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Abstract

For cancerous tumors in vital internal organs, minimally
invasive laser surgery may be a desirable choice for cancer
treatment due to its precise control and compatibility with
most of the imaging modalities such as MRI (magnetic reso-
nance imaging). However, the complexity of tumor compo-
sition and tissue response to a thermal dose demands real
time optimization and control. In the previous work, we
have developed a quite general computational framework
that is capable of processing MRI anatomical data, provid-
ing pretreatment surgical protocol, and controlling tissue
damage based on in vivo MRTI (magnetic resonance ther-
mal imaging) data. In this paper, we describe computa-
tional techniques that are involved in real time optimization
and control for laser surgical protocols of cancer treatment.

1. Introduction

Thermal therapies delivered by laser or other treatment
modalities can provide minimally invasive cancer treat-
ments that have the potential to become an effective option
to eradicate the disease, maintain functionality of infected
organs, and minimize complications and relapse. However,
the ability to control the energy deposition to prevent dam-
age to adjacent healthy tissue is a limiting factor in all forms
of thermal therapies [9], including cryotherapy, microwave,
radio-frequency, ultrasound, as well as laser. The combina-
tion of image guidance with computational prediction has
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the potential to allow unprecedented control over the bio-
heat transfer. Image guidance facilitates real time treatment
monitoring through temperature feedback during treatment
delivery [8, 10]. Moreover, high performance numerical im-
plementations of mathematical bioheat transfer models can
be used to process in vivo thermal imaging data to assist
treatment planning as well as to predict the outcome of the
treatment for real-time surgical control [6]. This system is
able to provide surgeons in a operating room with real-time
feedback and prediction of optimal temperature and damage
fields which will permit patient-specific optimized therapy
(see figure 1).

2. Biological background and Mathematical
Models

Laser-tissue interactions are characterized by optical re-
sponse and the resulting thermal response. To simulate
laser surgery and make reliable predictions of the temper-
ature field requires two major modeling components: a bio-
heat transfer model for the tissue and a laser source term
that characterizes thermal energy deposited into the tissue.
Thermal damage processes in cells and tissues are usually
quantified by kinetic models based on a first-order rate pro-
cess to characterize pathological transformation to specific
states by observable alterations such as coagulation or des-
iccation. The mathematical representation of the temper-
ature distribution in the tissue is usually formulated with
Pennes bioheat equation for the thermal effects of local
blood perfusion. The laser as a heating source can be model
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Figure 1. lllustration of a MRTI-Guided Feed-
back Control System

either by an isotropic term or Monte Carlo method. Both
cell damage, as a major indicator of treatment outcome, is
characterized by the traditional Arrhenius law for a given
temperature filed. The laser source can be applied near the
treatment surface or placed interstitially inside a tumor.

Let Q be a bounded domain (tumor region) in R3 with
I' = 9Qc¢|J 0N denoting a Lipschitz continuous bound-
ary. Eqn. (1) is a generalized Pennes bioheat equation with
nonlinear coefficients.

pcpaa—f7V~(k(T)VT)+w(T)cb(T7Ta) =Q(x,1) inQ
ey
The thermal conductivity, k¥ [Js~*m~' K], and blood
perfusivity, w [kg s~ m™3], are assumed to be bounded
functions of the temperature field, T = T'(x,t¢). The spe-
cific heat of the tissue and blood are given by c, and ¢
respectively, Ty, is the arterial temperature, and p is the den-
sity of the tissue. On the Cauchy boundary,

—k(T)VT -n=h(T —Ty) on 9€¢

The coefficient of cooling is denoted h. T,, denotes the
ambient temperature. G is the prescribed heat flux on the
Neumann boundary.

