
A software framework for abstract expression of

coordinate-free linear algebra and optimization

algorithms

Anthony D. Padula, Shannon D. Scott and William W. Symes ∗

ABSTRACT

The Rice Vector Library provides C++ classes expressing core concepts (vector,
function,...) of calculus in Hilbert space with minimal implementation dependence,
and standardized interfaces behind which to hide application-dependent implementa-
tion details (data containers, function objects). A variety of coordinate free algorithms
from linear algebra and optimization, including Krylov subspace methods and various
relatives of Newton’s method for nonlinear equations and constrained and uncon-
strained optimization, may be expressed purely in terms of this system of classes.
The resulting code may be used without alteration in a wide range of control, design,
and parameter estimation applications, in serial and parallel computing environments.

INTRODUCTION

Large-scale simulation driven optimization arises in a variety of scientific and engineer-
ing contexts, notably control, design, and parameter estimation. Simulation of physical
processes involves a variety of computational types and data structures specific to physi-
cal context and numerical implementation. Simulator applications typically include data
structures for geometric meshes or grids and rules for their construction and refinement,
functions on these grids representing physical fields, equations relating grid functions and
embodying (gridded versions of) physical laws, and iterative or recursive algorithms which
produce solutions of these equations.

Optimization and linear algebra algorithms on the other hand generally have no in-
trinsic interaction with physics and its numerical realization, involving instead a more
abstract layer of mathematical constructs: vectors, functions, gradients,... Many such al-
gorithms, including some of the most effective for large scale problems, may be expressed
without explicit reference to coordinates. These coordinate-free algorithms use only the in-
trinsic operations of linear algebra and calculus in Hilbert space. Examples include Krylov

∗Department of Computational and Applied Mathematics, Rice University, Houston TX 77251-1892

USA, email symes@caam.rice.edu

1

subspace methods for the solution of linear systems and eigenvalue problems, Newton and
quasi-Newton methods for unconstrained optimization, and many constrained optimiza-
tion methods.

This discrepancy between levels of abstraction is the source of a software engineering
problem: in procedural programs to solve simulation driven optimization problems, the
details of simulator structure invariably intrude on the optimization code, and vis-versa.
Time-honored software “tricks” used to hide these details within procedural code (common
blocks, parameter arrays, “void *” parameters,...) lead to software that is difficult to
debug and maintain and nearly impossible to reuse outside of the originating context.

Object oriented programming appears to offer a way out of this dilemma. Data ab-
straction permits the implementation details in one part of a program to be hidden com-
pletely from other parts which do not intrinsically involve them. Polymorphism and
inheritance complement data abstraction and enable reuse of abstract code (for example
optimization algorithms) across many applications.

This paper describes an object-oriented software framework, the Rice Vector Library
(“RVL”), for the expression of coordinate-free algorithms for large scale applications of
continuous optimization and linear algebra. RVL provides C++ classes emulating a set of
core mathematical concepts, entirely sufficient to express these algorithms. RVL realizes
these concepts (vectors, functions,...) computationally in a set of abstract classes, such
as Space and Operator, along with implemented (concrete) classes constructed out of
the abstract components, such as Vector, which express related concepts. The central
goal of the RVL project is to make the relationships amongst these “calculus” classes as
parallel as possible to those amongst the mathematical concepts which they represent.
Critical to the success of this approach is the provision of another collection of abstract
“data management” classes (DataContainer and FunctionObject in RVL), which offer
uniform methods for hiding implementation details.

An Illustrative Example

A simple example of the abstraction dichotomy is apparent in the least-squares solution
of a linear thermal control problem via a Krylov subspace iteration. We shall refer to this
example throughout the paper.

An individual step in such an iteration might be expressed as

q = Ap

γ = 〈r, r〉

α = γ/〈p, q〉

r = r − αq (1)

x = x + αp

β = 〈r, r〉/γ

p = r + βp

2

Here A stands for the normal operator of the control problem, application of which in-
volves solution of one or more partial differential equations or systems, discretized perhaps
via a finite element method. The variables x, r, ... are fields, regarded as vectors in an
appropriate Hilbert space, representing the control (perhaps an initial temperature field),
the residual in the normal equations, and the like.

Implicit in the above description are two features of this class of problems which
motivate the design of the software framework described in this paper. The first line
in the above algorithm, involving an application-dependent operator, typically requires
several orders of magnitude more floating point arithmetic than do the other lines, which
express generic linear algebra operations. This cost dominance of application-dependent
operations over generic vector operations is the meaning we assign to the phrase “large
scale” in this paper.

Second, note that no mention of the coordinates of x, r, ... or of the matrix elements of
A occurs in the algorithm (1). The (absolutely vital) details of the physics and numerics
incorporated in the implementation of A simply play no role in (1), which presumes only
that A defines a symmetric positive definite linear operator on an appropriate Hilbert
space. A preconditioned version of this algorithm could be expressed in similar fashion.

Relation to other Libraries

A number of other projects have realized various versions of this “OO numerics”
program for numerical linear algebra and/or optimization: see (Nichols et al., 1993; Dou-
glas et al., 1994; Meza, 1994; Deng et al., 1996; ISIS Development Team, 1997; Tech-X,
2001; Tisdale, 1999; Veldhuizen, 1999; Karmesin, 2000; Benson et al., 2000; Langtangen,
1999; Gockenbach et al., 1999; Heroux et al., 2003; Kolda and Pawlowski, 2003; Bartlett,
2003).

RVL is a successor to one of these, the Hilbert Class Library (“HCL”, (Gockenbach
et al., 1999)), and incorporates many of its innovations and design principles. HCL intro-
duced two important generic types, representing vector spaces and function evaluations
respectively. Vector space objects act as Abstract Factories (Gamma et al., 1994), and
thus implement computationally the notion of “set equipped with operations” mandated
by the mathematical definition of vector space. Evaluation objects have the semantics of
f(x) for variable x, and provide a natural repository for intermediate data occurring in
the computational realization of a function f and its derivatives.

While vector space and evaluation types are also key features of RVL, it differs from
HCL in several important respects. RVL makes extensive use of ISO C++ features - class
and function templates, exception handling, namespaces, the standard template library -
which were not widely and/or robustly available from compiler vendors at the beginning
of the HCL project in the early 90’s. The “calculus” and “data management” aspects
of RVL are more cleanly separated than was the case in HCL, which permits more of
the key constructs to be implemented in base classes. For example, HCL required the
user to implement a function evaluation class for each user-defined function. RVL defines
a concrete universal evaluation class: the user need only implement the corresponding

3

function, with essentially the same attributes as were required of an HCL function imple-
mentation. The stratification of types in RVL also makes parallel execution environments
transparent to RVL-encoded algorithms, a feature lacking in HCL. Finally, RVL offers an
integral extensibility mechanism via function forwarding, inspired by Roscoe Bartlett’s
RTOp classes (Bartlett et al., 2004).

RVL provides computational constructs entirely sufficient to represent the linear alge-
bra algorithm presented above, and many others. However, it is important to understand
that RVL is not (amongst other things) a linear algebra library of the sort represented by
LAPACK (Anderson et al., 1992) or TNT (Pozo, 2004) or Blitz++ (Veldhuizen, 1999).
RVL does not express dense or sparse linear algebra or indeed any other sort of computa-
tion referring explicitly to the coordinates of a vector in a basis. That is not its objective.
It is entirely possible and even advantageous to build RVL objects as “wrappers” around
functions and/or types taken from linear algebra libraries like those mentioned above or
many others, and in so doing take advantage of many person-years of development of
high-performance numerical code. The design of RVL takes some care to avoid implicitly
interfering in the features of these other libraries which lead to good execution speed - for
example, RVL avoids aliasing of higher-level objects, which could force aliasing of array
arguments in encapsulated coordinate-dependent code.

RVL is similar in some respects to the Toolkit for Advanced Optimization (Benson
et al., 2000) and even more the Trilinos Solver Framework (Bartlett et al., 2003), with
which it shares some common HCL-derived features. Both of these libraries define types
systems for formulation of abstract numerical algorithms of the same sort RVL targets.
Amongst other differences, however, both of these libraries impose more structure on their
data container types than does RVL, and offer a richer palette of interfaces to be exploited
by implementations. RVL aims to express the abstractions occurring in coordinate-free
algorithms, as described above, and as little else as possible.

Plan of the Paper

The following pages discuss the design of “calculus” and “data management” types,
and their interaction; the basic structure of the RVL vector classes follows from this dis-
cussion. Besides its basic interfaces, RVL also provides a collection of specialized interfaces
representing various common mathematical structures, such as Cartesian products, which
occur frequently in the formulation and solution of design, control, and inverse problems.
These specialized types, defined in terms of the core types of the library, considerably
ease the construction of applications.

We close by describing several example applications which illustrate the use of RVL to
solve simulation-driven optimization problems in both serial and parallel environments.
These examples showcase the reuse of abstract algorithm code across disparate application
domains and computing platforms, and the feasibility of performance on par with that of
competently constructed procedural code.

The base classes which are the principal topic of this paper are entirely abstract, and
do not define data access methods. Some means to access data must be specified in order

4

that an actual application be written; such data access interfaces are outside the scope of
RVL proper. In appendices, we describe both a simple, portable data access layer which
we have used extensively in our own applications work, and an adaptation of parts of
Sandia National Laboratory’s Trilinos collection to form an RVL data access layer.

This purpose of this paper is the presentation of the RVL design and the reasoning
underlying it. Accordingly, we describe the RVL classes in only enough detail to illustrate
the principles of the design. We refer the reader to the RVL reference manual for a
comprehensive description of the classes and their usage (Symes and Padula, 2005).

All class names in the following discussion refer to RVL classes. We include the names-
pace prefix RVL:: only where there is a danger of confusion with some other namespace.
We also strip comments, standard constructors, exception handling, and other boilerplate
out of code listings.

VECTORS AND SPACES

The central concept of calculus and linear algebra is that of vector. It is important
to understand that a vector, both mathematically and computationally, must be more
than an array of scalar coordinates with respect to some arbitrary basis - a vector is also
bound to specific rules for vector arithmetic, and (for Hilbert spaces) a specific Hermitian
scalar product, and it shares these rules with all other vectors in its vector space. All
vectors of a vector space may also share common metadata which determine their physical
or mathematical significance in contexts other than vector arithmetic, for example finite
element grid parameters, or Cartesian product structure, or choices of units. Also the
coordinate data (and metadata) of vectors may be stored in core memory, on disk, or
distributed over a network. It follows that neither intrinsic type arrays nor standard
library containers are adequate stand-ins for abstract vector types.

This section describes the implications of linear algebra for the design of an abstract
vector class and associated classes, and some details of one possible realization.

Design Implications of Linear Algebra

A typical definition of vector space, from a standard text ((Hoffman and Kunze, 1961),
p. 19), reads

... a vector space... consists of the following:
(1) a field F of scalars;
(2) a set V of objects, called vectors;
(3) a rule (or operation), called vector addition,...
(4) a rule (or operation), called scalar multiplication,...

from which we see that

• the fundamental concept is actually that of vector space - a vector is merely an

5

element of a vector space, gets its identity from the space to which it belongs, and
is meaningless except in the context of membership in its space;

• the linear combination operation (combining vector addition and scalar multiplica-
tion, and having each as a special case) is an attribute of the vector space, not of
its individual elements (vectors).

HCL introduced vector space as a type, and RVL adopts this innovation. The RVL
vector space type Space is a class template. The (only) template parameter identifies
the “field” of scalars, i.e. numeric type which serves as a proxy for an actual field. Any
numerical type representing a subfield of the complex numbers is in principle admissible
as a template parameter. The current release of RVL supports all of the C++ intrinsic
numerical types, and the std::complex types built upon them, as template parameters.

