with FG(S1) = V guaranteed by Theorem 4.13. The

complexified representation ring is semisimple. Classical orthogonality formulas of Schur show that

the characters χi of the irreducible complex representations of G are, up to scale, the commuting

idempotents ei =
(
χi(1)/#G

)
χi. Then we easily compute that λi =

∑
χi(1)

2/#G and from (4.15)

the partition function of a closed connected oriented surface is

(4.18) FG(X) =
∑

χ irreducible
character of G

(
χ(e)

#G

)Euler(X)

,

where Euler(X) is the Euler characteristic of X.

The construction of FG which relies on Theorem 4.13 takes as input the complexified represen-

tation ring and uses Morse theory to produce a topological field theory. There is also a direct

geometric construction of this simple finite theory. For any manifold M let FM denote the collec-

tion of principal G-bundles P → M . So P is a manifold with a free right G-action and quotient M .

In other terms P → M is a covering space which is regular (Galois), but note that P need not be

connected. For example, if M = S1 and G = Z/nZ for some positive integer n, then there are

n distinct isomorphism classes of principal G-bundles over M ; the connectivity of the total space of

a cover depends on the prime factorization of n. For any manifold FM is a category: a morphism

(P ′ → M) −→ (P → M) is a smooth map ϕ : P ′ → P which commutes with the G-action and
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covers the identity map of M . This category is a groupoid since all morphisms are invertible. For

M = pt there is only one G-bundle up to isomorphism, the trivial bundle P = G with G acting

by right multiplication, and the group of automorphisms is G acting by left multiplication on P .

Figure 15 depicts a groupoid equivalent to Fpt. There is a single object, the set of arrows is G,

g

Figure 15. G-bundles over pt

and composition of arrows is given by the group law. For M = S1 if we introduce a basepoint

p ∈ P on a G-bundle P → S1, then we can compute the holonomy, or monodromy, around the

circle (after choosing an orientation), which is an element of G. The bundle with basepoint is rigid:

any automorphism which fixes the basepoint is the identity. The group G acts simply transitively

on the set of basepoints over a fixed point of S1, and it conjugates the holonomy. In this way we

see that FS1 is equivalent to the groupoid G//G of G acting on itself by conjugation. It is depicted

in Figure 16. The set of isomorphism classes π0(FS1) is the set of conjugacy classes in G and the

e x

g

gxg-1

Figure 16. G-bundles over S1

automorphism group π1(FS1 , P ) at a G-bundle with holonomy x is the centralizer group of x in G.

Principal G-bundles are local and contravariant. Consider a bordism, as in Figure 1 with the

arrow of time pointing to the right. The inclusions of the incoming and outgoing boundary induce

restriction maps of bundles, which are homomorphisms of groupoids:

(4.19) FX

s t

FY0
FY1

A diagram of the form (4.19) is a correspondence, which is a generalization of a homomorphism

from FY0
to FY1

. Namely, if s is invertible, then s × t embeds FX into FY0
× FY1

as the graph
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of t ◦ s−1. A composition of bordisms (Figure 3) induces a composition of correspondences

(4.20) FX′′◦X′

r′ r′′

FX′

s′ t′

FX′′

s′′ t′′

FY0
FY1

FY2

The locality of principal G-bundles is hidden in this statement: the groupoid FX′′◦X′ of G-bundles

on the composition X ′′ ◦ X ′ is the fiber product of t′ and s′′; that is, a G-bundle P → X ′′ ◦ X ′ is

a triple (P ′, P ′′, θ) consisting of G-bundles P ′ → X ′, P ′′ → X ′′, and an isomorphism θ : P ′
∣∣
Y1
→

P ′′
∣∣
Y1

of their restrictions to Y1.

Correspondence diagrams can often be “linearized” into honest maps. For the field theory FG we

use closed oriented 1-manifolds Y and compact oriented 2-dimensional bordisms X. On 1-manifolds

we define

(4.21) FG(Y ) = Hom
(
FY , C

)
.

Here we view C as a groupoid with only identity morphisms. Then homomorphisms FY → C

assign complex numbers to objects in FY so that the numbers at each end of a morphism are

equal. In other words, Hom(FY , C) is the vector space of invariant functions on FY , so can be

identified with Map
(
π0(FY ), C

)
, the space of functions on equivalence classes of G-bundles. Then

to a correspondence (4.19) we define

(4.22) FG(X) = t∗ ◦ s∗ : FG(Y0) −→ FG(Y1)

as pullback followed by pushforward. The fibers of t are (equivalent to) groupoids with finitely

many objects, each with a finite stabilizer group. The pushforward t∗ of a function φ on FX is the

sum

(4.23) t∗(φ)(y) =
∑

x

φ(x)

# Aut(x)
, y ∈ FY1

,

over the equivalence classes x in the fiber t−1(y) of the value of φ divided by the order of the

automorphism group. (This formula makes clear that FG may be defined on rational vector spaces.)

Key point: the fact that (4.20) is a fiber product implies that the push-pull construction takes

compositions of bordisms to compositions of linear maps. In other words, there is an a priori proof

that the push-pull construction produces a homomorphism FG : BordSO
〈1,2〉 → VectC of symmetric

monoidal categories. The enterprising reader can now compute that FG(S1) is the vector space of

central functions on G, and that the basic bordisms in Figure 13 map to the convolution product,

the character of the identity representation, and the trace (4.17).



20 D. S. FREED

Now suppose X is a closed oriented 2-manifold. It is interpreted as a bordism X : ∅1 → ∅1.