—k(I)VT -n=g on Oy

The temperature field is propagated forward in time from a
given initial condition, 7.
T(x,0) =T, in
The laser-tissue interaction is a complex phenomenon
that involves both optical and thermal responses [?, ?].
Since laser light is absorbed by tissue and converted into
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heat, a commonly used model that characterize the ab-
sorbed heat can be represented by the rate of heat generation
Q(x,t), which is defined as

Q(Xa t) = Ha (I)(Xat)

2
= fatitrP(t)

3exp(—fiess X — %)
drlx - o

where (i1, = pta+1ts(1=9), e = v/3ptatter, and @ (x,t)
is the fluence that defines the amount of energy, in the form
of photons, passing through a unit area at a point in space
per unit time. P(t) is the laser power at time ¢. The param-
eters 4, s are absorption and scattering coefficients that
relate to laser wavelength. The constant g is the anisotropic
factor, and X, is the position of the laser source.

However, Eqn. (2) is valid when the scattering coefficient
is much larger than the absorption coefficient (us << fig)
and when the laser source is far away from the boundary.
Moreover, this model only accounts for scattered light, i.e.,
the primary light is ignored. To better characterized laser-
tissue interaction, we also employ a Monte Carlo method to
compute the fluence. There two major assumptions made in
order to construct the Monte Carlo model: (a) the photons
will be distributed in a cylindrically symmetric manner with
the initial direction of the beam as the axial direction, and
(b) the probability distributions being used for the scatter-
ing angles and mean free path length are known. Generally
speaking, Monte Carlo method is considered to be more ac-
curate but computationally expansive than the classical ap-
proach.

3. Brief Description of the Computational
Framework

3.1. Pre-treatment Planning

Prior to laser treatment of a tumor region, the location
of optical fiber and laser power are optimized to control
the temperature in the tissues such that cancer cells in the
cancerous tissue region are destroyed or sensitized and sur-
rounding tissue damage is minimized. During treatment,
intra-operative MRI data is used to register the compu-
tational domain with the biological domain and real-time
thermal imaging MRTI data drives the calibrations align-
ing the parameters of the bioheat transfer model to the pa-
tient’s biological tissue values. As new thermal imaging
data is acquired intermittently (every 5 seconds), the com-
putational prediction is compared to the measurements of
the real-time thermal images and the observed differences
in the temperature field are used to update the computations
to drive laser parameter optimization as well as computa-
tional mesh adaption [7].



The software infrastructure is built from the Petsc [1]
parallel computing paradigm and the Toolkit for Advanced
Optimization (TAO) [2] parallel optimization library. Ad-
vanced Visual Systems (AVS) [5] is used in conjunction
with a Virtual Network Computing (VNC) server for re-
mote visualization. AVS coroutines are used to manage
and coordinate the simultaneous visualization of the MRI
anatomical image, MRTI thermal image, and finite element
data sets. The Imaging-to-Modeling software system for
anatomical MRI data employs both image processing and
geometry processing functionalities to produce a suitable
linear or higher order meshed model of the anatomy.

3.2. Real Time Imaging Acquisition and
Process

The magnetic resonance temperature imaging (MRTI)
data are acquired every five seconds. However, the raw
imaging data is often of poor quality which makes it dif-
ficult to build a quality meshed model of the anatomy un-
der investigation. In order to improve the image quality,
we have developed a suite of image processing functional-
ities that facilitate further processing. The modules encap-
sulated in the image processing units are: (1) contrast en-
hancement (2) filtering (3) segmentation (4) co-registration,
and (5) mesh generation.

4 Fast Inverse Analysis and Optimal Control

The goal of the temperature-based optimal control laser
treatment of cancer by oblation and its associated calibra-
tion problems within the control loop is to find the set
of model parameters that minimize the space-time norm
of the difference between the computed temperature field
T(5,x,t) and an ideal field T;4eq (X, t). The mathematical
formulation can be formally stated as follows:

Find the model coefficients, 5* € P, that produces
the temperature field, 7% € V), such that

w2, e

- Edeal (X7 t)) d’Edt + (b(ﬁ)

Q(T* (B )T (8, x,1)

satisfies
Q(T*(6%), B%) %gpr(T(ﬁ),ﬁ)
P={8:3T st C(u,B;v) =0

Yv € V}
(3)

The ideal field for the calibration problem is the experi-
mentally determined temperature field T¢,, (X, t). The ideal
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field for temperature based optimal control is given as fol-

lows.
Uideal = {

The function ®(3) is a penalty term added to the objective
function used to keep the model parameters within physi-
cally acceptable bounds.

