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Abstract. The rapid creation of comprehensive brain image databases
mandates the development of mathematical algorithms to uncover disease-
specific patterns of brain structure and function in human populations.
We describe our construction of probabilistic atlases that store detailed
information on how the brain varies across age and gender, across time,
in health and disease, and in large human populations. Specifically, we
introduce a mathematical framework based on covariant partial differ-
ential equations (PDEs), pull-backs of mappings under harmonic flows,
and high-dimensional random tensor fields to encode variations in corti-
cal patterning, asymmetry and tissue distribution in a population-based
brain image database (N=94 scans). We use this information to detect
disease-specific abnormalities in Alzheimer’s disease and schizophrenia,
including dynamic changes over time. Illustrative examples are chosen
to show how group patterns of cortical organization, asymmetry, and
disease-specific trends can be resolved that are not apparent in individ-
ual brain images. Finally, we create four-dimensional (4D) maps that
store probabilistic information on the dynamics of brain change in de-
velopment and disease. Digital atlases that generate these maps show
considerable promise in identifying general patterns of structural and
functional variation in diseased populations, and revealing how these
features depend on demographic, genetic, clinical and therapeutic pa-
rameters.

1 Introduction

The widespread and rapidly accelerating collection of normal and diseased brain
images in vivo and ex vivo has led to a tremendous increase in the number
of investigations focusing on the structural and functional organization of the
brain [1]. The complexity and variability of human brain structure across sub-
jects is so great that mathematical algorithms are essential to effectively analyze
and interpret brain data. Digital brain atlases, for example, represent anatomy
in a 3-dimensional coordinate system. New data can be aligned with the atlas
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coordinate system using linear or nonlinear registration techniques [2], making
it easier to pool and compare brain data from multiple subjects. Nonetheless,
design of population-based brain atlases presents considerable challenges, since
these systems must capture how anatomy and function vary across age and gen-
der, in different disease states, and across imaging modalities. They must also
represent these variations in such a way that systematic patterns can be identi-
fied. Beyond Individual Atlases. Recent developments in computational anatomy
have expanded the atlas concept to store information on anatomical variation
in a population [3-5]. Deformable brain atlases [6-8] are digital brain templates
that can be elastically deformed to match the anatomy of a new subject. These
atlases have powerful applications in automated image labeling [9], automated
morphometry [10] and multimodality correlation [11]. They can also transfer
metabolic, functional, and cytoarchitectural maps into the coordinate system of
a new patient for surgical planning [12] or to relate in vivo functional and post
mortem molecular hallmarks of disease [13]. Probabilistic atlases [3,14,15] store
information on structural and functional variability in a population. Depending
on the attribute whose statistical distribution is modeled, the information they
encode can support pathology detection in an individual or group [14], or provide
Bayesian prior information for tissue classification [16], image matching [8] or
functional image analysis [17]. Probabilistic atlases have enormous promise in re-
vealing the anatomical distribution and timing of clinical abnormalities in disease
[18,5]. Although many diseases affect the anatomy of the cortex, there have been
major difficulties in developing average and statistical representations of cortical
anatomy, in view of the extreme variations in cortical patterning across subjects.
Systematic differences or dynamic changes in cortical organization, gray matter
distribution or asymmetry have been difficult to distinguish from normal varia-
tions, which also complicate the direct averaging of imaging data in stereotaxic
space. Goals of the Paper. In this paper, we introduce a mathematical frame-
work based on covariant partial differential equations (PDEs) and multivariate
random tensor fields to encode variations in cortical patterning, tissue distribu-
tion and asymmetry. We build on earlier work by applying new algorithms to
brain image databases from diseased populations with Alzheimer’s disease and
schizophrenia, including longitudinal data. We present three illustrative exam-
ples of algorithms detecting underlying patterns of disease-specific tissue loss,
cortical asymmetry and dynamic brain change that are not easily identifiable
in individual subjects’ images. These applications suggest the potential of the
approach in biomedical and clinical research settings.

