
A NEW APPROACH TO MOBILE CODE

SECURITY

DAN SETH WALLACH

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

JANUARY 1999

c Copyright by Dan Seth Wallach, 1999.

All Rights Reserved

Abstract

This dissertation presents a novel security architecture called security-passing style

and motivates its application to security issues that arise in mobile code systems

such as Java. Security-passing style, and its predecessor, stack inspection, allow

the system to capture the complex security relationships that occur when trusted

and untrusted code are run together and interact closely.

Where traditional security architectures can answer general questions of the

form “can subject X use object Y,” they fail when considering problems where one

subject may be acting on behalf of another, or may be acting on its own behalf.

These systems generally have neither the mechanisms to capture the full secu-

rity context of a request nor the policies expressive enough to be able to resolve

whether these requests should be allowed or denied. Issues such as these arise in

mobile code systems, requiring new security mechanisms to address their security.

While a number of traditional security architectures, including capability sys-

tems and process-structured systems, can be adapted to the secure execution of

mobile code, this dissertation describes an architecture that addresses these issues

and does it using an efficient implementation that requires no special hardware

or language runtime support. Security-passing style has a well defined semantics

describing how it works and allowing for proofs of its soundness. These semantics

also allow us to produce an implementation that has extremely low overhead (in

principal, just over one instruction per method invocation) based on static analy-

sis of the program to be run and dynamic caching to make common-cases execute

faster.

iii

Acknowledgments

It is an amazing thing that this dissertation exists, due in no small part to help and

cajoling from a large cast of friends and colleagues. My advisor, Ed Felten, was an

unending source of useful and pragmatic advice. Andrew Appel gave expert di-

rection in the programming language aspects of my research and provided helpful

intuition into analyzing my results. Appel also coined the phrase ‘security-passing

style’ and helped give my system the name ‘SAFKASI’ (pronounced saff-KAH-zee,

the security architecture formerly known as stack inspection). My Secure Inter-

net Programming colleagues Drew Dean and Dirk Balfanz have also been a great

help to me throughout my research. Section 5.2.3, on name-space management,

describes work done by Balfanz. The four of us spent far too much time finding

flaws in the security of the Java system and building sneaky applets to take advan-

tage of those flaws. Thanks also to Ken Steiglitz for reading my dissertation and

catching all the silly mistakes that managed to slip by everybody else.

In the course of doing my work, I have gotten all kinds of useful commentary

from anonymous conference and journal referees. I also thank Martı́n Abadi, John

Wilkes, Dave Gifford, Norman Hardy, Olin Sibert, and Mark Miller for their feed-

back and explanations of how traditional systems have worked.

The technique of stack inspection was invented during a summer internship I

spent at Netscape and was designed and built with Jim Roskind, Raman Tenneti,

and Tom Dell. Thanks also to Warren Harris, Nick Thompson, Jim Gellman, Bob

Relyea, Tom Weinstein, John Hines, and Tara Hernandez for all their help making

my internship and my code successful. I probably still owe Tara a bottle of tequila

for breaking the build.

Along the way, stack inspection has seen the tug and pull of the industry’s Java

iv

battles. For all the flames and invective, many people gave me extremely useful

feedback and clarifications of how things were really working. Thanks to Li Gong,

Marianne Mueller, Larry Koved, Bob Blakley, Jeff Bisset, Mike Jerger, and Mike

Toutonghi. Thanks also to Kenneth Zadeck and David Chase for their useful and

entertaining perspectives.

To actually get security-passing style working, I eventually gave up on the bugs

and strange behavior of Sun’s JDK and turned to Kenneth Zadeck, David Chase,

and Roger Hoover of NaturalBridge. They allowed me to use their company’s

unreleased Java compiler and runtime and provided invaluable debugging help,

encouragement, and constructive criticism.

My implementation of security-passing style was built around Geoff Cohen’s

JOIE (Java Object Instrumentation Environment) library. Geoff’s fantastic under-

standing of the intricacies of the Java class file format were invaluable to me.

Thanks also go to Paul Martino, Greg Humphreys, and Benji Jasik of Ahpah Soft-

ware for allowing me free use of their SourceAgain Java decompiler, which proved

to be a fantastic debugging tool.

Thanks to David Dobkin for supporting me while I transitioned from computer

graphics, my original academic specialty, to computer security. The Princeton

CS department is a wonderful place, and I’ll miss it and its exceptional facilities.

Thanks to Jim Roberts, Chris Tengi, Chris Krantz, and Matt Norcross for putting

up with my ranting and keeping everything humming along.

Finally, a special thanks goes to my parents and my sister for supporting me

during my years in grad school. My father’s library of ancient computer arcana

was particularly useful.

Research in the Secure Internet Programming Laboratory has been funded by

the National Science Foundation, by the Alfred P. Sloan Foundation, and by dona-

v

tions from Bellcore, Intel, Merrill Lynch, Microsoft, Sun Microsystems, and Trin-

tech. I did portions of this work at Netscape Communications Corp.

vi

To Mom and Dad

vii

Contents

Abstract . iii

1 Introduction 1

1.1 My Thesis . 1

1.2 Structure of the Dissertation . 2

1.3 Traditional Computer Security . 4

1.4 Network Security . 6

1.5 Mobile Code Security . 8

1.6 Securing Our Future . 10

2 What is Security, Really? 12

3 Java Security: Web Browsers and Beyond 17

3.1 Introduction . 17

3.2 Java Semantics . 18

3.2.1 Packages and Modifiers . 19

3.2.2 Dynamic Checking and Static Verification 20

3.2.3 Security Mechanisms . 21

3.2.4 System Architecture . 23

3.3 An Attacker’s Methodology . 23

viii

3.3.1 Overflowing Buffers . 24

3.3.2 Violating the Type System . 24

3.3.3 Exploiting Library Weaknesses 25

3.3.4 Denials of Service . 26

3.3.5 Spoofing the User . 27

3.4 Analysis . 27

3.4.1 Policy . 28

3.4.2 Enforcement . 29

3.4.3 Integrity . 31

3.4.4 Accountability . 33

3.4.5 Denial of Service . 34

4 Building Secure Services 35

4.1 Traditional OS Architectures . 36

4.1.1 Processes . 36

4.1.2 Ring Structures and Multilevel Security 39

4.1.3 Other Grouping Structures . 40

4.1.4 Capability Systems . 40

4.2 Distributed Systems . 42

4.2.1 Firewalls . 42

4.2.2 Distributed Capabilities . 42

4.2.3 Distributed ACLs . 43

4.3 Mobile Code Systems . 44

4.4 Building a Secure Service . 44

4.5 The Bad Guys Are Out There... 46

4.6 Why Secure Services are Hard To Get Right 46

ix

5 Security Architectures for Java 49

5.1 Common Underpinnings . 49

5.1.1 Digitally Signed Code . 50

5.1.2 Administration . 51

5.2 Architectures . 53

5.2.1 First Approach: Processes . 54

5.2.2 Second Approach: Capabilities 55

5.2.3 Third Approach: Name-Space Management 59

5.2.4 Fourth Approach: Extended Stack Inspection 65

5.3 Analysis . 77

5.3.1 Economy of Mechanism . 77

5.3.2 Fail-Safe Defaults . 79

5.3.3 Complete Mediation . 80

5.3.4 Least Privilege . 83

5.3.5 Code Auditability . 84

5.3.6 Least Common Mechanism . 86

5.3.7 Accountability . 86

5.3.8 Resource Limits . 87

5.3.9 Psychological Acceptability . 88

5.3.10 Performance . 89

5.3.11 Compatibility . 90

5.4 Combinations . 91

5.4.1 Name-Space Management + Capabilities 92

5.4.2 Stack Inspection + Capabilities 92

5.4.3 Processes + Capabilities . 93

5.5 Conclusion . 93

x

6 Access Control Logic 95

6.1 ABLP Logic . 96

6.2 ABLP Grammar . 98

6.3 Axioms . 99

6.4 Applying ABLP . 101

7 Understanding Java Stack Inspection 103

7.1 Mapping Java to ABLP . 104

7.1.1 Principals . 104

7.1.2 Targets . 105

7.1.3 Setting Policy . 106

7.1.4 Stacks . 106

7.1.5 Checking Privileges . 108

7.2 Extensions to the Model . 114

7.2.1 Groups . 114

7.2.2 Threads . 115

7.2.3 Enabling a Privilege . 115

7.2.4 Frame Credentials . 115

7.3 Improved Implementation . 116

7.3.1 Security Contexts and Automata 116

7.3.2 Security-Passing Style . 118

7.4 Remote Procedure Calls . 120

7.4.1 Channels . 120

7.4.2 Dealing with Malicious Callers 122

7.4.3 Dealing with Malicious Code on a Trustworthy Caller 122

7.5 Conclusion . 123

xi

8 Security-Passing Style: Efficient Infrastructure for Access Control 124

8.1 The Security-Passing Style Transformation 125

8.1.1 SPS Conversion . 125

8.1.2 Rewriting Java Bytecodes . 127

8.2 Optimization . 128

8.2.1 Caller-says vs. callee-says . 129

8.2.2 Static Optimizations . 129

8.2.3 Dynamic Optimizations . 134

8.2.4 Open vs. Closed World Assumptions 135

8.3 Implementation and Performance . 135

8.3.1 Making SPS Work . 137

8.3.2 Performance . 142

8.4 Ideal Performance . 143

8.4.1 Estimated Benchmark Performance 146

8.5 Conclusion . 147

9 Future Work 149

9.1 Conclusions . 150

xii

List of Tables

5.1 Different principals see different name spaces. 60

5.2 Evaluation of different security architectures. 78

8.1 Measured cost of SPS primitives. 140

8.2 Runtime performance of benchmark programs. 140

8.3 Estimated ideal costs for security-passing style. 144

8.4 Estimated runtimes of benchmarks using “optimal” SPS code gen-

eration. 146

xiii

List of Figures

1.1 A typical firewall architecture. 6

1.2 Firewalls do not protect against mobile code. 8

3.1 ClassLoader depth excerpt from Java 1.0’s SecurityManager. 31

5.1 Interposition of a restricted file system root with capabilities. 58

5.2 Behavior of a normal ClassLoader. 62

5.3 Changing the name space with a PrincipalClassLoader. 62

5.4 Interposition in a system with name-space management. 63

5.5 Java’s stack walking algorithm. 71

5.6 A FileSystem capability. 73

7.1 Security contexts of successive stack frames. 106

7.2 Security contexts with a remote procedure call. 120

8.1 “Caller-says” SPS conversion. 125

8.2 “Callee-says” SPS conversion. 127

8.3 Class hierarchy analysis. 131

8.4 Cost of CheckPrivilege() microbenchmark. 141

xiv

Chapter 1

Introduction

1.1 My Thesis

Type-safe language runtimes are sufficient to securely execute untrusted mobile

code.

Whereas traditional security required intervention from the operating system

— and hardware memory protection — to isolate and protect one program from

another, modern type-safe languages allow separation and resource controls to

occur within the context of a single operating system process.

Actually maintaining the integrity of the language runtime in the face of hostile

code that wishes to compromise it has turned out to be remarkably difficult, as

researchers have discovered a stream of security-compromising problems in Java

and other such systems over the past several years.

Once type safety is addressed, the major remaining difficulty in a language run-

time is determining the identity whose authority must be checked before perform-

ing a security-relevant operation. Every “applet” is running together in a single

system heap, so the applets all share a common set of system classes responsible

1

for various dangerous operations such as access to the network and file system. As

each applet might have different privileges, the system classes must impose some

form of access control.

This dissertation analyzes a wide range of available access control mechanisms

on a number of well-established security criteria. In addition to a number of tra-

ditional mechanisms that have existed in numerous systems over the past thirty

years, this analysis considered a mechanism called “stack inspection,” designed

and implemented at Netscape by myself, Jim Roskind, and Raman Tenneti.

Stack inspection turns out to have a number of interesting properties, includ-

ing that it can be built easily above any type-safe language runtime and that it

extends naturally to support secure remote procedure calls. This dissertation con-

tributes a new form of stack inspection called “security-passing style,” defined as

a code-to-code transformation that may then execute on an unmodified language

runtime. Security-passing style is proven to be equivalent to the original stack in-

spection system, having the same desirable security properties without interfering

with optimizing compilers as many other mechanisms do.

In addition to defining security-passing style, this dissertation contributes an

implementation and measures its performance using a recent optimizing Java run-

time. Current Java compilers and runtimes still have a way to go before achieving

the efficiency of hand-tuned assembly code, so we also consider what the overhead

of security-passing style should be, given a hand-tuned implementation.

1.2 Structure of the Dissertation

This dissertation presents information which has appeared in a number of earlier

publications [WRF96, WBDF97, WF98, DFW96, DFWB97], as well as previously

2

unpublished material. This section briefly describes each chapter and cites its in-

fluences.

� The remainder of this chapter discusses traditional and pragmatic security

measures as they are often implemented in the commercial world. This chap-

ter points out how mobile code violates many of the assumptions made by

traditional commercial security. This material borrows from [DFWB97].

� Chapter 2 defines what exactly we mean by “security” and quotes the rele-

vant parts of the Orange Book [Nat85]. The Orange Book defines what se-

curity generally means for an operating system and defines specific features

that a system should support in order to receive various security ratings.

� Since we are interested in security mechanisms for Java, chapter 3 gives

some background on the Java system and describes its promises and pitfalls.

Rather than presenting each and every flaw we found, this chapter presents

a taxonomy of problems with examples drawn from our experience studying

Java’s security [DFW96, DFWB97].

� Many of the security mechanisms proposed for Java have been tried in one

form or another in traditional operating systems. Chapter 4 describes how

operating systems have traditionally build security architectures, both on lo-

cal machines and across computer networks. This chapter reviews a broad

array of prior art, from capability-based and ring-structured systems [Lev84,

Org72, SS72] through modern innovations like proof-carrying code [NL96].

� Chapter 5 shows how traditional security architectures apply to Java and in-

troduces some new mechanisms that have been successfully applied to Java.

3

We originally designed and built two such systems (name-space manage-

ment and stack inspection) [WBDF97]. This chapter also discusses capability-

based Java systems and process-structured systems [BTS+98, Cv98] and eval-

uates all four architectures against each other.

� We want to analyze stack inspection in more detail, but to do that we need a

logical framework. Chapter 6 introduces a logic of belief, designed by Abadi,

Burrows, Lampson, and Plotkin [ABLP93], which we use later in the thesis.

� Chapter 7 uses this logic to design security-passing style and prove its equiv-

alence with stack inspection. Chapter 7 also discusses how security-passing

style applies to remote procedure calls in addition to local ones. We originally

presented this work in [WF98].

� Chapter 8 describes an implementation we built of security-passing style and

quantifies its actual performance running benchmarks as well as its ideal

cost, based on the minimum number of instructions we expect might be able

to implement these primitives. This material has not been previously pub-

lished.

� Finally, chapters 9 and 9.1 present future work and conclusions.

1.3 Traditional Computer Security

Any discussion of computer security necessarily starts from a state-

ment of requirements (i.e., what it really means to call a computer sys-

tem “secure”). In general, secure systems will control, through use of

specific security features, access to information such that only prop-

4

erly authorized individuals, or processes operating on their behalf, will

have access to read, write, create, or delete information.

— Trusted Computer System Evaluation Criteria (the “Orange Book”) [Nat85]

There is no easy way to define computer security. Different environments have

radically different ideas of what security means to them. Military organizations

are concerned with restricting sensitive information to those authorized to see it.

Commercial organizations are often more concerned that data cannot be modified

without sufficient authorization. In academia, the largest concern may well be that

scarce resources are consumed only by authorized users. And, just about every-

body would like to have enough of an audit trail to identify their attackers after

the fact, and present evidence to the police. These are the four pillars of computer

security: secrecy, integrity, auditability, and protection from theft of service.

In traditional systems, at least, computer security seemed to be straightforward

to manage. If you limited who could log in to your system to people who you

trusted, you were 99% done. Once inside the system, each user could be con-

trolled in their ability to read and write files on the system. They could be billed

for their usage of disk space and CPU cycles. Sure, some system utilities may

have had bugs that users could exploit, but those were few and far between. It

was not really all that important, since only employees could get anywhere near

the computer, and they generally had it in their best interests not to attack their

employer! Even in university environments, where some users may have been

malicious toward their peers, information about system vulnerabilities was care-

fully guarded (“security through obscurity”), providing adequate security against

all but the most determined attackers.

5

attacker.comvictim.org

File Server

Mail Server

F
irew

all

User

permission
denied by firewall

permission
granted

Web Server

permission
granted

Figure 1.1: A typical firewall architecture.
Firewalls protect against traditional security attacks by blocking access to sensi-
tive internal machines from the outside. Some machines will continue to allow
connections, such as servers that must receive and process e-mail. Internal users
are generally allowed to initiate connections to any machine on the Internet, or at
least to any Web server.

In practice, the threat of attack from insiders was and is still a serious issue.

In conversations I have had with early timesharing computer users, many have

described discovering and exploiting security holes with the same pride one might

describe finding a $20 bill on the street. The security of these timesharing systems

relied as much on their users’ lack of malice as on any of their security mechanisms.

1.4 Network Security

When organizations evolved from having central mainframes to networks of com-

puters and those networks were eventually linked to the Internet, the rules began

to change. Many organizations were fairly permissive in their internal security, op-

erating under the assumption that their employees were not malicious, and that all

internal machines were sufficiently well controlled that no normal use of the sys-

tem utilities would result in a security problem. Of course, no organization could

6

safely make such assumptions about arbitrary machines on the Internet. To safely

connect a corporate network to the Internet, an organization would deploy fire-

walls, gateways between the inside and outside that would hopefully not hinder

internal people trying to get their job done, yet would restrict external malcon-

tents from wreaking havoc (see figure 1.1). While a number of different techniques

exist for building firewalls [CB94], they all work fundamentally by blocking exter-

nal attempts to connect to all but a handful of carefully chosen internal machines.

Firewalls generally allow internal machines to make connections outside (either

directly or through proxy servers), but external machines are generally allowed to

connect only to a small number of internal machines.

If secure information must travel over an insecure network, or just over the In-

ternet backbone, a very real danger is that the traffic might be sniffed — observed

by a malicious third-party. This is an issue when a consumer wishes to buy goods

from an online service like Amazon.com, and it is also an issue when a company

wishes to connect to its field offices without expensive leased lines. All the de-

ployed solutions involve cryptography, encrypting sensitive data before it goes on

the network and decrypting it after it arrives safely. If the cryptographic protocol is

well implemented, an attacker would be required to do an enormous computation

in order to learn even a single bit of the encrypted message.

When properly deployed, firewalls and cryptography have the potential to re-

duce the network security problem to be no worse than the traditional security

problem. Of course, the traditional security issues have not gone away.

7

attacker.comvictim.org

File Server

Mail Server

F
irew

all

permission
granted

Web Server

User

Mobile Code

permission
granted

Figure 1.2: Firewalls do not protect against mobile code.
Once inside the network and running on a user’s machine, the firewall offers no
protection against the mobile code accessing sensitive internal data and perhaps
leaking it to the outside. The security must happen at the user’s machine, rather
than at the firewall.

1.5 Mobile Code Security

The firewall model was quite a success commercially, and the firewall industry

continues to grow today with numerous vendors fighting each other over features

and prices. Unfortunately, the firewall model makes a fundamental error: it as-

sumes that all the programs running inside the network are acting only on the

requests of internal users and the data that passes through the firewall is inconse-

quential. After all, no internal user would accidentally choose to leak a sensitive

corporate document to the open Internet. And, there should be no harm in letting

them download arbitrary files from the network. If files are all plain ASCII text

then there is clearly no danger. Even if a user downloaded a binary program, it

had to be explicitly installed in the system. Because this process was relatively la-

borious, there was relatively lower danger of installing a dangerous program by

mistake.

With the modern Internet, users are not just getting their documents and e-

8

mail in plain text. Instead, documents are themselves programs or contain pro-

grams within themselves [Sib96]. Such documents are sometimes said to have “ac-

tive content,” containing exciting new gizmos like “scripting,” “applets,” “custom

controls,” “plugins,” or other strange marketing phrases like “crossware.” Funda-

mentally, they are all mobile code systems and they violate the assumptions made by

firewalls. Previously, a firewall could assume that an attacker could only be on the

outside. Now, with mobile code, an attack might originate from the inside as well,

where a firewall can offer no protection (see figure 1.2).

Programs can arrive as attachments to e-mail messages or to Web pages. With

mobile code technologies, the program can install itself and begin running with, at

most, a single mouse click. Following that one click, it might be possible for mobile

code, now running on a user’s machine, to act as if it were the user and attack the

corporate network.

Likewise, cryptography offers very little to help with mobile code. By using

digital signatures, cryptography can be used to certify the origin of mobile code,

and provide guarantees that the code received was not tampered with in transit.

Cryptography can make no guarantees about what the code might do when exe-

cuted.

In order to properly protect the users and their networks against attacks from

mobile code, either all mobile code support must be turned off, with the conse-

quent loss of functionality, or the users’ platforms must maintain adequate safe-

guards to control the actions of mobile code. Turning off mobile code is certainly

a simpler solution. Why not do it? The users will scream! If a company blocks

its employees from seeing the latest snazzy Web plugins, they may be preventing

their employees from interacting with suppliers and studying competitors. Like it

or not, an increasing amount of “content” needs mobile code to be viewed prop-

9

erly.

In essence, the biggest concern with mobile code is that it might be a way to

create Trojan Horses. When the invading Greeks wanted to sack Troy, they did it by

building a large wooden horse as a gift for the Trojans and pretending to abandon

their siege of the city. Unbeknownst to the Trojans, a number of Greek soldiers

hid inside the horse, which the Trojans brought inside their walls as a trophy. At

night, the soldiers emerged from their hiding place and opened the city gates to

the returning Greek armies. In the context of computer programs, we call any

program a Trojan Horse that has apparently or actually useful features and also

contains hidden malicious functionality that exploits any privileges the program

may have when executing.

1.6 Securing Our Future

As mobile code becomes increasingly a part of our computer infrastructure, we

need to build systems that can safely run mobile code. A number of very broad

issues will need to be addressed if we are to feel safe using our computers. Prob-

ably the single largest issue is known bugs in older existing systems. Most people

who attack computers are not computer researchers discovering new vulnerabil-

ities. Rather, they are skilled librarians, collecting known exploits like tools on a

tool belt. An attacker only needs to learn what software their target is using and

see if they have an appropriate exploit ready to go. While users can gain some

assurance by always upgrading their systems to the latest software versions and

applying security patches when available, much of the blame rests on the software

vendors who continue to ship buggy code. So long as feature lists and ship dates

are sufficient to gain market share and sell products, the effort to fix bugs or design

10

software correctly from the ground up will not be rewarded in the marketplace.

One promising trend is the shift away from the C and C++ programming lan-

guages to Java. Java, along with Modula-3, Scheme, ML, and most other modern

programming languages support type safety and strong abstraction. This means that,

while programs may continue to have bugs, it is not possible for a program to acci-

dentally reference memory it has not properly allocated or been given a reference

to, nor is it possible to confuse one data type for another. Type safety is a strong

enough property that it completely thwarts attacks that attempt to overflow in-

ternal buffers and overwrite the system’s memory with hostile code. While it is

possible to write secure code in C or C++, a great deal more effort is required be-

cause there are many more opportunities to make mistakes.

Unfortunately, “legacy code” will continue to run our systems for many years

to come. In order to secure our future, we must realistically assess the legacy sys-

tems of our past and investigate systems that can retrofit security around them.

11

Chapter 2

What is Security, Really?

While this dissertation is about the security of mobile code systems, it is impor-

tant to begin by talking about traditional computer security and what it means

for a system to be secure. With systems as early as Multics [BL76, Org72, Sal74]

and later in operating systems of all kinds and variations, vendors have worked

to build secure systems. The landmark “Orange Book” [Nat85], published by the

U.S. Department of Defense in 1985, sought to define common profiles for secure

systems, helping vendors reach consensus on what a secure system should be, and

then widely distribute such systems in the commercial as well as military mar-

ketplace. Based on research beginning with a task force in 1967, the DoD and its

contractors wrote down everything they believed they knew about building se-

cure software. The full series of books (“the rainbow books”) covers everything

from how software should be physically delivered to how version control should

be managed. The Orange Book introduced six criteria around which all secure sys-

tems could be judged, and specified a number of classifications, ranging from “D”

through “A1” to which a system would be evaluated.

According to the Orange Book, the basic criteria are:

12

Security Policy – There must be an explicit and well-defined se-

curity policy enforced by the system. Given identified subjects and

objects, there must be a set of rules that are used by the system to de-

termine whether a given subject can be permitted to gain access to a

specific object. Computer systems of interest must enforce a mandatory

security policy that can effectively implement access rules for handling

sensitive (e.g., classified) information. . .

Marking – Access control labels must be associated with objects.

In order to control access to information stored in a computer, according

to the rules of a mandatory security policy, it must be possible to mark

every object with a label that reliably identifies the object’s sensitivity

level (e.g., classification), and/or the modes of access accorded those

subjects who may potentially access the object.

Identification – Individual subjects must be identified. Each ac-

cess to information must be mediated based on who is accessing the

information and what classes of information they are authorized to

deal with. This identification and authorization information must be

securely maintained by the computer system and be associated with

every active element that performs some security-relevant action in the

system.

Accountability – Audit information must be selectively kept and

protected so that actions affecting security can be traced to the respon-

sible party. A trusted system must be able to record the occurrences of

security-relevant events in an audit log. The capability to select the

audit events to be recorded is necessary to minimize the expense of au-

diting and to allow efficient analysis. Audit data must be protected

13

from modification and unauthorized destruction to permit detection

and after-the-fact investigation of security violations.

Assurance – The computer system must contain hardware/software

mechanisms that can be independently evaluated to provide suffi-

cient assurance that the system enforces [the above requirements]. In

order to assure that the four requirements of Security Policy, Marking,

Identification, and Accountability are enforced by a computer system,

there must be some identified and unified collection of hardware and

software controls that perform those functions. These mechanisms are

typically embedded in the operating system and are designed to carry

out the assigned tasks in a secure manner. The basis for trusting such

system mechanisms in their operational setting must be clearly docu-

mented such that it is possible to independently examine the evidence

to evaluate their sufficiency.

Continuous Protection – The trusted mechanisms that enforce these

basic requirements must be continuously protected against tamper-

ing and/or unauthorized changes. No computer system can be con-

sidered truly secure if the basic hardware and software mechanisms

that enforce the security policy are themselves subject to unauthorized

modification or subversion. The continuous protection requirement has

direct implications throughout the computer system’s lifecycle.

The security analysis of a system traditionally begins by studying its refer-

ence monitor. A reference monitor is defined to be the portion of code that checks

each and every object reference and validates it against the system’s security pol-

icy [And72]. In order to be trustworthy, the reference monitor must be tamper-

14

proof, always invoked, and small enough to be analyzed and tested. Reference

monitors have traditionally been implemented as part of a security kernel [AGS83].

This security kernel, and any external utilities it depends on to enforce system se-

curity are referred to as the trusted computing base or TCB.

Security is still meaningless without a security policy. In commercial systems, it

is often sufficient to have discretionary access controls (DAC) such as access control

lists or Unix-style file permissions, although some commercial systems will also

want the ability to build restrictions about which applications can access which

data [CW87]. In contrast to the civilian sector, the military is very concerned about

maintaining its multilevel security (MLS) — classified, secret, top secret, and so

forth. A user with “secret” clearance should not be permitted to read a “top se-

cret” document or even learn of the existence of such a document. Likewise, there

should be no way for a user to “declassify” a document except through carefully

limited procedures. The MLS policy has been formally modeled [BL73, BL76]

and is an example of mandatory access control (MAC), so called because no user

or program should be able to circumvent the policy, no matter how privileged.

