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~ Active noise control (ANC) is achieved by introducing a cancel- opposite phase is generated and combined with the primary
ing “antinoise” wave through an appropriate array of secondary npise, thus resulting in the cancellation of both noises.

sources. These secondary sources are interconnected through afrhe ANC system efficiently attenuates low-frequency noise
electronic system using a specific sighal processing algorithm for

the particular cancellation scheme. ANC has application to a wide Where passive methods are either ineffective or tend to
variety of problems in manufacturing, industrial operations, and be very expensive or bulky. ANC is developing rapidly
consumer products. The emphasis of this paper is on the practical because it permits improvements in noise control, often
aspects of ANC systems in terms of adaptive signal processingwith potential benefits in size, weight, volume, and cost.

Zgglggtuitglnzn.gnal processing (DSP) implementation for real-world The design of acoustic ANC utilizing a microphone and

In this paper, the basic adaptive algorithm for ANC is developed an electronically driven loudspeaker to generate a canceling
and analyzed based on single-channel broad-band feedforward sound was first proposed in a 1936 patent by Lueg [7].
control. This algorithm is then modified for narrow-band feedfor- sjnce the characteristics of the acoustic noise source and

ward and adaptive feedback control. In turn, these single-channel . . .
ANC algorithms are expanded to multiple-channel cases. Various the environment are time varying, the frequency content,

online secondary-path modeling techniques and special adap- amplitude, phase,. and sound velocity of the undesired
tive algorithms, such as lattice, frequency-domain, subband, and noise are nonstationary. An ANC system must therefore

recursive-least-squares, are also introduced. Applications of these pe adaptive in order to cope with these variations. Adaptive

techniques to actual problems are highlighted by several examples.f”terS [8]-[16] adjust their coefficients to minimize an error

_ Keywords—Active noise control, active vibration control, adap-  signal and can be realized as (transversal) finite impulse

E'E’)esgg"zgéﬁzg‘i%féfon' adaptive systems, digital signal processing response (FIR), (recursive) infinite impulse response (IIR),
lattice, and transform-domain filters. The most common
form of adaptive filter is the transversal filter using the least-

I INTRODUCTION mean-square (LMS) algorithm. An early duct cancellation
system based on adaptive filter theory was developed in
A. Overview [17] and [18].

Acoustic noise problems become more and more evident It is desirable for the noise canceler to be digital [19],
as increased numbers of industrial equipment such as[ZO], where signals from electroacoustic or electromechani-
engines, blowers, fans, transformers, and compressors aréal transducers are sampled and processed in real time using
in use. The traditional approach to acoustic noise control digital signal processing (DSP) systems. In the 1980'’s, de-
uses passive techniques such as enclosures, barriers, arielopment of DSP chips enabled low-cost implementation
silencers to attenuate the undesired noise [1], [2]. Theseof powerful adaptive algorithms [21] and encouraged wide-
passive silencers are valued for their high attenuation overspread development and application of ANC systems [22].
a broad frequency range; however, they are relatively The continuous progress of ANC involves the development
large, costly, and ineffective at low frequencies. Mechanical of improved adaptive signal processing algorithms, trans-
vibration is another related type of noise that commonly ducers, and DSP hardware. More sophisticated algorithms
creates problems in all areas of transportation and manu-allow faster convergence and greater noise attenuation
facturing, as well as with many household appliances. and are more robust to interference. The development of

Active noise control (ANC) [3]-[6] involves an elec- improved DSP hardware allows these more sophisticated
troacoustic or electromechanical system that cancels thealgorithms to be implemented in real time to improve
primary (unwanted) noise based on the principle of super- system performance.
position; specifically, an antinoise of equal amplitude and |n this paper, noise is defined as any kind of undesirable
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development of ANC systems, [3], [5], and [6] provide Noise |Primary Noise Error
excellent introduction to acoustics and vibration. Source [ 75 Q) Microphone
Reference Canceling
Microphone Loudspeaker

B. Current Applications

ANC is an attractive means to achieve large amounts
of noise reduction in a small package, particularly at low > ANC |
frequencies. Many applications of ANC involving real
and simulated experiments are introduced in [4] Current Fig. 1. Single-channel broad-band feedforward ANC system in
applications for ANC include attenuation of unavoidable a duct.
noise in the following end equipment.

1) Automotive: Including electronic mufflers for exhaust 4ise without the benefit of an “upstream” reference input.
and induction systems, noise attenuation inside vehicle gyy,cryres for feedforward ANC are classified into 1) broad-
passenger compartments, active engine mounts, and so0 Oyanq adaptive feedforward control with a reference sensor,

2) Appliances: Including  air-conditioning - ducts, air \ypich will be discussed in Section I, and 2) narrow-band
conditioners, refrigerators, kitchen exhaust fans, washing 5qantive feedforward control with a reference sensor that is
machines, furnaces, dehumidifiers, lawn mowers, vacuum ¢ influenced by the control field (e.g., tachometer), which
cleaners, headboards, room isolation, and so on. will be presented in Section IlI. In Section 1V, the concept

3) Industrial: Fans, air ducts, chimneys, transformers,_ of adaptive feedback ANC will be developed from the
power generators, blowers, compressors, pumps, chaifgiangnoint of reference signal synthesis, thereby providing
saws, wind tunnels, noisy plants (at noise sources or many, |ink 1o the feedforward systems in previous sections.
local quiet zones), public phone booths, office cubicle |, gection v, these single-channel ANC systems will be
partitions, ear protectors, headphones, and so on. expanded to multiple-channel cases. Section VI will intro-

4) Transportation: Airplanes, ships, boats, pleasure mo- q,ce various online secondary-path modeling techniques.
torboats, helicopters, snowmobiles, motorcycles, diesel 10- gection il will introduce various special ANC algorithms
comotives, and so on. such as lattice ANC, frequency-domain ANC, subband

ANC, and recursive-least-squares (RLS). Finally, several
C. Performance Evaluation and Practical Considerations examples applying ANC to real-world problems will be

When ANC is deployed in real applications, many prac- highlighted in Section VIII.
tical problems arise and need to be addressed [23]. An ap-
proach to adaptive ANC performance analysis that involves Il. BROAD-BAND FEEDFORWARD ANC

a hierarchy of techniques, starting with an ideal simplified  This section considers broad-band feedforward ANC
problem and progressively adding practical constraints andsystems that have a single reference sensor, single sec-
other CompleXities, is essential [24] Performance analySiS Ondary source, and Sing|e error sensor. This genre will
resolves the following issues: 1) the fundamental perfor- he exemplified by the single-channel duct-acoustic ANC
mance |Im|tat|0nS, 2) the pl’actical constraints that limit System shown in F|g l’ where the reference input is p|Cked
performance; 3) performance balanced against complexity;up by a microphone. The reference signal is processed by
and 4) how to determine a practical design architecture. At the ANC system to generate the control signal to drive
each step, a degree of confidence is gained and a benchmark |oudspeaker. The error microphone is used to monitor
is established for comparison and cross checking with the the performance of the ANC system. The objective of the
next level of complexity. controller is to minimize the measured acoustic noise. Note
In order to be suitable for industrial use, the ANC that this setup is only used as an example of broad-band

system must have certain properties [25]: 1) maximum ANC; the general techniques are widely applicable to a
efficiency over the largest frequency band possible to cancelyariety of acoustic and vibration problems.

a wide range of noise; 2) autonomy with regard to the
installation, so that the system could be built and preset A, Basic Principles

in the manufacturing area and then inserted on site; 3) The basic broad-band ANC system shown in Fig. 1 is

self qdaptgbility of th? system in order to deal with Y described in an adaptive system identification framework
variations in the physical parameters (temperature, airflow illustrated in Fig. 2, in which an adaptive filtd¥ (2) is

speed, etc.); and 4) robustness and reliability of the different used to estimate an unknown plahtz). The primary path

elementg of the system and simplification of the control P(z) consists of the acoustic response from the reference
electronics. sensor to the error sensor where the noise attenuation is to
) be realized. If the plant is dynamic, the adaptive algorithm
D. Paper Outline then has the task of continuously tracking time variations of
ANC is based on either feedforward control, where a the plant dynamics. The most important difference between
coherent reference noise input is sensed before it propagate&ig. 2 and the traditional system identification scheme is
past the secondary source, or feedback control [26], [27], the use of an acoustic summing junction instead of the
where the active noise controller attempts to cancel the subtraction of electrical signals. However, for consistency

x(n) y(n) e(n)
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Fig. 2. System identification viewpoint of ANC.
Fig. 3. Simplified block diagram of ANC system.

we will continue to represent the summing junction by a _ _

subtraction; it is really arbitrary anyway because it can be from the canceling loudspeaker to the error microphone,

implemented with a sign change of the secondary signal [4]. Where the primary noise is combined with the output of
The objective of the adaptive filtd#(z) is to minimize the adaptive filter. Therefore, it is necessary to compensate

the residual error signat(n). From Fig. 2, E(z) = 0 for the secpndgry-path transf_er_ functisi{z) from y(n)
after the adaptive filtef?’(z) converges. We then have O ¢(n), which includes the digital-to-analog (D/A) con-
W(z) = P(z) for X(z) # 0, which implies thaty(n) = verter, reconstruction filter, power amplifier, loudspeaker,
d(n). Therefore, the adaptive filter outpytn) is identical acoustic path from loudspeaker to error microphone, error
to the primary disturbancel(n). When d(n) and y(n) microphone, preamplifier, antialiasing filter, and analog-to-
are acoustically combined, the residual errore(s) = digital (A/D) converter. For purposes of analysis, we shall
d(n) — y(n) = 0, which results in perfect cancellation of répresent the actual system in Fig. 2 by the block diagram
both sounds based on the principle of superposition. of Fig. 3. . .

The performance of ANC can be determined by From Fig. 3, thez-transform of the error signal is
frequency-domain analysis of the _reS|_duaI error signal E(2) = [P(2) — S(:)W ()] X (2). )
e(n). The autopower spectrum efn) is given by [4]

As discussed with respect to (1), the residual error is limited
See(w) = [1 = Cuaz(w)]Saa(w) @ by the coherence of the reference signal. However, for
whereCy, (w) is the magnitude-squared coherence function purposes gaining insight, we shall make the simplifying
[28] between two wide-sense stationary random processesassumption here that after convergence of the adaptive
d(n) and z(n) and Suu(w) is the autopower spectrum of filter, the residual error is ideally zero [i.ef(z) = 0].
d(n). This equation indicates that the performance of the This requiresi¥(z) to realize the optimal transfer function

ANC system is dependent on the coherence, which is a P(2)
measure of noise and the relative linearity of the two We(z) = S2) 3
processed(n) andz(n). In order to realize a small residual i
error, it is necessary to have very high coherditg (w) ~ In other words, the adaptive filtd¥’(z) has to simulta-

1] at frequencies for which there is significant disturbance neously modelP(z) and inversely modelS(z). A key
energy. The maximum noise reduction of an ANC system at advantage of this approach is that with a proper model of the
frequencyw in decibels is given by-101log;, [1 — Cyz(w)]. plant, the system can respond instantaneously to changes in

As illustrated in Fig. 1, after the reference signal is the input signal caused by changes in the noise sources.
picked up by the reference sensor, the controller will have However, the performance of an ANC system depends
some time to calculate the right output to the canceling largely upon the transfer function of the secondary path.
loudspeaker. If this electrical delay becomes longer than By introducing an equalizer, a more uniform secondary path
the acoustic delay from the reference microphone to the frequency response is achieved. In this way, the amount of
canceling loudspeaker, the performance of the system will noise reduction can often be increased significantly [29].
be substantially degraded. That is because the controllerin addition, a sufficiently high-order adaptive FIR filter is
response is noncausal when the electrical delay is longerrequired to approximate a rational functiafS (=) shown
than the acoustic delay. When the causality condition is met, in (3). It is impossible to compensate for the inherent delay
the ANC system is capable of canceling broad-band randomdue to S(z) if the primary pathP(z) does not contain a
noise. Note that if causality is not possible, the system candelay of at least equal length.
effectively control only narrow-band or periodic noise.

C. Filtered-X LMS Algorithm

B. Secondary-Path Effects The introduction of the secondary-path transfer function
The use of the adaptive filter for ANC application shown into a controller using the standard LMS algorithm shown in

in Fig. 1 is complicated by the fact that the summing junc- Fig. 3 will generally cause instability [30]. This is because

tion in Fig. 2 represents acoustic superposition in the spacethe error signal is not correctly “aligned” in time with
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the reference signal, due to the presenceS¢f). There x(n) A2 a(n) .

are a number of possible schemes that can be used to e(n)
compensate for the effect ¢f(z). Morgan [31] suggested ——»
two approaches to solving this problem. The first solution §.4 _
is to place an inverse filter]/S(z), in series withS(») Wiz y(n) s y'(n)

to remove its effect. The second solution is to place an \

identical filter in the reference signal path to the weight A
update of the LMS algorithm, which realizes the so-called
filtered-X LMS (FXLMS) algorithm [9]. Since an inverse
does not necessarily exist féi(z), the FXLMS algorithm x'(n) LMS -
is generally the most effective approach. The FXLMS
algorithm was independently derived by Widrow [32] in  Fig. 4. Block diagram of ANC system using the FXLMS algo-
the context of adaptive control and Burgess [17] for ANC rithm.

Y

applications.
1) Derivation of the FXLMS AlgorithmThe placement x(n) d(n)
of the secondary-path transfer function following the digital ' A2) +
filter W (=) controlled by the LMS algorithm is shown in e(n)
Fig. 3. The residual signal is expressed as p il
e(n) = d(n) — s(n) * [ (a(m)] (& s [yl wa A

wheren is the time indexs(n) is the impulse response of
secondary patl§(z), = denotes linear convolutiomy(n) =
[wo(n) wi(n)---wr_1(n)]¥ and z(n) = [z(n) z(n — LMS
1)---z(n — L+ 1)]* are the coefficient and signal vectors
of W(z), respectively, and. is the filter order. The filter ~ Fig. 5. Equivalent diagram of Fig. 4 for slow adaptation and
W (z) must be of sufficient order to accurately model the °¢) = 9()-
response of the physical system.
Assuming a mean square cost functign) = E[¢*(n)], where 3(n) is the estimated impulse response of the
the adaptive filter minimizes the instantaneous squared errorsecondary-path fi|teé(z), The block diagram of ANC
R system using the FXLMS algorithm is illustrated in Fig. 4.
&(n) = ¢*(n) (5) The FXLMS algorithm appears to be very tolerant of
errors made in the estimation 6f z) by the filter$(z). As
using the steepest descent algorithm, which updates theshown by Morgan [31], within the limit of slow adaptation,
coefficient vector in the negative gradient direction with the algorithm will converge with nearly 90of phase
step sizep error between5(z) and S(z). Therefore, offline modeling
. can be used to estimat€(z) during an initial training
win+1) =w(n) — gvﬁ(ﬂ) (6) stage for most ANC applications. The detailed experimental
setup and procedure for offline secondary-path modeling is

where V&(n) is an instantaneous estimate of the mean- SUmmarized in [4]. The topic of adaptive online secondary-
square-error (MSE) gradient at time and is expressed path modeling will be discussed later in Section VI.

as Vé(n) = Vei(n) = 2[Ve(n)le(n). From (4), we ~ 2) Analysis of the FXLMS Algor.itthons.ider the case
have Ve(n) = —s(n) * z(n) = —'(n), wherez'(n) = in which the control fl|tel‘W(2'f) is changing slowly, so
[#'(n) 2'(n—1) -+ o' (n— L+1)]T andz’(n) = s(n)*z(n). that the order of¥/(z) andS(z) in Fig. 4 can be commuted
Therefore, the gradient estimate becomes [9], [31]. If 5(z) = S(z), Fig. 4 is then simplified to Fig. 5.
Since the output of the adaptive filter now carries through
Vé’(n) = —24'(n)e(n). (7) directly to the error signal, the traditional LMS algorithm

analysis method can be used, although the relevant refer-
Substituting (7) into (6), we have the FXLMS algorithm ~ ence signal is now’(n), which is produced by filtering
x(n) through S(z). This method gives accurate results if
w(n + 1) = w(n) + px’(n)e(n). (8) adaptation is slow, that is, if the step sizds small.
The maximum step size that can be used in the FXLMS
In practical ANC applications,S(z) is unknown and  algorithm is approximately [33]
must be estimated by an additional filté¢z). Therefore, 1
the filtered reference signal is generated by passing the Himax = m
reference signal through this estimate of the secondary path
whereP,, = E[z'2(n)] is the power of the filtered reference
Z'(n) = §(n) * z(n) 9) signalz’(n), andA is the number of samples corresponding

(10)

946 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.



to the overall delay in the secondary path. Therefore, the [39]
delay in the secondary path influences the dynamic response R T
of the ANC system by reducing the maximum step size in §(n) = () + yw” (njw(n) (12)
the FXLMS algorithm. where~ is a weighting on the control effort. Following the
Boucher and coworkers [34], [35] discuss the effects derivation of the FXLMS algorithm, the update algorithm
of secondary path modeling phase errors on the optimumcan be derived as
step size and convergence time. The analysis applies to ,
the special case when the reference signal is narrow- w(n +1) = vw(n) + pz'(n)e(n) (13)
band but the disturbance is still broad band. Numeric wherey = 1 — Y is the |eakage factor amdl< v < 1. This

results suggest that phase errors of 4@rdly affect the  |eaky FXLMS algorithm also reduces numeric error in the
convergence speed of the algorithm. However, convergencefinjte-precision implementation [4], [40]. The introduction
will slow appreciably as the phase difference approachesof a leakage factor has a considerable stabilizing effect on
90° because the poles come closer to the unit circle. the adaptive algorithm, especially when very large source
For narrow-band signals, errors in the estimation of the strengths are used [39], [41].
secondary path transfer function can be considered in As shown in [4], the leakage has the effect of modifying
two parts: amplitude errors and phase errors [36]. Any the diagonalized correlation matrix of the input process. All
magnitude estimation error will proportionally change the ejgenvalues are positive even if some of the original input
power of z/(n) and hence will simply scale the ideal ejgenvalues are zero. This guarantees a unique solution
stability bound accordingly. However, there is no simple and a bounded time constant for all modes. The price
relationship between phase modeling error and stability in of leakage is increased complexity of the weight update
the range of+90°. equation and the introduction of a bias into the converged