Unlike its mathematical homolog, the computational space does not (cannot!) call
all of its members (vectors) into existence as soon as it is instantiated. Instead, some
mechanism must be provided for creation on demand. Such creation parallels the mathe-
matical commonplace “...let x [vector] be a member of X [space]...”. In many algorithm
formulations, sentences like these occur in which X is a more-or-less arbitrary vector
space: that is, creation of vectors must be accomplished in a way that hides the detailed
structure of the space. A type which constructs instances of another type, without re-
vealing the internal details of that type or of itself, is an Abstract Factory (Gamma et al.,
1994). Computational spaces will thus be Abstract Factories, and will in addition bind
vectors belonging to them to specific methods for carrying out the basic operations of
linear algebra.

Vectors are not simply arrays of coordinates, but it is also true that vectors have coor-
dinates. Linear combination and inner product must ultimately be realized as operations
on coordinate arrays, implemented according to the rules provided by the space to which
the vectors belong. These requirements have a natural translation in the structure of the
RVL Vector class. Vector instances own (addresses of) abstract containers for coordi-
nate data, for which RVL provides the DataContainer base type. Creating a Vector

thus entails dynamic allocation of a DataContainer by a virtual constructor method of
the Space class. Space provides the linear combination and inner product (virtual) im-
plementations which manipulate DataContainer instances. Vector must delegate linear
combination and inner product to the corresponding Space methods. Vector must there-
fore retain a reference to its Space, hence “knows” which space it is in. In the language
of (Gamma et al., 1994), RVL::Vector is a Facade: it combines several other types to
produce a new set of behaviours. It also functions as a handle to its dynamically allocated
DataContainer member.

Implementing Space and Vector Classes

A UML diagram (Figure 1) displays the relations between Space, Vector, and Data-

Container. A Space subclass implementer must supply five public virtual function over-
rides, along with constructors initializing whatever internal data is necessary to make these

6

work. The first is a virtual constructor for the DataContainer subtype encapsulating the
data structures specifying Vectors in this Space:

virtual DataContainer * Space<Scalar>::buildDataContainer() const = 0;

Space offers the ability to compare instances:

virtual bool Space<Scalar>::operator ==(const Space<Scalar> & sp) const = 0;

Since few spaces appear in algorithms, in comparison to other sorts of things such as
vectors and functions, it’s appropriate to test addresses as the first step in any implemen-
tation of operator==.

Finally, three methods specify the algebraic character of the Space:

virtual Scalar Space<Scalar>::inner(DataContainer const & x,

DataContainer const & y) const = 0;

virtual void Space<Scalar>::zero(DataContainer & x) const = 0;

virtual void Space<Scalar>::linComb(Scalar a, DataContainer const & x,

Scalar b, DataContainer & y) const = 0;

Following HCL and other OON libraries, RVL uses function-call syntax rather than over-
loaded arithmetic operators to express linear algebra operations. The efficiency-related
reasoning behind this choice is well-known (see for example (Bartlett et al., 2004)).

Invocation of the RVL linear combination method Space::linComb asserts that the
vector operation

y = ax + by.

has been performed on the underlying coordinate arrays hidden by the DataContain-

er arguments.

RVL makes no guarantee about the correctness of any call to Space::linComb in
which the output argument (DataContainer & y) is aliased with the input argument
DataContainer const & x.

Note that implementations can recognize and generate special code for various special
cases (axpy, copy,...), as determined by values of the scalars a and b. To make sure that
these can be tested reliably (and for other reasons mentioned below), RVL provides a
traits class (Myers, 1995) which specifies the precise type and value of several constants
(one, zero, etc.) not fully specified in std::numeric limits, amongst other things.

It is important to recognize that very often a large part of the Space implementation
may be shared between subtypes. For example, linear combination works exactly the same
way in all coordinate systems. RVL supplies a shortcut to construction of Spaces, so that
usually the only code that need be supplied is the virtual DataContainer constructor,
and more rarely overloads of operator== and/or inner. This StdSpace construction is
discussed below.

7

Vector is concrete, with all methods implemented by delegation to methods of Space
or DataContainer. The principal constructor takes a space and an optional initialization
flag:

Vector(const Space<Scalar> & _sp, bool initZero = false);

Initialization of an Vector’s data (behind the abstract data container interface) is optional
- the only initialization with coordinate-free meaning is initialization by zero, and that is
the only option offered as part of construction.

Vectors should know the space that they belong to, and be able to announce their
membership publicly:

const Space<Scalar> & Vector<Scalar>::getSpace() const ;

An instance of Vector thus depends on, and exposes, a const reference to a Space, which
must necessarily refer to a pre-existing Space object. This relationship of computational
Vector and Space objects, enforced by semantics of C++ references, mimics precisely
the relationship of the corresponding mathematical objects, that is, the membership of a
vector in its space. Existence of the space logically precedes that of the vector; a vector
cannot exist in the absence of its space.

The only assignment with invariant meaning is assignment to the zero vector. This
assignment, the inner product, and linear combination all delegate to the Space methods
of the same names:

virtual Scalar Vector<Scalar>::inner(const Vector<Scalar> & y) const;

virtual void Vector<Scalar>::zero();

virtual void Vector<Scalar>::linComb(Scalar a, const Vector<Scalar> & x,

Scalar b=ScalarFieldTraits<Scalar>::One());

The linear combination method implements y ← ax + by, where y is represented by
*this. The scalar b defaults to 1, interpreted appropriately for the type Scalar via the
aforementioned traits class template ScalarFieldTraits.

Vector also supplies the convenience methods (scale, norm,...) defined in Space, by
delegation to the latter’s methods of the same names. The norm methods bring up an-
other use of the traits class. Norms must return positive reals. It’s possible to confuse
these with scalars for the real number types (float, double, possibly extended precision
generalizations) but not for the complex types. Therefore the ScalarFieldTraits spe-
cializations defines an AbsType via typedef which is the return type of the absolute value
function for the scalar type, and of norm and normsq (implementing x 7→

√

〈x, x〉 and
x 7→ 〈x, x〉 respectively).

We emphasize that Vector is concrete, ready to use. Specification of a new vector type,
representing a new underlying data structure, involves construction of a new subtype of
Space (and likely of DataContainer) only. We leave open the possibility of overriding the

8

implementations of the vector operations by making them virtual, but expect subclassing
of Vector to be profitable in very few cases, if ever.

The Vector class methods provide computational expression for every line but one of
the simple Krylov step (1):

A.applyOp(p,q);

gamma = r.normsq();

alpha = gamma / p.inner(q);

r.linComb(-alpha, q);

x.linComb(alpha, p);

beta = r.normsq()/gamma;

p.linComb(one, r, beta);

The first line invokes the apply method on an RVL::LinearOp instance - RVL function
and operator classes will be discussed in the next section. The other lines involve only
vector arithmetic expressed via the methods of Vector.

Data Access and Manipulation

Some mechanism must be supplied for manipulation of coordinate arrays, else no actual
computations can take place. The base class DataContainer cannot mandate such access
to data, else implementations in which coordinate arrays are stored on disk or distributed
over a network would suffer gross inefficiency. Efficient data access at this level, either by
address or by value, is also impossible if Cartesian products of DataContainer objects
are to be treated as DataContainers. Therefore RVL defers data access to subclasses of
DataContainer.

RVL’s FunctionObject base type provides a uniform interface behind which to hide
data manipulations of all sorts. Evaluation of concrete FunctionObject subtypes uses
the data access services of concrete DataContainer subtypes. However control over the
evaluation must reside in DataContainer objects owning that data, which own informa-
tion about the layout and location of the data. Thus DataContainer is provided with a
means to evaluate FunctionObjects.

This function-forwarding or double-dispatch design is inspired by the standard library’s
scheme for interaction of function objects and containers, and by Bartlett’s RTOp package
(Bartlett et al., 2004). It is an example of the Visitor pattern (Gamma et al., 1994). In
the language of (Gamma et al., 1994), DataContainer is the base class of an Element
hierarchy, each subtype of which accepts visits from types of a Visitor hierarchy, of which
the base class is FunctionObject. Visitors use the services of the visited Element.

RVL supplies only the base classes of its Element and Visitor hierarchies. with the
intention that these be extended; sample completions of these hierarchies are described
in the appendices. Thus the design of RVL anticipates the introduction of both new
Element (DataContainer) and new Visitor (FunctionObject) subtypes. The original
Visitor pattern, as described in (Gamma et al., 1994), makes new Visitors easy to add.

9

However new Element subtypes are difficult: every Visitor subtype must define methods to
visit every Element subtype. The Visitor pattern’s strong coupling of the two hierarchies
is thus incompatible with the intended use of RVL.

For this reason, RVL uses a modification of the Visitor pattern, dubbed Acyclic Visitor,
which breaks the tight coupling between the Visitor and Element hierarchies (Martin
et al., 1998; Martin, 2002). A salient characteristic of the Acyclic Visitor pattern is a
degenerate Visitor base class, i.e. one with no (nontrivial) methods. RVL::FunctionOb-

ject defines only a standard reporting method (which may be overridden in subclasses);
its interaction with DataContainer is left entirely undefined. Child classes of Function-
Object will define evaluation methods which access the services provided by child classes
of DataContainer. Runtime type information will be used to properly associate Func-

tionObject and DataContainer subtypes, as is characteristic of applications of Acyclic
Visitor.

The DataContainer::eval expresses acceptance of a Visitor (FunctionObject) by
an Element, per the (Acyclic) Visitor pattern. This particular acceptance method also
allows for the participation of other DataContainers:

virtual void DataContainer::eval(FunctionObject & f,

std::vector<DataContainer const *> & sources) = 0;

Note that the FunctionObject argument is not designated const. RVL uses function
objects, rather than say pointers to functions, to encapsulate data manipulations because
function objects offer persistent state. The standard library uses them for the same
reason: its algorithms (std::for each, for instance) take non-const function objects
whose internal states may be modified in successive calls. The ability to modify Func-

tionObjects via invocation of DataContainer::eval plays the same role as the analogous
capability of the standard library, and is extremely useful in developing applications. Note
that FunctionObject therefore does not model the behaviour of a mathematical function:
repeated evaluation of a FunctionObject on the same data can deliver different results,
since its internal state may change as the result of evaluation.

FunctionObject evaluation is the only general high-level mechanism for data manipu-
lation provided by RVL. Therefore an interface must be provided to evaluate FunctionOb-
jects from the vector level. Vector accomplishes this task via an eval method analogous
to DataContainer’s, which delegates evaluation to its DataContainer data member and
its eval method.

RVL does not support output aliasing in implementations of eval for either Data-

Container or Vector types. That is, RVL does not require that implementations assure
correct results when the DataContainer or Vector, on which eval is called, is aliased
with any of the input arguments sources[i].

FunctionObject is intended to encapsulate calculations which return “large” results,
whence the “return value” of an FunctionObject is the DataContainer on which the eval
method is called with the FunctionObject as first argument. Since the other (possible)

10

DataContainer arguments are passed by address, opportunities to minimize data motion
are preserved by the design.

On the other hand many functions return results with perfectly usable copy semantics,
such as scalar field values or booleans. It has become common to term such functions
reductions, perhaps because the output is generally much smaller than the input. For
such functions, RVL provides an abstract class for return values, RetType, which man-
dates an assignment operator and a default initialization value, and a FunctionObject-

Redn interface which is the base class for a second Acyclic Visitor hierarchy. Once again,
FunctionObjectRedn specifies no particular form of interaction with DataContainers,
but does have a nontrivial role in managing a RetType instance, via setResult and
getResult access methods.

Both DataContainer and Vector are provided const methods to evaluate Func-

tionObjectRedns, the latter by delegation to the former; the target of an Function-

ObjectRedn is its internal RetType instance, and the DataContainer on which a Func-

tionObjectRedn evaluation is called is treated as read-only. A typical example is the
implementation of StdSpace::inner, discussed below.