Numerous other security policies have been proposed, such as the Chinese Wall

policy [BN89], which gradually builds a wall around users as they view sensitive

information to prevent them from tainting other information considered to be com-

partmentalized. This may be applicable in “clean room” design environments as

well as certain legal settings.

In order for a system to achieve the highest Orange Book ratings, it must have

been formally verified. Formal verification has had its greatest successes in study-

ing cache-coherence protocols [PD96], cryptographic protocols [BAN90, MMS97],

cipher systems, hardware verification [HYHD95], and compiler design [GW95].

While some operating systems designers have attempted to create provably se-

15

cure systems [NBF+80], to require this for operating systems in 1985 was quite

ambitious and, even today, is considered somewhat impractical in commercial set-

tings. As a compromise, the Orange Book is satisfied that a mathematical model of

the system’s security policy exists and has been proven to be secure. Similar proofs

about the validity of the system’s components would also help a system’s rating

by increasing our assurance of the system’s correctness.

16

Chapter 3

Java Security: Web Browsers and

Beyond

3.1 Introduction

The continuing growth and popularity of the Internet has led to a flurry of devel-

opments for the World Wide Web. Many content providers have expressed frustra-

tion with the inability to express their ideas in HTML. For example, before support

for tables was common, many pages simply used digitized pictures of tables. As

quickly as new HTML tags are added, there will be demand for more. In addition,

many content providers wish to integrate interactive features such as chat systems,

dynamic stock market charts, and other animations.

Rather than creating new HTML extensions, Sun Microsystems popularized

the notion of downloading a program (called an applet) that runs inside the web

browser. Such remote code raises serious security issues; a casual web reader

should not need to be concerned about malicious side-effects from visiting a

web page. Languages such as Java [GJS96], JavaScript [Fla97], Safe-Tcl [Bor94],

17

Limbo [Com97], Phantom [Cou95], Juice [FK97] and Telescript [Gen95] have been

proposed for running untrusted code, and each has varying ideas of how to thwart

malicious programs.

After several years of development inside Sun Microsystems, the Java language

was released in mid-1995 as part of Sun’s HotJava web browser. Shortly thereafter,

Netscape Communications Corp. announced they had licensed Java and would

incorporate it into their Netscape Navigator web browser, beginning with version

2.0. Microsoft later licensed Java from Sun, and incorporated it into Microsoft In-

ternet Explorer 3.0. With the support of many influential companies, Java effec-

tively became the standard for executable content on the web. This also made it

an attractive target for malicious attackers, and demanded external review of its

security.

Drew Dean and I first looked at Java in November, 1995 [DFW96]. Since that

time, the Princeton Secure Internet Programming group has found a number of

bugs in Netscape Navigator through all its various releases and later in Microsoft’s

Internet Explorer. As a direct result of our investigation, and the tireless efforts of

the vendors’ Java programmers, we believe the security of Java has significantly

improved since its early days [DFWB97]. In particular, Internet Explorer 3.0, which

shipped in August, 1996, had the benefit of nine months of our investigation into

Netscape’s Java. Still, despite all the work done by us and by others, no one can

claim that Java’s security problems are over.

3.2 Java Semantics

Java is similar in many ways to C++ [Str94]. Both provide support for object-

oriented programming, share many keywords and other syntactic elements, and

18

can be used to develop stand-alone applications. Java diverges from C++ in a num-

ber of ways: it is type-safe, supports only single inheritance (although it decouples

subtyping from inheritance), requires a garbage-collected memory heap, and has

language support for concurrency, exception handling, and object persistence.

Java compilers produce a machine-independent bytecode. While a program

can be executed on a local machine, it may also be loaded across a network. The

bytecode is lazily loaded and dynamically linked as it is needed by the program’s

execution. A Java runtime system may either interpret the bytecode directly or

compile it to native machine code [LY96]. Some newer Java systems statically com-

pile and link whole Java programs at once [Nat98].

The standard Java distribution contains a large and growing collection of utility

code for every purpose, from basic data structures (hash tables, vectors, queues)

to string parsing routines, graphics and GUI functionality, networking and remote

procedure call support, database connectivity, cryptography, internationalization

and localization, and printing.

3.2.1 Packages and Modifiers

Java programmers may combine related classes into a package. These packages

are similar to name spaces in C++, modules in Modula-2 [Wir83], or structures in

Standard ML [MTH90]. While package names consist of components separated

by dots, the package name space is actually flat: scoping rules are not related to

the apparent name hierarchy. In Java, public and private have the same meaning

as in C++: Public classes, methods, and instance variables are accessible every-

where, while private methods and instance variables are only accessible inside the

class definition. Java protected methods and variables are accessible in the class

19

or its subclasses or in the current (package, origin of code) pair. A (package, ori-

gin of code) pair defines the scope of a Java class, method, or instance variable

that is not given a public, private, or protected modifier. Colloquially, methods

or variables with no access modifiers are said to have package scope. Unlike C++,

protected variables and methods can only be accessed in subclasses when they

occur in instances of the subclasses or further subclasses. For example:

class Foo {

protected int x;

void SetFoo(Foo obj) { obj.x = 1; } // Legal

void SetBar(Bar obj) { obj.x = 1; } // Legal

}

class Bar extends Foo {

void SetFoo(Foo obj) { obj.x = 1; } // Illegal

void SetBar(Bar obj) { obj.x = 1; } // Legal

}

The definition of protectedwas the same as C++ in some early versions of Java; it

was changed during the beta-test period to patch a security problem[Mue96] (see

also section 3.4.2).

3.2.2 Dynamic Checking and Static Verification

The Java runtime system is designed to enforce the language’s access semantics.

Unlike C++, programs are not permitted to forge a pointer to a function and in-

voke it directly, nor to forge a pointer to data and access it directly. If a rogue

applet attempts to call a private method, the runtime system throws an excep-

20

tion, preventing the errant access. Thus, if the system libraries are specified safely,

the runtime system is designed to ensure that application code cannot break these

specifications.

Java’s type safety can be mostly verified statically by the bytecode verifier which

examines every class before it is loaded by the Java system. Unfortunately, the Java

language has some features that prevent completely static verification. The type

system uses a covariant [Cas95] rule for subtyping arrays, so array stores require

run time type checks1 in addition to the normal array bounds checks. Cast ex-

pressions also require runtime checks. In addition to their performance penalties,

dynamic checks stretch the trusted computing base beyond the bytecode verifier.

In practice, the dynamic verification of Java classes is remarkably subtle and bugs

have been found regularly in the bytecode verifier [MF97, Sir97] and the class load-

ing architecture [Dea97].

3.2.3 Security Mechanisms

The original version of Java distinguished remote code from local code. While local

code was permitted to do do anything it wanted, remote code was restricted to the

Java “sandbox” security policy, which roughly states that applets may not access

the local file system at all and may only make network connections to their host of

origin.

Since local code and remote code could co-exist in the same Java virtual ma-
1For example, suppose that A is a subtype of B; then the Java typing rules say that A[] (“array of

A”) is a subtype of B[]. Now the following procedure cannot be statically type-checked:
void proc(B[] x, B y) f

x[0] = y;

g
Since A[] is a subtype of B[], x could really have type A[]; similarly, y could really have type A. The
body of proc is not type-safe if the value of x passed in by the caller has type A[] and the value of
y passed in by the caller has type B. This condition cannot be checked statically.

21

chine (JVM), and can in fact call each other, the system needed a way to determine

if a sensitive call, such as a network or file system access, was executing “locally”

or “remotely,” since the security policy allowed more freedom for local code. The

original JVMs have two inherent properties used to make these checks:

� Every class in the JVM that came from the network was loaded by a Class-

Loader, and includes a reference to its ClassLoader. Classes that came from

the local file system have a special system ClassLoader. Thus, local classes

can be distinguished from remote classes by their ClassLoader.

� Every frame on the call stack includes a reference to the class running in that

frame. Many language features, such as the default exception handler, use

these stack frame annotations for debugging and diagnostics.

Combined, these two JVM implementation properties allow the security system to

search for remote code on the call stack. The system would actually count how

many “system” stack frames existed between the security check and the first “re-

mote” stack frame. This value, called the ClassLoader depth was used in making a

number of security decisions.

Later versions of Java replaced ClassLoader depths with a more general check-

ing mechanism called stack inspection. This will be introduced in chapter 5 and

formalized later in chapter 7.

To enforce the sandbox policy, all the potentially dangerous methods in the

system were designed to call a centralized SecurityManager class that checks if the

requested action is allowed (using the mechanisms described above), and throws

an exception if the request violates the policy.

22

3.2.4 System Architecture

Because Java attempts to protect the local system from potentially malicious mo-

bile code, and it also tries to protect one such program from another, Java begins

to take on the appearance of an operating system instead of just a language. As

an operating system, the most conspicuously missing feature of Java is the use of

separate address spaces to separate processes. Instead, Java relies strictly on the

memory safety it gets from being type safe. This may have important ramifica-

tions as computer architectures evolve and the proportional costs of traditional

operating systems mechanisms grow worse [Ous90, ALBL91]. Still, the Java VM,

by itself, does not provide all the guarantees of a traditional operating system, such

as fair scheduling, resource usage limits, multiple users, and more. Some recent

research projects have begun to address these issues [GWTB96, Dig97, MRR98,

BTS+98, TL98, Cv98, HCC+98, BG98], but no commercial products yet offer a com-

plete solution. These issues are discussed in more detail in chapter 5.

3.3 An Attacker’s Methodology

Different attackers may have different goals. Some may wish to steal secrets from

you. Others may wish to delete your files and crash your machine. Some may

simply wish to be annoying. In order to build a secure Java system, it is necessary

to understand how attackers will go about breaking the system. This dissertation

is not meant to be a comprehensive list of every bug ever discovered in the Java

VM (most of which were never published) nor of every possible kind of Internet-

based security attack (although Howard [How97] has a nice summary), but instead

presents examples we and others have found that demonstrate each category.

23

3.3.1 Overflowing Buffers

Popularized by the Morris Worm in 1988 [ER89], an extremely prevalent form of

security attack has been to overflow a fixed buffer. A common practice among

C programmers had been the use of gets() to read one line of text, terminated

by a newline, into a buffer. Because gets() has no argument specifying the max-

imum length of its output, it will happily overflow buffers that were allocated

with insufficient space. Similar issues occur with numerous C utility functions

like sprintf(). Attacks like this have been aimed at every conceivable Unix and

Windows utility. If the attacker knows something about where the buffer is allo-

cated (either on the stack or on the heap), it becomes possible to write executable

machine code directly into the system’s RAM and (particularly when overflowing

stack-allocated buffers) easily arrange for it to be executed.

Even when an application is written in a memory-safe language like Java, mak-

ing it impossible to overflow buffers, the C runtime below Java may still be vul-

nerable. In early alpha releases of Java, we found numerous cases where Sun used

fixed buffers and unsafe routines to write to them. Most of these problems were

fixed in the beta releases.

While an operating system can largely address this class of attacks by requir-

ing executable memory pages to be read-only, remarkably few operating systems

actually do this.

3.3.2 Violating the Type System

The goal in violating the type system is the same as in overflowing a buffer: in-

duce the system to execute arbitrary machine code and thereby work around any

restrictions imposed by the Java environment. To violate the type system, we need

24

a mechanism that allows an unchecked type cast. In C or C++, the programmer is

free to cast any object type to any other type. In fact, C’s union structure makes this

fast and convenient. Java goes to great lengths to prevent this (see section 3.2.2)

because unchecked type casts would allow an untrusted program to write a mem-

ory address into an integer, treat it as an object reference, and then write arbitrary

data anywhere in memory.

Type system attacks often involve an attacker building a custom ClassLoader,

which is officially against the sandbox security policy, yet a number of tricks have

been discovered that have allowed them to be created anyway [MF97]. Since Class-

Loaders are responsible for the consistency of the Java type system [Dea97], it is

only natural that a malicious ClassLoader could arrange for an inconsistent type

system. With this, it becomes possible to treat a reference of one type as if it is

any other type in the system. Given this type caster, it is possible to write native

code into memory and execute it, although it is tricky and unportable. An easier

solution is to get a reference to a critical system class, such as java.lang.System

and make security-compromising alterations. Just as an unchecked type caster can

treat an integer as if it is an object reference, it can likewise treat a reference to a

class with private members as if it is a reference to a class with all public members.

A simple but effective attack is to set the SecurityManager to null, effectively dis-

abling all system security and allowing a previously untrusted applet full access

to the system.

3.3.3 Exploiting Library Weaknesses

The system libraries need to exercise a number of dangerous privileges that are

normally denied to “sandboxed” applets. If you can pass unusual arguments to

25

buggy system code, you may be able to make it act on your behalf.

One such attack focused on the way Java handles fonts. Font properties are

stored in the the Properties subsystem along with a fair amount of privileged in-

formation, such as the identity of the user and other browser settings. Normally, an

unprivileged applet is not allowed to read these privileged properties. However,

if an applet asks to load a font called “user.name,” the value returned contains the

restricted information. This bug was initially discovered in 1996, but still appeared

as late as Sun’s JDK1.2beta4 release in mid-1998. The bug was fixed in later releases

of JDK1.2.

This attack, reading the system properties through the font subsystem, is an

example of an indirect attack. This class of attacks is extremely difficult to stop

because the designers of each and every subsystem must be aware of the secu-

rity implications of every line of code they write. One of the main goals of stack

inspection (discussed later in this dissertation) is to thwart this class of attacks.

3.3.4 Denials of Service

Simple infinite for-loops or infinite memory allocation can destabilize and crash

the Java virtual machine. Even allocating thousands of windows can also crash

some window systems. Simply playing an annoying tune might drive users away

from their machines. Mark LaDue has written a number of “hostile applets” that

demonstrate these attacks [LaD96].

Denial of service attacks are fundamentally difficult to contain because, as far

as the system is concerned, there is little difference between an applet that plays

pleasant music and one that plays annoying noise. Similar issues apply to CPU

and memory usage.

26

3.3.5 Spoofing the User

One of the most frightening attacks is one where Java is used to simulate the pop-

up dialog boxes normally used to ask a user to authenticate themselves to a Web

server, a dialup connection, or any other place where they might type a password

or credit card number. Even though Java’s graphics are constrained to be within

the Web browser’s internal window, it is still possible to draw a simulated window

with simulated borders that can be dragged and resized! The only constraint is

that it cannot be dragged outside the browser’s internal window. This constraint

generally is not sufficient to protect users.

Windows NT normally solves this problem by implementing a trusted path be-

tween the user and the password system. This is done by requiring the user to

hit Control-Alt-Delete before an official password dialog will appear. NT will not

let any application intercept Control-Alt-Delete, thereby guaranteeing the trusted

path between user and authentication system.

Unfortunately, this works for NT login, but most other password systems have

no such concept, particularly login screens for commerce-related Web sites, whether

running on NT or any other system. Some recent commercial trends toward sin-

gle sign-on might address this problem on the local system, but deploying such a

system where it can run compatibly across the Web and across different operating

systems will be a fascinating challenge.

3.4 Analysis

Through our studies of Java, beginning with the alpha releases of HotJava and

continuing through the latest releases from Sun, Netscape, and Microsoft, we have

27

found all kinds of security problems [DFWB97]. More instructive than the partic-

ular bugs we and others have found is an analysis of their possible causes. Policy

enforcement failures, coupled with the lack of a formal security policy, make inter-

esting information available to applets, and also provide channels to transmit it to

an arbitrary third party. The integrity of the runtime system can also be compro-

mised by applets. To compound these problems, no audit trail exists to reconstruct

an attack afterward. In short, the Java runtime system is not a high assurance

system.

3.4.1 Policy

The present documents on Netscape Navigator [Ros96b], Microsoft Internet Ex-

plorer [Mic97a, Mic97b], and HotJava [Sun95] do not formally define a security

policy beyond the roughly stated “sandbox” policy. This contradicts the first of

the Orange Book’s Fundamental Computer Security Requirements, namely that

“There must be an explicit and well-defined security policy enforced by the sys-

tem.” [Nat85] Without such a policy, it is unclear how a secure implementation

is supposed to behave [Lan81]. In fact, Java has two entirely different uses: as a

general purpose programming language, like C++, and as a system for develop-

ing untrusted applets on the web. These roles will require vastly different security

policies for Java. The first role does not demand any extra security, as we expect the

operating system to treat applications written in Java just like any other applica-

tion, and we trust that the operating system’s security policy will be enforced. Web

applets, however, cannot necessarily be trusted with the full authority granted to

a given user, and so require that Java define and implement a protected subsystem

with an appropriate security policy.

28

3.4.2 Enforcement

Java fundamentally bases its protection on the type safety of the language. An in-

teresting issue is that the Java’s bytecode representation is strictly more expressive

than its source language; legal bytecode exists for which there is no equivalent Java

source. Tools like jasmin make it easy to write any desired bytecode, legal or ma-

licious [MD97]. Lindholm and Yellin [LY96] discuss many of the restrictions that

are placed on bytecode and implemented by the Java bytecode verifier, but their

specification is completely ad-hoc. An attempt to create an independent bytecode

verifier [Sir97, SGB+98] discovered a number of inconsistencies.

These inconsistencies are significant because the programmer writing a Java

system class generally reasons about the code’s security using the semantics of the

Java source language. For example, a private variable may not be read or writ-

ten by code outside of the class that contains the variable. If this property were

enforced only by the compiler and not by the Java runtime, then hand-coded mali-

cious bytecode would be able to freely attack the system. More complex properties

relating to how a class calls its superclass constructor or when two classes are con-

sidered to be in the ‘same’ package are also relied upon for security, yet are not

discussed in the Java language specification [GJS96]. If any one of these security-

relevant properties turns out to be unenforced by the Java VM, then the code that

relied upon it would be vulnerable to attack.

A more formal analysis of Java’s bytecode may be found in Stata and

Abadi [SA98], and the Java language’s type system has been studied by

Drossopoulou and Eisenbach [DE97a, DE97b]. More research will be necessary

to address the safety of the language, in theory, and the bytecode restrictions, in

practice.

29

Java’s security must be enforced at a higher level as well. The Java “sandbox”

security policy, such as it is, specifies certain restrictions on a Java applet’s author-

ity to make network connections, open files, and learn system properties. To en-

force this, the Java SecurityManager is intended to be a reference monitor [Lam71].

Recall that a reference monitor has three important properties:

1. It is always invoked.

2. It is tamperproof.

3. It is verifiable.

Unfortunately, the Java SecurityManager design has weaknesses in all three ar-

eas. It is not always invoked: programmers writing the security-relevant portions

of the Java runtime system must remember to explicitly call the SecurityManager.

A failure to call the SecurityManager will result in access being granted, contrary

to the security engineering principle that dangerous operations should fail unless

permission is explicitly granted. It is not tamperproof: attacks that compromise the

type system can alter information that the SecurityManager depends on. Finally,

the SecurityManager code is the only formal specification of policies. Without a

higher-level formal specification, informal policies may have incorrect implemen-

tations that go unnoticed. For example, the informal policies about network access

were incorrectly coded in JDK 1.0 and Netscape Navigator 2.0’s SecurityManager,

allowing an applet, in collusion with a malicious DNS server, to connect to any

computer on the network [DFWB97].

Furthermore, the original SecurityManager based many of its policies on a

mechanism called “ClassLoader depths” (see section 3.2.3). In practice, this design

proved insufficient. The ClassLoader depths made the SecurityManager impossi-

ble to analyze. Consider the code in figure 3.1. The Java authors identified two

30

/**

* Applets are not allowed to link dynamic libraries.

*/

public synchronized void checkLink(String lib) {

switch (classLoaderDepth()) {

case 2: // Runtime.load clas

case 3: // System.loadLibrary

throw new AppletSecurityException("link", lib);

default:

break;

}

}

Figure 3.1: ClassLoader depth excerpt from Java 1.0’s SecurityManager.
This method is used to check whether a request to load a new dynamic library
should be granted. The ad-hoc checks of classLoaderDepth() are disturbing.

entry points from which applet code might request the dynamic loading of a li-

brary and encoded some fairly fragile information about these entry points in the

SecurityManager. The security check is fragile because other system classes might

also provide a way for an applet to load a library, directly or indirectly. These could

possibly lead to other values of the ClassLoader depth.

One of the new features of Netscape 4.0, later followed by Microsoft’s Internet

Explorer 4.0 and Sun’s JDK 1.2, was stack inspection, which was designed specifi-

cally to generalize and clean up the ClassLoader depth issues. This is described in

detail in chapter 5. Stack inspection is actually a very interesting mechanism and

its design, formalization, analysis, and performance is one of the main contribu-

tions of this dissertation.

3.4.3 Integrity

The Java runtime has a substantial amount of code written in C. Sun’s JDK 1.0.2,

for example, had 121K lines of C or C++ code compared to 107K lines of Java code.

31

This means that over half of the JDK is potentially vulnerable to buffer overflow

attacks. We do not have access to current Java source, but the native code size has

certainly grown larger in newer releases. If more of the Java runtime were written

in Java itself, these potentially vulnerabilities would not exist.

In contrast, the architecture of HotJava (where the Web browser is implemented

in Java and runs in the same Java machine as applets) is inherently more prone

than that of Netscape Navigator or Microsoft Internet Explorer to accidentally re-

veal internal state to an applet because the HotJava browser’s state is kept in Java

variables and classes. Variables and methods that are public are potentially very

dangerous: they give the attacker a toe-hold into HotJava’s internal state. Static

synchronized methods and public instances of objects with synchronized methods

lead to easy denial-of-service attacks, because any applet can acquire these locks

and never release them. These are all issues that can be addressed with good de-

sign practices, coding standards, and code reviews.

The Java system does not include an identified trusted computing base (TCB).

Substantial and dispersed parts of the system must cooperate to maintain security.

The bytecode verifier, and interpreter or native code generator must properly im-

plement all the checks that are documented. The HotJava browser (a substantial

program) must not export any security-critical, unchecked public interfaces. This

does not approach the goal of a small, well defined, verifiable TCB. An analysis

of which components require trust would have found the problems we have ex-

ploited, and perhaps solved some of them. More recent work has begun to address

the TCB. This is detailed in chapter 5.

32

3.4.4 Accountability

The fourth fundamental requirement in the Orange Book is accountability: “Audit

information must be selectively kept and protected so that actions affecting secu-

rity can be traced to the responsible party.” [Nat85] The Java system does not define

any auditing capability. If we wish to trust a Java implementation that runs byte-

code downloaded across a network, a reliable audit trail is a necessity. The level

of auditing should be selectable by the user or system administrator. As a min-

imum, files read and written from the local file system should be logged, along

with network usage. Some users may wish to log the bytecode of all the programs

they download. This requirement exists because the user cannot count on the at-

tacker’s web site to remain unaltered after a successful attack. The Java runtime

system should provide a configurable audit system.

Solving this problem would appear to be an opportunity for a third-party de-

veloper, such as a firewall vendor. While a number of vendors sell products

that purport to block applets, fewer offer support to log them, despite the rela-

tive ease with which it could be added to their products. Martin et al. [MRR97]

and LaDue [LaD96] have shown that blocking is somewhere between difficult and

impossible to accomplish. For example, an applet might be delivered over an en-

crypted channel. Without cooperation from the Web browser, the firewall would

not be able to distinguish the applet from any other encrypted data. Perhaps sim-

ply logging all Java classes would be easier, and could provide sufficient evidence

to reconstruct an attack and identify its source. If the JVM was forced to load its

classes through a Web proxy server, that proxy server could host the tamper-proof

log. If the JVM sent an extra message to the proxy server before loading any class

(e.g., “now loading x/y/z.cls from foo.zip”), the server would know to log its

33

cached copy.

3.4.5 Denial of Service

The Java VM’s that ship with Netscape and Microsoft’s products make no attempt

to control attacks that simply consume resources such as using too many CPU

cycles or allocating too much memory. Several researchers have proposed archi-

tectures where Java applets run on distinct machines, separated from a user’s Web

browser, and displaying graphics remotely [SGB+98, MRR98, Dig97]. These sys-

tems fundamentally place no trust in the JVM itself and instead use OS-level pro-

tection to sandbox the entire JVM. Other researchers have proposed Java architec-

tures that run separate instances of the Java machine within the same address space

and can control the resource usage of each JVM instance [Cv98, BTS+98, TL98]. We

will discuss and analyze these architectures in more detail in chapter 5.

34

Chapter 4

Building Secure Services

When we talk about a “secure system,” we are generally referring to a system

whose fundamental job is to provide a number of services with restrictions on who

can use them and what they can do. A bank may allow customers access to infor-

mation on their accounts. A subscription Web site may allow known subscribers to

download the latest news and gossip. Generally, such systems are designed with

a large database containing the state of the server, wrapped with Web servers with

software that limits the kinds of requests and queries that can be made against the

database (sometimes called a “three tier architecture,” referring to the web client,

the web servers with their “application logic,” and a database system backing the

web servers). Obviously, a bank does not want its customers to arbitrarily access

the database and edit the amount of money present in their accounts!

A secure service is a layer of software (or hardware) that takes a dangerous prim-

itive service, such as access to the bank’s database, and exports a safe interface,

such as an end user Web interface.

Whether a secure service is implemented in one computer or with a network

of computers, the complete system must still be secure against attacks from the

35

outside. Many of the techniques we might use to build security in single-computer

systems apply as well to distributed systems [Rus81].

To build a secure service, we need a security architecture. The security architec-

ture provides us with the primitives we use to express the access controls, or who

is allowed to access what. In the abstract, all security policies can be expressed

as an access control matrix [Lam71], stating for each subject and object, what kinds

of accesses are permitted from that subject to that object. In practice, a number of

different techniques have evolved to express the access control matrix. These are

discussed below.

4.1 Traditional OS Architectures

Much of the work in security architectures has occurred in the pursuit of secure

operating systems, particularly for time-sharing applications. With hundreds or

thousands of users simultaneously sharing the same computer, the operating sys-

tem is responsible for ensuring an equitable division of the machine’s resources

among its users, and it must do so with a minimum of overhead.

4.1.1 Processes

The Unix systems we use today as well as Multics and numerous other systems

that came beforehand [Tan92] support the notion of a process. The process en-

capsulates a thread of execution, a separate address space in which it runs, and

the privileges available to it. Processes are themselves prohibited from reading or

writing directly to any of the computer’s devices. Processes are likewise prohib-

ited from directly handling interrupts or other hardware-related events. A process

36

may read and write only to memory mapped into its address space by the kernel.

In order for a process to interact with the outside world, it must either use a shared

memory buffer or make a system call. A number of different mechanisms are used

to implement system calls. Fundamentally, the kernel provides interfaces to read

and write files, make network connections, allocate and free memory, interact with

devices such as keyboards and mice, communicate with other processes, and so

forth.

In a process-structured system, it is the kernel’s complete responsibility to en-

force any security policy the system may have. This generally means the kernel

must very carefully check the arguments passed to every kernel call and make

a determination if the request is allowed. The typical Unix security architecture

attaches security labels to every object in the system (e.g., every file). Every pro-

cess runs with a user ID and a group ID. Based on these two ID’s, the kernel will

evaluate whether the process has sufficient privilege to access the requested re-

source. Traditional Unix systems label each file with a user and a group and have

permission bits associated with each object. These permission bits, nine in all, state

whether the user may read, write or execute the file, whether a member of the

group may read, write, or execute the file, and finally whether anybody else may

read, write, or execute. Some newer Unix systems as well as Microsoft Windows

NT, Multics, and other systems support access control lists (ACLs), which provide

a more general specification of access rights than Unix’s permission bits. An ACL

can express an arbitrary list of user and group ID’s and state what permissions are

granted to each of them. An ACL represents one row of the access control matrix

– saying, for one object, all the subjects that may access it.