In grand Bourbaki style the groupoid of G-bundles F∅1 has a single object with only the identity

morphism. (After all, F maps disjoint unions to Cartesian products, and ∅1 is the tensor unit for

disjoint union.) In this case (4.22) specializes to the sum of the constant function 1 over FX : it

counts (with automorphisms) the G-bundles over X. If X is connected then that count of bundles

is

(4.24) FG(X) =
# Hom

(
π1(X,x), G

)

#G
;

the numerator counts G-bundles with a basepoint over x and the group G acts simply transitively

on the basepoints.

Theorem 4.25. Let X be a compact oriented connected 2-manifold and G a finite group. Then

(4.26) # Hom
(
π1(X,x), G

)
= (#G)

∑

χ irreducible
character of G

(
χ(1)

#G

)Euler(X)

,

where Euler(X) is the Euler characteristic of X.

The theorem follows immediately by comparing (4.24) and (4.18). It was known to Frobenius and

Schur from the character theory of finite groups, with no quantum fields in sight. The proof given

here is representative of how topological field theory is used in more complicated situations. The

invariant on the left hand side of (4.26), initially defined for closed 2-manifolds, is extended to an

invariant for compact 2-manifolds with boundary which obeys a gluing law. So it is computed by

chopping X into elementary pieces (as in Figure 13 together with the time-reversal of m).

Remark 4.27. The appearance of the Euler characteristic in (4.26) suggests an extension of FG which

includes 0-manifolds. They would appear as corners of 2-manifolds and boundaries of 1-manifolds.

Then in a triangulation of X, the count of vertices, edges, and triangles in the triangulation should

combine to give the Euler characteristic Euler(X) and a new proof of (4.26). In such an extended

field theory we have more locality, so more decompositions and hence more computational flexibility.

We take up extended theories in §5 and pursue this idea in Example 5.7.

Remark 4.28. There is a variation on (4.22) in which FX in (4.19) carries an integral kernel. In

that case the pull-push formula (4.22) is modified to pull-multiply-push. The integral kernel must

be local in that it multiplies in the fiber product (4.20). In this 2-dimensional theory we can obtain

such an integral kernel by starting with a cocycle for a class in the group cohomology H2(G; C/Z).

The theory FG was introduced by Dijkgraaf and Witten [DW]. See [FQ],[F] for more details

about defining FG by counting principal G-bundles. The lecture notes [Q] contain elaborations and

many more examples.

The push-pull construction is a finite version of the Feynman functional integral in quantum

field theory. The groupoid FM consists of gauge fields for a finite group G; if G is a Lie group,

then gauge fields form the groupoid of G-connections on M . The integral kernel described in
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Remark 4.28 is the exponential of the classical action of the field theory. The pushforward t∗ is

the Feynman integral or functional integral or path integral over the space of fields (with fixed

boundary condition). In almost all physically interesting examples the space, or stack, of fields

is not finite, but rather is infinite dimensional. One way to define pushforward t∗ on functions

is via integration theory, which of course requires a measure on the space of fields. (There are

alternatives, at least for some topological theories; see [FHT] for one example.) Furthermore, the

measures must be consistent with the fiber product (4.20) under composition of bordisms. Such

measures have not been constructed rigorously in most examples of physical interest. The example

of finite gauge theories, while it nicely illustrates many topological and algebraic aspects, misses

completely the central analytical issues in quantum field theory.

5. n-categories and extended topological quantum field theory

In this section we extend the definition of an n-dimensional topological field theories in two

directions: (i) to invariants of manifolds of all dimensions ≤ n and (ii) to invariants of families of

manifolds. These extensions go beyond what was traditionally done in quantum field theory.

Standard topological field theories, as in Definition 2.6, are local in that invariants of n-manifolds

are computed by cutting along closed codimension 1 submanifolds. We saw after Theorem 4.25, and

even in the description of classical Morse theory (Remark 2.8), that it is desirable to go further and

cut along codimension 2 submanifolds as well, so have n-manifolds with corners. Once we take that

plunge we may as well continue cutting in higher and higher codimension until we are cutting along

0-manifolds. In other words, we end up considering n-manifolds with corners of all codimension.

The local model for the maximal corner is a corner in real affine space: {(x1, x2, . . . , xn) ∈ A
n :

xi ≥ 0} near (0, 0, . . . , 0).

In a bottom up view, rather than a top down view, we build higher dimensional manifolds by time

evolution of lower dimensional manifolds. This is illustrated in Figure 10 by the time evolution of 0-

manifolds to produce 1-manifolds. Now we evolve again, introducing a second time as in Figure 17.

Let t1, t2 ∈ [0, 1] denote the times, so the space of times is the square [0, 1] × [0, 1]. At each of

t
1

t
2

Figure 17. Two-time evolution of two points

the four corners t1, t2 ∈ {0, 1} lies the 0-manifold Y consisting of two points. At time t2 = 0 they

evolve in t1 via the identity bordism, whereas at time t2 = 1 they evolve as the evaluation followed

by the coevaluation. (These 1-dimensional bordisms are pictured in Figure 10). The evolution in t2
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is a 2-dimensional bordism W between these two 1-dimensional bordisms X0,X1. As a manifold

it is a 2-dimensional manifold with corners, but as a bordism we remember the time evolutions.