Since arithmetic types are frequently return values of useful functions (inner products
come to mind), RVL provides a templated ScalarRetType subtype of RetType, encap-
sulating the template type and inheriting the usual collection of arithmetic operations.
A ScalarReduction mixin template provides alternative access to the result in the form
of the template type. The FunctionObjectScalarRedn subclass of FunctionObject-

Redn inherits the ScalarReduction interface also. The first appendix presents some
simple examples.

Besides providing a natural mechanism for the implementation of (scalar-valued) func-
tions and operators (vector valued functions), discussed in the next section, Function-
Objects provide a natural interface for the many scalar functions which appear in algo-
rithms. Scalar functions act on each coordinate of input and output separately: they take
the form

zi = f(xi, yi, ...), i = 0, 1, 2....

Bartlett (Bartlett et al., 2004) terms these functions vector transformation operators, and
points out that only functions of this type (and the analogous reduction scalar functions)
can be implemented efficiently without detailed knowledge of data layout. Linear combi-
nation is an example of such a function, and indeed a standard implementation of Space
uses a FunctionObject encapsulating yi = axi + byi, i = 0, 1, 2,

RVL does not legislate the method(s) by which DataContainers might expose their
data, which types of DataContainers do so, nor what form of data access a particular
FunctionObject might expect. The first appendix briefly discusses several possibilities. It
is however clear that FunctionObjects encapsulating scalar functions and not depending
on DataContainer metadata, like linear combination, can be applied to any DataCon-

tainer which exposes its data array in an appropriate way. By extension, such Func-

tionObjects can also be evaluated on any tree-structured DataContainer whose leaves
expose coordinate data compatibly with the FunctionObject’s expectations. and which

11

forward FunctionObjects up the tree to the leaf level for evaluation. The tree traversal
mode of FunctionObject evaluation is a typical use of Visitors with Composite Element
types (Gamma et al., 1994).

Figure 2 is a UML depiction of a typical instance of tree-traversal evaluation. At
the top, the eval method is called on a Vector, with an instance of RVLRandomize, a
FunctionObject subtype, as argument (i.e. with a length zero std:;vector of source
vectors). Control passes to the DataContainer data member, in this case an instance
of StdProductDataContainer. The StdProductDataContainer class, discussed later
in this paper, is a concrete implementation of a Cartesian product of DataContain-

ers, a Composite in design pattern terms. The components of this product, in the case
illustrated, are DataContainers which expose their array data, and own references to no
further DataContainers. The specific type is discussed in the first appendix. Function-
Objects are evaluated directly on this latter type: its eval method calls the operator()

method of its FunctionObject argument, which exposes the DataContainer’s data. The
particular FunctionObject named in Figure 2 is one that assigns pseudorandom numbers
to the data array of a DataContainer argument. When control returns to the Vector on
which the eval method was called, the coordinate array which it encapsulates has been
initialized with pseudorandom numbers.

It is important to emphasize that all of this happens as the result of a single line of
user code:

x.eval(rand);

provided that the objects x and rand have been properly initialized.

Convenience Features and Classes

The Space class provides a number of “convenience” methods, such as norm, normsq,
scale, negate, and copy, with virtual default implementations built out of linComb and
inner. These default implementations create temporary storage and imply more passes
through data than would be required by tailor-made implementations. However recall
that the target applications of RVL are those in which function evaluation (simulator) cost
overwhelms the overhead of vector arithmetic. We have found that in such applications
the default performance of the convenience operations is perfectly acceptable. Also careful
implementation of linComb detects and efficiently handles the special cases occuring in
the convenience methods.

Experience has shown that the flexibility in number of arguments built into the
Vector::eval methods for evaluating FunctionObjects and FunctionObjectRedns is
often neither useful nor convenient. Most function objects turning up of their own ac-
cord in algorithm formulation and application have between one and four arguments, and
interfaces explicitly specifying such small numbers of arguments are easier to implement
than the generic access method. Therefore RVL provides specializations of Vector::eval
admitting zero to three Vector arguments (in addition to the Vector on which eval is
called). These are implemented in the obvious way by delegation to the generic evaluation

12

Space

DataContainer

Vector

buildDataContainer()

operator==()

inner()

zero()

linComb()

<<create>>

eval()

inner()

linComb()

zero()

norm2()

norm()

* 1

sp

d

1

1

Fig. 1. Vector, Space, and DataContainer.

method. For example, the binary interface, combining two Vectors and a FunctionOb-

ject, is:

void Vector<Scalar>::eval(FunctionObject & f,

Vector<Scalar> const & source) {...}

A Space requires two types of functionality: the ability to construct dynamically
a specific type of DataContainer, and the capacity to provide several linear algebra
operations in the guise of member functions. It is convenient to separate these two aspects
of Space, by providing natural types with these two sets of attributes, together with a
construction of Space in terms of these types. RVL defines a Factory base type, DataCon-
tainerFactory, which fulfills the first role. A LinearAlgebraPackage provides access
to a FunctionObjectScalarRedn and two FunctionObjects defining inner product, zero
initialization, and linear combination, with access methods. The StdSpace Facade class
combines a DataContainerFactory and a LinearAlgebraPackage to realize a Space.
This construction facilitates code reuse: for example, any class of Hilbert spaces whose
inner products share a given Gram matrix in their standard bases can be defined by the
same LinearAlgebraPackage

FUNCTIONS AND EVALUATIONS

RVL offers three base classes for functions of a vector variable:

13

x:Vector rand:RVLRandomizedata:RnArraypdc:StdProductDataContainer

<<comment>>
Repeat for each
element.

operator()

eval

operator[]

eval

operator[]

eval

operator()

Fig. 2. Typical evaluation of a FunctionObject on a Vector.

• LinearOp, for linear operators;

• Functional, for scalar-valued functions;

• Operator, for vector-valued functions.

Mathematically, all three of these possibilities are special cases of a general vector func-
tion concept. However computationally it is not convenient to derive all three types from
a common parent. C++ distinguishes between intrinsic and object types (unlike Java,
say). Therefore identifying the scalars with vectors in a 1-D vector space, harmless math-
ematically, leads to annoying complications and inefficiencies in the definition of function
types. Consequently RVL distinguishes between scalar- and vector-valued functions, and
does not attempt to represent them as subtypes of a common parent. The general vector-
valued function type must offer access to a derivative as a linear-operator-valued function.
If linear operators are viewed as a subtype of the general vector-valued function type, it is
difficult to take advantage of the fact that the derivative of a linear operator is constant,
and equal to itself. For these reasons, RVL offers three distinct types, with convenient
access to the features of each natural to their mathematical uses, rather than trying to
fit all three to a uniform parent interface.

In some cases common mathematical usage also conforms to these distinctions. For
instance, both scalar-valued and vector-valued function interfaces must include, in some
form, access to the derivative as a linear map. However in Hilbert space optimization
theory and practice, the useful form of the derivative of a scalar-valued function is the

14

gradient, i.e. the Riesz representer of the derivative, rather than the derivative itself.
RVL conforms to this usage pattern, returning the derivative in the Operator type as a
LinearOp, in the Functional type as a Vector.

Linear operators

Many OO libraries expressing linear algebra algorithms define some sort of linear op-
erator or matrix type. As RVL aims to express coordinate-free algorithms, its LinearOp

interface is not required to divulge matrix elements, for example. Only a operator applica-
tion method apply (or matrix-vector product, if you insist on thinking of linear operators
as identified with their matrices) need be supplied to express the coordinate-free usage
of linear operators. LinearOps know their domain and range, and offer access methods
exposing these as Spaces.

The structure of Hilbert space implies that linear operators exist in pairs: each oper-
ator has an adjoint. Adjoints are critically important in definition of many algorithms,
for example playing a key role in the computation of gradients. Unlike the mathemati-
cal homolog, however, a LinearOp object does not automatically have its adjoint defined
when the operator itself is defined - a separate implementation must be supplied. Like the
mathematical homolog, “adjoint” here means: with respect to the inner products defined
in range and domain, which as noted above are attributes of the LinearOp object.

Therefore the fundamental linear mapping type in RVL encapsulates pairs of linear
operators, adjoint to each other. A LinearOp offers two public methods for operator
application:

void applyOp(const Vector<Scalar> & x, Vector<Scalar> & y) const;

void applyAdjOp(const Vector<Scalar> & x, Vector<Scalar> & y) const;

applying the operator and its adjoint to the input vector represented by x and storing the
output in the vector represented by y.

The applyOp and applyAdjOp methods are implemented in the base class. They
delegate to the protected apply and applyAdj methods, which are pure virtual. To build
an instantiable LinearOp subclass, the user must implement these latter:

void apply(const Vector<Scalar> & x, Vector<Scalar> & y) const;

void applyAdj(const Vector<Scalar> & x, Vector<Scalar> & y) const;

as well as public methods exposing the domain and range spaces:

const Space<Scalar> & getDomain() const;

const Space<Scalar> & getRange() const;

and a clone method:

LinearOp<Scalar> * clone() const;

15

along with constructors which initialize whatever subclass data members these implemen-
tations require. For example, domain and range Spaces might be passed by reference to
the constructor. and stored as const Space & data members. A typical implementation
of the clone method calls the subclass copy constructor on *this.

A typical use of the methods exposing domain and range is to generate workspace, for
example:

Vector<Scalar> x(A.getDomain());

RVL also supplies overloads of the LinearOp::applyOp methods which include linear
combination with a vector, i.e.

y ← αAx + βy

and the analogue for the adjoint. These overloads are provided default implementations
in the base class, which may be overridden to supply a degree of loop fusion. This device,
popular in other OO numerics libraries, is less useful than one might think; annoyingly
often, algorithms require access to Ax as well as to the linear combination, so nothing
is gained. The Krylov step (1) is an example of this phenomenon: since the result of
the operator-vector product is needed as a factor in an inner product, nothing is gained
by fusing the product with a vector addition as is needed in the line following the inner
product.

In fact the problem which this overload occasionally solves is an instance of a very
important open problem in computer science, that of cross-type method optimization. A
good solution seems to be some way off. In the meanwhile, the preferred RVL solution
is to write nonlinear operator subtypes (note that the apply overloads actually define
nonlinear maps!) and provide their implementations with appropriately fused loops, for
example to output the inner product and linear combination appearing in (1) as the result
of a single instruction, when utility warrants.

To facilitate application-building, LinearOp also implements a checkAdjointRelation
method. This method is an example of a built-in unit test, a device which RVL uses wher-
ever possible (as did HCL - this test was an attribute of HCL LinearOp as well). This
test checks internal consistency between application of the operator and its adjoint, by
choosing random vectors in domain and range, calling apply and applyAdj, computing
inner products, and reporting the results on the stream argument. The return value
is false when the test succeeds, i.e. encounters no problems, meaning that the obvious
pair of inner products differ relatively by less than tolfac times the machine epsilon for
the scalar type. Failure of this test, or any exception thrown during execution of the
method, causes the return value to be true (in particular, exceptions are trapped within
checkAdjointRelation). This structure leads to a very simple regression test template:

int main() {

RVLRandomize<double> rnd;

// initialize a linear op

if (op.checkAdjointRelation(rnd,cerr)) exit(1);

}

16

Random initialization is not a basic linear algebra function, and has been excluded from
the Vector interface. Therefore it must be implemented as a FunctionObject and passed
as an argument to the test method. As a corollary, the linear operator class does not guar-
antee correctness of this function object - it is external. The contract between the algo-
rithm writer (in this case also the class designer!) and the user is this: if the user supplies
a function object which randomly initializes the components of a LocalDataContainer,
then this method reveals whether the implemented operator and its adjoint, applied to
random vectors, produce results which stand in the correct relation vis-a-vis the inner
product. This sort of guarantee is maximal.