When the kernel is evaluating the permissions on an object, it must be careful

in how the arguments are read and written from the user process; it would be

37

unacceptable for a multi-threaded user processes to change the name of a file while

it is being simultaneously validated by the kernel. This could result in the security

portion of the kernel approving a file to be read only to have another file read

instead. Likewise, the kernel must be careful in how it passes results back to a user

process to avoid accidentally leaking the secrets of another process that may have

previously occupied the same buffer in the kernel.

The traditional solution to these security issues is to always copy the data. The

kernel will copy all string arguments before parsing them, therefore ensuring that

the file validated to be read is the file that is actually read. Then, when data is

actually read from a file or network, it is copied from the kernel’s disk buffer back

into the user process’s memory.

In practice, the two largest sources of overhead in a process-structured sys-

tem are copying data between address spaces and updating the system’s page

tables [Ous90, ALBL91]. Both of these operations are quite expensive and will

adversely effect the I/O performance of applications. Extraneous data copying

reduces system throughput by requiring multiple cycles of the CPU reading and

writing the data to memory. This may also cause useful data to be ejected from

memory caches. Extraneous page table operations may also require cache flushing

in some virtual-memory mapped caches.

Operating system designers and system architects have considered a wide range

of solutions to reduce these costs. Data copying can be reduced by careful buffer

management and by mapping hardware devices directly into a user process’s ad-

dress space. To avoid forcing a cache flush on every context switch, some CPUs

with virtually-mapped caches include a process-ID tag as part of the cache address.

Alternately, single address-space systems [CLLBH92, CLFL94] place all processes

into a flat address space. When such a system switches between processes, it need

38

only change protection bits on the relevant pages.

Still, many applications, such as packet filtering, require extremely fine-grained

interaction between untrusted user code and trusted system code. Modern oper-

ating systems have begun to look at injecting user code directly into the kernel,

where costs can be even smaller. We discuss these systems later in section 4.3.

4.1.2 Ring Structures and Multilevel Security

Multics was a revolutionary system. It was structured as a series of concentric

rings, with more privileged code getting closer to the center and unprivileged code

on outer rings [Org72, Sal74, SS72]. Calls to inner rings were restricted, much like

Unix system calls. The GE mainframe supported ring crossing calls with no ad-

ditional overhead relative to normal procedure calls. This led to a system where

device drivers could run in a separate ring from the rest of the kernel. This sepa-

ration could isolate a fault in one kernel subsystem and prevent it from damaging

the rest of the system.

The benefit of ring structures is that they naturally follow the layering inherent

in an operating system design and provide nice separation and protection between

layers. Still, problems arise in deciding what portions of the system to assign to

what layers. Inner rings are allowed to freely read and write the memory of their

callers in outer rings, so code closer to the center must necessarily be more trusted.

Multics also supported the U.S. military’s multi-level security policy [BL76],

where a document that is classified top secret may not be read by a user with only

a secret clearance. Where access control lists provide discretionary access control,

Multics additionally supported a form of mandatory access control.

39

4.1.3 Other Grouping Structures

Systems that support domain and type enforcement (DTE) allow grouping to-

gether of users and of resources, and allow policies to be expressed on these

groups [BSS+95]. DTE allows the expression of ACLs as well as multilevel manda-

tory policies. Likewise, role-based access control systems [SCFY94], allow privi-

leges to be granted to roles rather than individual users. If a user is added to the

group corresponding to a specific role, then the user may exercise the privileges

associated with that role.

DTE and role-based systems can be thought of as adding one level of indirec-

tion to the access control matrix, simplifying the expression of policies by either

grouping subjects or objects together and expressing policies against the aggregate

groups.

4.1.4 Capability Systems

In Unix-style operating systems, a process may name any system object it wants,

whether a file or a system device, and the kernel then centrally decides whether

the process making the request is sufficiently privileged to make the request. In

a capability system, however, a process will not necessarily be able to name any

file or resource. Instead, the ability to access a resource is mediated by the ability

to name it. Traditional machines supported two possible implementations of ca-

pabilities: special pointers can be stored in tagged memory where the hardware

will prevent an untrusted process from changing the value of the pointer, or the

kernel can supply “handles” or “descriptors” that allow an untrusted process to

indirectly invoke its capabilities [Lev84].

A process will run in an environment defined by its capabilities. A user’s priv-

40

ileges will be a group of capabilities that are inherited by programs run by that

user. A number of subtleties involved in designing such a system are described in

Hardy [Har85].

Plan9 [PPTT90] can be thought of as an interesting variation on a capability sys-

tem. An untrusted process can be run in an environment where it is only presented

with a subset of the full filesystem. Because all system resources in Plan9 are rep-

resented by files, they represent capabilities to access those system resources.

As ACLs can be thought of as capturing the rows of an access control matrix

(saying, for each object, the list of subjects allowed to access it), capabilities can

be thought of as capturing the columns of an access control matrix, where each

subject holds a list of the objects that is it allowed to access.

There have been two traditional criticisms of capability-based systems: capa-

bilities were relatively expensive to invoke, creating issues with system perfor-

mance, and the confinement of privileges is problematic. The performance issue is

relatively easy to envision: either your hardware must support relatively exotic

semantics with tagged memory, or you must add a level of indirection between

a process and its capabilities. Either will constrain the performance of a system.

The confinement issue is much trickier: once a capability has been passed from a

user to a program or from one program to another, there must be a mechanism to

eventually revoke that capability. Without revocation, the capability can no longer

be said to “belong” to the user to whom it was originally granted. While a number

of extensions to capability systems exist to address these concerns [KL87], they all

either increase the cost of invoking a capability or increase the cost of sharing one.

41

4.2 Distributed Systems

In a single machine, there are a number of guarantees that fail to be automatically

true in a distributed system. For example, while all tasks on a single machine can

be reasonably controlled, there may be a malicious machine on the same network

as the distributed system. Such attackers may be able to passively listen to all

traffic on the network or even inject their own messages that pretend to be from an

authorized source. While cryptography and firewall technologies are commonly

considered to solve all these problems, and are in fact necessary, they are not alone

sufficient.

4.2.1 Firewalls

The simplest way to protect a clustered computer system is to restrict access to it

through a firewall. In this way, every machine in the cluster will implicitly trust

all messages it receives. This is probably the dominant method used in building

secure Web services.

4.2.2 Distributed Capabilities

Capabilities extend quite naturally across a network. If remote object references in-

clude an unguessable string of bits (e.g., 128 random bits), then a remote capability

reference has all the security properties of a local capability [TMvR86, Gon89] (as-

suming suitable use of cryptography to protect the confidentiality and integrity of

communication). Unfortunately, the confinement issues discussed in section 4.1.4

become even more problematic. If the capability is leaked to a third party, then the

third party has just as much power to use the capability as its intended holder. By

42

themselves, networked capabilities offer no way for an object to identify its remote

caller. However, if the remote method invocation used a cryptographically au-

thenticated channel (as provided by Kerberos [KN93], SSL [FKK96] / TLS [DA97],

or Taos [WABL94]), the channel’s remote identity might be useful. Gong [Gon89],

Deng, et al. [DBWL95], and van Doorn, et al. [vABW96] describe implementations

of this.

4.2.3 Distributed ACLs

Instead of capabilities, it is also possible to make access control decisions strictly

based on the identity of the caller. When two machines establish a cryptographic

connection, they will likely perform some kind of cryptographic handshake that

proves to each party the identity of the other party [Sch96]. Many remote object

systems, including DCE and CORBA [Hu95, DBWL95, Sie96], allow for access con-

trol lists associated with each object to be consulted when an object is invoked.

Taos [WABL94, LABW92, vABW96] is distinctive because it maintains com-

pound principals. So, as a request passes from one process to another and from one

machine to the next, the full chain of identities is maintained and can be passed

along. Likewise, Taos has a strong notion of delegation, whereby one principal can

make a statement that another principal can act on its behalf. This statement could

be sent across an encrypted channel or digitally signed and sent in the clear. Del-

egation statements can become quite complex, so Taos uses a theorem prover to

reason about them and resolve access control questions.

43

4.3 Mobile Code Systems

Modern research operating systems have invested a fair amount of effort in sup-

porting mobile code. One of the important motivations for mobile code, particular

injecting code from user processes into the kernel, has been to overcome the per-

formance barriers inherent to crossing from user mode to kernel mode and back.

In addition to the need for a security architecture, such systems also need a way to

prevent the injected code from having arbitrary memory access to the kernel. So,

just as Java relies on a bytecode verifier and then an interpreter or compiler, other

mobile code systems have used interpreters, machine code rewriting [WLAG93],

trusted compilers [BSP+95, PB96, SESS94, SESS96], or machine-checkable proofs of

code safety [NL96].

Many interesting security architectures have also been explored by these sys-

tems. Vino [SESS94, SESS96] exports a transactional interface to its kernel exten-

sions. If the extension misbehaves, the transaction can be cancelled and its effects

undone. Flux [FHL+96] allows recursive virtual machines to manage each others

resources. Scout [MP96] allows user and kernel code to cooperate in groups called

paths that are scheduled together and may be assigned resource limits as a group.

4.4 Building a Secure Service

To understand the problem of building a secure service, consider the program

that users may invoke to change their password. In general, users should have

sufficient privilege to change their own password, but should not have sufficient

privilege to change other users’ passwords. However, some administrative users

should have sufficient privilege to override a normal user password, which might

44

be necessary when a user forgets his or her password. In a Unix-style system,

the password-changing utility is generally “setuid root,” meaning it has sufficient

privileges to do an arbitrary amount of damage to the system. A paranoid system

administrator would need to carefully study the source of the password program,

searching for bugs that might allow a user to convince the password program to

perform a dangerous action on its behalf (see also the discusson on “the confused

deputy” in section 5.2.4). In a DTE system or a system with ACLs, the password

program may be granted a more fine-grained privilege to edit specifically the pass-

word file but no other. In a capability system, you could imagine each user be-

ing given a customized instance of the password program that would only allow

changes to that specific user’s password.

One of the characteristics we look for in a security architecture is how easy it

is to specify a fine-grained policy. Following the principle of least privilege [SS75],

our system will be more secure when we can grant each program the minimum

necessary privileges for it to get its job done. As we will see in the next chapter,

each security architecture has pros and cons in how easily it can capture desired

security policies.

It is important to point out that not all security policies can be strictly expressed

as access control matrices. A security policy may be arbitrarily complex. It may

involve constraints on the time of day a request is made. It might require the au-

thorization of multiple users before a right can be exercised. To capture arbitrarily

complex policies, we need arbitrary code that can be trusted to implement the pol-

icy. We call this a trusted subsystem. The Unix password utility is one example of

such a system. Clark and Wilson [CW87] discuss the concept of trusted subsystems

in great detail, and suggest that secure systems in the commercial world are fun-

damentally built from trusted subsystems rather than traditional access controls.

45

4.5 The Bad Guys Are Out There...

Many attackers use tools like COPS [Far93] or SATAN [FV93], which automate

the process of checking for known bugs in remote network systems. These freely

available tools, as well as commercial tools such as ISS’s Internet Scanner [Int98],

are designed to help systems administrators audit their own networks, but are

equally useful to an attacker.

Collections of individual attacks, such as Rootshell [Kno97], are also available

from which potential attackers may download exploits.

Once an attacker has broken into the machine, a common next step is to install

a back door to allow them back in more easily in the future. Software that imple-

ments sophisticated back door functionality, hiding the back door from the user

of a system by replacing system utilities that might be used to notice it, is freely

available for both Unix and Windows [O’B96, Cul98].

4.6 Why Secure Services are Hard To Get Right

One would like to believe that, with so many ways to build a secure system, that

one of them must actually work. Certainly, it must be possible to build a system

that can do everything it is supposed to do without having any security problems.

Instead, we have anecdotal stories going back to the dawn of timesharing systems

and articles on the front-pages of newspapers detailing security failures. Unfortu-

nately, several forces seem to be pushing vendors that conflict with security.

From the companies developing software to those deploying their systems,

there seems to be a strong preference for additional features instead of fewer bugs.

From users to technology executives, from salespeople to advertisers, features sell

46

products. Across the industry, development resources appear to be increasingly

funneled into new features rather than maintenance on older code.

The complexity of commercial software is growing rapidly. The source code

for Microsoft Windows NT 5.0 is rumored to contain over 50 million lines. In a

system that large, it becomes impossible for any one developer to be aware of the

whole system and every conceivable interaction among components. This leads

to unforeseen control flow and data dependencies that may cause one module to

violate the invariants held by another module. Normally, that would lead to a bug

that should be caught in normal quality assurance testing of the product before it

ships. Security-related bugs, however, are different because they do not necessar-

ily cause quality assurance tests to fail or raise other alarms. Instead, the system

may be quietly permitting something that it should not. Security bugs thus can lie

within shipping software for years before being discovered.

Several software engineering techniques can be used to address the code bloat.

When code is written in a type-safe language, including Java, Modula-3, ML, and

Scheme but excluding C or C++, buffer overflow bugs largely disappear (see sec-

tion 3.3.1). Likewise, if programs were structured with a security kernel to reduce

their TCB (see chapter 2), large sections of the system that have no need to be

trusted could happily run with lower privilege.

Even if our systems vendors had infinite development resources to devote to

the best design and debugging their software, we would still have insecure sys-

tems. Security requires serious effort on the part of systems administrators to

properly install and configure their systems. Security also requires users to follow

safe practices. One user installing a malicious (or virus-infected) program from the

Internet could foil all the efforts of their administrators to protect their domain.

Given the increasing sophistication of attacker’s tools combined with the in-

47

creasing complexity of commercial software, it becomes difficult to reach anything

beyond a pessimistic conclusion about security in the future. We hope the increas-

ing attention paid to software security and software engineering will result in more

sophisticated techniques (such as those espoused in this dissertation) being used in

industry. Likewise, with the market for security products such as firewalls grow-

ing steadily, application and operating systems vendors may see security as a way

for their own products to stand out.

48

Chapter 5

Security Architectures for Java

In Sun’s original Java system, there was no real security architecture. Instead, the

Java system relied on a number of ad-hoc mechanisms from which to build secure

services. A number of techniques have been proposed to address this concern,

many of which have been borrowed from traditional operating systems (detailed

in chapter 4).

In this chapter, we will describe how a number of security architectures for

Java have been implemented and will evaluate them against a number of criteria

relevant to security, performance, and flexibility. In the case of mobile Java applets,

all of these architectures allow the traditional Java sandbox to be extended when

the code is “trusted.” Generally this trust is based on digital signatures that have

been applied to the code before it was shipped.

5.1 Common Underpinnings

To implement a flexible security policy, steps must be taken to identify the “source”

of any program, either based on network addresses or digital signatures. The sys-

49

tem must then decide what privileges are appropriate, based on input from either

the user or system administrator. Any flexible system will have these same basic

requirements.

5.1.1 Digitally Signed Code

Microsoft Authenticode [Mic96] popularized the idea of applying digital signa-

tures to programs, likening the digital signature to traditional software distribu-

tion in shrink-wrapped boxes. When a user purchases a shrink-wrapped program

in a store, the user decides whether to trust the program before installing it based

on the reputation of the program and its vendor. To guarantee the legitimacy of a

program, vendors take numerous measures including holographic packaging and

finely printed “certificates of authenticity.” Authenticode allows shipping the pro-

gram across a network rather than in a box. The packaging is replaced with a

digital signature. The identity of a program’s signer forms the basis of a trust de-

cision for the user: do you trust Company X to endorse potentially dangerous code

that you run on your computer? The digital signature also guarantees that the code

that was downloaded is the same as the code that its endorser originally signed.

The endorser does not necessarily have to be the same as the original developer of

the program.

Digital signatures can provide the same benefits and opportunities for Java.

However, Java offers the opportunity to give more fine-grained privileges than the

all-or-nothing policy used in Authenticode. We wish to provide different privi-

leges to different sources of code. We can consider the identity of the code signer,

seen as a public key signed by a certification authority, to be a principal in much

50

the same way that every user of a traditional operating system is also a principal1.

Then, the system’s security policy can maintain a table listing which principals are

allowed to endorse access to which resources, based on the desires of the system’s

user and administrator.

There is no reason a program cannot have multiple signatures, and hence multi-

ple principals. This means we must be able to combine potentially conflicting per-

missions granted to each principal, much as a traditional operating system must

resolve permissions when a user belongs to multiple groups. Netscape Commu-

nicator 4.0 (NS 4.0) solves this with an algebra to combine permissions [Net97].

Microsoft Internet Explorer 4.0 (MSIE 4.0) and the Sun Java Developer Kit 1.2

(JDK 1.2) only support a single signature per program [Mic97a, GS98].

While all the Java systems maintain a table of which principals are allowed

which privileges, MSIE 4.0 also allows a digital signature to endorse a Java pro-

gram for only a specific set of privileges. This allows an endorser to say “I certify

this program is safe to use unrestricted networking, but not file system access”

rather than simply “I certify this program is safe.” The Jar (Java archive) file for-

mat [Sun96, Net96], used by NS 4.0 and JDK 1.2, does not currently support limited

privilege endorsements in its digital signatures.

5.1.2 Administration

In Java, a critical issue with the system’s security policy is how to help non-technical

users make security-relevant decisions about who they trust to access particular

resources. One strategy to simplify the user interface, used in NS 4.0, pre-defines

groups of common privileges and gives them user-friendly names. For example,

1Principal and target, as used in this dissertation, are the same as subject and object, as used in the
security literature, but are more clear for discussing security in object-oriented systems.

51

a “typical game privileges” group might refer to specific limited file system ac-

cess, full-screen graphics, and network access to the game server. Another strat-

egy, used by MSIE 4.0, is to classify principals together into groups, called security

zones. These grouping strategies reduce the number of dialog boxes presented to

a user and make the dialog boxes simpler than deciding whether each individual

principal may be granted each individual privilege.

An interesting issue is when to ask the user to grant privileges to a principal.

NS 4.0 leaves this decision up to the applet. An applet may request any privi-

lege at any time. This would allow an applet to begin running in a demonstration

mode, for example, and later ask the user for the privilege to save work to the disk.

MSIE 4.0, on the other hand, requires the request for privileges to be encoded di-

rectly into the digital signature, forcing any user dialogs to occur before the applet

begins running. While this allows a single user dialog to specify permissions at

once, avoiding “dialog fatigue,” it also forces an applet to ask for every possible

permission it might ever need, since it will never get a chance to ask for a privilege

after beginning execution.

Another way to remove complexity from users is to move the work to their

system administrators. Many organizations prefer to centrally administrate their

security policy to prevent users from accidentally or maliciously violating the pol-

icy.

These organizations need access to the Web browser’s policy mechanism either

to pre-install and “lock down” all security choices or at least to pre-approve ap-

plications used by the organization. If an organization purchases a new product,

all users should not be burdened with dialogs asking them to grant it privileges.

Likewise, if a Web site is known to be malicious, an administrator could block it

from ever asking any user for a privilege.

52

Both NS 4.0 and MSIE 4.0 have extensive support for centralized policy admin-

istration in their Web browsers. While a sophisticated user may not necessarily be

prevented from reinstalling their Web browser (or operating system) to override

the centralized security policies, normal users can at least benefit from their site

administrators’ work to pre-determine which applications should and should not

be trusted.

5.2 Architectures

In chapter 4, we described a number of traditional security architectures used in

traditional operating systems. Many of these have, in fact, been applied to Java.

The architectures we will describe are:

Processes Several researchers have proposed models analogous to the process

model used in Unix as a way of managing resources consumed by Java pro-

grams.

Capabilities A number of traditional operating systems were based on unforgable

pointers that could be safely given to user code. Java provides an efficient

environment for implementing capabilities.

Name space management An interesting property of Java’s dynamic linking is

the ability to create an environment where different applets see different

classes with the same names. By restricting an applet’s name space, we can

limit its activities.

Extended stack inspection The original Java method of searching the stack for un-

privileged code can be extended to include code sources on the call stack.

53

5.2.1 First Approach: Processes

Processes are a seemingly attractive technique to build a Java security architecture.

Much as Safe-Tcl runs untrusted scripts in a separate interpreter [LDOW98, Bor94],

Janos [TL98], Alta [BTS+98], and the J-Kernel [HCC+98] run each Java applet in a

separate instance of the Java virtual machine, although multiple such VM’s will

run in the same native operating system process. Alta allows memory to be shared

across applets, whereas the J-Kernel requires applets to communicate with remote

procedure call mechanisms. GVM [BTS+98] runs applets in effectively separate

processes, although allows limited memory sharing. JRes [Cv98] uses bytecode

rewriting to instrument Java’s memory allocation primitives. This allows memory

and CPU usage to be “charged” to the applet responsible for that usage, even when

multiple applets are running in the same virtual machine.

Taking process separation a step further, the Digitivity Cage [Dig97], the Java

Playground [MRR98], and Kimera [SGB+98] dedicate a separate physical machine

for running untrusted Java applets and use remote procedure calls to display graph-

ics inside the user’s Web browser.

The main benefit of a process model is that resources allocated by each ap-

plet can be tracked exactly. If an applet is to be terminated, its threads can be

immediately terminated and its entire heap can be deallocated at once. Because

no two virtual machines have direct references to each other’s data, there is no

concern that a VM may contain a pointer to garbage. Instead, indirect references

are used in exactly the same way as references to objects on physically separate

machines [BNOW95, Sie96].

When a potentially dangerous primitive is to be used, a message must pass

from the untrusted VM to a trusted “system” VM, which must then decide if the

54

sender of the message is sufficiently trusted to grant access to the desired resource.

The two largest drawbacks to process models are the overhead of marshaling

and copying data across processes, as well as the general overhead associated

with running a distributed object system, even though all object references may

be within the same physical machine. Microbenchmarks show that cross-process

calls can be quite expensive. In [BTS+98] the authors measured the performance

of various IPC mechanisms, using the Kaffe virtual machine [Tra98]. A normal

method invocation takes approximately 0.16�s whereas an inter-process call takes

anywhere from 2.7�s (for the J-Kernel) to 57�s for GVM. No benchmarks are pre-

sented for running real applications, but if these interprocess calls are in the critical

path, the performance impact would be substantial.

5.2.2 Second Approach: Capabilities

In many respects, Java provides an ideal environment to build a traditional capa-

bility system [Fab74, Lev84]. Electric Communities [Ele96] and Sun [Gol96] have

implemented such systems. This section discusses general issues for capabilities

in Java, rather than specifics of the Electric Communities or Sun systems.

Dating back to the 1960s, hardware and software-based capability systems have

often been seen as a good way to structure a secure operating system [WCC+74,

NBF+80, Har85, TMvR86]. Fundamentally, a capability is an unforgeable pointer

to a controlled system resource. To use a capability, a program must have been

first explicitly given that capability, either as part of its initialization or as the re-

sult of invoking the service associated with another capability. Once a capability

has been given to a program, the program may then use the capability as often

as it wishes and may pass the capability, or a subset of the capability, to other pro-

55

grams, although some systems take steps to control the propagation of capabilities.

This leads to a basic property of capabilities: any program that has a capability is

assumed to have been permitted to use it.

Capabilities in Java

Early computer systems used a number of techniques to support capabilities [Lev84].

Some systems used tagged memory to differentiate capabilities from other data

types and protect them from tampering. Other systems stored capabilities in the

kernel, providing a limited interface to user programs. Unix file descriptors are

an example of such capabilities. In Java, a capability is simply a reference to an

object. As early systems used tagged memory to prevent the forgery of mem-

ory addresses, Java uses type safety to prevent the forgery of object references. It

likewise blocks access to methods or member variables that are labeled private,

allowing an object to hide data from programs that have references to it.

The current Java class libraries already use a capability-style interface to repre-

sent open files and network connections (InputStream and OutputStream). How-

ever, static method calls and class constructors are used to acquire these capabil-

ities. In a more strongly capability-based system, all system resources (including

the ability to open a file in the first place) would be represented by capabilities. In

such a system, the initial capabilities would be passed as arguments to the program

(or perhaps stored inside the Applet object). For example, if an applet wished to

open a file, it would be forced to call Applet.getFileSystem(), which would con-

sult the system’s security policy and then either return a capability to access the file

system or nothing at all. Calls to the FileInputStream() constructor and similar

classes would need to be completely forbidden, since a pure capability model does

not provide any machinery for the constructor to determine who called it.

56

Interposition

Since a capability is just a reference to a Java object, the object can implement its

own security policy by checking arguments before using them to initiate a dan-

gerous operation. A capability’s object can easily contain another capability as a

private member and invoke the internal capability according to its own security

criteria. As long as both objects implement the same Java interface, the capabilities

can be used interchangeably.

For example, imagine we wish to provide access to a subset of the file system —

only files below a given subdirectory. One possible implementation is presented

in figure 5.1. A SubFS represents a capability to access a subtree of the file system.

Hidden inside each SubFS is a FileSystem capability; the SubFS prepends a fixed

string to all pathnames before accessing the hidden FileSystem. Any code that

already possesses a handle to a FileSystem can create a SubFS, which can then be

passed to an untrusted subsystem. Note that a SubFS can also wrap another SubFS,

since SubFS implements the FileSystem interface.

To apply a flexible security policy to Java, the FileSystem instance returned by

Applet.getFileSystem() would vary with the privileges granted to the applet. If

the security policy called for all file access to be logged, or if it called for interaction

with the user, all such behavior would be written as a capability and the applet

would use this new file system capability in exactly the same way as it used the

original. Because both capabilities implement the same interface, they can be used

interchangeably.

An important issue for capabilities in Java is compatibility with existing code.

For example, removing the usual FileInputStream constructor from the class li-

braries would constitute a major change to the standard Java class interfaces. Sim-

57

// In this example, any code wishing to open a file must first obtain

// an object that implements FileSystem.

interface FileSystem {

public FileInputStream getInputStream(String path);

}

// This is the primitive class for accessing the file system. Note that

// the constructor is not public -- Java semantics restrict creation

// of these objects to other code in the same Java package.

public class FS implements FileSystem {

FS() {}

public FileInputStream getInputStream(String path) {

return internalOpen(path);

}

private native FileInputStream internalOpen(path);

}

// This class allows anyone holding a FileSystem to export a subset of

// that file system. Calls to getInputStream() are prepended with the

// desired file system root, then passed on to the internal FileSystem

// capability.

public class SubFS implements FileSystem {

private FileSystem fs;

private String rootPath;

public SubFS(String rootPath, FileSystem fs) {

this.rootPath = rootPath;

this.fs = fs;

}

public FileInputStream getInputStream(String path) {

// to work safely, this would need to properly handle `..' in path

return fs.getInputStream(rootPath + "/" + path);

}

}

Figure 5.1: Interposition of a restricted file system root with capabilities.
Both FS and SubFS implement FileSystem, the interface exported to all code that
reads files.

58

ilar issues apply with other major system services. Additionally, class constructors

for the capabilities themselves must be carefully controlled. In figure 5.1, the FS

constructor is marked “package” scope, blocking the constructor from being called

by arbitrary classes. This provides protection only if an applet cannot declare its

classes to be in the same package as the capability. Current JVMs treat system

packages (those beginning with java, sun, sunw, netscape, and com.ms) specially,

and also enforce separation when the call crosses from applet code to system code.

While the Java language can support capabilities in a straightforward manner,

the Java runtime libraries (and all code depending on them) would require signif-

icant changes.

5.2.3 Third Approach: Name-Space Management

This section presents a modification to Java’s dynamic linking mechanism that can

be used to hide or replace the classes seen by an applet as it runs.

As part of our study in Java security architectures [WBDF97], Dirk Balfanz im-

plemented a full system based on name-space management, as an extension to

both MSIE 3.0 and NS 3.0. His implementation did not modify the JVM itself,

but changed several classes in the Java system libraries. The full system is im-

plemented in 4500 lines of Java; much of the code manages the graphical user

interface.

We first give an overview of what name-space management is and how it can

be used as a security mechanism. Then we describe the implementation in detail.