Another Complication that often arises in the broad-band solution [13] The choice 0—? thus represents a Compromise
case is that measurement noisga) andv(n) are present  petween biasing the convergence weight vector away from
in the reference and error signals, respectively. The optimalthe optimum solution and moderating the control effort.
unconstrained transfer functidi®(z) is [4]

D. Feedback Effects and Solutions

o P(2)Szx(2) The acoustic ANC system shown in Fig. 1 uses a ref-
We(z) = 2)° (11) erence microphone to pick up the reference noise and
processes this input with an adaptive filter to generate an
antisoundy(n) to cancel primary noise acoustically in the
_ X i duct. Unfortunately, the antisound output to the loudspeaker
measurement noise(n) associated with the error sensor. 154 radiates upstream to the reference microphone, result-
However, the measurement noigé:) associated with the ing in a corrupted reference signa{n). The coupling of
reference sensor does affect the optimum weight and hencgne acoustic wave from the canceling loudspeaker to the
reduces the cancellation performance. The best frequencyeference microphone is called acoustic feedback. Similar
response of the controller is a compromise between can-gffects take place in vibration ANC systems due to feedback
cellation of the primary noise:(n) and amplification of from the control actuator to reference sensor.
the measurement noise through the controller [25]. Some A more general block diagram of an ANC system that
practical considerations to reduce undesired measurement,c|udes feedback from the secondary source to the refer-
noise are given in [4]. _ . ence sensor is shown in Fig. 6, wherg) is the primary

In Fig. 4, if the secondary-path transfer functisitz) is noise,z(n) is the signal picked up by the reference sensor,
modeled as a pure delag, then 5(z) is replaced by a  ang F(») is the feedback path transfer function from the
delay A. This special case of the FXLMS algorithm is also  oytput of adaptive filtei’(z) to the reference sensor. The

known as the delayed LMS algorithm [37], [38]. The upper  sieady-state transfer function of the adaptive filter is [4]
bound for the step size [38] depends on the defaynd P()
4

is in close agreement with Elliott's approximation given in We(z) = .
(10). Therefore, efforts should be made to keep the delay 5(z) + P(2)F(2)
small, such as decreasing the distance between the error From Fig. 6, the open-loop transfer function associated
sensor and the secondary source and reducing the delay ifwith the feedback loop is given @oy.(z) = W(z)F(z).

electrical components. If the adaptive filteriW (=) has converged to the noiseless
3) Leaky FXLMS Algorithm:in an ANC system, the di-  optimal solution (14), then

rect application of the FXLMS algorithm sometimes leads
e : . . P(z)F(z)

to another problem: high noise levels associated with low- Hor(z) = .
frequency resonances, which may cause nonlinear distortion S(z) + P(2)F'(2)
by overloading the secondary source. An obvious solution This open-loop transfer function can be used to test the
to this problem is the introduction of output power con- stability of the system [42]. Instability will occur if the
straints. Similar results can be obtained by constraining the open-loop phase lag reaches 18thile the open-loop gain
adaptive filter weights by modifying the cost function as is greater than unity.

This equation shows thalv?(z) is independent of the

(14)

(15)
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Fig. 6. Block diagram of ANC system with feedback.

Noise Reference Error Fig. 8. ANC system using the filtered-U recursive LMS algo-

Source | ™ Microphone Microphone rithm.

operations [41]. However, the disadvantages of adaptive
IIR filters are: 1) IIR filters are not unconditionally stable
because of the possibility that some pole(s) of the filter
will move outside of the unit circle during the adaptive
process, causing instability; 2) the adaptation may converge
e(n) to a local minimum because the MSE function of adaptive
IIR filters is generally nonquadratic; and 3) IIR adaptive
algorithms can have a relatively slow convergence rate
in comparison with that of FIR filters. A comprehensive
discussion of adaptive IIR filters can be found in the
Fig. 7. ANC with acoustic feedback neutralization. literature [45], [46].

A block diagram of an adaptive IR ANC system [47]
is illustrated in Fig. 8. The output signal of the IIR filter
is computed as

1) Feedback NeutralizationThe simplest approach to
solving the feedback problem is to use a separate feedbacly(”)
car_lcel_lation, or “neutralization,”_ filter within the Contro_ller, y(n) = a” (n)z(n) + bF (n)y(n — 1) (16)
which is exactly the same technique as used in acoustic echo
cancellation [43]. This electrical model of the feedback wherea(n) = [ao(n) ai(n)---ar—1(n)]" is the weight
path is driven by the secondary signal, and its output vector of A(z),z(n) is the reference signal vectdiin) =
is subtracted from the reference sensor signal [44]. A [bi(n) ba(n)---basr(n)]" is the weight vector of3(z), and
duct-acoustic ANC system using the FXLMS algorithm %{n— 1) is the output signal vector delayed by one sample.
with feedback neutralization is illustrated in Fig. 7. The Many algorithms can be employed to find the optimal set
feedback component of the reference microphone signalOf coefficientsa; andb,,, to minimize the error signai(n).
is canceled electronically using a feedback neutralization I 1976, Feintuch [48] suggested that the recursion based
filter £'(z), which models the feedback paffyz). on the _oId output gradients is r!egligible. Bas_ed on this

Since the primary noise is highly correlated with the Suggestion, the “filtered-U recursive LMS algorithm” [49]
antinoise, the adaptation of the feedback neutralization filter for ANC is derived as [4]
njugt be inhibiteq when the ANC system i; in opgration, a(n +1) =a(n) + pz’ (n)e(n) 17)
similar to adaptive echo cancellation during periods of b Db i — 1 18
double talk. Thus, feedback neutralization is achieved, in (n+1) =b(n) + gy (n — Le(n) (18)
effect, by using an offline adaptive method for determining whereg/(n — 1) = 3(n) * y(n — 1) is the filtered version

the transfer function of the feedback path. The mO@I’S) of the canceling signal vector at time— 1. In practice, it
and F'(z) can be estimated simultaneously by using the is reasonable to use a higher order 18fz) than for A(z)
offline modeling technique [4]. [50]. Real-time experiments have been conducted to test

2) Adaptive IIR Filter: Equation (14) shows that when the system performance for various reference microphone
feedback is present, the optimal solution of the adaptive locations, error microphone locations, and different time-
filter is generally an IIR function with poles and zeros. This varying sources, such as a centrifugal fan and diesel engine
rational function can be approximated by an FIR function [51].
of sufficient order, but a smaller step sizethen has to Given the complexities associated with the pole-zero
be used for stability reasons. The poles of an IIR filter structure ofP(z), S(z), and F(z), one cannot predict the
make it possible to obtain well-matched characteristics with values to which4(z) and B(z) will converge. Also, global
a lower order structure, thus requiring fewer arithmetic convergence and stability of the filtered-U recursive LMS
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Fig. 9. Basic configuration of narrow-band ANC system.

algorithm have never been proven formally. A modified
leaky version of the simplified hyperstable adaptive re-
cursive filter (SHARF) algorithm [52] has been developed

be canceled. The first technique is called the waveform
synthesis method, which was proposed by Chaplin [55].
The second techniqgue embodies the adaptive notch filter,
which was originally developed for the cancellation of tonal

interference [56] and applied to periodic ANC [57].

The waveform synthesis method discussed next in
Section 1lI-B employs synchronous sampling. However,
for some applications, the actual period will vary from
the nominal value as a function of loading conditions.
Therefore, it is sometimes desirable to operate asynchro-
nously with a fixed sampling rate so that the secondary-path
estimate filter coefficients do not have to be changed as
a function of actual machine rotation rate. Also, some
digital signal processors cannot be efficiently utilized on
a synchronous signal-driven basis. Asynchronous ANC
systems using the FXLMS algorithm eliminate the problem
of having to changeé‘(z) as the sampling rate varies and

for ANC applications to improve the stability of the IIR
adaptive filter [53]. In that algorithm, a lowpass filter is
used to smooth the error signal for the filtered-U recursive
LMS algorithm, thereby providing a higher stability margin.

are implicit in the later formulations of Sections 11I-C and
11-D.

B. Waveform Synthesis Method

1) Structures and AlgorithmsThe waveform synthesizer

1. . .
i o [55] stores canceling noise waveform samples(n),l =
Many noises are periodic, such as those generated by, 1,...,L — 1} in unique contiguous memory addresses,

. . )
engines, compressors, motors, fans, and propellers. Direc{ypere 7, is the number of samples over one cycle of the
observation of the mechanical motion of such sources ,ayeform andn is the current time index. These samples
generally is possible by using an appropriate sensor, whichenresent the required waveform to be generated and are
provides an electrical reference signal that contains the sequentially sent to a D/A converter to produce the actual

fundamental frequency and all the harmonics of the primary ¢anceling noise waveform for the secondary loudspeaker.
noise. However, this technique is only effective for periodic 11,5

noise because the fundamental driving frequency is the only
reference information available.

N ARROWBAND FEEDFORWARD ANC

A. Introduction represents thg(r)th element of waveform samples, where

A basic block diagram of narrow-band ANC for reducing :(n) = n» mod L and can be implemented as a pointer
periodic acoustic noise in a duct is illustrated in Fig. 9. This incremented in a circular fashion between zero énd 1
system controls harmonic sources by adaptively filtering a for each sampling period, controlled by interrupts generated
synthesized reference signa{n) internally generated by  from the synchronization signal.
the ANC system. This technique has the following advan-  The residual noise picked up by the error microphone
tages: 1) undesired acoustic feedback from the cancelingis synchronously sampled with the reference signal timing
loudspeaker back to the reference microphone is avoided;pulses. In a practical system, there is a delay between the
2) nonlinearities and aging problems associated with the time the signaly(n) = w;,)(n)] is fed to the loudspeaker
reference microphone are avoided; 3) the periodicity of the and the time it is received at the error microphone. This
noise removes the causality constraint; 4) the use of andelay can be accommodated by subtracting a time offset
internally generated reference signal results in the ability from the circular pointerj(n). Thus, the adaptation unit
to control each harmonic independently; and 5) it is only adjusts the values of the waveform samples using a variant
necessary to model the acoustic plant transfer function overof the LMS algorithm
frequencies in the vicinity of the harmonic tones; thus, an
FIR filter with substantially lower order may be used.

The reference signal generator is triggered by a syn-
chronization pulse from a nonacoustic sensor, such as a
tachometer signal from an automotive engine. In general, where A = |r/T] and 7 is the time delay, which is
two types of reference signals are commonly used in constant for a given loudspeaker-microphone arrangement,
narrow-band ANC systems: 1) an impulse train with a T is the sampling period, anfl:| = greatest integer less
period equal to the inverse of the fundamental frequency than or equal tac. This offset numberA must be updated
of the periodic noise [54] and 2) sinewaves that have the as the sampling rate varies, since it is synchronized with
same frequencies as the corresponding harmonic tones tdhe noise source.

l=j(n—A)
otherwise

wy (ﬂ) + NC(TL),
wi(n),

wi(n+1)= { (20)
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Fig. 10. Equivalent diagram of waveform synthesis method using
impulse train input and neglecting secondary path effects.

2) Principle and Analysis:The waveform synthesis
method is equivalent to an adaptive FIR filter of order
L = N excited by a Kronecker impulse train of period
N = T,/T samples [4]

(21)

where §(-) is the discrete Kronecker delta function and
To = 2w /wg is the period of the noise with fundamental
angular frequencywy. Temporarily neglecting secondary
path effects, Fig. 10 shows how the periodic noise is
canceled by the output of an adaptive filter using the
periodic impulse train as the reference inpyt).

For reference signal (21) and an adaptive filter with order
L = N, the transfer functionH (z) between the primary
input D(z) and the error outpuk( =) is derived as [54]

E(2) 1—2F

HA) =50 “ 1=

(22)

The zeros have constant amplitudel = 1) and are equally
spaced(27/L) on the unit circle of thez plane to create

nulls in the frequency response at harmonic frequencies
kwo. Therefore, the tonal components of the periodic noise
at the fundamental and harmonic frequencies are attenuate

by this multiple-notch filter. The poles have the same
frequency as the zeros but are equally spaced on a circl
at distancg1 — 1) from the origin. The effect of the poles
is to introduce a resonance in the vicinity of the null, thus
reducing the bandwidth of the notch.

Equation (22) also gives a practical limitation on the
value of . from stability considerations; that i8,< < 1
for an impulse train of unit amplitude. The 3-dB bandwidth
of each notch fon, <« 1 is approximated a®3 ~ /77T
(Hz) [54]. This shows that the bandwidth of the notch
filter is proportional to the step sizg. In the general

e

computed as

L—1
2'(n) =" Bn—1) = 3 (23)
=0

where 5, is the Ith coefficient of the filterS(z), j(n)
n mod L is the same circular pointer as that used in
(19). Therefore, the FXLMS algorithm for synchronous
waveform synthesis ANC systems becomes [4]

1=0,1,...,L—1

(24)

wi(n + 1) = wi(n) + pe(n)3im,y,

where k(n,l) = (n — 1) mod L.

The transfer function of the synchronous periodic con-
troller in the ideal environment [withoui(z)] is specified
by (22). The presence & z) modifies the transfer function
of the controller to [58]

_ 1—27%
11— pS() L

H(z) (25)
The detailed dynamic stability limits are analyzed elsewhere
[58].

4) Delayed LMS Algorithm:If the case of a single sinu-
soid is considered, then the steady-state response of the
secondary path can be modeled by a pure delay. Therefore,
the compensator can be approximatedﬂs) = 272,
where A is the number of samples of delay fropi{n)
to e(n). If the delay valueA is small compared to the
filter length L, the convergence behavior of the delayed
LMS algorithm is not significantly impaired from that of
the conventional LMS algorithm [37]-[39].

The steady-state transfer functidi(z) from D(z) to

E(z) for the delayed LMS algorithm is [59]
1—zF

. (1= pz IA/EIL) =L

H(z) (26)

dI'his transfer function shows that the delayed coefficient

adaptation changes the pole structure. In addition to re-
ducing the bandwidth of the notch, the inclusion of delay
shifts the angle of the poles away frobwg, and accord-
ingly increases the out-of-band overshoot of the frequency
response [59], [60]. As the step sizeand/or the delay

in the secondary path is increased, these out-of-band peaks
become larger until the system finally becomes unstable.

C. Adaptive Notch Filters
1) Narrow-Band Adaptive Noise CanceleAn adaptive

case, the time constant of the response envelope decayotch filter can be realized by using an adaptive noise

~
~

is approximatelyr ~ T/ (second). Therefore, there is

canceler [56] with a sinusoidal reference signal. The

tradeoff between the notch bandwidth and the duration of advantages of the adaptive notch filter are that it offers easy
the transient response, which is determined by the step sizecontrol of bandwidth, an infinite null, and the capability to

and the sampling rate of the narrow-band ANC system.
3) FXLMS Algorithm: As discussed in Section Il, the
effects of the secondary patfiz) must be compensated
for by using the FXLMS algorithm. Assuming a secondary-
path estimates(z) of order L = N, the output ofS(z) is

950

adaptively track the exact frequency of the interference. A
single-frequency adaptive noise canceler with two adaptive
weights is illustrated in Fig. 11. The reference input is a
cosine wavez(n) = zo(n) = Acos (won), where A and

wp are the amplitude and frequency, respectively, of the
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a(n) W2)

Primary Signal X0
W(2)
Xo(m) 90° x¢(n) + e(n)
Reference o Pgr?i?te Gl
Signal x(n) -
wo(n) w;y(n)
+
{7y F_ig. 12. Single-frequency ANC system using the FXLMS algo-
+ y(n) rithm.
LMS |-
o 2) Single-Frequency ANCThe application of the adap-
Z)

tive notch filter to periodic ANC has been developed by
Fig. 11. Single-frequency adaptive notch filter. Ziegler [57]. A recursive quadratic oscillator provides two
orthogonal componentsy(n) and z1(n), which are used

as reference inputs for the adaptive filter. These two signals
are separately weighted and then summed to produce the
canceling signal(n). The delayed LMS algorithm updates
the filter weights to minimize the residual erren). Thus

reference signal. A 90phase shifter is used to produce the
quadrature reference signad(n) = Asin (won).
The steady-state transfer functiéf(z) from the primary
input d(n) to the noise canceler outpufn) is [56]
wi(n + 1) = wi(n) + pe(n)z(n — A), =01
E(#) 7% —2zcoswp + 1

H(z)= = . (31)
D(z) 22—(2—pA?)zcoswg+1— pA?
27) where A is used to compensate for the secondary-path
transfer function.
The zeros offf (z) are located in the plane atz = %« Alternatively, the above delay unit can be replaced by a

being precisely on the unit circle at anghg. The adaptiv secondary-path estimatg(~) as in the FXLMS algorithm
noise canceler therefore acts as a tunable notch filter, withllustrated in Fig. 12. The adaptive weights are updated as
a notch located at th(_a reference frequengyFor a general wi(n + 1) = wi(n) + px)(n)eln), 1=0,1 (32
Lth order adaptive filter, (27) becomes [61]
where z{(n) andz{(n) are the filtered versions afy(n)
22 —2zcoswo + 1 (28) and z1(n), respectively, obtained through the secondary-

) pLA? pLA% path estimateS(z).