37.0°C
54.0°C

x € Qg
X € Q¢

Npamzms

. _ RUB
i=1 i i
B; — BEP
+exp < 6UB 6LB>

where (3; denotes a vector of particular parameter set.
The dimension of the parameter space is denoted Npqrams-
The physically acceptable lower and upper bounds of the
parameter, 3;, is denoted by B-P and BYB, respectively.
The penalty term is scaled by v = 1000.0.

The optimization problem in (3) is solved using an ad-
joint method to compute the gradient of the quantity of in-
terest. The following Galerkin representation of the temper-
ature field and adjoint variable is assumed.

Nstep Naos
t) = Z Z o¥
k=1 j=1
Nstep Ndof
plet) = D Y A(H)i(x)
k=1 i=1
where N, is the number of time steps, N, is the num-
ber of Galerkin coefficients, and ¢;’s are the finite element
basis functions of polynomial order p (=1,2,3...). Functions
o (t) and A} (t) are coefficients associated with primary
variable T'(x,t) and adjoint variable p(x,t), respectively.
The time discretization of the laser power is assumed in a
form of piecewise constant in time.

P@—{&’

0,
Solving for the adjoint variable, py at t = ¢, time step, for
inverse analysis and optimal control requires the numerical
gradient of the quantity of interest to be computed as fol-
lows.

t€ [tp_1,t)
otherwise

ok
—At /7 T,lax> VI,
kﬂaﬁ(kz B) k—3
-Vpk dx
N.step 8
DO0) _ 5| =tk [ s 5 Ty 3.0)
k=1
(kaé - Ta) pk d(E
anaser
+At / X, U )pr da
k Sy (B, X, tk)pk



We use the same computational structure to compute both
primary and adjoint problems. The implementation in-
volves the nonlinear transient bioheat transfer model using
a finite element discretization in space and finite difference
in time using the Crank-Nicolson scheme. In order to meet
the goal of real time control, we employ efficient parallel
computing algorithms to achieve the goal that each run only
takes a few seconds using Linux clusters operated by Texas
Advanced Computing Center (TACC) in Austin, Texas.

5. MRTI Measurement and Computational
Results

Data acquired for calibration are obtained from MRI ex-
periments conducted at M.D. Anderson Cancer Center in
Houston, which consist MRTI images of a mouse tumor
with resolution of 49x56 pixel. The field of view is 4x6
cm? and the thickness associated with the image is 3 mm.
An external heat source was applied to a mouse tumor.
Sixty thermal images were acquired at every 5 seconds.

The computational results presented in this section is
similar to the thermal imaging data studied in [4] and [6].
The calibration algorithm is applied to these data sets to in-
vert for the constitutive equation nonlinearites as well as the
heterogeneity of the biological domain.
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Figure 2. Images of MRTI in vivo Measurement
and FEM Computation of a Canine Brain

The effect of calibrating the nonlinear perfusion,
w(T,x, 3), and thermal conductivity, k(T x, 3), parameters
in Pennes model was studied. Calibration was done with
respect to MRTI thermal imaging data of in vivo heating
of canine brain tissue. The thermal imaging data was ac-
quired in the form of five two-dimensional 256 x 256 pixel
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Figure 3. Images of MRTI in vivo Measurement
and FEM Computation of a Tumor Grown on
the Hind Leg of a Mouse