59

Original name Alice Bob
java.net.Socket security.Socket java.net.Socket
java.io.File — security.File
.

Table 5.1: Different principals see different name spaces.
In this example, code signed by Alice cannot see the File class, and for Bob the
File class has been replaced with a compatible subclass. The columns in this table
represent name-space “configurations.”

Design

With name-space management, we enforce a given security policy by controlling

how names in a program are resolved into runtime classes. We can either remove

a class entirely from the name-space (thus causing attempts to use the class to fail),

or we can cause its name to refer to a different class that is compatible with the

original. This technique is used in Safe-Tcl [LDOW98, Bor94] to hide commands in

an untrusted interpreter. Plan 9 [PPTT90] can similarly attach different programs

and services to the file system seen by an untrusted process.

In an object-oriented language, classes represent resources we wish to control.

For example, a File class may be used to access the file system and a Socket class

may be used to access networking operations. If the File class, and any other class

that may refer to the file system, is not visible when the remote code is linked to

local classes, then the file system will not be available to be attacked. Instead, an

attempt to reference the file system would be equivalent to a reference to a class

that did not exist at all; an error or exception would be raised.

To implement an interesting security policy for an applet, we can create an

environment that replaces sensitive classes with compatible ones that check their

arguments and conditionally call the original classes. We refer to an environment

that maps class names to their implementations as a configuration. Since every

60

class can potentially have a different name-space configuration, we can arrange

for the new classes to see the original sensitive classes, and we can block applet

classes from seeing the same sensitive class. For example, the File class could

be replaced with one that prepended the name of a subdirectory (see table 5.1),

much like the capability-based example in figure 5.1. In both cases, only a sub-

tree of the file system is visible to the untrusted applet. In order for the program

to continue working correctly, each substituted class must be compatible with the

original class it replaces (e.g., the replacement must be a subclass of the original

and must be careful to never return an instance of the original class).

Name space management can be compared directly with a traditional capabil-

ity system. If different programs see different versions of the system classes, the

effect is identical to those programs being given different capabilities to system re-

sources, with the exception that while a program may pass a capability to another

program, it cannot pass its name space.

An interesting property of this design is that all security decisions are made

statically, before an applet begins execution. By avoiding runtime security checks,

the design does not hinder high-performance implementations.

Implementation in Java

Name space management in Java is accomplished through modifying the Java

ClassLoader. A ClassLoader is used by the JVM to provide the name ! implementa-

tion mapping. Every class keeps a reference to a ClassLoader that is consulted for

dynamic binding to other classes in the Java runtime. Whenever a new class is ref-

erenced, the ClassLoader of the referencer provides the implementation of the new

class (see figure 5.2). So, ClassLoaders will be used to implement the name-space

configurations in our design.

61

System

...
FileSystem fs = new FileSystem();
File f = fs.openFile(“foo”);
InputStream s = new InputStream(f);
...

...
FileSystem fs = new FileSystem();
File f = fs.openFile(“foo”);
InputStream s = new InputStream(f);
...

“FileSystem”

applet
class

loader

applet
class

loader

…
<applet

codebase = …
code = Foo.class>

…

Foo.java:

“FileSystem”

HTML page with Java applet:

FileSystem classFileSystem class

Figure 5.2: Behavior of a normal ClassLoader.
A ClassLoader resolves every class in an applet. If these classes reference more
classes, the same ClassLoader is used.

System

...
FileSystem fs = new FileSystem();
File f = fs.openFile(“foo”);
InputStream s = new InputStream(f);
...

...
FileSystem fs = new FileSystem();
File f = fs.openFile(“foo”);
InputStream s = new InputStream(f);
...

“FileSystem” PCLPCL

…
<applet

codebase = …
code = Foo.class>

…

Foo.java:

“FileSystem”, Alice

HTML page with Java applet,
signed by Alice:

AliceAlice

Policy
Engine
Policy
Engine

SubFS class

“SubFS”

SubFS class

Figure 5.3: Changing the name space with a PrincipalClassLoader.
A PrincipalClassLoader (PCL) replaces the original class loader. The class imple-
mentation returned depends on the principal associated with the PrincipalClass-
Loader and the configuration in effect for that principal.

62

package security;

public class File extends java.io.File {

// Note that System.getPrincipal() would not be available in a system

// purely based on name-space management. In the current

// implementation, getPrincipal() examines the call stack for a

// PrincipalClassLoader. A cleaner implementation would want to

// generate classes on the fly with different hard-coded prefixes.

private String fixPath(String path) {

// to work safely, this would need to properly handle `..' in path

return "/tmp/" + System.getPrincipal().getName() + "/" + path;

}

public File(String path) {

super(fixPath(path));

}

public File(String path, String name) {

super(fixPath(path), name);

}

}

Figure 5.4: Interposition in a system with name-space management.
We assume that at runtime we can find out who the currently running principal is.

Usually, in a Web browser, an AppletClassLoader is created for each applet. The

AppletClassLoader will normally first try to resolve a class name against the sys-

tem classes (such as java.net.Socket) that ship with the browser. If that fails, it

will look for other classes from the same network source as the applet. If two ap-

plets from separate network locations reference classes with the same name that

are not system classes, each will get a different class because each applet’s Applet-

ClassLoader looks to separate locations for class implementations.

Our implementation works similarly, except that we replace each applet’s Applet-

ClassLoader with a PrincipalClassLoader that imposes the configuration appropri-

ate for the principals attached to that class (see figure 5.3). When resolving a class

63

reference, a PrincipalClassLoader can

1. throw a ClassNotFoundException if the calling principal is not supposed to

see the class at all (exactly the same behavior that the applet would see if the

class had been removed from the class library – this is essentially a link-time

error),

2. return the class in question if the calling principal has full access to it, or

3. return a subclass, as specified in the configuration for the applet’s principal.

In the third case we hide the expected class by binding its name to a subclass

of the original class. Figure 5.4 shows a class, security.File, that can replace

java.io.File. When an applet calls new java.io.File("foo"), it will actually

get an instance of security.File, that is compatible in every way with the original

class, except it restricts file system access to a subdirectory. Note that, to achieve

complete protection, other classes such as FileInputStream, RandomAccessFile,

and so forth need to be replaced as well, as they also allow access to the file sys-

tem. Likewise, there should be no way for an applet to ask for the superclass of

java.io.File, thus getting a handle to the real File class instead of its renamed

version. This would require some modifications to Java’s class reflection, where

any applet can call Class.getSuperclass().

New Java features such as reflection (a feature introduced in JDK 1.1 that al-

lows dynamic inquiry and invocation of a class’s methods) could also defeat name-

space management entirely unless the reflection system was specifically designed

to respect the renaming. Also, common super-classes that are shared among sep-

arate subsystems would be difficult to rename without introducing incompatibili-

ties (e.g., both file system and networking use the same InputStreamand OutputStream

super-classes).

64

The Future of Name Space Management The ability to transparently replace a

class with another class, as name-space management does, is useful only if the

applet code continues to type-check properly after the replacement. Though there

is no problem in this regard in NS 3.0, MSIE 3.0, and Sun’s JDK 1.1, the semantics

of dynamic linking in Java have changed with JDK 1.2 [LB98]. Though the change

in JDK linking semantics is sound and well-motivated, it appears to have the side-

effect of preventing many instances of transparent class-name replacement that

worked in previous versions of the system. For example, if class C has a method

M whose return type is C, and name-space management replaces C by D (a subclass

of C) in some applet, calls to M in the applet will fail to type-check — the byte-code

verifier will report them as type errors. The issue of compatibility of rewritten

classes is discussed in detail (in the guise of class version upgrades) in the Java

Language Specification [GJS96, chapter 13] and in Drossopoulou et al. [DWE98].

One possible solution is to rewrite classes as they are loaded [MRR98]. This would

still require runtime support for Java reflection.

Despite the limitations on replacement of classes, hiding classes continues to

be a sound and useful technique, and one that can easily be combined with other

security mechanisms, so name-space management remains a valuable tool.

5.2.4 Fourth Approach: Extended Stack Inspection

This section presents an extension to Java’s original stack inspection mechanism

which was described in section 3.2.3. Variations on this approach are taken by

NS 4.02 [Net97], MSIE 4.0 [Mic97b], and Sun JDK 1.2 [GS98]3.
2This approach is sometimes incorrectly referred to as “capability-based security” in vendor

literature.
3At Netscape, I participated in the design and implementation of NS 4.0’s Java security archi-

tecture along with Jim Roskind and Raman Tenneti in the summer of 1996. The Microsoft and Sun

65

Stack inspection has very little prior art. In some ways, it resembles dynamic

scope of variables (where free variables are resolved from the caller’s environment

rather than from the environment in which the function is defined), as used in

early versions of LISP [MAE+62]. In other ways, it resembles the notion of effective

user ID in Unix, where the current ID is either inherited from the calling process or

asserted through an explicit setuid bit on the new program.

Java stack inspection’s roots lie in the original Java system’s use of “Class-

Loader depth,” discussed in more detail in section 3.2.3. This section will describe

how it has been extended to support flexible security by each of the major Java

vendors. Performance figures will be presented in section 8.3.

Simple Stack Inspection and the Confused Deputy

To explain how extensible stack inspection works, we will first consider a simpli-

fied model of stack inspection which resembles the stack inspection system used

internally in Netscape Navigator 3.0 [Ros96a].

The problem faced by Netscape was what Norman Hardy calls the confused

deputy problem [Har88]. Hardy describes a situation where the system Fortran com-

piler wished to log various statistics about its usage. The compiler was granted

write-privileges to a directory which contained the statistics file, but also contained

a file used to log system billing information. While no user had sufficient privi-

leges to directly access the billing file, the compiler did, by accident. Asking the

compiler to output debugging information to the billing file was sufficient to de-

stroy the system’s billing information. The Fortran compiler, granted a very broad

privilege, could be tricked into abusing that privilege on behalf of any user. This

architectures were designed afterward and have different implementations while sharing the same
basic structure.

66

problem was solved by granting the compiler a specific capability to access its

statistics file, rather than editing access control information in the filesystem.

Early versions of Java suffered from similar problems. Applets needed to be

restricted in their access to system resources, yet many system classes had priv-

ileges that were significantly more broad than was ever granted to applets. The

simple stack inspection model addresses these concerns by allowing system code

to optionally “enable its privileges”. Before any file is opened or other restricted

operation is performed, the system will check to make sure these privileges have

been, in fact, enabled. If not, the system reverts to the restrictive applet security

policy.

Fundamentally, stack inspection relies on being able to reconstruct the call stack

and identify the source of every method or procedure on that stack. This gener-

ally relies on information already available in the runtime to support debugging,

although language runtimes may need to do additional work in the presence of

optimized code [Hen82, TA90].

To implement simple stack inspection, the operation of enabling privileges causes

a flag to be set on its caller’s stack frame. When the privileged stack frame returns,

the privilege flag disappears with the rest of the stack frame. When privileges are

checked, a search begins at the most recent stack frame and continues outward. If

the search discovers the flag, privileges are granted. However, there might be a

case where system code enabled a privilege then called back to untrusted applet

code. This might occur in the event-dispatching loop of user-interface code. How-

ever, we do not want this event-handler to be able to take advantage of the privi-

lege flag preceding it on the stack. Netscape calls this a luring attack and addresses

it by considering the privileges of each stack frame as it performs the search. If the

search discovers the stack frame of untrusted code before it reaches a flag set by

67

trusted code, the search is terminated early and privileges are denied.

In Hardy’s example, the Fortran compiler would enable its privileges before

writing to its statistics file, but would not enable privileges when doing its normal

output.

Stack inspection satisfies the principle of least privilege (see Section 5.3.4), al-

lowing the Java system to operate with less than its full privileges active at all

times and thus reducing exposure to attacks. This proved extremely useful in

NS 3.0 [Ros96a]. An additional benefit of requiring explicit calls to enable privi-

leges was that these calls could be quickly identified with text searching tools such

as grep and then subjected to code auditing. With limited time to audit a large

code base, this technique allows an audit to focus its efforts on code that will effect

the security of the system.

Extended Stack Inspection

The stack inspection algorithm used in current Java systems can be thought of as a

generalization of the simple stack inspection model described above. Rather than

having only untrusted applets and fully trusted system code, the system supports

code from an unbounded number of principals, each of which may be granted

different levels of trust. Likewise, rather than having either full privileges or re-

stricted applet privileges, a number of more specific privileges called targets are

defined, so different principals may be granted different degrees of access to the

system.

Four fundamental primitives are necessary to use extended stack inspection:4

� enablePrivilege()

4Each Java vendor has different syntax for these primitives. This dissertation follows the
Netscape syntax.

68

� disablePrivilege()

� revertPrivilege()

� checkPrivilege()

As described in the previous section, privileges to use a target must be en-

abled before the target is used. This is done by calling enablePrivilege(T) on

the desired target T, placing a flag on the caller’s stack frame where it can be

found later by a stack search. After calling enablePrivilege(), the program may

continue normal execution. When execution reaches the code that manages a

security-relevant resource, such as the file system or network, this code will wish

to make a security check to validate that its caller and the rest of the callers on

the stack have sufficient permissions to use the resource. This is done by call-

ing checkPrivilege(T), which searches on the stack for a method that called

enablePrivilege(T), using the algorithm in figure 5.5.

The remaining primitives of stack inspection are fairly straightforward.

disablePrivilege(T)places a flag on the current stack frame in the same manner

as enablePrivilege(T), except this flag says to terminate the search immediately

and deny access to the target. The final operation, revertPrivilege(T) is used to

clear flags related to T from the current stack frame.

The generalized checkPrivilege() algorithm, used by all three implementa-

tions, searches the frames on the caller’s stack in sequence, from newest to oldest.

The search terminates, allowing access, upon finding a stack frame that has appro-

priately enabled its privileges. The search also terminates, forbidding access (and

throwing an exception), upon finding a stack frame that is either forbidden by the

local policy from accessing the target or that has explicitly disabled its privileges.

We note that each vendor takes different actions when the search reaches the

69

end of the stack uneventfully (i.e., if enablePrivilege() was never called and all

stack frames are trusted classes): NS 4.0 denies permission, while both JDK 1.2

and MSIE 4.0 allow it. The NS 4.0 approach follows the principle of least privilege

(see Section 5.3.4), since it requires that privileges be explicitly enabled before they

can be used — this can help protect an applet against a hostile caller trying to

take advantage of the applet’s privileges. The MSIE 4.0 / JDK 1.2 approach, on

the other hand, may be easier for developers, since no calls to enablePrivilege()

are required in the common case where trusted applets are using trusted system

libraries. It also allows local, trusted Java applications to run on an older JVM

without support for stack inspection: they run as a trusted principal so all of their

accesses are allowed by default. Because NS 4.0 stack inspection is currently used

only in Netscape’s Web browser, compatibility with existing Java applications is not

considered to be an issue.

Example: Creating a Trusted Subsystem

A trusted subsystem can be implemented as a class that enables some privileges

before calling a system method to access the protected resource. Untrusted code

would be unable to access the protected resource directly since it would be unable

to create the necessary enabled privilege. Figure 5.6 demonstrates how code for a

trusted subsystem may be written.

Several things are notable about this example. The classes in figure 5.6 do not

need to be signed by the system principal (the all-powerful principal whose privi-

leges are hard-wired into the JVM). They could be signed by any trusted principal.

This could be used by a third party to provide new functionality to any untrusted

applet.

With the trusted subsystem, an untrusted applet now has two ways to open

70

checkPrivilege (target) f
// loop, newest to oldest stack frame
foreach stackFrame f

if (local policy forbids access to target by class executing in stackFrame)
throw ForbiddenException;

if (stackFrame has enabled privilege for target)
return; // allow access

if (stackFrame has disabled privilege for target)
throw ForbiddenException;

g

// if we reached here, we fell off the end of the stack
if (Netscape 4.0)

throw ForbiddenException;
if (Microsoft IE 4.0 jj Sun JDK 1.2)

return; // allow access
g

Figure 5.5: Java’s stack walking algorithm.

71

a file: call through TrustedService, which will restrict it to a subset of the file

system, or request UniversalFileRead privileges for itself. Because there are

no other ways to enable privileges for the UniversalFileRead target (assuming

correct implementation of the Java system classes), there are no other ways to

open a file. Note that, even should the applet try to create an instance of FS

and then call getInputStream() directly, the low-level file system call (inside

java.io.FileInputStream) will still fail.

Details

The vendor implementations have many additional features beyond those described

above. We will attempt to describe a few of these enhancements and features here.

Threads An interesting issue is how to manage privileges that must cross thread

boundaries. Since separate threads have separate stacks, stack inspection might

seem to have a problem managing this case. There are two cases to address: when

one thread starts a child thread, and when two existing threads are communicat-

ing. In the case of child threads, MSIE 4.0 and JDK 1.2 have the child thread inherit

the privileges of its parent, effectively copying the enabled privileges from the par-

ent thread’s stack to the child thread before it begins execution. NS 4.0, in contrast,

starts the child thread with no privileges enabled, assuming it can always enable

any privilege it needs.

“Smart Targets” Sometimes a security decision depends not only on which re-

source (the file system, network, etc.) is being accessed, but on what specific part

of the resource is involved, for example, on exactly which file is being accessed.

Since there are too many files to create targets for each one, each vendor has a

72

// this class shows how to implement a trusted subsystem with

// stack inspection

public class FS implements FileSystem {

private boolean usePrivs = false;

public FS() {

try {

PrivilegeManager.checkPrivilege("UniversalFileRead");

usePrivs = true;

} catch (ForbiddenTargetException e) {

usePrivs = false;

}

}

public FileInputStream getInputStream(String path) {

// only enable privileges if they were there when we were constructed

if(usePrivs)

PrivilegeManager.enablePrivilege("UniversalFileRead");

return new java.io.FileInputStream(path);

}

}

// this class shows how a privilege is enabled before a potentially

// dangerous operation

public class TrustedService {

public static FileSystem getScratchSpace() {

PrivilegeManager.enablePrivilege("UniversalFileRead");

// SubFS class from the previous example

return new SubFS("/tmp/TrustedService", new FS());

}

}

Figure 5.6: A FileSystem capability.
This example shows how to build a FileSystem capability (see figure 5.1) as an
example of a protected subsystem using extended stack inspection. Note that fig-
ure 5.1’s SubFS can work unmodified with this example.

73

form of “smart targets” that have internal parameters and can be queried dynami-

cally for access decisions. JDK 1.2 implements these by creating subclasses of their

Permission classes. Some subclasses, such as FilePermission, take an additional

argument of the file name to be checked. A security policy may specify files to be

granted or denied permissions. NS 4.0 has similar support for subclasses of Target

that validate arguments.

Who can define targets? Each system offers a set of predefined targets that rep-

resent resources the JVM implementation wants to protect; they also offer ways to

define new targets. MSIE 4.0 allows only fully trusted code to define new targets,

while NS 4.0 and JDK 1.2 allow anyone to define new targets, while taking steps

to guarantee new targets are not confused with existing ones. In NS 4.0, targets

are named with a (principal, string) pair, and the system requires that the principal

field match the principal who signed the code that created the target. The prin-

cipal field effectively defines a name space for targets. Built-in targets belong to

the predefined System principal. In JDK 1.2, targets are classes in the Java library

(e.g., java.io.FilePermission), using Java’s existing class name space to separate

targets, and new targets may be written as subclasses of existing targets.

Allowing anyone to define new targets, as NS 4.0 does, allows third-party li-

brary developers to define their own protected resources and use the system’s

stack inspection mechanisms to protect them. The drawback is that users may

be asked questions regarding targets that the Netscape designers did not know

about. If the third-party library designer wishes to answer these questions inter-

nally without querying the user or wishes to display a security dialog, that is up to

them. Regardless, NS 4.0 does not allow third-party libraries to create a target that

will be mistaken for a Netscape-internal target by virtue of the protected system

74

name space.

JDK 1.2 extensions The stack inspection semantics of JDK 1.2 have changed sev-

eral times during its beta release cycles. Here are JDK 1.2’s important differences

from the NS 4.0 and MSIE 4.0 systems.

JDK 1.2 does not support revertPrivilege() or disablePrivilege() opera-

tions. Also, enablePrivilege() takes no arguments. Instead, it may be thought

of as enabling a root target. All targets in JDK 1.2 support an implies() method

that encapsulates the idea that some targets are supersets of others. For example, a

target representing the entire filesystem would imply a target representing a single

file. The implies()method on targets defines a directed graph of all targets.

Sun has not clearly defined whether the implies() relationships are transi-

tive, and if they are, whether this information may be used to optimize security

queries. One useful optimization might be to compute the transitive closure of the

implies() graph, which would then allow for constant-time queries. However, if

a target is allowed to change its mind about what other targets it implies, the se-

curity system might be forced to reevaluate the implies() relationships on every

security query.

Finally, between JDK 1.2beta3 and beta4, the enablePrivilege() call was

replaced with a doPrivileged() method whose argument must implement a

PrivilegedAction interface. So, code that would previously have been written

as:

public void foo() {

enablePrivilege();

do_something(); // this will execute with privileges

revertPrivilege();

75

do_something_else(); // this executes normally

}

would now be written in JDK 1.2 as:

public void foo() {

doPrivileged(new PrivilegedAction() {

public void run() {

do_something();

}

}

do_something_else();

}

These two code examples are semantically identical. The new JDK 1.2 syntax, us-

ing inner classes, probably simplified the job of the compiler writer, since the stack

searching procedure need only search for the stack frame corresponding to the

doPrivileged() operation, rather than maintain security flags on all stack frames.

The downside of the JDK 1.2 semantics is that they encourage the use of inner

classes, which can be quite dangerous in security-relevant code. The Java virtual

machine has no fundamental support for inner classes. In particular, the JVM has

no support for a class to be nested within another, and thus being allowed access to

its parent’s private members and methods. Instead, the Java compiler will create

accessor methods as necessary, each of which could be a serious security hole.

Implementation size. NS 4.0’s stack inspection system required about 5500 lines

of Java source code (including javadoc in-line documentation) and about 600 lines

76

of C source code in the Java virtual machine, including small changes to the

garbage collector, method invocation, and just-in-time compiler.

JDK 1.2’s stack inspection system required about 5200 lines of Java source code

[GS98] and an unspecified amount of C code. We do not have any size information

for MSIE 4.0.

5.3 Analysis

Now that we have presented four systems, we need a set of criteria to eval-

uate them. The criteria used here are derived from the work of Saltzer and

Schroeder [SS75] and include several non-security issues such as compatibility

with existing code as well as performance. Table 5.2 summarizes the security prop-

erties of all four architectures.

5.3.1 Economy of Mechanism

Designs that are smaller and simpler are easier to inspect and trust.

Capabilities are fundamentally the simplest mechanism. They rely only on the ex-

isting Java type system and require no changes or extensions to the JVM. However,

a more fully capability-based Java system would require redesigning the Java class

libraries to present a capability-style interface — a significant departure from the

current class library, although capability-style classes (“factories”) are used inter-

nally in some Java classes.

Process models are relatively simple because they do not depend on the VM

for any security. Instead, they either use external operating system mechanisms

or simulate the OS interaction between a user and kernel. These mechanisms are

77

Criteria Processes Capabilities Name-space
management

Stack inspection

Economy of
mechanism

straightforward
processes but
complex RPCs
and reimplemen-
tation of security
checks

no special mecha-
nisms required

simple mecha-
nism requires
complex map-
pings to avoid
type inconsisten-
cies

moderately com-
plex mechanism

Fail-safe de-
faults

Similar defaults on all systems (*)

Complete medi-
ation

Very strong Problematic capa-
bility leaks

Very strong Strong and more
informative than
others

Least privilege Strong Very strong Hard to limit
privileges

Strong (*)

Code auditabil-
ity

Trust the process
abstraction, not
the Java VM

Must potentially audit the whole VM Simplifies VM au-
diting

Least common
mechanism

Strong Lots of shared state

Accountability Easy to track Problematic Reasonable Easy to track
Resource limits Easy to enforce

but more copying
necessary

No known solution

Psychological
acceptability

Too early to really know

Performance cross-process
calls 10x-500x
slower than local
calls

Fast and cheap uses 1% to 9% of
CPU

Compatibility
(API)

Process separa-
tion may break
cooperating
or privileged
applets

Complete incom-
patibility

Excellent Good (*)

Compatibility
(VM)

Some use a stock
VM, some make
major changes

Excellent, no VM
changes

Small VM hacks
to manage name
spaces

Larger VM hacks
to support stack
inspection

Table 5.2: Evaluation of different security architectures.
Applying our evaluation criteria to the different security architectures results in
no clear best strategy. (*) Note that different implementations of stack inspection
trade off API compatibility against fail-safe defaults and least privilege.

78

fairly well understood but are not, in and of themselves, simple. Process models

also require communication across processes to be compatible with existing im-

plementations. This may be fairly complex. Furthermore, to implement the “sand-

box” security policies in an environment where the Java VM is not considered

trustworthy, the process security infrastructure must repeat the runtime checks

normally done in Java. Some rules, such as the restrictions on Java network con-

nections, are fairly subtle and could be easily misimplemented.

Name space management is fairly straightforward. The implementation re-

quires redesigning the ClassLoader as well as tracking the different name space

configurations. The mechanisms that remove and replace classes, and hence pro-

vide for interposition, are minimal. However, they affect critical parts of the JVM

and a bug in this code could open the system to attack.

The original stack inspection implementations require complex changes to the

virtual machine, although security-passing style implementations will only re-

quire a front-end to rewrite Java bytecode (see chapter 8). As before, changes to

the JVM could destabilize the whole system. Each method to be protected must

explicitly consult the security system to see if it has been invoked by an authorized

party. This check adds exactly one line of code, so its complexity is analogous

to the configuration table in name-space management. And, as with name-space

management, any security-relevant class that has not been modified to consult the

security system can be an avenue for system compromise.

5.3.2 Fail-Safe Defaults

By default, access should be denied unless it is explicitly granted.

Name space management and stack inspection have similar fail-safe behavior. If

79

a potentially dangerous system resource has been properly modified to work with

the system, it will deny access to unauthorized callers. With name-space manage-

ment, the protected resource cannot be named by a program, so it is not reachable.

With NS 4.0 stack inspection, privileges must be explicitly enabled before a dan-

gerous resource can be used. When no enabled privilege is found on the stack,

access to the resource will be denied by default. (MSIE 4.0 and JDK 1.2 sacrifice

this property for compatibility reasons.)

In a fully capability-based system, a program cannot do anything unless an

appropriate capability is available. By restricting the default list of capabilities

granted to a program, fail-safe defaults can be supported.

In a process-based system, specific privileges are granted to the process, as me-

diated by the underlying operating system or process abstraction. By forcing all

access through such “choke points” (e.g., system-call interfaces), it becomes easy

to prevent a process from acting beyond its privileges.

5.3.3 Complete Mediation

Every access to every object should be checked.

Barring oversights or implementation errors (discussed in sections 5.3.1 and 5.3.2),

all three systems provide mechanisms to interpose security checks between iden-

tified targets and anyone who tries to use them.

However, mediation is not complete if privileges are not confined to their right-

ful holders [Lam73]. It should not generally be possible for one program to del-

egate a privilege to another program; that right should also be mediated by the

system. This is the fundamental flaw in an unmodified capability system in Java;

two programs that can communicate object references can share their capabilities

80

without system mediation. This means that any code granted a capability must

either be trusted to care for it properly or must be prevented from communication

with an untrusted program. Many extensions to capabilities have been proposed

to address these concerns. Kain and Landwehr [KL87] propose a taxonomy for

extensions and survey many systems implementing them.