2 Methods

Imaging and Subject Populations. 94 high-resolution (2562×124) T1-weighted
fast SPGR (spoiled GRASS) MRI volumes were acquired from four distinct sub-
ject populations: patients with Alzheimer’s Disease, adolescents with schizophre-
nia, and their corresponding matched healthy control populations. 26 subjects
with mild to moderate Alzheimer’s Disease (AD; NINCDS-ARDRA criteria)
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were imaged on GE Signa 1.5T clinical scanner (TR/TE 14.3/3.2 msec, flip
angle 35◦, NEX=1, 25cm FOV, contiguous 1.2 mm thick slices). Patients were
matched for disease severity (Mini-Mental State Exam score: 20.0±0.9), and were
matched for age (75.8±1.7 yrs.; 14 females/12 males), educational level (15.2±0.4
yrs.), and handedness (all right-handed) with 20 identically-imaged elderly con-
trol subjects (age: 72.4±1.3 yrs.; 8 females/12 males; education: 15.4±0.5 yrs.).
A separate group of 24 subjects, recruited as part of an ongoing NIMH study of
childhood-onset schizophrenia [19], were imaged longitudinally at baseline and
after a 5-year interval. The 12 healthy controls (aged 13.5±0.7 years at initial
scan, 18.0±0.8 years at follow-up) were age- and gender-matched with the 12
schizophrenic patients and scanned identically at exactly the same ages and
intervals (patients’ ages: 13.9±0.8 and 18.6±1.0 years; interval between scans:
4.6±0.3 years). Image data were initially transformed into a Talairach-based
coordinate system [20] which (1) places the anterior commissure (AC) at the
origin; (2) vertically orients the midsagittal plane; and (3) horizontally orients
the AC-PC line. Aligned MR volumes were corrected for non-uniformity of MR
signal intensity [16], and high-resolution surface models of the cerebral cortex
were extracted, as described previously [14,21].

Mapping Cortical Patterns. To begin encoding patterns of cortical variability,
parametric curves representing 36 major external fissures and sulci in the brain
were manually outlined on highly magnified surface-rendered images of each cor-
tical surface. Detailed anatomic criteria were applied as set out in [14] and the
Ono sulcal atlas [22] to define sulci with consistent incidence and topology across
subjects. In both brain hemispheres, 3D curves were traced to represent superior
and inferior frontal, precentral, central, postcentral, intraparietal, superior and
inferior temporal, primary and secondary intermediate, collateral, olfactory and
occipito-temporal sulci, as well as the Sylvian fissures. Additional 3D curves rep-
resented gyral limits at the interhemispheric margin [14]. Stereotaxic locations
of contour points derived from the data volumes were redigitized to produce 36
uniformly parameterized cortical contours per brain, representing each subject’s
primary gyral pattern.

Measuring Gyral Pattern Differences. Due to variations in gyral patterning,
cortical variability is severely underestimated unless elements of the gyral pat-
tern are matched from one subject to another (cf. [9,14]). This matching is also
required for cortical averaging; otherwise, corresponding gyral features will not
be averaged together. To find good matches among cortical regions we performed
the matching process in the cortical surface’s parametric space, which permits
more tractable mathematics (Fig. 1; [14,23,24]). This vector flow field in the
parametric space indirectly specifies a correspondence field in 3D, which drives
one cortical surface into the shape of another. This mapping not only matches
overall cortical geometry, but matches the entire network of the 36 landmark
curves with their counterparts in the target brain, and thus is a valid encoding
of cortical variation.Maps of the Cortical Parameter Space. Cortical models were
created by driving a tiled, spherical mesh into the configuration of each subject’s
cortex [25,21,26], so any point on the cortical surface must map to exactly one
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Fig. 1. Averaging Cortical Models. A well-resolved average cortical model
(f) for a group of subjects can be created by first flattening each subject’s cor-
tical model to a 2D square (a). A color coded map (c) stores a unique color
triplet (RGB) at each location in the 2D parameter space encoding the (x,y,z)
coordinate of the 3D cortical point mapped to that 2D location. However, a
well-resolved average model (f) is produced, with cortical features in their group
mean location, if each subject’s color map is first flowed (d) so that sulcal fea-
tures are driven into the configuration of a 2D average sulcal template (b). Codes
indexing similar 3D anatomical features are placed at corresponding locations
in the parameter space, and are thus reinforced in the group average (f).

