
D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Design Concepts in Programming Languages

Franklyn Turbak and David Gifford

Copyright c©1988–2004 by Franklyn Turbak and David Gifford

Version created on November 23, 2004 at 3:53.

This is a draft. Please do not cite.
Send all bugs, feedback, etc. to fturbak@wellesley.edu.

D
ra

ft
N

ov
em

be
r 2

3,
 2

00
4

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Contents

Preface ix

1 Introduction 1
1.1 Programming Languages . 1
1.2 Syntax, Semantics, and Pragmatics 2
1.3 Goals . 5
1.4 PostFix: A Simple Stack Language 5

1.4.1 Syntax . 6
1.4.2 Semantics . 7
1.4.3 The Pitfalls of Informal Descriptions 12

2 Syntax 17
2.1 Abstract Syntax . 18
2.2 Concrete Syntax . 20
2.3 S-Expression Grammars Specify ASTs 21

2.3.1 S-Expressions . 22
2.3.2 The Structure of S-Expression Grammars 23
2.3.3 Phrase Tags . 28
2.3.4 Sequence Patterns . 28
2.3.5 Notational Conventions 30

2.4 The Syntax of PostFix . 32

3 Operational Semantics 37
3.1 The Operational Semantics Game 37
3.2 Small-step Operational Semantics (SOS) 41

3.2.1 Formal Framework . 41
3.2.2 Example: An SOS for PostFix 44
3.2.3 Rewrite Rules . 46

3.3 Big-step Operational Semantics 66
3.4 Operational Reasoning . 72

i

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

ii CONTENTS

3.4.1 Programming Language Properties 72

3.4.2 Deterministic Behavior of EL 73

3.4.3 Termination of PostFix Programs 77

3.4.4 Safe PostFix Transformations 82

3.5 Extending PostFix . 92

4 Denotational Semantics 107

4.1 The Denotational Semantics Game 107

4.2 A Denotational Semantics for EL 110

4.2.1 Step 1: Restricted ELMM 111

4.2.2 Step 2: Full ELMM . 113

4.2.3 Step 3: ELM . 118

4.2.4 Step 4: EL . 120

4.2.5 A Denotational Semantics is Not a Program 122

4.3 A Denotational Semantics for PostFix 124

4.3.1 A Semantic Algebra for PostFix 125

4.3.2 A Meaning Function for PostFix 128

4.3.3 Semantic Functions for PostFix: the Details 135

4.4 Denotational Reasoning . 139

4.4.1 Program Equality . 139

4.4.2 Safe Transformations: A Denotational Approach 140

4.4.3 Technical Difficulties . 143

4.4.4 Relating Operational and Denotational Semantics 144

4.4.5 Operational vs. Denotational: A Comparison 152

5 Fixed Points 155

5.1 The Fixed Point Game . 155

5.1.1 Recursive Definitions . 155

5.1.2 Fixed Points . 158

5.1.3 The Iterative Fixed Point Technique 160

5.2 Fixed Point Machinery . 166

5.2.1 Partial Orders . 166

5.2.2 Complete Partial Orders (CPOs) 174

5.2.3 Pointedness . 176

5.2.4 Monotonicity and Continuity 178

5.2.5 The Least Fixed Point Theorem 182

5.2.6 Fixed Point Examples . 183

5.2.7 Continuity and Strictness 188

5.3 Reflexive Domains . 192

5.4 Summary . 193

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

CONTENTS iii

6 FL: A Functional Language 195

6.1 Decomposing Language Descriptions 195

6.2 The Structure of FL . 196

6.2.1 FLK: The Kernel of the FL Language 197

6.2.2 FL Syntactic Sugar . 204

6.2.3 The FL Standard Library 216

6.2.4 Examples . 216

6.3 Variables and Substitution . 224

6.3.1 Terminology . 224

6.3.2 General Properties of Variables 227

6.3.3 Abstract Syntax DAGs and Stoy Diagrams 229

6.3.4 Alpha-Equivalence . 232

6.3.5 Renaming and Variable Capture 233

6.3.6 Substitution . 234

6.4 An Operational Semantics for FLK 239

6.4.1 An SOS for FLK . 239

6.4.2 Example . 242

6.5 A Denotational Definition for FLK 248

7 Naming 257

7.1 Parameter Passing . 259

7.1.1 Call-by-Name and Call-by-Value: The Operational View . 259

7.1.2 Call-by-Name and Call-by-Value:
The Denotational View 267

7.1.3 Discussion . 269

7.2 Name Control . 279

7.2.1 Hierarchical Scoping: Static and Dynamic 281

7.2.2 Multiple Namespaces . 294

7.2.3 Non-hierarchical Scope . 296

7.3 Object-Oriented Programming 302

7.3.1 Semantics of HOOK . 305

8 State 313

8.1 What is State? . 313

8.1.1 Time, State, Identity, and Change 313

8.1.2 FL Does Not Support State 314

8.1.3 Simulating State In FL 320

8.1.4 Imperative Programming 326

8.2 Mutable Data: FL! . 327

8.2.1 Mutable Cells . 327

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

iv CONTENTS

8.2.2 Examples of Imperative Programming 329

8.2.3 An Operational Semantics for FLK! 332

8.2.4 A Denotational Semantics for FLK! 341

8.2.5 Referential Transparency, Interference, and Purity 349

8.3 Mutable Variables: FLAVAR! . 356

8.3.1 Mutable Variables . 356

8.3.2 FLAVAR! . 357

8.3.3 Parameter Passing Mechanisms for FLAVAR! 359

9 Control 365

9.1 Motivation: Control Contexts and Continuations 365

9.2 Using Procedures to Model Control 368

9.2.1 Multiple-value Returns . 369

9.2.2 Non-local Exits . 371

9.2.3 Coroutines . 378

9.3 A Standard Semantics of FL! . 378

9.4 Non-local Exits . 395

9.5 Exception Handling . 402

10 Data 417

10.1 Products . 418

10.1.1 Positional Products . 419

10.1.2 Named Products . 426

10.1.3 Non-strict Products . 428

10.1.4 Mutable Products . 436

10.2 Sums . 442

10.2.1 Positional Sums . 443

10.2.2 Named Sums . 447

10.3 Sum-of-Products . 449

10.4 Data Declarations . 456

10.5 Pattern Matching . 464

10.5.1 Introduction to Pattern Matching 464

10.5.2 A Desugaring-based Semantics of match 468

10.5.3 Views . 480

11 Concurrency 489

11.1 Motivation . 489

11.2 Threads . 492

11.2.1 MUFL!, a Multi-threaded Language 493

11.2.2 An Operational Semantics for MUFL! 495

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

CONTENTS v

11.2.3 Other Thread Interfaces 498

11.3 Communication and Synchronization 503

11.3.1 Shared Mutable Data . 504

11.3.2 Locks . 505

11.3.3 Channels . 507

12 Simple Types 513

12.1 Static Semantics . 513

12.2 An Introduction to Types . 515

12.2.1 What is a Type? . 515

12.2.2 Dimensions of Types . 516

12.2.3 Explicit vs. Implicit . 518

12.2.4 Simple vs. Expressive . 519

12.3 FL/X: A Language with Monomorphic Types 519

12.3.1 FL/X . 519

12.3.2 FL/X Type Checking . 525

12.3.3 FL/X Dynamic Semantics and Type Soundness 533

12.4 Typed Data . 536

12.4.1 Typed Products . 536

12.4.2 Digression: Type Equality 538

12.4.3 Typed Mutable Data . 539

12.4.4 Typed Sums . 542

12.4.5 Typed Lists . 543

12.5 Recursive Types . 546

13 Subtyping and Polymorphism 551

13.1 Subtyping . 551

13.1.1 Motivation . 551

13.1.2 FL/XS . 552

13.1.3 Discussion . 554

13.2 Polymorphic Types . 561

13.3 Descriptions . 567

13.4 Kinds and Kind Checking: FL/XSPDK 576

14 Type Reconstruction 583

14.1 Introduction . 583

14.2 A Language with Type Reconstruction: FL/R 586

14.3 Unification . 590

14.4 A Type Reconstruction Algorithm 591

14.5 Discussion . 592

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

vi CONTENTS

15 Abstract Types 599

15.1 Data Abstraction . 599

15.1.1 A Point Abstraction . 600

15.1.2 Procedural Abstraction is not Enough 601

15.2 Dynamic Locks and Keys . 603

15.3 Nonce Types . 619

15.4 Dependent Types . 628

15.4.1 A Dependent Package System 629

15.4.2 Design Issues with Dependent Types 632

15.5 Modules . 636

15.5.1 An Overview of Modules and Linking 636

15.5.2 A First-Class Module System 638

16 Effects Describe Program Behavior 653

16.1 Types, Effects, and Regions - What, How, and Where 653

16.2 An Effect System for FL/R . 657

16.3 Using Effects to Analyze Program Behavior 660

16.3.1 Effect Masking Hides Invisible Effects 660

16.3.2 Effects Describe the Actions of Applets 662

16.3.3 Effects Describe Control Transfers 663

16.3.4 Effects Can Be Used to Deallocate Storage 664

16.4 Reconstructing Types and Effects 665

17 Compilation 673

17.1 Why do we study compilation? 673

17.2 Tortoise Architecture and Languages 675

17.2.1 Overview of Tortoise 675

17.2.2 The Compiler Source Language: FL/RTortoise 677

17.2.3 The Compiler Intermediate Language: Silk 678

17.2.4 Purely Structural Transformations 694

17.3 Transform 1: Desugaring . 697

17.4 Transform 2: Type Reconstruction 698

17.5 Transform 3: Globalization . 699

17.6 Transform 4: Translation . 705

17.7 Transform 5: Assignment Conversion 708

17.8 Transform 6: Renaming . 714

17.9 Transform 7: CPS Conversion . 718

17.9.1 The Structure of CPS Code 720

17.9.2 A Simple CPS Transform 725

17.9.3 A More Efficient CPS Transform 734

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

CONTENTS vii

17.9.4 CPS Converting Control Constructs 745
17.10Transform 8: Closure Conversion 748

17.10.1 Flat Closures . 748
17.10.2Variations on Flat Closure Conversion 756
17.10.3 Linked Approaches . 759

17.11Transform 9: Lifting . 763
17.12Transform 10: Data Conversion 765
17.13Garbage Collection . 765

A A Metalanguage 769
A.1 The Basics . 769

A.1.1 Sets . 770
A.1.2 Tuples . 773
A.1.3 Relations . 774

A.2 Functions . 775
A.2.1 Definition . 775
A.2.2 Application . 777
A.2.3 More Function Terminology 779
A.2.4 Higher-Order Functions 780
A.2.5 Multiple Arguments and Results 781
A.2.6 Lambda Notation . 784
A.2.7 Recursion . 787
A.2.8 Lambda Notation is not Lisp! 788

A.3 Domains . 790
A.3.1 Motivation . 790
A.3.2 Product Domains . 791
A.3.3 Sum Domains . 793
A.3.4 Sequence Domains . 796
A.3.5 Function Domains . 798

A.4 Metalanguage Summary . 802
A.4.1 The Metalanguage Kernel 802
A.4.2 The Metalanguage Sugar 804

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

viii CONTENTS

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Preface

Acknowledgments

This book owes its existence to many people. We are grateful to the following
individuals for their contributions:

• Both as an early teaching assistant for the MIT course (6.821 Programming
Languages) upon which this book is based and as a technical editor during
the final push to turn the course notes into a book, Mark Sheldon made
innumerable contributions to the content and form of the book. Mark
also played a key role in the development of the material on data, pattern
matching, and abstract types and created the index for the book.

• Jonathan Rees profoundly influenced the content of this book while he
was a 6.821 teaching assistant. Many of the mini-languages, examples,
exercises, and software implementations, as well as some of the sections of
text, had their origins with Jonathan. Jonathan was also the author of an
early data type and pattern matching facility used in course software that
strongly influenced the facilities described in the book.

• Brian Reistad and Trevor Jim greatly improved the quality of the book.
As 6.821 teaching assistants, they unearthed and fixed innumerable bugs,
improved the presentation and content of the material, and created many
new exercises. Brian also played a major role in implementing software for
testing the mini-languages in the book.

• In addition to his contributions as a 6.821 teaching assistant, Alex Salcianu
also collected and edited homework and exam problems from fifteen years
of the course for inclusion in the book.

• Valuable contributions and improvements to this book were made by other
6.821 teaching assistants: Alexandra Andersson, Michael (Ziggy) Blair,

ix

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

x CONTENTS

Barbara Cutler, Joshua Glazer, Robert Grimm, Alex Hartemink, David
Huynh, Eddie Kohler, Gary Leavens, Ravi Nanavati, Jim O’Toole, Dennis
Quan, Alex Snoeren, Patrick Sobalvarro, Peter Szilagyi, Bienvenido Velez-
Rivera, Earl Waldin, and Qian Wang.

• In Fall 2002, Michael Ernst taught 6.821 based on an earlier version of this
book, and his detailed comments resulted in many improvements.

• Based on teaching 6.821 at MIT and using the course materials at Hong
Kong University and at Georgia Tech, Olin Shivers has made many ex-
cellent suggestions on how to improve the content and presentation of the
material.

• While using the course materials at other universities, Gary Leavens, An-
drew Myers, Randy Osborne, and Kathy Yelick provided helpful feedback.

• Early versions of the pragmatics system were written by Doug Grundman,
with major extensions by Raymie Stata and Brian Reistad.

• Pierre Jouvelot did the lion’s share of the implementation of FX (a lan-
guage upon which early versions of 6.821 were based) with some help from
Mark Sheldon and Jim O’Toole.

• Guillermo Rozas taught us many nifty pragmatics tricks. Our pragmatics
coverage is heavily influenced by his source-to-source front end to the MIT
Scheme compiler.

• David Espinosa introduced us to embedded interpreters and helped us to
improve our presentation of dynamic semantics.

• Ken Moody provided helpful feedback on the course material, especially
on the PostFix Equivalence Theorem.

• Numerous 6.821 students have improved this book in various ways, from
correcting bugs to suggesting major reorganizations. In this regard, we
are especially grateful to: Atul Adya, Kavita Bala, Ron Bodkin, Philip
Bogle, Miguel Castro, Anna Chefter, Natalya Cohen, Richard Davis, An-
dre deHon, Michael Frank, Robert Grimm, Yevgeny Gurevich, Viktor Kun-
cak, Mark Lillibridge, Andrew Myers, Michael Noakes, John Pezaris, Matt
Power, Roberto Segala, Mark Torrance, and Carl Witty.

• Jue Wang uncovered numerous typos and inconsistencies in her careful
proofreading of a late draft of the book.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

CONTENTS xi

• Special thanks go to Jeanne Darling, who has been the 6.821 course ad-
ministrator for over ten years. Her administrative, editing, and technical
skills, as well as her can-do spirit and cheerful demeanor, were critical in
keeping both the course and the book project afloat.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

xii CONTENTS

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 1

Introduction

Order and simplification are the first steps toward the mastery of a
subject — the actual enemy is the unknown.

— The Magic Mountain, Thomas Mann

1.1 Programming Languages

Programming is a great load of fun. As you have no doubt experienced, clarity
and simplicity are the keys to good programming. When you have a tangle of
code that is difficult to understand, your confidence in its behavior wavers, and
the code is no longer any fun to read or update.

Designing a new programming language is a kind of meta-level programming
activity that is just as much fun as programming in a regular language (if not
more so). You will discover that clarity and simplicity are even more important
in language design than they are in ordinary programming. Today hundreds of
programming languages are in use — whether they be scripting languages for
Internet commerce, user interface programming tools, spreadsheet macros, or
page format specification languages that when executed can produce formatted
documents. Inspired application design often requires a programmer to provide
a new programming language or to extend an existing one. This is because
flexible and extensible applications need to provide some sort of programming
capability to their end users.

Elements of programming language design are even found in “ordinary” pro-
gramming. For instance, consider designing the interface to a collection data

1

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2 CHAPTER 1. INTRODUCTION

structure. What is a good way to encapsulate an iteration idiom over the ele-
ments of such a collection? The issues faced in this problem are similar to those
in adding a looping construct to a programming language.

The goal of this book is to teach you the great ideas in programming lan-
guages in a simple framework that strips them of complexity. You will learn sev-
eral ways to specify the meaning of programming language constructs and will
see that small changes in these specifications can have dramatic consequences
for program behavior. You will explore many dimensions of the programming
language design space, study decisions to be made along each dimension, and
consider how decisions from different dimensions can interact. We will teach
you about a wide variety of neat tricks for extending programing languages with
interesting features like undoable state changes, exitable loops, pattern match-
ing, and multitasking. Our approach for teaching you this material is based
on the premise that when language behaviors become incredibly complex, the
descriptions of the behaviors must be incredibly simple. It is the only hope.

1.2 Syntax, Semantics, and Pragmatics

Programming languages are traditionally viewed in terms of three facets:

1. Syntax — the form of programming languages.

2. Semantics — the meaning of programming languages.

3. Pragmatics — the implementation of programming languages.

Here we briefly describe these facets.