Fundamentally, extended capability systems must either place restrictions on

how capabilities can be used, or must place restrictions on how capabilities can

be shared. Some systems, such as ICAP [Gon89], make the objects referenced by

capabilities aware of “who” called them; an object can know who is supposed to

invoke it and refuse to work for anyone else. The IBM System/38 [BTR80] as-

sociates optional access control lists with its capabilities, accomplishing the same

purpose. Other systems use hardware mechanisms to block the sharing of capa-

bilities [KH84]. For Java, any such technique would be problematic. To make an

object aware of who is calling it, a certain level of inspection into the call stack must

be available. To make an object reference unshareable, you must either remove its

class from the name space of potential attackers, or block all communication chan-

nels that could be used for an authorized program to leak it (either blocking all

inter-program memory-sharing or creating a complex system of capability-sharing

groups).

Name space management has good confinement properties. For example, if

a program attempts to give an open FileInputStream to another program that is

forbidden access to the file system, the receiving program will not be able to see

the FileInputStream class. Unfortunately, it could still likely see InputStream (the

superclass of FileInputStream), which has all the necessary methods to use the

object. If InputStream were also hidden, then networking code would break, as it

also uses InputStream. This problem could be addressed by judicious redesign of

81

the Java class libraries.

Stack inspection has excellent confinement. Because the stack annotations are

not directly accessible by a program, they can neither be passed to nor stolen by

another program. The only way to propagate stack annotations is through method

calls, and every subsequent method must also be granted sufficient privilege to

use the stack annotation. The system’s access control matrix can thus be thought

of as mediating delegation rights for privileges. Because the access matrix is con-

sulted both at creation and at use of privileges, privileges are limited to code that

is authorized to use them.

Current stack inspection systems actually compromise confinement somewhat

for performance. These systems only use stack inspection to verify security for

otherwise expensive operations such as opening a disk file or network connection,

where much higher latencies are normal. Once the connection is open, the more

common read and write operations do not invoke the checkPrivilege() opera-

tion. Instead, the InputStreamand OutputStreamobjects are treated as capabilities.

While a specific input or output stream could potentially be leaked across applets,

the general ability to open a file or network connection would still be contained.

Processes also have excellent confinement. As discussed earlier, a process ab-

straction forces all attempts to access resources through a centralized “choke point”

where privilege decisions can be made. Unlike stack inspection, there is never any

ambiguity in a process model over where a request came from, simplifying the

application of access controls.

An issue with any system is when privileged code maliciously acts as a “proxy”

for unprivileged code. Such proxying is a general issue in any system where

communication is allowed between programs of different privilege levels. Nei-

ther stack inspection nor name-space management have special provisions against

82

proxy attacks. However, all but the capability systems at least guarantee that the

privileged calls can be traced to the program that was originally granted the privi-

leges, and a simple extension to the capabilities system could give similar guaran-

tees.

5.3.4 Least Privilege

Every program should operate with the minimum set of privileges necessary to

do its job.

The principle of least privilege applies in remarkably different ways to each system

we consider.

With name-space management, privileges are established when the program is

linked. If those privileges are too strong, there is no way to revoke them later —

once a class name is resolved into an implementation, there is no way to unlink

it. However, because Java’s dynamic linker is lazy (linking a class when it is first

used), some flexibility is available before linking has occurred.

In contrast, capability systems have very desirable properties. If a program

wishes to discard a capability, it only needs to discard its reference to the capability.

Likewise, if a method only needs a subset of the program’s capabilities, the appro-

priate subset of capabilities may be passed as arguments to the method, and it will

have no way of seeing any others. If a capability needs to be passed through the

system and then back to the program through a call-back (a common paradigm in

GUI applications), the capability can be wrapped in another Java object with non-

public access methods. Java’s access modifiers provide the necessary semantics to

prevent the intermediate code from using the capability.

Stack inspection provides an interesting middle-ground. The act of enabling a

83

privilege is equivalent to taking responsibility for the subsequent use of that priv-

ilege. If a privilege is not enabled, the corresponding target cannot be used (in

NS 4.0, whereas MSIE 4.0 and JDK 1.2 relax this requirement — see Section 5.2.4).

Likewise, the lifetime and visibility of an enabled privilege are limited by the fact

that privileges are automatically discarded when a privilege-enabled method re-

turns. These limits reduce the system’s exposure to damages from running with

unnecessary privileges.

In a process-based system, privileges will likely be established before the pro-

cess begins running. Because they exist outside of the Java VM, there may not be a

way for a program to discard its privileges if they are not needed. The alternative

would be to provide extensions to the Java system that allow it to manipulate the

state of its controlling process. In contrast, one of the benefits of a process system,

especially one that runs the untrusted code on a separate machine, is that most

dangerous privileges are simply unavailable. There is no way for an applet to read

a user’s personal files if those files are not accessible from the remote machine.

However, if a process-based system intends to support access to the file system for

some applets (i.e., applets that have been granted privileges by a user), then more

privileges must be available. This lessens any benefit that might be gained from

running applets on a separate machine.

5.3.5 Code Auditability

Large programs have bugs. The security architecture can help focus the efforts

of auditors to find bugs that impact security.

Auditability is closely related to least privilege. If the security architecture can

help a security audit rule out code that has no effect by virtue of its running with

84

reduced privileges, the audit can be focused on more dangerous code.

Name space management effectively defines a list of classes that must be in-

spected for correctness. With both capabilities and stack inspection, simple text

searching tools such as grep can locate where privileges are acquired, and the

propagation of these privileges must be carefully studied by hand. Capabilities

can potentially propagate anywhere in the system. Stack inspection, however, has

stronger limits on the propagation of privileges: a privilege is only available to the

transitive closure of code that is called after a privilege is enabled. If code is not in

this control flow, it will not be able to exercise the privilege.

For example, Netscape ported Sun’s RMI (remote method invocation) to run

inside the Netscape VM. This was tricky as RMI was never designed to be used

from within applets, as it wished to install its own SecurityManager and use its

own ClassLoaders. When reviewing this port, we focused our efforts on study-

ing the code immediately preceding and following calls to enable privileges and

were able to rapidly identify security-relevant bugs. RMI was now available for

any applet in the Netscape VM. This would not have been possible without stack

inspection.

Process models are a very different challenge to audit. When the system does

not depend on any of Java’s security, it must then rely on either its own security

mechanisms or those of the underlying operating system. As operating systems

can be quite large, auditing them is non-trivial. Also, if the operating system was

written in a non-type-safe language such as C, there may be hidden opportunities

for buffer overflows that a malicious applet could try to exploit.

85

5.3.6 Least Common Mechanism

Anything shared among different programs can be a channel for communica-

tion and a potential security hole, so as little data as possible should be shared.

The principle of least common mechanism concerns the dangers of sharing state

among different programs. If one program can corrupt the shared state, it can then

corrupt other programs depending on it. This problem applies equally to capabil-

ities, name-space management, and stack inspection. An example of this problem

was Hopwood’s interface attack [MF97], which combined a bug in Java’s inter-

face mechanism with a shared public variable to break the type system, and thus

circumvent system security.

To truly separate Java programs, a process model may be appropriate, although

channels between the processes will still be required to allow cooperation between

applets.

5.3.7 Accountability

The system should be able to accurately record “who” is responsible for using

a particular privilege.

In the event that the user has granted trust to a program that then abuses that trust,

logging mechanisms will be necessary to prove that damages occurred and then

seek recourse.

In each system, the interposed protection code can always record what hap-

pened, but it requires more effort to identify the principal responsible.

In the stack inspection system, every call to enable a privilege can be logged;

an administrator can learn which principal enabled the privileges to damage the

86

system. Because all the intermediary code is tracked when a privilege is checked,

this could also be recorded, allowing for a very complete picture of how privileges

are being used.

In a capability system, a capability can remember the principal to which it was

granted and log this information when invoked. If the capability can be leaked

to another program (see Section 5.3.3), the principal logged will not be the same

as the principal responsible for using the capability. A modified capability system

would be necessary for strong accountability.

With name-space management, information about principals is not generally

available at run-time. This information could possibly be associated with Java

threads or stored in static variables behind interposed classes. Likewise, capabili-

ties could store a principal in a private variable.

Process models have enough information to record which applet was responsi-

ble for using a privilege because of the strong separation between applets.

This is all hypothetical, unfortunately, since current browsers do not provide

the tamper-resistant logging necessary for trustworthy auditing. Once it is avail-

able, any of these architectures should be able to use it.

5.3.8 Resource Limits

Mechanisms should exist to fairly meter out finite system resources such as

memory, CPU, and disk space.

Traditional Java systems have had no resource limits. There was nothing to prevent

any Java applet from going into an infinite for-loop or from allocating memory

without limit. Traditional Java schedulers were simple round-robin systems that,

on some platforms, did not even support preemption.

87

The Java operating systems designed by the Flux project at Utah [BTS+98, TL98]

are the only current systems to apply resource limits to Java, and they work with a

fairly traditional process model. While this separation increases the costs of shar-

ing between applets, it makes traditional resource management possible.

Systems like stack inspection can make binary access control decisions such

as whether a specific request to make a network connection should be granted.

However, they have no provisions to meter out limited resources. This will be an

interesting area for future research.

5.3.9 Psychological Acceptability

The system should not place an undue burden on its users.

All systems face a fundamental issue: the security policy must be specified some-

where. If the policy were expressed directly as an access control matrix, it would

be quite large and unwieldy. The number of possible principals is potentially un-

bounded and the number of targets is also quite large.

The solution currently employed by both Netscape and Microsoft is a form of

lazy evaluation. When a specific query is made to the security policy, if it has

not been previously answered, a security dialog box will ask the user to decide

whether the requested access should be allowed or granted. Asking the user ques-

tions too often can result in a condition called “dialog fatigue,” where the user

learns to ignore the dialogs, hitting the “OK” button automatically to continue

what they were doing.

As discussed in section 5.1.2, dialog fatigue can be addressed by the group-

ing of privileges as well as principals. Likewise, providing hooks for a systems

administrator to pre-load the system avoid requiring the user to answer security

88

questions.

The security architectures presented here can all support these features to re-

duce a user’s fatigue. A human-factors comparison between specific implementa-

tions (e.g., NS 4.0 vs. MSIE 4.0) is beyond the scope of this dissertation.

5.3.10 Performance

We must consider how our designs constrain system performance. Security

checks that must be performed at run-time will have performance costs.

Performance is one of the attractions of using type-safety for memory protec-

tion, so it would be undesirable if the addition of one of these security architectures

had an adverse effect on system performance.

Process models impose considerable runtime overheads (see section 5.2.1).

Whenever control flow crosses processes, all the data must be copied, since ob-

ject references cannot be shared. If one process must reference the data of an-

other, a distributed garbage collection algorithm must additionally run. Still,

with 64-bit architectures, processes need not require the high overhead of con-

text switching. Multiple Java processes could run in the same flat address space,

gaining the same benefits associated with single address space operating sys-

tems [CLLBH92, CLFL94].

Depending on how stack inspection is implemented, the performance costs can

vary widely. These costs are discussed in detail in chapter 8, and seem to vary

from 1% to 9% CPU overhead running application benchmarks. Name space man-

agement does not incur any overhead at runtime, nor do unmodified capability

systems. However, all systems must pay similar runtime costs when they imple-

ment interposition layers (e.g., to validate or limit arguments to low-level system

89

routines).

An interesting question to ask is what happens to the relative cost of making

a call across protection boundaries as Java compilers become more aggressive in

their optimization. We would be concerned if the security architecture required

semantics that hindered traditional compiler optimizations.

Process-based systems may suffer the most in this regard. While the compiler

is free to inline methods within a process, it cannot make any optimizations which

cross processes. The security system must enforce a specific calling convention,

allowing it to intercept and manage cross-process calls.

With a stack-walking implementation of stack inspection, the compiler may be

allowed to perform any optimizations, since all the methods run within the same

environment. However, the compiler must guarantee that all the stack information

is preserved for later security checks. This is roughly equivalent to the problem of

maintaining debugging information in optimized code [Hen82, TA90].

With a security-passing style implementation of stack inspection, with capabili-

ties, or with name-space management, better compilers will result in faster systems

all around. Because these systems are implemented on top of Java without under-

lying VM changes, any optimization that accelerates normal method calls will also

accelerate cross-boundary calls as well.

5.3.11 Compatibility

We must consider the number and depth of changes necessary to integrate the

security system with the existing Java virtual machine and standard libraries.

Some changes may be impractical.

One lesson we learned from the implementations of both name-space management

90

and stack inspection is that language-based protection can be implemented on top

of a type-safe language without diverging too much from the original specification

of that language. For both name-space management and stack inspection, old ap-

plets, those written against the original Java class libraries and unaware of the new

security mechanisms, will continue to run unmodified in browsers equipped with

the new authorization scheme. As long as they use only features allowed by the

traditional sandbox security policy, they will notice no difference.

Systems with a process model should similarly be able to run unmodified ap-

plications. In cases where separate applets are intended to run in the same vir-

tual machine and share memory, there could be compatibility issues because static

variables will not necessarily be shared across the process boundaries. Likewise,

“signed” applets that can request additional privileges may not work properly if

the applet process is strongly separated from the user’s machine. An applet that

tries to access a restricted browser resource would be denied.

On the other hand, as noted in section 5.3.1, a capability system would require

a new class libraries and thus completely break compatibility with traditional Java

classes.

5.4 Combinations

As demonstrated in the previous section, none of the Java security architectures is

perfect. We now focus on how they can be combined practically in real systems to

share their advantages and avoid their flaws.

91

5.4.1 Name-Space Management + Capabilities

While name-space management raises some concerns with renaming classes, it

works well for hiding classes. This could provide the basis for implementing a

strongly capability-based system. The classes implementing the capabilities would

be allowed to see the original system classes, but other code would not.

5.4.2 Stack Inspection + Capabilities

Stack inspection can be expensive to use, but has nice security properties. Capa-

bility systems are quite fast, but require a radically different style of programming

from Java’s common usage. The combination gets many of the best features of both

systems and it is already being used. As discussed in section 5.3.3, stack inspection

protects “important” calls, such as opening files and network connections, while

objects representing capabilities to use those files and network connections are re-

turned. While this follows good object-oriented design, it can only be secure if one

applet cannot leak its capabilities or steal the capabilities of another. If two applets

are in a situation where one can get a reference to any data from the other applet,

these leaks may be possible.

If a more strongly capability-based system were to be built, where the only way

to open a file would be through a capability rather than through trying to con-

struct an appropriate object directly, then stack inspection could be used to block

anybody but the system from successfully calling Java’s traditional file interfaces,

while allowing the capability classes full access. For an example of how this might

work, see figure 5.6.

If backward compatibility were not an issue, would there still be a place for

stack inspection? Stack inspection offers guarantees about accountability and

92

complete mediation that are not possible with pure capabilities (discussed in sec-

tions 5.3.3 and 5.3.5). Stack inspection can also be seen as a raw mechanism to

extend a capability system to address the problems inherent with pure capabili-

ties.

5.4.3 Processes + Capabilities

Existing systems that use processes to separate Java applets must support com-

munication among these applets as well as with “kernel.” The facilities to do this

are closely related to remote procedure call systems. As discussed in section 4.2.2,

capabilities are a simple way of adding security to a distributed system, so they

would also work for process systems. In essence, any mechanism that provides

security in distributed systems can be combined with processes to secure inter-

process communication.

5.5 Conclusion

We have described four architectures which support interposition of security checks

between untrusted code and important system resources. Each design has been

implemented in Java and two of them (extended stack inspection and name space

management) have been integrated in commercial Web browsers.

All four designs have their strengths and weaknesses. For example, capability

systems are implemented very naturally in Java. However, they are suitable only

for applications where programs are not expecting to use the standard Java class

libraries, because capabilities require a stylistic departure in library design.

Name space management offers compatibility with existing Java applets but

93

Java’s libraries and newer Java mechanisms such as Java reflection may limit its

use.

Process models seem to offer good security, but they impose performance costs

that question their usefulness.

Stack inspection has been adopted by the commercial Web browsers, offering

relatively good security. The remainder of this dissertation will be focused on

studying stack inspection and addressing its weaknesses.

94

Chapter 6

Access Control Logic

In order to gain a more sophisticated understanding of stack inspection, we found

it necessary to build a model of the system. A good model would hide many of

the details of the system and allow us to reason about it. In particular, we would

like the model to capture the “security state” of the system at any time and let us

express transitions from this state as mathematical operations.

There are no hard and fast rules of how one should model a system formally.

Instead, the most expedient path is to find a formal model of a similar system

and adapt it to stack inspection. The system that we decided to borrow from was

originally used to describe authentication and access control in the Taos operat-

ing system [LABW92, WABL94]. In Taos, the operating system maintains infor-

mation about every channel between processes on the same machine and across

the network. When a process receives a request, the process may ask the system

to identify who has connected to it. Because a channel may pass through multi-

ple points of trust (the local operating system, the network, the remote operating

system, etc.), the system explicitly puts these into the principal, creating a com-

pound principal. Taos actually included a theorem prover inside the system which

95

could, given these compound principals and a security policy, both expressed in

the same formal logic, generate proofs of whether a given request is authorized to

occur. The logic, a relatively simple propositional or modal logic with no negation

of statements (and with certain restrictions on the form of statements), allows the

theorem prover to run fast enough to not dramatically impact system performance.

We decided to adopt this logic, originally specified by Abadi, Burrows, Lampson,

and Plotkin [ABLP93] (hereafter, ABLP logic), to model stack inspection.

6.1 ABLP Logic

Stack inspection can be modeled using a subset of ABLP. This section will describe

the subset and give a general flavor for how it can be used.

The logic is based on a few simple concepts: principals, conjunctions of princi-

pals, targets, statements, quotation, and authority.

� A principal is a person, organization or any other entity that may have the

right to take actions or authorize actions. In addition, entities such as pro-

grams and cryptographic keys are often modeled as principals.

� A target represents a resource that we wish to protect. Loosely speaking, a

target is something to which we might like to attach an access control list.

(Targets are traditionally known as “objects” in the literature, but this can be

confusing when talking about an object-oriented language.)

� A statement is any kind of utterance a principal can emit. Some statements are

made explicitly by a principal, and some are made implicitly as a side-effect

of actions the principal takes. In other words, we interpret P says s as mean-

ing that we can act as if the principal P supports the statement s. Note that

96

saying something does not make it true; a speaker could make an inaccurate

statement carelessly or maliciously. The logic supports the informal notion

that we should place faith in a statement only if we trust the speaker and it

is the kind of statement that the speaker has the authority to make. Thus, if

a speaker makes an inaccurate statement, we will not believe the statement.

Also, speakers cannot make statements that lead to a logical contradiction

(e.g., A � :A) because negation is not allowed in ABLP.

The most common type of statement we will use looks like P says Ok(T)

where P is a principal and T is a target; this statement means that P is au-

thorizing access to the target T. By saying an action is “Ok” the speaker is

saying the action should be allowed in the current context but is not specifi-

cally ordering that the action take place.

� The logic supports conjunctions of principals. Specifically, saying (A^ B) says s

is the same as saying both A says s and B says s.

� Quotation allows a principal to make a statement about what another princi-

pal says. The notation A j B says s, which we pronounce “A quoting B says

s,” is equivalent to A says (B says s). As with any statement, we must con-

sider whether A’s utterance might be incorrect, and our degree of faith in s

will depend on our beliefs about A and B. When A quotes B, we have no

guarantee that B ever actually said anything.

� We grant authority to a principal by allowing that principal to speak for an-

other principal who has power to do something. The statement A)B, pro-

nounced “A speaks for B,” means that if A makes a statement, we can assume

that B supports the same statement. If A)B, then A has at least as much au-

97

thority as B. Note that the)-operator can be used to represent group mem-

bership: if P is a member of the group G, we can say P)G, meaning that P

can exercise the rights granted to G.

When proving theorems, the A)B means occurrences of A can be replaced

with A^B. Thus, when we hear a statement from A, we can act as if it were

spoken jointly by A and B together.

6.2 ABLP Grammar

This section presents a grammar for valid ABLP expressions. Note that, while

this grammar is not completely unambiguous, the axioms that operate on ABLP

expressions are unambiguous.

There are two fundamental types in ABLP: statements and principals. A state-

ment could be an atomic statement such as “the sky is blue.” It could also be a

compound statement such as “Bob says the sky is blue” or “Alice speaks for Bob,”

as indicated with the) symbol. A statement may also be the conjunction of sev-

eral independent statements, as indicated with the ^ symbol. Or, a statement may

imply another statement, as indicated with the � symbol.

Statement ! AtomicStatement

Statement ! Statement ^ Statement

Statement ! Statement � Statement

Statement ! Principal says Statement

Statement ! Principal) Principal
A principal can be an atomic principal such as “Alice” or “Bob.” It may also be a

compound principal such as “Alice quoting Bob,” as indicated with the j symbol

or a conjunction of principals, as indicated with the ^ symbol.

98

Principal ! AtomicPrincipal

Principal ! Principal j Principal

Principal ! Principal ^ Principal
To avoid ambiguous statements or at least make statements more legible, paren-

theses are also acceptable in all the obvious places.

Principal ! (Principal)

Statement ! (Statement)
Thus, it’s perfectly reasonable to make a statement such as

((Alice^Bob) says (Charlie) (Alice^Bob))) ^

(CharliejAlice says X) ^

((Alice says X) � X)

where the first part is a form of delegation (Alice and Bob delegating their privi-

leges to Charlie), the second part is an assertion that “Charlie quoting Alice” wants

to do X (i.e., Charlie is claiming that Alice wants to do X), and the third part is an

access control rule stating that when Alice says she wants to do X, we will believe

her.

6.3 Axioms

Here is a list of the subset of axioms in ABLP logic used in this dissertation. We

omit axioms for delegation, roles, and exceptions because they are not necessary

to discuss stack inspection.

Axioms About Statements

If s is an instance of a theorem of propositional logic then s is true in ABLP. (6.1)

99

If s and s � s0 then s0: (6.2)

(A says s ^ A says (s � s0))� A says s0: (6.3)

If s then A says s for every principal A: (6.4)

Axioms About Principals

(A ^ B) says s � (A says s) ^ (B says s) (6.5)

(A j B) says s � A says B says s (6.6)

(A = B) � (A says s � B says s) (6.7)

(A j (B j C)) � ((A j B) j C) (6.8)

(A j (B ^ C)) � (A j B) ^ (A j C) (6.9)

(A) B) � (A= A ^ B) (6.10)

(A says (B) A)) � (B) A) (6.11)

So, given the the following statement:

((Alice^Bob) says Charlie) (Alice^Bob)) ^

(CharliejAlice says X) ^

((Alice says X) � X)

we might try to prove X.

100

Charlie) (Alice^Bob) by axiom 6.11

(Charlie^Alice^Bob)jAlice says X by axiom 6.10

(CharliejAlice says X) ^

(AlicejAlice says X) ^ (BobjAlice says X) by axiom 6.5

Alice j Alice says X by axiom 6.1

Alice says Alice says X by axiom 6.6

Alice says X by axiom 6.3

X by axiom 6.3

Now, in general, not all ABLP proofs are this easy. It is possible to encode prob-

lems in ABLP that are equivalent to the halting problem. However, by carefully

choosing a subset of ABLP, we can not only guarantee that proofs are decidable,

but we can also make efficient decision procedures for them. Chapter 7 presents

the subset of ABLP that we use to model Java’s stack inspection and presents an

efficient decision procedure for it.

6.4 Applying ABLP

With an understanding of how ABLP logic works, we can explain how it can be

used to model actual systems. A great amount of detail on this is available in

Lampson, Abadi, Burrows, and Wobber [LABW92]. ABLP can be used to model

the flow of control through a single system, from user to keyboard to motherboard

to device driver to operating system to user process. It can also be used to model

information passing across a network to the same level of detail. The key is quot-

ing. When an application receives a keystroke, it might want to verify that the

keystroke, in fact, came from the user. In the model, such an application would be

101

required to validate

(KerneljDeviceDriverjKeyboard says KeyPressed(‘g’)) � KeyPressed(‘g’)

In order to do this, it must believe that each layer truthfully speaks for the layer

below it:

Kernel) DeviceDriver

DeviceDriver) Keyboard

(Keyboard says KeyPressed(x)) � KeyPressed(x)

Given the above beliefs and the axioms of ABLP logic, an application may safely

believe in the authenticity of its keystrokes.

If we wish to add a network window server (such as X) to this model, we must

prove that the window server speaks for the keyboard. Such a proof would require

modeling the event dispatch mechanism inside the server. If the window server

supported features like synthetic key events (where an application may simulate

keystroke events to drive another application), this would also need to be taken

into account in the model. As the model’s complexity grows, our certainty of

keystroke authenticity is dependent on our ability to make proofs as above.

ABLP can be applied to all kinds of authentication problems. A related logic,

BAN logic [BAN90], has been applied to the underlying cryptographic protocols

as well. In the next chapters of this dissertation, ABLP will be used to model the

authentication and access control within Java.

102

Chapter 7

Understanding Java Stack Inspection

In chapter 5, we introduced the idea of stack inspection as a technique for manag-

ing access control in the Java environment. This chapter revisits stack inspection,

presenting a model of stack inspection using ABLP logic. While the model is much

simpler than the original stack inspection system, we prove the model is equiva-

lent to the original specification and we present an efficient decision procedure for

generating these proofs.

By examining the decision procedure, we demonstrate that many statements

in the logic are equivalent and can thus be expressed in a simpler form. We show

that there are a finite number of such statements, allowing us to represent the se-

curity state of the system as a deterministic pushdown automaton. We also show

that this automaton may be embedded in Java by rewriting all Java classes to pass

an additional argument when a procedure is invoked. We call this security-passing

style and describe its benefits over previous stack inspection systems (chapter 8

discusses an implementation based on this). Finally, we show how the logic al-

lows us to describe a straightforward design for extending stack inspection across

remote procedure calls.

103

7.1 Mapping Java to ABLP

We will now describe a mapping from the stack, the privilege calls, and the stack

inspection algorithm into ABLP logic.

7.1.1 Principals

In Java, code is digitally signed with a private key, then shipped to the virtual

machine where it will run. If KSigner is the public key of Signer, the public-key

infrastructure can generate a proof1 of the statement

KSigner) Signer. (7.1)

Signer’s digital signature on the code Code is interpreted as

KSigner says (Code) KSigner): (7.2)

Using equations 7.1 and 6.11, this implies that

Code) Signer: (7.3)

When Code is invoked, it generates a stack frame Frame. The virtual machine as-

sumes that the frame speaks for the code it is executing:

Frame) Code: (7.4)

The transitivity of) (which can be derived from equation 6.10) then implies

Frame) Signer: (7.5)

We define Φ to be the set of all such valid Frame) Signer statements. We call Φ

the frame credentials.

1Throughout this dissertation we assume that sound cryptographic protocols are used, and we
ignore the extremely unlikely possibility that an adversary will successfully guess or otherwise
acquire a private key.

104

Note also that code can be signed by more than one principal. In this case, the

code and its stack frames speak for all of the signers. To simplify the discussion,

all of our examples will use single signers, but the theory can support multiple

signers without difficulty.

7.1.2 Targets

Recall that the resources we wish to protect are called targets. For each target, we

create a dummy principal whose name is identical to that of the target. These

dummy principals do not make any statements themselves, but various principals

may speak for them.

For each target T, the statement Ok(T) means that access to T should be allowed

in the present context. The axiom

(T says Ok(T)) � Ok(T) (7.6)

says that T can allow access to itself.

Many targets are defined in relation to services offered by the operating system

underlying the Java Virtual Machine (JVM). From the operating system’s point of

view, the JVM is a single process and all system calls coming from the JVM are

performed under the authority of the JVM’s principal (often the user running the

JVM). The JVM’s responsibility, then, is to allow a system call only when there

is justification for issuing that system call under the JVM’s authority. Our model

will support this intuition by requiring the JVM to prove in ABLP logic that each

system call has been authorized by a suitable principal.