Some software experts opine that unit tests such as checkAdjointRelation should
be implemented as standalone (nonmember) functions, rather than as class methods. No
obstacle exists to separating this test from the LinearOp class. However the test seems
to us an integral attribute of the type, therefore appropriately implemented as a method.

Nonlinear functions and evaluation objects

The definitions of types for general scalar- and vector-valued functions is inevitably
more complicated: while the derivative of a linear map is itself, and higher derivatives
vanish, RVL must find some way to represent at least the first two derivatives of a general
function as operator-valued functions. An immediate complication is that computations
of the value of a function and of its derivatives tend to share intermediate results. For
example, a finite element simulator will need mesh generation, stiffness matrix assembly,
etc., and the derivatives (“sensitivities”) may well require precisely the same data. How-
ever not all of these values are necessarily needed at any one point in a program. For
example, a typical line search method will require a gradient for computation of a search
direction, but then undertake a line search which may require only function values. To
avoid (possibly) very expensive redundant computation, some means is needed to keep
consistent sets of intermediate results, depending on the evaluation point, between calls
for values. Since a function may be evaluated at many points, a single object representing
a function does not offer a convenient framework to meet this need.

HCL solved this problem through the introduction of Evaluation types. An Evaluation
expresses the jet, i.e. the sequence of derivatives, of a function at a point. Since an
Evaluation is an object with persistent state, and depends on both an evaluation point
and on a function to be evaluated, all of the intermediate data can be stored without
fear of internal inconsistency. In our opinion, the introduction of Evaluation types was
one of HCL’s two main contributions to object oriented numerics, the other being the
recognition of the central role of vector space as a computational type.

Other groups have proposed similar solutions to the evaluation problem. For example,
the NOX project at Sandia National Laboratories uses a type very similar to Evaluation,
which they call a Group - an object which groups together a function, its value, and the
values of its derivatives at a point (Kolda and Pawlowski, 2003).

RVL Evaluation objects are an evolution of HCL’s. Most importantly, RVL Eval-
uations are concrete: the application developer need only implement a Operator or

17

Functional object, and RVL supplies the necessary Evaluation code. Semantically, RVL
Evaluations represent a function’s value at a variable argument, i.e. f(x) for variable x.
The data contained in x may change within its mathematical scope, and with it the value
f(x), but in f(x) these are dynamically linked. In contrast to HCL, which required a new
Evaluation object for each new argument value, and NOX, which requires the algorithm
writer to manually force an update of the value upon change in argument value, RVL
Evaluations automatically recompute values when arguments change.

RVL Evaluations are instances of the Facade pattern, reminiscent of Vector. In-
ternally, a (fully initialized) RVL Evaluation is a pair consisting of a reference to an
external Vector, and an independent (internal) copy of the object representing the func-
tion (Operator or Functional). All access to function values in RVL occurs through
Evaluations. Evaluations are handles to function types, and use their Vector member to
tell the function how to behave (where to evaluate itself), just as Vector uses its Space

reference to tell its DataContainer how to behave like a vector.

RVL Evaluation classes manage the storage of function results: they retain values in
data members and return references to them. In order to avoid the dangling reference
problems that would otherwise result, all data members exposed by reference are allocated
on the stack, i.e. their lifetimes are identical to those of the Evaluations that own them. It
might be objected that some results could contain significant data (eg. a Vector such as
a computed gradient), whence their allocation should be deferred until possible use. Such
a strategy would require dynamic allocation of the these results, and ultimately reference
counting. However, member initialization of a gradient Vector, for example, does not
immediately allocate its DataContainer data member: this occurs only when the Data-

Container is first written. This strategy accomplishes the desired goal - for example,
if only Functional values are required, memory for gradient data is never allocated -
without requiring dynamic allocation of high-level constructs like Vector or the attendant
need for bookkeeping of shared references.

An objection to this design should immediately occur to the reader: what is to guar-
antee that the referenced evaluation point remains consistent with the results managed
by the Evaluation object? Use of const cannot ensure this consistency, as the relation
not defined at compile time.

RVL solves this problem by introducing a watch relationship between an Evaluation

object and its reference evaluation point Vector which is

• transparent to the RVL application developer;

• (because it is) implemented in the base classes;

• a run-time relation between internal states, rather than a compile-time language
feature;

• secure, because the data on which it depends is well-encapsulated.

18

The watch relationship is an instance of the Observer pattern. It works as advertised
because the only public access to a Vector’s internal state is through fully implemented
methods of other RVL classes : the non-const overload of Vector::eval, the several
linear algebra methods of Vector, and the value access methods of the various map-
ping classes, such as LinearOp::applyOp and OperatorEvaluation::getValue(). These
methods invoke the version update method on which the watch relation is based. Because
RVL allows no other public way to change the state of a Vector, other than invocation
of these methods, the user is assured that Evaluations maintain the natural dynamic
dependence of function values on arguments.

Functional and FunctionalEvaluation

We will describe the scalar-valued function class Functional and its associated evalu-
ation type, FunctionalEvaluation, in detail. The structure of the corresponding classes
for vector-valued functions is precisely parallel.

Building a Functional involves implementing six methods, four of these protected,
and appropriate constructors. The protected clone method is a virtual copy constructor:

virtual Functional<Scalar> * Functional<Scalar>::clone() = 0;

The usual subclass implementation uses the subclass’s copy constructor in the obvious
way.

The heart of a Functional is the computation of value, gradient, and Hessian, encap-
sulated in the other three protected methods:

virtual void Functional<Scalar>::apply(const Vector<Scalar> & x,

Scalar & val) const = 0;

virtual void Functional<Scalar>::applyapplyGradient(const Vector<Scalar> & x,

Vector<Scalar> & g) const = 0;

virtual void Functional<Scalar>::applyapplyHessian(const Vector<Scalar> & x,

const Vector<Scalar> & yin,

Vector<Scalar> & yout) const = 0;

Since evaluation will take place within independent copies or clones of a function type
instance, one clone for each evaluation point, the function types are intended to store all
intermediate data needed in any evaluation, in principle as write-once, read-many data.
The base Functional class makes no attempt to specify the precise form of this stor-
age, of course: it simply provides pure virtual interfaces for evaluation of a function and
some of its derivatives. Since a Functional instance is intended to be cloned, an effi-
cient implementation will allocate storage for intermediate data dynamically, as needed.
These allocations typically occur in the bodies of the Functional::apply method defi-
nitions. Intermediate data, once initialized, can be regarded as fixed for the life of the
instance, since the evaluation point on which it depends is bound to the Functional

instance through an Evaluation object, as explained in the last subsection. . Therefore,

19

the Functional::apply methods should be accessible only to Evaluation objects. Ac-
cordingly, the apply methods are protected, and the FunctionalEvaluation class is a
friend of Functional. Essentially the only friend declarations in RVL make Evaluation
types friends of their associated function types.

Of the two public virtual methods getDomain returns a const Space reference. It
must be implemented in any instantiable subclass, usually by returning a reference to a
data member. The other public method, which should often be overridden, is

virtual Scalar getMaxStep(const Vector<Scalar> & x,

const Vector<Scalar> & dx) {

return numeric_limits<Scalar>::max();

}

This method represents our attempt to solve a difficult problem in scientific computation:
the description of more or less arbitrary subsets of high dimensional spaces. Since the
domain of an arbitrary function can be such a set, we are faced directly with this problem.
In view of the intended use in optimization, HCL chose to adopt an implicit approach,
including a method in the function classes returning signed distance to the boundary of
the domain in a specified direction, from a specified point. RVL has also adopted this
approach. ...

The methods Functional::checkGradient and Functional::checkHessian are unit
tests, and are implemented in the base class. They estimate the convergence rate of a
second order finite difference approximation to the directional first, respectively second,
derivative to that produced by calls to the apply methods. These rates should converge
to 2, and it is usually possible to catch coding errors rather quickly by running these tests.
Since the structure of the tests is independent of the particular function, it is possible to
code them in the base class and so provide one-line access to the application developer.

A natural construction of a Functional subtype might rely on the services of several
appropriate FunctionObject and FunctionObjectRedn instances to implement its apply
methods. RVL provides a StdFOFunctional (partially implemented) subclass which fa-
cilitates this type of construction. To take advantage of any data shared between value,
gradient, and Hessian evaluation, these FunctionObject and FunctionObjectRedn ob-
jects will need to share access to an external object which serves as a repository for the
shared data.

In contrast to a Functional subclass, which requires quite a bit of programming,
FunctionalEvaluation is completely implemented. The user need only construct one:
given a Functional f and a Vector x, the evaluation is simply FunctionalEvaluation

fx(f,x). Public methods of FunctionalEvaluation provide access to the domain Space

(delegation to its Functional data member) and access to the results:

Vector<Scalar> & getPoint() const;

Scalar getValue();

Vector<Scalar> const & getGradient();

LinearOp<Scalar> const & getHessian()

20

The const method FunctionalEvaluation::getPoint() returns a reference to the eval-
uation point. Since the evaluation point is mutable - for instance, may be updated in the
course of an iterative algorithm - the reference is non-const. The FunctionalEvaluation
value access methods, on the other hand, cannot be const as the internal state of the
object may change on invoking them. However the latter two return const references -
references for avoidance of data motion, const because algorithms which use them should
not update them except indirectly, by updating the evaluation point.

The vector-valued function class Operator and its associated evaluation class work
in a precisely similar way. We refer the reader to the reference guide for details. While
Functional provides access to the second derivative, Operator is equipped only with the
first derivative in the current release. This is sufficient to define Newton’s method for
nonlinear equations, and secant and Gauss-Newton or Gauss-Newton-Krylov methods for
nonlinear least squares optimization. Addition of higher derivatives to these interfaces is
straightforward, provided that appropriate multilinear operator classes are defined. HCL
provided a bilinear operator class and a second derivative interface for vector valued
functions. If such augmentation proves useful it will be added to subsequent versions of
RVL.

A Quasi-Newton Algorithm Expressed in RVL

The core code of a limited memory quasi-Newton (BFGS) implementation shows a
typical use of Functional, FunctionalEvaluation, and other core RVL classes. For a
mathematical description of this algorithm, consult (Nocedal and Wright, 1999).

In this code, the Vectors x and xprev represent the current and previous search points.
The LinearOp object H stores a BFGS inverse Hessian approximationThe update of H re-
quires both the current and previous gradients, so another Vector, gprev, is also provided
for gradient storage. The search direction is dir, and fx is a FunctionalEvaluation ob-
ject representing the 2-jet of the function to be optimized at the search point x. Note
that both xprev and gprev must be independent objects, not dependent on x or fx, so
the Vector::copy invocations are mandated by the logical structure of the algorithm.

The line search is encapsulated in the Algorithm object ls. The Algorithm package,
an offshoot of the RVL project described in more detail below, defines this type: the
chief attribute of an Algorithm is that you can run it, and the run terminates, either
successfully or not, as signified by the return value of the run method (Padula, 2004).
Note that the BFGS algorithm itself is also an Algorithm.

Functional<Scalar> f;

Vector<Scalar> x;

...

FunctionalEvaluation<Scalar> fx(f,x);

...

bool run() { try {

// compute current search direction

21

H.applyOp(fx.getGradient(), dir);

dir.negate();

// copy current iterate, gradient

xprev.copy(x);

gprev.copy(fx.getGradient());

// Line Search - will typicall update x, hence fx!

ls.set(xprev, x, dir, fx);

if(! ls.run()) { ... } // throw exception

// update inverse Hessian approximation

H.update(xprev, x, gprev, fx.getGradient());

} catch (RVLException & e) { ... }

return true;

}

The externally defined line search object ls acquires references to the base point, search
direction, and function to be evaluated via its set method. Whenever the search point
Vector x is updated, for example in the line search (ls.run()), the Functional-
Evaluation fx updates its results.

