ON THE NON-STANDARD PODLEŚ SPHERES

ULRICH KRÄHMER

Abstract

It was shown in [1] that the C^{*}-completion of Podleś' generic quantum spheres $A_{q \rho}$ [4] is independent of the parameter ρ. In the present note we provide a proof that this is not true for the $A_{q \rho}$ themselves which remained a conjecture in [1]. As a byproduct we obtain that $\operatorname{Aut}\left(A_{q \rho}\right)=\mathbb{C}^{\times}$

1. Introduction

The quantum spheres of Podleś [4] constitute a family of algebras $A_{q \rho}, q \in \mathbb{C}^{\times}=$ $\mathbb{C} \backslash\{0\}$ not a root of unity, $\rho \in \mathbb{C} \cup\{\infty\}$ that can be considered as deformations of the complex coordinate ring of the real affine variety $S^{2} \subset \mathbb{R}^{3}$. They can be embedded as left coideal subalgebras into the standard quantized coordinate ring $\mathbb{C}_{q}[S L(2)]$ and become in this way the paradigmatic examples of homogeneous spaces of quantum groups. If $q \in \mathbb{R}$ and $\rho \in \mathbb{R} \cup\{\infty\}$, then $A_{q \rho}$ are $*$-subalgebras of the 'compact real form' of $\mathbb{C}_{q}[S L(2)]$. See e.g. [3] for details and more information.

It was shown in [1] that the C^{*}-completion of these $*$-algebras does not depend on ρ, but it remained a conjecture that this is not the case for $A_{q \rho}$ themselves. The present contribution gives a proof of this fact, see Theorem 1 below.

It is a pleasure to thank the authors of [1] for pointing out to me this problem and for all the other discussions we had.

2. The algebras $A_{q \rho}$ and some of their properties

Let $q \in \mathbb{C}^{\times}$be not a root of unity and $\rho \in \mathbb{C}$. Define $A_{q \rho}$ as the unital associative algebra with generators x_{-1}, x_{0}, x_{1} and relations

$$
\begin{equation*}
x_{0} x_{ \pm 1}=q^{ \pm 2} x_{ \pm 1} x_{0}, \quad x_{\mp 1} x_{ \pm 1}=q^{ \pm 2} x_{0}^{2}+\left(1+q^{ \pm 2}\right) \rho x_{0}-1 . \tag{1}
\end{equation*}
$$

Analogously one defines $A_{q \infty}$ by the relations

$$
\begin{equation*}
x_{0} x_{ \pm 1}=q^{ \pm 2} x_{ \pm 1} x_{0}, \quad x_{\mp 1} x_{ \pm 1}=q^{ \pm 2} x_{0}^{2}+\left(1+q^{ \pm 2}\right) x_{0} . \tag{2}
\end{equation*}
$$

The defining relations imply (see [3], p. 125 for the details) that the elements

$$
e_{i j}:=\left\{\begin{array}{ll}
x_{0}^{i} x_{1}^{j} & j \geq 0 \\
x_{0}^{i} x_{-1}^{-j} & j<0 .
\end{array}, i \in \mathbb{N}_{0}, j \in \mathbb{Z}\right.
$$

form a vector space basis of $A_{q \rho}$. It is immediate that $A_{q \rho}$ is \mathbb{Z}-graded,

$$
A_{q \rho}=\bigoplus_{j \in \mathbb{Z}} A^{j}, \quad A^{j}:=\operatorname{span}\left\{e_{i j} \mid i \in \mathbb{N}_{0}\right\}=\left\{f \in A_{q \rho} \mid x_{0} f=q^{2 j} f x_{0}\right\}
$$

We denote by I the ideal generated by x_{0} and by $\pi: A_{q \rho} \rightarrow A_{q \rho} / I$ the canonical projection. Using the basis $\left\{e_{i j}\right\}$ one sees that $I=x_{0} A_{q \rho}=A_{q \rho} x_{0}$.
Proposition 1. $A_{q \rho}$ is an integral domain and any invertible element is a scalar.