point on the sphere and vice versa. Each cortical surface is parameterized with
an invertible mapping Dp,Dq: (r,s)→(x,y,z), so sulcal curves and landmarks in
the folded brain surface can be reidentified in a spherical map (cf. [24]). To re-
tain relevant 3D information, cortical surface point position vectors (x,y,z) in
3D stereotaxic space were color-coded using a unique RGB color triplet, to form
an image of the parameter space in color image format (Fig. 1). These spherical
locations, indexed by two parameters, can also be mapped to a plane (Fig. 1;
[14]). Cortical differences between any pair of subjects were calculated as fol-
lows. A flow field was first calculated that elastically warps one flat map onto
another from the other subject (Fig. 1; or equivalently, one spherical map onto
the other). On the sphere, the parameter shift function u(r):Ω → Ω, is given
by the solution Fpq:r→r-u(r) to a curve-driven warp in the spherical paramet-
ric space Ω=[0,2π)×[0,π) of the cortex (Fig. 1; [14]). For points r=(r,s) in the
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parameter space, a system of simultaneous partial differential equations can be
written for the flow field u(r):

L�(u(r)) + F(r-u(r)) = 0, ∀r∈Ω, with u(r) = u0(r), ∀r∈M0∪M1. (1)

Here M0, M1 are sets of points and (sulcal or gyral) curves where displacement
vectors u(r)=u0(r) matching corresponding anatomy across subjects are known.
The flow behavior is modeled using equations derived from continuummechanics,
and these equations are governed by the Cauchy-Navier differential operator L =
µ∇2+(λ+µ)∇(∇T •) with body force F [14,27,4]. The only difference is that L� is
the covariant form of the differential operator L (for reasons explained below1).
This approach not only guarantees precise matching of cortical landmarks across
subjects, but creates mappings that are independent of the surface metrics, and
therefore independent of the surface parameterizations. Cortical Averaging us-
ing Pull-backs and Flows in Parameter Space. The intersubject variability of the

1 Covariant Mapping Equations. Since the cortex is not a developable surface,
it cannot be given a parameterization whose metric tensor is uniform. As in fluid
dynamics or general relativity applications, the intrinsic curvature of the solution
domain can be taken into account when computing flow vector fields in the corti-
cal parameter space, and mapping one mesh surface onto another. In the covariant
tensor approach [4], correction terms (Christoffel symbols, Γ i

jk) make the neces-
sary adjustments for fluctuations in the metric tensor of the mapping procedure.
In the partial differential equations (1), we replace L by the covariant differential
operator L�. In L�, all L’s partial derivatives are replaced with covariant derivatives
[28]. These covariant derivatives are defined with respect to the metric tensor of
the surface domain where calculations are performed. The covariant derivative of a
(contravariant) vector field, ui(x), is defined as ui

,k = ∂uj/∂xk + Γ j
ik u

i where the
Christoffel symbols of the second kind [28], Γ j

ik, are computed from derivatives of
the metric tensor components gjk(x):

Γ i
jk = (1/2) g

il (∂glj/∂x
k+∂glk/∂x

j-∂gjk/∂x
i). (2)

These correction terms are then used in the solution of the Dirichlet problem [29] to
match one cortex with another. Note that a parameterization-invariant variational
formulation could also be used to minimize metric distortion when mapping one
surface to another. If P and Q are cortical surfaces with metric tensors gjk(u

i)
and hjk(ξ

α) in local coordinates ui and ξα (i , α=1,2), the Dirichlet energy of the
mapping ξ(u) is defined as: E(ξ) =