105

F1 enablePrivilege(T1)
Ok(T1)

F2 enablePrivilege(T2)
F1 says Ok(T1)

Ok(T2)

F3 disablePrivilege(T1)
F2 says Ok(T2)

F4 enablePrivilege(T2)
F3 | F2 says Ok(T2)

Ok(T2)

Figure 7.1: Security contexts of successive stack frames.
Each rectangle represents a stack frame. Each stack frame is labeled with its
name. In this example, each stack frame makes one enablePrivilege() or
disablePrivilege() call, which is also written inside the rectangle. Below
each frame is written its security context after its call to enablePrivilege() or
disablePrivilege().

7.1.3 Setting Policy

We use a standard access matrix [Lam71], implemented with with hashtables to

achieve compact storage, to keep track of which principals have permission to

access which targets. If VM is a Java virtual machine, we define AVM to be a set of

statements of the form P)T where P is a principal and T is a target. If (P)T) 2

AVM , this means that the local policy in VM allows P to access T. We call AVM the

access credentials for the virtual machine VM.

7.1.4 Stacks

When a Java program is executing, we treat each stack frame as a principal. At any

point in time, a stack frame F has a set of statements that it believes. We refer to

this as the security context of F and write it SF. We now describe where the security

context comes from.

Starting a Program

When a program starts, we need to set the security context of the initial stack frame,

SF0 . In the Netscape model, SF0 = fg. In the Sun and Microsoft models, SF0 =

fOk(T) j T 2 Targetsg. These correspond to Netscape’s initial unprivileged state

106

and Sun and Microsoft’s initial privileged state.

Enabling Privileges

If a stack frame F calls enablePrivilege(T) for some target T, it is really saying it

authorizes access to the target. We can represent this simply by adding Ok(T) to SF.

Calling a Procedure

When a stack frame F makes a procedure call, this creates a new stack frame G.

As a side-effect of the creation of G, F tells G the statements in F’s security context.

Thus, when F tells G a statement S, the statement F says S is added to SG.

Disabling and Reverting Privileges

A stack frame can also choose to disable some of its privileges. The call

disablePrivilege(T) asks to disable any privilege to access the target T. This

is implemented by giving the frame a new security context that consists of the

old security context with all statements in which anyone says Ok(T) removed.

revertPrivilege() is handled in a similar manner, by giving the frame a new

security context that is equal to the security context it originally had. The latest

JDK 1.2beta4 from Sun does not support any calls equivalent to these, so these

calls need not be modeled for Sun’s version of the architecture.

Example

Figure 7.1 shows an example of these rules in action. In the beginning, SF1 = fg. F1

then calls enablePrivilege(T1), which adds the statement Ok(T1) to SF1.

107

When F2 is created, F1 tells it Ok(T1), so SF2 is initially fF1 says Ok(T1)g. F2 then

calls enablePrivilege(T2), which adds Ok(T2) to SF2 .

SF3 initially contains F2 j F1 says Ok(T1) and F2 says Ok(T2). When F3 calls

disablePrivilege(T2), the latter statement is deleted from SF3 . SF4 initially con-

tains F3 j F2 says Ok(T1). When F4 calls enablePrivilege(T2), this adds Ok(T2) to

SF4 .

7.1.5 Checking Privileges

Before making a system call or otherwise invoking a dangerous operation, the Java

virtual machine calls checkPrivilege() to make sure that the requested operation

is authorized. checkPrivilege(T) returns true if the statement Ok(T) can be de-

rived from Φ (the frame credentials), AVM (the access control matrix), and SF (the

security context of the frame that called checkPrivilege()).

We define VM(F) to be the virtual machine in which a given frame F is running.

Next, we can define

EF � (Φ; AVM(F); SF): (7.7)

We call EF the environment of the frame F.

The goal of checkPrivilege(T) is to determine, for the frame F invoking it,

whether EF � Ok(T). While such questions are generally undecidable in ABLP

logic, we now present an efficient decision procedure that gives the correct answer

for our subset of the logic. checkPrivilege() implements that decision procedure.

The decision procedure check used by checkPrivilege() takes, as arguments,

an environment EF and a target T. check(T;EF) examines the statements in EF and

divides them into three classes.

� Class 1 statements have the form Ok(U), where U is a target.

108

� Class 2 statements have the form P)Q, where P and Q are atomic principals.

� Class 3 statements have the form

F1 j F2 j � � � j Fk says Ok(U);

where Fi is an atomic principal for all i, k � 1, and U is a target.

The decision procedure next examines all Class 1 statements. If any of them is

equal to Ok(T), the decision procedure terminates and returns true.

Next, the decision procedure uses all of the Class 2 statements to construct a

directed graph which we will call the speaks-for graph of EF. This graph has an

edge (A; B) if and only if there is a Class 2 statement A) B.

Next, the decision procedure examines the Class 3 statements one at a time.

When examining the statement F1 j F2 j � � � j Fk says Ok(U), the decision procedure

terminates and returns true if both

� for all i 2 [1; k], there is a path from Fi to T in the speaks-for graph, and

� U= T.

If the decision procedure examines all of the Class 3 statements without success, it

terminates and returns false.

Theorem 1 (Termination) The check decision procedure always terminates.

Proof: The result follows directly from the fact that EF has finite cardinality; there

are a finite number of principals that the system knows about, a finite number of

stack frames that must be considered, and a security policy of finite length. This

implies that each loop in the algorithm has a bounded number of iterations; and

clearly the amount of work done in each iteration is bounded.

109

In fact, the decision procedure runs quite efficiently. We can separately analyze

the runtime complexity and space complexity of each phase, as presented above. If

there are N rules in the access control matrix AVM(F) and a stack depth of D (i.e., Φ

has at most D elements), the cost of computing the transitive closure of the graph

will be, at worst, O((N+ D)2) and consume O((N+ D)2) space. Then, if there are k

statements in SF (each of which can have at most D principals in its quoting chain),

the cost of checking all statements will be O(kD). The total cost of the decision

procedure is thus O((N+ D)2
+ kD).

In practice, the transitive closure of the access control policy can be pre-computed

(subject to the caveats in section 5.2.4) and the O(kD) complexity of the security

context can be lowered as well. In section 7.3.1, we describe optimizations that

allow the decision procedure to execute in constant time.

Theorem 2 (Soundness) If the check decision procedure returns true when invoked in

stack frame F, then there exists a proof in ABLP logic that EF � Ok(T).

Lemma 1 If there is a path from A to B in the speaks-for graph of EF, then EF � (A) B).

Proof: By assumption, there is a path

(A; v1; v2; : : : ; vk; B)

in the speaks-for graph of EF. In order for this path to exist, we know that the

statements

A) v1;

vi) vi+1 for all i 2 [1; k � 1];

and

vk) B

110

are all members of EF. Since) is transitive, this implies that

EF � A) B:

Proof of Theorem 2: There are two cases in which the check decision procedure

can return true.

1. The decision procedure returns true while it is iterating over the Class 1

statements. This occurs when the decision procedure finds the statement

Ok(T) 2 EF. In this case, Ok(T) follows trivially from EF.

2. The decision procedure returns true while it is iterating over the Class 2 state-

ments. In this case we know that the decision procedure found a Class 2

statement of the form

P1 j P2 j � � � j Pk says Ok(T);

where for all i 2 [1; k] there is path from Pi to T in the speaks-for graph of EF.

It follows from Lemma 1 that for all i 2 [1; k], Pi) T. It follows that

EF � (Tj Tj � � � j T says Ok(T)): (7.8)

Applying equation 7.6 repeatedly, we can directly derive EF � Ok(T).

Conjecture 1 (Completeness) If the check decision procedure returns false when in-

voked in stack frame F, then there is no proof in ABLP logic of the statement EF � Ok(T).

Although we believe this conjecture to be true, we do not presently have a com-

plete proof. If the conjecture is false, then some legitimate access may be denied.

However, as a result of theorem 2, no access will improperly granted.

111

If the conjecture is true, then Java stack inspection, our access control decision

procedure, and proving statements in our subset of ABLP logic are all mutually

equivalent.

Theorem 3 (Equivalence to Stack Inspection) The check decision procedure is equiv-

alent to the Java stack inspection algorithm of section 5.2.4.

Proof: The Java stack inspection algorithm (Figure 5.5) itself does not have a for-

mal definition. However, we can treat the evolution of the system inductively and

focus on the enablePrivilege() and checkPrivilege()primitives.

We wish to prove that given a Java stack S and its ABLP-modeled equivalent

M(S), and for all targets T, checkPrivilege(T; S)� check(T; M(S)).

Our induction is over the number of steps taken, where a step is either a pro-

cedure call or an enablePrivilege() operation. Steps are defined as operations

on environments. For clarity, we ignore the existence of disablePrivilege(),

revertPrivilege(), and procedure return operations; our proof can easily be ex-

tended to accommodate them.

We also assume Netscape semantics. A simple adjustment to the base case can

be used to prove equivalence between the decision procedure and the Sun/Microsoft

semantics.

Base case: In the base case, no steps have been taken. In this case, the stack

inspection system has a single stack frame with no privilege annotation; in the

ABLP model, the stack frame’s security context is empty. In this base case,

checkPrivilege(T; S0) and check(T; M(S0)) will both return false.

112

Inductive step: We assume that N steps have been taken (N � 0) and we are in

a situation where both checkPrivilege(T; S) and check(T; M(S)) would yield the

same result. Now there are two cases:

enablePrivilege(T) step: In the stack inspection system, this adds an enabled-

privilege(T) annotation on the current stack frame. In the ABLP model, it adds

Ok(T) to the current security context (a part of M(S)).

If this enablePrivilege() call is followed by a call to checkPrivilege(T), the

Java stack inspection algorithm will succeed because the enabled-privilege(T) flag is

immediately discovered. Likewise, a call to check(T; M(S)) will succeed because

Ok(T) is found in M(S), Ok(T) is what check is trying to prove.

If this enablePrivilege() call is followed by a call to checkPrivilege(U)with

U 6= T, the new stack annotation or statement will be irrelevant to the result of

either checkPrivilege() or check, so we fall back on the inductive hypothesis to

show that both systems give the same result.

Procedure call step: Let P be the principal of the procedure that is called. In

the stack inspection system, this adds to the stack an unannotated stack frame

belonging to P. In the ABLP system, it prepends “P says” to the front of every

statement in the current security context.

When checkPrivilege(T) is called, two things occur. First, the call is treated

as a normal procedure call, with the caller’s principal being prepended to the state-

ments in the security context. Then, there are two sub-cases.

� P is not trusted for T. In the stack inspection case, checkPrivilege(T) will

fail because the current frame is not trusted to access T. In the ABLP case,

the check will deny access because every statement starts with “P says” and

113

P does not speak for T.

� P is trusted for T. In the stack inspection case, the stack search will ignore the

current frame and proceed to the next frame on the stack. In the ABLP case,

since P)T, the “P says” on the front of every statement has no effect. Thus

both systems give the same answer they would have given before the last

step. By the inductive hypothesis, both systems thus give the same result.

7.2 Extensions to the Model

There are a number of cases in which Java implementations differ from the model

we have described. These are minor differences with no effect on the strength of

the model.

7.2.1 Groups

It is natural to extend the model by allowing the definition of groups. In ABLP

logic, a group is represented as a principal, and membership in the group is rep-

resented by saying the member speaks for the group. Deployed Java systems use

groups in several ways to simplify the process of defining policy.

The Microsoft system defines “security zones” that are groups of principals. A

user or administrator can divide the principals into groups with names like “local”,

“intranet”, and “internet”, and then define policies on a per-group basis.

Netscape defines “macro targets” that are groups of targets. A typical macro

target might be called “typical game privileges.” This macro target would speak

for those privileges that network games typically need.

The Sun system has a general notion of targets in which one target can imply

114

another. In fact, each target is required to define an implies() procedure, which

can be used to ask the target whether it signifies a superset of the privileges as-

sociated with another target. This can be handled with a simple extension to the

model.

7.2.2 Threads

Java is a multi-threaded language, meaning there can be multiple threads of con-

trol, and hence multiple stacks can exist concurrently. When a new thread is cre-

ated in Netscape’s system, the first frame on the new stack begins with an empty

security context. In Sun and Microsoft’s systems, the first frame on the stack of the

new thread is told the security context of the stack frame that created the thread in

exactly the same way as what happens during a normal procedure call.

7.2.3 Enabling a Privilege

The model of enablePrivilege() in section 7.1.4 differs somewhat from the Netscape

implementation of stack inspection, where a stack frame F cannot successfully call

enablePrivilege(T) unless the local access credentials include F)T. The restric-

tion imposed by Netscape is related to their user interface and is not necessary in

our formulation, since the statement F says Ok(T) is ineffectual unless F)T. Sun

JDK 1.2’s implementation is closer to our model.

7.2.4 Frame Credentials

Java implementations do not treat stack frames or their code as separate principals.

Instead, they track only the public key that signed the code and call this the frame’s

principal. As we saw in section 7.1.1, for any stack frame, we can prove the stack

115

frame speaks for the public key that signed the code. In practice, neither the stack

frame nor the code speaks for any principal except the public key. Likewise, access

control policies are represented directly in terms of the public keys, so there is no

need to separately track the principal for which the public key speaks. As a result,

the Java implementations say the principal of any given stack frame is exactly the

public key that signed that frame’s code. This means that Java implementations

need not have an internal notion of the frame credentials described here.

7.3 Improved Implementation

In addition to improving our understanding of stack inspection, our model and

decision procedure can help us find more efficient implementations of stack in-

spection. We improve the performance in two ways. First, we show that the

evolution of security contexts can be represented by a deterministic pushdown

automaton; this opens up a variety of efficient implementation techniques. Sec-

ond, we describe security-passing style, an efficient and convenient integration of

the pushdown automaton with the state of the program.

7.3.1 Security Contexts and Automata

We can simplify the representation of security contexts by making two observa-

tions about our decision procedure.

1. Interchanging the positions of two principals in any quoting chain does not

affect the outcome of the decision procedure.

2. If P is an atomic principal, replacing P j P by P in any statement does not

affect the result of the decision procedure.

116

Both observations are easily proven, since they follow directly from the structure

of the decision procedure.

We also use the observation in section 7.2.4 that we need not consider frame

credentials, but need only consider the signer of a given stack frame. This means

that multiple stack frames corresponding to the same signature will be considered

to have the same principal.

It then follows that without affecting the result of the decision procedure we

can rewrite each statement in the security context into a canonical form in which

each atomic principal appears at most once, and the atomic principals appear in

some canonical order. After this transformation, we can discard any duplicate

statements from the security context.

Since the set of atomic principals is finite, the set of targets is finite, and no prin-

cipal or target may be mentioned more than once in a canonical-form statement,

there is a therefore finite set of possible canonical-form statements. It then follows

that only a finite number of canonical-form security contexts may exist.

While the number of possible security contexts can grow exponentially in the

number of principals and targets, it is nonetheless finite. Therefore, we can rep-

resent the evolution of a stack frame’s security contexts by a finite automaton,

where each state in the automaton corresponds to a security context. Since stack

frames are created and destroyed in LIFO order, the execution of a thread can be

represented by a finite pushdown automaton, where calling a procedure corre-

sponds to a push operation (and a state transition), returning from a procedure

corresponds to a pop operation, and enablePrivilege(), disablePrivilege()and

revertPrivilege() correspond to transitions on the finite state graph.2.

2One more nicety is required. To implement revertPrivilege(), we need to remember what
the security state was when each stack frame was created. We can encode this information in the
finite state, or we can store it on the stack by doing another push operation on procedure call.

117

Representing the system as an automaton has several advantages. It allows

us to use analysis tools such as model checkers to derive properties of particular

policies. It also admits a variety of efficient implementation techniques such as

lazy construction of the state set and the use of advanced data structures.

Furthermore, the results of a security check can be stored along with the secu-

rity contexts. So in cases where the same security check may be made numerous

times (such as when one program opens a multitude of files), only the first check

would require invoking the decision procedure. Subsequent security checks could

consult a local cache and execute in constant time.

One concern is that, because the space of all possible security contexts is ex-

ponential in the number of principals and targets, the amount of memory needed

will be similarly exponential. This concern is addressed by noting that very few of

these security contexts will ever be used. A lazy implementation, one which only

allocates memory for security contexts as they are needed, would only allocate

memory proportional to the complexity of its security needs. Thus, if the execu-

tion of a program only uses a handful of distinct security contexts, only those few

contexts will be allocated. Conversely, if a program is truly exponential in its secu-

rity complexity, it would need to run for an exponential amount of time in order to

cause the full security context space to be instantiated. Such degenerate cases are

unlikely to occur in practice.

7.3.2 Security-Passing Style

The implementation discussed thus far has the disadvantage that security state is

tracked separately from the rest of the program’s state. This means that there are

two subsystems (the security subsystem and the code execution subsystem) with

118

separate semantics and separate implementations of pushdown stacks coexisting

in the same Java Virtual Machine (JVM). We can improve this situation by imple-

menting the security mechanisms in terms of the existing JVM mechanisms.

We do this by adding an extra, implicit argument to every procedure. The

extra argument is a pointer into the finite-state space of the automaton. This

eliminates the need to have a separate pushdown stack for security contexts or

maintain stack annotations on the existing run-time stack. We dub this approach

security-passing style, by analogy to continuation-passing style [Ste78], a transfor-

mation technique used by some compilers that also replaces an explicit push-

down stack with implicitly-passed procedure arguments. An implementation of

security-passing style is presented in the following chapter.

The main advantage of security-passing style is that once a program has been

rewritten, it no longer needs any special security functionality from the JVM. The

rewritten program consists of ordinary Java bytecode that can be executed by any

JVM, even one that knows nothing about stack inspection. This has many advan-

tages, including portability and efficiency. The main performance benefit is that

the JVM can use standard compiler optimizations such as dead-code elimination

and constant propagation to remove unused security tracking code, or inlining and

tail-recursion elimination to reduce procedure call overhead.

Another advantage of security-passing style is that it lets us express the stack

inspection model within the existing semantics of the Java language, rather than

requiring an additional and possibly incompatible definition for the semantics of

the security mechanisms. Security-passing style also lets us more easily transplant

the stack inspection idea into other language and systems.

119

F1 enablePrivilege(T1)
Ok(T1)

F2 enablePrivilege(T2)
F1 says Ok(T1)

Ok(T2)

F3 disablePrivilege(T1)
KVM1

 | K2 says Ok(T2)

VM2VM1

KVM1

F2 = K2>

Figure 7.2: Security contexts with a remote procedure call.
Example of interaction between stack frames via remote procedure call. Each rect-
angle represents a stack frame. Each stack frame is labeled with its name and its
security context (after its call to enablePrivilege() or disablePrivilege()). The
larger rounded rectangles represent separate Java virtual machines, and the dotted
arrow represents the channel used for a remote procedure call.

7.4 Remote Procedure Calls

RPC security has received a good deal of attention in the literature. The two pre-

vailing styles of security are capabilities and access control lists [TMvR86, Gon89,

Hu95, Obj96, vABW96]. Most of these systems support only simple principals.

Even in systems that support more complex principals [WABL94], the mechanisms

to express those principals are relatively unwieldy.

This section discusses how to extend the Java stack inspection model across

RPCs. One of the principal uses for ABLP logic is in reasoning about access con-

trol in distributed systems, and we use the customary ABLP model of network

communication to derive a straightforward extension of our model to the case of

RPC.

7.4.1 Channels

When two machines establish an encrypted channel between them, each machine

proves that it knows a specific private key that corresponds to a well-known public

key. When one side sends a message through the encrypted channel, we model

120

this as a statement made by the sender’s session key: we write K says s, where K

is the sender’s session key and s is the statement. As discussed in section 6.4, the

public-key infrastructure and the session key establishment protocol together let

us establish that K speaks for the principal that sent the message.

In order to extend Java stack inspection to RPCs, each RPC call must transmit

the security context of the RPC caller to the RPC callee. Since each of the caller’s

statements is sent through a channel established by the caller’s virtual machine, a

statement S of the caller’s frame arrives on the callee side as KCVM says S, where

KCVM is a cryptographic key that speaks for the caller’s virtual machine. The

stack frame that executes the RPC on the callee is given an initial security context

consisting of all of these arriving statements.

Note that this framework supports the intuition that a remote caller should not

be allowed to access resources unless that caller’s virtual machine is trustworthy.

Any statement transmitted across the network arrives on the callee as a statement

of the caller’s virtual machine (or more properly, of its key); the callee will disbe-

lieve such a statement unless it trusts the caller’s virtual machine.

This strategy fits together well with security-passing style. The caller trans-

mits its security context along with the normal RPC data. The security context is

marshalled, transmitted, and unmarshalled like any other RPC data.

Figure 7.2 presents an example of how this would work. The Java stack inspec-

tion algorithm executes on the callee’s machine when an access control decision

must be made, exactly as in the local case.

121

7.4.2 Dealing with Malicious Callers

An interesting question is what an attacker can accomplish by sending false or

misleading statements across a channel. If the caller’s virtual machine is malicious,

it may send whatever statements it wants, provided that they have the correct

format. Regardless of the security context sent, each statement arrives at the callee

as a statement made by the caller’s virtual machine. If the callee does not trust the

caller, such statements will not convince the callee to allow access.

Suppose a malicious caller’s virtual machine MC wants to cause an access to

target T on some callee. The most powerful statement MC can send to support this

attempt is simply Ok(T)3; this will arrive at the callee as MC says Ok(T). Note that

this is a statement that MC can make without lying, since MC is entitled to add

Ok(T) to its own security context. Any lie that MC can tell is less powerful than

this true statement, so lying cannot help MC gain access to T. The most powerful

thing MC can do is to ask, under its own authority, to access T.

7.4.3 Dealing with Malicious Code on a Trustworthy Caller

Malicious code on a trustworthy caller also does not cause any new problems. The

malicious code can add Ok(T) to its security context, and that statement will be

transmitted correctly to the callee. The callee will then allow access to T only if

it trusts the malicious code to access T. This is the same result that would have

occurred had the malicious code been running directly on the callee. This matches

the intuition that (with proper use of cryptography for authentication, confiden-

tiality, and integrity of communication) we can ignore machine boundaries if the

communicating processes trust each other and the platforms on which they are

3While the statement false would be more powerful than Ok(T), we assume the protocol for
transmitting statements will not allow this. false is not a valid statement in our subset of ABLP.

122

running.

7.5 Conclusion

Commercial Java applications often need to execute untrusted code, such as ap-

plets, within themselves. In order to allow sufficiently expressive security policies,

granting different privileges to code signed by different principals, the latest Java

implementations now support a runtime mechanism to search the call-stack for

code with different privileges and decide whether a given call-stack configuration

is authorized to access a protected resource.

This chapter has presented a formalization of Java’s stack inspection using a

logic developed by Abadi, Burrows, Lampson, and Plotkin [ABLP93]. Using this

model, we have demonstrated how Java’s access control decisions correspond to

proving statements in ABLP logic. We have reduced the stack inspection model

to a finite pushdown automaton, and described how to implement the automa-

ton efficiently using security-passing style. A new implementation of Java’s stack

inspection, based on security-passing style rather than stack annotations, is de-

scribed in the next chapter.

We have also extended our model to apply to remote procedure calls and we

have used the ABLP expression of this model to suggest a novel implementation

for a Java-based secure RPC system. While the implementation of such an RPC sys-

tem is future work, our model gives us greater confidence that the system would

be both useful and sound.

123

Chapter 8

Security-Passing Style: Efficient

Infrastructure for Access Control

Stack inspection has many benefits in structuring large systems with mutually un-

trusting authors. But its original definition, in terms of searching stack frames,

had an unclear relationship to the actual achievement of security, over-constrained

the implementation of a Java system, complicating the implementation of many

desirable optimizations such as method inlining, tail recursion, and other inter-

procedural optimizations.

Our new semantics for stack inspection based on a belief logic and its imple-

mentation using the calculus of security-passing style solves all of these problems.

We can efficiently represent the security context for any method activation, and

we can build a new implementation by merely rewriting the Java bytecodes be-

fore they are loaded by the system. No changes to the Java runtime or bytecode

semantics are necessary. With a combination of static analysis and runtime opti-

mizations, our new implementation shows competitive performance, yet will not

interfere with future aggressive optimizing compilers.

124

(1) SP S fun(function f (a1 ; : : : ;an) = E) =

function f (a1; : : : ;an ; s) = (let s0 = says(owner(f); s) in SP S (E; s0))
(2) SP S(p:g(x1 ; : : : ; xm); s0) = p:g(x1 ; : : : ; xm ; s0)
(3) SP S(E1 + E2; s0) = SP S(E1; s0)+ SP S(E2; s0)
(4) SP S(BeginPrivilege E; s0) = SP S(E;Ok())
(5) SP S(CheckPrivilege(T); s0) = check(T; s0)

Figure 8.1: “Caller-says” SPS conversion.

This chapter presents our new implementation and compares its performance

to traditional stack inspection implementations using the javac compiler and our

code transformer itself as benchmarks.

8.1 The Security-Passing Style Transformation

This section describes the design of the security-passing style transformation. Note

that we are using a somewhat simpler version than that described in previous

chapters, which is closer to the design of Sun’s JDK 1.2 system. This system only

supports BeginPrivilege(), CheckPrivilege(), and function calls. Furthermore, in

the simplified model, one may only enable privileges for a specific root target Troot ,

where 8targetsTx : Troot)Tx. As a shorthand, we write BeginPrivilege() with no

target argument and speak of Ok() with no target.

8.1.1 SPS Conversion

For this chapter we assume a simple programming language with methods or

functions:

P ! function f (a1; : : : ; an)= E

P ! P P

125

E ! p:g(x1 ; : : : ; xm)

E ! E+ E

E ! let v = E in E

E ! BeginPrivilege E

E ! CheckPrivilege(T)

where a program is a collection of function definitions; a function body contains

function/method calls as well as arithmetic expressions and (not shown here) se-

quencing statements. The (BeginPrivilege E) statement asserts privileges for the

dynamic extent of the execution of E, and CheckPrivilege(T) checks whether the

target T is currently accessible. We use lower-case letters to range over program

variables and T to stand for target names.

We assume that each method f has an owner (principal) owner(f). Owner-

ship is associated with code, not classes: in an object-oriented language, if ob-

ject p belongs to class C2, which inherits method-body f from superclass C1, then

owner(p: f) is C1, not C2. In principle, this could go either way, but the designers

chose to use the concrete implementation’s owner because it is easier to ascertain

at runtime, and it avoids the danger that a privileged method may call what it

thinks is a method of the same class, yet is actually a method in a subclass. This

would be an example of a luring attack which we wish to avoid (see section 5.2.4).

Figure 8.1 shows the rules for converting a program to security-passing style.

The conversion SP Sfun is applied to each function; SP S is applied to each expres-

sion. Rule 1 involves the introduction of new local variables s and s0 whose names

are not used elsewhere. The function f is rewritten to take s as a new formal pa-

rameter, the security context, which will be the representation of a statement in the

126

(1) SP S fun(function f (a1 ; : : : ;an) = E) = function f (a1; : : : ;an ; s) = SP S(E; s)
(2) SP S(p:g(x1 ; : : : ; xm); s) = p:g(x1 ; : : : ; xm ;says(owner(p:g); s))
(3) SP S(E1 + E2; s) = SP S(E1; s)+ SP S(E2; s)
(4) SP S(BeginPrivilege E; s) = SP S(E;Ok())
(5) SP S(CheckPrivilege(T); s) = check(T; s)

Figure 8.2: “Callee-says” SPS conversion.

ABLP logic. We then construct a new security context with s0 = owner(f) says s,

and SP S-convert the body of the function using s0 for all outgoing function calls.

Rule 2 of Figure 8.1 shows the use of s0 as the “extra” argument of an outgoing

call; rule 3 shows that most statements are unaffected by SPS-conversion. Rule 4

shows that BeginPrivilege discards the security context s0 and simply uses Ok();

rule 5 shows that CheckPrivilege invokes the decision procedure check, described

in section 7.1.5.