= <2 T 5 )ZCOSWO tl-— In the limit of slow adaptation, the transfer function of
the narrow-band ANC system then becomes [4]

Therefore, the poles are dependent on the number of taps
L, and that will affect the shape of the notch. H(z)=

The sharpness of the notch is determined by the closeness

H(z) =

22— 2zcoswp + 1
22 —[2coswg — Beoswg — Ppa)|z + 1 — Bcos pa

of the poles to the zeros. The 3-dB bandwidth of the notch (33)

filter is estimated as [61] where 5 = uA2?A,, A, is the amplitude ofS(z) at fre-
) quencywo, and ¢a = ¢s — ¢ is the phase difference

B~ pLA (Hz). (29) betweenS(z) and S(z) at wg. For small 3,H(z) has

4nl complex conjugate poles at radius = /I — Fcos Pa.

Since all the terms composingare positive, the radius of
the pole can be greater than one onlyd ¢ is negative.
Accordingly, the stability condition is

When the interfering sinusoid frequency changes rapidly or
jitters around, the notch width must cover a wider frequency
range. This can be accomplished by using a larger
which has the effect of providing faster tracking and of cospa >0 or —90° < pa < 90° (34)
producing a wider notch. Fak = 2, the system has very ] )

fast convergence and thée time constant of the adaptation @nd the convergence time constant is slowed down by a

is approximated as [4] factor of 1/ cos ¢ [31].
Another method for analyzing the stability and transient

27 response of the adaptive notch filter using the FXLMS

Tmse < E () (30) algorithm is to formulate the problem in the complex

weight domain and apply standard control theory [62].

which is determined by the power of the reference sinewave Application of this analysis technique showed that large
and the step sizg. out-of-band gain can lead to instability. One solution to
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the out-of-band gain problem is to equalize the secondary- 3) Direct/Parallel Form: A configuration of multiple ref-
path transfer functiorS(z) in phase and amplitude over erence signal generators and corresponding adaptive filters
the entire band. An alternative solution is to control the has been developed [66] to improve the performance of
out-of-band response by either employing a bandpass filterANC systems for automotive applications. The idea is to
in the secondary path before demodulation or a lowpassseparate a collection of many harmonically related sinu-
filter after demodulation [62]. However, there is an inherent soids into mutually exclusive sets that individually have
tradeoff here because in addition to attenuating out-of-bandfrequencies spaced out as far as possible. In general, if
gain, a bandpass filter will also introduce delay. Another there areA harmonics to be canceled add (K < M)
solution consists of two interconnected adaptive filters using signal generators are used, each reference sigiial), k =
the same internally generated reference signal [63]. 1,2,..., K contains staggered sinusoidal frequencies of
3) Simplified Single-Frequency AN(Ziegler’s technique every other Kth harmonic. These reference signals are
requires either two tables (cosine and sine) in the waveform processed by their corresponding adaptive filters. By par-
generator to generatey(n) and x1(n) or uses only one titioning signal component frequencies in this fashion,
cosine table and a 9(phase shift unit to generate the sine the accuracy and rate of convergence of each adaptive
waveform. In a simplified single-frequency ANC system filter can be significantly improved. This is because the
[64], a single-cosine-wave generator is used to generate a@requency difference between any two successive sinusoidal
reference inpuk(r), which is then fed to a simple second- components in:,(n) is effectively increased, as compared
order FIR filter, where both weights are updated by the to the direct implementation technique.
FXLMS algorithm. (See [4] for details.) In this case, the  4) Cascade Form:ldeally, multiple-sinusoid references
fastest convergence can be achieved by choosing a samplingre more effectively employed in a cascadeMéfsecond-
rate equal to four times the frequency of the sinewave.  order single-frequency notch filters. The overall response
of such an arrangement is given by [60]
D. Multiple-Frequency ANC o

M
In practical applications, periodic noise usually contains H(z)= H,.(2) = . —
multiple tones at the fundamental frequency and at several ,,1;[1 ,,gl 1+ S5(2)Won(2)
harmonic frequencies. This type of noise can be attenuated . . . i
by a filter with multiple notches. In general, realization of VV\I//here W’"(;) is the mlth ste;:tlon adaptive (1;|Iter. Ea(;]h
multiple notches requires higher order filters, which can be m(#) produces a pole at frequenay,,, and so eac

implemented by direct, parallel, direct/parallel, or cascade Hy(2) produces a notch ab’."' If_ an e_stlmatg (?f the .
forms. secondary-path transfer function is available, it is possi-

1) Direct Form: A method for eliminating multiple si- ble to configure a “pseudocascade” arrangement [60] that

: ST ideally performs as a true cascade but requires only one
nusoidals or other periodic interference was proposed by A
Glover [61]. The reference input is a sum &f sinusoids second_ary path estimaté(z). The pseudocascade FXLMS
notch filters are expandable to any number of stages and
M

can theoretically cover an arbitrarily wide bandwidth.
a(n) = Z A c0s (W) (35) 5) Rectangular-Wave Reference Signdlhe rectangular-
m=t wave z(t) potentially contains the fundamental and all

where A,,, and w,, are, respectively, the amplitude and harmonic components of the periodic noise. The shape
the frequency of thenth sinusoid. When the frequencies of the spectrum of:(¢) is dependent on the duty-cycle
of the reference sinusoids are close together, a long filter ratio 7 /Ty, where and T, are the pulse width and the
(L > 2M) is required to give good resolution between fundamental period of the rectangular wave. (See [4], [67],
adjacent frequencies. This is an undesired solution sinceand [68] for details.)
a higher order adaptive LMS filter results in slower con-
vergence, higher excess MSE, and higher numeric errors.g Active Noise Equalizers
An application of Glover's method for actively attenuating
engine-generated noise has been proposed [65].

2) Parallel Form: For the case in which the undesired

37

The design of an ANC system usually pursues maximal
attenuation of the incoming noise. However, in some ap-

fimary noise containd/ sinusoids M two-weiaht adan- plications, it is desirable to retain a small residual error
b Y ' 9 P with specified spectral shape. For example, in a car, truck,

tive filters can be connected in parallel to attenuate these : : . )
or earth-moving machine, the driver needs some audible

narrow-b_and (_:omponents. The canceling signal is a sum Ofinformation about engine speed to be able to control the
M adaptive filter outputs

vehicle safely. The equalization system is called an active

M noise equalizer [69] and is implemented in the frequency
y(n) = Z Ym(n) (36) domain [70]. The principle of narrow-band active noise
m=1 equalization also applies to broad-band noise [71].
where each outpuy,,,(n) is derived as in the single- A block diagram of the general narrow-band active

frequency case. Since only one error sensor is used, therenoise equalizer system for controlling periodic noise is
is only one error signat(n), which is used to update all shown in Fig. 13. The output of the two-weight filter,
M adaptive filters based on the FXLMS algorithm. y(n), is split into two branches, the canceling branch
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x4(n) -« Balancing
(] o
90 > Branch x'(n)
wy(n) » |LMS |- Vo
A
(S & dn) ——— [ \4
:Algl;_xitshm Fig. 15. Wideband adaptive feedback ANC system using the

FXLMS algorithm.

Fig. 13. Block diagram of single-frequency active noise equal-
izer. . . . . . .
Fig. 14, the primary noise is expressed in thelomain

as D(z) = E(z) + S(2)Y (z), where E(z) is the signal

MicrEc:;?mrone Loudspeaker obtained from the error sensor aiid(») is the secondary
— > signal generated by the adaptive filter. 9{>) = S(2),
Pl\f‘l"_\afy we can estimate the primary noigén) and use this as a
Noise oise i i i
Soe synthesized reference signaln). That is
en) Feedback y() X(2) = D(2) = E(2) + 8(2)Y (). (38)

This is the reference signal synthesis (regeneration) tech-
Fig. 14. Single-channel feedback ANC system. nique, whereby the secondary signéh) is filtered by the
secondary-path estimafé ) and then combined with(n)
and the balancing branch. The gaifisand (1 — 3) are  t0 regenerate the primary noise.
inserted in these two branches to enable adjustment of the The complete single-channel adaptive feedback ANC
residual noise. If the secondary-path estimate is perfect [i.e.,System using the FXLMS algorithm is illustrated in Fig. 15,

S(z) = S(z)], the pseudo-erroe/(n) can be expressed as WhereS( ) is also required to compensate for the secondary
¢'(n) = d(n) — y(n), which is the residual noise of the path. The reference signa(n) is synthesized as
conventional ANC system. The adaptive filter minimizes M1

the pseudoerror signal using the FXLMS algorithm. A_fter z(n) = d(n) = e(n) + Z gmy(n —m) (39)

the filter has converged/(n) ~ 0, the system output is foopr

e(n) = d(n) — (1 — B)y(n) = pd(n). Thus, the system .

outpute(n) contains a residual component of the narrow- WN€r€sm,m =0,1,...,M —1 are the coefficients of the
band noise whose amplitude is continuously, linearly, and #/th order FIR filter$(2) used to estimate the secondary

path.
2) Algorithm Analysis: From Fig. 15, we have:(n) =
d(n) if 5(2) = S(z). If the step sizeu of the LMS
IV. FEEDBACK ANC algorithm is small (slow convergence), the adaptive filter
A block diagram for a single-channel feedback ANC y1/(;) can be commuted withS(z) [9]. If we further
system is presented in Fig. 14. The error sensor output iSgssume that the secondary pattz) can be modeled by
processed by an ANC system to generate the secondaryy pure delay, that isS(z) = =2, Fig. 15 is identical
signal. Several nonadaptive feedback ANC systems haveig the standard adaptive prediction scheme shown Fig. 16
been described [3]. In this section, adaptive feedback ANC [74]. The system response frodfn) to e(n) is called the

totally controlled by adjusting the gain valy®[4], [69].

systems are presented. prediction error filtetH(z). The adaptive filte#?V (=) acts as
an adaptive predictor of the primary noig@ ) to minimize
A. Adaptive Feedback ANC Systems the residual noise(n), so the performance of the adaptive

A single-channel adaptive feedback ANC system was feedback ANC system depends on the predictability of the
proposed in [72] and extended to the multiple-channel casePrimary noised(n).
in [73]. We view this technique as an adaptive feedforward If S(z) = S(z), the overall transfer functiod (=) of
system that, in effect, synthesizes, or regenerates, its ownfeedback ANC fromd(n) to e(n) is [4]
reference signal, based only on the adaptive filter output E(%)
and error signal. H(z) = D) 1= S(z)W(z). (40)

1) Structure and Algorithm:The basic idea of an adap- )
tive feedback ANC is to estimate the primary noise and Thus, under ideal conditions, the adaptive feedback ANC
use it as a reference signal(n) for the ANC filter. In system shown in Fig. 15 is equivalent to the feedforward
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: LMS e | Fig. 17. Hybrid ANC system with combination of feedback ANC
o [ and feedforward ANC.
Fig. 16. Block diagram of adaptive predictor. of the primary noise at the error sensor than the output

of the reference sensor, which is located away from the
control point. This is particularly true whenever the noise
field is isotropic and the reference sensor is no longer fully
oherent with the noise at the error sensor location.

ANC system discussed in Section Il. The stability robust-
ness of the adaptive feedback controller to changes in the
plant response can be separately assessed using a generaﬁ
ization of the complementary sensitivity function [75]. The
stability robustness is improved by incorporating various B. Hybrid ANC Systems

forms of effort weighting into the cost function, resulting g feedforward ANC systems discussed in Section I
in the leaky FXLMS algorithm used in feedforward ANC ;5o two sensors: a reference sensor and an error sensor.

systems. _ . The reference sensor measures the primary noise to be
3) Other Feedback ANC AlgorithniBhe output-whitening 4 celed while the error sensor monitors the performance
feedback ANC method [76] assumes that the primary noise ot e ANC system. The adaptive feedback ANC system
d(n) is formed by passing white noise through a moving- ,se5 only an error sensor and cancels only the predictable
average (MA) filterP’(z). The secondary source is assumed qise components of the primary noise. A combination of
to be placed close enough to the primary source so that thehe feedforward and feedback control structures is called
secondary-path transfer functidf(z) is minimum phase. a hybrid ANC system, as illustrated in Fig. 17 [80]. The
Then, from linear estimation theory, the optimal controller reference sensor is kept close to the noise source and

is expressed as provides a coherent reference signal for the feedforward

P(z) -1 ANC system. The error sensor is placed downstream and
We(z) = W (41) senses the residual noise, which is used to synthesize the

reference signal for the adaptive feedback ANC filter, as
This optimal filter will result in a minimum error sig- well as to adapt the coefficients of both the feedforward
nal e(n) that is spectrally white; in other words, all the and feedback ANC filters. The feedforward ANC attenuates
energy that is predictable from the MA modg&Y(~) has primary noise that is correlated with the reference signal,
been removed. (See [4] and [33] for further details.) The while the feedback ANC cancels the predictable compo-
output-whitening approach is extensible to multiple-channel nents of the primary noise that are not observed by the
feedback ANC by utilizing multiple independent controllers reference sensor.
with weighted combining [77]. The hybrid ANC system using the FIR feedforward ANC
By a somewhat different approach, we first employ and the adaptive feedback ANC is illustrated in Fig. 18,
secondary-path neutralization similar to the adaptive feed- where the secondary signag(n) is generated using the
back ANC concept, but then, instead of using the FXLMS outputs of both the feedforward ANC filtet(z) and the
algorithm to adap#¥ (), we use an open-loop method to feedback ANC filterC(z). The combined controlleWV ()
estimate the parameters of the primary source métie) has two reference inputs:(n) from the reference sensor
and predict the next value af(n) through the secondary andd(n), the estimated primary signal. Filtered versions
path S(z). Oppenheim and coworkers [78] developed an of the reference signals'(n) andd’(n) are used to adapt
estimation and prediction method for the special case whenthe coefficients of the filtersi(z) and C(z), respectively.
the secondary path is a pure delay. They postulate an ARA similar hybrid ANC system using the adaptive IIR
model for P(z) and develop a procedure for estimating its feedforward ANC and the adaptive feedback ANC can be
parameters. The prediction part is then formulated using thefound in [4]. The advantage of hybrid ANC over other
standard Kalman filter setup. ANC systems is that a lower order filter can be used to
The performance of the Kalman algorithm was com- achieve the same performance. The hybrid systems also
pared with the feedforward ANC algorithm discussed in clearly demonstrate an advantage over either the simple
Section Il by Zangi [79]. The output of the error sensor feedforward ANC or adaptive feedback ANC system alone
contains much more information about the future values when there is significant plant noise.
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Fig. 18. Hybrid ANC system using the FIR feedforward ANC
with the FXLMS algorithm.
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V. MULTIPLE-CHANNEL ANC Fig. 19. Structure of a multiple-channel acoustic ANC system

Since the noise field in an enclosure or a large-dimension with J reference inputs X' secondary sources, andil error
duct is more complicated than in a narrow duct, it is "%
generally necessary to use a multiple-channel ANC system
with several secondary sources, error sensors, and perhapsnclosure since all modes have a pressure maximum there.
even several reference sensors. Some of the best-knowmhe secondary sources should be located in positions where
applications are the control of exhaust “boom” noise in they can couple well to the acoustic modes of the enclosure,
automobiles [81]-[84], earth-moving machines [85], and or if possible, couple directly to the primary noise source. In
the control of propeller-induced noise in flight cabin interi- the later case, to improve the performance of the system, the
ors [86]-[88]. Other ANC applications, such as vibration distance from the primary to the secondary sources must be
control in complex mechanical structures, also require |ess than a quarter-wavelength at the highest frequency [93].

multiple channels. Subtle physical attributes of the multiple-channel ANC
system that affect convergence are the placement of the
A. Principles error sensors and the location of the secondary sources [94].

Theoretical predictions, computer simulations, and lab- AS @ny two or more channels approach linear dependence at
oratory experiments on harmonic ANC in a shallow en- SOme particular freq_uency, convergence slows S|g_n|f|cantly.
closure were presented in a trilogy of papers by Nelson The remedy for this problem is to move physically or
et al. [89]-[91]. The total potential acoustic energy, is remove one or more of the secondary sources or error
approximated by the sum of the squares of the outputs of SENSOrS.
many error sensors distributed throughout the enclosure.