Morally, as in §2 it is only the arrows of time which matter—and these only near the boundaries

and corners—but it is convenient both heuristically and technically to think in terms of actual time

functions. An algebraic representation of this two-time evolution is:

(5.1) Y

X1

X0

W Y

The algebraic structure which includes (5.1) is a 2-category. In addition to objects x, y and

morphisms f, g : x → y mapping between them, there are now 2-morphisms η : f ⇒ g which

map between morphisms. For clarity ‘morphisms’ are now termed ‘1-morphisms’. In the 2-

category Bord〈0,1,2〉 the objects are compact 0-manifolds, the 1-morphisms are 1-dimensional bor-

disms, and the 2-morphisms are 2-dimensional bordisms. A 2-category has two associative compo-

sition laws, easily seen pictorially in Bord〈0,1,2〉. Namely, we can compose horizontally in the first

time t1 or vertically in the second time t2. Disjoint union is an extra algebraic structure—still called

a symmetric monoidal structure—and the empty manifolds are identity elements for disjoint union.

So, for example, a closed 2-manifold W is interpreted as a 2-morphism W : ∅1 ⇒ ∅1 in Bord〈0,1,2〉.

For now we leave unspecified what sort of extra topological data (orientation, framing, . . . ) we

assume present.

The saddle in Figure 17 is the elementary bordism in Morse theory depicted in Figure 4. In

other words, it is the 2-manifold D1 × D1 which implements the surgery beginning with S0 × D1

and ending with D1 × S0. Here D1 is the standard closed 1-ball. The general surgery

(5.2) Dp × Dq : Sp−1 × Dq −→ Dp × Sq−1,

can be written algebraically in a diagram similar to (5.1) with Y = Sp−1 × Sq−1. Morse theory

tells that a manifold has a handlebody decomposition into elementary bordisms (5.2). We might

conclude that 2-categories go far enough, and that nothing is to be gained by chopping further.

We could, after all, make a 2-category whose objects are closed (n − 2)-manifolds and with 1-

morphisms and 2-morphisms their time evolutions. But the structure simplifies if we don’t stop

there and rather go all the way down to points.

Therefore, to study manifolds of dimension ≤ n, or equivalently to study topological field theories

of dimension n, we are led to the n-category Bord〈0···n〉 whose objects are compact 0-manifolds and

whose k-morphisms (1 ≤ k ≤ n) are k-time evolutions of objects. There are k composition laws for

k-morphisms, and they satisfy various compatibilities. Disjoint union gives a symmetric monoidal

structure. It is a complicated combinatorial problem to track all of this data. The relevance of

higher categories to topological field theory was understood in the early 1990s, but at that time

rigorous foundations were not available. In the intervening years several approaches and definitions

have been advanced. We will not attempt a formal definition here, but refer the reader to [BD, L1]

for more detailed exposition and references.
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The n-category Bord〈0···n〉 is the first extension we envisioned at the beginning of this section.

The second is to families of manifolds. It turns out that this can be encoded by extending the

n-category Bord〈0···n〉 higher up: we adjoin (n + 1)-morphisms, (n + 2)-morphisms, etc. Namely,

if W0,W1 are n-dimensional bordisms we define an (n + 1)-morphism ϕ : W0 → W1 to be a dif-

feomorphism which preserves all of the “boundary data”. An n-morphism is a map between two

(n − 1)-morphisms, each of which is a map between two (n − 2)-morphisms, and on down. The

diffeomorphism ϕ must preserve the implicit identifications. In terms of the n-time evolution,

ϕ must be compatible with the data at each of the 2n extreme times ti ∈ {0, 1}. Since ϕ is a

diffeomorphism, it is invertible. We continue and define an (n + 2)-morphism ϕ0 → ϕ1 to be an

isotopy between the diffeomorphisms ϕ0 and ϕ1, again preserving the boundary data. Isotopies are

also invertible, up to a higher isotopy. Continuing in this way we have k-morphisms for all k, so an

∞-category. But it has the property that every k-morphism for k > n is invertible.

Definition 5.3. Let n ∈ Z
>0. An (∞, n)-category is an ∞-category in which every k-morphism is

invertible for k > n.

‘Definition’ is not really appropriate as we have not defined ∞-categories! There are complete

definitions for (∞, n)-categories, in fact several [Ba, R, Be] with others on the way, and also a

study [BS] of all homotopy theories of (∞, n)-categories.

Remark 5.4. A higher category in which every morphism is invertible—i.e., an (∞, 0)-category—

is a combinatorial model for a space. Since every morphism is invertible, this is also called an

∞-groupoid. So whereas an n-category has sets of n-morphisms, an (∞, n)-category has spaces

of n-morphisms. An n-category may be extended to a discrete (∞, n)-category in which all k-

morphisms for k > n are identity maps.

Definition 5.5. Bordn is the (∞, n)-category whose objects are compact 0-manifolds, k-morphisms

for 1 ≤ k ≤ n are k-time evolutions of objects, and k-morphisms for k > n are (k−n)-fold iterated

isotopies of diffeomorphisms. It is symmetric monoidal under disjoint union.

Again this is only a descriptive definition.

The manifolds in Bordn typically carry extra data. For example, there is an (∞, n)-category

BordSO
n of oriented bordisms. There is also a bordism category of bordisms with tangential framing,

but in an unstable8 sense. Namely, an n-framing on a k-bordism W in Bordfr
n is a trivialization

of TW ⊕ (n − k), where (n − k) is the trivial bundle of the indicated rank. The (∞, n)-category

of unoriented manifolds is denoted BordO
n . We use ‘Bordn’ generically to denote any of these and

many other similar possibilities.

Analogous to Definition 2.6 we consider representations of Bordn. We allow an arbitrary codomain.

Definition 5.6. Let C be a symmetric monoidal (∞, n)-category. An extended topological field

theory with values in C is a homomorphism F : Bordn → C.

The homomorphism property means that F respects the n composition laws as well as the symmetric

monoidal structures. The cobordism hypothesis, which we take up in the next section, determines

the space of homomorphisms F in terms of C.