A somewhat more involved illustration of the use of these classes is the run method
core of a simple backtracking linesearch algorithm, displayed below with some inessen-
tial detail stripped out. Construction of this particular line search object takes the
FunctionalEvaluation fx, a maximum number of steps, a step tstep which is managed
by a linesearch superclass, and a step reduction factor gamma. The linesearch superclass
also supplies a method to check for steps that are too small.

Vector<Scalar> & x = fx.getPoint(); // current iterate

Vector<Scalar> x0(x); // base point of search (copy construction)

Scalar fval = fx.getValue();; // value of f(x) at base

Scalar gfdx = dx.inner(fx.getGradient())); // descent rate at base

Scalar cgfdx = con*gfdx; // scaled descent rate

Scalar maxstp = fx.getMaxStep(dx); // step to boundary of domain

if (gfdx > 0.0) { return false; } // not a descent direction

tstep = ... // code to set initial step

// check that step is not too small

if (!this->checkMinStep()) { return false; } //

// first update

x.copy(x0); x.linComb(tstep, dx);

22

LinCombOp

Operator
OperatorEvaluation

Vector

DerivEvaluation
LinearOp

getDomain()

apply()

applyDeriv()

applyAdjDeriv()

<<friend>>

*

F

gradient

1 1

1 1

1

getRange()

ops

*

2

getOp() getDomain()

getRange()

apply()

applyAdj()

1value1

point* 1

<<friend>>

Fig. 3. Structure of the RVL Operator class.

// while not sufficient decrease, shrink step

int bt = 1; // number of backtracks

while(fx.getValue() > fval + tstep*cgfdx &&

this->checkMinStep() &&

bt <= maxsteps) {

tstep *= gamma; x.copy(x0); x.linComb(tstep, dx); bt++;}

// insufficient decrease or too many steps

if (fx.getValue() > fval + tstep*cgfdx &&

this->checkMinStep()) { x.copy(x0); return false; }

// sufficient decrease but step too small

if (!this->checkMinStep()) { x.copy(x0); return false }

// successful line search

return true;

}

Note that the first line defines x as an alias for the evaluation point of the Functional-

Evaluation object fx, and that x is updated via linear combination in the line commented
”first update”. Consequently, calling getValue on fx a few lines later entails recomputa-
tion of all results encapsulated in fx. We emphasize that this dependence of the state of
fx on the state of x is automatic, requiring no explicit instruction to be inserted in the
algorithm expression.

23

PRODUCTS AND COMPOSITIONS

Virtually all scientific data structures other than the very simplest are Cartesian prod-
ucts. Also, the functions and operators appearing in simulation may often be compositions
or linear combinations of simpler operators and functions. RVL provides standardized
constructions of these derivative types, which are helpful in application construction and
especially useful in rapid prototyping exercises.

Product Data Structures and Vector Spaces

RVL’s realization of Cartesian product data structure is the ProductDataContainer

interface. ProductDataContainer provides abstract access to components of a Cartesian
product DataContainer , and defines evaluation of FunctionObjects by delegation to the
components. ProductDataContainer is a Composite design, combining a set of objects
of a given type into another object of the same type.

A typical use case for the Visitor pattern is delegation of Visitor acceptance to the
factors of a Composite Element. ProductDataContainer implements this use case: Eval-
uation of a FunctionObject proceeds through delegation to the factor data containers,
to which operator[] provides access. That is, the action of a FunctionObject on a
Cartesian product of DataContainer s is formally block diagonal. Since FunctionOb-

jects have persistent internal state, in fact non-diagonal actions are possible, but the
interface is designed specifically to make block diagonal actions easy to implement.

A StdProductDataContainer child class implements this type in the obvious way (as
a wrapper around a std::vector of DataContainers), but the base class leaves the key
methods getSize() and operator[] pure virtual. We have used this freedom to build an
out-of-core seismic data class, for example, which subclasses ProductDataContainer in a
natural but non-standard way. Distributed DataContainers may provide other examples
of nonstandard ProductDataContainers.

The abstract base class ProductSpace represents the Cartesian product of vector
spaces. This base class leaves the factory method buildDataContainer virtual, and adds
size (int getSize() const) and component (const Space<Scalar> & operator[](int

i) const) access methods, both pure virtual. The other (linear algebra and comparison)
methods of the Space interface are implemented in terms of these latter two methods.
Note particularly that this implicitly diagonal implementation of the inner product is
certainly not mandatory, whereas there is little choice in the structure of the (say) the
linear combination implementation. Non-diagonal Gram matrices may be implemented
as overrides of the default implementation in subclasses.

RVL defines a natural standard StdProductSpace subclass, using std::vector and
StdProductDataContainer, which works in the obvious way.

There are no ProductVectors in RVL, just Vectors in ProductSpaces, A Components

class provides access to components as Vector instances, via the int getSize() const

and Vector<Scalar> & operator[](int i) (both const and non-const) attributes of a

24

product structure. Components is another Facade type. To instantiate a Components ob-
ject, you must first instantiate a Vector:

Vector<Scalar> v(sp);

Components<Scalar> cv(v);

for (int i=0;i<cv.getSize();i++) { pv[i].eval(...); }

The Space appearing in this construction need not necessarily be a ProductSpace. If not,
then the Components object constructed on a Vector in this space has a single component.

The ProductSpace construction can be used recursively, i.e. the factors of a Product-

Space may themselves be Cartesian products.

Linear Combinations and Compositions of Functions

Both linear combination and composition of functions occur naturally in many ap-
plications and algorithms. RVL provides concrete subclasses of the function base classes
implementing these concepts. These classes are intended to provide easy construction of
various composite functions.

For example, LinCombFunctional builds a linear combination of two functions, as
might occur for example in construction of a regularized objective function for parameter
estimation. Given two Functional instances f1 and f2 implementing functions f1 and
f2, the linear combination a1f1 + a2f2 is realized as

Scalar a1 = ...

Scalar a2 = ...

LinCombFunctional<Scalar> lc(a1,f1,a2,f2);

The summand Functionals must of course have the same domains, and this is checked
as part of the construction.

The linear combination constructs for vector-valued functions, LinCombOperator and
LinCombLinearOp, work the same way.

Composition of operators is a useful tool in application-building: various stages of a
simulation may be built and tested independently, then composed to render the correct
mathematics. If X, Y, and Z are Hilbert spaces, f : A→ Y and g : B → Z are functions
with domains A ⊂ X, B ⊂ Y , and f(A) ⊂ B, then the composition g ◦ f : A → Z is
well-defined by g ◦ f(x) = g(f(x)). If f and g are Operator objects with f.getRange()

== g.getDomain(), then RVL defines a composition OpComp<Scalar> gof(f,g). Note
that Operator::getDomain() actually returns the Space of which the domain of the rep-
resented operator is a (possibly proper) subset. Unless the domain is the entire space,
therefore, additional tests beyond the use of Space::operator== are essential to guaran-
tee sensible computations.

This issue does not exist for linear operators, whose domains are their entire domain
Hilbert spaces. Thus checking that A.getRange() == B.getDomain() is sufficient to
guarantee success of the composition LinearOpComp BoA(A,B).

25

We explained earlier that subclassing LinearOp from Operator is inconvenient for both
mathematical and computational reasons. However it is frequently useful (and mathemat-
ically reasonable) to view a linear operator as a nonlinear operator. RVL offers a wrapper
class, LNLOp, which constructs an Operator using the services of a LinearOp.

RVL also provides a class for composition of a scalar-valued function with a vector-
valued function. This combination occurs frequently in simulation-driven optimization
problems, as a means of defining objective functions. Various versions of least-squares ob-
jective functions occur often enough that RVL defines them as well, using this FcnlOpComp
constructor and other composites just described. For example, RegLeastSquaresFcnlGN
is constructed from RVL objects representing an operator F , a linear operator R with the
same domain space as F , a data vector d, and a regularization weight λ. The result is a
Functional representing the penalized least squares objective

x 7→
1

2
(‖F [x]− d‖2 + λ2‖Rx‖2)

Efficient evaluation of these composite functions mandates that they have direct access
to their constituent’s apply methods. It is for this reason that the apply methods of the
various function classes are protected, rather than private: for reasons explained before, it
is essential that these not be publicly accessible, but efficient composition demands limited
access across class boundaries. For compositions within one function class hierarchy, the
protected access mode does the right thing. For the composition of scalar- and vector-
valued functions, a friendship designation is necessary.

Despite the provision of direct access to apply, several inefficiencies are still built
into these constructions. Temporaries to hold intermediate results are an inevitable by-
product of this approach, as are multiple visits to data items where carefully optimized
implementations would require only one, or at least fewer. Thus the composite function
constructions in RVL may be more useful for rapid prototyping than for production code
construction, as they do not take advantage of implicit opportunities for data motion
optimization and loop fusion. Note that the RVL composite function classes implement
deferred evaluation - but at too high a level of abstraction to expose optimization op-
portunities. Despite these missed opportunities, we have found that for “large scale”
applications (in the sense explained in the introduction), the performance penalty ex-
acted by our composite constructions are usually not particularly onerous.

EXAMPLES

Newton’s method for complex polynomials

Newton’s method is an iteration defined for a differentiable map F : X → X of a
Banach space X over a field E: it produces a sequence xi defined by its initial member
x0 and the rule

xi+1 = xi −DF (xi)
−1F (xi).

When the sequence xi converges to a point at which the derivative DF is nonsingular,
the limit is necessarily a root of the function F .

26

Newton’s method is a test example for the Algorithm package. The RVL implemen-
tation uses a subclass of LinearOp which supplies the action of the inverse derivative:

template<class Scalar>

class LinearOpWithInverse: public LinearOp<Scalar>,

public Invertible<Scalar> {

...

public:

const LinearOp<Scalar> & getInv() const {...}

const LinearOp<Scalar> & getAdjInv() const {...}

}

Invertible is a mixin interface which adds appropriate protected apply methods to
implement the inverse and adjoint inverse operators. For Newton’s method proper, the
adjoint operators are not necessary, but since RVL is dedicated to calculus in Hilbert
space, they must be supplied anyway, for reasons already explained.

An OperatorWithInvertibleDeriv naturally supplies a LinearOpPairWithInverse

as the return value of its getDeriv() method. The RVL-Algorithm implementation of
Newton’s method looks like this:

NewtonSolverStep(OperatorEvaluation<Scalar> & opeval) {...}

bool NewtonSolverStep<Scalar>::run() {

Vector<Scalar> dx(opeval.getDomain());

const Vector<Scalar> & Fx = opeval.getValue();

const RVL::LinearOpWithInverse<Scalar> & DF =

dynamic_cast<const RVL::LinearOpWithInverse<Scalar> &>

(opeval.getDeriv());

DF.getInv().apply(Fx, dx);

Scalar one = ScalarFieldTraits<Scalar>::One();

x.linComb(-one,dx);

}

We’ve tried this out with a scalar polynomial map, i.e.

F (x)j = p(xj), j = 1, ..., n

in which p is an ordinary polynomial of a scalar variable. Implementation of a Functional

encapsulating this map is straightforward in terms of a DataContainer class that exposes
its data, and compatible FunctionObjects.

The choice of scala field is completely open: to emphasize that it is possible to work
with complex arithmetic in RVL, we chose E = C for this application, represented com-
putationally by std::complex<double>. The polynomial used in the example is quintic:

p(z) = z5 − 0.84z3 − 0.16z

27

Its roots are 0,±1,±4i. The test code sets the dimension n = 10, and initializes the
complex 10-vector x with pseudorandom numbers by evaluating an appropriate Func-

tionObject. The method terminates when the norm of the vector F (xi) drops below a
specified tolerance. All of the components of xi are then close to the roots of p, and the
usual quadratic convergence of Newton’s method is observed.

Of course the same computation could be performed for real polynomials with very
little change in the components - essentially just a change of template parameter in the
driver source. In particular, the Newton solver code (like other RVL-Algorithm classes)
requires no change whatsoever to change the field, as it is a template parametrized by
field type.