Syntax

Syntax focuses on the concrete notations used to encode programming language
phrases. Consider a phrase that indicates the sum of the product of w and x
and the quotient of y and z. Such a phrase can be written in many different
notations: as a traditional mathematical expression

wx + y/z

or as a Lisp parenthesized prefix expression

(+ (* w x) (/ y z))

or as a sequence of keystrokes on a postfix calculator

w enter x enter × y enter z enter ÷ +

or as a layout of cells and formulae in a spreadsheet

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.2. SYNTAX, SEMANTICS, AND PRAGMATICS 3

1 2 3 4
A w= w*x = A2 * B2
B x= y/z = C2 / D2
C y= ans = A4 + B4
D z=

or as a graphical tree

+

*

w x

/

y z

Although these concrete notations are superficially different, they all designate
the same abstract phrase structure (the sum of a product and a quotient). The
syntax of a programming language specifies which concrete notations (strings
of characters, lines on a page) in the language are legal and which tree-shaped
abstract phrase structure is denoted by each legal notation.

Semantics

Semantics specifies the mapping between the structure of a programming lan-
guage phrase and what the phrase means. Such phrases have no inherent mean-
ing: their meaning is only determined in the context of a system for interpreting
their structure. For example, consider the following expression tree:

*

+

1 11

10

Suppose we interpret the nodes labeled 1, 10, and 11 as the usual decimal
notation for numbers, and the nodes labeled + and * as the sum and product of
the values of their subnodes. Then the root of the tree stands for (1+11) · 10 =
120. But there are many other possible meanings for this tree. If * stands
for exponentiation rather than multiplication, the meaning of the tree could be
1210. If the numerals are in binary notation rather than decimal notation, the
tree could stand for (in decimal notation) (1 + 3) · 2 = 8. Alternatively, 1 and
11 might represent the set of odd integers, 10 might represent the set of even

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4 CHAPTER 1. INTRODUCTION

integers, and + and * might represent addition and multiplication on integer
sets; in this case, the meaning of the tree would be the set of even integers.
Perhaps the tree does not indicate an evaluation at all, and only stands for a
property intrinsic to the tree, such as its height (3), its number of nodes (5),
or its shape (perhaps it describes a simple corporate hierarchy). Or maybe the
tree is an arbitrary encoding of a particular object of interest, such as a rock or
a book.

This example illustrates how a single program phrase can have many possible
meanings. Semantics describes the relationship between the abstract structure
of a phrase and its meaning.

Pragmatics

Whereas semantics deals with what a phrase means, pragmatics focuses on the
details of how that meaning is computed. Of particular interest is the effective
use of various resources, such as time, space, and access to shared physical
devices (storage devices, network connections, video monitors, printers, etc.).

As a simple example of pragmatics, consider the evaluation of the following
expression tree (under the first semantic interpretation described above):

/

-

+

a b

*

2 3

+

a b

Suppose that a and b stand for particular numeric values. Because the phrase
(+ a b) appears twice, a näıve evaluation strategy will compute the same sum
twice. An alternative strategy is to compute the sum once, save the result, and
use the saved result the next time the phrase is encountered. The alternative
strategy does not change the meaning of the program, but does change its use of
resources; it reduces the number of additions performed, but may require extra
storage for the saved result. Is the alternative strategy better? The answer
depends on the details of the evaluation model and the relative importance of
time and space.

Another potential improvement in the example is the phrase (* 2 3), which
always stands for the number 6. If the sample expression is to be evaluated many
times (for different values of a and b), it may be worthwhile to replace (* 2 3)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.3. GOALS 5

by 6 to avoid unnecessary multiplications. Again, this is a purely pragmatic
concern that does not change the meaning of the expression.

1.3 Goals

The goals of this book are to explore the semantics of a comprehensive set
of programming language design idioms, show how they can be combined into
complete practical programming languages, and discuss the interplay between
semantics and pragmatics. Except for establishing a few syntactic conventions
at the outset, we won’t say much about syntax at all. We will introduce a num-
ber of tools for describing the semantics of programming languages, and will
use these tools to build intuitions about programming language features and
study many of the dimensions along which languages can vary. Our coverage
of pragmatics is mainly at a high level: we will study some simple program-
ming language implementation techniques and program improvement strategies
rather than focus on squeezing the last ounce of performance out of a particular
computer architecture.

We will discuss programming language features in the context of several
mini-languages. Each of these is a simple language that captures the essen-
tial features of a class of existing programming languages. In many cases, the
mini-languages are so pared down that they are hardly suitable for serious pro-
gramming activities. Nevertheless, these languages embody all of the key ideas
in programming languages. Their simplicity saves us from getting bogged down
in needless complexity in our explorations of semantics and pragmatics. And
like good modular building blocks, the components of the mini-languages are
designed to be “snapped together” to create practical languages.

1.4 PostFix: A Simple Stack Language

We will introduce the tools for syntax, semantics, and pragmatics in the context
of a mini-language called PostFix. PostFix is a simple stack-based language
inspired by the PostScript graphics language, the Forth programming lan-
guage, and Hewlett Packard calculators. Here we give an informal introduction
to PostFix in order to build some intuitions about the language. In subsequent
chapters, we will introduce tools that allow us to study PostFix in more depth.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6 CHAPTER 1. INTRODUCTION

1.4.1 Syntax

The basic syntactic unit of a PostFix program is the command. Commands
are of the following form:

• Any integer numeral. E.g., 17, 0, -3.

• One of the following special command tokens: add, div, eq, exec, gt, lt,
mul, nget, pop, rem, sel, sub, swap.

• An executable sequence — a single command that serves as a subrou-
tine. It is written as a parenthesized list of subcommands separated by
whitespace.1 E.g., (7 add 3 swap) and (2 (5 mul) exec add).

Since executable sequences contain other commands (including other executable
sequences), they can be arbitrarily nested. An executable sequence counts as a
single command despite its hierarchical structure.

A PostFix program is a parenthesized sequence consisting of (1) the token
postfix followed by (2) a natural number (i.e., non-negative integer) indicat-
ing the number of program parameters followed by (3) zero or more PostFix
commands. For example, here are some sample PostFix programs:

(postfix 0 4 7 sub)

(postfix 2 add 2 div)

(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add)

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

In PostFix, as in all the languages we’ll be studying, all parentheses are re-
quired and none are optional. Moving parentheses around changes the structure
of the program and most likely changes its behavior. Thus, while the following
PostFix executable sequences use the same numerals and command tokens in
the same order, they are distinguished by their parenthesization, which, as we
shall see below, makes them behave differently.

((1) (2 3 4) swap exec)

((1 2) (3 4) swap exec)

((1 2) (3 4 swap) exec)

1Whitespace is any contiguous sequence of characters that leave no mark on the page, such
as spaces, tabs, and newlines.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 7

1.4.2 Semantics

The meaning of a PostFix program is determined by executing its commands in
left to right order. Each command manipulates an implicit stack of values that
initially contains the integer arguments of the program (where the first argument
is at the top of the stack and the last argument is at the bottom). A value on
the stack is either (1) an integer numeral or (2) an executable sequence. The
result of a program is the integer value at the top of the stack after its command
sequence has been completely executed. A program signals an error if (1) the
final stack is empty, (2) the value at the top of the final stack is not an integer,
or (3) an inappropriate stack of values is encountered when one of its commands
is executed.

The behavior of PostFix commands is summarized in Figure 1.1. Each
command is specified in terms of how it manipulates the implicit stack. We
use the notation P −args−−→ v to mean that executing the PostFix program P on
the integer argument sequence args returns the value v. The notation P −args−−→
error means that executing the PostFix program P on the arguments signals
an error. Errors are caused by inappropriate stack values or an insufficient
number of stack values. In practice, it is desirable for an implementation to
indicate the type of error. We will use comments (delimited by squiggly braces)
to explain errors and other situations.

To illustrate the meanings of various commands, we show the results of some
simple program executions. For example, numerals are pushed onto the stack,
while pop and swap are the usual stack operations.

(postfix 0 1 2 3) −[]−→ 3 {Only the top stack value is returned.}
(postfix 0 1 2 3 pop) −[]−→ 2

(postfix 0 1 2 swap 3 pop) −[]−→ 1

(postfix 0 1 swap) −[]−→ error {Not enough values to swap.}
(postfix 0 1 pop pop) −[]−→ error {Empty stack on second pop.}
Program arguments are pushed onto the stack (from last to first) before the

execution of the program commands.

(postfix 2) −[3,4]−−→ 3 {Initial stack has 3 on top with 4 below.}
(postfix 2 swap) −[3,4]−−→ 4

(postfix 3 pop swap) −[3,4,5]−−−→ 5

It is an error if the actual number of arguments does not match the number of
parameters specified in the program.

(postfix 2 swap) −[3]−→ error {Wrong number of arguments.}
(postfix 1 swap) −[3]−→ error {Not enough values to swap.}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8 CHAPTER 1. INTRODUCTION

• N : Push the numeral N onto the stack.

• sub : Call the top stack value v1 and the next-to-top stack value v2 . Pop these
two values off the stack and push the result of v2−v1 onto the stack. If there are
fewer than two values on the stack or the top two values aren’t both numerals,
signal an error. The other binary arithmetic operators — add (addition), mul
(multiplication), div (integer divisiona) and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v1 is zero.

• lt : Call the top stack value v1 and the next-to-top stack value v2 . Pop these
two values off the stack. If v2 < v1 , then push a 1 (a true value) on the
stack, otherwise push a 0 (false). The other binary comparison operators — eq

(equals) and gt (greater than) — behave similarly. If there are fewer than two
values on the stack or the top two values aren’t both numerals, signal an error.

• pop : Pop the top element off the stack and discard it. Signal an error if the
stack is empty.

• swap : Swap the top two elements of the stack. Signal an error if the stack has
fewer than two values.

• sel : Call the top three stack values (from top down) v1 , v2 , and v3 . Pop these
three values off the stack. If v3 is the numeral 0, push v1 onto the stack; if v3
is a non-zero numeral, push v2 onto the stack. Signal an error if the stack does
not contain three values, or if v3 is not a numeral.

• nget : Call the top stack value vindex and the remaining stack values (from top
down) v1 , v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n and vi is a numeral, push vi onto the stack. Signal an error if the
stack does not contain at least one value, if vindex is not a numeral, if i is not
in the range [1, n], or if vi is not a numeral.

• (C1 . . . Cn) : Push the executable sequence (C1 . . . Cn) as a single value onto
the stack. Executable sequences are used in conjunction with exec.

• exec : Pop the executable sequence from the top of the stack, and prepend
its component commands onto the sequence of currently executing commands.
Signal an error if the stack is empty or the top stack value isn’t an executable
sequence.

aThe integer division of n and d returns the integer quotient q such that n = qd+r, where
r (the remainder) is such that 0 ≤ r < |d| if n ≥ 0 and −|d| < r ≤ 0 if n < 0.

Figure 1.1: English semantics of PostFix commands.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 9

Note that program arguments must be integers — they cannot be executable
sequences.

Numerical operations are expressed in postfix notation, in which each oper-
ator comes after the commands that compute its operands. add, sub, mul, and
div are binary integer operators. lt, eq, and gt are binary integer predicates
returning either 1 (true) or 0 (false).

(postfix 1 4 sub) −[3]−→ -1

(postfix 1 4 add 5 mul 6 sub 7 div) −[3]−→ 4

(postfix 5 add mul sub swap div) −[7,6,5,4,3]−−−−−→ -20

(postfix 3 4000 swap pop add) −[300,20,1]−−−−−→ 4020

(postfix 2 add 2 div) −[3,7]−−→ 5 {An averaging program.}
(postfix 1 3 div) −[17]−−→ 5

(postfix 1 3 rem) −[17]−−→ 2

(postfix 1 4 lt) −[3]−→ 1

(postfix 1 4 lt) −[5]−→ 0

(postfix 1 4 lt 10 add) −[3]−→ 11

(postfix 1 4 mul add) −[3]−→ error {Not enough numbers to add.}
(postfix 2 4 sub div) −[4,5]−−→ error {Divide by zero.}

In all the above examples, each stack value is used at most once. Sometimes
it is desirable to use a number two or more times or to access a number that is
not near the top of the stack. The nget command is useful in these situations; it
puts at the top of the stack a copy of a number located on the stack at a specified
index. The index is 1-based, from the top of the stack down, not counting the
index value itself.

(postfix 2 1 nget) −[4,5]−−→ 4 {4 is at index 1, 5 at index 2.}
(postfix 2 2 nget) −[4,5]−−→ 5

It is an error to use an index that is out of bounds or to access a non-numeric
stack value (i.e., an executable sequence) with nget.

(postfix 2 3 nget) −[4,5]−−→ error {Index 3 is too large.}
(postfix 2 0 nget) −[4,5]−−→ error {Index 0 is too small.}
(postfix 1 (2 mul) 2 nget) −[3]−→ error {Value at index 2 is not a number.}

The nget command is particularly helpful for expressing numerical programs,
where it is common to reference arbitrary parameter values and use them mul-
tiple times.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10 CHAPTER 1. INTRODUCTION

(postfix 1 1 nget mul) −[5]−→ 25 {A squaring program.}
(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add) −[3,4,5,2]−−−−→ 25
{Given a, b, c, x, calculates ax2 + bx + c.}

As illustrated in the last example, the index of a given value increases every
time a new value is pushed on the stack.

Executable sequences are compound commands like (2 mul) that are pushed
onto the stack as a single value. They can be executed later by the exec com-
mand. Executable sequences act like subroutines in other languages; execution
of an executable sequence is similar to a subroutine call, except that transmission
of arguments and results is accomplished via the stack.

(postfix 1 (2 mul) exec) −[7]−→ 14 {(2 mul) is a doubling subroutine.}
(postfix 0 (0 swap sub) 7 swap exec) −[]−→ -7
{(0 swap sub) is a negation subroutine.}

(postfix 0 (7 swap exec) (0 swap sub) swap exec) −[]−→ -7

(postfix 0 (2 mul)) −[]−→ error {Final top of stack is not an integer.}
(postfix 0 3 (2 mul) gt) −[]−→ error

{Executable sequence where number expected.}
(postfix 0 3 exec) −[]−→ error {Number where executable sequence expected.}
(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec) −[7]−→ 9
{Given n, calculates 2n - 5.}

The last example illustrates that evaluations involving executable sequences can
be rather contorted.

The sel command selects between two values based on a test value, where
zero is treated as false and any non-zero integer is treated as true. It can be
used in conjunction with exec to conditionally execute one of two executable
sequences.

(postfix 1 2 3 sel) −[1]−→ 2

(postfix 1 2 3 sel) −[0]−→ 3

(postfix 1 2 3 sel) −[17]−−→ 2 {Any non-zero number is “true”.}
(postfix 0 (2 mul) 3 4 sel) −[]−→ error {Test not a number.}
(postfix 4 lt (add) (mul) sel exec) −[3,4,5,6]−−−−→ 30

(postfix 4 lt (add) (mul) sel exec) −[4,3,5,6]−−−−→ 11

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[−7]−−→ 7
{An absolute value program.}

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[6]−→ 6

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 11

¤ Exercise 1.1 Determine the value of the following PostFix programs on an empty
stack.

a. (postfix 0 10 (swap 2 mul sub) 1 swap exec)

b. (postfix 0 (5 (2 mul) exec) 3 swap)

c. (postfix 0 (() exec) exec)

d. (postfix 0 2 3 1 add mul sel)

e. (postfix 0 2 3 1 (add) (mul) sel)

f. (postfix 0 2 3 1 (add) (mul) sel exec)

g. (postfix 0 0 (2 3 add) 4 sel exec)

h. (postfix 0 1 (2 3 add) 4 sel exec)

i. (postfix 0 (5 6 lt) (2 3 add) 4 sel exec)

j. (postfix 0 (swap exec swap exec) (1 sub) swap (2 mul)

swap 3 swap exec)

¢

¤ Exercise 1.2 Write executable sequences that compute the following logical oper-
ations. Recall that 0 is false and all other numerals are treated as true.

a. not: return the logical negation of a single argument.

b. and: given two numeric arguments, return 1 if their logical conjunction is true,
and 0 otherwise.

c. short-circuit-and: return 0 if the first argument is false; otherwise return the
second argument.

d. Demonstrate the difference between and and short-circuit-and by writing a Post-
Fix program that has a different result if and is replaced by short-circuit-and. ¢

¤ Exercise 1.3

a. Without nget, is it possible to write a PostFix program that squares its single
argument? If so, write it; if not, explain.

b. Is it possible to write a PostFix program that takes three integers and returns
the smallest of the three? If so, write it; if not, explain.

c. Is it possible to write a PostFix program that calculates the factorial of its single
argument (assume it’s non-negative)? If so, write it; if not, explain. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12 CHAPTER 1. INTRODUCTION

1.4.3 The Pitfalls of Informal Descriptions

The “by-example” and English descriptions of PostFix given above are typical
of the way that programming languages are described in manuals, textbooks,
courses, and conversations. That is, a syntax for the language is presented, and
the semantics of each of the language constructs is specified using English prose
and examples. The utility of this method for specifying semantics is apparent
from the fact that the vast majority of programmers learn to read and write
programs via this approach.

But there are many situations in which informal descriptions of programming
languages are inadequate. Suppose that we want to improve a program by
substituting one phrase for another throughout the program. How can we be
sure that the substitution preserves the meaning of the program?