This suggests that the multiple-channel ANC system should g Multiple-Channel FXLMS Algorithms
minimize a cost function

A multiple-channel acoustic ANC system is illustrated
M

\% ) in Fig. 19 as an example of a general multiple-channel
&= 4pc2 M Z [ (42) ANC system. For narrow-band feedforward multiple-
m=l1 channel ANC systems, a nonacoustic sensor can be used

where p is the density of the acoustic medium,is the as the reference sensor to generate a reference signal. For
propagation velocity, ang,, is the sound pressure at the broad-band feedforward ANC, the multiple-channel system
mth error sensor position in the enclosure with a totadbf employsJ reference sensors to form the reference signal
error microphones. The significance of (42) is tas a vector. For adaptive feedback ANC, the reference signals
quadratic function, and thus allows the efficient gradient are internally synthesized based on the secondary and error
descent method to be employed in the multiple-channel signals. The multiple-channel ANC system generakés
ANC algorithm. canceling signals to drive the corresponding secondary
Under low frequency conditions, surprisingly few error sources, andy error sensors are distributed over desired
sensors are needed to achieve substantial reductions in totdbcations to measure the residual noise components.
noise energy [92]. The location of these error sensors is A block diagram of a multiple-channel ANC system
very important to obtain the best estimate of the total that includes feedback paths from the secondary sources
acoustic potential energy. For a rectangular enclosure, ato the reference sensors is illustrated in Fig. 20. The wide
good choice is to put an error sensor in each corner of thearrows represent an array of signals (acoustic or electrical)
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fork=1,2,...,K andm = 1,2,..., M are the filtered
reference signal vectors, which are formed by filtering
z(n) by the secondary-path estimatés; (z) from the kth
secondary source to thath error sensor. In (46%,,.x(n)
represents the impulse response of an FIR fﬁt@i;(z) that

is used to estimaté,,,»(z). The single-reference/multiple-
output FXLMS algorithm is expressed in detail for ax12

x 2 example in [4]. Similar to the derivation of the leaky
FXLMS algorithm given in Section 1I-C, the cost function
(44) can be modified to including a weighting factor. The
multiple-channel leaky FXLMS algorithm is similar to (45),
except thatwy(n) is used to replacev(n).

In some cases, it is advantageous to locally minimize
the sum of the squared signals from only a few error sen-
sors. This concept is formalized by employing independent
that are symbolically expressed as vectors. The ma#ix  weighting factorsgy,, to control the influence of thé/
represents\/ x J primary path transfer functions?,,,;(z), error signals on each of th& adaptive filters [85]. The
from the primary source to each error sensor ougpit?). extreme case of this approadh,, # 0 only if k = m
The matrix S representsM x K secondary-path transfer with X = M, has been examined [95] for axl 2 x 2
functions, S,,.(z), from K secondary sources &/ error system. The stability of such a decentralized ANC system
sensors. Also, the matri¥’ represents/ x K feedback in a free field is achieved by positioning each error sensor
paths F;,(z) from K secondary sources td reference  closer to its associated secondary source than to the other
sensors. There ard( x J possible feedforward chan- secondary source.
nels, each demanding a separate adaptive filter, and these 2) Frequency-Domain Convergence AnalysEhe con-

K x J adaptive filters are represented by the maix vergence behavior of a multiple-channel ANC system
A complete set of multiple-channel FXLMS algorithms can be analyzed in the frequency domain in terms of the
for broad-band feedforward, narrow-band feedforward, and convergence of the individual secondary signals, the cost
adaptive feedback ANC systems are introduced in [4].  function, and the control effort [92]. This frequency-domain

1) Single-Reference/Multiple-Output AlgorithnThe sin- analysis applies to narrow-band ANC systems that control
gle-reference/multiple-output ANC system aims to control one or more harmonics of periodic noise and provides
a multidimensional noise field produced by rotating ma- insight into the physical process involved.
chinery such as engines [39]. As discussed in Section Ill,  For controlling a narrow-band noise component of known
a nonacoustic reference sensor is used to avoid feedbackfrequency, the reference signal is a pure sinusoid, which in
The kth secondary signajy(n) is obtained by filtering the  the frequency domain can be considered a constant of value
reference signak(n) through the corresponding adaptive X = 1. Thus from Fig. 20, by expressing the quantities
FIR filter in the frequency domain and omitting the frequency index

yr(n) = w? (n)z(n), k=1,2,...,K (43) fqr simplicity, we haveY = W. Therefor_e, the error
signal is expressed & = D — SW. The multiple-channel

Primary
Source

Fig. 20. Block diagram of an adaptive multiple-channel feedfor-
ward ANC system with feedback paths.

where wy,(n) = [wro(n) wii(n)---wir-1(n)]" is frequency-domain FXLMS algorithm is expressed as [92]
the weight vector of theith adaptive filter ande(n) =
[z(n) z(n—1)---x(n— L+1)] is the common reference W(n+1)= (I - uS"S)W(n) +us"D (47)

signal vector for all adaptive filters.
The cost function of the adaptive filters is approximated \ynere the superscrip (Hermitian) denotes conjugate

by the sum of the instantaneous squared errors as transpose. Therefore, the mat$' S plays the same role
R M as the reference signal autocorrelation matrix in the single-

€)= en(n) =" (n)e(n). (44)  channel case. The eigenvalues9fS determine the con-
m=1 vergence characteristics of the multiple-channel frequency-

Following a derivation similar to the single-channel case domain FXLMS algorithm. It is noteworthy that disparate
discussed in Section II, the single-reference/multiple-output eigenvalues arise here because of the spatial nature of the

FXLMS algorithm is derived and partitioned inf§ equa- secondary-path matrixs. Thus, the convergence of the
tions [4] general broad-band multiple-channel FXLMS algorithm is
M limited by both the spatial and temporal characteristics of

wi(n +1) =wi(n) + 41 Y Tho(n)em(n), the system.
me1 As with the single-channel leaky FXLMS algorithm, the
k=1,2,....K (45) cost function can be modified to include the control effort,
written as
where
T (1) = Spr(n) x x(n) (46) &(n) = E"E +yWHw (48)
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where v is a real constant that determines the balance for £k =1,2,...,K andj =1,2,...,J, where the vectors
between reducing the total MSE* E and moderating the

/ — & .
control effort W”W. The convergence of the multiple- jrm (1) = Smi(n) +2;(n) (52)
channel frequency-domain leaky FXLMS algorithm is guar- e the filtered reference signal vectors.
anteed if [92] A practical application of multiple-reference/multiple-
2 output active control for propeller blade-passage noise
< It k=12... K (49) inside a 50-seat aircraft has been reported [33]. That system
k uses three reference signals (internally generated sinusoids)
whereo? is the kth eigenvalue ofSHS. The effect ofy for the fundamental frequency and its first two harmonics,

on the convergence of the ANC system is to speed up the 16 secondary sources, and 32 eIror sensors, resultingina 3
very slow modes of convergence, which are associated with X 16 x 32 multiple-reference/multiple-output ANC system.
small values obZ, by adding a constant facter. (See [4] _
for further details.) C. Multiple-Channel IIR Algorithm

A suitably chosen value ofy will not only speed up The purpose of the broad-band feedforward multiple-
convergence but can also prevent physically unreasonablereference/multiple-output adaptive IR controller [41], [73],
values of control effort. The value of is selected to give  [96] is to provide multiple-channel ANC capability with
the best tradeoff between controlling significantly excited longer impulse responses and feedback compensation using
modes and moderating the control effort expended on a low-order recursive section. As illustrated in Fig. 21,
insignificant modes. Moderating the control effort also con- the controller contains two filter sections. The first section
siderably reduces the risk of instability due to errors in the is a block of all-zero FIR filters from each reference
secondary-path models [34]. Furthermore, the constrainedsensor to each secondary source, while the second section
algorithm is equivalent to the leaky FXLMS algorithm, implements a matrix-1IR structure of all-pole filters. The
which has the additional benefit of reducing the effects of feedforward section of the controller is represented by
numerical errors and preventing algorithm stalling. the transfer function matrixi(z), which is composed of

3) Feedback ReductionAs illustrated in Fig. 20, there  elementsd, ;(z) from inputz;(n) to thekth summing node
is generally feedback from th& secondary sources to to producey,(n), the k&th component of the output vector
the ./ reference sensors. Therefore, the problems of ref- (n). Likewise, the transfer function matriB(z) repre-
erence signal contamination and possible system instability sents the recursive section of the controller with element
necessitate a modification of the multiple-channel FXLMS B, () from y;(n — 1) to yx(n). Therefore, the secondary
algorithm. Acoustic arrangements to reduce feedback aresignal ;(n), which drives thekth secondary source, is
discussed in [4]. Another technique to reduce feedback from expressed as
K secondary actuators to the reference sensor in the broad- J X
band r_nult_|ple-channel ANC system is to use feedback un(n) = Zafj(n)xj(n)+bei(n)yi(n— 1)
neutralization. = =

fork=1,2,....K (53)

D. Multiple-Reference/Multiple-Output FXLMS Algorithm

The general multiple-reference/multiple-output ANC sys-
tem using the FXLMS algorithm is shown in Fig. 20, where
the ANC filter W has.J reference input signals;(») that
are elements of the signal vectefn). Each controller in
the matrix W is represented byVy,(z), where j is the
reference input index ankl is the secondary source index.
The secondary signal output to théh secondary source is

where a,kj(n) = [akjyo(ﬂ) CL;@J(TL) s akj7L,1(n)]T and
br:(n) = [bk770(7‘L) bk7‘,71(7‘L) = ~bk7‘,71_1(7‘L)]T are the feed-
forward and feedback filter coefficients, respectively, and
x;(n),y,(n) are, respectively, the reference input signal
vectors and output signal vectors.

A multiple-reference/multiple-output filtered-U recursive
LMS algorithm [41], [96] for the IIR filter structure mini-
mizes the sum of thé&/ MSE signals

J M
w(n) =D _wiy(mz;(n), k=12, K (50) arj(n+1) =a;(n) + 10 Y Fp(n)em(n)  (54)
j=1 m=1
wherea; (n) = [;(n) ¢;(n — 1) -a;(n — L+ D] j .
1,2,---,J are the reference signal vectors. There are kiln +1) =ba(n) N;y”‘m(n)e (n)  (59)

M x K different secondary paths,..(z) between the ) . .
secondary sources and error sensors, which are modeledvherej,,, (n) = 8mx(n)+x;(n) andy;,,,, (n) = 3px(n)
by S, (%) to generate an array of filtered reference signals ¥i(n) are, respectively, the filtered reference and output

. () for the multiple-channel FXLMS algorithm signal vectors. _ o
Multiple-channel adaptive IIR filtering has been success-

M fully applied to the active control of random noise in a small
wij(n+1) = wi;(n) + 1 Y Fyn(n)em(n)  (51)  reverberant room [41]. In that work, the performance of
m=1 adaptive multiple-channel FIR and IIR filters was compared
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Primary
Source / P(2) M

Fig. 21. Block diagram of multiple-channel ANC system using an IIR adaptive filter.

experimentally for an ANC system with four secondary

sources and eight error sensors. The matrix-1IR structure
results in a more stable configuration in the presence of
feedback, especially if a small leakage factor is included.
The experimental results also show that far better perfor-
mance is achieved by using IIR filters rather than FIR

filters when the primary noise source has a lightly damped
dynamic behavior.

KxM
Adaptive
Filters

D. Multiple-Channel Adaptive Feedback ANC Systems

The single-channel feedback ANC system shown in
Fig. 15 is easily extended to & x 1 system that has
K secondary sources and one error sensor. The referenc
signalz(n) of the feedback ANC system is synthesized as

Enclosure

. . . Reference
an estimate of the primary noise Signal
K Synthesizer
z(n) =d(n) = e(n) + Z 8r(n) * yr(n) (56) Fig. 22. Block diagram of K" x M feedback ANC system.
k=1
wheres;,(n) is the impulse responses of filtéy, (=), which M reference signals,,(n) for the correspondindy x M

models the secondary paffy(z) from the kth secondary  adaptive filters\¥;...(»). The synthesized reference signals
source to the error sensor ang(n) are the secondary are expressed as
signals obtained from the adaptive filtaig,(z).
The FXLMS algorithm is used to minimize the error K .
signale(n) by adjusting the weight vector for each adaptive () = em(n) + Y Smi(n) * i (n),
filter Wy (z) according to . =k1:,12, M (59)

wi(n + 1) = wr(n) + pxi(n)e(n), k=1,2,... K

’(57) where §,,,1.(n) is the impulse response of the secondary-

path estimate?mk(z). The coefficients are updated by the
where multiple-channe(.J x K x M) FXLMS algorithm discussed
in Section V-C for the special case= M. The multiple-
zi(n) = sx(n) *x z(n) (58) channel adaptive feedback ANC system was applied to

is the reference signal vector filtered by the secondary—path.reOluce noise in the operator cabin of a tractor [97] and
. A in a large dimension duct [98].
estimate S, (z).
A more generalK x M adaptive feedback ANC system
is illustrated in Fig. 22. In this system, there avé x K VI. ONLINE SECONDARY-PATH MODELING
secondary paths§,,.(z) from the kth secondary source to As discussed in previous sections, the secondary path is
the mth error sensor, which are estimated by the corre- estimated offline prior to the operation of the ANC system.
sponding filtersS,,,x(z). The reference signal synthesizer For some applications the secondary path may be time
uses theK secondary signalg.(n), M error signals,,,(n), varying, and it is desirable to estimate the secondary path
and M x K secondary-path estimaté,;(z) to generate  online when the ANC is in operation.
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Fig. 24. Block diagram of ANC system with online sec-

) . ) ) ondary-path modeling using additive random noise.
Fig. 23. Block diagram of online secondary-path modeling tech-

nigque proposed in [9].

for the S(z) to be unobtrusive, it should observe only
the signals already in the system. Consequently, in a
practical ANC system, a tradeoff between independence
and intrusion has to be resolved.

A. Fundamental Problem

An ANC system using the FXLMS algorithm with adap-
tive online secondary-path modeling [9] is illustrated in
Fig. 23. The adaptive filtebV (2) generates a secondary . . )
noise y(n) that passes through the secondary psih), B. Additive Random Noise Technique
which is modeled by the adaptive filte¥(z) connected 1) Basic Technique and Convergence Analysis online
in parallel with the secondary path. In this scheme, the secondary path modeling technique using additive random
secondary signal(n) also serves as an excitation signal for noise [99] is illustrated in Fig. 24. A zero-mean white noise
secondary-path modeling. The coefficients of the adaptive v(n) is internally generated and is added to the secondary
filter 5(z) are adjusted online to model continuously the Signal y(n) to drive the secondary source. The adaptive

secondary pathf(z) during the operation of ANC filter
W (z). Assuming thatS(z) is of sufficient order, that(n)
is a persistent excitation signal, and t#¥t:) and S(z) are
time-invariant systems, the steady-state solutio® ©f) is

[4]

(60)

This equation shows that the estima#¢z) obtained by
the online modeling algorithm of Fig. 23 is biased by
P(z)/W(z). The adaptive filtetS(z) can correctly identify
S(z) only if P(z) = 0 [or equivalently, d(n) = 0].
Equation (60) also shows that°(z) is affected by the
adaptive filterW(z). From (3), the optimum solution of
W(z)is W°(z) = P(2)/5(=), that is, an inverse model of
the secondary-path transfer functidtiz). Therefore, the
interaction between adaptive filteF& (z) and 5(z) is very
complicated. For example, by substitutiiig®( z) into (60),
we have$°(z) = 0, which is an undesired solution and
should be avoided.

There are two important requirements of secondary-path

modeling. The first is that an accurate estimateS¢f)

filter S(z) is connected in parallel with the secondary path
S(z); however, the input signal used 8¢ ) is the random
noise v(n) only.

It is useful to define the component of the error due to
the original noise as

w(n) =d(n) = s(n) *x y(n)
[p(n) = s(n) * w(n)] + x(n)

wherep(n), s(n), andw(n) are the impulse responses of
P(z),S(z), andW(z) at timen. Sincez(n) is uncorrelated
with v(n),u(n) is also uncorrelated witl(n). Therefore,
the LMS solution is unaffected by the presence of the
interferenceu(n). However,«(n) will have an effect on
the convergence of the adaptive algorithm.

As illustrated in Fig. 24, the coefficients of the adaptive
filter 5(z) are updated by the LMS algorithm, which is
expressed as [4]

(61)

5(n+1) =5(n) + pw(n)f(n)

= 5(n) + po(n)[t/(n) — ¥/ (n)] - jro(n)u(n)
(62)

should be produced, regardless of the controller transferwhere 3(n) is the coefficient vector of(z) andv(n) is
functionW(z). This independence property will ensure that the reference signal vector. The expected valug(ef in
the overall ANC system is robust. The second requirement (62) converges to its optimal soluticsin), providedv(n)

is that the adaptive filte5(z) should not intrude on the

and u(n) are uncorrelated. However, this does not mean

operation of the ANC system. These two properties appearthat instantaneous values &fn) will be equal tos(n). It
to be mutually exclusive because in order to obtain an is obvious that the undesired terpu(n)u(n) in (62) is

accurate and independent estimation %ffz), it would
be preferable for the modeling filte¥(z) to manipulate
the excitation (secondary) signa(n) directly. However,

KUO AND MORGAN: ACTIVE NOISE CONTROL

a disturbance that is frustrating convergence of the LMS
algorithm and will therefore degrade the performance of
the adaptive filterS(z).
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For online modelingy.(n) acts like an uncorrelated plant
noise of powers2. After convergence, this residual noise
due tow(n) will perturb the adaptive weights af(z),
resulting in a misalignment, or mean-square modeling error,
that is given by [9]

M-1

o?= lim E Z [5m(n) — sm(n)] =~ HMO’Z (63)
n—oo nl:o 2

where §,,(n) and s,,(n),m = 0,1,...,M — 1 are the

impulse responses of the filte$§~) and.S(z), respectively.
For offline modeling,u(n) = 0 and (62) will converge
for sufficiently small step size.. The step size bound for
fastest convergence jg&.g = 2/(3Mo?2), where M is the
order of the adaptive filteS(z) and o2 is the variance
of the white noiseu(n) [4]. As an example, suppose that
an online normalized modeling erret; = 0.1 (—20 dB)
was specified. Then the step size is limited to the value
ton = 2/(300M o2) [4]. Therefore, it would take 100 times
as long forS‘(z) to converge online as it would to converge
offline. In most ANC applications, the interferencgén)
is much larger than the excitation signa{n) and the
convergence rate of filte§(z) is therefore very slow, or it
may fail to converge because of finite-wordlength effects.
2) Methods for ImprovementTo improve the conver-
gence of5(z) in the presence of the interferenaén), the

x(n)

off-line
fo——

f(n)

Fig. 25. ANC system using overall modeling technique.