R
P e(ξ)(u) dP , where e(ξ)(u) = g

ij(u) ∂ξα(u)/∂ui

∂ξβ(u)/∂uj hαβ(ξ(u)) and dP=(
p

det[gij]) du1du2 . The Euler equations, whose
solution ξα(u) minimizes the mapping energy, are:

0 = L(ξi) = Σm=1to2 ∂/∂um [(
p

det[gru] ) Σl=1to2 g
ml

ur ∂ξi/∂ul ] (i=1,2), (3)

[30]. The resulting (harmonic) map (1) minimizes the change in metric from one sur-
face to the other, and (2) is again independent of the parameterizations (spherical or
planar) used for each surface. [Related algorithms for minimizing harmonic energies,
invariant under reparameterization, have been developed in modeling liquid crystals
[31] and in Polyakov’s formulation of string theory [32]].
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cortex is computed by first creating an average cortex for each subject group
and measuring individual differences from the deformation mappings that drive
the average model onto each individual. By defining probability distributions on
the space of deformation transformations applied to the average template [4],
statistical parameters of these distributions are estimated from the databased
anatomic data to determine the magnitude and directional biases of anatomic
variation. To do this, all 36 gyral curves for all subjects are first transferred to
the parameter space. Next, each curve is uniformly re-parameterized to produce
a regular curve of 100 points whose corresponding 3D locations are uniformly
spaced. A set of 36 average gyral curves for the group is created by vector averag-
ing all point locations on each curve. This average curve template (curves in Fig.
1(a)) serves as the target for alignment of individual cortical patterns [24]. Each
individual cortical pattern is transformed into the average curve configuration
using a flow field in the parameter space (Fig. 1(b); cf. [33]). By carrying a color
code (that indexes 3D locations; Fig. 1(c)) along with the vector flow that aligns
each individual with the average folding pattern, information can be recovered at
a particular location in the average folding pattern (Fig. 1(d)) specifying the 3D
cortical points mapping each subject to the average. In the language of Lie al-
gebras, corresponding 3D cortical points across the subject database are defined
as the pull-back Dp*(r) [28] of the parameterization mappings Dp: (r,s)→(x,y,z)
under the covariant vector flow u(r) that maps each subject to the average curve
template. [For any smooth function Dp: Ω→Rn and any diffeomorphic map u(r):
Ω→N, there is a function on N, Dp*: N→Rn called the pull-back of Dp by u(r),
and defined by Dp ◦ u [28]]. This produces a new coordinate grid [the pull-back
Dp*(r); Fig. 1(d)] on a given subject’s cortex in which particular grid-points
appear in the same location across subjects relative to the mean gyral pattern.
By averaging these 3D positions across subjects, an average 3D cortical model
can be constructed for the group. An example of this type of cortical average,
based on 9 subjects with Alzheimer’s disease, is shown in Fig. 1(f). The resulting
mapping is guaranteed to average together all points falling on the same cortical
locations across the set of brains, and ensures that corresponding features are
averaged together.

Affine Shape Adjustment. Prior to generating an average cortex, an average
image template is generated with the average affine shape for the subjects in
the group, and individual scans are globally aligned to this template. This is
done so that (1) differences in global brain scale and affine position are factored
out before computation of variability, and (2) measurements are made and maps
generated at the mean spatial scale for the group. To produce a template with
the mean image intensity and geometry for the group, a subset of brains was
selected for which a comprehensive set of anatomic surface models had been
created (84 per brain), including models of deep brain structures [34]. An initial
image template for the group was constructed by (1) using automated linear
transformations [35] to align the MRI data with a randomly selected image, (2)
intensity-averaging the aligned scans, and then (3) recursively re-registering the
scans to the resulting average affine image. The resulting average image was
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Fig. 2. Probabilistic Modeling of Brain Anatomy. Direct averaging of
imaging data after a simple affine transform into stereotaxic space washes cor-
tical features away ((a); Evans et al., 1994; N=305 normals); (b) a similar ap-
proach with N=9 Alzheimer’s patients). By first averaging a set of vector-based
3D geometric models, and warping each subject’s scan into the average con-
figuration, a well-resolved average brain template is produced (c). Deformation
vector maps (e) store individual deviations (brown mesh) from a group average
(white surface, (d)), and their covariance fields (f) store information on the pre-
ferred directions and magnitude (g) of anatomic variability (pink colors, large
variation; blue colors, less).