Or suppose that we want to prove that the language as a whole has a partic-
ular property. For instance, it turns out that every PostFix program is guaran-
teed to terminate (i.e., a PostFix program cannot enter an infinite loop). How
would we go about proving this property based on the informal description?
Natural language does not provide any rigorous framework for reasoning about
programs or programming languages. Without the aid of some formal reasoning
tools, we can only give hand-waving arguments that are not likely to be very
convincing.

Or suppose that we wish to extend PostFix with features that make it easier
to use. For example, it would be nice to name values, to collect values into arrays,
to query the user for input, and to loop over sequences of values. With each new
feature, the specification of the language becomes more complex, and it becomes
more difficult to reason about the interaction between various features. We’d
like techniques that help to highlight which features are orthogonal and which
can interact in subtle ways.

Or suppose that a software vendor wants to develop PostFix into a product
that runs on several different machines. The vendor wants any given PostFix
program to have exactly the same behavior on all of the supported machines.
But how do the development teams for the different machines guarantee that
they’re all implementing the “same” language? If there are any ambiguities
in the PostFix specification that they’re implementing, different development
teams might resolve the ambiguity in incompatible ways. What’s needed in
this case is an unambiguous specification of the language as well as a means of
proving that an implementation meets that specification.

The problem with informal descriptions of a programming language is that
they’re neither concise nor precise enough for these kinds of situations. English
is often verbose, and even relatively simple ideas can be unduly complicated

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 13

to explain. Moreover, it’s easy for the writer of an informal specification to
underspecify a language by forgetting to cover all the special cases (e.g., error
situations in PostFix). It isn’t that covering all the special cases is impossible;
it’s just that the natural language framework doesn’t help much in pointing out
what the special cases are.

It is possible to overspecify a language in English as well. Consider the
PostFix programming model introduced above. The current state of a pro-
gram is captured in two entities: the stack and the current command sequence.
To programmers and implementers alike, this might imply that a language im-
plementation must have explicit stack and command sequence elements in it.
Although these would indeed appear in a straightforward implementation, they
are not in any way required; there are alternative models and implementations
for PostFix (see Exercise 3.12). It would be desirable to have a more ab-
stract definition of what constitutes a legal PostFix implementation so that a
would-be implementer could be sure that an implementation was faithful to the
language definition regardless of the representations and algorithms employed.

In the remaining chapters of the first segment of this book, we introduce a
number of tools that address the inadequacies outlined above. First, in Chapter 2
we present s-expression grammars, a simple specification for syntax that we
will use to describe the structure of all of the mini-languages we explore. Then,
using PostFix as our object of study, we introduce two approaches to formal
semantics:

• An operational semantics (Chapter 3) explains the meaning of pro-
gramming language constructs in terms of the step-by-step process of an
abstract machine.

• A denotational semantics (Chapter 4) explains the meaning of pro-
gramming language constructs in terms of the meaning of their subparts.

These approaches support the unambiguous specification of programming lan-
guages and provide a framework in which to reason about properties of programs
and languages. This segment concludes in Chapter 5 with a presentation of a
technique for determining the meaning of recursive specifications.

Throughout the book, mathematical concepts are formalized in terms of the
metalanguage described in Appendix A. Readers are encouraged to familiarize
themselves with this language by skimming the appendix early on and later
referring to it in more detail on an “as needed” basis.

While we will emphasize formal tools throughout this book, we do not im-
ply that formal tools are a panacea or that formal approaches are superior to
informal ones in an absolute sense. In fact, informal explanations of language

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14 CHAPTER 1. INTRODUCTION

features are usually the simplest way to learn about a language. In addition, it’s
very easy for formal approaches to get out of control, to the point where they are
overly obscure, or require too much mathematical machinery to be of any prac-
tical use on a day-to-day basis. For this reason, we won’t dwell on nitty gritty
formal details and won’t cover material as a dry sequence of definitions, theo-
rems, and proofs. Instead, our goal is to show that the concepts underlying the
formal approaches are indispensable for understanding particular programming
languages as well as the dimensions of language design. The tools introduced in
this segment should be in any serious computer scientist’s bag of tricks.

Reading

No single book can entirely cover the broad area of programming languages. We
recommend the following books for other perspectives of the field:

• Mitchell has authored two relevant books: [Mit96] is a mathematical ex-
ploration of programming language semantics based on a series of typed
lambda calculi, while [Mit03] discusses the dimensions of programming
languages in the context of many modern programming languages.

• Friedman, Wand, and Haynes [FWH01] uses interpreters and translators
written in Scheme to study essential programming language features in
the context of some mini-languages.

• Reynolds [Rey98] gives a theoretical treatment of many programming lan-
guage features.

• Gelernter and Jaganathan [GJ90] discusses a number of popular program-
ming languages in a historical perspective and compare them in terms of
expressiveness.

• MacLennan’s text [Mac99] stands out as one of the few books on program-
ming languages to enumerate a set of principles and then analyze popular
languages in terms of these principles.

• Kamin [Kam90] uses interpreters written in Pascal to analyze the core
features of several popular languages.

• Marcotty and Ledgard [ML86] cover a wide range of programming lan-
guage features and paradigms by presenting a sequence of mini-languages.

• Gunter [Gun92] provides an in-depth overview of formal programming lan-
guage semantics.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

1.4. POSTFIX: A SIMPLE STACK LANGUAGE 15

• Winskel [Win93] presents a mathematical introduction to formal program-
ming language semantics.

• Horowitz [Hor95] has collected an excellent set of classic papers on the de-
sign of programming languages that every programming language designer
should be familiar with.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16 CHAPTER 1. INTRODUCTION

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 2

Syntax

since feeling is first
who pays any attention
to the syntax of things
will never wholly kiss you;
. . .
for life’s not a paragraph

And death i think is no parenthesis

— e e cummings

In the area of programming languages, syntax refers to the form of programs
— how they are constructed from symbolic parts. A number of theoretical and
practical tools — including grammars, lexical analyzers, and parsers — have
been developed to aid in the study of syntax. By and large we will downplay
syntactic issues and tools. Instead, we will emphasize the semantics of programs;
we will study the meaning of language constructs rather than their form.

We are not claiming that syntactic issues and tools are unimportant in the
analysis, design, and implementation of programming languages. In actual pro-
gramming language implementations, syntactic issues are very important and a
number of standard tools (like Lex and Yacc) are available for addressing them.
But we do believe that syntax has traditionally garnered much more than its
fair share of attention, largely because its problems were more amenable to so-
lution with familiar tools. This state of affairs is reminiscent of the popular tale
of the person who searches all night long under a street lamp for a lost item
not because the item was lost there but because the light was better. Luckily,
many investigators strayed away from the street lamp of parsing theory in order

17

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

18 CHAPTER 2. SYNTAX

to explore the much dimmer area of semantics. Along the way, they developed
many new tools for understanding semantics, some of which we will focus on in
later chapters.

Despite our emphasis on semantics, however, we can’t ignore syntax com-
pletely. Programs must be expressed in some form, preferably one that elucidates
the fundamental structure of the program and is easy to read, write, and reason
about. In this chapter, we introduce a set of syntactic conventions for describing
our mini-languages.

2.1 Abstract Syntax

We will motivate various syntactic issues in the context of EL, a mini-language
of expressions. EL describes functions that map any number of numerical inputs
to a single numerical output. Such a language might be useful on a calculator,
say, for automating the evaluation of commonly used mathematical formulae.

Figure 2.1 describes (in English) the abstract structure of a legal EL pro-
gram. EL programs contain numerical expressions, where a numerical expression
can be constructed out of various kinds of components. Some of the components,
like numerals, references to input values, and various kinds of operators, are
primitive — they cannot be broken down into subparts.1 Other components
are compound — they are constructed out of constituent components. The
components have names; e.g., the subparts of an arithmetic operation are the
rator (short for “operator”) and two rands, (short for “operands”) while the
subparts of the conditional expression are the test, the consequent, and the
alternate.

There are three major classes of phrases in an EL program: whole programs
that designate calculations on a given number of inputs, numerical expressions
that designate numbers, and boolean expressions that designate truth values
(i.e., true or false). The structural description in Figure 2.1 constrains the ways
in which these expressions may be “wired together”. For instance, the test
component of a conditional must be a boolean expression, while the consequent
and alternate components must be numerical expressions.

A specification of the allowed wiring patterns for the syntactic entities of a
language is called a grammar. Figure 2.1 is said to be an abstract grammar
because it specifies the logical structure of the syntax but does not give any
indication how individual expressions in the language are actually written.

The structure determined by an abstract grammar for an individual program
phrase can be represented by an abstract syntax tree (AST). Consider an EL

1Numerals can be broken down into digits, but we will ignore this detail.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.1. ABSTRACT SYNTAX 19

A legal EL program is a pair of (1) a numargs numeral specifying the number of
parameters and (2) a body that is a numerical expression, where a numerical expression
is either:

• an intlit — an integer numeral num;

• an input — a reference to one of the program inputs specified by an index
numeral.

• an arithmetic operation — an application of a rator, in this case a binary arith-
metic operator, to two numerical rand expressions, where an arithmetic operator
is either

– addition,

– subtraction,

– multiplication,

– division,

– remainder;

• a conditional expression— a choice between numerical consequent and alternate
expressions determined by a boolean test expression, where a boolean expression
is either

– a boollit — a boolean literal bool;

– a relational operation — an application of rator, in this case a binary
relational operator, to two numerical rand expressions, where a relational
operator is one of

∗ less-than,
∗ equal-to,
∗ greater-than;

– a logical operation — an application of a rator, in this case a binary logical
operator, to two boolean rand expressions, where a logical operator is one
of

∗ and,
∗ or.

Figure 2.1: An abstract grammar for EL programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

20 CHAPTER 2. SYNTAX

program that returns zero if its first input is between 1 and 10 (exclusive) and
otherwise returns the product of the second and third inputs. The abstract
syntax tree for this program appears in Figure 2.2. Each node of the tree
corresponds to a numerical or boolean expression. The leaves of the tree stand
for primitive phrases, while the intermediate nodes represent compound phrases.
The labeled edges from a parent node to its children show the relationship
between a compound phrase and its components. The AST is defined purely in
terms of these relationships; the particular way that the nodes and edges of a
tree are arranged on the page is immaterial.

Program

3

numargs

Conditional

body

Logical

Operation

test

and

rator

Relational

Operation

rand1

>

rator

Input

rand1

1

index

IntLit

rand2

1

num

Relational

Operation

rand2

<

rator

Input

rand1

1

index

IntLit

rand2

10

num

IntLit

consequent

0

num

Arithmetic

Operation

alternate

*

rator

Input

rand1

2

index

Input

rand2

3

index

Figure 2.2: An abstract syntax tree for an EL program.

2.2 Concrete Syntax

Abstract grammars and ASTs aren’t very helpful when it comes to representing
programs in a textual fashion.2 The same abstract structure can be expressed in

2It is also possible to represent programs more pictorially, and visual programming languages
are an active area of research. But textual representations enjoy certain advantages over visual
ones: they tend to be more compact than visual representations; the technology for processing
them and communicating them is well-established; and, most importantly, they can effectively
make use of our familiarity with natural language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 21

many different concrete forms. The sample EL conditional expression considered
above, for instance, could be written down in some strikingly different textual
forms. Here are three examples:

• if $1 > 1 && $1 < 10 then 0 else $2 * $3 endif

• (cond ((and (> (arg 1) 1) (< (arg 1) 10))

0)

(else (* (arg 2) (arg 3))))

• 1 input 1 gt 1 input 10 lt and {0} {2 input 3 input mul} choose

The above forms differ along a variety of dimensions:

• Keywords and operation names. The keywords if, cond, and choose all
indicate a conditional expression, while multiplication is represented by
the names * and mul. Accessing the ith input to the program is written
in three different ways: $i, (arg i), and i input.

• Operand order. The example forms use infix, prefix, and postfix opera-
tions, respectively.

• Means of grouping. Grouping can be determined by precedence (&& has
a lower precedence than > and < in the first example), keywords (then,
else, and endif delimit the test, consequent, and alternate of the first
conditional), or explicit matched delimiter pairs (such as the parentheses
and braces in the last two examples).

These are only some of the possible dimensions; many more are imaginable. For
instance, numbers could be written in many different numeral formats: e.g.,
decimal, binary, or octal numerals, scientific notation, or even roman numerals!

The above examples illustrate that the nature of concrete syntax necessitates
making representational choices that are arbitrary with respect to the abstract
syntactic structure. These choices are explicitly encoded in a concrete gram-
mar that specifies how to parse a linear text string into a concrete syntax
tree (CST). A concrete syntax tree has the structural relationships of an ab-
stract syntax tree embedded within it, but it is complicated by the handling of
details needed to make the textual layout readable and unambiguous.

2.3 S-Expression Grammars Specify ASTs

While we will dispense with many of the complexities of concrete syntax, we
still need some concrete notation for representing abstract syntax trees. Such
a representation should be simple, yet permit us to precisely describe abstract

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

22 CHAPTER 2. SYNTAX

syntax trees and operations on such trees. Throughout this book, we need to
operate on abstract syntax trees to determine the meaning of a phrase, the type
of a phrase, the translation of a phrase, and so on. To perform such operations,
we need a far more compact representation for abstract syntax trees than the
English description in Figure 2.1 or the graphical one in Figure 2.2.

We have chosen to represent abstract syntax trees using s-expression gram-
mars. An s-expression grammar unites Lisp’s fully parenthesized prefix nota-
tion with traditional grammar notations to describe the structure of abstract
syntax trees via parenthesized sequences of symbols and meta-variables. Not
only are these grammars very flexible for definining unambiguous program lan-
guage syntax, but it is easy to construct programs that process s-expression no-
tation. This facilitates writing interpreters and compilers for the mini-languages
we will study.

2.3.1 S-Expressions

An s-expression (short for symbolic expression) is a Lisp notation for rep-
resenting trees by parenthesized linear text strings. The leaves of the trees are
symbolic tokens, where (to first approximation) a symbolic token is any se-
quence of characters that does not contain a left parenthesis (‘(’), a right paren-
thesis (‘)’), or a whitespace character. Examples of symbolic tokens include x,
foo, this-is-a-token, 17, 6.821, and 4/3*pi*r^2.3

An intermediate node in a tree is represented by a pair of parentheses sur-
rounding the s-expressions that represent the subtrees. Thus, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Figure 2.3. Whitespace is necessary for
separating tokens that appear next to each other, but can be used liberally to
enhance the readability of the structure. Thus, the above s-expression could also
be written as

((this is)

an

((example)

(s-expression

tree)))

without changing the structure of the tree.

3We always write s-expressions in teletype-font.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 23

this is

an

example s-expression tree

Figure 2.3: Viewing ((this is) an ((example) (s-expression tree))) as
a tree.

2.3.2 The Structure of S-Expression Grammars

An s-expression grammar combines the domain notation of Appendix A with
s-expressions to specify the syntactic structure of a language. It has two parts:

1. A listing of syntactic domains, one for each kind of phrase.

2. A set of production rules that define the structure of compound phrases.

Figure 2.4 presents a sample s-expression grammar for EL.
A syntactic domain is a class of program phrases. Primitive syntactic do-

mains are collections of phrases with no substructure. The primitive syntactic
domains of EL are Intlit, BooleanLiteral, ArithmeticOperator, RelationalOp-
erator, and LogicalOperator. Primitive syntactic domains are specified by an
enumeration of their elements or by an informal description with examples. For
instance, the details of what constitutes a numeral in EL are pretty much left
to the reader’s intuition.

Compound syntactic domains are collections of phrases built out of other
phrases. Because compound syntactic domains are defined by a grammar’s pro-
duction rules, the syntactic domain listing does not explicitly indicate their
structure. All syntactic domains are annotated with domain variables (such as
NE , BE , and N) that range over their elements; these play an important role
in the production rules.

The production rules specify the structure of compound domains. There is
one rule for each compound domain. A production rule has the form

domain-variable ::= pattern [phrase-type]
| pattern [phrase-type]
. . .
| pattern [phrase-type]

where

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

24 CHAPTER 2. SYNTAX

Syntactic Domains:

P ∈ Program
NE ∈ NumExp
BE ∈ BoolExp
N ∈ Intlit = {-2, -1, 0, 1, 2, . . .}
B ∈ BooleanLiteral = {true, false}
A ∈ ArithmeticOperator = {+, -, *, /, %}
R ∈ RelationalOperator = {<, =, >}
L ∈ LogicalOperator = {and, or}

Production Rules:

P ::= (el Nnumargs NE body) [Program]

NE ::= Nnum [IntLit]
| (arg Nindex) [Input]
| (Arator NE rand1 NE rand2) [Arithmetic Operation]
| (if BE test NE consequent NEalternate) [Conditional]

BE bool ::= B [BoolLit]
| (Rrator NE rand1 NE rand2) [Relational Operation]
| (Lrator BE rand1 BE rand2) [Logical Operation]

Figure 2.4: An s-expression grammar for EL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 25

• domain-variable is the domain variable for the compound syntactic domain
being defined,

• pattern is an s-expression pattern (defined below), and

• phrase-type is a mnemonic name for the subclass of phrases in the domain
that match the pattern. It corresponds to the labels of intermediate nodes
in an AST.