8Framings on manifolds used to define framed bordism groups—isomorphic by the Pontrjagin-Thom construction
to stable homotopy groups of spheres—are stable framings of the normal bundle.
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For the remainder of this section we indicate some examples which illuminate the idea of an

extended field theory and the flexibility of Definition 5.6.

Example 5.7. Let G be a finite group. Recall from §4 the 2-dimensional topological field theory

FG : BordSO
〈1,2〉 → VectC. In (4.16) we introduced the algebra A = Map(G, C) of functions on G

under convolution, but only its center made an appearance in FG—as FG(S1). There is an extended

field theory F̂G of 0-, 1-, and 2-manifolds which has F̂G(pt+) = A. The codomain (∞, 2)-category C
of any extension has the property that the (∞, 1)-category HomC(1, 1) of endomorphisms of the

tensor unit 1 is identified with VectC. In fact, VectC is discrete: objects are complex vector spaces,

1-morphisms are linear maps, and there are no non-identity higher morphisms. So we might hope

that C is also discrete, an ordinary 2-category. Furthermore, if F̂G(pt+) is to be A, then objects

of C are algebras. Thus let C = AlgC be the 2-category whose objects are complex algebras. If

A0, A1 ∈ AlgC, then we define a 1-morphism B : A0 → A1 to be an (A1, A0)-bimodule B, a complex

vector space B with a left action of A1 and a right action of A0. Composition is by tensor product

over algebras: if B : A0 → A1 and B′ : A1 → A2, then B′ ◦ B : A0 → A2 is the (A2, A0)-bimodule

B′ ⊗A1
B. The symmetric monoidal structure is given by tensor product over C. The algebra C is

the tensor unit 1 and HomAlgC
(1, 1) is the collection of (C, C)-bimodules, which is canonically VectC,

as desired. A 2-morphism between bimodules is a linear map which intertwines the algebra actions.

To put this construction in context, we observe that an isomorphism in the 2-category AlgC of

algebras is a Morita equivalence of algebras.

We pause to remark that we have climbed to the next categorical level—from 1-categories to

2-categories—by endowing objects in a 1-category with an associative unital composition law.

Complex vector spaces form a 1-category, whereas complex vector spaces which are algebras form

a 2-category. This is an important general idea, which can be implemented at all categorical levels

and also can be iterated. For example, if we consider complex vector spaces with 2 composition

laws we obtain a 3-category (of commutative algebras). We will meet more examples below. We

can embed AlgC into the more familiar 2-category of C-linear categories CatC: an algebra A maps

to the linear category of left A-modules. It is usually easier to scale categorical heights by looking

at “algebra objects” in an existing category, rather than by introducing new and more elaborate

constructs.

Returning to

(5.8) F̂G : BordSO
2 −→ AlgC,

once we posit F̂G(pt+) = A = Map(G, C), we can compute F̂G(S1) as follows. We know that

F̂G(pt−) is the dual to F̂G(pt+), since pt+ and pt− are dual in BordSO
2 , and it turns out that the

dual algebra is the opposite algebra Ao. The coevaluation in Figure 10 is the left (A⊗Ao)-module A,

and the evaluation is the right (Ao ⊗ A)-module A. After permuting the two boundary points of

the evaluation, we compose coevaluation and evaluation to compute

(5.9) F̂G(S1) = A ⊗A⊗Ao A.

This tensor product is the Hochschild homology of the algebra A. We can easily compute it explicitly.

Tensoring over A gives the tensor product A⊗AA of the right A-module A with the left A-module A,
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which is canonically A by multiplication. Then the Ao-action is by left and right multiplication, so

letting [A,A] ⊂ A denote the subspace spanned by elements of the form a1a2 − a2a1, a1, a2 ∈ A,

we conclude F̂G(S1) = A/[A,A]. This is not the center of A, which is what we expect from

the text after (4.23). To identify the vector space A/[A,A] with the center of A we need one

more piece of data, a nondegenerate trace τ : A → C on A. Nondegeneracy means that a1, a2 7→
τ(a1a2) is a nondegenerate pairing, and then we identify the quotient A/[A,A] with the orthogonal

subspace [A,A]⊥ ⊂ A, which is easily identified with the center of A. The pair (A, τ) is a Frobenius

algebra. For A = Map(G, C) we use the trace (4.17).

The cobordism hypothesis, stated for framed manifolds in Theorem 1.2, asserts that F̂G is de-

termined by its value on pt+. This is true here, but ‘value on pt+’ must be interpreted as the

pair (A, τ). The extra datum τ is necessary as F̂G is an oriented theory, not simply a framed

theory; see Theorem 6.11 and Example 6.13.

In §4 we described an approach to the non-extended theory FG using a finite version of the

path integral in physics, which amounts to counting principal G-bundles. The finite path integral

extends to give an a priori construction of F̂G in which F̂G(pt+) = A is the result of a computation;

see [F, FHLT] for details.

Example 5.10. Historically, 3-dimensional Chern-Simons theory [W3] was the example which

most pointed the way towards extended topological field theories. The approach of Reshetikhin-

Turaev [RT1, RT2] to the resulting invariants of 3-manifolds and links begins with a quantum group,

in the form of a complex linear category with extra structure, a modular tensor category [MSei].

By contrast, Witten begins with the Chern-Simons functional and uses the path integral. The

relationship between the approaches, worked out in [F] for finite gauge groups, is that Chern-

Simons is a (partially) extended theory of 1-, 2-, and 3-manifolds whose value on S1 is the modular

tensor category. A complete construction of this 1-2-3 theory beginning from quantum group data

was given in [Tu]; see also [Wa]. There is current work, for example [BDH], to construct a fully

extended 0-1-2-3 theory.