The complete ANC system using this secondary-path
modeling algorithm is illustrated in Fig. 25. The secondary
signal is switched between the outputsi&f(») and ~—*.

The delayz~% is used during the initialization stage or
if significant changes i?(z) and/orS(z) are detected, at
which times only5(z) and P(z) are updated. Otherwise the
system updateB’(z), 5(z), and P(z) to perform ANC and
online secondary-path modeling simultaneously using the

adaptive noise cancellation technique [56] can be used tosecondary signal froniV’(z) as the excitation signal. The

cancel the component af(n) that is correlated with the
primary sourcez(n) [100], [101]. An additional adaptive
filter with z(n) as the reference signal is used to cancel the
undesired componen{r) in error signak(n) picked up by

the error sensor. The convergence rate of the modeling filter

S(z) has been shown to improve by a factor~e80 using
this technique. A limitation of this technique is its inability
to cancel any interference that is uncorrelated with).

implementation ofz:~” costs only one delay unit because
L — 1 delay units are already included W ().

After P(z) and 5(z) have converged, we have [4]
P(z) — S(2)z L = P(2) — S(z)2 © (64)

assuming thatz(n) provides sufficient excitation at all
frequencies. Therefore, the correspondiR¢z) = P(z)

This problem can be solved by using an adaptive prediction and S(z) = S(z). The accuracy of this overall modeling

error filter to reduce the interferenegn) in error signal
e(n) [102]. The optimum delay for the adaptive predictor
is equal to the length of the impulse response of the
secondary path being modeled.

C. Overall Modeling Algorithm

An overall online secondary-path modeling algorithm
[49], [103]-[105] tries to eliminate the biasing term
P(z)/W(z) in (60) by introducing another adaptive filter
P(z) to model P(z). The output of P(z) is then used to
cancel the disturbancé(n) that is the output signal of
P(z). Altogether, the complete ANC system uses three
adaptive filters— (), $(z), and P(z)—to perform noise

algorithm depends on the order 6fz) and P(z) and the
length of the impulse response &f(>) and S(z). Since

the impulse responses of stable physical systems exhibit
exponential decay, the modeling errors may be neglected if
the order ofS(z) and P(z) are large. Adaptive filters(z)

and P(z) are able to trackS(z) and P(z), respectively, if
only one is changing at a time. Extensive simulations using
measured transfer functions from a real experimental setup
show thatP(z) and $(z) are able to track “slow” changes

in both P(z) and S(z) online whenW (x) is used [107].

D. Multiple-Channel Modeling Algorithms

1) Interchannel Coupling EffectOnline  modeling of

control and secondary-path modeling simultaneously. This K x M secondary paths is more difficult than for a

algorithm has the capability to model the secondary path
without using an additional excitation signal. However, the

single-channel case, since the error sigpal(n) from
the mth error sensor is a mixture of signals coming from

convergence of this algorithm depends on the secondarythe primary pathP,,(z) and secondary path$,,.(z) for

signal, and there is no unique solution for both adaptive
filters 5(z) and P(z). An offline initialization procedure
[106] uses delayz~—" to decorrelate the primary and
secondary signals so that(z) and P(z) will converge

to S(z) and P(z), respectively.

960

k= 1,2,...,K. To explain the effect of interchannel
coupling, consider the k 2 x 2 ANC system illustrated

in Fig. 26. The secondary signals(n) and y»(n) are
generated by adaptive filters and are combined with additive
random noise(n) to drive the secondary sources. The error
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Fig. 26. Secondary-path modeling for axd 2 x 2 ANC system
using one random noise generator.

signale; (n) is measured by the first error sensor, which is
the residual error of the primary noisk(n) canceled by

the noises from both secondary sources. Adaptive filters

S11(#) and $15(z) are used to model the secondary paths
S11(z) and S12(2), respectively.

Assuming that the excitation signa&(n) is zero mean and
is uncorrelated withy;(n), y2(n), andd; (n), the adaptive
filter 511(z) will converge to [4]

82(2) = Sul®) + [Su(x) - Su()].  ©9)

allows simultaneous off-line or online modeling Af x M
secondary paths using a single random noise generator.

The overall modeling algorithm discussed in Section VI-
C can also be extended to multiple-channel ANC systems
with M error signals andK + 1 adaptive filters for each
error signal, wherdy is the number of secondary sources.
For each error signalKX adaptive fiItersS‘mk(z),k =
1,2,..., K are used to model the corresponding secondary
pathsS,,x(z) and combined with an adaptive filtﬁ,l(z)
to cancel the highly correlated disturbandg,(n) from
the primary noise source. This multiple-channel ANC al-
gorithm was applied to control structural vibration [109].

3) Audio Interference CancellationAn integrated ANC-
audio system enhances a desired audio signal by utilizing
ANC to reduce unwanted acoustic noise. This integrated
system uses shared analog components such as mixers,
amplifiers, and loudspeakers so that multiple-channel ANC
may be applied in a variety of applications, such as au-
tomobiles, without the expense of system redundancies.
In this integrated system, the audio signal picked up by
the error sensors in an enclosure becomes an interference
to the ANC system. The audio interference to the ANC
filter can be reduced using an adaptive noise canceler with
the desired audio signal as the reference signal [110]. As-
suming that the audio signal is of persistent excitation and
uncorrelated with the primary noise, the adaptive filter used
for the audio interference cancellation will converge to the
secondary path, and thus also performs online secondary-
path modeling. In addition, music would be more enjoyable

This equation shows that when random noise componentsthan random noise, both in the initial training stage and

are picked up by the first error sensor through multiple
secondary pathsSfi(z) and Si2(z) in this case], the
estimateé‘ll(z) is biased by the cross-coupled secondary
paths S12(z) and 512(z). Furthermore, sinced;»(z) is
adapted at the same time ésl(z), there is no unique
solution for either filter. Note that this cross-coupling effect
occurs for both online and offline modeling.

2) Multiple-Channel Online Modeling Algorithmsf only
one random noise generator is used, oy secondary
paths from one of the secondary sources to Mfeerror

for online operation. This integrated system is expanded to
incorporate hands-free cellular phone operation [111].
Interference cancellation and online modeling are inher-
ently more difficult for the multiple-channel case. First, the
left and right audio signals may be partially correlated and
that would cause problems in uniquely identifying the cross-
coupled secondary paths. Furthermore, the interchannel
decoupling delay technique cannot be used here because
that would destroy the stereo effect of the desired signals.
Consequently, offline techniques or some combination of

sensors can be estimated at a time, since each of theonline and offline techniques would have to be employed
K secondary sources couples to each error sensor. Thigor multiple-channel systems.

process is repeatefl’ times by injecting a random noise

sequentially into one secondary source at a time, thereby

obtaining estimates of th& x M secondary path transfer
functions. A shortcoming of this solution is the total time

VIl. OTHER ANC STRUCTURES AND ALGORITHMS
The adaptive transversal filter using the FXLMS algo-

required to model all the secondary paths (both offline and rithm is the most widely used technique for ANC sys-

online), which may be too long for some ANC applications.
An alternative solution is to use, for example, two random

noise generators [4] for a & 2 x 2 system. The random

noisesw; (n) andwz(n) are mutually uncorrelated and also

tems, owing to its simplicity and robustness. However, the
LMS algorithm has the disadvantage of relatively slow
and signal-dependent convergence. This may be only a
minor problem for ANC systems with stationary noise

uncorrelated with other signals. This technique can be sources such as transformers, electric power generators,
generalized to solve the interchannel coupling problem of diesel-powered boats, locomotives, and compressors. For

a.J x K x M ANC system usingK independent random

nonstationary noise sources such as automobiles, slow

noise generators. However, the cost may be too high for convergence is a critical problem when attempting to cancel

some ANC applications. An interchannel decoupling algo-

transient noise, which occurs at vehicle startups, stops, or

rithm [108] uses a single noise generator with interchannel gearshifts, or with sudden changes of engine speeds or road
delay to decorrelate the excitation signals. This technique noise from tires.
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Fig. 27. Overall structure of lattice predictor and multiple regression filter.

An adaptive system involves two basic parts: a filtering  The reflection coefficients;(n) of adaptive filter are
operation that produces an output signal and an adaptatiorupdated by the gradient lattice algorithm to minimize the
algorithm that adjusts the coefficients of the filter. If a mean square of the sum of forward and backward prediction
transversal filter is used, the convergence rate can beerrors at each stage [118], [119]
improved by using more advanced algorithms such as
adjustable-step-size LMS algorithms and recursive-least- ki(n +1) =ki(n) + [ fi(n)bii(n — 1) 4+ bi(n) fi—1(n)]
squares (RLS) algorithm. The other approach is to condition [=1,2,---,L-1 (68)
the reference signal by employing different filter structures
such as the lattice filter, subband filter, or orthogonal Whereyu is the step size of théth stage. The steady-state
transform. reflection coefficients of the lattice predictor have a mag-

The simplest approach for improving the convergence of Nitude less than one [15]. This property is very important
the LMS algorithm is to use adaptive step sizes [112]-[115]. @nd convenient for a fixed-point hardware implementation.
The selection of step size can be based on the magnitudeAnother important property of the lattice structure is that the
of the error signal, polarity of successive samples of the backward prediction error(n) are mutually uncorrelated
error signal, measurement of the correlation of the error [15]. Thus, the lattice predictor transforms the correlated
signal with the reference signal, and other features. The reference signalgz(n) z(n—1) - - z(n—L+1)} into a cor-
performance of these techniques is highly dependent on the"®Sponding sequence of uncorrelated backward prediction
selection of certain parameters in the algorithms, and the €mors{bo(n) bi(n)---br,—1(n)}. The multiple regression
optimal choice is highly signal dependent. A variable-step- filter with coefficients {wo(n) wi(n)---wr-1(n)} then
size LMS algorithm was used to improve convergence for Operates on the backward prediction errors to produce a
an air-conditioning duct ANC application [116], [117]. filter output y(n).

As shown in Fig. 27, the regression filter is formed as
A. Lattice ANC

1) Lattice Structures and AlgorithmsThe adaptive lat-
tice predictor is a modular structure that consists of a
number of cascaded stages with two input and two output, here d(n) is the primary signal ando(n) = d(n) —
channels. The lattice structure enjoys the advantages Ofbo(n)wo(n). The output signal is formed as
a simple test for filter stability, good performance in

ei(n) = ei—1(n) — bi(n)wi(n), 1=1,2,---,L -1
(69)

finite-wordlength hardware implementations, and greatly L-1
reduced sensitivity to the eigenvalue spread of the reference y(n) = > wi(n)bi(n). (70)
signal [15]. The recursive equations that describe the lattice =0
structure are expressed as [4] The coefficients of the regression filter are updated by the
filn) = fi_i(n) — ky(n)bi—1(n — 1) LMS algorithm, expressed as
l=12,...,L-1 (66) wi(n + 1) =wi(n) + pbi(n)e(n), [=0,1,...,L—1.
bi(n) =bi—1(n — 1) = ki(n) fier(n) (71)
I=1,2,...,L—1 (67)

) o ) 2) Lattice ANC SystemsA lattice ANC system using the
where fi(n) is the forward prediction errorbl(_”) is the FXLMS algorithm is illustrated in Fig. 28. The placement
backward prediction errork;(n) is the reflection coeffi- ¢ the secondary patli(z) following the adaptive regres-

cient,n is the time index/ is the stage (order) index, and  gjon filter results in the FXLMS algorithm, expressed as
L — 1 is the total number of cascaded stages. The reference[4]

signal z(n) is used as the input signal for stage one, as
shown in Fig. 27 and expressed lfiy)(n) = bo(n) = z(n). w(n + 1) = w(n) + pb'(n)e(n) (72)
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algorithm.

/ T . Fig. 29. Frequency-domain FXLMS algorithm for ANC.
where b’ (n) = [bj(n) bi(n)---b_;(n)]" is the filtered
backward prediction error vector with elements

Mot signals y(n). The output signals in the data buffer are

Bi(n) = &(n) * by(n) = Z Sby(n —m) sequentially output to the secondary source, one at each
: L sampling period. In Fig. 29;(n) is also filtered byS(z)
[=0,1,...,L— 1. (73) to yield z'(n), which is stored in an_-point data buffer.

) o This filtered reference signal vector is then transformed into
The lattice ANC system converges significantly faster than ne frequency domaitk(n) using the FFT. The residual
the traditional transversal filter ANC when the primary errore(n) measured by the error sensor is also stored in an
noise consists of sinusoidal components with widely dif- 7_point data buffer and transformed to obtaii(n).

fering power [120]. Since the reference signal(n) has been split intaL

The computation ofy(n) for I = 0,1,...,L — 1 ex- frequency bins, considerable improvement in convergence
pressed in (73) requires intensive computation and storageis achieved by using an individual step sizg(n) for
since eachby(n),l = 0,1,...,L — 1 is filtered by the  each frequency bin that is inversely proportional to the

secondary-path estimaté{z). In order to reduce the com-  sijgnal power at that bin. This results in the normalized

in Fig. 28 is modified in [121], where the reference signal

x(n) is first filtered byS3(z), yielding #/(n). This filtered Wi(n + L) =Wi(n) + u(n)X;* (n) Ey(n)

signal is then passed through a second lattice filter with l1=0,1,...,.L—1 (74)
input fo(n) = bo(n) = 2’(n) and the reflection coefficients , _ _

J2(n) are copied from the adaptive lattice predictor shown WhereX;*(n) is the complex conjugate of;(n)

in Fig. 28. This slaved lattice filter then generatesignals o _
b,(n), which are used for the FXLMS algorithm in (72) to p(n) = Bi(n)’ 1=0,1,....L—-1 (79)
update the regression weights.
P g g is the normalized step size at frequency birand
B. Frequency-Domain ANC Pi(n) = (1 — a)P(n— L)+ a|Xi(n)[? (76)

The frequency-domain adaptive filter [122], [123] trans-
forms the primary and reference signals into the frequency
domain using the fast Fourier transform (FFT) and pro-
cesses these signals by an adaptive filter. This frequency
domain technique saves computations by replacing the
time-domain linear convolution by multiplication in the
frequency domain. In this section, we use the FFT to il- Plock by block. Thus, there ate samples of delay between
lustrate the basic idea of frequency-domain adaptive filters. (€ input of the reference signal and the output of the
However, in most practical ANC applications, the physical S€condary signal. This problem would be a shortcoming
signals are real-valued. Therefore, the real-valued discretef0" the frequency-domain ANC system in controlling broad-
cosine or discrete Hartley transforms [124], [125] may be band random noise because qf the causality constra_unt. A

frequency-domain implementation of the FXLMS algorithm

more convenient from an implementational point of view.
A frequency-domain FXLMS algorithm for ANC is illus- @S been developed [126], [127] and was extended to the
multiple-channel case in [128].

trated in Fig. 29. The reference signa{y), is stored in an
L-point data buffer and then transformed to the frequency-
domain signalsX;(n) using the FFT. These frequency- C. Subband ANC

domain reference signals are filtered by the corresponding Broad-band ANC can often involve adaptive filter lengths
adaptive weightd¥,;(n) to produce the frequency-domain with hundreds of taps [3]. A related problem occurs in the
output signalsY;(n). These output signals are then pro- field of acoustic echo cancellation, where room acoustics
cessed by an inverse FFT to obtain the time-domain outputinvolve long impulse responses [129]. One technique that

is a lowpass-filtered estimate of the powerof(n). Note
that this power estimate is also updated every blocli of
samples.

Instead of filtering the signal sample by sample, the
frequency-domain FXLMS algorithm processes the signal
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Fig. 30. Delayless subband ANC system.

has been recently advanced for that application involves The filtered reference signal(n) and error signak(n)
the use of subbands [129], [130]. Processing the signalsare decomposed into sets of subband signals using the
in subbands has a twofold advantage: 1) the computationalbandpass filterdZy, H1,..., Hay—1. In each subband, the
burden is reduced by approximately the number of sub- signals are decimated by a factér (possibly after ap-
bands, since both the number of taps and weight update ratepropriate band shifting) and the subband adaptive weights
can be decimated in each subband and 2) faster convergencare computed by the complex LMS algorithm. The adap-
is possible because the spectral dynamic range is greatlytive weights in each subband are then transformed into
reduced in each subband. Unfortunately, the bandpass filterghe frequency domain, appropriately stacked, and inverse-
used in subband processing will introduce a substantial transformed to obtain the wideband filter coefficients. One
delay in the secondary path. way to implement the delayless subband adaptive filter is
A modification of the subband technique eliminates delay to employ the polyphase FFT technique [123]. A general
in the secondary path [131], [132]. The basic idea is that formulation of the computational requirements in terms
the adaptive weights are computed in subbands but are therdf the adaptive filter length, number of subbands, and
collectively transformed into an equivalent set of wideband polyphase filter length can be found elsewhere [132].
filter coefficients. Fig. 30 shows the basic configuration
of the delayless subband ANC technique. The disturbanceD- RLS Algorithm for ANC
and reference are assumed to be derived from a common The RLS algorithm can be used with an adaptive
noise source through the linear transfer functidfg:) transversal filter to provide faster convergence and smaller
and R(z), respectively. The wideband weigh¥ (z) is steady-state error than the LMS algorithm. The “fast
developed as a transformation of filtered-X derived subband transversal filter” [133] is an efficient version of the
weights, thereby eliminating any delay associated with the RLS algorithm, which reduces the required operations to
cancellation signal. approximately7 L. Haykin has given a detailed treatment of
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RLS algorithms and the fast transversal filter [15]. We now
show how the RLS algorithm can be modified for ANC
applications, which incorporates a secondary path following Air Inlet Motor/Blower
the transversal filter. This method can also be applied to rinte Chamber
modify the fast transversal filter for ANC applications.