Each line of the rule is called a production; it specifies a collection of phrases
that are considered to belong to the compound syntactic domain being defined.
The second production rule in Figure 2.4, for instance, has four productions
specifying that a NumExp can be an integer literal, an indexed input, an arith-
metic operation, or a conditional.

An s-expression pattern appearing in a production stands for the domain of
all s-expressions that have the form of the pattern. S-expression patterns are like
s-expressions except that domain variables may appear as tokens. For example,
the pattern (if BE test NE consequent NEalternate) contains the domain variables
BE test , NE consequent , and NEalternate . Such a pattern specifies the structure of a
compound phrase — a phrase that is built from other phrases. Subscripts on
the domain variables indicate their role in the phrase. This helps to distinguish
positions within a phrase that have the same domain variable — e.g., the con-
sequent and alternate of a conditional, which are both numerical expressions.
This subscript appears as an edge label in the AST node corresponding to the
pattern, while the phrase type of the production appears as the node label. So
the if pattern denotes an AST node pattern of the form:

Conditional

BE

test

NE

consequent

NE

alternate

An s-expression pattern P is said tomatch an s-expression SX if P’s domain
variables d1, . . ., dn can be replaced by matching s-expressions SX 1 , . . ., SX n

to yield SX . Each SX i must be an element of the domain over which di ranges.
A compound syntactic domain contains exactly those s-expressions that match
the patterns of its productions in an s-expression grammar.

For example, Figure 2.5 shows the steps by which the NumExp production

(if BE test NE consequent NEalternate)

matches the s-expression

(if (= (arg 1) 3) (arg 2) 4).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

26 CHAPTER 2. SYNTAX

Matching is a recursive process: BE test matches (= (arg 1) 3), NE consequent

matches (arg 2), and NE alternate matches 4. The recursion bottoms out at
primitive syntactic domain elements (in this case, elements of the domain Intlit).
Figure 2.5 shows how an AST for the sample if expression is constructed as the
recursive matching process backs out of the recursion.

Note that the pattern (if BE test NE consequent NEalternate) would not match
any of the s-expressions (if 1 2 3), (if (arg 2) 2 3), or (if (+ (arg 1) 1) 2 3),

because none of the test expressions 1, (arg 2), or (+ (arg 1) 1) match any
of the patterns in the productions for BoolExp.

More formally, the rules for matching an s-expression pattern to an s-
expression are as follows:

• A symbolic token T in the pattern matches only T.

• A domain variable for a primitive syntactic domain D matches an s-
expression SX only if SX is an element of D.

• A domain variable for a compound syntactic domain D matches an s-
expression SX only if one of the patterns in the rule for D matches SX .

• A pattern (P1 . . .Pn)matches an s-expression (SX 1 . . .SX n) only if each
subpattern Pi matches the corresponding subexpression SX i .

We shall use the notation s-expD to designate the domain element in D that
an s-expression designates. When D is a compound domain, s-expD corresponds
to an abstract syntax tree that indicates how s-exp matches one of the rule
patterns for the domain. For example,

(if (and (> (arg 1) 1) (< (arg 1) 10)) 0 (* (arg 2) (arg 3)))NumExp

can be viewed as the abstract syntax tree depicted in Figure 2.2 on page 20.
Each node of the AST indicates the production that successfully matches the
corresponding s-expression, and each edge indicates a domain variable that ap-
peared in the production pattern. The nodes are labeled by the phrase type of
the production and the edges are labeled by the subscript names of the domain
variables used in the production pattern.

In the notation s-expD , domain subscript D serves to disambiguate cases
where s-exp belongs to more than one syntactic domain. For example, 1Intlit is
1 as a primitive numeral, while 1NumExp is 1 as a numerical expression. The
subscript will be omitted when the domain is clear from context.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 27

s-expression domain production AST

(arg 1) NE (arg Nindex)
Input

1

index

3 NE Nnum

IntLit

3

num

(= (arg 1) 3) BE

(Rrator

NE rand1

NE rand2)

Relational

Operation

=

rator

Input

rand1

1

index

IntLit

rand2

3

num

(arg 2) NE (arg Nindex)
Input

2

index

4 NE Nnum

IntLit

4

num

(if (= arg 1)

(arg 2)

4)

NE

(if BE test

NE consequent

NE alternate)

Conditional

Relational

Operation

test

=

rator

Input

rand1

1

index

IntLit

rand2

3

num

Input

consequent

2

IntLit

alternate

4

Figure 2.5: The steps by which (if (= (arg 1) 3) (arg 2) 4) is determined
to be a member of the syntactic domain NumExp. In each row, an s-expression
matches a domain by a production to yield an abstract syntax tree.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

28 CHAPTER 2. SYNTAX

2.3.3 Phrase Tags

S-expression grammars for our mini-languages will generally follow the Lisp-style
convention that compound phrases begin with a phrase tag that unambiguously
indicates the phrase type. In EL, if is an example of a phrase tag. The fact
that all compound phrases are delimited by explicit parentheses eliminates the
need for syntactic keywords in the middle of or at the end of phrases (e.g., then,
else, and endif in a conditional).

Because phrase tags can sometimes be cumbersome, we will often omit them
when no ambiguity results. Figure 2.6 shows an alternative syntax for EL in
which every production is marked with a distinct phrase tag. In this alternative
syntax, the addition of 1 and 2 would be written (arith + (num 1) (num 2))

— quite a bit more verbose than (+ 1 2)! But most of the phrase tags can be
removed without introducing ambiguity. Because numerals are clearly distin-
guished from other s-expressions, there is no need for the num tag. Likewise, we
can dispense with the bool tag. Since the arithmetic operators are disjoint from
the other operators, the arith tag is superfluous; similarly for the rel and log

tags. The result of these optimizations is the original EL syntax in Figure 2.4.

P ::= (el Nnumargs NE body) [Program]

NE ::= (num Nnum) [IntLit]
| (arg Nindex) [Input]
| (arith Arator NE rand1 NE rand2) [Arithmetic Operation]
| (if BE test NE consequent NE alternate) [Conditional]

BE ::= (bool B) [Truth Value]
| (rel Rrator NE rand1 NE rand2) [Relational Operation]
| (log Lrator BE rand1 BE rand2) [Logical Operation]

Figure 2.6: An alternative syntax for EL in which every production has a phrase
tag.

2.3.4 Sequence Patterns

As defined above, each component of an s-expression pattern matches only s-
expressions. But sometimes it is desirable for a pattern component to match se-
quences of s-expressions. For example, suppose we want to extend the + operator
of EL to accept an arbitrary number of numeric operands (making (+ 1 2 3 4)

and (+ 2 (+ 3 4 5) (+ 6 7)) legal numerical expressions in EL). Using the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 29

simple patterns introduced above, this extension requires an infinite number of
productions:

NE ::= . . .
| (+) [Addition-0]
| (+ NE rand1) [Addition-1]
| (+ NE rand1 NE rand2) [Addition-2]
| (+ NE rand1 NE rand2 NE rand3) [Addition-3]
| . . .

Here we introduce a concise way of handling this kind of syntactic flexibility
within s-expression grammars. We extend s-expression patterns so that any
pattern can be annotated with a postfix ‘*’ character. Such a pattern is called a
sequence pattern. A sequence pattern P* matches any consecutive sequence
of zero or more s-expressions SX 1 . . . SX n such that each SX i matches the
pattern P.

For instance, the extended addition expression can be specified concisely by
the pattern (+ NE rand*). Here are some phrases that match this new pattern,
along with the sequence matched by NE rand* in each case:

(+ 1 2 3 4) NE rand*= [1, 2, 3, 4]NumExp
(+ 2 (+ 3 4 5) (+ 6 7)) NE rand*= [2, (+ 3 4 5), (+ 6 7)]NumExp
(+ 1) NE rand*= [1]NumExp
(+) NE rand*= []NumExp

Note that a sequence pattern can match any number of elements, including zero
or one. To specify that an addition should have a minimum of two operands,
we could use the following pattern:

(+ NE rand1 NE rand2 NE rest*).

A postfix ‘+’ is similar to ‘*,’ except the pattern matches a sequence with at
least one element. Thus, (+ NE rand

+) is equivalent to (+ NE rand NE rest*).
A postfix ‘*’ or ‘+’ can be attached to any s-expression pattern, not just a

domain variable. For example, in the s-expression pattern

(cond (BE test NEaction)* (else NE default)),

the subpattern (BE test NEaction)* matches any sequence of parenthesized clauses
containing a boolean expression followed by a numerical expression.

To avoid ambiguity, s-expression grammars are not allowed to use s-expression
patterns in which multiple sequence patterns enable a single s-expression to
match a pattern in more than one way. As an example of a disallowed pat-
tern, consider (op NE rand1 * NE rand2 *), which could match the s-expression
(op 1 2) in three different ways:

• NE rand1*= [1, 2]NumExp and NE rand2*= []NumExp

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

30 CHAPTER 2. SYNTAX

• NE rand1*= [1]NumExp and NE rand2 *= [2]NumExp

• NE rand1*= []NumExp and NE rand2*= [1, 2]NumExp.

A disallowed pattern can always be transformed into a legal pattern by inserting
explicit parentheses to demarcate components. For instance, the following are
all unambiguous legal patterns:

(op (NE rand1*) (NE rand2*))

(op (NE rand1*) NE rand2*)

(op NE rand1* (NE rand2*)).

2.3.5 Notational Conventions

In addition to the s-expression patterns described above, we will employ a few
other notational conventions for syntax.

Domain Variables

In addition to being used in s-expression patterns, domain variables can appear
inside s-expressions when they denote particular s-expression. For example, if
NE1 is the s-expression (+ 1 2) and NE 2 is the s-expression (- 3 4), then
(* NE1 NE2) is the same syntactic entity as (* (+ 1 2) (- 3 4)).

Sequence Notation

Sequence notation, including the infix notations for the cons (‘.’) and append
(‘@’) sequence functions (see Section A.3.4), can be intermixed with s-expression
notation to designate sequence elements of compound syntactic domains. For
example, all of the following are alternative ways of writing the same extended
EL addition expression:

(+ 1 2 3)

(+ [1, 2, 3])

(+ [1, 2] @ [3])

(+ 1 . [2, 3])

Similarly, if NE 1 = 1, NE2*= [2, (+ 3 4)], and NE 3 *= [(* 5 6), (- 7 8)],
then (+ NE1 . NE 2*) designates the same syntactic entity as

(+ 1 2 (+ 3 4)),

and (+ NE2 * @ NE3*) designates the same syntactic entity as

(+ 2 (+ 3 4) (* 5 6) (- 7 8)).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.3. S-EXPRESSION GRAMMARS SPECIFY ASTS 31

The sequence notation is only legal in positions where a production for a
compound syntactic domain contains a sequence pattern. For example, the fol-
lowing notations are illegal because if expressions do not contain any component
sequences:

(if [(< (arg 1) 1), 2, 3])

(if [(< (arg 1) 1), 2] @ [3])

(if (< (arg 1) 1) . [2, 3]).

Sequence notation can be used in s-expression patterns as well. For example,
the pattern

(+ NE rand1 . NE rest*)

matches any addition expression with at least one operrand. The pattern

(+ NE rands1* @ NE rands2*)

can match an addition expression with any number of operands. If the expression
has one or more arguments, the match is ambiguous (and therefore disallowed,
see page 29) since there are multiple ways to bind NE rands1 * and NE rands2 * to
sequences that append to the argument sequence.

Syntactic Functions

We will follow a convention (standard in the semantics literature) that functions
on compound syntactic domains are defined by a series of clauses, one for each
production. Figure 2.7 illustrates this style of definition for two functions on EL
expressions: nheight specifies the height of a numerical expression, while bheight
specifies the height of a boolean expression. Each clause consists of two parts:
a head that specifies an s-expression pattern from a production; and a body that
describes the meaning of the function for s-expressions that match the head
pattern. The double brackets, [[]], are traditionally used in syntactic functions
to demarcate a syntactic argument, and thus to clearly separate expressions in
the language being defined (program code, for example) from the language of the
semantics. These brackets may be viewed as part of the name of the syntactic
function.

Functions on syntactic domains are formally maps from s-expressions to a
result domain. However, for all intents and purposes, they can also be viewed as
maps from abstract syntax trees to the result domain. Each clause of a syntactic
function definition specifies how the function at the node of an AST is defined
in terms of the result of applying this function to the components of the AST.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

32 CHAPTER 2. SYNTAX

nheight : NumExp→ Nat
nheight[[NE]] = 0
nheight[[(arg NE)]] = 0
nheight[[(A NE1 NE2)]] = (1+ (max nheight[[NE 1]] nheight[[NE 2]]))
nheight[[(if BE test NE con NEalt)]]
= (1+ (max bheight[[BE test]] (max nheight[[NE con]] nheight[[NEalt]])))

bheight : BoolExp→ Nat
bheight[[B]] = 0
bheight[[(R NE1 NE2)]] = (1+ (max nheight[[NE 1]] nheight[[NE 2]]))
bheight[[(L BE1 BE 2)]] = (1+ (max bheight[[BE 1]] bheight[[BE 2]]))

Figure 2.7: Two examples illustrating the form of function definitions on syn-
tactic domains.

2.4 The Syntax of PostFix

Equipped with our syntactic tools, we are now ready to formally specify the
syntactic structure of PostFix, the stack language introduced in Section 1.4,
and to explore some variations on this structure. Figure 2.8 presents an s-
expression grammar for PostFix. Top-level programs are represented as s-
expressions of the form (postfix Nnumargs Qbody), where Nnumargs is a numeral
specifying the number of arguments andQbody is the command sequence executed
by the program. The sequence pattern C* in the production for Commands
(Q) indicates that it is a sequence domain over elements from the Command
domain. Most of the elements of Command (C) are single tokens (e.g., add

and sel), except for executable sequences, which are parenthesized elements
of the Commands domain. The mutually recursive structure of Command and
Commands permits arbitrary nesting of executable sequences.

The concrete details specified by Figure 2.8 are only one way of capturing
the underlying abstract syntactic structure of the language. Figure 2.9 presents
an alternative s-expression grammar for PostFix. In order to avoid confusion,
we will refer to the language defined in Figure 2.9 as PostFix2.

There are two main differences between the grammars of PostFix and
PostFix2.

1. The PostFix2 grammar strictly adheres to the phrase tag convention in-
troduced in Section 2.3.3. That is, every element of a compound syntactic
domain appears as a parenthesized structure introduced by a unique tag.
For example, 1 becomes (int 1), pop becomes (pop), and add becomes

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.4. THE SYNTAX OF POSTFIX 33

P ∈ Program
Q ∈ Commands
C ∈ Command
A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
P ::= (postfix Nnumargs Qbody) [Program]

Q ::= C* [Command Sequence]

C ::= N [IntLit]
| pop [Pop]
| swap [Swap]
| A [Arithmetic Operator]
| R [Relational Operator]
| nget [NumGet]
| sel [Select]
| exec [Execute]
| (Q) [Executable Sequence]

Figure 2.8: An s-expression grammar for PostFix.

(arithop add).4

2. Rather than representing command sequences as a sequence domain, Post-
Fix2 uses the : and (skip) commands to encode such sequences. (skip)
is intended to be a “no op” command that leaves the stack unchanged,
while (: C1 C2) is intended first to perform C1 on the current stack and
then to perform C2 on the stack resulting from C1 . The : and (skip)
commands in PostFix2 serve the roles of consCommand and []Command in
PostFix. For example, the PostFix command sequence

[1, 2, add]Command = (cons 1 (cons 2 (cons add []Command)))

can be encoded in PostFix2 as a single command:

(: (int 1) (: (int 2) (: (arithop add) (skip)))).

The difference in phrase tags is a surface variation in concrete syntax that
does not affect the structure of abstract syntax trees. Whether sequences are ex-
plicit (the original grammar) or implicit (the alternative grammar) is a deeper

4the arithop keyword underscores that the arithmetic operators are related; similarly for
relop.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

34 CHAPTER 2. SYNTAX

P ∈ Program
C ∈ Command
A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
P ::= (postfix Nnumargs Cbody) [Program]

C ::= (int N) [IntLit]
| (pop) [Pop]
| (swap) [Swap]
| (arithop A) [Arithmetic Operator]
| (relop R) [Relational Operator]
| (nget) [NumGet]
| (sel) [Select]
| (exec) [Execute]
| (seq C) [Executable Sequence]
| (: C1 C2) [Compose]
| (skip) [Skip]

Figure 2.9: An s-expression grammar for PostFix2, an alternative syntax for
PostFix.

variation because the abstract syntax trees differ in these two cases (see Fig-
ure 2.10).

Although the tree structures are similar, it is not a priori possible to deter-
mine that the second tree encodes a sequence without knowing more about the
semantics of compositions and skips. In particular, : and (skip) must satisfy
two behavioral properties in order for them to encode sequences:

• (skip)must be an identity for :. I.e., (: C (skip)) and (: (skip) C)
must behave like C.

• : must be associative. I.e., (: C1 (: C2 C3)) must behave the same
as (: (: C1 C2) C3).