Example 5.11. The previous two examples are discrete: there are no interesting invariants for

families of manifolds beyond those for single manifolds. That an extension of Definition 2.6 to

families would be fruitful emerged in the 1990s from 2-dimensional field theories. Segal promoted the

idea of a cochain-valued topological field theory [Se3], and there were several mathematical works

which pointed towards invariants for families of manifolds; a quirky sample is [LZ, G, KM, BC].

The most definitive work in this direction is by Kevin Costello [Co], who constructed a theory of

“open-closed” topological 2-dimensional field theories in families from Calabi-Yau categories. These

are closely related to fully extended 2-dimensional theories; see [L1, §4.2].

Example 5.12. Another motivating example for the cobordism hypothesis which includes invari-

ants for families of manifolds is string topology, which defines invariants of compact manifolds using

its loop space and Riemann surfaces. It was introduced by Chas-Sullivan [CS], and there is a large

literature which follows. See [L1, §4.2] for the relation with the cobordism hypothesis.
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6. The cobordism hypothesis

Recall from §4 that objects in the image of a non-extended topological field theory obey a

finiteness condition, expressed in categorical terms by dualizability (Definition 4.7). There is an

analogous finiteness condition called adjointability for k-morphisms, 1 ≤ k ≤ n−1, in an extended n-

dimensional field theory. We give the definition for 1-morphisms, which specializes to the traditional

notion of adjoint functors in category theory [Ka] for the 2-category of categories.

Definition 6.1. Let C be a 2-category; x, y ∈ C objects in C; and suppose f : x → y, g : y → x

are 1-morphisms. Then f is a left adjoint to g if there exist 2-morphisms u : idx ⇒ g ◦ f and

c : f ◦ g ⇒ idy such that the compositions

(6.2) f = f ◦ idx
id×u
===⇒ f ◦ g ◦ f

c×id
==⇒ idy ◦f = f

and

(6.3) g = idx ◦ g
u×id
===⇒ g ◦ f ◦ g

id×c
===⇒ g ◦ idy = g

are identity 2-morphisms.

We then say that g is a right adjoint to f , and u, c are the unit and counit of an adjunction. The

compositions (6.2) and (6.3) are the 2-morphism version of the S-diagram compositions (4.8). The

corresponding definition for (∞, n)-categories and higher morphisms is similar, but the composi-

tions are only the identity maps up to higher morphisms, or equivalently are identity maps in a

homotopy category which remembers higher morphisms only up to equivalence. Invertible maps

have adjoints—the inverse is an adjoint—so adjointability is weaker than invertibility.

Remark 6.4. If an n-morphism in an n-category, or (∞, n)-category, is adjointable then it is in-

vertible. This follows since the unit and counit of an adjunction, which are (n + 1)-morphisms, are

invertible.

Let C be a symmetric monoidal (∞, n)-category and F : Bordn → C an extended field theory.

Then just as F (pt) is dualizable, so too is F (W ) adjointable for every k-dimensional bordism W

with 1 ≤ k ≤ n − 1. This is an extended finiteness condition satisfied by an extended topological

field theory. We extract from C all objects which have duals, and whose duality data have adjoints,

which in turn have adjoints, etc.

Lemma 6.5. [L1, §2.3] Let C be a symmetric monoidal (∞, n)-category. There is an (∞, n)-

category Cfd and a homomorphism i : Cfd → C so that (i) every object in Cfd is dualizable and every

k-morphism, 1 ≤ k ≤ n − 1, is adjointable, and (ii) i : Cfd → C is universal with respect to (i).

Here ‘fd’ stands either for ‘fully dualizable’ or ‘finite dimensional’. An (∞, n)-category which

satisfies (i) is said to “have duals”, as in the statement of Theorem 1.1. The finiteness condition

on a topological field theory F : Bordn → C may be summarized by the diagram

(6.6) Cfd

iBordn
F

C
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In other words, F factors through Cfd.

Extended topological field theories F : Bordn → C are the objects of an (∞, n)-category we

denote Hom(Bordn, C). A 1-morphism η : F0 → F1 between two homomorphisms assigns a (k + 1)-

dimensional morphism η(W ) : F0(W ) → F1(W ) to each k-dimensional bordism W . The fact that

adjointable n-morphisms are invertible (Remark 6.4) implies, after some argument, that any 1-

morphism η is in fact an isomorphism. The same applies to higher morphisms. It follows that

Hom(Bordn, C) is in fact an (∞, 0)-category—all morphisms are invertible—so according to Re-

mark 5.4 can be viewed as a space. In other words, the collection of extended topological field

theories with values in C is a space.

The cobordism hypothesis identifies the space Hom(Bordn, C) with a space constructed directly

from C by combining Lemma 6.5 with another universal construction.

Lemma 6.7. [L1, §2.4] Let D be an (∞, n)-category. There is an ∞-groupoid D∼ and a homomor-

phism j : D∼ → D so that (i) every k-morphism, k > 0, in D∼ is invertible, and (ii) j : D∼ → D is

universal with respect to (i).

The ∞-groupoid D∼, which is an ∞-category in which every morphism is invertible, may be

constructed from D by removing all noninvertible morphisms.

Finally, we can state a precise version of the cobordism hypothesis, first for n-framed manifolds.

Theorem 6.8 (Cobordism hypothesis: framed version). Let C be a symmetric monoidal (∞, n)-

category. Then the map

(6.9)
Hom(Bordfr

n , C) −→ (Cfd)∼

F 7−→ F (pt+)

is a homotopy equivalence of spaces.