The least-squares method assumes a cost function at
time n that consists of the sum of weighted error squares W Reference &

expressed by(n) = X7, A" 7'e?(7), where0 < A<1 Mﬁ;",{,phone Microphone
is a forgetting (weighting) factor, which weights recent
data more heavily in order to accommodate nonstation- econdary
ary signals. The fast RLS algorithm is developed by ap- Loudspeaker
plying a time-recursive approach to computifyn) =
R™'(n) from the previousR '(n — 1), instead of esti-
mating R(n) and then inverting it to obtai®™*(n), where
the sample autocorrelation matrix is defined B&) =
¥ Aty () w T (3).

The filtered-X RLS (FXRLS) algorithm for ANC is

ANC =

Fig. 31. ANC system for motor/blower (adapted from [139]).

summarized as [4] VIIl. ANC A PPLICATIONS

Many commercial applications of ANC have been de-
w(n +1) =w(n) + K (n)e(n) 77) veloped_in reducing noise _for poth indu;trial am_j domestic
Z(n) applications. General applications of air-acoustic, hydroa-
K(n)= o (78) coustic, and vibrational ANC systems were introduced in
) x_l(”/)z (n) +/ Section I-B. In this section, we focus on some particular

Z(n) =A7"Q'(n — L)z'(n) (79) applications.

Q(n)=2"'Q(n-1)-K(n)z"(n) (80)

A. Single-Channel Broad-Band Feedforward Systems
where #'(n) = [2'(n) 2'(n — 1)--a'(n — L+ D]" is Most successful ANC applications at present are single-
the filtered reference signal vector with elementsn) = channel systems for controlling low-frequency acoustic
5(n) * x(n). noise in narrow ducts or small cavities. Several design

issues, such as coherence and causality, are critical for the
success of broad-band ANC systems in practical applica-
E. Modal ANC tions.

Modal decomposition for active control problems [134] 1) Duct-Acoustic NoiseSingle-channel broad-band feed-
offers a number of practical advantages. First, if an active forward ANC systems are ideal for one-dimensional ducts
control problem is known to involve only a few significant or pipework used in heating, ventilation, and air condi-
modes, then independent modal control can minimize the tioning (HVAC). Because ANC system components are
number of secondary sources, sensors, and correspondingpcated outside the duct without inhibiting the airflow, there
dimensionality of the controller, as well as minimize the is no adverse effect on the fan speed or capacity. The
control energy [135]. Second, it is also known that modal ANC system can be installed quickly, even in tight places,
control offers advantages of robustness to system parameteand does not require major modifications to the existing
uncertainty and errors arising from spatial discretization ductwork. Typically, these ANC systems use an adaptive
[136], [137]. Finally, if the LMS algorithm is employed, IIR filter with the filtered-U recursive LMS algorithm, as
the convergence time problem is minimized by uncoupling discussed in Section 1I-D2. An example of a single-channel
the modal responses. broad-band ANC system is shown in Fig. 31, where the

The major topics to be addressed in a narrow-band modalreference sensor is located in the duct at a position close
ANC system deal with modal filters, secondary prefilters, to the motor/blower, while the error sensor is located near
spatial sampling effects, and design methodology [138]. the discharge of the duct [139]. A secondary loudspeaker is
Modal filters are intended to obtain from sensor measure- mounted on the duct wall near the error sensor. This ANC
ments a best estimate of the coefficients, or participation system is based on the single-channel FXLMS algorithm
factors, of certain desired modes, while rejecting as nearly discussed in Section II-C1. Other applications are discussed
as possible interference from other modes. Least-squarein [4].
prefilters are used with a set of mode-coupled secondary 2) Room-Acoustic NoiseConsider the acoustic ANC
sources to synthesize desired modal amplitudes. Spatialproblem diagrammed in Fig. 32. A primary noise source
sampling effects refer to the performance degradation thaton the right generates acoustic noise in an enclosed room. It
results from using a finite number of sensors. Finally, the is desired to create a “quiet zone” on the left side by sending
design methodology develops a systematic approach toa control signal to a secondary loudspeaker that produces
realize the most efficient modal ANC system. a canceling acoustic signal. A microphone on the left
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Fig. 32. Schematic diagram of acoustic ANC experiment in a Fig. 33. Block diagram of electronic muffler (adapted from
reverberant room (adapted from [132]). (141]).

obtains the error signal») which is to be minimized. The
reference signat(n) is derived from another microphone
on the right, which is in close proximity to the primary Sync ]
disturbance. Pulse
The application of ANC to the cancellation of broad- | Noise éeenerator
band acoustic noise in a reverberant room requires a large | S°Y°®
number of taps. In order to minimize the computational _ ) ) o
. . . . Fig. 34. Active headset for canceling narrow-band periodic noise
rate and to enable the realization of this technique USiNg & agapted from [142)).
single low-cost DSP chip, the subband technique shown in
Fig. 30 can be used. Application of this technique using a
512-tap wideband filter has achieved more than 15 dB of vehicle, 10 in from the end pipe. The system consists of
cancellation over a band of 100-500 Hz [132]. three major subsystems discussed in Section 1lI-C. The first
is the waveform generator, which converts the pulse train
) from the engine tachometer into a set of sinewaves having
B. Single-Channel Narrow-Band Feedforward Systems  frequencies that are multiples of the engine rotation rate. In
1) Engine Exhaust NoiseThe characteristics of engine- the next subsystem, these sine waves are adaptively filtered
generated noise can vary rapidly with abrupt changes (to adjust amplitude and phase) and then mixed to drive
in engine loading, such as when the engine is quickly the canceling loudspeaker. The third subsystem monitors
accelerated or decelerated. In addition, engine-generatedhe residual noise at the control location and adapts the
noise is dominated by harmonically related components filter coefficients.
having frequencies that vary as a function of the engine 2) ANC Headsets:The purpose of hearing protectors is
rotational speed. The dominant harmonic components will to protect the ear from harmful noise. The application of
depend on the number of cylinders, due to the differing feedforward ANC using the waveform synthesis method
firing patterns. has been developed [142] to cancel repetitive background
An example of electronic muffler performance [140] noise at the ears of a person while retaining the ability to
was obtained for a 450-horsepower, six-cylinder, two-cycle hear other ambient sounds, as illustrated in Fig. 34. The
diesel engine used to power an auxiliary electrical power synchronization signals can be obtained by either optical,
generator. The multiple-frequency parallel FXLMS algo- ultrasonic, or electrical means (e.g., wire or radio). The
rithm of Section 11I-D2 was used for this application. The synchronization system can be common to a number of
electronic muffler eliminates the backpressure associatedANC headsets, such as in the case of a vehicle carrying
with a conventional passive muffler, even while reducing multiple passengers. Because the cancellation only affects
the noise level. The ANC system is normally limited to low- noise synchronized to the source of the repetitive back-
frequency operation; however, it can be combined with a ground noise, most of the low-frequency sound that is not
low-pressure-drop passive silencer to attenuate the residuabynchronized remains unaffected.
noise at higher frequencies. Thus, the combination is able 3) Fan Noise: A single-channel narrow-band ANC sys-
to achieve both aims of low pressure drop and low noise, tem can be used to cancel noise radiated from small axial
simultaneously. flow fans. One such application appears in [143], which
The block diagram of the electronic muffler developed in uses an infrared detector placed over the fan to derive
[141] is shown in Fig. 33. Two 4.5-in low-frequency, high- blade passage rate. Experiments showed that the radiation
temperature loudspeakers are used. The canceling nois@f blade passage tones could be attenuated by 12 dB using
is ported around the pipe in a coaxial arrangement, andthis method. The development of an ANC system for ducted
cancellation takes place in the open air at the end of thefans using the waveform synthesis method has also been
pipe. The error microphone was mounted on the rear of thereported [144], [145].

Waveform | ¥ (”)I
Generator
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C. Multiple-Channel Feedforward Systems sensors for maximum coherence with respect to the interior

Multiple-channel feedforward ANC applications have Noise to be canceled and the time delay of the reference
been demonstrated for vibration ANC on mechanical struc- Signals. _ L _ .
tures, acoustic ANC in enclosures such as automobile and ViPrational ANC in automobiles is a simple extension
aircraft cabins, free-field transformer noise, and acoustic Of @coustic ANC [82]. Accelerometers and actuators are
ANC in large-dimensional ducts with high-order modes. located on the chassis side of active engine mounts. The

1) Vehicle EnclosuresMost midsize four-cylinder vehi- potential benefits of active engine mounts are very dramatic,
cles suffer from engine noise, particularly the low frequency Ot only reducing acoustic noise and mechanical vibration
“hoom” at the engine firing frequency, which is the domi- W|th|.n_ the cabin buF also improving the control and ride
nant source of internal noise at higher engine speeds [g2].dualities of the vehicle.

With respect to the interior space of automobiles, three 2) Alrcraft Cabins: The interior noise of propeller-driven
aspects can be considered beneficial for the success Of’;urcraft was found to be dominated by tones at the funda-

ANC: 1) the periodicity of engine-related noise; 2) the mental and harmonic fre_quencies of the propeller. Fee_d-
relatively small volume of the cabin, which leads to a small forward ANC systems with 16 loudspeakers and 32 mi-

overlap of the resonant modes in the lower frequency range'CrOphOneS have been developed for noise control in the

and 3) the fact that ANC is only required in the space where passenger cabin of a propeller aircraft [.88]' The 32 mi-
the heads of the driver and passenger are typically IOCated_crophones are located at seated head height throughout the

Therefore, a low-cost solution is to provide a quiet zone passenger cabin. An alternative technique for controlling

inside the cabin around the driver's and passengers’ heaaalrcraft interior noise is to use lightweight vibrational
position secondary sources on the fuselage [147], [148].

. . 3) Free-Field Radiation:In many situations, undesired
Engine-related narrow-band noise components can be_ .7 . . . . . -
: : noise is radiated into the far field. If the noise source is fixed
canceled either by the waveform synthesis method or

. i . . and well defined, it is possible to suppress the radiation
.by the adaptive notch ﬂlter technique. The engine speed scattered by the primary noise source by surrounding the
is measured by an electrical sensor, providing a pulse

. . ! . noise source with a layer of secondary sources. This concept
sequence from which a reference signal is synthesized. The

i ianal i ted b daotive filter that feed is known as an active noise barrier. The ANC technique
canceling signalis generated by an adaptive Titer that 16€as ., , e compined with a passive barrier in order to improve

secondary loudspeakers Serving as CO”F“?' Sources. A f,asEhe noise attenuation at low frequencies. The location and
algorithm to adapt the adaptive filter coefficients is essential separation of the error sensors and secondary sources can
to provide a canceling signal that tracks under rapidly be optimized to get large noise attenuation over a wide
changing ride conditions. Therefore, an ANC system in area. A configuration of two independent 1 4 x 4

a cabin will continue to function even when windows O systems was tested in [149] using the narrow-band multiple-
hatches are opened, and therefore enables external warningpannel EXLMS algorithm. A cancellation of 6-30 dB was

soun_ds to be heard. demonstrated over a wide area. To obtain greater spatial

Elliott and coworkers developed an ANC system for the qyerage, it is necessary to deploy a system with more
reduction of engine noise in a car [33], [81]. In this system, cnannels. Potential applications of this technique are reduc-
a reference signal was obtained from the ignition circuit and ing environmental noise in local areas, such as quieting the

six loudspeakers in the car were used. These loudspeakergosition of a machine operator in a noisy factory, providing
and their associated power amplifiers can be shared with theg oise screen for a bed at an airport hotel, creating a noise

in-car entertainment system. Up to eight error microphones payrier at airports, highways, and so on.
were used to monitor the performance of the ANC system.  4) Transformer Noise:ANC also offers an alternative

A reduction of 10-15 dB at the engine firing frequency was to large passive barriers for attenuating transformer noise
achieved by this ANC system. [150]. This noise is composed of even-numbered harmonics
Active control of low-frequency road noise presents a of the 60-Hz power frequency. Experiments using four
greater challenge than controlling engine noise. In that secondary loudspeakers and six error microphones with the

application, multiple broad-band primary noises require 1 x 4 x 6 narrow-band FXLMS algorithm have shown
higher-order adaptive filters, thus considerably increasing that sparse arrays of cancelers are effective in providing
the convergence time and computational burden. In oneattenuation over significant angles of azimuth. Cancellation
application [146], six accelerometers were placed close to values of 15-20 dB were obtained over 3524® azimuth

the front wheels. Two secondary loudspeakers were placedat 120 Hz, and 12—15 dB over 15-238f azimuth at 240 Hz

in the doors adjacent to the driver and front passenger, and[150]. A similar system composed of three controllers, three
two error microphone were placed on the front headrests microphones, and three loudspeakers has been developed
at the outer ear positions. The multiple-channel FXLMS [151], and more than 10-dB sound pressure level reduction
algorithm discussed in Section V-B was used for this was achieved.

application. A broad-band reduction of about 7 dB (A-  5) Integration with Audio and Communication Systerdss
weighted) in the sound pressure level was measured whenANC continues to progress, the need for successful in-
driving on a typical road surface. In this application, the tegration with existing systems becomes apparent. This
important design issues are the placement of referenceexpectation of a unified digital solution is exemplified
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Fig. 35. Experimental structure for two-channel vibration ANC
experiment (from [152]).

ECCENTRIC

in modern automotive electronics. A unified approach to
combine ANC, in-car entertainment, and communication
(cellular phone) systems has been proposed [111] using

an adaptive noise canceler to attenuate noise picked up

by the microphone before transmission, an acoustic echo

canceler to reduce acoustic echo from the loudspeaker to

the microphone for hands-free full-duplex cellular phones,
and a multiple-channel ANC system to reduce the acoustic
noise inside an automobile passenger compartment.

It has been found that the standard in-car entertainment
loudspeaker positions are often quite acceptable for ANC
applications, while the error microphones can be distributed
at positions determined by acoustic mode analysis of the
vehicle [82]. Production vehicles will utilize the same
loudspeakers as used by the in-car entertainment system
sharing the same power amplifier. The in-car entertainment
system is moving to a completely digital system, in which
case ANC may ultimately become a software addition to
the digital audio system.

6) Modal ANC for a Vibrating BeamThe modal ANC
concept introduced in Section VII-B is exemplified by the
control of a vibrating cantilever beam [138]. The modes
were calculated, and driving frequencifsup to the sixth
modal frequency were considered. For each frequency,

cellation notch frequencies were selected at 13.38, 14.38,
and 15.38 Hz, corresponding to the first modal resonance
frequency flanked by two adjacent frequencies 1 Hz away.
The three notches are able to carve out a relatively wide
cancellation bandwidth to effectively suppress the distur-
bance.

8) Earth-Moving Machine:Experiments of multiple-
channel acoustic ANC systems were conducted [153]-[155]
for a typical earth-moving machine cabin. A %

2 x 2 system (one reference signal, two secondary
sources, two error sensors) was implemented on a Texas
Instruments TMS320C30 floating-point DSP chip for
real-time experiments. The experimental setup of this
multiple-channel ANC system consists of a real earth-
moving machine cabin, as illustrated in Fig. 36. The
setup utilizes two 10-in secondary loudspeakers mounted
overhead. A reference microphone is located off the front
wall, outside the cabin, centered laterally 35 cm above
the floor plane. A multiple-channel ANC is implemented
using the multiple-channel FXLMS algorithm discussed in
Section V-B1. Two cardioid error microphones enhance the
cancellation zone spatially by aiming the lobes of maximum
sensitivity toward the quiet zone. Real engine noise was
recorded at a position outside the cabin of an actual wheel
loader. This noise was then reproduced outside of the test
cabin through 15-in loudspeakers, at the location of the
original recording, using a 300-W power amplifier. The
sound pressure level of the reproduced noise was closely
matched to that of the observed real engine noise.

The multiple-channel ANC system was operated to can-
cel noise inside the cabin in the vicinity of a normal
operator’s head position for several static test conditions.
It was determined that the adaptive filter order= 256
is near optimal not only for cancellation reasons, but also
for achieving robust multiple-channel ANC performance.
Filters of shorter length are not as robust against movements
of people inside the enclosure or other factors, such as the
opening or closing of the door or windows.