[^0]Proof. $A_{q \rho}$ can be embedded into the quantized coordinate ring $\mathbb{C}_{q}[S L(2)]$ ([3], Proposition 4.31) which has these properties ([2], 9.1.9 and 9.1.14).

Besides this we will need the well-known and easily verified fact that the following is a complete list of the characters of $A_{q \rho}$:

$$
\begin{aligned}
\rho \neq \infty, \pm i: & \chi_{\lambda}\left(x_{0}\right)=0, \chi_{\lambda}\left(x_{ \pm 1}\right)=\lambda^{ \pm 1}, \quad \lambda \in \mathbb{C}^{\times}, \\
\rho= \pm i: & \chi_{\lambda}\left(x_{0}\right)=0, \chi_{\lambda}\left(x_{ \pm 1}\right)=\lambda^{ \pm 1}, \quad \lambda \in \mathbb{C}^{\times}, \\
& \chi^{\prime}\left(x_{ \pm 1}\right)=0, \chi^{\prime}\left(x_{0}\right)=\mp i, \\
\rho=\infty: & \chi_{\lambda}^{ \pm}\left(x_{ \pm 1}\right)=\chi_{\lambda}^{ \pm}\left(x_{0}\right)=0, \chi_{\lambda}^{ \pm}\left(x_{\mp 1}\right)=\lambda, \quad \lambda \in \mathbb{C} .
\end{aligned}
$$

We denote by $J \subset A_{q \rho}$ the intersection of the kernels of all characters. For $\rho \neq$ $\infty, \pm i$ an element $x=\sum_{i j} \xi_{i j} e_{i j} \in A_{q \rho}, \xi_{i j} \in \mathbb{C}$, is mapped by χ_{λ} to $f(\lambda)$, where f is the Laurent polynomial $f(z)=\sum_{j \in \mathbb{Z}} \xi_{0 j} z^{j}$. Thus $\chi_{\lambda}(x)=0$ for all $\lambda \in \mathbb{C}^{\times}$ iff $f=0$. Hence $J=I$. The same is true for $\rho=\infty$ as one checks similarly. For $\rho= \pm i$ one obtains the smaller ideal $I \cap \operatorname{ker} \chi^{\prime}$.

3. The algebra $A_{q \rho}$ Depends on ρ

The aim of this note is to prove the following fact that was conjectured in [1]:
Theorem 1. The algebras $A_{q \rho}, A_{q \rho^{\prime}}$ are isomorphic iff $\rho^{\prime}= \pm \rho(-\infty=\infty)$.
Proof. We first note that $A_{q \infty}$ can not be isomorphic to $A_{q \rho}$ with $\rho \neq \infty$: Otherwise $A_{q \infty} / J$ would be isomorphic to $A_{q \rho} / J$. The first algebra is isomorphic to $\mathbb{C}[z] \oplus \mathbb{C}[z]$ with $\pi\left(x_{ \pm 1}\right)$ as generators. This follows from adding $x_{0}=0$ to (2). For $\rho \neq \infty, \pm i$ the algebra $A_{q \rho} / J$ is instead isomorphic to $\mathbb{C}\left[z, z^{-1}\right]$ with $z^{ \pm 1}$ corresponding to $\pm \pi\left(x_{ \pm 1}\right)$. For $\rho= \pm i$ we have $J=I \cap \operatorname{ker} \chi^{\prime} \subset I$, and $A_{q \pm i} / I$ is as above isomorphic to $\mathbb{C}\left[z, z^{-1}\right]$. That is, this is a quotient algebra of $A_{q \pm i} / J$, hence the latter can also not be isomorphic to $A_{q \infty} / J=\mathbb{C}[z] \oplus \mathbb{C}[z]$.

Suppose now that $\psi: A_{q \rho^{\prime}} \rightarrow A_{q \rho}$ is an isomorphism with $\rho, \rho^{\prime} \neq \infty$. We denote by $X_{i} \in A_{q \rho}$ the images of the generators of $A_{q \rho^{\prime}}$ under ψ.