These two properties amount to saying that (1) skips can be ignored and (2) in a
tree of compositions, only the order of the leaves matters. With these properties,
any tree of compositions is isomorphic to a sequence of the non-skip leaves. The
informal semantics of : and (skip) given above satisfies these two properties.

Is one of the two grammars presented above “better” than the other? It
depends on the context in which they are used. As the following example indi-
cates, the PostFix grammar certainly leads to programs that are more concise
than those generated by the PostFix2 grammar:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

2.4. THE SYNTAX OF POSTFIX 35

Program

Command

Sequence

commands

Integer

Literal

com1

1

Integer

Literal

com2

2

Arithmetic

Operator

com3

add

Program

Compose

command

Integer

Literal

com1

1

Compose

com2

Integer

Literal

com1

2

Compose

com2

Arithmetic

Operator

com1

add

Skip

com2

(a) AST for PostFix program (b) AST for PostFix2 program

Figure 2.10: A comparison of the abstract syntax trees for two encodings of a
PostFix program.

; PostFix
(postfix 1 (1 2 add) (3 4 mul) sel exec)

; PostFix2
(postfix2 1

(: (seq (: (int 1) (: (int 2) (: (arithop add)

(skip)))))

(: (seq (: (int 3) (: (int 4) (: (arithop mul)

(skip)))))

(: (sel)

(: (exec) (skip))))))

Additionally, we shall see that the explicit sequences of PostFix make it more
amenable to certain kinds of semantic analysis. On the other hand, other se-
mantic and pragmatic tools are easier to apply to PostFix2 programs. Though
we will focus on the PostFix grammar, we will consider PostFix2 when it
is instructive to do so. In any event, the reader should be aware that even
the fairly constrained boundaries of s-expression grammars leave some room for
design decisions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

36 CHAPTER 2. SYNTAX

Reading

The notion of abstract syntax is due to McCarthy [McC62]. This notion is
commonly used in operational and denotational semantics to ignore unimportant
syntactic details (see the references in Chapters 3–4). Interpreters and compilers
often have a “front-end” stage that converts concrete syntax into explicit data
structures representing abstract syntax trees.

Our s-expression grammars are based on McCarthy’s Lisp s-expression no-
tation [McC60], which is a trivially parsable generic and extensible concrete
syntax for programming languages. Many tools — most notably Lex [Les75]
and Yacc [Joh75] — are available for converting more complex concrete syn-
tax into abstract syntax trees. A discussion of these tools, and the scanning
and parsing theory behind them, can be found in almost any compiler text-
book. For a particularly concise account, consult one of Appel’s textbooks
[App98b, App98a, AP02].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 3

Operational Semantics

And now I see with eye serene
The very pulse of the machine.

— She Was a Phantom of Delight, William Wordsworth

3.1 The Operational Semantics Game

Consider executing the following PostFix program on the arguments [4, 5]:

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

It helps to have a bookkeeping notation that represents the process of applying
the informal rules presented in Chapter 1. For example, the table in Figure 3.1
illustrates one way to represent the execution of the above program. The table
has two columns: the first column in each row holds the current command
sequence; the second holds the current stack. The execution process begins
by filling the first row of the table with the command sequence of the given
program and an empty stack. Execution proceeds in a step-by-step fashion by
using the rule for the first command of the current row to generate the next row.
Each execution step removes the first command from the sequence and updates
the stack. In the case of exec, new commands may also be prepended to the
command sequence. The execution process terminates as soon as a row with an
empty command sequence is generated. The result of the execution is the top
stack element of the final row (-3 in the example).

The table-based technique for executing PostFix programs exemplifies an
operational semantics. Operational semantics formalizes the common intu-
ition that program execution can be understood as a step-by-step process that

37

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

38 CHAPTER 3. OPERATIONAL SEMANTICS

Commands Stack

(2 (3 mul add) exec) 1 swap exec sub 4

5

1 swap exec sub (2 (3 mul add) exec)

4

5

swap exec sub 1

(2 (3 mul add) exec)

4

5

exec sub (2 (3 mul add) exec)

1

4

5

2 (3 mul add) exec sub 1

4

5

(3 mul add) exec sub 2

1

4

5

exec sub (3 mul add)

2

1

4

5

3 mul add sub 2

1

4

5

mul add sub 3

2

1

4

5

add sub 6

1

4

5

sub 7

4

5

-3

5

Figure 3.1: A table showing the step-by-step execution of a PostFix program.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.1. THE OPERATIONAL SEMANTICS GAME 39

evolves by the mechanical application of a fixed set of rules. Sometimes the
rules describe how the state of some physical machine is changed by executing
an instruction. For example, assembly code instructions are defined in terms of
the effect that they have on the architectural elements of a computer: registers,
stack, memory, instruction stream, etc. But the rules may also describe how
language constructs affect the state of some abstract machine that provides a
mathematical model for program execution. Each state of the abstract machine
is called a configuration.

For example, in the PostFix abstract machine implied by the table in Fig-
ure 3.1, each configuration is modeled by one row of the execution table: a pair
of a program and a stack. The next configuration of the machine is determined
from the current one based on the first command in the current program. The
behavior of each command can be specified in terms of how it transforms the
current configuration into the next one. For example, executing the add com-
mand removes it from the command sequence and replaces the top two elements
of the stack by their sum. Executing the exec command pops an executable
sequence from the top of the stack and prepends its commands in front of the
commands following exec.

The general structure of an operational semantics execution is illustrated in
Figure 3.2. An abstract machine accepts a program to be executed along with
its inputs and then chugs away until it emits an answer. Internally, the abstract
machine typically manipulates configurations with two kinds of parts:

1. The code component: a program phrase that controls the rest of the
computation.

2. The state components: entities that are manipulated by the program
during its execution. In the case of PostFix, the single state component
is a stack, but configurations for other languages might include state com-
ponents modeling random-access memory, a set of name/object bindings,
a file system, a graphics state, various kinds of control information, etc.
Sometimes there are no state components, in which case a configuration is
just code.

The stages of the operational execution are as follows:

• The program and its inputs are first mapped by an input function into
an initial configuration of the abstract machine. The code component
of the initial configuration is usually some part of the given program, and
the state components are appropriately initialized from the inputs. For in-
stance, in an initial configuration for PostFix, the code component is the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

40 CHAPTER 3. OPERATIONAL SEMANTICS

×

Abstract Machine
Program

Inputs

Initial Configuration

Intermediate Configuration

Rules

Intermediate Configuration

Final ConfigurationAnswer

Input
Function

Output
Function

Figure 3.2: The operational semantics “game board.”

command sequence body of the program and the single state component is
a stack containing the integer arguments in order with the first argument
at the top of the stack.

• After an initial configuration has been constructed, it’s time to “turn the
crank” of the abstract machine. During this phase, the rules governing the
abstract machine are applied in an iterative fashion to yield a sequence of
intermediate configurations. Each configuration is the result of one step
in the step-by-step execution of the program. This stage continues until a
configuration is reached that is deemed to be a final configuration. What
counts as a final configuration varies widely between abstract machines.
In the case of PostFix, a configuration is final when the code component
is an empty command sequence.

• The last step of execution is mapping the final configuration to an answer
via an output function. What is considered to be an answer differs
greatly from language to language. For PostFix, the answer is the top
stack value in a final configuration, if it’s an integer. If the stack is empty
or the top value is an executable sequence, the answer is an error token. In

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 41

other systems, the answer might also include elements like the final state
of the memory, file system, or graphics screen.

Sometimes an abstract machine never reaches a final configuration. This can
happen for one of two reasons:

1. The abstract machine may reach a non-final configuration to which no rules
apply. Such a configuration is said to be a stuck state. For example, the
initial configuration for the PostFix program (postfix 1 sub) is a stuck
state because the rules in Figure 1.1 don’t say how to handle sub when the
stack doesn’t contain at least two elements. (The configuration is not final
because the command sequence [sub] is non-empty.) Stuck states often
model error situations.

2. The rule-applying process of the abstract machine might not terminate.
In any universal programming language1 it is possible to write programs
that loop forever. For such programs, the execution process of the abstract
machine never terminates. As a consequence of the halting theorem2, we
can’t do better than this: there’s no general way to tweak the abstract
machine of a universal language so that it always indicates when it is in
an infinite loop.

We show in Section 3.4.3 that all PostFix programs must terminate. This
implies that PostFix is not universal.

3.2 Small-step Operational Semantics (SOS)

3.2.1 Formal Framework

Above, we presented a high-level introduction to operational semantics. Here, we
iron out all the details necessary to turn this approach into a formal framework
known as small-step operational semantics (SOS3). An SOS is character-
ized by the use of rewrite rules to specify the step-by-step transformation of
configurations in an abstract machine.

To express this framework formally, we will use the mathematical metalan-
guage described in Appendix A. Before reading further, you should at least

1A programming language is universal if it can express all computable functions.
2The halting theorem states that there is no program that can decide for all programs P

and all inputs A whether P terminates on A.
3This framework, due to Plotkin [Plo81], was originally called structured operational

semantics. It later became known as the small-step approach to distinguish it from – you
guessed it – a big-step approach (see Section 3.3).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

42 CHAPTER 3. OPERATIONAL SEMANTICS

skim this appendix to familiarize yourself with the notational conventions of the
metalanguage. Later, when you encounter an unfamiliar notation or concept,
consult the relevant section of the appendix for a detailed explanation.

Consider a programming language L with legal programs P ∈ Program, in-
puts I ∈ Inputs, and elements A ∈Answer that are considered to be valid answers
to programs. Then an SOS for L is a five-tuple SOS = 〈CF ,⇒,FC , IF ,OF 〉,
where:

• CF is the set of configurations for an abstract machine for L. The
metavariable cf ranges over configurations.

• ⇒, the transition relation, is a binary relation between configurations
that defines the allowable transitions between configurations. The notation
cf ⇒ cf ′ means that there is a (one step) transition from the configu-
ration cf to the configuration cf ′. This notation, which is shorthand for
〈cf, cf ′〉 ∈ ⇒, is pronounced “cf rewrites to cf ′ in one step.” The two
parts of a transition have names: cf is called the left hand side (LHS)
and cf ′ is called the right hand side (RHS). The transition relation is
usually specified by rewrite rules, as described below in Section 3.2.3.

The reflexive, transitive closure of ⇒ is written
∗⇒. So cf

∗⇒ cf ′ means
that cf rewrites to cf ′ in zero or more steps. The sequence of transitions
between cf and cf ′ is called a transition path. The length of a transition
path is the number of transitions in the path. The notation cf =

n
=⇒ cf ′

indicates that cf rewrites to cf ′ in n steps, i.e., via a transition path of
length n. The notation cf

∞⇒ indicates that there is an infinitely long
transition path beginning with cf.

A configuration cf is reducible if there is some cf ′ such that cf ⇒ cf ′.
If there is no such cf ′, then we write cf 6⇒ and say that cf is irreducible.
CF can be partitioned into two sets, ReducibleSOS (containing all reducible
configurations) and IrreducibleSOS (containing all irreducible ones). We
omit the SOS subscript when it is clear from context. A transition relation
⇒ is deterministic if for every cf ∈ReducibleSOS there is exactly one cf ′

such that cf ⇒ cf ′. Otherwise, ⇒ is said to be non-deterministic.

• FC , the set of final configurations, is a subset of IrreducibleSOS con-
taining all configurations that are considered to be final states in the ex-
ecution of a program. The set StuckSOS of stuck states is defined to be
(IrreducibleSOS − FC) — i.e., the non-final irreducible configurations. We
omit the SOS subscript when it is clear from context.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 43

• IF : Program× Inputs→ CF is an input function that maps a program
and its inputs into an initial configuration.

• OF : FC → Answer is an output function that maps a final configura-
tion to an appropriate answer domain.

An SOS defines the behavior of a program in a way that we shall now make
precise. What are the possible behaviors of a program? As discussed above, a
program either (1) returns an answer (2) gets stuck in a non-final irreducible
configuration or (3) loops infinitely. We model these via the following Outcome
domain, where stuckout designates a stuck program and loopout designates a
infinitely looping program:

StuckOut = {stuckout}
LoopOut = {loopout}

o ∈ Outcome = Answer + StuckOut + LoopOut
stuck = (StuckOut 7→ Outcome stuckout)
∞ = (StuckOut 7→ Outcome loopout)

Suppose that an SOS has a deterministic transition relation. Then we can define
the behavior of a program P on inputs I as follows:

behdet : Program× Inputs→ Outcome

behdet 〈P, I〉 =

(Answer 7→ Outcome (OF cf)) if (IF 〈P, I〉) ∗⇒ cf ∈ FC

stuck if (IF 〈P, I〉) ∗⇒ cf ∈ Stuck

∞ if (IF 〈P, I〉) ∞⇒

In the first case, an execution starting at the initial configuration eventually
reaches a final configuration, whose answer is returned. In the second case, an
execution starting at the initial configuration eventually gets stuck at a non-final
configuration. In the last case, there is an infinite transition path starting at
the initial configuration, so the program never halts.

What if the transition relation is not deterministic? In this case, it is possible
that there are multiple transition paths starting at the initial configuration.
Some of these might end at final configurations with different answers. Others
might be infinitely long or end at stuck states. In general, we must allow for
the possibility that there are many outcomes, so the signature of the behavior
function beh in this case must return a set of outcomes — i.e., an element of the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

44 CHAPTER 3. OPERATIONAL SEMANTICS

powerset domain P(Outcome)4

beh : Program× Inputs→ P(Outcome)

o ∈ (beh 〈P, I〉) if

o = (Answer 7→ Outcome (OF cf))

and (IF 〈P, I〉) ∗⇒ cf ∈ FC

o = stuck and (IF 〈P, I〉) ∗⇒ cf ∈ Stuck

o = ∞ and (IF 〈P, I〉) ∞⇒

An SOS with a non-deterministic transition relation won’t necessarily give rise
to results that contain multiple outcomes. Indeed, we will see later (in Sec-
tion 3.4.2) that some systems with non-deterministic transition relations can
still have a behavior that is deterministic — i.e., the resulting set of outcomes
is always a singleton.

3.2.2 Example: An SOS for PostFix

We can now formalize the elements of the PostFix SOS described informally
in Section 3.1 (except for the transition relation, which will be formalized in
Section 3.2.3). The details are presented in Figure 3.3. A stack is a sequence
of values that are either integer numerals (from domain Intlit) or executable
sequences (from domain Commands). PostFix programs take a sequence of
integer numerals as their inputs, and, when no error is encountered, return an
integer numeral as an answer. A configuration is a pair of a command sequence
and a stack. A final configuration is one whose command sequence is empty and
whose stack is non-empty with an integer numeral on top (i.e., an element of
FinalStack). The input function IF maps a program and its numeric inputs to a
configuration consisting of the body command sequence and an initial stack with
the inputs arranged from top down. If the number of arguments N expected by
the program does not match the actual number n of arguments supplied, then
IF returns a stuck configuration 〈[]Command, []Value〉 that represents an error.
The output function OF returns the top integer numeral from stack of a final
configuration.

The PostFix SOS in Figure 3.3 models errors using stuck states. By def-
inition, stuck states are exactly those irreducible configurations that are non-
final. In PostFix, stuck states are irreducible configurations whose command
sequence is non-empty or those that pair an empty command sequence with a
stack that is empty or has an executable sequence on top. The outcome of a
program that reaches such a configuration will be stuck.

4The result of beh must in fact be a non-empty set of outcomes, since every program will
have at least one outcome.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 45

Domains

V ∈ Value = Intlit + Commands
S ∈ Stack = Value*

FinalStack = {S | (length S) ≥ 1 and (nth 1 S) = (Intlit 7→ Value N)}
Inputs = Intlit*
Answer = Intlit

SOS

Suppose that the PostFix SOS has the form PFSOS = 〈CF ,⇒,FC , IF ,OF 〉.
Then the SOS components are:

CF = Commands × Stack

⇒ is a deterministic transition relation defined in Section 3.2.3

FC = {[]Command} × FinalStack

IF : Program× Inputs→ CF
=λ〈(postfix N Q), [N1 , . . . ,Nn]〉 .

if N = n then 〈Q, [(Intlit 7→ Value N1), . . . , (Intlit 7→ Value Nn)]〉
else 〈[]Command, []Value〉 fi

OF : FC → Answer =λ〈[]Command, (Intlit 7→ Value N) . S ′〉 . N

Figure 3.3: An SOS for PostFix.