adjusted to have the mean affine shape for the group, using matrix logarithms
for transformation averaging and exponentiation [35]. Images and surface mod-
els were then linearly aligned to this template, and an average surface set was
created for the group [34]. Displacement maps (Fig. 2(e)) driving the surface
anatomy of each subject into correspondence with the average surface set were
then extended to the full volume with a 3D warping algorithm based on surface-
driven elasticity [14,25,27]. These warping fields reconfigured each subject’s 3D
image into the average anatomic configuration for the group. By averaging the
reconfigured images (after intensity normalization), a crisp image template was
created to represent the group (Fig. 2(c)). Note the better-resolved cortical fea-
tures in the average images after high-dimensional cortical registration (Fig.
2(c)). If desired, this AD-specific atlas can retain the coordinate matrix of the
Talairach system (with the anterior commissure at (0,0,0)) while refining the
gyral map of the Talairach atlas to encode the unique anatomy of the AD popu-
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lation. By explicitly computing matching fields that relate gyral patterns across
subjects, a well-resolved and spatially consistent set of probabilistic anatomical
models and average images can be generated to represent the average anatomy
and its variation in a subpopulation.

3 Results

Tensor Maps of 3D Cortical Variation. By using cortical pattern matching to
identify corresponding cortical locations in 3D space, rather than simple image
averaging (Fig. 2(a),(b)), deformation maps can be recovered mapping each pa-
tient into gyrus-by-gyrus correspondence with the average cortex (Fig. 2(e)).
Anatomic variability can thus be defined at each point on the average corti-
cal mesh as the root mean square magnitude of the 3D displacement vectors,
assigned to each point, in the surface maps from individual to average. This vari-
ability pattern is visualized as a color-coded map (Fig. 2(g)). This map shows
the anatomic differences, due to gyral pattern variation, that remain after affine
alignment of MR data into a brain template with the mean shape and intensity
for the group. After these affine components of the deformation fields are fac-
tored out, the deformation vector required to match the structure at position x
in the average cortex with its counterpart in subject i can be modeled as:

Wi(x) = µ(x) + Σ(x)1/2εi(x). (4)

Here µ(x) is the mean deformation vector for the population (which approaches
the zero vector for large N ), Σ(x) is a non-stationary, anisotropic covariance ten-
sor field estimated from the mappings, Σ(x)1/2 is the upper triangular Cholesky
factor tensor field, and εi(x) can be modeled as a trivariate random vector field
whose components are independent zero-mean, unit variance, stationary random
fields. This 3D probability distribution makes it possible to visualize the princi-
pal directions (eigenvectors) as well as the magnitude of gyral pattern variability,
and these characteristics are highly heterogeneous across the cortex. For any de-
sired confidence threshold α, 100(1-α)% confidence regions for possible locations
of points corresponding to x on the average cortex are given by nested ellipsoids
Eλ(α)(x) in displacement space (Fig. 2(f)).