Seismic Velocity Analysis

One of the major steps in the standard industrial seismic processing stream is a process
called velocity analysis, in which collections of time series are subjected to parametrized
changes of variable. The object is to align the oscillations within the time series and
so reveal their coherence. The parameters in the change of variables are interpreted
as functions of seismic wave velocities, so are themselves physically meaningful. The
comprehensive reference (Yilmaz, 2001) explains this and many other aspects of industrial
seismic data processing.

Contemporary practice partly automates velocity analysis, but still requires consider-
able manual intervention. One of the authors (WWS) has proposed an objective approach
to this task (and related, more complex tasks) which turns it into an optimization problem
with regular objective (Symes, 1986; Symes, 1998). This objective involves differencing
pairs of time series after changes of variable, and the formation of the mean square of the
results:

J [v] =
1

2

∑

i,t0

|di+1(τi+1[v](t0))− di(τi[v](t0))|
2

The change of variable τi depends both on the time series di, or rather on its metadata
(data acquisition geometry and other attributes), and on the vector v of velocity pa-
rameters. Approximation of a change of variable for discrete data requires interpolation.
Local cubic interpolation proves to be sufficiently regular to yield reliable derivatives. The
gradient ∇vJ must also be computed.

We have implemented this algorithm using the RVL framework. The chief task, as in
other optimization applications of RVL, is construction of a Functional implementing
J [v] and its derivatives up to order 2. Because seismic data sets tend to be very large -
typical numbers of time series in one such data set range from tens of thousands to several
million, each time series having several thousand samples - out-of-core construction is
mandatory. Moreover, the metadata already alluded to is essential to proper handling
of the data. To encapsulate both data and metadata, we used a standard seismic data
exchange structure, the SEGY trace (Barry et al., 1980), as implemented in the Seismic
Unix (“SU”) library of data processing tools (Cohen and Stockwell, 2004). This public
domain library offers a wide variety of i/o and processing functions carefully coded in C

28

and based on the SEGY standard. It is widely used around the world in both academic
and industrial settings, and is a de facto standard open source data processing package.

We wrapped the SU SEGY trace i/o functions in RecordServer classes. These tem-
plates have get and put methods abstracting reads and writes of the template type, in
this case the segy struct defined in SU. The computation of J (and its gradient, which
in this case might as well be computed at the same time) proceeds by setting a random
access specialization of RecordServer (holding the data in a disk file) at start-of-file.
Then get is called until it fails, signaling EOF. On each successive pair of traces read the
computation described above is performed, and the result accumulated in J . The compu-
tation naturally resets itself when the begins and ends of data subsets are encountered at
the boundaries of which signal coherency is expected to fail. These boundaries are flagged
by the trace metadata.

The velocity is a physical field, with extent and distribution in space. To reflect this
reality, the parameter vector v is represented in our code by a Vector in a GridSpace,
a Space subclass based on the GridData subclass of DataContainer. The domain of the
Functional representing J is thus a GridSpace. Metadata carried along in a GridData

object (and the Vector that owns it) describes a regular grid in space (of dimensions 1, 2,
or 3 in this application). The GridSpace::inner function uses this metadata to properly
scale the inner product, for example, so that the computed gradient of J is stable against
changes in sampling.

To assess the overhead of calls through the RVL virtual functions, exception trace-
backs, and so on, we constructed a command from the components used in the compu-
tation of J , which simply performs the change of variable and outputs the results. To
make a convenient-to-use command in the “Unix filter” style of SU, we constructed a
StreamServer specialization of RecordServer which takes data from stdin and writes
to stdout, and use this as the data source/sink.

The function of this command is exactly the same as the SU command sunmo, with
even roughly the same approach to implementation of changes of variable via local poly-
nomial interpolation. We applied both the RVL and SU commands to process a data set
consisting of 24000 traces each with 1250 samples (a total data volume, with metadata, of
126 MB). This set, small by contemporary standards, required 28 s for either command
to run on an Apple Macintosh Powerbook (1 GHz G4 CPU, OS-X 3, gcc 3.4.3). To make
sure that we were not seeing merely i/o, we constructed a command that did just that,
copying the input stream to the output stream. This command required 22 s to execute
on the same data, leading us to conclude that slightly more than 20% of the execution
time in both RVL and SU change-of-variable commands was devoted to floating point
operations, the remainder to i/o. This comparison suggests that, at least in this case, any
overhead imposed by the RVL implementation is insignificant.

The computation of J and its gradient are considerably heavier in floating point arith-
metic than the mere change of variable, so that optimization using the RVL-Algorithm
implementation of Limited Memory BFGS (described above) is less i/o-bound. Achiev-
ing a reduction in gradient length of 10−2 for a very small data set of 2150 traces of

29

750 samples each required about 15 s to execute 12 quasi-Newton steps, again using the
Powerbook G4. It is impossible to compare this optimization to a pure SU (procedural)
implementation; for example, SU does not provide a derivative computation for its change-
-of-variables operator. However we believe that this algorithm, as we have implemented
it, is on par with contemporary industrial solutions in speed and reliability.

Of course the RVL-Algorithm optimization code required no change whatsoever to
accommodate out-of-core evaluation of the objective function. All such details are hidden
well behind the Functional - Vector interface. We have also used the RecordServer

classes to construct an out-of-core DataContainer subclass for SEGY seismic data and
a corresponding Space class. We have used these in other applications in which seismic
data plays a vector role, such as least squares model-based data fitting and sensitivity
estimation. These applications also required no change whatever in the RVL-Algorithm
code expressing optimization and iterative linear algebra algorithms.

Source Estimation for Steady State Diffusion

Coordinate–free algorithmic code should function correctly in either serial or parallel
computing environments - that is, should not require any modification in a port from serial
to parallel. As proof that the RVL classes can be used to produce code which is reusable
in this sense, we used an RVL - Algorithm implementation of the LBFGS quasi-Newton
algorithm, described in part in the preceding sections, to solve an advection–diffusion
optimal control problem in parallel.

This implementation uses parallel linear algebra tools from the Trilinos collection
(Heroux et al., 2003), adapting their interfaces to create RVL subclasses. We use Epe-
tra (Heroux, 2003) to define distributed DataContainers, and AztecOO (Heroux, 2004)
parallel linear solvers and preconditioners to create Functional objects. This leveraging
of other packages amounts to yet another sort of code reuse, possible because Epetra and
AztecOO have compatible interfaces and because RVL classes, being abstract, do not de-
fine conflicting interfaces. Such interoperability was another goal of the RVL project, as
mentioned in the introduction, and this example supports the conclusion that the design
achieves it, at least to some extent.

After a brief description of the physics of the advection–diffusion problem, we outline
the discretization approach and the conversion of the optimal control problem to an
unconstrained optimization problem, and overview the construction of an Functional

using Epetra and AztecOO. Performance of the code on a medium-sized cluster indicates
that parallel execution proceeds as expected - even though the abstract algorithm code,
expressed in RVL, is exactly the same as that used in serial solution of the same problem!

Advection–Diffusion Problem and Galerkin Discretization. The model used in
this example approximates the physics of planar steady-state passive transport and dif-
fusion of a substance with concentration y(x) through a domain Ω ⊂ R2, in a fluid with

30

velocity field c(x):

−ǫ∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω
y(x) = d(x), x ∈ ∂Ωd

ǫ ∂
∂n

y(x) = g(x), x ∈ ∂Ωn

where ∂Ωd ∩ ∂Ωn = ∅, ∂Ωd ∪ ∂Ωn = ∂Ω, c, d, f , g, r are prescribed, ǫ < 0 is a given
scalar, and n denotes the outward unit normal (Bartlett et al., 2005). The diffusion
constant ǫ is positive, and the boundary terms restrict either the concentration or the
flux at positions on the boundary of the domain. The RHS summand u(x) represents
the source of pollutant, an is to be estimated from measurements of y(x). For further
discussion of this problem, see Section 8 in (Quateroni and Valli, 1994) and Section 9 in
(Knabner and Angermann, 2003).

The 2D domain Ω used in this example models an airport terminal Figure 4. The
boundary set ∂Ωn represents vents in the climate–control system of the airport and I
impose a 0 concentration on the rest of the boundary ∂Ωd. The diffusion term is set
ǫ = 1e− 4.

Somewhat unrealistically, we assume that concentraion measurements ŷ(x) are sup-
plied for every point x ∈ Ω. Inference of the source u may be accomplished by minimizing
the mean square prediction error:

min
y,u

1

2

∫

Ω

(y(x)− ŷ(x))2dx +
α

2

∫

Ω

u2(x)dx

for some given data ŷ(x), subject to the steady–state advection–diffusion constraint ().

Finite–element discretization of advection–diffusion constrained problem leads to a
finite dimensional version of the optimization problem (??):

miny,u
1

2
(y− ŷ)T Q(y − ŷ) + α

2
uT Ru

s.t. Ay − Bu− b = 0
(2)

R is the discretization of either the identity operator (L2 Tikhonov regularization) or the
Laplace operator (H1 seminorm regularization).

Assuming A is nonsingular, a unique feasible point y(u) exists for each u, solving

Ay(u)− Bu− b = 0

Thus the constrained optimization problem (2) is equivalent to the unconstrained problem
of minimizing

F (u) =
1

2
(A−1(Bu + b)− ŷ)T Q(A−1(Bu + b)− ŷ) +

α

2
uT Ru (3)

A Newton-related algorithm for the solution of (3) requires the gradient of F , given by

∇uF (u) = BT A−T QA−1(Bu + b) + αRu

Computation of the discretized functional and gradient involves the application of linear
operators, linear–system solves, and some vector algebra.

31

Implementing Parallel Data Structures and Matrices using Epetra. The ar-
rays A, B, Q, b and R must be generated and stored, as they are used throughout the
solution of this problem. The Epetra library from the Trilinos collection (Heroux, 2003)
provides distributed array implementations within an object framework, useful both for
internal storage of arrays used in function and gradient evaluation, and for the internals of
suitable DataContainer and Space subclasses for this application. An ad-hoc “problem
holder” container class constructs three Epetra matrices and one Epetra vector, using an
Epetra Comm object passed to its constructor by the Functional constructor described
below. Epetra Comm objects encapsulate data layout and communication information
used by other Epetra components built by the problem holder. This AdvDiffProblem-

Holder also constructs the domain/range space of the linear system as an object of the
EpetraMultiVectorSpace subclass of RVL::Space, which contains a virtual constructor
for the corresponding DataContainer subclass. Details are described in Appendix B.

To populate the finite element matrices A, B, ... we made use of the Trilcode package
developed by Denis Ridzal (Bartlett et al., 2005). This package fetches mesh information
from a file (created by yet another external meshing package), creates element matrices
using the mesh data, assembles them into global stiffness matrices and the like, and stores
them in the Epetra array objects supplied by the AdvDiffProblemHolder.

A Functional subclass defines computationally the optimization problem (3). Con-
struction of this AdvDiffFunctional follows the Facade pattern described above (the
class StdFunctional), which combines FunctionObjects and FunctionObjectRedns to
produce the behaviour of a Functional. The FunctionObjectRedn defining the func-
tion evaluation and the FunctionObjects defining the gradient and Hessian share a
reference to a common AdvDiffProblemHolder. The AdvDiffFunctional owns the
AdvDiffProblemHolder, constructing it using an Epetra Comm passed from the driver,
and builds the FunctionObjects as they are needed. The functional also stores the
computed value of the state y(u) to avoid recomputing it.

Implementing Function Objects and Functionals using AztecOO. The bulk of
the computational work involved in evaluation of these function objects goes into solution
of linear systems: computation of the feasible point y(u) = A−1(Bu + b), and of z =
A−T y(u) in the gradient calculation. We adapted the AztecOO linear solver package to
accomplish this task.