At this point the reader should refer back to the heuristic versions stated in §1 as well as the discrete

1-dimensional version in Theorem 4.9. In particular, the cobordism hypothesis is a theorem about

smooth manifolds and their diffeomorphism groups, which is reflected by the method of proof.

Suppose W is a bordism of dimension k ≤ n which is n-framed. Recall that the n-framing is

an isomorphism (n) → (n − k) ⊕ TW , where (j) denotes the trivial real vector bundle of rank j

over W . The orthogonal group9 O(n) acts on framings by precomposition with constant orthogonal

maps (n) → (n). This induces an action of O(n) on the space Hom(Bordfr
n , C).

Corollary 6.10. There is a canonical action of the orthogonal group O(n) on the space (Cfd)∼.

Let G be a Lie group equipped with a homomorphism ρ : G → O(n). A G-structure on a

bordism W is a reduction of structure group of its tangent bundle to G along ρ. More precisely,

choose a Riemannian metric on W (this is a contractible choice). Then a G-structure is a principal

G-bundle P → W together with an isomorphism of the associated G-bundle ρ(P ) with the bundle

of orthonormal frames of (n − k) ⊕ TW . For example, for G = {e} a G-structure is an n-framing,

and for G = SO(n) it is an orientation. There is a bordism category BordG
n of manifolds with

G-structure.

9It is perhaps more natural to use the full general linear group GL(n; R), but all of the topological information is
carried by the maximal compact subgroup O(n) ⊂ GL(n; R).
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Theorem 6.11 (Cobordism hypothesis: G-structure version). The map

(6.12)
Hom(BordG

n , C) −→
(
(Cfd)∼

)hG

F 7−→ F (pt+)

is a homotopy equivalence between the space of extended topological field theories on G-manifolds

and the homotopy fixed point space of the G-action on (Cfd)∼.

Here G acts through the homomorphism ρ : G → O(n) and the O(n)-action given in Corollary 6.10.

Example 6.13. For n = 2 an oriented 2-dimensional theory is determined by the value on pt+, but

in the fixed point space. Consider C = AlgC, as in Example 5.7. First, the 2-category Algfd
C

of fully

dualizable complex algebras has objects finite dimensional semisimple algebras, i.e., finite products

of matrix complex algebras. (A proof may be found in [Da, §3.2].) A point in the homotopy

fixed point space of the SO(2)-action includes extra data—in this case being a fixed point is

not a condition—and the extra data here is the nondegenerate trace τ discussed in Example 5.7;

see [FHLT, Example 2.8] for details.

We are not going to attempt to summarize the proof sketched in [L1] in any detail. Rather, we

give a very rough intuition for why the cobordism hypothesis might be true. Our exposition in §4,

in particular the proof of Theorem 4.9, emphasizes the role of Morse theory. The existence of Morse

functions allows the decomposition of a bordism into a composition of elementary bordisms (5.2).

These elementary bordisms encode the evaluations and coevaluations, or units and counits, of

duality and adjointness data. That is clear in the proof of Theorem 4.9. As another example,

Figure 17 may be read as a counit for the adjunction between the two 1-morphisms coev, ev in

Figure 10. So if x ∈ C is fully dualizable, a choice of duality data—duals and adjoints all the

way up—defines F on elementary bordisms. As arbitrary bordisms are compositions of elementary

bordisms, F can be extended to arbitrary bordisms. In other words a Morse function gives, in

principle, a way to evaluate F (W ) for every bordism W . The issue is whether F (W ) is well-

defined. The duality data involves choices, and we must be sure that those choices can be made

coherently. This is expressed via contractibility statements. The first is that the space of duality

data for a dualizable object x is contractible. The second generalizes the connectivity statement at

the heart of Cerf theory [C]. Lurie uses a higher connectivity theorem of Kiyoshi Igusa [I] for the

space of generalized framed Morse functions. Such functions relax the nondegeneracy condition at

a critical point to allow a single degeneracy, as in (2.9), and also include a framing of the negative

definite subspace at a critical point. Igusa proves that on a k-dimensional manifold this space is k-

connected.10 These contractibility statements are central to the proof, but it is a highly nontrivial

problem to organize the higher categorical data to apply these theorems. The solution to that

problem, described in detail in [L1], is equally central to the proof.

10It is in fact a consequence of the cobordism hypothesis that this space of functions is weakly contractible. This
has been proved independently of the cobordism hypothesis in [EM] and also in unpublished work of Galatius.
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7. Implications, extensions, and applications

Some brief vignettes illustrate the scope of the extended topological field theory and the cobor-

dism hypothesis.

Invertible theories and Madsen-Tillmann spectra

Recall from Lemma 6.7 that any (∞, n)-category D has an underlying ∞-groupoid D∼ → D,

which may be identified with a space. There is a quotient construction as well.

Lemma 7.1. Let D be an (∞, n)-category. There is an ∞-groupoid |D| and a homomorphism

q : D → |D| so that (i) every k-morphism, k > 0, in |D| is invertible, and (ii) q : D → |D| is

universal with respect to (i).

These constructions are relevant to invertible topological field theories. We say an object x in a

symmetric monoidal (∞, n)-category is invertible if it has an inverse y for the monoidal structure:

x ⊗ y is isomorphic to the unit object.

Definition 7.2. A topological field theory α : Bordn → C is invertible if α(W ) is invertible for all

objects and morphisms W .

It follows from the cobordism hypothesis that α is invertible if and only if α(pt+) is invertible.