To complete the definition of SPS conversion, we assume that the main function

of the converted program is called with a security context allowing no access to

any target (following Netscape) or full access to every target (following Sun).

8.1.2 Rewriting Java Bytecodes

Stack inspection was originally implemented at Netscape (and then at Sun and Mi-

crosoft) by adding support for it to the runtime system. These extensions required

changing the stack frame representation, which in turn affected the garbage collec-

tor and JIT compiler.

With SPS conversion, we can express the stack-inspection security architecture

in “vanilla” Java bytecodes (or source), without stack-frame marks or any other

constraints on the Java virtual machine implementation. Every method has an

extra parameter for passing the security context, but this parameter and its repre-

127

sentation are just Java.

8.2 Optimization

Netscape and Sun’s implementation of stack inspection — by marking frames at

BeginPrivilege() and scanning frames in CheckPrivilege() — has very low cost for

the vast majority of methods, which do not perform either operation. There is a

difficult-to-measure cost of their scheme, in that it may inhibit useful optimizations

such as inlining, tail-call optimization, and certain interprocedural optimizations.

Also, their system has a linear-time cost for CheckPrivilege(), which must scan a

potentially unbounded number of frames to recover the security context. After

this, with the current JDK 1.2 semantics, analyzing the security context could be

potentially as bad as O(N2) in the number of targets because Sun allows the target

speaks-for graph to change over time. If Sun allowed caching of the speaks-for

graph (see section 5.2.4), then a transitive closure could be computed once, allow-

ing the final security check to be linear in the size of the security context, which

will typically be quite small.

Our semantics costs O(1) per operation (with the same caveats about checking

privileges), since a security context has a bounded-size representation. Even so,

in order to achieve competitive performance we must minimize the constant-time

overhead on each method call. We achieve this by a combination of static opti-

mizations and dynamic caching. By applying static analysis to the full program

before it begins running, we can optimize away many of the computations of a

new security state.

128

8.2.1 Caller-says vs. callee-says

We have two variants of SPS-conversion; Figure 8.1 shows a “caller-says” con-

vention, in which a call from g to f involves a computation by g (the caller) of

says(owner(g); s). Figure 8.2 shows a “callee-says” convention, in which a call

from g to f involves a computation by g of says(owner(f); s).

Either of these conventions is semantically equivalent to stack inspection, but

slightly different compile-time optimizations apply, as we will show. For exam-

ple, in caller-says, owner(this:f) can always be computed at compile time; but

in callee-says SPS conversion of an O-O language, owner(p:g) requires either dy-

namic method lookup or static analysis.

8.2.2 Static Optimizations

Suppose a function body g(: : : ; s) contains a call f (: : : ; s0), where s and s0 are the

security-context arguments. The method g must compute s0 = says(owner(g); s)

(in a caller-says convention) or s0 = says(owner(f); s) (in a callee-says convention).

Under certain circumstances, we can let s0 = s:

� In caller-says, we know that f must compute s00= says(owner(f); s0) and then

perform operations on s00; f cannot use s0 in any other way. If owner(g))

owner(f), that is, if the privileges of g are a superset of the privileges of f ,

then
s00 = says(owner(f); s0) � F says s0

= says(owner(f); says(owner(g); s)) � F says G says s

= says(owner(f); s) � F says s
by virtue of the fact that G) F, allowing substitutions based on the ABLP

axioms. As a result, g can call f with the security context s instead of s0,

129

eliminating the computation of the says function inside g.

� In callee-says, we know that s was constructed by the caller of g as s =

says(owner(g); t). If owner(g)) owner(f), then

s0 = says(owner(f); s) � F says s

= says(owner(f); says(owner(g); t)) � F says G says t

= says(owner(g); t) � G says t

= s
again using the ABLP axioms. As a result, g can call f with the security con-

text s instead of s0, eliminating the computation of the says function inside

g.

In practice, it is very common for one function to call another with the same owner;

in such cases, no says computation is necessary (since owner(f)) owner(f)).

Criterion for choosing caller-says vs. callee-says. Caller-says requires calcula-

tion of the owner of the currently executing code, and can be statically optimized

if the caller is known to speak for the callee. Callee-says requires fetching the

owner of the callee, and can be statically optimized if the callee speaks for the

caller. Depending on how often these different speaks-for relations can be stati-

cally determined, and how often the owner of the callee can be determined stat-

ically, one convention or the other may turn out to perform best in practice. We

only implemented the callee-says style.

Static identification of ownership in class-based object-oriented languages. In

an object-oriented program, a program variable p declared to be of class C may

point to to an object of any subclass of C. Therefore, the method call p:f() may

invoke any of several actual method bodies, depending upon how f is overridden

130

A

p

B

C

HD

E

override f()

define f()

override f()

override f()

Figure 8.3: Class hierarchy analysis.
Variable p of static type C may point to an object of class C; D; E; or H; the owner
of p: f () may be the owner of B; E; or H.

in the subclasses of C.

Figure 8.3 illustrates a simple flow-insensitive class hierarchy analysis. Given a

variable p of static type C, we analyze a call p:f() as follows. From C, we walk up

the class hierarchy tree to find the lowest (improper) ancestor of C that implements

or overrides f(), and put that ancestor into the set P. Then we examine all (direct

and indirect) subclasses of C, and any of those that override f() are also put into P.

A static analysis of the program may be able to narrow the set of possible types

that p may take on at the site of the call p:f(), and this in turn narrows the set of

possible method bodies (callees) that this call site may invoke. Such an analysis

can speed up a conventional object-oriented program because dynamic method

lookup is more expensive than a static procedure call; if the set of callees can be

narrowed to a singleton, then the call p:f() can be implemented without run-time

lookup. Other kinds of program optimization – interprocedural dataflow analysis,

or function-call inlining – also benefit from knowledge of which method-body is

called.

For security-passing style, it is not necessary to narrow the set of possible method

bodies to a singleton – it suffices to prove that all possible method bodies for this

131

call to f have a common owner. In fact, an even weaker property will suffice: for

caller-says, we require only that every possible owner of f have (nonstrictly) fewer

privileges than the owner of its caller, g; for callee-says, we require that all owners

of f have (nonstrictly) more privileges than the owner of g.

There has been much work on static analyses of object types. Class hierarchy

analysis [Fer95, DGC95] simply examines all the subclasses of C to see if any of

them overrides method f. If not, the definition of f in class C (or, if C does not

define f, the definition of f in an ancestor class) must be the callee.

Information gained from dataflow analysis can prune the set of object types

that p may contain at the call site; this in turn prunes the set of possible method

bodies for f at this point, which in turn allows more precise dataflow analysis. This

iterative process is called interprocedural class analysis and has been shown practical

by at least two independent sets of authors [DMM96, DGC98].

System speaks for everyone. Some access-control matrices contain a principal

System that has access to every target. Even without flow analysis or hierarchy

analysis the compiler can use the rule System) C to eliminate says computations

when System code is calling other methods (in the caller-says convention) or other

code is calling System code (in callee-says).

Leaf procedures. Many functions do not use their security context in any way.

A leaf procedure is one that makes no other function call and contains no Check-

Privilege operations; its security context argument is statically dead at all times.

A generalized leaf procedure is one that neither calls CheckPrivilege nor any native

methods, either directly or indirectly. Static analysis of the dynamic call tree can

conservatively identify many generalized leaf procedures; these procedures do not

132

require any security-context argument or a says computation.

The generalized leaf procedure analysis works by recursively following invoke

bytecodes from every method (to a limited recursion depth) and is repeated until a

fixed point is reached. In practice, thousands of methods can be analyzed this way

in less than one CPU second.

This optimization is just a form of interprocedural dead code elimination, and

can be done by a conventional object-oriented compiler (after SPS conversion) be-

cause security-passing style has expressed all the says computations in the under-

lying programming language. However, the compiler needs to know that says

has a declarative/functional semantics: calls to says can be deleted if the result is

dead, even though says might have internal side effects to lazily compute part of

the transition graph.

Unfortunately, the invoke bytecode instructions are not sufficient for the leaf

analysis. If a getstatic or putstatic bytecode references a class that has not yet

been loaded, this will cause the class to be initialized, creating an implicit call to the

target class’s initialization method. Likewise, various runtime exceptions, such as

indexing beyond an array’s boundary or dereferencing a null pointer, will throw

exceptions. To throw an exception, an implicit call to the method’s constructor

would occur.

These implicit method invocations are not directly visible from Java bytecode,

making it difficult to pass the security context to the new method. To address

class initializers, we observe that, when a class is first loaded, it cannot make any

assumption about who caused it to be loaded. Class initializers should thus be

pessimistic about any security context they might inherit. Our system gives class

initializers the same security context they would receive after an EnablePrivilege

operation. While not completely compatible with Sun’s implementation, this solu-

133

tion simulates a possible outcome with which a class initializer should be prepared

to cope.

The implicit calls to create runtime exceptions are much simpler. By observa-

tion, all of the exceptions that might be thrown make only one native method call,

to fill in their stack trace, and are otherwise generalized leaf methods. Because the

security context is never used by these exception constructors, it is safe to allow

these implicit method invocations.

8.2.3 Dynamic Optimizations

There are a finite number of security contexts s, each corresponding to a subset of

the n principals in the system. For a simple browser-applet system, n = 2. Each

context can be represented with a finite table of labeled out-edges, so that says(o; s)

is computed by looking up o in the table for s.

Although n is bounded, it may not always be tiny (e.g., a stock market with

thousands of principals), so we lazily compute the tables and represent only those

security contexts that are actually reached. Following an untraversed edge requires

(1) looking up a “new” subset in a global hash table to see if this context has been

reached before, (2a) using the context-pointer from the table or (2b) creating a new

context data structure, and (3) installing the edge into the context that had lacked

the edge.

From a security context s there be many consecutive says computations by the

same principal. In the representation of s we maintain a dynamic one-word cache

(o; s0) indicating that the most recent says calculation on s was says(o; s) = s0. This

should speed up the common case.

134

8.2.4 Open vs. Closed World Assumptions

Our system, as we have described it, currently makes a fundamental assumption

that we can inspect all code before execution begins. This is often called a “closed

world assumption.” In systems where Java’s security features are often used, such

as Java applets or servlets, new code may arrive at any time. Currently, all of our

algorithms have been designed for a closed world. In particular, our class hierar-

chy analysis runs once, up front, and code is then generated based on properties

true in the closed world. Dean et al. [DGC95] discusses precisely this issue and

proposes a scheme for incrementally updating the analysis.

Keep in mind that the performance numbers in section 8.3 are based on a closed

world. Generally speaking, an open world has strictly less information available

from which to infer that an optimization is legal. This implies that, in general,

an implementation of security-passing style built for an open world would have

strictly worse performance than one built for a closed world, although it may be

possible for an open world system to closely approach the performance of a closed

world system. For example, in a Java system supporting dynamic code recompi-

lation, such as Sun’s forthcoming HotSpot [Gri98], it would be possible for an SPS

incremental analysis to determine that certain classes, compiled using optimiza-

tions that are now invalid, should now be recompiled.

8.3 Implementation and Performance

We have implemented SPS conversion as a transformation on a collection of Java

class files. Our implementation was built using the JOIE library (Java Object In-

strumentation Environment) from Duke University [CCK98]. This library presents

135

a relatively high-level interface to parse and edit Java class files.

We have written approximately 1700 lines of Java code to do static analysis,

and 2300 lines to do byte-code rewriting (SPS conversion). Our runtime support

(implementing the says and CheckPrivilege functions) is 1900 lines. Our system

loads, analyzes, and rewrites roughly 800 Java classes in 100 seconds. We made no

effort to tune the performance of the rewriter itself; achieving an order of magni-

tude improvement in rewriting speed should not be unreasonably difficult.

At present we have implemented flow-insensitive class hierarchy analysis to

eliminate says computations, and we remove says computations from both sim-

ple and generalized leaf methods. Because we require the full program for this

analysis, we cannot presently support the dynamic loading features of Java (see

section 8.2.2). Instead, we run the program from local disk with our specialized

classes.

Our system runs by modifying the class libraries of the NaturalBridge Bul-

letTrain Java compiler [Nat98]. BulletTrain uses a traditional static compiler to

produce native machine executables, in contrast to the dynamic just-in-time com-

pilation used by other Java implementations. BulletTrain currently requires the

whole program to be available at compile-time, although their runtime can sup-

port dynamic loading in future releases. We chose to use BulletTrain because its

authors offered us invaluable assistance with their unreleased product. Also, be-

cause BulletTrain has an aggressive code optimizer which uses whole-program

analysis, we believe performance numbers measured today with BulletTrain will

represent what other Java systems can achieve in the future.

136

8.3.1 Making SPS Work

Security-passing style has some very nice theoretical properties, but actually im-

plementing it requires a number of difficult cases to be handled properly.

Native methods. Java programs can call native methods (functions not written in

Java) that might then call back to Java methods. We cannot apply SPS conversion

within the native methods. Instead, when calling from Java to native, we store the

security context s into a per-thread global variable; when calling from native back

to Java we fetch s as the security context for the Java code. If we assume that all

native method calls have the owner, System, then since says(System; s) = s this is

the correct behavior.

We must also support up-calls, where native methods choose to call back into

Java methods. The standard mechanism for this, JNI (Java Native Interface), re-

quires the native code to specify a method’s complete signature, including the

types of its arguments and return value. This means the SPS-converter must gen-

erate stubs with the original signatures to receive a JNI up-call. A stub method will

retrieve the per-thread stored security context and then invoke its SPS-converted

sibling.

Reflection. Ideally, the security-passing transformation should not be visible in

any way to an application. The Java reflection API allows a program to learn how

many parameters each of its methods takes; since SPS conversion introduces extra

arguments, this is a problem that would have to be fixed by modifying the imple-

mentation of reflection; we have not yet done this.

137

Bootstrapping. In practice, bootstrapping proved to be the most difficult aspect

of implementing security-passing style. In the BulletTrain system, the majority of

the bootstrapping code is written in Java itself. This makes the system extremely

sensitive about the order in which classes begin execution, and many classes which

appear to be normal are handled specially by the compiler. To address these con-

cerns, an SPS-converted program must bootstrap in three stages.

Classes involved in the very beginning of bootstrapping the runtime were iden-

tified by hand and added to a list of classes that are not modified by the SPS con-

verter. Instead, any calls to these classes are treated the same as calls to any native

method, storing the security context into a per-thread global variable.

In the second phase of bootstrapping, some SPS-converted classes begin exe-

cution but the SPS runtime itself is not yet initialized. Still, SPS-converted classes

require a non-null instance of security context be passed to them. To avoid this

chicken-and-egg problem, a “dummy” security context, later subclassed to imple-

ment the real security context, is created.

Finally, when “real” security contexts are available, the application’s main rou-

tine can be invoked with a proper security context and execution continues nor-

mally.

Consistency and inheritance. Because many system classes must not be SPS-

converted, an issue arises when an SPS-converted class subclasses a non-converted

class or vice versa. It is obviously important to maintain the consistency of the type

system, and SPS-converting only a subset of the classes can cause confusion.

To solve the problem, we adopted a rule that, if a class is SPS-converted, then

all subclasses of it must also be SPS-converted. Likewise, if an interface is SPS-

converted, then all classes that implement that interface must also be SPS-converted.

138

This rule implies that, if a class cannot be SPS-converted, its superclass may not

be converted, either. Therefore, several core classes, include java.lang.Object,

execute unchanged. If a method in an SPS-converted class wishes to call a method

in a non-SPS-converted class, it treats the call in the same way native methods

are handled: the security context is saved and the method is invoked without the

security context argument.

Several issues must still be resolved to make this work. One problem

is that java.lang.Thread, which must not be SPS-converted, implement the

java.lang.Runnable interface, which we want to SPS-convert. This issue does

not occur anywhere else, so it was solved by adding a new method specifically to

java.lang.Thread.

Another problem arises when an SPS-converted subclass inherits a method

from a non-SPS-converted superclass without overriding it. If we do nothing, cer-

tain Java features (method invocation on interfaces and reflection) will fail. This

happens frequently enough that we solve the problem by automatically generating

stubs in the subclass which explicitly delegate to the superclass.

Portability. As mentioned above, Java systems are relatively fragile during the

bootstrapping process. This requires a number of classes to be handled specially.

Running SPS-converted code in a different Java environment would require assess-

ing which classes need to be handled specially. Also, sufficient access to the system

bootstrapping process is required such that the SPS system can be loaded as early

as possible. Aside from these issues, the SPS runtime should be straightforward to

add to any Java system.

139

No
Security

(baseline)

Stack
Inspection

Security-
Passing

Style
No says (leaf) 1-4 cycles
says(o; s) = s (static opt.) 1-4
says(o; s) (cache hit)

0 0
33

says(o; s) (cache miss) 69
BeginPrivilege 24 cycles 2200 cycles 57

Table 8.1: Measured cost of SPS primitives.
The says function is shown as it would be implemented in a leaf method (no
security-context argument), in a non-leaf with identical caller and callee owners,
and (without static optimization) with and without a hit in the one-word cache.
BeginPrivilege includes the cost of invoking an interface method, as part of the
latest JDK 1.2 semantics (see section 5.2.4.
Cycle counts were measured by timing microbenchmarks, then dividing by the
computer’s clock cycle.

No
Security

(baseline)

Normal
Stack

Inspection

SPS
Conversion
(no checks)

SPS
Conversion

(with
checks)

SPS Converter Benchmark
Runtime (sec) 94.25 97.59 104.34 106.55
Stddev 0.75 3.06 1.46 0.95
Overhead 0% 3.55% 10.71% 13.05%

Javac Benchmark
Runtime (sec) 15.53 15.77 17.93 18.13
Stddev 0.26 0.09 0.18 0.08
Overhead 0% 1.60% 15.50% 16.78%

Table 8.2: Runtime performance of benchmark programs.
We chose two programs which do a fair amount of computation as well as file
operations. Security checks occur when files are opened for reading and writing.
The SPS Converter is the program which does the code rewriting, and it makes
an interesting benchmark as well. Javac is the compiler from Sun’s JDK 1.2 distri-
bution. Both benchmarks were compiled with the NaturalBridge BulletTrain com-
piler. The table compares the NaturalBridge implementation of stack inspection
with security-passing style. Likewise, each benchmark was run with the Security-
Manager enabled and disabled. This difference represents the cost of privilege
checking.

140

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

T
im

e
(m

ic
ro

se
co

nd
s)

Average Stack Depth

Stack inspection
Security-passing style

Figure 8.4: Cost of CheckPrivilege() microbenchmark.
The times for the SPS check privilege calls are approximately 0.5�sec. This mi-
crobenchmark compare NaturalBridge’s internal stack inspection system with our
security-passing style implementation. The microbenchmark is an implementation
of the recursive solution to the Towers of Hanoi problem. Both implementations
were measured on a 450MHz Pentium II, so 0.5�sec is approximately 225 CPU
cycles.

141

8.3.2 Performance

To accurately measure the performance of the original stack inspection primitives

as well as their SPS-converted equivalents, we created a series of microbenchmarks

that repeatedly enable a privilege, perform a number of recursive method calls,

then check the privilege.

All benchmarks were measured on a PC with 384MB of RAM and a 450MHz

Intel Pentium II running Windows NT Workstation 4.0 and a pre-release version

of the NaturalBridge BulletTrain Java compiler.

We used the measured run times of our microbenchmarks to calculate the cycle

count of each stack-inspection primitive in each of three implementations: the null

implementation (no security passing, no security checking); the BulletTrain imple-

mentation of stack inspection; and our security-passing style. Each microbench-

mark was executed ten million times, allowing Java’s millisecond-accurate timer to

resolve single-cycle differences in execution time. Table 8.1 shows the results. Fig-

ure 8.4 shows the variable cost of the CheckPrivilege() primitive when using stack

inspection compared to the constant-time cost of CheckPrivilege() with security-

passing style. The performance difference varies from a factor of 35 to a factor of

88, depending on the stack depth!

Despite the success of security-passing style on microbenchmarks, the per-

method overhead hurts it when running real applications. Table 8.2 compares SPS-

converted code, with its cheap security checks, to normal code, performing expen-

sive stack inspections for its security checks. As benchmarks, we used Sun’s javac

Java compiler and our own SPS converter. Both benchmarks do a fair amount

of file reading and writing, requiring a security check for each file opened. Each

benchmark was executed ten times; we show performance numbers with the av-

142

erage and standard deviation of their runtimes. On these benchmarks, the Bul-

letTrain stack inspection system imposed an overhead that varied from 1.60% to

3.55% of the total runtime. In contract, security-passing style imposed an over-

head from 10.71% to 15.50% without even making any security checks. The se-

curity checks themselves imposed an additional overhead ranging from 1.2% to

2.3%.

Currently, both our security-passing system and the BulletTrain stack in-

spection system are prototype implementations. Both “cheat” by returning

ProtectionDomain structures which grant permission for any request and nei-

ther has been heavily tuned for performance. Kenneth Zadeck of NaturalBridge

claims the BulletTrain implementation will be much simpler to tune for perfor-

mance [Zad98]. Certainly, if our benchmarks represent typical usage patterns for

security checking, stack inspection is probably the most efficient option. However,

if an application requires a dramatically higher number of security checks, our mi-

crobenchmarks indicate security-passing style can offer orders of magnitude better

performance.

8.4 Ideal Performance

We have measured the performance of security-passing style as a transformation

on Java bytecodes, which are then compiled using the NaturalBridge BulletTrain

compiler (see section 8.3). Although this is a good compiler, it is not as efficient as

we might expect from hand-coded assembly language. Therefore, the cost of our

security-passing operations and of ordinary program execution are both higher

than they should be.

We therefore present an estimate of the cost of security-passing style in a com-

143

SPS Converter Javac
(stat) (dyn) (stat) (dyn)

a Leaf methods 18.42% 84.47% 18.90% 56.92%
Statically identifiableb
dominated callee

93.76% 41.16% 88.27% 70.40%

c Save/restore cost 1 instruction (estimated)
d Fetch owner 1 instruction (estimated)

Cache miss ratee
(one word cache)a 0.649 0.649 1:146� 10�6 1:146� 10�6

f Cache test cost 3 instructions (estimated)
g Fetch target 1 instruction (estimated)
h Look in table 10 instructions (estimated)

Total overheadz
(instructions / call)

1.368 1.146 1.287 1.068

Table 8.3: Estimated ideal costs for security-passing style.
stat indicates static frequencies in the program text, and dyn indicates measure-
ments weighted by dynamic execution frequency.

aStatic analysis cannot be used to estimate dynamic cache miss rates, so the dynamic number
was used in the static column.

piler assumed to generate the smallest and fastest possible code for the SPS prim-

itives. These estimates are based on dynamic performance counters which were

added to the benchmarks discussed in section 8.3.2 and are summarized in ta-

ble 8.3.

1. Static analysis will identify between 18% and 19% of methods as leaf meth-

ods which corresponds to between a = 57% and a = 85% of runtime method

invocations; no security-context argument is needed to call a leaf method. Of

the remaining non-leaf methods, class hierarchy analysis allows us to replace

b = 41% to b = 70% of the says computations with the identity function.

2. The security context will be kept in a caller-save register; a procedure that

makes more than one call must save its security context variable into the

activation record before the first call, and fetch it back each subsequent call.

144

We approximate the register save/restore cost by assuming c = 1 instruction

per call.

3. The security context is usually passed in the same register, so that a method

g(: : : ; s) needs no move instructions to call f(: : : ; s). All says computations

are inlined.

4. Each class descriptor contains one field that points to the owner of that class.

When executing a dynamic method call p:f(), the class descriptor of p must

be fetched anyway, so there is an estimated cost of d = 1 instruction to fetch

the owner for a says computation.

5. When says(o; s) is calculated, a one-word cache (inside s) is used to remem-

ber the previous result (see section 8.2.3). Our dynamic traces indicate near

perfect hit rates in the javac benchmark and fairly poor hit rates for the SPS

converter (missing nearly e= 65% of all tests). The cost of testing the cache is

estimated to be f = 3 instructions (fetch owner from context cache, compare,

branch) and the cost of processing a hit is estimated to be an additional g = 1

instruction (fetch target from one-word cache).

6. Each security context contains a data structure (list, hash table, ...) holding

the outgoing edges (labeled by owners) in the finite-state graph of security

contexts. The average number of outgoing edges actually present (they are

calculated lazily) is approximately one. Querying this data structure (and

updating the context’s cache) takes an estimated h = 10 instructions.

7. When there is no appropriately labeled outgoing edge already present in the

(lazily computed) security context, it must be computed as described in sec-

tion 8.2.3. Since this situation can happen only a bounded number of times

145

No Security
(baseline)

Method
Invocations

Estimated
Overhead

SPS Converter 94.25 sec 109� 106 0:27� 1:1 sec (0:28%� 1:1%)
Javac 15.53 sec 23� 106 0:056� 0:22 sec (0:36%� 1:4%)

Table 8.4: Estimated runtimes of benchmarks using “optimal” SPS code genera-
tion.

— see section 7.3 — its amortized cost is negligible.

Under these assumptions, the average cost of says computations per method in-

vocation is

z = (1� a)(c+ (1� b)(d+ f + ((1� e)g+ eh)))

instructions, which should add just over one instruction per method, on average,

based on our experiments.

8.4.1 Estimated Benchmark Performance

Based on these “optimal” overhead figures, we would like to estimate the runtime

overhead while running real programs. This requires measuring the number of

actual method calls made during a program’s execution and then adding the esti-

mated cost per method of SPS-converted code. The main difficulty is converting

from some number of instructions to an equivalent number of CPU clock cycles.

Modern CPUs can potentially execute multiple instructions per clock, but load

and store operations may take additional time, depending on whether the desired

memory address is cached or a host of other factors. In many cases, the latency

necessary to compute an intermediate value can be hidden if the value is not yet

needed and other instructions are ready to run. In the case of SPS-conversion, us-

ing caller-says semantics, the computed security context is not necessary until the

first callsite is reached, so it is entirely feasible for the cycle cost of SPS to be low.

146

However, measuring this in practice is beyond the scope of this thesis (and could

vary widely from one CPU to another). Instead, we present what the overhead

would be if each instruction for SPS conversion consumed exactly one clock cycle

(an optimistic estimate) or exactly four clock cycles (a pessimistic estimate).

We use our estimated overhead of approximately 1.1 instructions per method

invocation to infer the actual runtime cost of the benchmarks presented in table 8.2.

These results, summarized in table 8.4, are based on a 450 MHz system clock. With

either benchmark, we estimate the overhead of an ideal SPS converter would add

between a quarter of a percent to at most 1:4% to the program’s runtime. This

overhead would be competitive with implementations using stack inspection, in

applications like our benchmarks, yet would likely maintain this lower overhead

even in systems which made security checks more often.

8.5 Conclusion

Security-passing style is a simple semantics for the “stack inspection” security ar-

chitecture. Users can reason about the security of their systems using ABLP belief

logic, and implementors can reason about interprocedural optimization using the

semantics of the original source language, in the SPS-converted program. The im-

plementation cost is quite reasonable – even in our prototype with an unsophisti-

cated and SPS-unaware compiler – and with better compilers it should be possible

to implement security-passing with an overhead of approximately one instruction

per call.

In the future we plan to try adding other information to the security context

to control resource usage by callees. We will handle classes with multiple signers

using a previously suggested scheme [WF98]. We also plan to use flow-sensitive

147

class hierarchy analysis to improve the static optimization of SPS, and integrate

our system into a (dynamically linking) Java ClassLoader (although this would

require VM hooks to invalidate the optimizations when new classes are loaded

that contradict our previous flow analysis).