Although it is convenient to use stuck states to model errors, it is not strictly
necessary. With some extra work, it is always possible to modify the final config-
uration set FC and the output function OF so that such programs instead have
as their meaning some error token in Answer. Using PostFix as an example,
we can use a modified answer domain Answer ′ that includes an error token, a
modified final configuration set FC ′ that includes all irreducible configurations,
and the modified OF ′ shown below:

Error = {error}
Answer ′ = Intlit + Error

FC ′ = IrreduciblePFSOS

OF : FC ′ → Answer ′

=λ〈Q,V*〉 . matching 〈Q,V*〉
. 〈[]Command, (Intlit 7→ Value N) . S ′〉 [] (Intlit 7→ Answer ′ N)
. else (Error 7→ Answer ′ error)

With these modifications, the behavior of a PostFix program that encounters
an error will be (Answer ′ 7→ Outcome (Error 7→ Answer ′ error)) rather than stuck.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

46 CHAPTER 3. OPERATIONAL SEMANTICS

¤ Exercise 3.1 Look up definitions of the following kinds of automata and express

each of them in the SOS framework: deterministic finite automata, non-deterministic

finite automata, deterministic pushdown automata, and Turing machines. Represent

strings, stacks, and tapes as sequences of symbols. ¢

3.2.3 Rewrite Rules

The transition relation, ⇒, for an SOS is often specified by a set of rewrite
rules. A rewrite rule has the form

antecedents

consequent
[rule-name]

where the antecedents and the consequent contain transition patterns (described
below). Informally, the rule asserts: “If the transitions specified by the an-
tecedents are valid, then the transition specified by the consequent is valid.”
The label [rule-name] on the rule is just a handy name for referring to the rule,
and is not a part of the rule structure. A rewrite rule with no antecedents is an
axiom; otherwise it is a progress rule. The horizontal bar is usually omitted
when writing an axiom.

A complete set of rewrite rules for PostFix appears in Figure 3.4. All of
the rules are axioms. Together with the definitions of CF , FC , IF , and OF ,
these rules constitute a formal SOS version of the informal PostFix semantics
originally presented in Figure 1.1. We will spend the rest of this section studying
the meaning of these rules and considering alternative rules.

3.2.3.1 Axioms

Since an axiom has no antecedents, it is determined solely by its consequent.
As noted above, the consequent must be a transition pattern. A transition
pattern looks like a transition except that the LHS and RHS may contain domain
variables interspersed with the usual notation for configurations. Informally, a
transition pattern is a schema that stands for all the transitions that match the
pattern. An axiom stands for the collection of all configuration pairs that match
the LHS and RHS of the transition pattern, respectively.

As an example, let’s consider in detail the axiom that defines the behavior
of PostFix numerals:

〈N . Q, S〉⇒ 〈Q, N . S〉 [num]

This axiom stands for an infinite number of pairs of configurations of the form
〈cf, cf ′〉. It says that if cf is a configuration in which the command sequence is

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 47

〈N . Q, S〉⇒ 〈Q, N . S〉 [num]

〈(Qexec) . Qrest , S〉⇒ 〈Qrest , (Qexec) . S〉 [seq]

〈pop . Q, Vtop . S〉⇒ 〈Q, S〉 [pop]

〈swap . Q, V1 . V2 . S〉⇒ 〈Q, V2 . V1 . S〉 [swap]

〈sel . Qrest , Vfalse . Vtrue . 0 . S〉⇒ 〈Qrest , Vfalse . S〉 [sel-false]

〈sel . Qrest , Vfalse . Vtrue . Ntest . S〉⇒ 〈Qrest , Vtrue . S〉,
where Ntest 6=0 [sel-true]

〈exec . Qrest , (Qexec) . S〉⇒ 〈Qexec @ Qrest , S〉 [execute]

〈A . Q, N1 . N2 . S〉⇒ 〈Q, Nresult . S〉,
where Nresult =(calculate A N2 N1)

[arithop]

〈R . Q, N1 . N2 . S〉⇒ 〈Q, 1 . S〉,
where (compare R N2 N1)

[relop-true]

〈R . Q, N1 . N2 . S〉⇒ 〈Q, 0 . S〉,
where ¬ (compare R N2 N1)

[relop-false]

〈nget . Q, Nindex . [V1 , . . . ,VNsize
]〉⇒ 〈Q, VNindex

. [V1 , . . . ,VNsize
]〉,

where (compare gt Nindex 0) ∧ ¬ (compare gt Nindex Nsize)
[nget]

Figure 3.4: Rewrite rules defining the transition relation (⇒) for PostFix.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

48 CHAPTER 3. OPERATIONAL SEMANTICS

a numeral N followed by Q and the stack is S, then there is a transition from
cf to a configuration cf ′ whose command sequence is Q, and whose stack holds
N followed by S.

In the [num] rule, N, Q, and S are domain variables that act as patterns that
can match any element in the domain over which the variable ranges. Thus, N
matches any integer numeral, Q matches any command sequence, and S matches
any stack. When the same pattern variable occurs more than once within a
rule, all occurrences must denote the same element; this constrains the class of
transitions specified by the rule. Thus, the [num] rule matches the transition

〈(17 add swap), [19, (2 mul)]〉⇒ 〈(add swap), [17, 19, (2 mul)]〉

with N = 17, Q = [add, swap], and S =[19, [2, mul]]. On the other hand, the
rule does not match the transition

〈(17 add swap), [19, (2 mul)]〉⇒ 〈(add swap), [17, 19, (2 mul), 23]〉

because there is no consistent interpretation for the pattern variable S — it is
[19, [(2 mul)]] in the LHS of the transition, and [19, (2 mul), 23] in the RHS.

As another example, the configuration pattern 〈Q, N . N . S〉 would only
match configurations with stacks in which the top two values are the same
integer numeral. If the RHS of the [num] rule consequent were replaced with
this configuration pattern, then the rule would indicate that two copies of the
integer numeral should be pushed onto the stack.

At this point, the meticulous reader may have noticed that in the rewrite
rules and sample transitions we have taken many liberties with our notation.
If we had strictly adhered to our metalanguage notation, then we would have
written the [num] rule as

〈(Intlit 7→ Command N) . Q,S〉⇒ 〈Q, (Intlit 7→ Value N) . S〉 [num]

and we would have written the matching transition as

〈[17, add, swap]Command, [(Intlit 7→ Value 19),
(Commands 7→ Value [2, mul]Command)]〉

⇒ 〈[add, swap]Command, [(Intlit 7→ Value 17),
(Intlit 7→ Value 19),
(Commands 7→ Value [2, mul]Command)]〉.

However, we believe that the more rigorous notation severely impedes the read-
ability of the rules and examples. For this reason, we will stick with our stylized
notation when it is unlikely to cause confusion. In particular, in operational
semantics rules and sample transitions, we adopt the following conventions:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 49

• Injections will be elided when they are clear from context. For example, if
N appears as a command, then it stands for (Intlit 7→ Command N), while
if it appears as a stack element, then it stands for (Intlit 7→ Value N).

• Sequences of syntactic elements will often be written as parenthesized s-
expressions. For example, the PostFix command sequence

[3, [2, mul]Command, swap]Command

will be abbreviated as

(3 (2 mul) swap).

The former is more precise, but the latter is easier to read. In PostFix
examples, we have chosen to keep the sequence notation for stacks to
visually distinguish the two components of a configuration.

Despite these notational acrobatics, keep in mind that we are manipulat-
ing well-defined mathematical structures. So it is always possible to add the
appropriate decorations to make the notation completely rigorous.5

Some of the PostFix rules ([arithop], [relop-true], [relop-false], [sel-true],
and [nget]) include side conditions that specify additional restrictions on the
domain variables. For example, consider the axiom which handles a conditional
whose test is true:

〈sel . Qrest , Vfalse . Vtrue . Ntest . S〉⇒ 〈Qrest , Vtrue . S〉,
where Ntest 6=0 [sel-true]

This axiom encodes the fact that sel treats any nonzero integer numeral as true.
It says that as long as the test numeral Ntest (the third element on the stack)
is not the same syntactic object as 0, then the next configuration is obtained
by removing sel from the command sequence, and pushing the second stack
element on the result of popping the top three elements off of the stack. The
domain variable Ntest that appears in the side condition Ntest 6=0 stands for the
same entity that Ntest denotes in the LHS of the consequent, providing the link
between the transition pattern and the side condition. Note how the domain
variables and the structure of the components are used to constrain the pairs
of configurations that satisfy this rule. This rule only represents pairs 〈cf, cf ′〉
in which the stack of cf contains at least three elements, the third of which is
a nonzero integer numeral. The rule does not apply to configurations whose
stacks have fewer than three elements, or whose third element is an executable
sequence or the numeral 0.

5But those who pay too much attention to rigor may develop rigor mortis!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

50 CHAPTER 3. OPERATIONAL SEMANTICS

The side conditions in the [arithop], [relop], and [nget] rules deserve some
explanation. The calculate function used in the side condition of [arithop] re-
turns the numeral Nresult resulting from the application of the operator A to the
operands N2 and N1 ; it abstracts away the details of such computations.6 We
assume that calculate is a partial function that is undefined when A is div and
N1 is 0, so division by zero yields a stuck state. The [relop-true] and [relop-false]
rules are similar to [arithop]; here the auxiliary compare function is assumed to
return the truth value resulting from the associated comparison. The rules then
convert this truth value into a PostFix value of 1 (true) or 0 (false). In the
[nget] rule, the compare function is used to ensure that the numeral Nindex is a
valid index for one of the values on the stack. If not, the configuration is stuck.
In the side conditions, the symbol ¬ stands for logical negation and ∧ stands
for logical conjunction.

You should now know enough about the rule notation to understand all of
the rewrite rules in Figure 3.4. The [num] and [seq] rules push the two different
kinds of values onto the stack. The [swap], [pop], [sel-true], and [sel-false] rules
all perform straightforward stack manipulations. The [exec] rule prepends an
executable sequence from the stack onto the command sequence following the
current command.

It is easy to see that the transition relation defined in Figure 3.4 is determin-
istic. The first command in the command sequence of a configuration uniquely
determines which transition pattern might match, except for the case of sel,
where the third stack value distinguishes whether [sel-true] or [sel-false] matches.
The LHS of each transition pattern can match a given configuration in at most
one way. So for any given PostFix configuration cf, there is at most one cf ′

such that cf ⇒ cf ′.

3.2.3.2 Operational Execution

The operational semantics can be used to execute a PostFix program in a way
similar to the table-based method presented earlier. For example, the execution
of the PostFix program shown earlier in Figure 3.1 is illustrated in Figure 3.5.
The input function is applied to the program to yield an initial configuration,
and then a series of transitions specified by the rewrite rules are applied. In the

6Note that calculate manipulates numerals (i.e., names for integers) rather than the integers

that they name. This may seem pedantic, but we haven’t described yet how the meaning of an
integer numeral is determined. In fact, integers are never even used in the SOS for PostFix.
If we had instead defined the syntax of PostFix to use integers rather than integer numerals,
then we could have used the usual integer addition operation here. But we chose integer
numerals to emphasize the syntactic nature of operational semantics.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 51

figure, the configuration resulting from each transition appears on a separate
line and is labeled by the applied rule. When a final configuration is reached,
the output function is applied to this configuration to yield -3, which is the
result computed by the program. We can summarize the transition path from
the initial to the final configuration as

〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉 =10=⇒ 〈(), [-3, 5]〉,

where 10 is the number of transitions. If we don’t care about this number, we
write ∗ in its place.

(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(2 (3 mul add) exec sub), [1, 4, 5]〉 [execute]
⇒ 〈((3 mul add) exec sub), [2, 1, 4, 5]〉 [num]
⇒ 〈(exec sub), [(3 mul add), 2, 1, 4, 5]〉 [seq]
⇒ 〈(3 mul add sub), [2, 1, 4, 5]〉 [execute]
⇒ 〈(mul add sub), [3, 2, 1, 4, 5]〉 [num]
⇒ 〈(add sub), [6, 1, 4, 5]〉 [arithop]
⇒ 〈(sub), [7, 4, 5]〉 [arithop]
⇒ 〈(), [-3, 5]〉 ∈ FC [arithop]
(OF 〈(), [-3, 5]〉) = -3

Figure 3.5: An SOS-based execution of a PostFix program.

Not all PostFix executions lead to a final configuration. For example,
executing the program (program 2 add mul 3 4 sub) on the inputs [5, 6] leads
to the configuration 〈(mul 3 4 sub), [11]〉. This configuration is not final
because there are still commands to be executed. But it does not match the
LHS of any rewrite rule consequent. In particular, the [arithop] rule requires
the stack to have two integers at the top, and here there is only one. This is an
example of a stuck state. As discussed earlier, a program reaching a stuck state
is considered to signal an error. In this case the error is due to an insufficient
number of arguments on the stack.

¤ Exercise 3.2 Use the SOS for PostFix to determine the values of the PostFix

programs in Exercise 1.1. ¢

¤ Exercise 3.3 Consider extending PostFix with a rot command defined by the
following rewrite rule:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

52 CHAPTER 3. OPERATIONAL SEMANTICS

〈rot . Q, N . V0 . V1 VN . S〉⇒ 〈Q, V1 VN . V0 . S〉,
where (compare gt N 0)

[rot]

a. Give an informal English description of the behavior of rot.

b. What is the contents of the stack after executing the following program on zero
arguments?

(postfix 0 1 2 3 1 2 3 rot rot rot)

c. Using rot, write a PostFix executable sequence that serves as subroutine for
reversing the top three elements of a given stack.

d. List the kinds of situations in which rot can lead to a stuck state, and give a
sample program illustrating each one. ¢

¤ Exercise 3.4 The SOS for PostFix specifies that a configuration is stuck when
the stack contains an insufficient number of values for a command. For example,
〈(2 mul), []〉 is stuck because multiplication requires two stack values.
a. Modify the semantics of PostFix so that, rather than becoming stuck, it uses
sensible defaults for the missing values when the stack contains an insufficient
number of values. For example, the default value(s) for mul would be 1:

〈(2 mul), []〉 ⇒ 〈(2), []〉
〈(mul), []〉 ⇒ 〈(1), []〉

b. Do you think this modification is a good idea? Why or why not? ¢

¤ Exercise 3.5 Suppose the Value domain in the PostFix SOS is augmented with a

distinguished error value. Modify the rewrite rules for PostFix so that error configura-

tions push this error value onto the stack. The error value should be “contagious” in the

sense that any operation attempting to act on it should also push an error value onto

the stack. Under the revised semantics, a program may return a non-error value even

though it encounters an error along the way. E.g., (postfix 0 1 2 add mul 3 4 sub)

should return -1 rather than signaling an error when called on zero inputs. ¢

¤ Exercise 3.6 An operational semantics for PostFix2 (the alternative PostFix
syntax introduced in Figure 2.9) can be defined by making minor tweaks to the opera-
tional semantics forPostFix. Assume that the set of configurations remains unchanged.
Then most commands from the secondary syntax can be handled with only cosmetic
changes. For example, here is the rewrite rule for a PostFix2 numeral command:

〈(int N) . Q, S〉⇒ 〈Q, N . S〉 [numeral ′]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 53

a. Define an input function that maps PostFix2 programs (which have the form
(postfix2 N C)) into an initial configuration.

b. Give rewrite axioms for the PostFix2 commands (exec), (skip), and
(: C1 C2).

(See Exercise 3.7 for another approach to defining the semantics of PostFix2.) ¢

¤ Exercise 3.7 A distinguishing feature of PostFix2 (the alternative PostFix syn-

tax introduced in Figure 2.9) is that its grammar makes no use of sequence domains. It

is reasonable to expect that its operational semantics can be modeled by configurations

in which the code component is a single command rather than a command sequence.

Based on this idea, design an SOS for PostFix2 in which CF =Command × Stack.

(Note: do not modify the Command domain.) ¢

¤ Exercise 3.8 The Hugely Profitable Calculator Company has hired you to design
a calculator language called RPN that is based on PostFix. RPN has the same syntax
as PostFix command sequences (an RPN program is just a command sequence that is
assumed to take zero arguments) and the operations are intended to work in basically
the same manner. However, instead of providing a arbitrarily large stack, RPN limits
the size of the stack to four values. Additionally, the stack is always full in the sense that
it contains four values at all times. Initially, the stack contains four 0 values. Pushing a
value onto a full stack causes the bottommost stack value to be forgotten. Popping the
topmost value from a full stack has the effect of duplicating the bottommost element
(i.e., it appears in the last two stack positions after the pop).

a. Develop a complete SOS for the RPN language.

b. Use your SOS to find the results of the following RPN programs:

i. (mul 1 add)

ii. (1 20 300 4000 50000 add add add add)

c. Although PostFix programs are guaranteed to terminate, RPN programs are
not. Demonstrate this fact by writing an RPN program that loops infinitely. ¢

¤ Exercise 3.9 A class of calculators known as four-function calculators supports
the four usual binary arithmetic operators (+, -, *, /) in an infix notation.7 Here we
consider a language FF based on four-function calculators. The programs of FF are any
parenthesized sequence of numbers and commands, where commands are +, -, *, /, and
=. The = command is used to compute the result of an expression, which may be used
as the first argument to another binary operator. The = may be elided in a string of
operations.

7The one described here is based on the TI-1025. See [You81] for more details.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

54 CHAPTER 3. OPERATIONAL SEMANTICS

(1 + 20 =) −−−FF→ 21

(1 + 20 = + 300 =) −−−FF→ 321

(1 + 20 + 300 =) −−−FF→ 321 {Note elision of first =.}
(1 + 20) −−−FF→20 {Last number returned when no final =.}

Other features supported by FF include:

• Calculation with a constant. Typing a number followed by = uses the number as
the first operand in a calculation with the previous operator and second operand:

(2 * 5 =) −−−FF→ 10

(2 * 5 = 7 =) −−−FF→ 35

(2 * 5 = 7 = 11 =) −−−FF→ 55

• Implied second argument. If no second argument is specified, the value of the
second argument defaults to the first.