By the universal properties an invertible field theory α : Bordn → C factors through |Bordn |
and (Cfd)∼:

(7.3) Bordn
α

q

C

|Bordn | α̃
(Cfd)∼

j

Since Bordn and C are symmetric monoidal, so too are |Bordn | and (Cfd)∼. An ∞-groupoid is

equivalent to a space (Remark 5.4), and a symmetric monoidal ∞-groupoid is equivalent to an

infinite loop space, i.e., the 0-space of a spectrum. Furthermore, α̃ is an infinite loop space map.

This reduces the study of invertible topological field theories to a problem in stable homotopy

theory.

Remark 7.4. Invertible field theories play a role in ordinary quantum field theory, for example as

anomalies.

A corollary of the cobordism hypothesis [L1, §2.5] determines the homotopy type of the spectrum

|Bordn |. Consider first the bordism (∞, n)-category Bordfr
n of n-framed manifolds. The cobordism

hypothesis, in the heuristic form Theorem 1.1, asserts that Bordfr
n is free on one generator. It

follows that so too is |Bordfr
n |. The latter is a spectrum, and the free spectrum on one generator

is the sphere spectrum. For the bordism (∞, n)-category of G-manifolds BordG
n the cobordism

hypothesis in the form Theorem 6.11 implies that |BordG
n | is the nth suspension of a Madsen-

Tillmann spectrum. (These spectra are mentioned in §2 before Definition 2.5.)
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An ∞-groupoid—or (∞, 0)-category—is a model for a space. We may view an (∞, n)-category

as a generalization of a space which allows noninvertibility. From that perspective the cobordism

hypothesis is a generalization of the Madsen-Weiss theorem.

Variations on the cobordism hypothesis

Morrison and Walker [MoW] take a somewhat different, but closely related, approach to extended

topological field theories which incorporates dualizability from the beginning.

In [L1, §4] Lurie describes several applications and extensions of the cobordism hypothesis. One

important extension is to manifolds with singularities, though there are many special cases which do

not in fact involve singularities. To illustrate, in Example 5.7 we described a 2-dimensional oriented

field theory F associated to a Frobenius algebra A. Now suppose that M is a left A-module. Recall

that M determines a 1-morphism M : 1 → A in the Morita 2-category of algebras, where the tensor

unit 1 is the trivial algebra C. We might ask what sort of field theory we can associate to the

pair (A,M), assuming sufficient finiteness.. A physicist might describe M as giving a boundary

condition for F , and so extend F to a field theory F̃ in which some boundaries are “colored” with

the boundary condition M . For example, a closed interval with one endpoint colored is associated

to M as a left A-module; the closed interval with both endpoints colored is associated to M as

a vector space. The coloring represents a coning off of a point, which is viewed as a manifold

with singularities. This is just the tip of the iceberg of possibilities opened up by the cobordism

hypothesis with singularities.

From the point of view of algebra, given that Bordfr
n is the free symmetric monoidal (∞, n)-

category with duals on one generator, we might ask how to describe more general symmetric

monoidal (∞, n)-categories specified by generators and relations. Roughly speaking, the cobordism

hypothesis with singularities identifies these as bordism categories of manifolds with singularities.

Applications to topology

We indicated briefly in Example 5.10 the important role that Chern-Simons theory played in the

development of extended topological quantum field theories. That theory encodes invariants of 3-

manifolds and links. Newer invariants of links and low dimensional manifolds were in part inspired

by notions in extended field theory. Crane and Frenkel [CF] suggested that “categorification” of the

3-dimensional invariants would lead to new invariants, potentially related to Donaldson invariants.

Later Khovanov [Kh] introduced such a categorification of the Jones polynomial. This now has a

proposed derivation from quantum field theory [GSV, W4].

There is current research in many directions which will potentially take advantage of more

powerful aspects of extended field theories and the cobordism hypothesis in contexts which are

not discrete and semisimple. For example, the cobordism hypothesis illuminates string topology

invariants and topological versions of Hochschild homology and its cousins [BCT]. It also appears

in several discussions of the 2-dimensional extended topological field theories relevant for mirror

symmetry: the “A-model” and the “B-model”. There is an enormous literature on this subject;

see [Te2] for one recent example which uses ideas around the cobordism hypothesis.
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Applications to algebra

Now we shift focus from topology and bordism categories to the codomain C. Quite generally a

homomorphism in algebra organizes the codomain according to the structure of the domain. This

principle is often applied in the context of group actions on sets, for example: the structure of

orbits and stabilizers illuminates the situation at hand. Here if F : Bordn → C is a homomorphism,

and F (pt+) = x then we can study x using smooth manifolds and their gluings.

One application is to Ek-algebras, which are objects in a symmetric monoidal category which

have k associative composition laws. We met E1-algebras (ordinary associative algebras) in the

category VectC of complex vector spaces in Example 5.7. An E2-algebra in VectC is a commutative

algebra and there is nothing higher up: an Ek-algebra for k > 2 is also a commutative algebra. More

interesting examples are obtained if we look in other symmetric monoidal categories, for example

the ∞-category of chain complexes. In [L1, §4.1] Lurie describes some relationships between the

cobordism hypothesis and Ek-algebras in (∞, n)-categories. In particular, an Ek-algebra A in

an (∞, n)-category C is automatically k-dualizable, so determines a homomorphism F : Bordfr
k →

Ek(C), where Ek(C) is the (∞, n+k)-category whose objects are Ek-algebras in C. Thus Ek-algebras

may be studied with smooth manifolds. For example, if A is an ordinary algebra (E1-algebra), then

in the associated field theory F (S1) is the Hochschild homology of A (see (5.9) for a simple example).

Since the circle is an E2-algebra in the bordism category, so too is the Hochschild homology F (S1).

This assertion is the Deligne conjecture, which together with generalizations is proved in many

works, for example [Co, KS, L2, BFN]. (We remark that there are several other proofs of the

Deligne conjecture.)