The FXLMS algorithm (Section V-B1), the FXLMS al-
gorithm with feedback neutralization (Section V-B3), and

four equally-spaced secondary sources were employedthe filtered-U recursive LMS algorithm (Section V-C) were

for cancellation. The resulting maximum achievable MSE implemented [154] using a TMS320C30 DSP chip. These
reduction decreases as the frequency increases due to theNC systems were tested with two different primary noises.
presence of a greater number of contributing modes atFirst, a single sinewave was used as the primary noise.
higher frequencies. Next, the real engine noise recorded from the running diesel
7) Vibrating-Plate ANC: A single-channel pseudocas- engine of an earth-moving machine was used as the primary
cade FXLMS adaptive notch filter discussed in Section Ill- noise for the ANC systems. The best sinusoidal noise
D4 was extended to the multiple-channel case [60]. Fig. 35 cancellation is achieved using the filtered-U recursive LMS
shows a sketch of a mechanical test structure that wasalgorithm. However, when the primary noise is the actual
assembled to study the effectiveness of the pseudocascadeecorded engine noise, the multiple-channel ANC system
FXLMS algorithm for vibration ANC [152]. The structure  has about 20-dB attenuation for all three algorithms. This
consists of a 1/8-in steel plate mounted on vertical rubber outcome stresses the importance of using real-world data.
isolators along two edges. Sensors and actuators are
attached to the plate surface at optimum locations to D. Adaptive Feedback ANC Systems
monitor and counteract residual structural vibrations from 1) Single-Channel Systemé&xperiments were conducted
the first and third vibrational modes. in [97] for the single-channel feedback ANC system dis-
A three-stage, two-channel pseudocascade FXLMS algo-cussed in Section IV-Al, which uses one secondary source
rithm was implemented to control the actuators. The can- and one error sensor. The adaptive feedback ANC algorithm
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Fig. 36. Experimental setup for ¥ 2 x 2 multiple-channel broad-band feedforward ANC system
(adapted from [154]).

was implemented on a Texas Instruments TMS320C30- the average, about 20 dB attenuation was obtained for most
based system. The microphone that senses the residual errasf the significant harmonics present in the primary noise.
signal was placed on the axis of the pipe at various locations The experimental setup for the 2 2 case is similar to
from the pipe exit. The convergence of the system dependsthat for the 2x 1 case except that two error microphones
on adjustment of the microphone preamplifier gain becauseare used. The secondary loudspeakers were again mounted
the microphone signal is used to synthesize the referenceon the roof of the cabin and the two error microphones
signal. The adaptive feedback ANC system was tested usingwere placed below and facing the two loudspeakers. The
real noise recorded from a running tractor engine and aboutperformance of the % 2 adaptive feedback ANC system
30 dB of reduction of the harmonic components is achieved is similar to that of the 2x 1 system.
[156].

2) Multiple-Channel System&he multiple-channel feed- IX. CONCLUSIONS
back ANC algorithm was tested for a system with two  ANC cancels the unwanted noise by generating antinoise
secondary loudspeakers and one error microphone, the %f equal amplitude and opposite phase through the sec-
x 1 case [97]. For such an arrangement, there are twoondary sources. This paper has emphasized the practical
secondary paths from the secondary loudspeakers to thesspects of ANC systems in terms of adaptive algorithms and
error microphone. An experimental setup of the multiple- psp implementations for real-world applications. The most
channel adaptive feedback ANC system utilized a wooden widely used ANC system with the adaptive transversal filter
model of an open-rollover-protection tractor. The error and the FXLMS algorithm was first developed and analyzed
microphone was positioned between and facing the two based on single-channel cases for broad-band feedforward,
secondary loudspeakers mounted on the roof of the cabin.narrow-band feedforward, and adaptive feedback control.
The noise source was a loudspeaker placed on the floorThese single-channel ANC algorithms were then expanded
about 2 ft in front of the seat. The experimental setup to multiple-channel cases for controlling the noise field in
is similar to Fig. 36, except that there is no reference an enclosure or a large-dimension duct. Various adaptive
microphone in the adaptive feedback ANC system. algorithms such as the lattice, frequency-domain, subband,

The performance of the 2 1 adaptive feedback ANC and RLS algorithms were also modified for ANC appli-
system was tested using recorded tractor engine noise. Orcations. The fundamental problems and several solutions
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to online secondary-path modeling were discussed for pro-[30] S. J. Elliott and P. A. Nelson, “The application of adaptive
viding some directions on new algorithm developments.
Application examples demonstrated the connection to real—[gl]
world problems.

REFERENCES

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]
9]
[10]
[11]

[12]
[13]
[14]
(18]
[16]
[17]

(18]

[19]
[20]
[21]

[22]
(23]

[24]

[25]
[26]
[27]

(28]
[29]

970

C. M. Harris,Handbook of Acoustical Measurements and Noise
Control, 3rd ed. New York: McGraw-Hill, 1991.

L. L. Beranek and |. L. Ver,Noise and Vibration Control
Engineering: Principles and Applications New York: Wiley,
1992.

P. A. Nelson and S. J. ElliottActive Control of Sound San
Diego, CA: Academic, 1992.

S. M. Kuo and D. R. MorganActive Noise Control Sys-
tems—Algorithms and DSP Implementationslew York: Wi-
ley, 1996.

C. R. Fuller, S. J. Elliott, and P. A. NelsoActive Control of
Vibration. San Diego, CA: Academic, 1996.

C. H. Hansen and S. D. Snydegctive Control of Noise and
Vibration. London, U.K.: E&FN Spon, 1997.

P. Lueg, “Process of silencing sound oscillations,” U.S. Patent
2043416, June 9, 1936.

G. C. Goodwin and K. S. SirAdaptive Filtering Prediction and
Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.

B. Widrow and S. D. StearnsAdaptive Signal Processing
Englewood Cliffs, NJ: Prentice-Hall, 1985.

C. F.N. Cowan and P. M. GrarAdaptive Filters Englewood
Cliffs, NJ: Prentice-Hall, 1985.

M. L. Honig and D. G. Messerschmithdaptive Filters: Struc-
tures, Algorithms, and Applications Boston, MA: Kluwer,
1986.

S. T. Alexander,Adaptive Signal Processing New York:
Springer-Verlag, 1986.

J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimdtegory
and Design of Adaptive Filters New York: Wiley, 1987.

M. Bellanger, Adaptive Digital Filters and Signal Analysis
New York: Marcel Dekker, 1987.

S. Haykin,Adaptive Filter Theory2nd ed.
NJ: Prentice-Hall, 1991.

P. M. Clarkson, Optimal and Adaptive Signal Processing
Boca Raton, FL: CRC Press, 1993.

J. C. Burgess, “Active adaptive sound control in a duct: A com-
puter simulation,”J. Acoust. Soc. Amervol. 70, pp. 715-726,
Sept. 1981.

G. E. Warnaka, J. Tichy, and L. A. Poole, “Improvements in
adaptive active attenuators,” iRroc. Inter-noise 1981, pp.
307-310.

K. Kido, “Reduction of noise by use of additional sound
sources,” inProc. Inter-noise 1975, pp. 647—-650.

C. F. Ross, “A demonstration of active control of broadband
sound,”J. Sound Vih.vol. 74, no. 3, pp. 411-417, 1981.

S. M. Kuo and C. Chen, “Implementation of adaptive filters
with the TMS320C25 or the TMS320C30,” iDigital Signal
Processing Applications with the TMS320 Familol. 3, P.
Papamichalis, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1990,
ch. 7, pp. 191-271.

L. J. Eriksson, “Computer-aided silencing—An emerging tech-
nology,” Sound Vih. vol. 24, pp. 42—45, July 1990.

M. Nishimura, “Some problems of active noise control for
practical use,” inProc. Int. Symp. Active Control of Sound
Vibration, 1991, pp. 157-164.

D. R. Morgan, “A hierarchy of performance analysis techniques
for adaptive active control of sound and vibratiod,” Acoust.
Soc. Amer.vol. 89, pp. 2362-2369, May 1991.

A. Roure, “Self-adaptive broadband active sound control sys-
tem,” J. Sound Vih.vol. 101, pp. 429-441, 1985.

H. F. Olson and E. G. May, “Electronic sound absorbe,”
Acoust. Soc. Amervol. 25, pp. 1130-1136, Nov. 1953.

H. F. Olson, “Electronic control of noise, vibration, and re-
verberation,”J. Acoust. Soc. Amvol. 28, pp. 966-972, Sept.
1956.

G. C. Carter, “Coherence and time delay estimatidPrdc.
IEEE, vol. 75, pp. 236-255, Feb. 1987.

S. M. Kuo and J. Tsai, “Acoustical mechanisms and perfor-
mance of various active duct noise control systen#sgpl.
Acoust, vol. 41, no. 1, pp. 81-91, 1994.

Englewood Cliffs,

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]
(43]

[44]

(45]

[46]
[47]

(48]
(49]

(50]

(51]

[52]

(53]

[54]

filtering to the active control of sound and vibration,” ISVR,
Univ. Southampton, U.K., Tech. Rep. 136, Sept. 1985.

D. R. Morgan, “An analysis of multiple correlation cancellation
loops with a filter in the auxiliary path,JEEE Trans. Acoust.,
Speech, Signal Processingol. ASSP-28, pp. 454-467, Aug.
1980.

B. Widrow, D. Shur, and S. Shaffer, “On adaptive inverse
control,” in Proc. 15th Asilomar Conf.1981, pp. 185-189.

S. J. Elliott and P. A. Nelson, “Active noise controllEEE
Signal Processing Magvol. 10, pp. 12-35, Oct. 1993.

C. C. Boucher, S. J. Elliott, and P. A. Nelson, “The effects of
modeling errors on the performance and stability of active noise
control systems,” ifProc. Recent Advances in Active Control of
Sound Vibration 1991, pp. 290-301.

___, “Effect of errors in the plant model on the performance of
algorithms for adaptive feedforward controRtoc. Inst. Elect.
Eng, pt. F, vol. 138, pp. 313-319, Aug. 1991.

S. D. Snyder and C. H. Hansen, “The effect of transfer function
estimation errors on the filtered-X LMS algorithmEZEE Trans.
Signal Processingvol. 42, pp. 950-953, Apr. 1994.

G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with
delayed coefficient adaptationlEEE Trans. Acoust., Speech,
Signal Processingvol. 37, pp. 1397-1405, Sept. 1989.

____, “Corrections to ‘The LMS algorithm with delayed co-
efficient adaptation’,”[EEE Trans. Signal Processingol. 40,

pp. 230-232, Jan. 1992.

S. J. Elliott, 1. M. Stothers, and P. A. Nelson, “A multiple error
LMS algorithm and its application to the active control of sound
and vibration,”IEEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-35, pp. 1423-1434, Oct. 1987.

R. D. Gitlin, H. C. Meadors, and S. B. Weinstein, “The tap-
leakage algorithm: An algorithm for the stable operation of a
digitally implemented, fractionally spaced adaptive equalizer,”
Bell Syst. Tech. Jvol. 61, pp. 1817-1839, Oct. 1982.

S. Laugesen and S. J. Elliott, “Multichannel active control of
random noise in a small reverberant roodEE Trans. Signal
Processingvol. 1, pp. 241-249, Apr. 1993.

P. R. Enderle and G. R. Batta, “Stability of active noise control
systems in ducts,” ifProc. Noise-Con1990, pp. 167-172.

M. M. Sondhi and D. A. Berkley, “Silencing echoes on the
telephone network,’Proc. IEEE vol. 68, pp. 948-963, Aug.
1980.

L. A. Poole, G. E. Warnaka, and R. C. Cutter, “The implementa-
tion of digital filter using a modified Widrow-Hoff algorithm for
the adaptive cancellation of acoustic noise,”Hroc. ICASSP
1984, pp. 21.7.1-21.7.4.

J. R. Treichler, “Adaptive algorithms for infinite impulse re-
sponse filters,” inAdaptive Filters C. F. N. Cowan and P. M.
Grant, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1985, ch. 4.
J. J. Shynk, “Adaptive IIR filtering,”IEEE Acoust. Speech
Signal Processing MagApr. 1989, pp. 4-21.

L. J. Eriksson, M. C. Allie, and R. A. Greiner, “The selection
and application of an IIR adaptive filter for use in active sound
attenuation,”IEEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-35, pp. 433-437, Apr. 1987.

P. L. Feintuch, “An adaptive recursive LMS filtelProc. IEEE

vol. 64, pp. 1622-1624, Nov. 1976.

L. J. Eriksson, “Development of the filtered-U algorithm for ac-
tive noise control,”J. Acoust. Soc. Amewol. 89, pp. 257-265,
Jan. 1991.

M. L. Munjal and L. J. Eriksson, “An analytical, one-
dimensional, standing-wave model of a linear active noise
control system in a duct,J. Acoust. Soc. Amervol. 84, pp.
1086-1093, Sept. 1988.

L. J. Eriksson, M. C. Allie, C. D. Bremigan, and J. A. Gilbert,
“Active noise control on systems with time-varying sources and
parameters,'Sound Vibrationvol. 23, pp. 16-21, July 1989.

M. G. Larimore, J. R. Treichler, and C. R. Johnson, Jr.,
“SHARF: An algorithm for adaptive IIR digital filters,JEEE
Trans. Acoust., Speech, Signal Processiig. ASSP-28, pp.
428-440, Aug. 1980.

S. M. Kuo and J. Tapia, “The implementation of modified
leaky SHARF algorithm for the active noise cancellation,” in
Proc. IEEE ASSP Workshop Applications of Signal Processing
to Audio and Acousti¢s1989.

S. J. Elliott and P. Darlington, “Adaptive cancellation of
periodic, synchronously sampled interferencéEEE Trans.

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.



[55]
[56]

[57]

(58]

[59]
(60]

[61]

[62]

[63]

[64]

(65]

[66]
[67]

[68]

(69]

[70]

[71]
[72]

(73]

[74]
[75]

[76]

[77]

(78]

[79]
(80]

(81]

Acoust., Speech, Signal Processingl. ASSP-33, pp. 715-717,
June 1985.

B. Chaplin, “The cancellation of repetitive noise and vibration,”
in Proc. Inter-noise 1980, pp. 699-702.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S.
Williams, R. H. Hern, J. R. Zeidler, E. Dong, and R. C. Goodlin,
“Adaptive noise canceling: Principles and applicatiorrdc.
IEEE, vol. 63, pp. 1692-1716, Dec. 1975.

E. Ziegler, Jr., “Selective active cancellation system for repeti-
tive phenomena,” U.S. Patent 4878188, Oct. 31, 1989.

P. Darlington and S. J. Elliott, “Stability and adaptively con-
trolled systems—A graphical approach,” iAroc. ICASSP
1987, pp. 399-402.

—, “Synchronous adaptive filters with delayed coefficient
adaptation,” inProc. ICASSP 1988, pp. 2586—2589.

D. R. Morgan and J. Thi, “A multitone pseudocascade filtered-
X LMS adaptive notch filter,"EEE Trans. Signal Processing
vol. 41, pp. 946-956, Feb. 1993.

J. R. Glover, Jr., “Adaptive noise canceling applied to sinusoidal
interferences,IEEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-25, pp. 484-491, Dec. 1977.

D. R. Morgan and C. Sanford, “A control theory approach
to the stability and transient analysis of the filtered-X LMS
adaptive notch filter,1EEE Trans. Signal Processingol. 40,

pp. 2341-2346, Sept. 1992.

S. M. Kuo and M. Ji, “Passband disturbance reduction in
periodic active noise control systemdEEE Trans. Speech
Audio Processingvol. 4, pp. 96-103, Mar. 1996.

S. M. Kuo, S. Zhu, and M. Wang, “Development of optimum
adaptive notch filter for fixed-point implementation in active
noise control,” inProc. 1992 Int. Conf. Industrial Electronics
1992, pp. 1376-1378.

D. P. Pfaff, N. S. Kapsokavathis, and N. A. Parks, “Method

for actively attenuating engine generated noise,” U.S. Patent

5146505, Sept. 8, 1992.

Y. Yuan, N. S. Kapsokavathis, K. Chen, and S. M. Kuo, “Active
noise control system,” U.S. Patent 5359662, Oct. 25, 1994.
S. M. Kuo, M. J. Ji, M. K. Christensen, and R. A. Herold,
“Indirectly sensed signal processing in active periodic acoustic
noise cancellation,” U.S. Patent 5502 770, Mar. 26, 1996.

P. D. Hill, “Active acoustic attenuation system for reducing
tonal noise in rotating equipment,” U.S. Patent 5010576, Apr.
23, 1991.

S. M. Kuo and M. J. Ji, “Development and analysis of an adap-
tive noise equalizer,'EEE Trans. Speech Audio Processing
vol. 3, pp. 217-222, May 1995.

S. M. Kuo, M. Tahernezhadi, and L. Ji, “Frequency-domain
periodic active noise control and equalizatiohZEE Trans.
Speech Audio Processingol. 5, pp. 348-358, July 1997.

S. M. Kuo and Y. Yang, “Broadband adaptive noise equalizer,”
IEEE Signal Processing Lettvol. 3, pp. 234—-235, Aug. 1996.

L. J. Eriksson, “Recursive algorithms for active noise control,”
in Proc. Int. Symp. Active Control of Sound Vibratjd®91, pp.
137-146.

S. R. Popovich, D. E. Melton, and M. C. Allie, “New adaptive
multi-channel control systems for sound and vibrationPmc.
Inter-noise 1992, pp. 405-408.

S. M. Kuo and D. Vijayan, “Adaptive feedback active noise
control,” in Proc. Noise-Con1994, pp. 473-478.

S. J. Elliott and T. J. Sutton, “Performance of feedforward and
feedback systems for active contrdFEE Trans. Speech Audio
Processingvol. 4, pp. 214-223, May 1996.

D. Graupe and A. J. Efron, “An output-whitening approach to
adaptive active noise cancellatiodPEE Trans. Circuits Syst.

I, vol. 38, pp. 1306-1313, Nov. 1991.

A.J. Efron and L. C. Han, “Wide-area adaptive active noise can-
cellation,” IEEE Trans. Circuits Syst. |vol. 41, pp. 405-409,
June 1994,

A. V. Oppenheim, E. Weinstein, K. C. Zangi, M. Feder, and D.
Gauger, “Single-sensor active noise cancellatidBEE Trans.
Speech Audio Processingol. 2, pp. 285-290, Apr. 1994.