(5 * =) −−−FF→ 25

• Operator correction. An operator key can be corrected by typing the correct one
after (any number of) unintentional operators.

(1 * - + 2) −−−FF→ 3

a. Design an SOS for FF that is consistent with the informal description given above.

b. Use your SOS to find the final values of the following command sequences. (Note:
some of the values may be floating point numbers.) Comment on the intended
meaning of the unconventional command sequences.

i. (8 - 3 + * 4 =)

ii. (3 + 5 / = =)

iii. (3 + 5 / = 6 =) ¢

3.2.3.3 Progress Rules

Introduction

The commands of PostFix programs are interpreted in a highly linear fash-
ion in Figure 3.4. Even though executable sequences give the code a kind of
tree structure, the contents of an executable sequence can only be used when
they are prepended to the single stream of commands that is executed by the
abstract machine. The fact that the next command to execute is always at the
front of this command stream leads to a very simple structure for the rewrite
rules in Figure 3.4. Transitions, which appear only in rule consequents, are all
of the form

〈Cfirst . Q, S〉⇒ 〈Q ′, S ′〉,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 55

where Q ′ is either the same as Q or is the result of prepending some commands
onto the front of Q. In all rules, the command Cfirst at the head of the current
command sequence is consumed by the application of the rule.

These simple kinds of rules are not adequate for programming languages ex-
hibiting a more general tree structure. Evaluating a node in an arbitrary syntax
tree usually requires the recursive evaluation of its subnodes. For example, con-
sider the evaluation of a sample numerical expression written in the EL language
described in Section 2.3:

(+ (* (- 5 1) 2) (/ 21 7)).

Before the sum can be performed, the results of the product and division must
be computed; before the multiplication can be performed, the subtraction must
be computed. If the values of operand expressions are computed in a left-to-
right order, we expect the evaluation of the expression to occur via the following
transition path:

(+ (* (- 5 1) 2) (/ 21 7))

⇒ (+ (* 4 2) (/ 21 7))

⇒ (+ 8 (/ 21 7))

⇒ (+ 8 3)

⇒ 11.

In each transition, the structure of the expression tree remains unchanged ex-
cept at the node where the computation is being performed. Rewrite rules for
expressing such transitions need to be able to express a transition from tree to
tree in terms of transitions between the subtrees. That is, the transition

(+ (* (- 5 1) 2) (/ 21 7))⇒ (+ (* 4 2) (/ 21 7))

is implied by the transition

(* (- 5 1) 2)⇒ (* 4 2),

which is in turn is implied by the transition

(- 5 1)⇒ 4.

In some sense, “real work” is only done by the last of these transitions; the other
transitions just inherit the change because they define the surrounding context
in which the change is embedded.

These kinds of transitions on tree-structured programs are expressed by
progress rules, which are rules with antecedents. Progress rules effectively allow
an evaluation process to reach inside a complicated expression to evaluate one of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

56 CHAPTER 3. OPERATIONAL SEMANTICS

its subexpressions. A one-step transition in the subexpression is then reflected
as a one-step transition of the expression in which it is embedded.

Example: ELMM

To illustrate progress rules, we will develop an operational semantics for an
extremely simple subset of the EL language that we will call ELMM (which
stands for EL Minus Minus). As shown in Figure 3.6, an ELMM program is
just a numerical expression, where a numerical expression is either (1) an integer
numeral or (2) an arithmetic operation. There are no arguments, no conditional
expressions, and no boolean expressions in ELMM.

Syntactic Domains:

P ∈ Program
NE ∈ NumExp
N ∈ IntegerLiteral = {-17, 0, 23, . . .}
A ∈ ArithmeticOperator = {+, -, *, /, %}

Production Rules:

P ::= (elmm NE body) [Program]

NE ::= Nnum [IntLit]
| (Arator NE rand1 NE rand2) [Arithmetic Operation]

Figure 3.6: An s-expression grammar for ELMM.

In an SOS for ELMM, configurations are just numerical expressions them-
selves; there are no state components. Numerical literals are the only final
configurations. The input and output functions are straightforward. The inter-
esting aspect of the ELMM SOS is the specification of the transition relation
⇒, which is shown in Figure 3.7. The ELMM [arithop] axiom is similar to the
same-named axiom in the PostFix SOS; it performs a calculation on integer
numerals.

To evaluate expressions with nested subexpressions in a left-to-right order,
the rules [prog-left] and [prog-left] are needed. The [prog-left] rule says that if the
ELMM abstract machine would make a transition from NE 1 to NE1

′, it should
also allow a transition from (arithop NE 1 NE2) to (arithop NE 1

′ NE 2).
This rule permits evaluation of the left operand of the operation while leaving
the right operand unchanged. The [prog-right] rule is similar, except that it
only permits evaluation of the right operand once the left operand has been
fully evaluated to an integer numeral. This forces the operands to be evaluated

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 57

(A N1 N2)⇒Nresult ,
where Nresult =(calculate A N1 N2)

[arithop]

NE1⇒NE1
′

(A NE1 NE2)⇒ (A NE1
′ NE2)

[prog-left]

NE2⇒NE2
′

(A N NE2)⇒ (A N NE2
′)

[prog-right]

Figure 3.7: Rewrite rules defining the transition relation (⇒) for ELMM.

in a left-to-right order. Rules like [prog-left] and [prog-left] are called progress
rules because an evaluation step performed on a subexpression allows progress
to be made on the evaluation of the whole expression.

In the case of axioms, it was easy to determine the set of transitions that were
specified by a rule. But how do we determine exactly what set of transitions are
specified by a progress rule? Intuitively, a transition is specified by a progress
rule if it matches the consequent of the rule and it’s possible to show that
the antecedent transition patterns are also satisfied. For example, since the
ELMM transition (- 7 4) ⇒ 3 is justified by the [arithop] rule, the transition
(* (- 7 4) (+ 5 6) ⇒ (* 3 (+ 5 6)) is justified by the [prog-left] rule, and
the transition (* 2 (- 7 4)) ⇒ (* 2 3) is justified by the [prog-right] rule.
Furthermore, since the above transitions themselves satisfy the antecedents of
the [prog-left] and [prog-right] rules, it is possible to use these rules again to
justify the following transitions:

(/ (* (- 7 4) (+ 5 6) (% 9 2))) ⇒ (/ (* 3 (+ 5 6) (% 9 2)))

(/ (* 2 (- 7 4)) (% 9 2)) ⇒ (/ (* 2 3) (% 9 2))

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

(/ 100 (* 2 (- 7 4))) ⇒ (/ 100 (* 2 3))

These examples suggest that we can justify any transition as long as we can
give a proof of the transition based upon the rewrite rules. Such a proof can
be visualized as a so-called proof tree (also known as a derivation) that
grows upward from the bottom of the page. The root of a proof tree is the
transition we are trying to prove, its intermediate nodes are instantiated progress
rules, and its leaves are instantiated axioms. A proof tree is structured so
that the consequent of each instantiated rule is one antecedent of its parent
(below) in the tree. For example, the proof tree associated with the transition
of (/ 100 (* (- 7 4) (+ 5 6))) appears in Figure 3.8. We can represent the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

58 CHAPTER 3. OPERATIONAL SEMANTICS

(- 7 4)⇒ 3,
where (calculate - 7 4) = 3

[arithop]

(- 7 4)⇒ 3

(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))
[prog-left]

(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))

(/ 100 (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 (+ 5 6)))
[prog-right]

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

Figure 3.8: A proof tree for a ELMM transition involving nested expressions.
The root of the tree is at the bottom of the page; the leaf is at the top.

proof tree in the figure much more concisely by displaying each transition only
once, as shown below:

[arithop]
(- 7 4)⇒ 3

[prog-left]
(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))

[prog-right]
(/ 100 (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 (+ 5 6)))

The proof tree in this particular example is linear because each of the progress
rules involved has only one antecedent transition pattern. A progress rule with n
antecedent transition patterns would correspond to a tree node with a branching
factor of n. For example, suppose we added the following progress rule to the
ELMM SOS:

NE1 ⇒ NE1
′ ; NE2 ⇒ NE2

′

(arithop NE 1 NE2)⇒ (arithop NE 1
′ NE2

′)
[prog-both]

This rule allows simultaneous evaluation of both operands. It leads to proof
trees that have branching, such as the following tree in which three arithmetic

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 59

operations are performed simultaneously:

[arithop]
(+ 25 75)⇒ 100

[arithop]
(- 7 4)⇒ 3

[arithop]
(+ 5 6)⇒ 11

[prog-both]
(* (- 7 4) (+ 5 6))⇒ (* 3 11)

[prog-both]
(/ (+ 25 75) (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 11))

It is possible to express any proof tree (even one with branches) in the more
traditional linear textual style for a proof. In this style, a proof of a transition
is a sequence of transitions where each transition is justified either by an axiom
or by a progress rule whose antecedent transitions are justified by transitions
earlier in the sequence. A linear textual version of the branching proof tree
above would be:

Transition Justification
[1] (+ 25 75) ⇒100 [arithop]
[2] (- 7 4) ⇒3 [arithop]
[3] (+ 5 6) ⇒11 [arithop]
[4] (* (- 7 4) (+ 5 6)) ⇒(* 3 11) [prog-both] & [2] & [3]
[5] (/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* 3 11)) [prog-both] & [1] & [4]

The elements of the linear textual proof sequence have been numbered, and justi-
fications involving progress rules include the numbers of the transitions matched
by their antecedents. There are many alternative proof sequences for this exam-
ple that differ in the ordering of the elements. Indeed, the legal linear textual
proof sequences for this example are just topological sorts of the original proof
tree. Because such linearizations involve making arbitrary choices, we prefer to
use the tree based notation, whose structure highlights the essential dependen-
cies in the proof.

When writing down a transition sequence to show the evaluation of an
ELMM expresssion we will not explicitly justify every transition with a proof
tree, even though such a proof tree must exist. However, if we are listing justi-
fications for transitions, then we will list the names of the rules that would be
needed to perform the proof. See Figure 3.9 for an example. (This example uses
the original SOS, which does not include the [prog-both] rule.)

We shall see in Section 3.4 that the fact that each transition has a proof
tree is key to proving properties about transitions. Transition properties are
often proven by structural induction on the structure of the proof tree for the
transition.

¤ Exercise 3.10

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

60 CHAPTER 3. OPERATIONAL SEMANTICS

(IF (elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6)))))
= (/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* (- 7 4) (+ 5 6))) [prof-left] & [arithop]
⇒ (/ 100 (* 3 (+ 5 6))) [prog-right] & [prof-left] & [arithop]
⇒ (/ 100 (* 3 11)) [prog-right] (twice) & [arithop]
⇒ (/ 100 33) ∈ FC [prog-right] & [arithop]
(OF 3) = 3

Figure 3.9: An example illustrating evaluation of ELMM expressions.

a. Consider a language ELM (short for EL Minus) that extends ELMM with
indexed references to program inputs. The syntax for ELM is like that of ELMM
except that (1) ELM programs have the form (elm Nnumargs NE body), where
Nnumargs specifies the number of expected program arguments and (2) numerical
expressions are extended with EL’s (arg Nindex) construct, which gives the value
of the argument whose index is given by Nindex (assume indices start at 1).

Write a complete SOS for ELM. Your configurations will need to include a state
component representing the program arguments.

b. Write a complete SOS for the full EL language described in Section 2.3.2. You
will need to define two kinds of configurations: one to handle numeric expressions
and one to handle boolean expressions. Each kind of configuration will be a
pair of an expression and a sequence of numeric arguments and will have its own
transition relation. ¢

Example: PostFix

As another example of progress rules, we will consider an alternative ap-
proach for describing the exec command of PostFix. The [execute] axiom in
Figure 3.4 handled exec by popping an executable sequence off the stack and
prepending it to the command sequence following the exec command. Fig-
ure 3.10 presents a progress rule, [exec-prog], that, together with the axiom
[exec-done], can replace the [execute] rule. The [exec-prog] rule says that if
the abstract machine would make a transition from configuration 〈Qexec, S〉
to configuration 〈Qexec

′, S ′〉 then it should also allow a transition from the
configuration 〈exec . Qrest , Qexec . S〉 to 〈exec . Qrest , Qexec

′ . S ′〉.
Rather than prepending the commands in Qexec to Qrest , the [exec-prog] rule

effectively executes the commands in Qexec while it remains on the stack. Note
that, unlike all the rules that we have seen before, this rule does not remove
the exec command from the current command sequence. Instead, the exec

command is left in place so that the execution of the command sequence at the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 61

〈Qexec, S〉⇒ 〈Qexec
′, S ′〉

〈exec . Qrest , Qexec . S〉⇒ 〈exec . Qrest , Qexec
′ . S ′〉 [exec-prog]

〈exec . Qrest , () . S〉⇒ 〈Qrest , S〉 [exec-done]

Figure 3.10: A pair of rules that could replace the [execute] axiom.

top of the stack will continue during the next transition. Since the commands
are removed from Qexec after being executed, the executable sequence at the top
of the stack will eventually become empty. At this point, the [exec-done] rule
takes over, and removes both the completed exec command and its associated
empty executable sequence.

Figure 3.11 shows how the example considered earlier in Figure 3.1 and
Figure 3.5 would be handled using the [exec-prog] and [exec-done] rules. Each
transition is justified by a proof tree that uses the rules listed as a justification.
For example, the transition

〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

is justified by the following proof tree:

[arithop]
〈(mul add), [3, 2, 1, 4, 5]〉 ⇒ 〈(add), [6, 1, 4, 5]〉

[exec-prog]
〈(exec), [(mul add), 3, 2, 1, 4, 5]〉 ⇒ 〈(exec), [(add), 6, 1, 4, 5]〉

[exec-prog]
〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

The Meaning of Progress Rules

There are some technical details about progress rules that we glossed over
earlier. When we introduced progress rules, we blindly assumed that they were
always reasonable. But not all progress rules make sense.

For example, suppose we extend PostFix with a loop command defined by
the following progress rule:

〈loop . Q, S〉⇒ 〈Q, S〉
〈loop . Q, S〉⇒ 〈Q, S〉 [loop]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

62 CHAPTER 3. OPERATIONAL SEMANTICS

(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(exec sub), [((3 mul add) exec), 2, 1, 4, 5]〉 [exec-prog] & [num]
⇒ 〈(exec sub), [(exec), (3 mul add), 2, 1, 4, 5]〉 [exec-prog] & [seq]
⇒ 〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉 [exec-prog] (twice)

& [num]
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉 [exec-prog] (twice)

& [arithop]
⇒ 〈(exec sub), [(exec), (), 7, 4, 5]〉 [exec-prog] (twice)

& [arithop]
⇒ 〈(exec sub), [(), 7, 4, 5]〉 [exec-prog]

& [exec-done]
⇒ 〈(sub), [7, 4, 5]〉 [exec-done]
⇒ 〈(), [-3]〉 ∈ FC [arithop]
(OF 〈(), [-3]〉) = -3

Figure 3.11: An example illustrating the alternative rules for exec.

Any attempt to prove a transition involving loop will fail because there are no
axioms involving loop with which to terminate the proof tree. Thus, this rule
stands for no transitions whatsoever!

We’d like to ensure that all progress rules we consider make sense. We
can guarantee this by restricting the form of allowable progress rules to outlaw
nonsensical rules like [loop]. This so-called structure restriction guarantees
that any attempt to prove a transition from a given configuration will eventually
terminate. The standard structure restriction for an SOS requires the code
component of the LHS of each antecedent transition to be a subphrase of the
code component of the LHS of the consequent transition. Since program parse
trees are necessarily finite, this guarantees that all attempts to prove a transition
will have a finite proof.8

While simple to follow, the standard structure restriction prohibits many
reasonable rules. For example, the [exec-prog] rule does not obey this restriction,
because the code component of the LHS of the antecedent is unrelated to the
code component of the LHS of the consequent. Yet, by considering the entire
configuration rather than just the code component, it is possible to design a
metric in which the LHS of the antecedent is “smaller” than the LHS of the

8This restriction accounts for the term “Structured” in Structured Operational Semantics.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 63

consequent (see Exercise 3.11). While it is sometimes necessary to extend the
standard structure restriction in this fashion, most of our rules will actually obey
the standard version.

¤ Exercise 3.11 To guarantee that a progress rule is well-defined, we must show that
the antecedent configurations are smaller than the consequent configurations. Here we
explore a notion of “smaller than” for the PostFix configurations that establishes the
well-definedness of the [exec-prog] rule. (Since [exec-prog] is the only progress rule for
PostFix, it is the only one we need to consider.)