Here

Eλ(x) = {µ(x) + λ[Σ(x)]−1/2p|∀p ∈ B(0; 1)}, (5)
where B(0; 1) is the unit ball in R3, and

λ(α) = [[N(N− 3)/3(N2 − 1)]−1Fα,3,N−3 ]1/2, (6)

where Fα,3,N−3 is the critical value of the F distribution such that Pr{F3,N−3 ≥
Fα,3,N−3} = α and N is the number of subjects. Mean Asymmetry. By analysis
of variance in 3D deformation fields that match different subjects’ anatomies, it
is also possible to differentiate intra-subject (between hemisphere), inter-subject,
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and inter-group contributions to brain variation in human populations, and de-
tect significant differences using null distributions for features in Hotelling’s T2

random fields [14,36,37]. Mapping the pattern of brain asymmetry in a group
is an interesting application. Although the set of mappings computed so far
specifies the set of cortical points that correspond across subjects, the mean
asymmetry cannot yet be computed without an additional set of mappings to
define the points that correspond across hemispheres. To do this, all left hemi-
sphere sulcal curves are projected into the cortical parameter space, reflected
in the vertical axis, and averaged with their flattened counterparts in the right
hemisphere, to produce a second average curve template. Color maps (Fig. 1(c))
representing point locations in the left and right hemispheres are then subjected
to a second covariant flow that transforms corresponding features in each hemi-
sphere to the same location in parameter space. 3D deformation fields can then
be recovered matching each brain hemisphere with a reflected version of the op-
posite hemisphere (cf. [36]). The parameter flows are advantageous in that the
asymmetry fields are also registered ; in other words asymmetry measures can
be averaged across corresponding anatomy at the cortex. This is not necessar-
ily the case if warping fields are averaged at the same coordinate locations in
stereotaxic space (cf. Fig. 1(a)). The pattern of mean brain asymmetry for a
group of 20 subjects is shown in Fig. 3. The resulting asymmetry fields ai(r)
(at parameter space location r in subject i) were treated as observations from a
spatially-parameterized random vector field [14,36], with mean µa(r) and a non-
stationary covariance tensor Σa(r) (Fig. 3(c)). The significance α of deviations
from symmetry can be assessed using a T2 or F statistic that indicates evidence
of significant asymmetry in cortical patterns between hemispheres:

α(r)= F−1
3,N−3 ([(N -3)/3(N -1)]T2(r))

where T2(r)=N [µa(r)T Σa
−1(r) µa(r)]. (7)

Multiple Comparisons Correction. By calculating these statistics, and their cor-
responding significance values (p-values), at each lattice location across a param-
eterized 3D anatomical surface, a statistic image is formed (Fig. 3(d)). To assess
the significance of the effect, analytical null distributions have been derived for
the number and extent of signal components that are likely to occur by accident
above a given threshold in a statistic image, such as a T2-distributed random
field on a manifold. Because these formulae require the residuals of the statisti-
cal model to be stationary and isotropic [38,39], we adopted a non-parametric
approach. A null distribution for the area of the T2 statistic image above a fixed
high threshold on the average cortical surface was computed empirically by per-
mutation of the covariate vector (here a binary vector coding for hemisphere)
and conducting 1,000,000 randomizations. By reference to this null distribution,
the significance of the asymmetry was found to be p < 0.01.

Gray Matter Loss in a Diseased Population. A second application was to
reveal the average profile of gray matter loss across the cortex in Alzheimer’s
disease, based on a large number of subjects at a specific stage in the disease.
Gyral pattern variation makes it difficult to make inferences if gray matter maps
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Fig. 3. Mapping Brain Asymmetry in a Population. The average mag-
nitude of brain asymmetry in a group (N=20, elderly normals) can be assessed
based on warping fields that map the cortical pattern of one hemisphere onto the
other, and then flow the observations again so that corresponding measures can
be averaged across subjects. Variations in asymmetry are also non-stationary
across the cortex (lower left), and a Hotelling’s T2 statistical field can be com-
puted to map the significance of the asymmetry (lower right) relative to normal
anatomic variations.