As another application of the cobordism hypothesis to algebra, we mention ongoing work [DHS]

which proves that a fusion category [ENO] is 3-dualizable. A fusion category is a special type of

tensor category, and a tensor category is an E1-algebra in the 2-category of linear categories. So

tensor categories form a 3-category, and it is in that 3-category that fusion categories are fully

dualizable. The associated 3-dimensional framed field theory can be brought to bear on the study

of fusion categories. We remark that simple topological diagrams involving 0- and 1-dimensional

manifolds are usually used to study fusion categories and their cousins. The cobordism hypothesis

opens up the possibility of using the more powerful topology of 3-dimensional manifolds. In related

ongoing work of the author and Teleman, we consider E2-algebras in the 2-category of linear

categories; they comprise the 4-category of braided tensor categories. We prove that modular

tensor categories are invertible, which now gives a 4-dimensional perspective on quantum groups.

Applications to representation theory

In §4 and in Example 5.7 we illustrated a very simple, discrete 2-dimensional field theory associ-

ated to a finite group G. There is also a 3-dimensional field theory with values in the 3-category of

tensor categories; it attaches the tensor category of vector bundles over G under convolution to pt.

(The theory is unoriented—as is the 2-dimensional theory—so we have an unframed unoriented

unadorned point.) That theory may be viewed as the simplest case of 3-dimensional Chern-Simons

theory (Example 5.10). Ben-Zvi and Nadler [BN] study the analogous theory for a reductive com-

plex group G. Discrete categories are futile here; the full force of ∞-categories comes into play.

One would like a 3-dimensional theory which generalizes that of a finite group, and now attaches
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the symmetric monoidal ∞-category of D-modules on G to a point. However, the necessary finite-

ness conditions are not satisfied. Instead, they construct a related 2-dimensional field theory, the

character theory, which assigns to a point the Hecke category associated to G. Then one computes

that the category of Lusztig’s character sheaves is attached to S1. The character theory may be

viewed as a dimensional reduction of a 4-dimensional field theory [KW] related to the geometric

Langlands program. It seems likely that the topological field theory perspective, and the cobordism

hypothesis, will shed light on old questions in the representation theory of semisimple Lie groups.

Echos in quantum field theory

As mentioned earlier, quantum field theorists traditionally only studied 2-tier theories: corre-

lation functions on n-manifolds and Hilbert spaces attached to (n − 1)-manifolds. In recent years

the ideas mathematicians have developed around extended field theories, including the cobordism

hypothesis, have seeped into physics. In 2-dimensional conformal field theory there is a category

of boundary conditions, called D-branes, and in topological versions this is understood to be part

of an extended field theory. Higher dimensional analogs are now common; see [Kap] for a re-

cent review. For example, Kapustin-Witten [KW] study a topological twist of the 4-dimensional

N = 4 supersymmetric Yang-Mills theory. Going beyond the traditional two tiers, this theory

attaches a category to every closed 2-manifold. Kapustin-Witten relate that to a category which

appears in the geometric Langlands program. The story is richer: there is a family of theories

parametrized by CP
1 and S-duality acts as an involution on the theories. This suggests an equiv-

alence between two different categories attached to a 2-manifold, which is a topological version of

the basic conjecture in the geometric Langlands program.

The maximally supersymmetric N = 4 Yang-Mills theory is the dimensional reduction of a

6-dimensional supersymmetric field theory which has superconformal invariance. Its name ‘the

(2,0) superconformal field theory in six dimensions’ reflects its symmetry group; a simpler name

is ‘Theory X’. This theory has no classical description. It is predicted to exist from limiting

arguments in string theory. Its mysterious nature justifies the appellation ‘Theory X’, as does its

dimension: siX. A few properties can be predicted from string theory, and these can be used to study

compactifications to lower dimensions. Among the many protagonists here we mention Gaiotto [Ga]

and Gaiotto-Moore-Neitzke [GMN]. One important idea—which is clearly inspired by extended

field theory and the activity surrounding the cobordism hypothesis—is to study compactifications

of the 6-dimensional theory as a function of the compactifying manifold. This is formalized as

follows. Suppose F : Bord6 → C is a 6-dimensional extended topological theory. Then for any

closed 2-manifold N we obtain a 4-dimensional theory FN : Bord4 → HomC

(
F (N), F (N)

)
defined

using Cartesian product:11 FN (M) = F (N × M). Now view FN as a function of N . Then we

obtain a 2-dimensional extended field theory with values in the (∞, 4)-category of 4-dimensional

field theories! The flexibility in Definition 5.6 which allows arbitrary codomains is heavily used

here. One can get other field theories by composing with homomorphisms out of 4-dimensional

theories. A recent paper [MoT] implements this idea in a physics context, and predicts the existence

of certain holomorphic symplectic manifolds.

11The bordism groups of Pontrjagin and Thom are rings with multiplication given by Cartesian product. Our
discussion of topological field theory has not used this ring structure until now.
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Finally, the renewed interest in En-algebras and their role in extended topological field theories

may bring some fresh perspectives to quantum field theories which are not topological. One ax-

iomatic approach to quantum field theory [H] assigns operator algebras to open sets and describes

how they fit together. This idea was imported in an algebro-geometric framework in certain math-

ematical approaches to 2-dimensional conformal field theory, in vertex operator algebras [Bo] and

chiral algebras [BeDr]. These ideas are circling back to general quantum field theories [CG] with

potential to shed new light on their structure.

These are only a few examples of the potential that extended topological field theories and the

cobordism hypothesis hold in both mathematics and physics.
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