AztecOO is a package of object oriented interfaces to the Aztec solver library (Heroux,
2004), designed to work with Epetra data objects. Aztec is a linear solver framework,
aimed a parallel solution of large sparse systems. From the extensive list of solvers and
preconditioners offered by AztecOO, we chose to use GMRES in conjunction with one of
three preconditioners: Jacobi, Neumann, and additive Schwarz. See (Tuminaro et al.,
1999) for description and references.

The datum required to instantiate an AztecOO Solver is a “problem” object, in
this case a Epetra LinearProblem encapsulating Epetra representations of the matrix
A, right–hand side vector b, and a solution vector x of a linear system,. Creation and

32

35342210 45
y0

5

6

11

y

x
0 2311 83 1059594827170605550

2

3

9

8

Fig. 4. Airport model obtained from Sandia National Labs.

invocation of an AztecOO solver requires only a few lines of code:

AztecOO Solver(Problem);

Solver.SetAztecOption(AZ_output, AZ_warnings);

Solver.SetAztecOption(AZ_solver, AZ_gmres);

Solver.SetAztecOption(AZ_precond, AZ_Jacobi);

int res;

res = Solver.Iterate(1000,1e-12);

Computational Results The driver code for this exercise

1. constructed a Functional by following the steps described in the last two para-
graphs,

2. instantiated an LBFGS object from the RVL-Algorithm package, taking this Functional
as input to the constructor, and

3. invoked the LBFGS object’s run method.

The driver program was written SPMD style: the same code, including the RVL-Algorithm
code, ran on all processes. The RVL-Algorithm implementation of LBFGS was precisely
the code described in the preceding sections of this paper. It was not altered in any way
- not a single character was changed in any header file or implementation file - to adapt
it to SPMD execution.

The experiments reported here are based on the two-dimensional model of airflow in
a two-story airport terminal building, shown in Figure 4. The figure shows a roughly ‘H’
shaped cross-section of the building’s interior volume, with a large open well connecting
the two floors. Several air in- and outlets serve as sources and sinks for the flow. A
steady-state velocity field is determined for this configuration and used as input to the
convection-diffusion problem presented above.

Discretization by P1 finite elements gave a mesh with 1654965 elements and 832510
nodes. Roughly 1 GB of mesh data was stored on disk and read in as needed. For
the computational experiments reported below, the mesh is partitioned into 16, 32, and

33

64 subdomains, A natural domain decomposition scheme was implemented using Epetra
utilities.

The platform for the parallel execution tests was the Rice Terascale Cluster, consisting
of 272 Intel Itanium 2 64 bit processors, each running at roughly 900 MHz. Of several
interconnect possibilities, we chose to use Myrinet for its relatively low latency.

We tested all combinations of 16, 32, 64 processors, 10−2, 10−4, 10−8 GMRES con-
vergence tolerances, and three different preconditioners. The tolerances are given to
AztecOO, which will stop GMRES when ‖r‖/‖r0‖ < tol or a specified maximum number
of iterations have been run (we set this maximum at 1000). Occasionally, the 10−8 toler-
ance could not be satisfied in the maximum permitted number iterations. In that case,
the approximate GMRES solution was accepted anyway.

The three preconditioners (provided by AztecOO) and default parameter selections
were:

• k–step Jacobi, k = 3.

• Neumann series polynomial of order k, k = 3.

• An additive Schwarz preconditioner, tailored to domain decomposition problems;
each processor approximately solves the local subsystem using Saad’s ILUT.

Figure 5 demonstrates close to linear speedup, except for the cases using the addi-
tive Schwarz preconditioner, which performs so well that the communication overhead
destroys the expected speedup. These are precisely the results one would expect. Thus
the performance of the application is dominated by the usual factors which regulate par-
allel computation. Regardless of these factors, the optimization algorithm can use the
functional values and gradients it gets to find a local minimum, which in this case must
be global since the problem to be solved is a convex quadratic program. Virtual function
call overhead imposed by the RVL layer of the application appears to have no significant
effect on performance.

PROGRAMMING NOTES

RVL proper consists entirely of header files. The same is true for LocalRVL, described
in Appendix A. Most of the classes composing RVL are actually class templates, and most
build systems require template definitions to be supplied in headers. Thus installation of
RVL and LocalRVL amounts to unpacking the tarballs. Both packages contain Doxygen-
generated documentation in HTML format, providing syntax and usage details about
every method of every class, and inheritance diagrams.

A small unit test suite is also available, which may be useful as a preliminary exercise
in installation of RVL applications.

RVL “calculus” classes - Space, Vector, Functional, Operator, LinearOp, and the
Evaluation classes - should not be allocated dynamically, both because no compelling

34

16 32 64
10

0

10
1

10
2

10
3

Number of Processors

M
in

ut
es

Runtime using various preconditioners under various tolerances on the linear solver

Jacobi 1e−2
Jacobi 1e−4
Jacobi 1e−8
Neumann 1e−2
Neumann 1e−4
Neumann 1e−8
additive Schwarz 1e−2
additive Schwarz 1e−4
additive Schwarz 1e−8

Fig. 5. Runtimes using various preconditioners, GMRES residual tolerance = 10−8.

35

2 4 8
10

0

10
1

10
2

10
3

Log of Solution Tolerance

M
in

ut
es

Runtime increases per solution tolerances

Jacobi 16
Jacobi 32
Jacobi 64
Neumann 16
Neumann 32
Neumann 64
additive Schwarz 16
additive Schwarz 32
additive Schwarz 64

Fig. 6. Runtime as function of GMRES residual tolerance.

36

reason can exist to do so and because dynamic allocation implicitly contradicts the design
principles of RVL. In fact, dynamic allocation of these types, and implicitly of their
subtypes, is disallowed: we have made operator new private in these classes. This design
decision is not unique to RVL (see for instance (Meyers, 1996)), but it is certainly unusual,
and some explanation seems in order.

Use cases which might seem at first glance to suggest dynamic allocation of Space,
Functional, Operator, or LinearOp subclass instances are either incompatible with the
mathematics-derived semantics of these classes, or already covered by derived types. For
example, a tuple of vector spaces, implemented as a std::vector<Space<Scalar> *>

the components of which might be allocated on the heap, might at first blush seem
useful. However std::vector realizes the semantics of Cartesian product only in the set-
theoretic sense A tuple of spaces has in itself no meaning in the context of linear algebra
and calculus. A Cartesian product of spaces certainly does have mathematical sense,
but is not merely a Cartesian product in the sense of sets: it also inherits linear algebra
operations in a canonical way. RVL provides the ProductSpace class to accommodate
this abstraction.

The concrete core classes (Vector, the Evaluations) have constructors, and do not
require virtual construction. Each of them is logically dependent on other types (a vector
cannot exist in the absence of the space of which it is a member) and this dependence is
realized through the scope rules.

The reader will have noticed that abstract apply... methods of the function classes,
which must be implemented in any child class, are protected hence not accessible in ap-
plication code. This might seem strange - put a lot of effort into an implementation
that can’t be used directly. However, permitting public access to apply... would either
force on the user responsibility for implementing the Observer pattern relating Vector

and the Evaluation objects, or prevent implementation of this pattern altogether. With
apply... methods available only via the value access methods of Evaluations, the dy-
namic dependence of the Evaluation on the evaluation point can be relegated to the base
classes.

One other peculiar feature of RVL deserves comment. Most other OO numerics li-
braries constrain their space objects (or more usually their vector objects, as most such
libraries provide no explicit space representation) to report a dimension. RVL does not
provide this information at the level of Space, for a straightforward reason: it is not always
possible, and we reject base class interface features which cannot be realized in all useful
instances. To demonstrate the infeasibility of assigning a dimension to every space repre-
sentable as an RVL::Space, we have created a Space subclass PolynomialSpace, which
realizes the vector space of polynomials (or, equally well, finite sequences) over a field.
Any two of these can be added, and even multiplied, or multiplied by a scalar, to produce
another. They form a vector space, and any vector lies in a finite dimensional subspace
(a trivial statement). However the vector space represented by PolynomialSpace is infi-
nite dimensional, i.e. has no dimension, even though it is computationally representable.
Q.E.D.

37

CONCLUSION

The central goal of the RVL project is: to create a class hierarchy that mimics as
closely as possible the basic concepts of calculus in Hilbert space, while deferring many
implementation details as possible to subclasses separate from this hierarchy. It should be
possible to express coordinate free algorithms of linear algebra and optimization entirely
in such a type system, without reference to the deferred details. Moreover, the algorithms
so expressed should be be reusable across a wide variety of applications, data storage
modes (core, disk, network...) and execution strategies (serial, client-server, SPMD,...).
By “reusable” we mean without any alteration of source code whatsoever.

We have demonstrated a feasible design for a C++ class library achieving these goals.
Typical algorithms and applications illustrate the reuse of algorithm code which is the
project’s chief aim. We have implemented relatively simple but representative algorithms
of the target class, and reused them in a variety of applications and computing envi-
ronments. The programming style is a simple as possible: each line of code mimics a
corresponding statement in a typical mathematical algorithm description, and the essen-
tial business of memory management, data access, and function implementation is hidden
from view. Interfaces behind which to hide these details are provided in a canonical and
minimal way. We believe that this design approximates conformance to the Einsteinian
dictum: “...as simple as possible, but no simpler”.

RVL does not pretend applicability beyond the semantic scope specified in the goal
statement. For example, it does not model calculus in Banach space. The norm function
supplied in the vector base class is intended to represent a Hilbert norm, derived from an
inner product. Other norms may be provided, of course - they are amongst the variety
of functions which may be hidden behind the FunctionObject interface. However these
are not built into the fabric of Space, which is a computational token for Hilbert space.
We make this restriction for one reason alone: calculus in Hilbert space is the abstract
framework upon which nonlinear programming is founded.

A more interesting extension might be to functions of a discrete variable and integer
programming. We have experimented with such an extension, and there seems to be
in principle no obstacle. Interior point algorithms for linear programming can certainly
be expressed in RVL; we have implemented a primal IP algorithm in several variants.
On the other hand the simplex method appears to resemble dense matrix linear algebra
algorithms: it can be encapsulated in an RVL-like object but is not amenable to useful
expression in coordinate-free fashion. It remains to be seen whether concepts such as con-
vex relaxation, branch-and-bound, cutting planes, etc. are sufficiently abstract to benefit
from RVL-like treatment. Since many applications of simulation driven optimization actu-
ally have significant discrete aspects, an extension encompassing mixed integer-nonlinear
programs could conceivably be very useful.

38

Acknowledgements

This work was supported in part by National Science Foundation grants DMS-9973423,
DMS-9973308, and EAR-9977697, by the Los Alamos National Laboratory Computer Sci-
ence Institute (LACSI) through LANL contract number 03891-99-23, by the Department
of Energy EMSP grant DE-FG07-97 ER14827, by ExxonMobil Upstream Research Co.,
and by The Rice Inversion Project (TRIP). TRIP sponsors for 2003 were Amerada Hess
Corp., Conoco Inc., Landmark Graphics Corp., Sensorwise Inc., Shell International Re-
search, and Western Geco.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. (1992). LAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia.

Barry, K., Cavers, D., and Kneale, C. (1980). SEG-Y - recommended standards for digital
tape formats. In Digital Tape Standards. Society of Exploration Geophysicists, Tulsa.

Bartlett, R., Heinkenschloss, M., Ridzal, D., and van Bloemen Waanders, B. (2005).
Domain decomposition methods for advection dominated linear–quadratic elliptic
optimal controlproblems. Technical report, Sandia National Laboratories.

Bartlett, R. A. (2003). MOOCHO: Multifunctional Object-Oriented arCHitecture for
Optimization, User’s Guide. Technical report, Sandia National Laboratory, Albu-
querque, NM.