images every six seconds for 120 time steps. The spac-
ing between images was 3.5 mm. A manual craniotomy
of a canine skull was preformed to allow insertion of an
interstitial laser fiber to provide the heating. A template
based finite element mesh was generated from thirty-six;
two-dimensional 256 x 256 pixels MRI images of the ca-
nine brain. The field view was 200 x200 mm? with each
image spaced at | mm apart. The FEM prediction using lin-
ear material coefficients [3], k(T,x,3) = 0.527[7:?/7] and
w(T,x,3) = 6'0[31:33]’ is shown in Figure 2. The upper-
right windows in Figures 2 shows a cut-line comparison of
the filtered MRTI data with the unfiltered data. The upper-
left windows in Figure 2 display an overlay of the MRTI
thermal image onto the anatomical MRI image. At the
lower-left window, it shows a 2D temperature slice through
the 3D domain. Figure 2 was obtained by inverting for the
constitutive vectors. As shown in [6], Figures 2 illustrates
that the material nonlinearities are necessary to model the
late time heat dissipation. The results indicate that a spa-
tially varying inversion for the perfusion field should pro-
vide a means to further increase the accuracy of the FEM
temperature prediction of the canine brain data.

Allowing the perfusion and thermal conductivity model
parameters to vary as a spatial field is seen to have a tremen-
dous effect on the model calibrations. Inverting for the spa-
tial variation in the parameters embeds the biological tissue
heterogeneity within the Pennes model. Imaging data of an
external laser applied to a tumor grown on a mouse’s hind
leg was used to study the effect of the parameter field inver-
sion. Sixty thermal images were acquired at an interval of
five seconds. A single time instance of the data is shown in




Figures 3. The field of view is 4x6 cm? and the thickness
associated with the MRI/MRTI images is 3 mm. Figures 3
compare the FEM prediction using text book linear material
coefficients to the calibrated heterogeneous material coeffi-
cients applied to the in vivo heating of a tumor grown on a
mouse. The upper-right windows in Figures 3 each show a
cut-line comparison of the filtered MRTI data with the un-
filtered data. The upper-left windows in Figures 3 display
an overlay of the MRTI thermal image onto the anatomical
MRI image. The images are 49 x 56 pixels. Figure 3 lower-
left window shows a 2D temperature slice through the 3D
domain. The lower-right window is a cut-line comparison
of the filtered MRTI data to the FEM prediction.

The agreement between the predicted FEM solution and
the MRTT thermal images shown in Figure 3 illustrates the
importance of inverting for the field of material hetero-
geneity. Figure 3 represents a 4100-parameter optimization
problem, which is very computational intensive. The initial
guess for the material coefficients was assumed homoge-
neous. The optimization automatically determines the het-
erogeneity (spatial variation of the parameters) that allows
Pennes model to accurately predict the temperature field as
observed in the experiments. This result shows that the op-
timization through evolution of the material heterogeneity
inversion for the thermal conductivity fields and blood per-
fusion fields is very effective.

The system has been tested on a 1% agar phantom mate-
rial. This testing represents a project milestone. The phan-
tom material has provided an animal-free method of test-
ing and debugging the entire control system. For testing
purpose, the thermal images were mainly used to periodi-
cally update the initial condition of the FEM computation
in real time. After each update, the calculations proceeded
to predict all the way to the end of the treatment. On cur-
rent code implementation on parallel computing architec-
tures, we have the capability to produce 40 to 50 seconds of
predictions using only 10 seconds of computation time. It
means that the current system satisfies the requirement for
real-time control with 30 to 40 seconds leading time.

6 Conclusions

In this paper, we have presented a fast inverse analysis
technique that was implemented in parallel to solve bio-heat
transfer problems for cancer treatment so that the real-time
control is made possible. Another important factor in the
case of laser therapy involves modeling the laser fluence
in the tissue correctly. While there are two standard ways
of modeling this, analytically or by using a Monte Carlo
method, they both depend on three optical parameters of
interest: the absorption coefficient, j,, the scattering coef-
ficient, us, and the anisotropic factor, g. In living tissue,
each of these parameters is truly a function of space, light
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wavelength, and temperature. The validation tests demon-
strate an accurate and robust model can produce accurate
results in satisfactory time for real-time control.
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