K. C. Zangi, “A new two-sensor active noise cancellation
algorithm,” in Proc. ICASSPvol. II, 1993, pp. 351-354.

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

(91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[100]

[101]

[102]

D. C. Swanson, “Active noise attenuation using a self-tuning [103]

regulator as the adaptive control algorithm,” Broc. Inter-
noise 1989, pp. 467—-470.

S. J. Elliott, I. M. Stothers, P. A. Nelson, A. M. McDonald, D.
C. Quinn, and T. Saunders, “The active control of engine noise
inside cars,” inProc. Inter-noise 1988, pp. 987-990.

KUO AND MORGAN: ACTIVE NOISE CONTROL

[104]

A. M. McDonald, S. J. Elliott, and M. A. Stokes, “Active noise
and vibration control within the automobile,” Proc. Int. Symp.
Active Control of Sound Vibratigri991, pp. 147-156.

Y. Kurata and N. Koike, “Adaptive active attenuation of interior
car noise,” inProc. Int. Symp. Active Control of Sound Vibration
1991, pp. 297-302.

C. F. Ross, “The control of noise inside passenger vehicles,”
in Proc. Recent Advances in Active Control of Sound Vibration
1991, pp. 671-681.

S. M. Kuo and B. M. Finn, “A general multi-channel filtered
LMS algorithm for 3-D active noise control systems,”Rmoc.
2nd Int. Conf. Recent Developments in Air- and Structure-Borne
Sound Vih. 1992, pp. 345-352.

M. A. Simpson, T. M. Luong, M. A. Swinbanks, M. A. Russell,
and H. G. Leventhall, “Full scale demonstration tests of cabin
noise reduction using active noise control,’Rroc. Inter-noise
1989, pp. 459-462.

C. M. Dorling, G. P. Eatwell, S. M. Hutchins, C. F. Ross, and
S. G. C. Sutcliffe, “A demonstration of active noise reduction
in an aircraft cabin,”J. Sound Vibrationvol. 128, no. 2, pp.
358-360, 1989.

S. J. Elliott, P. A. Nelson, I. M. Stothers, and C. C. Boucher,
“In-flight experiments on the active control of propeller-induced
cabin noise,”J. Sound Vibrationvol. 140, no. 2, pp. 219-238,
1990.

P. A. Nelson, A. R. D. Curtis, S. J. Elliott, and A. J. Bullmore,
“The active minimization of harmonic enclosed sound fields,
Part I: Theory,”J. Sound Vibrationvol. 117, no. 1, pp. 1-13,
1987.

A. J. Bullmore, P. A. Nelson, A. R. D. Curtis, and S. J. Elliott,
“The active minimization of harmonic enclosed sound fields,
Part 1l: A computer simulation,J. Sound Vibrationvol. 117,
no. 1, pp. 15-33, 1987.

S. J. Elliott, A. R. D. Curtis, A. J. Bullmore, and P. A. Nelson,
“The active minimization of harmonic enclosed sound fields,
Part lll: Experimental verification,"J. Sound Vibration vol.
117, no. 1, pp. 35-58, 1987.

S. J. Elliott, C. C. Boucher, and P. A. Nelson, “The behavior of
a multiple channel active control systemEEE Trans. Signal
Processingvol. 40, pp. 1041-1052, May 1992.

P. A. Nelson, A. R. D. Curtis, S. J. Elliott, and A. J. Bullmore,
“The minimum power output of free field point sources and the
active control of sound,J. Sound Vibrationvol. 116, no. 3,
pp. 397-414, 1987.

D. C. Swanson, “The generalized multichannel filtered-X algo-
rithm,” in Proc. Recent Advances in Active Control of Sound
Vibration, 1993, pp. 550-561.

S. J. Elliott and C. C. Boucher, “Interaction between multiple
feedforward active control system3EEE Trans. Speech Audio
Processingvol. 2, pp. 521-530, Oct. 1994.

D. E. Melton and R. A. Greiner, “Adaptive feedforward
multiple-input, multiple-output active noise control,” Iroc.
ICASSP vol. 11, 1992, pp. 229-232.

S. M. Kuo and D. Vijayan, “Adaptive algorithms and experi-
mental verification of feedback active noise control systems,”
Noise Control Eng. J.vol. 42, pp. 37-46, Mar.—Apr. 1994.

S. P. Rubenstein, S. R. Popovich, D. E. Melton, and M. C.
Allie, “Active cancellation of higher modes in a duct using
recursively-coupled multichannel adaptive control system,” in
Proc. Inter-noise 1992, pp. 337-340.

L. J. Eriksson and M. C. Allie, “Use of random noise for on-line
transducer modeling in an adaptive active attenuation system,”
J. Acoust. Soc. Amervol. 85, pp. 797-802, Feb. 1989.

C. Bao, P. Sas, and H. Van Brussel, “Adaptive active noise con-
trol in a 3-D reverberant enclosure,” Proc. Recent Advances
in Active Control of Sound Vibratigri991, pp. 691-707.

—, “Adaptive active control of noise in 3-D reverberant
enclosures,”J. Sound Vibrationvol. 161, no. 3, pp. 501-514,
1993.

S. M. Kuo and D. Vijayan, “A secondary path modeling
technique for active noise control system&EE Trans. Speech
Audio Processingvol. 5, pp. 374-377, July 1997.

S. D. Sommerfeldt and J. Tichy, “Adaptive vibration control
using an LMS-based control algorithm,” Broc. Inter-noise
1989, pp. 513-518.

—, “Adaptive control of a two-stage vibration isolation
mount,”J. Acoust. Soc. Amewol. 88, pp. 938-944, Aug. 1990.

[105] J. Tapia and S. M. Kuo, “New adaptive on-line modeling

971

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.



[106]

[107]

[108]

technique for active noise control systems,”Hroc. IEEE Int.
Conf. Systems Engineering990, pp. 280-283.

S. M. Kuo and M. Wang, “Parallel adaptive on-line error-path
modeling algorithm for active noise control systenisiéctron.
Lett, vol. 28, pp. 375-377, Feb. 1992.

S. M. Kuo, M. Wang, and K. Chen, “Active noise control
system with parallel on-line error path modeling algorithm,”
Noise Control Eng. J.vol. 39, pp. 119-127, Nov.-Dec. 1992.

eling with the inter-channel decoupling algorithm,” RProc.

S. M. Kuo and J. Luan, “Multiple-channel error path mod- [133]

[130] J. J. Shynk, “Frequency-domain and multirate adaptive filter-

ing,” IEEE Signal Processing Magvol. 9, pp. 14-37, Jan.
1992.

J. Thi and D. R. Morgan, “Delayless subband active noise
control,” in Proc. ICASSPvol. |, 1993, pp. 181-184.

D. R. Morgan and J. Thi, “A delayless subband adaptive filter,”
IEEE Trans. Signal Processingol. 8, pp. 1819-1830, Aug.
1995.

J. M. Cioffi and T. Kailath, “Fast, recursive-least-squares
transversal filters for adaptive filteringlEEE Trans. Acoust.,

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

972

Recent Advances in Active Control of Sound Vibrativ®93, Speech, Signal Processingol. ASSP-32, pp. 304-337, Apr.
pp. 767-777. 1984.

S. D. Sommerfeldt, “Multi-channel adaptive control of struc- [134] L. Meirovitch, Introduction to Dynamics and Control New
tural vibration,” Noise Control Eng. J.vol. 37, pp. 77-89, York: Wiley, 1985.

Sept.—Oct., 1991. [135] L. Meirovitch, H. Baruh, and H. Oz, “Comparison of control
S. M. Kuo and B. M. Finn, “An integrated audio and active techniques for large flexible systems]” Guid. Control Dyn.
noise control system,” ifProc. IEEE Int. Symp. Circuits Syst. vol. 6, pp. 302-310, July—Aug. 1983.

1993, pp. 2529-2532. [136] L. Meirovitch and H. Baruh, “Robustness of the independent
S. M. Kuo, H. Chuang, and P. Mallela, “Integrated hands-free modal-space control method,. Guid. Control Dyn. vol. 6,
cellular, active noise control, and audio systetcEE Trans. pp. 20-25, Jan.—Feb. 1983.

Consumer Electronvol. 39, pp. 522-532, Aug. 1993. [137] H. Baruh and L. Silverberg, “Robust natural control of dis-
R. W. Harris, D. M. Chabries, and F. A. Bishop, “A vari- tributed systems,J. Guid. Control Dyn. vol. 8, pp. 717-724,
able step (VS) adaptive filter algorithmEEE Trans. Acoust., Nov.—Dec. 1985.

Speech, Signal Processingol. ASSP-34, pp. 309-316, Apr. [138] D. R. Morgan, “An adaptive modal-based active control sys-
1986. tem,” J. Acoust. Soc. Amervol. 89, pp. 248-256, Jan. 1991.
C. Kwong, “Dual sign algorithm for adaptive filteringlEEE [139] C. P. Nowicki, D. P. Mendat, and D. G. Smith, “Active
Trans. Commun.yol. COM-34, pp. 1272-1275, Dec. 1986. attenuation of motor/blower noise,” iRroc. Noise-Con1994,

W. B. Mikhael, F. H. Wu, L. G. Kazovsky, G. S. Kang, pp. 415-420.

and L. J. Fransen, “Adaptive filters with individual adaptation [140] J. N. Denenberg, “Anti-noise—Quieting the environment with
of parameters,"EEE Trans. Circuits Systvol. CAS-33, pp. active noise cancellation technologyfZEE Potentialsvol. 11,
677-685, July 1986. pp. 36—40, Apr. 1992.

T. J. Shan and T. Kailath, “Adaptive algorithms with an [141] K. Eghtesadi and E. Ziegler, “Frequency domain adaptive
automatic gain control featurelEEE Trans. Circuits Systvol. control algorithm for electronic muffler applications,” Rroc.
CAS-35, pp. 122-127, Jan. 1988. Recent Advances in Active Control of Sound VitB93, pp.

H. Hamada, T. Miura, M. Takahashi, and Y. Oguri, “Adaptive 574-585.

noise control system in air-conditioning ducts,”Bmoc. Inter- G. B. B. Chaplin, R. A. Smith, and T. P. C. Bramer, “Method
noise 1988, pp. 1017-1020. and apparatus for reducing repetitive noise entering the ear,”
M. Takahashi, R. Gotohda, T. Yamadera, K. Asami, and H. U.S. Patent 4654871, Mar. 31, 1987.

Hamada, “Broadband active noise control of air-conditioning [143] D. A. Quinlan, “Application of active control to axial flow
duct systems in auditoriums,” Rroc. Int. Symp. Active Control fans,” Noise Control Eng. J.vol. 39, pp. 95-101, Nov.—Dec.
of Sound Vibration1991, pp. 273-278. 1992.

L. J. Griffiths, “A continuously adaptive filter implemented as [144] M. P. McLonghlin, K. Eghtesadi, D. G. Smith, and E. W.
a lattice structure,” irProc. ICASSP1977, pp. 683-686. Ziegler, Jr., “Active control of blade passage noise in small
—, “An adaptive lattice structure for noise canceling appli- centrifugal fans with multiple transducers,” Rroc. Inter-noise
cations,” inProc. ICASSP 1978, pp. 87-90. 1992, pp. 325-328.

S. M. Kuo and J. Luan, “Cross-coupled filtered-X LMS algo- [145] D. L. Sutliff and R. T. Nagel, “Development of an active noise
rithm and lattice structure for active noise control systems,” control system for ducted fans (without acoustic feedback),” in
in Proc. 1993 IEEE Int. Symp. Circuits Systeni®93, pp. Proc. Recent Advances in Active Control of Sound,\i893,
459-462. pp. 825-836.

K. Char and S. M. Kuo, “Performance evaluation of various [146] T. J. Sutton, S. J. Elliott, A. M. McDonald, and T. J. Saunders,
active noise control algorithms,” iRroc. Noise-Con1994, pp. “Active control of road noise inside vehiclesNoise Control
331-336. Eng. J, vol. 42, pp. 137-147, July—Aug. 1994.

M. Dentino, J. M. McCool, and B. Widrow, “Adaptive filtering C. R. Fuller and J. D. Jones, “Experiments on reduction of
in the frequency domainProc. IEEE vol. 66, pp. 1658-1659, propeller induced interior noise by active control of cylinder
Dec. 1978. vibration,” J. Sound Vih.vol. 112, pp. 389-395, 1987.

E. R. Ferrara, Jr., “Frequency-domain adaptive filtering,” in [148] C. R. Fuller and G. P. Gibbs, “Active control of interior noise
Adaptive Filtering C. Cowan and P. Grant, Eds. Englewood in a business jet using piezoceramic actuatorsprioc. Noise-
Cliffs, NJ: Prentice-Hall, 1985, ch. 6. Con, 1994, pp. 389-394.

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine [149] A. Omoto and K. Fujiwara, “A study of an actively controlled
transform,”IEEE Trans. Computvol. C-23, pp. 90-93, 1974. noise barrier,”J. Acoust. Soc. Amvol. 94, pp. 2173-2180,
R. N. Bracewell, “The fast Hartley transfornProc. IEEE vol. Oct. 1993.

72, pp. 1010-1018, Aug. 1984. [150] S. E. Craig and O. L. Angevine, “Active control of hum
Q. Shen and A. Spanias, “Time and frequency domain X- from large power transformers—The real world,” Proc.
block LMS algorithms for single channel active noise control,” Recent Advances in Active Control of Sound Vibrativ®93,

in Proc. 2nd Int. Congr. Recent Developments in Air- and pp. 279-290.

Structure-Borne Sound Vibratipd992, pp. 353-360. ~ [151] K. Kido, “From one point to three dimension control,” froc.

K. M. Reichard and D. C. Swanson, “Frequency-domain im- Int. Symp. Active Control of Sound Vibratjoh991, pp. 1-10.
plementation of the filtered-X algorithm with on-line system [152] D. R. Browning and D. R. Morgan, “A pseudo-cascade FXLMS
identification,” in Proc. Recent Advances in Active Control of approach to active vibration cancellation,” roc. Noise-Con
Sound Vibration 1993, pp. 562-573. 1991, pp. 353-360.

Q. Shen and A. Spanias, “Frequency-domain adaptive algo{153] B. M. Finn, “Three dimensional active noise control with
rithms for multi-channel active sound control,” irroc. Re- integrated audio capabilities,” M.S. thesis, Northern lllinois
cent Advances in Active Control of Sound Vibratid893, pp. Univ., DeKalb, IL. 1992.

755-766. [154] J. Luan, “On-line modeling and feedback compensation tech-
M. M. Sondhi and W. Kellermann, “Adaptive echo cancellation niques for 3-d active noise control systems,” M.S. thesis,
for speech signals,” iAdvances in Speech Signal Processihg Northern lllinois Univ., DeKalb, IL, May 1993.

Furui and M. Sondhi, Eds. New York: Marcel Dekker, 1992, [155] M. J. Ji, “Narrowband active noise control and equalization,”
ch. 11. M.S. thesis, Northern lllinois Univ., DeKalb, IL, Aug. 1993.

[142]

[147]

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 6, JUNE 1999

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.



Dennis R. Morgan (Senior Member, IEEE)
was born in Cincinnati, OH, on February 19,
1942. He received the B.S. degree in 1965 from
the University of Cincinnati, OH, and the M.S.
and Ph.D. degrees from Syracuse University,
Syracuse, NY, in 1968 and 1970, respectively,
all in electrical engineering.

From 1965 to 1984, he was with the Gen-
eral Electric Company, Electronics Laboratory,
Syracuse, NY, specializing in the analysis and
design of signal processing systems used in
radar, sonar, and communications. He is now a Distinguished Member
of Technical Staff at Bell Laboratories, Lucent Technologies (formerly
AT&T), Murray Hill, NJ, where he has been employed since 1984. From
1984 to 1990, he was with the Special Systems Analysis Department,
Whippany, NJ, where he was involved in the analysis and development of
advanced signal processing techniques associated with communications,
array processing, detection and estimation, and adaptive systems. Since
He is the author ofActive Noise Control Systems: Algorithms and DSP 1990, he has been with the Acoustics Research Department, where he is
ImplementationsNew York: Wiley, 1996) and of numerous technical ~€hgaged in research on adaptive signal processing techniques applied to

papers. He has been awarded two patents. His research focuses on aCti\,glect_roacoustic systems. He_ has authored numerous jqurnal publications
noise control, adaptive echo cancellation, digital audio applications, and @nd is co-athor ofActive Noise Control Systems: Algorithms and DSP

digital communications. ImplementationgNew York: Wiley, 1996).

In 1993, Dr. Kuo received the IEEE Consumer Electronics Society _ Dr- Morgan has served as Associate Editor for IEEENSACTIONS ON
Chester Sall Award for the First Place Transactions Paper Award. He is SPEECH AND AUDIO PROCESSINGSince 1995.
a member of Eta Kappa Nu.

[156] D. Vijayan, Feedback active noise control systems, M.S. thesis,
Northern lllinois Univ., DeKalb, IL, May 1994.

Sen M. Kuo received the B.S. degree from
National Taiwan Normal University, Teipei,
Taiwan, in 1976 and the M.S. and Ph.D. degrees
from University of New Mexico, Albuquerque,
in 1983 and 1985, respectively.

In 1993, he was with Texas Instruments,
Houston, TX. He is currently an Associate
Professor at the Department of Electrical
Engineering, Northern lllinois  University,
DeKalb, IL. He has served as a consultant in the
areas of digital signal processing applications
to General Motors, Texas Instruments, Motorola, Tellabs, and others.

KUO AND MORGAN: ACTIVE NOISE CONTROL 973

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on August 6, 2009 at 09:24 from IEEE Xplore. Restrictions apply.