148

Chapter 9

Future Work

This dissertation has described a number of different security architectures as ap-

plied to Java and similar languages and has focused on stack inspection as a valu-

able technique for access control. Security-passing style was shown to be an ef-

ficient and sensible way of implementing stack inspection, raising a number of

interesting ideas for future work. Currently, the additional argument to each pro-

cedure is used strictly for passing the security context. An interesting extension

would be to augment the security context with other information. Perhaps the se-

curity context could additionally help with resource allocation by specifying some-

thing about who is about to allocate memory and on whose behalf (similar to the

per-thread resource tracking in JRes [Cv98]). Similarly, security contexts might

prove useful for tracking CPU usage, allowing code to declare to a scheduler that

it is consuming cycles itself, or on the behalf of its caller. A system that combines

security-passing style with its scheduler and memory management may have in-

teresting properties.

The static optimization presented here is fairly primitive, failing to use flow-

variant code analysis or other more aggressive techniques. It would be useful to

149

study the ability of a more aggressive optimizer to further reduce the overhead of

security-passing code. Likewise, the system presented here does not account for

dynamic loading of code. In current Java implementations, new code may arrive at

any time and violate previously valid properties about the class hierarchy. It would

be useful to build a system that maintained a dynamically changing static analysis

of the class hierarchy and study how often properties we rely on are invalidated.

Given a Java runtime with dynamic recompilation of code, it would additionally

interesting to try regenerating a class’s code when an optimization used in SPS-

converting it becomes invalid.

It would also be useful to build an extension to an existing RPC system to sup-

port security-passing style and integrate that with a local security-passing system.

As more distributed systems are deployed, it would be beneficial to apply the se-

curity we can achieve in a local system to the distributed case.

Ultimately, a number of research opportunities exist in the area between tra-

ditional operating systems and traditional language runtimes. Operating systems

are increasingly adopting mobile code, dynamic linking, and object-oriented se-

mantics. Languages are increasingly dealing with issues of access control and fair

resource allocation. Interesting solutions will be found all across the spectrum be-

tween languages and operating systems. A number of commercial systems from

the 1960s blurred the distinction between language and OS, and I expect these dis-

tinctions will begin to be blurred again as we address the computing needs of the

Internet age.

9.1 Conclusions

My research makes the following contributions:

150

� An analysis of security architectures that might be applied to a type-safe lan-

guage, such as Java.

� The design and implementation of stack inspection (at Netscape).

� The design of security-passing style, and a proof of its equivalence to stack

inspection.

� An implementation of security-passing style and an analysis of its perfor-

mance characteristics, both measured and ideal.

� A number of optimizations for security-passing style, both static optimiza-

tions based on a class hierarchy analysis, and dynamic optimizations based

on caching of previous results.

Combining these, we now have an efficient, powerful, and theoretically sound

system for access controls in mobile code systems. Security-passing style addresses

concerns that mobile code systems must inherently be inefficient or must rely on

traditional operating systems mechanisms. In fact, because security-passing style

can work seamlessly across networks, it can go farther than traditional operating

systems security mechanisms in allowing for detailed and principled access con-

trols. As mobile code is increasingly deployed, whether in the form of active net-

works, shared virtual realities, or programmed stock trading, the importance of a

sound security architecture, such as the one proposed in this dissertation, increases

likewise.

151

Bibliography

[ABLP93] Martı́n Abadi, Michael Burrows, Butler Lampson, and Gordon D.

Plotkin. A calculus for access control in distributed systems. ACM

Transactions on Programming Languages and Systems, 15(4):706–734,

September 1993.

[AGS83] Stanley R. Ames, Jr., Morrie Gasser, and Roger G. Schell. Security

kernel design and implementation: An introduction. Computer, pages

14–22, July 1983. Reprinted in Tutorial: Computer and Network Security,

M. D. Abrams and H. J. Podell, editors, IEEE Computer Society Press,

1987, pp. 142–157.

[ALBL91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Ed-

ward D. Lazowska. The interaction of architecture and operating sys-

tem design. In Proceedings of the Fourth ACM Symposium on Architec-

tural Support for Programming Languages and Operating Systems, 1991.

[And72] James P. Anderson. Computer security technology planning study.

Technical Report ESD-TR-73-51, U.S. Air Force, Electronic Systems Di-

vision, Deputy for Command and Management Systems, HQ Elec-

tronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, Mas-

sachusetts 01730 USA, October 1972. Volume 2, pages 58–69.

152

[BAN90] Michael Burrows, Martı́n Abadi, and Roger M. Needham. A logic

of authentication. ACM Transactions on Computer Systems, 8(1):18–36,

February 1990.

[BG98] Dirk Balfanz and Li Gong. Experience with secure multi-processing in

Java. In Proceedings of ICDCS’98, Amsterdam, The Netherlands, May

1998.

[BL73] D. Elliot Bell and Leonard J. LaPadula. Secure computer systems:

Mathematical foundations. Technical Report MTR-2547-I, MITRE

Corporation, March 1973.

[BL76] D. Elliot Bell and Leonard J. LaPadula. Secure computer system: Uni-

fied exposition and Multics interpretation. Technical Report MTR-

2997 Rev. 1, MITRE Corporation, March 1976.

[BN89] David F. C. Brewer and Michael J. Nash. The Chinese wall security

policy. In Proceedings of the 1989 IEEE Symposium on Security and Pri-

vacy, pages 206–214, Oakland, California, May 1989.

[BNOW95] Andrew D. Birrell, Greg Nelson, Susan Owicki, and Edward P. Wob-

ber. Network objects. Software: Practice and Experience, S4(25):87–130,

December 1995.

[Bor94] Nathaniel S. Borenstein. Email with a mind of its own: The Safe-Tcl

language for enabled mail. In IFIP International Working Conference on

Upper Layer Protocols, Architectures and Applications, Barcelona, Spain,

1994.

153

[BSP+95] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün

Sirer, Marc Fiuczynski, David Becker, Susan Eggers, and Craig Cham-

bers. Extensibility, safety, and performance in the SPIN operating sys-

tem. In Proceedings of the Fifteenth ACM Symposium on Operating Sys-

tem Principles, pages 251–266, Copper Mountain, Colorado, December

1995.

[BSS+95] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker,

and Sheila A. Haghighat. Practical domain and type enforcement for

UNIX. In Proceedings of the 1995 IEEE Symposium on Security and Pri-

vacy, pages 66–77, Oakland, California, 1995.

[BTR80] V. Berstis, C. D. Truxal, and J. G. Ranweiler. System/38 addressing and

authorization. In IBM System/38 Technical Developments, pages 51–54.

IBM, 2nd edition, July 1980. IBM Document Number: G580-0237-1.

[BTS+98] Godmar Back, Patrick Tullman, Leigh Stoller, Wilson C. Hseih, and Jay

Lepreau. Java operating systems: Design and implementation. Tech-

nical Report UUCS-98-015, University of Utah, August 1998. http:

//www.cs.utah.edu/projects/flux/papers.html.

[Cas95] Giuseppe Castagna. Covariance and contravariance: Conflict with-

out a cause. ACM Transactions on Programming Languages and Systems,

17(3):431–447, May 1995.

[CB94] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet

Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[CCK98] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic program

transformation with JOIE. In Proceedings of the 1998 Usenix Annual

154

Technical Symposium, pages 167–178, New Orleans, Louisiana, June

1998.

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.

Lazowska. Sharing and protection in a single address space operating

system. ACM Transactions on Computer Systems, 12(4):271–304, May

1994.

[CLLBH92] Jeffrey S. Chase, Henry M. Levy, Edward D. Lazowska, and Miche

Baker-Harvey. Lightweight shared objects in a 64-bit operating sys-

tem. In Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pages 397–413, Vancouver, British

Columbia, Canada, October 1992.

[Com97] Computing Sciences Research Center of Bell Labs, Murray Hill,

New Jersey. Inferno: la Commedia Interattiva, 1997. http:

//www.lucent-inferno.com/Pages/Developers/Documentation/

White_Papers/commedia.html.

[Cou95] Antony Courtney. Phantom: An interpreted language for distributed

programming. In Usenix Conference on Object-Oriented Technologies,

June 1995.

[Cul98] Cult of the Dead Cow. Back Orifice, August 1998. http://www.

cultdeadcow.com.

[Cv98] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource

accounting interface for Java. In Proceedings of the ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

pages 21–35, Vancouver, British Columbia, October 1998.

155

[CW87] D. Clark and D. Wilson. A comparison of commercial and military

computer security policies. In Proceedings of the 1987 IEEE Symposium

on Security and Privacy, Oakland, California, May 1987.

[DA97] Tim Dierks and Christopher Allen. The TLS Protocol, Version 1.0. In-

ternet Engineering Task Force, November 1997. Internet draft, ftp:

//ietf.org/internet-drafts/draft-ietf-tls-protocol-05.txt.

[DBWL95] Robert H. Deng, Shailendra K. Bhonsle, Weiguo Wang, and Aurel A.

Lazar. Integrating security in CORBA based object architectures. In

Proceedings of the 1995 IEEE Symposium on Security and Privacy, pages

50–61, Oakland, California, May 1995.

[DE97a] Sophia Drossopoulou and Susan Eisenbach. Is the Java type system

sound? In Proceedings of the Fourth International Workshop on Founda-

tions of Object-Oriented Languages, Paris, France, January 1997.

[DE97b] Sophia Drossopoulou and Susan Eisenbach. Java is type safe — prob-

ably. In Proceedings of the European Conference on Object-Oriented Pro-

gramming (ECOOP ’97), Jyväskylä, Finland, June 1997.

[Dea97] Drew Dean. The security of static typing with dynamic linking.

In Fourth ACM Conference on Computer and Communications Security,

Zurich, Switzerland, April 1997.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security:

From HotJava to Netscape and beyond. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy, pages 190–200, Oakland, Califor-

nia, May 1996.

156

[DFWB97] Drew Dean, Edward W. Felten, Dan S. Wallach, and Dirk Balfanz.

Java security: Web browsers and beyond. In Dorothy E. Denning

and Peter J. Denning, editors, Internet Besieged: Countering Cyberspace

Scofflaws, pages 241–269. ACM Press, New York, New York, October

1997.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of

object-oriented programs using static class hierarchy analysis. In

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP ’95), Århus, Denmark, August 1995.

[DGC98] Greg DeFouw, David Grove, and Craig Chambers. Fast interproce-

dural class analysis. In 25th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 222–236. ACM

Press, January 1998.

[Dig97] Digitivity Corp. The Digitivity Cage, 1997. http://www.digitivity.

com.

[DMM96] Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley. Simple

and effective analysis of statically typed object-oriented programs. In

OOPSLA ’96: 11th Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications, volume 31, pages 292–305. ACM

Press, 1996.

[DWE98] Sophia Drossoppoulou, David Wragg, and Susan Eisenbach. What

is Java binary compatibility? In Proceedings of the ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications,

pages 341–358, Vancouver, British Columbia, October 1998.

157

[Ele96] Electric Communities, Sunnyvale, California. The Electric Communities

Trust Manager and Its Use to Secure Java, September 1996. http://www.

communities.com/company/papers/trust/.

[ER89] Mark W. Eichin and Jon A. Rochlis. With microscope and tweezers:

An analysis of the Internet virus of November 1988. In Proceedings of

the 1989 IEEE Symposium on Security and Privacy, pages 326–343, Oak-

land, California, May 1989.

[Fab74] R. S. Fabry. Capability-based addressing. Communications of the ACM,

17(7):403–411, July 1974.

[Far93] Dan Farmer. Cops (computer oracle and password system), May 1993.

http://www.trouble.org/cops/.

[Fer95] Mary F. Fernandez. Simple and effective link-time optimization of

Modula-3 programs. In Proceedings of ACM SIGPLAN ’95 Conference

on Programming Langauge Design and Implementation, volume 30, pages

103–115, 1995.

[FHL+96] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullman, Godmar Back,

and Stephen Clawson. Microkernels meet recursive virtual machines.

In Proceedings of the Second Symposium on Operating Systems Design and

Implementation (OSDI ’96), pages 137–151, Seattle, Washington, Octo-

ber 1996.

[FK97] Michael Franz and Thomas Kistler. A tree-based alternative to Java

byte-codes. In Proceedings of the International Workshop on Security and

Efficiency Aspects of Java ’97, 1997. Also appears as Technical Report

158

96-58, Department of Information and Computer Science, University

of California, Irvine, December 1996.

[FKK96] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Pro-

tocol: Version 3.0. Internet Engineering Task Force, March 1996.

Internet draft, ftp://ietf.cnri.reston.va.us/internet-drafts/

draft-freier-ssl-version3-01.txt.

[Fla97] David Flanagan. JavaScript: The Definitive Guide. O’Reilly & Asso-

ciates, Inc., Sebastopol, California, 2nd edition, January 1997.

[FV93] Dan Farmer and Wietse Venema. Improving the security of

your site by breaking into it. http://www.trouble.org/security/

admin-guide-to-cracking.html, December 1993.

[Gen95] General Magic, Inc., Mountain View, California. The Telescript

Language Reference, October 1995. http://www.genmagic.com/

Telescript/TDE/TDEDOCS_HTML/telescript.html.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.

Addison-Wesley, Reading, Massachusetts, 1996.

[Gol96] Theodore Goldstein. The Gateway Security Model in the Java

Electronic Commerce Framework. JavaSoft, Sunnyvale, California,

November 1996. http://www.javasoft.com/products/commerce/

jecf_gateway.ps.

[Gon89] Li Gong. A secure identity-based capability system. In Proceedings of

the 1989 IEEE Symposium on Security and Privacy, pages 56–63, Oak-

land, California, May 1989.

159

[Gri98] David Griswold. The Java HotSpot Virtual Machine Architecture. Sun

Microsystems, Palo Alto, CA, March 1998. http://java.sun.com/

products/hotspot/whitepaper.html.

[GS98] Li Gong and Roland Schemers. Implementing protection domains in

the Java Development Kit 1.2. In The Internet Society Symposium on

Network and Distributed System Security, San Diego, California, March

1998. Internet Society.

[GW95] Joshua D. Guttman and Mitchell Wand. VLISP: A verified implemen-

tation of Scheme. LISP and Symbolic Computation, 8(1/2):5–32, March

1995.

[GWTB96] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A

secure environment for untrusted helper applications: Confining the

wily hacker. In Sixth USENIX Security Symposium Proceedings, pages

1–12, San Jose, California, July 1996.

[Har85] Norman Hardy. KeyKOS architecture. ACM Operating Systems Review,

19(4):8–25, October 1985.

[Har88] Norman Hardy. The confused deputy. ACM Operating Systems Review,

22(4):36–38, October 1988. http://www.cis.upenn.edu/~KeyKOS/

ConfusedDeputy.html.

[HCC+98] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu,

and Thorsten von Eicken. Implementing multiple protection do-

mains in Java. In USENIX Annual Technical Conference, New Orleans,

Louisiana, June 1998. USENIX.

160

[Hen82] John L. Hennessy. Symbolic debugging of optimized code. ACM

Transactions on Programming Languages and Systems, 4(4):323–344, July

1982.

[How97] John D. Howard. An Analysis of Security Incidents On The Internet. PhD

thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, April

1997. http://www.cert.org/research/JHThesis/.

[Hu95] Wei Hu. DCE Security Programming. O’Reilly & Associates, Inc., Se-

bastopol, California, July 1995.

[HYHD95] Richard C. Ho, C. Han Yang, Mark Horowitz, and David L. Dill. Ar-

chitecture validation for processors. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pages 404–413. As-

sociation for Computing Machinery, June 1995. Santa Margherita Lig-

ure, Italy, 22-24 June 1995.

[Int98] Internet Security Systems, Atlanta, Georgia. Internet Scanner

User Guide, version 5.2, 1998. http://download.iss.net/eval/NT_

Scanner.pdf.

[KH84] Paul A. Karger and Andrew J. Herbert. An augmented capability ar-

chitecture to support lattice security and traceability of access. In Pro-

ceedings of the 1984 IEEE Symposium on Security and Privacy, pages 2–12,

Oakland, California, May 1984.

[KL87] Richard Y. Kain and Carl E. Landwehr. On access checking in

capability-based systems. IEEE Transactions on Software Engineering,

SE-13(2):202–207, February 1987.

161

[KN93] John T. Kohl and Clifford Neuman. The Kerberos network authen-

tication service (V5). Technical Report RFC-1510, Internet Engineer-

ing Task Force, September 1993. http://info.internet.isi.edu:

80/in-notes/rfc/files/rfc1510.txt.

[Kno97] Kit Knox. Rootshell, 1997. http://www.rootshell.com.

[LABW92] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wob-

ber. Authentication in distributed systems: Theory and practice. ACM

Transactions on Computer Systems, 10(4):265–310, November 1992.

[LaD96] Mark LaDue. Hostile applets home page, 1996. http://www.rstcorp.

com/hostile-applets/.

[Lam71] Butler W. Lampson. Protection. In Proceedings of the Fifth Princeton

Symposium on Information Sciences and Systems, pages 437–443, Prince-

ton University, March 1971. Reprinted in Operating Systems Review,

8(1):18–24, January 1974.

[Lam73] Butler W. Lampson. A note on the confinement problem. Communica-

tions of the ACM, 16(10):613–615, October 1973.

[Lan81] Carl E. Landwehr. Formal models for computer security. Computing

Surveys, 13(3):247–278, September 1981.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the java vir-

tual machine. In Proceedings of the ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 36–44, Van-

couver, British Columbia, October 1998.

162

[LDOW98] Jacob Y. Levy, Laurent Demailly, John K. Ousterhout, and Brent B.

Welch. The Safe-Tcl security model. In USENIX Annual Technical Con-

ference, New Orleans, Louisiana, June 1998. USENIX.

[Lev84] Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bed-

ford, Massachusetts, 1984.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, Reading, Massachusetts, 1996.

[MAE+62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Tompthy P.

Hart, and Michael I. Levin. LISP 1.5 Programmer’s Manual. The

Computation Center and Research Laboratory of Electronics, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, 2nd

edition, 1962.

[MD97] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly & Asso-

ciates, Inc., Sebastopol, California, March 1997.

[MF97] Gary McGraw and Edward W. Felten. Java Security: Hostile Applets,

Holes, and Antidotes. John Wiley and Sons, New York, New York, 1997.

[Mic96] Microsoft Corporation, Redmond, Washington. Proposal for Authenti-

cating Code Via the Internet, April 1996. http://www.microsoft.com/

security/tech/authcode/authcode-f.htm.

[Mic97a] Microsoft Corporation, Redmond, Washington. Microsoft Secu-

rity Management Architecture White Paper, May 1997. http://www.

microsoft.com/ie/security/ie4security.htm.

163

[Mic97b] Microsoft Corporation, Redmond, Washington. Trust-Based Security

for Java, April 1997. http://www.microsoft.com/java/security/

jsecwp.htm.

[MMS97] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analy-

sis of cryptographic protocols using Mur'. In Proceedings of the 1997

IEEE Symposium on Security and Privacy, pages 141–153, Oakland, Cal-

ifornia, May 1997.

[MP96] David Mosberger and Larry L. Peterson. Making paths explicit in

the Scout operating system. In Proceedings of the Second Symposium

on Operating Systems Design and Implementation (OSDI ’96), pages 153–

167, Seattle, Washington, October 1996.

[MRR97] David M. Martin Jr., Sivaramakrishnan Rajagopalan, and Aviel D. Ru-

bin. Blocking Java applets at the firewall. In Internet Society Symposium

on Network and Distributed System Security (NDSS ’97), San Diego, Cal-

ifornia, 1997.

[MRR98] Dahlia Malkhi, Michael Reiter, and Avi Rubin. Secure execution of

Java applets using a remote playground. In Proceedings of the 1998

IEEE Symposium on Security and Privacy, pages 40–51, Oakland, Cali-

fornia, May 1998.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-

dard ML. MIT Press, Cambridge, Massachusetts, 1990.

[Mue96] Marianne Mueller. Personal communication, January 1996.

164

[Nat85] National Computer Security Center, Fort Meade, Maryland. Depart-

ment of Defense Trusted Computer System Evaluation Criteria (The Orange

Book), December 1985.

[Nat98] NaturalBridge, LLC. BulletTrain Java Compiler, 1998. http://www.

naturalbridge.com.

[NBF+80] Peter G. Neumann, Robert S. Boyer, Richard J. Feiertag, Karl N. Levitt,

and Lawrence Robinson. A provably secure operating system: The

system, its applications, and proofs. Technical Report CSL-116, 2nd

Ed., SRI International, May 1980.

[Net96] Netscape Communications Corporation, Mountain View, California.

The JAR Format, 1996. http://developer.netscape.com/library/

documentation/signedobj/jarfile/.

[Net97] Netscape Communications Corporation, Mountain View, Cal-

ifornia. Introduction to the Capabilities Classes, August 1997.

http://developer.netscape.com/library/documentation/

signedobj/capabilities/index.html.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-

time checking. In Proceedings of the Second Symposium on Operating

Systems Design and Implementation (OSDI ’96), pages 229–243, Seattle,

Washington, October 1996.

[O’B96] David O’Brien. Recognizing and recovering from Rootkit attacks.

Sys Admin: The Journal for Unix Systems Administrators, 5(11), Novem-

ber 1996. http://perry.prnaccess.com/sys_admin_1996/sacdrom/

htmfiles/0511/x0011.htm.

165

[Obj96] Object Management Group. Common Secure Interoperability, July 1996.

OMG Document Number: orbos/96-06-20.

[Org72] Elliot I. Organick. The Multics System: An Examination of its Structure.

MIT Press, Cambridge, Massachusetts, 1972.

[Ous90] John K. Ousterhout. Why aren’t operating systems getting faster as

fast as hardware? In Proceedings of Summer 1990 USENIX Conference,

pages 247–256, June 1990.

[PB96] Przemyslaw Pardyak and Brian N. Bershad. Dynamic binding for an

extensible system. In Proceedings of the Second Symposium on Operat-

ing Systems Design and Implementation (OSDI ’96), Seattle, Washington,

October 1996.

[PD96] Seungjoon Park and David L. Dill. Verification of flash cache coher-

ence protocol by aggregation of distributed actions. In Symposium on

Parallel Algorithms and Architectures, pages 288–296, June 1996.

[PPTT90] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan 9

from Bell Labs. In Proceedings of the Summer 1990 UKUUG Conference,

pages 1–9, London, England, July 1990.

[Ros96a] Jim Roskind. Evolving the Security Model For Java From Navigator 2.x

to Navigator 3.x. Netscape Communications Corporation, Mountain

View, California, August 1996. http://developer.netscape.com/

library/technote/security/sectn1.html.

166

[Ros96b] Jim Roskind. Java and security. In Netscape Internet Developer Confer-

ence, Mountain View, California, March 1996. http://home.netscape.

com/misc/developer/conference/.

[Rus81] John M. Rushby. Design and verification of secure systems. In Pro-

ceedings of the Eighth ACM Symposium on Operating Systems Principles,

pages 12–21, December 1981.

[SA98] Raymie Stata and Martı́n Abadi. A type system for Java bytecode

subroutines. In Proceedings of the 25th ACM Symposium on Principles of

Programming Languages, pages 149–160. ACM, January 1998.

[Sal74] Jerome H. Saltzer. Information protection and the control of sharing

in the Multics system. Communications of the ACM, 17(7):388–402, July

1974.

[SCFY94] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control: A multi-dimensional view. In Pro-

ceedings of the 10th Computer Security Applications Conference, pages 54–

62, Orlando, Florida, December 1994. IEEE Computer Society Press.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley and Sons, New York,

New York, 2nd edition, 1996.

[SESS94] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A.

Smith. An introduction to the architecture of the VINO kernel. Tech-

nical Report 34-94, Harvard University, Dept. of Computer Science,

1994.

167

[SESS96] Margo I. Seltzer, Yasuhiro Endo, Christopher Small, and Keith A.

Smith. Dealing with disaster: Surviving misbehaved kernel exten-

sions. In Proceedings of the Second Symposium on Operating Systems De-

sign and Implementation (OSDI ’96), pages 213–227, Seattle, Washing-

ton, October 1996.

[SGB+98] Emin Gün Sirer, Robert Grimm, Brian N. Bershad, Arthur J. Gregory,

and Sean McDirmid. Distributed virtual machines: A system architec-

ture for network computing. In Eighth ACM SIGOPS European Work-

shop, September 1998.

[Sib96] W. Olin Sibert. Malicious data and computer security. In 19th National

Information Systems Security Conference, Baltimore, Maryland, October

1996.

[Sie96] Jon Siegel, editor. CORBA Fundamentals and Programming. John Wiley

and Sons, New York, New York, 1996.

[Sir97] Emin Gün Sirer. Kimera: A Java system architecture. http://kimera.

cs.washington.edu, 1997.

[SS72] M. D. Schroeder and Jerome H. Saltzer. A hardware architecture for

implementing protection rings. Communications of the ACM, 15(3):157–

170, March 1972.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-

mation in computer systems. Proceedings of the IEEE, 63(9):1278–1308,

September 1975.

168

[Ste78] Guy L. Steele. Rabbit: a compiler for Scheme. Technical Report AI-

TR-474, MIT, Cambridge, Massachusetts, 1978.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley,

1994.

[Sun95] Sun Microsystems, Sunnyvale, California. Frequently Asked Questions

- Applet Security, 1995. http://java.sun.com/sfaq/.

[Sun96] Sun Microsystems, Mountain View, California. JAR Documentation,

1996. http://java.sun.com/products/jdk/1.1/docs/guide/jar/.

[TA90] Andrew P. Tolmach and Andrew W. Appel. Debugging Standard ML

without reverse engineering. In Proceedings of the 1990 ACM Conference

on Lisp and Functional Programming, pages 1–12, New York, June 1990.

ACM Press.

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, En-

glewood Cliffs, New Jersey, 1992.

[TL98] Patrick Tullman and Jay Lepreau. Nested Java processes: OS structure

for mobile code. In Eighth ACM SIGOPS European Workshop, Septem-

ber 1998.

[TMvR86] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse.

Using sparse capabilities in a distributed operating system. In 6th

International Conference on Distributed Computing Systems, pages 558–

563, Cambridge, Massachusetts, May 1986.

[Tra98] Transvirtual Technologies, Inc., Berkeley, CA. Kaffe OpenVM, 1998.

http://www.transvirtual.com.

169

[vABW96] Leendert van Doorn, Martı́n Abadi, Michael Burrows, and Edward

Wobber. Secure network objects. In Proceedings of the 1996 IEEE Sym-

posium on Security and Privacy, Oakland, California, May 1996.

[WABL94] Edward Wobber, Martı́n Abadi, Michael Burrows, and Butler Lamp-

son. Authentication in the Taos operating system. ACM Transactions

on Computer Systems, 12(1):3–32, February 1994.

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Ex-

tensible security architectures for Java. In Proceedings of the Sixteenth

ACM Symposium on Operating System Principles, pages 116–128, Saint-

Malo, France, October 1997.

[WCC+74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and

F. Pollack. HYDRA: The kernel of a multiprocessor operating system.

Communications of the ACM, 17(6):337–345, June 1974.

[WF98] Dan S. Wallach and Edward W. Felten. Understanding Java stack in-

spection. In Proceedings of the 1998 IEEE Symposium on Security and

Privacy, pages 52–63, Oakland, California, May 1998.

[Wir83] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 2nd edi-

tion, 1983.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan Gra-

ham. Efficient software-based fault isolation. In Proceedings of the

Fourteenth ACM Symposium on Operating System Principles, Asheville,

North Carolina, 1993.

170

[WRF96] Dan S. Wallach, Jim A. Roskind, and Edward W. Felten. Flexible, ex-

tensible Java security using digital signatures. In DIMACS Workshop

on Network Threats, DIMACS Series in Discrete Mathematics and Theo-

retical Computer Science. American Mathematical Society, December

1996.

[Zad98] Kenneth Zadeck, November 1998. Personal communication.

171