Since X_{i} generate $A_{q \rho}, \pi\left(X_{i}\right)$ generate $\pi\left(A_{q \rho}\right)=\mathbb{C}\left[z, z^{-1}\right]$. This algebra is a commutative integral domain, so $\pi\left(X_{0}\right) \pi\left(X_{ \pm 1}\right)=q^{ \pm 2} \pi\left(X_{ \pm 1}\right) \pi\left(X_{0}\right)$ implies that either $\pi\left(X_{0}\right)$ or both $\pi\left(X_{ \pm 1}\right)$ vanish. But $\mathbb{C}\left[z, z^{-1}\right]$ can not be generated by a single element, so $\pi\left(X_{0}\right)=0$. Hence $X_{0}=\lambda_{0} x_{0}$ for some $\lambda_{0} \in A_{q \rho}$. Repeating the whole argumentation with the roles of x_{i} and X_{i} interchanged one gets $x_{0}=\mu_{0} X_{0}$, that is, $X_{0}=\mu_{0} \lambda_{0} X_{0}$ for some $\mu_{0} \in A_{q \rho}$. Proposition 1 now implies $\lambda_{0}=\mu_{0}^{-1} \in \mathbb{C}^{\times}$.

Therefore $x_{0} X_{ \pm 1}=q^{ \pm 2} X_{ \pm 1} x_{0}$. Hence $X_{ \pm 1} \in A^{ \pm 1}$, so $X_{ \pm 1}=P_{ \pm}\left(x_{0}\right) x_{ \pm 1}$ for some polynomials $P_{ \pm} \in \mathbb{C}[z]$. Inserting this into (1) one sees that both $P_{ \pm}$must be of degree zero. So $X_{i}=\lambda_{i} x_{i}$ for three non-zero constants λ_{i}. Inserting this again into the relations (1) we get

$$
q^{ \pm 2} \lambda_{0}^{2} x_{0}^{2}+\left(1+q^{ \pm 2}\right) \rho^{\prime} \lambda_{0} x_{0}-1=\lambda_{1} \lambda_{-1}\left(q^{ \pm 2} x_{0}^{2}+\left(1+q^{ \pm 2}\right) \rho x_{0}-1\right),
$$

which is equivalent to

$$
\lambda_{0}= \pm 1, \quad \rho^{\prime}= \pm \rho, \quad \lambda_{1} \lambda_{-1}=1 .
$$

If conversely $\rho^{\prime}=-\rho$, then it is immediate that the assignment $x_{-1}, x_{0}, x_{1} \mapsto$ $x_{-1},-x_{0}, x_{1}$ extends to an isomorphism $A_{q \rho^{\prime}} \rightarrow A_{q \rho}$.
Note that we have proven en passent (for $\rho \neq \infty, \rho=\infty$ is treated analogously):
Corollary 1. The map $\lambda \mapsto \sigma_{\lambda}, \sigma_{\lambda}\left(x_{i}\right)=\lambda^{i} x_{i}$ is an isomorphism $\mathbb{C}^{\times} \rightarrow \operatorname{Aut}\left(A_{q \rho}\right)$.

References

[1] P. M. Hajac, R. Matthes, W. Szymański: Quantum Real Projective Space, Disc and Sphere. Algebr. Represent. Theory 6 No. 2 (2003), 169-192
[2] A. Joseph: Quantum Groups and Their Primitive Ideals. Springer, 1995
[3] A. U. Klimyk, K. Schmüdgen: Quantum Groups and Their Representations. Springer, 1997
[4] P. Podleś: Quantum Spheres. Lett. Math. Phys. 14 (1987), 193-202
E-mail address: kraehmer@impan.gov.pl
Instytut Matematyczny Polskiej Akademí Nauk, Ul. Sniadeckich 8, PL-00956 Warszawa

[^0]: Supported by an EU Marie Curie postdoctoral fellowship.