are directly averaged together in stereotaxic space (e.g., Fig. 1(a)), and the abil-
ity to localize results to specific cortical regions is also lost. To address this, we
used covariant flows to assist in computing group averages and statistics. First,
we segmented all images in the database with a previously validated Gaussian
mixture classifier. Maps of gray matter, white matter, CSF and a background
class were created for each subject (Fig. 4). The proportion of gray matter lying
within 15 mm of each cortical point was then plotted as an attribute on each
cortex, and aligned across subjects by projecting it into flat space (Fig. 1(c))
and warping the resulting attribute field with the elastic matching technique
(as in Fig. 1(d)). (Again, the gray matter proportion can be thought of as a
scalar attribute G(r) defined in the cortical parameter space, which can be sub-
jected to a pull-back with the flow field u(r) to compensate for gyral pattern
differences). By averaging the aligned maps, and texturing them back onto a
group average model of the cortex, the average magnitude of gray matter loss
was computed for the Alzheimer’s disease population (Fig. 4). Regions with up
to 30% reduction in the measure were sharply demarcated from adjacent regions
with little or no loss. The group effect size was measured by attaching a field
of t statistics, t(r), to the cortical parameter space, and computing the area of
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Fig. 4. Mapping Gray Matter Loss in a Population. Scalar fields that
represent the distribution of gray matter across the cortex can be aligned us-
ing elastic matching of cortical patterns. A localized and highly significant loss
of gray matter is revealed in temporo-parietal cortices of Alzheimer’s patients
relative to matched elderly controls, in a similar pattern to the metabolic and
perfusion deficits seen early in the disease.

the t field on the group average cortex above a fixed threshold (p < 0.01, un-
corrected). In a multiple comparisons correction, the significance of the overall
effect was confirmed to be p < 0.01, by permuting the assignment of subjects to
groups 1,000,000 times. (The resulting 46×65536×106 ∼= 3.0×1012 linear regres-
sions - for 46 subjects, 65,536 cortical points, and 106 permutations - were run
in parallel on an SGI RealityMonster with 32 R10000 180MHz internal CPUs,
requiring 33 CPU hours in total). Dynamic Brain Change. In a third application,
the same procedure was applied to longitudinal MRI data from 12 schizophrenic
patients and 12 adolescent controls scanned at both the beginning and end of a
5-year interval. The goal was to estimate the average rate of gray matter loss at
the cortex, by matching cortical patterns and comparing changes in disease with
normal changes in controls. Cortical models and gray matter measures were elas-
tically matched first within each subject across time, to compute individual rates
of loss, and then flowed into an average configuration using flat space warping
(Fig. 1(d)). The resulting maps (Fig. 5) suggested dynamic loss of gray matter in
superior parietal, motor and frontal brain regions (up to 5% annually), and the
group differences were highly significant (p < 0.01, permutation test; Fig. 5(b)).
Conclusion. Atlasing of brain data from large human populations presents major
challenges because of the need to compare or integrate imaging data from sub-
jects whose anatomy is different. Although direct averaging of data in stereotaxic
space may be ideal for many applications, group patterns in brain structure or
function may go unnoticed because cortical regions are not well-aligned across
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Fig. 5. Dynamic Rates of Gray Matter Loss in a Population. Scalar
fields representing the rates of gray matter loss in individuals with schizophre-
nia can be aligned and compared with age-matched controls. Adolescents with
schizophrenia experience statistically higher rates of loss in motor, frontal and
temporal regions.

subjects. We presented an approach that allows the generation of well-resolved
average brain maps that accommodate the wide variations in cortical pattern-
ing. By capturing variations in cortical attributes and cortical geometry using
separate statistical fields, general features of cortical organization also emerged,
such as the consistent pattern of brain asymmetry in perisylvian cortices (Fig.
3). Finally, by mapping gray matter differences or dynamic changes in diseased
populations with Alzheimer’s disease and schizophrenia, we resolved general fea-
tures of the disease process that may be hard to identify in individual scans. The
resulting atlasing techniques show promise in elucidating the dynamics of disease
in human populations, and their relationship to genetic, cognitive, or therapeutic
factors.
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