Bartlett, R. A., Heroux, M. A., and Long, K. R. (2003). TSFCore 1.0: A package of
light-weight object-oriented abstractions for the development of abstract numerical
algorithms and interfacing to linear algebra libraries and applications. Technical
report, Sandia National Laboratories, Albuquerque, NM.

Bartlett, R. A., Van Bloemen Waanders, B. G., and Heroux, M. A. (2004). Vector
reduction/transformation operators. ACM Transactions on Mathematical Software,
30(1):62–85.

Benson, S., McInnes, L. C., and Moré, J. (2000). TAO: Toolkit for advanced optimization.
Technical report, Argonne National Laboratory, www-fp.mcs.anl.gov/tao/.

Cohen, J. K. and Stockwell, J. J. W. (2004). CWP/SU: Seismic Unix release no.37: a free
package for seismic research and processing. Center for Wave Phenomena, Colorado
School of Mines.

Deng, L., Gouveia, W., and Scales, J. (1996). The CWP object-oriented optimization
library. The Leading Edge, 15(5):365–369.

Douglas, C., George, D., and Henderson, M. (1994). Object classes for numerical analysis.
In OON-SKI ’94, pages 32–49. Proceedings of the Second Annual Object-Oriented
Numerics Conference.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, New York.

39

Gockenbach, M. S., Petro, M. J., and Symes, W. W. (1999). C++ classes for linking op-
timization with complex simulations. ACM Transactions on Mathematical Software,
25:191–212.

Heroux, M. A. (2003). Epetra home page. http://software.sandia.gov/trilinos/packages/-
epetra/.

Heroux, M. A. (2004). AztecOO User Guide. Sandia National Laboratories.

Heroux, M. A., Barth, T., Day, D., Hoekstra, R., Lehoucq, R., Long, K., Pawlowski, R.,
Tuminaro, R., and Williams, A. (2003). Trilinos: object-oriented, high-performance
parallel solver ligraries for the solution of large-scale complex multi-physics engi-
neering and scientific applications. Technical report, Sandia National Laboratories,
Albuquerque, NM.

Hoffman, K. and Kunze, R. (1961). Linear Algebra. Prentice-Hall, Inc., Englewood Cliffs,
N. J.

ISIS Development Team (1997). ISIS++: Iterative scalable implicit solver (in C++).
Technical report, Sandia National Laboratories, z.ca.sandia.gov/isis/.

Karmesin, S. (2000). POOMA: Parallel object oriented methods and applications. Tech-
nical report, Los Alamos National Laboratory, www.acl.lanl.gov/pooma/.

Knabner, P. and Angermann, L. (2003). Numerical Methods for Partial Differential Equa-
tions. Texts in Applied Mathematics, Vol. 44. Springer–Verlag, Berlin, Heidelberg,
New York.

Kolda, T. and Pawlowski, R. (2003). NOX: An object-oriented, nonlinear solver package.
Technical report, Sandia National Laboratories, Livermore, CA.

Langtangen, H. P. (1999). Computational Partial Differential Equations: numerical meth-
ods and Diffpack programming. Springer-Velag, New York, Berlin, Heidelberg.

Martin, R. C. (2002). Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall.

Martin, R. C., Riehle, D., and Buschmann, F. (1998). Pattern Languages of Program
Design 3. Addison-Wesley.

Meyers, S. (1996). More Effective C++. Addison-Wesley, New York.

Meza, J. (1994). OPT++: An object-oriented class library for nonlinear optimization.
Technical Report 94–8225, Sandia National Laboratories, Sandia National Laborato-
ries, Livermore, CA.

Myers, N. C. (1995). Traits: a new and useful template technique. C++ Report,
http://www.cantrip.org/traits.html.

Nichols, D., Dunbar, G., and Claerbout, J. (1993). The C++ language in physical science.
In OON-SKI ’93, pages 339–353. Proceedings of the First Annual Object-Oriented
Numerics Conference.

Nocedal, J. and Wright, S. (1999). Numerical Optimization. Springer Verlag, New York.

40

Padula, A. D. (2004). Object–oriented algorithm design for scientific computing. Tech-
nical Report 04-XX, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas, USA.

Pozo, R. (2004). Template numerical toolkit: home page. math.nist.gov/tnt.

Quateroni, A. and Valli, A. (1994). Numerical Approximation of Partial Differential
Equations. Springer, Berlin, Heidelberg, New York.

Symes, W. (1986). Stability and instability results for inverse problems in several-
dimensional wave propagation. In Glowinski, R. and Lions, J., editors, Proc. 7th
International Conference on Computing Methods in Applied Science and Engineer-
ing. North-Holland.

Symes, W. W. (1998). High frequency asymptotics, differential semblance, and velocity
analysis. In Expanded Abstracts, pages 1616–1619, Tulsa. Society of Exploration
Geophysicists.

Symes, W. W. and Padula, A. D. (2005). Rice vector library home page.
http://www.trip.caam.rice.edu/txt/tripinfo/rvl.html.

Symes, W. W., Padula, A. D., and Scott, S. D. (2005). A software framework for the
abstract expression of coordinate-free linear algebra and optimization algorithms.
Technical Report 05-12, Department of Computational and Applied Mathematics,
Rice University, Houston, Texas, USA.

Tech-X (2001). OptSolve++. Technical report, Tech-X Corporation,
www.techxhome.com/products/optsolve/index.html.

Tisdale, E. R. (1999). The C++ scalar, vector, matrix, and tensor class library standard
page. www.netwood.net/ edwin/svmt/.

Tuminaro, R., Heroux, M., Hutchinson, S. A., and Shadid, J. (1999). Official Aztec User’s
Guide: Version 2.1. Sandia National Laboratories.

Veldhuizen, T. L. (1999). Blitz++ home page. www.oonumerics.org/blitz.

Yilmaz, O. (2001). Seismic data processing. In Investigations in Geophysics No. 10.
Society of Exploration Geophysicists, Tulsa.

APPENDIX A: Using LocalRVL

As mentioned in the introduction, RVL itself defines no mechanism to access data,
leaving this task to subclasses of DataContainer, FunctionObject, and FunctionOb-

jectRedn. In this appendix we describe briefly a simple, portable collection of classes
which completes the Visitor hierarchies in RVL. We have used this LocalRVL package to
implement most of the applications described in this paper, and a number of others.

The simplest data access mode which can be made pure virtual yet incur negligible
performance penalty for large data sets is exposure of a pointer to data. The Local-

DataContainer class template provides natural access methods for arrays of DataType
elements:

41

int LocalDataContainer<DataType>::getSize() const;

DataType * LocalDataContainer<DataType>::getData();

DataType const * LocalDataContainer<DataType>::getData() const;

These are pure virtual in the base class LocalDataContainer, to give freedom of imple-
mentation but provide an interface for definition of general FunctionObject and Func-

tionObjectRedn subclasses which access data by pointer. A very simple RnArray con-
crete subclass stores an array of DataTypes, and serves as the base class for other con-
crete LocalDataContainer subclasses which add various types of metadata and access
to it, such as GridData for regular grids. Nonstandard implementations, not special-
izing RnArray, include the SEGY and Epetra DataContainer classes mentioned in the
Examples section.

As is typical for Acyclic Visitor “concrete Element” classes, LocalDataContain-

er evaluates only compatible subtypes of FunctionObject and FunctionObjectRedn,
tested via RTTI. For technical reasons we specify the interaction through so-called mixin
interfaces, LocalEvaluation and LocalReduction. The LocalDataContainer::eval

method downcasts its DataContainer arguments to LocalDataContainers, its Func-

tionObject argument to a LocalEvaluation (or its FunctionObjectRedn argument to
a LocalReduction), and invokes the evaluation method of the function object.

LocalFunctionObjects and LocalFunctionObjectRedns inherit the FunctionOb-

ject and LocalEvaluation, respectively FunctionObjectRedn and LocalReduction,
interfaces. The evaluation method is an overload of operator() in both cases. For
example, the generic LocalEvaluation evaluation method is

void LocalEvaluation<DataType>::operator()

(LocalDataContainer<DataType> & target,

std::vector< LocalDataContainer<DataType> const *> sources);

The similar method for LocalReduction lacks the first argument. Both are, of course,
pure virtual.

This interface is flexible but somewhat painful to use. LocalRVL supplies restricted
classes of LocalEvaluations and LocalReductions with specified numbers of arguments,
and the overwhelming majority of useful function objects conform to these interfaces.
For example, the BinaryLocalEvaluation mixin includes this specialized pure virtual
evaluation method:

void BinaryLocalEvaluation<DataType>::operator()

(LocalDataContainer<DataType> & target,

LocalDataContainer<DataType> const & source);

and implements the generic operator() method by delegation to the specialized one.

The BinaryLocalFunctionObject class inherits from FunctionObject and Binary-

LocalEvaluation. Since the generic operator() is implemented in the latter class, only

42

the specialized binary operator() need be implemented in a concrete child. For exam-
ple, a linear combination BinaryLocalFunctionObject, used to implement a concrete
LinearAlgebraPackage, has the obvious (stripped-down) operator() implementation

void operator()(LocalDataContainer<DataType> & y,

LocalDataContainer<DataType> const & x) {

int n = y.getSize();

// check size consistency

for (int i=0;i<n;i++) {

y.getData()[i]=a*x.getData()[i]+b*y.getData()[i];

}

}

the scalars a and b being set in the constructor. A natural LocalRVL specialization
of LinearAlgebraPackage uses essentially this FunctionObject to define linear combi-
nation for any Space whose DataContainer type is either a LocalDataContainer or a
recursive composite of LocalDataContainers. Another example is the RVLRandomize

class mentioned in several examples above, which is a UnaryLocalFunctionObject.

APPENDIX B: Adapting Epetra to RVL

Our treatment of the advection-diffusion inverse problem as a parallel SPMD applica-
tion used Epetra, a library of parallel linear algebra types developed at Sandia National
Laboratory and now part of the Trilinos collection (Heroux, 2003). We were able to write
adaptor code to access the facilities of Epetra objects within RVL objects, which greatly
eased the construction of this application.

The principal adaptation targets are Epetra Vector and Epetra MultiVector (Epe-
tra does not define a namespace, but uses the prefix Epetra to signify membership).
Epetra Vector exposes its data by pointer and array size, as regulated by an Epetra Comm

object: the pointer and size returned in any process refer to the part of the object’s
data stored locally, on the processor in question. Thus it was trivial to construct an
EpetraVectorLDC subclass of LocalDataContainer<double> (double being the only real
type admitted by Epetra), by making an Epetra Vector a data member and delegating
to its services. We also exposed a reference to the Epetra Vector member, for reasons to
be explained shortly.

Logically, an Epetra MultiVector object is an array of Epetra Vector objects of
identical size. It is therefore easy to give it the structure of a ProductDataContainer

(Symes et al., 2005; Symes and Padula, 2005). ProductDataContainer realizes the Com-
posite design pattern, which interacts with the Visitor pattern in a standard way (Gamma
et al., 1994), so that LocalFunctionObjects and LocalFunctionObjectRedns which act
on the factors have naturally defined actions on the ProductDataContainer. It is intrinsic
to the construction that this action executes correctly as an SPMD process.

Epetra has already implemented a variety of parallel computations, such as Euclidean
inner product, as Epetra Vector methods. To take advantage of this code base, we

43

wrapped a number of these methods in operator() methods of LocalFunctionObjects,
via downcast of its arguments to EpetraVectorLDC and delegation to the Epetra methods
called on the exposed Epetra Vector data members.

Having defined an appropriate DataContainer subclass, it is straightforward to build
a corresponding Space subclass EpetraMultiVectorSpace. The buildDataContain-

er method invokes the EpetraMultiVectorDC constructor, and the linear algebra meth-
ods are implemented via FunctionObjects and FunctionObjectRedns using the Epetra
parallel methods, as in the last paragraph.

44