Suppose that we define a relation < on PostFix configurations such that

〈Q1 , S〉 < 〈exec . Q2 , Q1 . S〉

for any command sequences Q1 and Q2 and any stack S. This is the only relation
on PostFix configurations; two configurations not satisfying this relation are simply
incomparable.

a. A sequence [a1, a2, . . .] is strictly decreasing if ai+1 < ai for all i. Using the
relation < defined above for configurations, show that every strictly decreasing
sequence [cf1, cf2, . . .] of PostFix configurations must be finite.

b. Explain how the result of the previous part implies the well-definedness of the
[exec-prog] rule. ¢

¤ Exercise 3.12 The abstract machine for PostFix described thus far employs con-
figurations with two components: a command sequence and a stack. It is possible to
construct an alternative abstract machine for PostFix in which configurations consist
only of a command sequence. The essence of such a machine is suggested by the tran-
sition sequence in Figure 3.12, where the primed rule names are the names of rules for
the new abstract machine, not the abstract machine presented earlier.

a. The above example shows that an explicit stack component is not necessary to
model PostFix evaluation. Explain how this is possible. (Is there an implicit
stack somewhere?)

b. Write an SOS for PostFix in which a configuration is just a command sequence.
The SOS should have the behavior exhibited above on the given example. Recall
that an SOS has five components; describe all five. Use only axioms to specify
your transition relation.

c. In the above example, the exec command is handled by replacing it and the exe-
cutable sequence Q to its left by the contents of Q. This mirrors the prepending
behavior of [execute] in the original abstract machine. Write rules for the new
abstract machine that instead mirror the behavior of [exec-prog] and [exec-done].

d. Develop an appropriate notion of “smaller than” that establishes the well-definedness
of your new [exec-prog] rule. (See Exercise 3.11.)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

64 CHAPTER 3. OPERATIONAL SEMANTICS

((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec)

⇒ ((1 sub) (swap exec swap exec) (2 mul) swap 3 swap exec) [swap ′]

⇒ ((1 sub) (2 mul) (swap exec swap exec) 3 swap exec) [swap ′]

⇒ ((1 sub) (2 mul) 3 (swap exec swap exec) exec) [swap ′]

⇒ ((1 sub) (2 mul) 3 swap exec swap exec) [exec ′]

⇒ ((1 sub) 3 (2 mul) exec swap exec) [swap ′]

⇒ ((1 sub) 3 2 mul swap exec) [exec ′]

⇒ ((1 sub) 6 swap exec) [arithop ′]

⇒ (6 (1 sub) exec) [swap ′]

⇒ (6 1 sub) [exec ′]

⇒ 5 [arithop ′]

Figure 3.12: Sample transition sequence for an alternative PostFix abstract
machine whose configurations are command sequences.

e. Sketch how you might prove that the new SOS and the original SOS define the
behavior. ¢

3.2.3.4 Context-based Semantics

Axioms and progress rules are not the only way to specify the transition relation
of a small-step operational semantics. Here we introduce another approach to
specifying transitions that is popular in the literature. This approach is based
on a notion of context that specifies the position of a subphrase in a larger
program phrase. Here we will explain this notion and show how it can be used
to specify transitions.

In general, a context is a phrase with a single hole node in the abstract
syntax tree for the phrase. A sample context C in the ELMM language is
(+ 1 (- 2 2)), where where 2 denotes the hole in the context. “Filling” this
hole with any ELMM numerical expression yields another numerical expression.
For example, filling C with (/ (* 4 5) 3), written C{(/ (* 4 5) 3)}, yields
the numerical expression (+ 1 (- (/ (* 4 5) 3) 2)).

Contexts are useful for specifying a particular occurrence of a phrase that
may occur more than once in an expression. For example, (+ 3 4) appears
twice in (* (+ 3 4) (/ (+ 3 4) 2)). The leftmost occurrence is specified
by the context (* 2 (/ (+ 3 4) 2)), while the rightmost one is specified by
(* (+ 3 4) (/ 2 2)). Contexts are also useful for specifying the part of a
phrase that remains unchanged (the evaluation context) when a basic com-
putation (known as a redex) is performed. For example, consider the evaluation

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.2. SMALL-STEP OPERATIONAL SEMANTICS (SOS) 65

of the ELMM expression (/ 100 (* (- 7 4) (+ 5 6))). If operands are eval-
uated in a left-to-right order, the next redex to be performed is (- 7 4). The
evaluation context E for this redex is (/ 100 (* 2 (+ 5 6))). The result of
performing the redex (3 in this case) can be plugged into the evaluation context
to yield the result of the transition: E{3} = (/ 100 (* 3 (+ 5 6))).

Evaluation contexts and redexes can be defined via grammars, such as the
ones for ELMM in Figure 3.13. In ELMM, a redex is an arithmetic operator
applied to two integer numerals. An ELMM evaluation context is either a
hole or an arithmetic operation one of whose two operands is an evaluation
context. If the evaluation context is in the left operand position ([Eval Left])
the right operand can be an arbitrary numerical expression. But if the evaluation
context is in the right operand position ([Eval Right]), the left operand must
be a numeral. This structure enforces left-to-right evaluation in ELMM in a
way similar to the [prog-left] and [prog-right] progress rules. Indeed, evaluation
contexts are just another way of expressing the information in progress rules —
namely, how to find the redex (i.e., where an axiom can be applied).

Redexes

R ∈ ElmmRedex

R ::= (A N1 N2) [Arithmetic operation]

Reduction relation (Ã)

(A N1 N2) Ã Nresult , where Nresult =(calculate A N1 N2)

Evaluation Contexts

E ∈ ElmmEvalContext

E ::= 2 [Hole]
| (A E NE) [Eval Left]
| (A N E) [Eval Right]

Transition relation (⇒)

E{R} ⇒ E{R ′}, where R Ã R ′

Figure 3.13: A context-based specification of the ELMM transition relation.

Associated with redexes is a reduction relation (Ã) that corresponds to the
basic computations axioms we have seen before. The left hand side of the relation
is the redex, while the right hand side is the reduct. The transition relation
(⇒) is defined in terms of the reduction relation using evaluation contexts: the
expression E{R} rewrites to E{R ′} as long as there is a reduction R Ã R ′.
The transition relation is deterministic if there is at most one way to parse an

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

66 CHAPTER 3. OPERATIONAL SEMANTICS

expression into a evaluation context filled with a redex (which is the case in
ELMM).

The following table shows the context-based evaluation of an ELMM ex-
pression:

Expression Evaluation Context Redex Reduct

(/ (+ 25 75) (* (- 7 4) (+ 5 6))) (/ 2 (* (- 7 4) (+ 5 6))) (+ 25 75) 100

⇒ (/ 100 (* (- 7 4) (+ 5 6))) (/ 100 (* 2 (+ 5 6))) (- 7 4) 3

⇒ (/ 100 (* 3 (+ 5 6))) (/ 100 (* 3 2)) (+ 5 6) 11

⇒ (/ 100 (* 3 11)) (/ 100 2) (* 3 11) 33

⇒ (/ 100 33) 2 (/ 100 33) 3

⇒ 3

Context-based semantics are most convenient in an SOS where the config-
urations consist solely of a code component. But they can also be adapted
to configurations that have state components. For example, Figure 3.14 is a
context-based semantics for ELM, the extension to ELMM that includes in-
dexed input via the form (arg Nindex) (see Exercise 3.10). An ELM config-
uration is a pair of (1) an ELM numerical expression and (2) a sequence of
numerals representing the program arguments. Both the ELM reduction rela-
tion and transition relation must include the program arguments so that the arg
form can access them.

¤ Exercise 3.13 Starting wih Figure 3.14, develop a context-based semantics for the

full EL language. ¢

¤ Exercise 3.14 The most natural context-based semantics for PostFix is based

on the approach sketched in Exercise 3.12, where configurations consist only of a com-

mand sequence. Figure 3.15 is the skeleton of a context-based semantics that defines

the transition relation for these configurations. It uses a command sequence context

EQ whose hole can be filled with a command sequence that is internally appended to

other command sequences. For example, if EQ = [1, 2,2, sub], then EQ{[3, swap]}
= [1, 2, 3, swap, sub]. Complete the semantics in Figure 3.15 by fleshing out the missing

details. ¢

3.3 Big-step Operational Semantics

A small-step operational semantics is a framework for describing program execu-
tion as an iterative sequence of small computational steps. But this is not always
the most natural way to view execution. We often want to evaluate a phrase

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.3. BIG-STEP OPERATIONAL SEMANTICS 67

Redexes

R ∈ ElmRedex

R ::= (A N1 N2) [Arithmetic operation]
| (arg Nindex) [Indexed Input]

Reduction relation (Ã)

〈(A N1 N2),N*〉 Ã Nresult where Nresult =(calculate A N1 N2)
〈(arg Nindex), [N1 , . . . ,NNsize

]〉 Ã NNindex

where (compare > Nindex 0) ∧ ¬ (compare > Nindex Nsize)

Evaluation Contexts

E ∈ ElmEvalContext

E ::= 2 [Hole]
| (A E NE) [Eval Left]
| (A N E) [Eval Right]

Transition relation (⇒)

〈E{R},N*〉 ⇒ 〈E{R ′},N*〉 where 〈R,N*〉 Ã R ′

Figure 3.14: A context-based specification of the ELM transition relation.

Redexes

R ∈ PostFixRedex

R ::= [V, pop] [Pop]
| [V1 ,V2 , swap] [Swap]
| [N1 ,N2 ,A] [Arithmetic operation]
| . . . left as an exercise . . .

Reduction relation (Ã)

[V, pop] Ã []
[V1 ,V2 , swap] Ã [V2 ,V1]
[N1 ,N2 ,A] Ã [Nresult] where Nresult =(calculate A N2 N1)
. . . left as an exercise . . .

Evaluation Contexts

EQ ∈ PostfixEvalSequenceContext

EQ ::= V* @ 2 @ Q

Transition relation (⇒)

EQ{R} ⇒ EQ{R ′}, where R Ã R ′

Figure 3.15: A context-based specification of the transition relation for a subset
of PostFix.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

68 CHAPTER 3. OPERATIONAL SEMANTICS

by recursively evaluating its subphrases and then combining the results. This
is the key idea of denotational semantics, which we shall study in Chapter 4.
However, this idea also underlies an alternative form of operational semantics,
called big-step operational semantics (BOS) (also known as natural se-
mantics). Here we briefly introduce big-step semantics in the context of a few
examples.

Let’s begin by defining a BOS for the simple expression language ELMM, in
which programs are numerical expressions that are either numerals or arithmetic
operations. A BOS typically has an evaluation relation for each non-trivial
syntactic domain that directly specifies a result for a given program phrase or
configuration. The BOS in Figure 3.16 defines two evaluation relations:

1. −−→NE ∈ NumExp × Intlit specifies the evaluation of an ELMM numerical
expression; and

2. −−→P ∈ Program × Intlit specifies the evaluation of an ELMM program.

NE −−→NE Nans

(elmm NE) −−→P Nans
[prog]

N −−→NE N [num]

NE1 −−→NE N1 ; NE2 −−→NE N2

(A NE1 NE2) −−→NE Nresult
[arithop]

where Nresult =(calculate A N1 N2)

Figure 3.16: Big-step operational semantics for ELMM.

There are two rules specifying−−→NE. The [num] rule says that numerals evaluate
to themselves. The [arithop] rule says that evaluating an arithmetic operation
(A N1 N2) yields the result (Nresult) of applying the operator to the results
(N1 and N2) of evaluating the operands. The single [prog] rule specifying −−→P

just says that the result of an ELMM program is the result of evaluating its
numerical expression.

As with SOS transitions, each instantiation of a BOS evaluation rule is jus-
tified by a proof tree, which we shall call an evaluation tree. Below is the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.3. BIG-STEP OPERATIONAL SEMANTICS 69

proof tree for the evaluation of the program (elmm (* (- 7 4) (+ 5 6))):

[num]
7 −−→NE 7

[num]
4 −−→NE 4

[arithop]
(- 7 4) −−→NE 3

[num]
5 −−→NE 5

[num]
6 −−→NE 6

[arithop]
(+ 5 6) −−→NE 11

[arithop]
(* (- 7 4) (+ 5 6)) −−→NE 33

[prog]
(elmm (* (- 7 4) (+ 5 6))) −−→P 33

Unlike the proof tree for an SOS transition, which justifies a single computational
step, the proof tree for a BOS transition justifies the entire evaluation! This is
the sense in which the steps of a BOS are “big”; they tell how to go from a phrase
to an answer (or something close to an answer). In the case of ELMM, the leaves
of the proof tree are always trivial evaluations of numerals to themselves.

With BOS evaluations there is no notion of a stuck state. In the ELMM
BOS, there is no proof tree for an expression like (* (/ 7 0) (+ 5 6)) that
contains an error. However, we can extend the BOS to include an explicit
error token as a possible result and modify the rules to generate and propagate
such a token. Since all ELMM programs terminate, a BOS with this extension
completely specifies the behavior of a program. But in general, the top-level
evaluation rule for a program only partially specifies its behavior, since there is
no tree (not even an infinite one) asserting that a program loops. What would
the answer A of such a program be in the relation P −−→P A?

The ELMM BOS rules also do not specify the order in which operands are
evaluated, but this is irrelevant anyway since there is no way in ELMM to
detect whether one operation is performed before another. The ELMM BOS
rules happen to specify a (necessarily deterministic) function, but since they can
specify general relations, a BOS can describe non-determistic evaluation as well.

In ELMM, the evaluation relation maps a code phrase to its result. In gen-
eral, the LHS (and RHS) of an evaluation relation can be more complex, con-
taining state components in addition to a code component. This is illustrated in
the BOS for ELM, which extends ELMM with an indexed input construct (Fig-
ure 3.17). Here, the two evaluation relations have different domains than before:
they include an integer numeral sequence to model the program arguments.

1. −−→NE ∈ (NumExp × Intlit*) × Intlit specifies the evaluation of an ELM
numerical expression; and

2. −−→P ∈ (Program × Intlit*) × Intlit specifies the evaluation of an ELM
program.

Each of these relations can be read as “evaluating a program phrase relative
to the program arguments to yield a result”. As a notational convenience, we

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

70 CHAPTER 3. OPERATIONAL SEMANTICS

NE −[N1 ,...,NNsize
]−−−−−−−−→NE Nans

(elm Nnumargs NE) −[N1 ,...,NNsize
]−−−−−−−−→P Nans

[prog]

where (compare = Nnumargs Nsize)

N −N*−−→NE N [num]

NE1 −N*−−→NE N1 ; NE2 −N*−−→NE N2

(A NE1 NE2) −N*−−→NE Nresult

[arithop]

where Nresult =(calculate A N1 N2)

(arg Nindex) −[N1 ,...,NNsize
]−−−−−−−−→NE NNindex

[input]

where (compare > Nindex 0) ∧ ¬ (compare > Nindex Nsize)

Figure 3.17: Big-step operational semantics for ELM.

abbreviate 〈X,Nargs*〉 −−→X Nans as X −Nargs*−−−→X Nans , where X ranges over P and
NE . The [prog] rule is as in ELMM, except that it checks that the number of
arguments is as expected and passes them to the body for its evaluation. These
arguments are ignored by the [num] and [arithop] rules, but are used by the
[input] rule to return the specified argument.

Here is a sample ELM proof tree showing the evaluation of the program
(elm 2 (* (arg 1) (+ 1 (arg 2)))) on the two arguments 7 and 5:

[input]
(arg 1) −[7,5]−−→NE 7

[num]
1 −[7,5]−−→NE 1

[input]
(arg 2) −[7,5]−−→NE 5

[arithop]
(+ (arg 2) 1) −[7,5]−−→NE 6

[prog]
(elm 2 (* (arg 1) (+ 1 (arg 2)))) −[7,5]−−→P 42

Can we describe PostFix execution in terms of a BOS? Yes – via the eval-
uation relations −−→P (for programs) and −−→Q (for command sequences) in Fig-
ure 3.18. The −−→Q relation ∈ (Commands × Stack) × Stack treats command
sequences as “stack transformers” that map an input stack to an output stack.
We abbreviate 〈Q,S〉 −−→Q S ′ as Q −S−→Q S ′. The [non-exec] rule “cheats” by
using the SOS transition relation ⇒ to specify how a non-exec command C
transforms the stack to S ′. Then −−→Q specifies how the rest of the commands
transform S ′ into S ′ ′. The [exec] rule is more interesting because it uses −−→Q

in both antecedents. The executable sequence commands Qexec transform S to
S ′, while the remaining commands Qrest transform S ′ to S ′ ′. The [exec] rule

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.3. BIG-STEP OPERATIONAL SEMANTICS 71

illustrates how evaluation order (in this case, executing Qexec before Qrest) can
be specified in a BOS by “threading” a state component (in this case, the stack)
through an evaluation.

Q −[NNsize ,...,N1]−−−−−−−→Q Nans . S

(postfix Nnumargs Q) −[N1 ,...,NNsize
]−−−−−−−−→P Nans

[prog]

where (compare = Nnumargs Nsize)

〈C . Q, S〉 ⇒ 〈Q, S ′〉 ; Q −S ′−→Q S ′ ′

C . Q −S−→Q S ′ ′
[non-exec]

where C 6= exec

Qexec −S−→Q S ′ ; Qrest −S
′−→Q S ′ ′

exec . Qrest −(Qexec) . S−−−−−−−−→Q S ′ ′
[exec]

Figure 3.18: Big-step operational semantics for PostFix.

It is convenient to define −−→Q so that it returns a stack, but stacks are not
the final answer we desire. The [prog] rule ∈ (Program × Intlit*) × Stack
takes care of creating the initial stack from the arguments and extracting the
top integer (if it exists) from the final stack.

How do small-step and big-step semantics stack up against each other? Each
has its advantages and limitations. A big-step semantics is often more concise
than a small-step semantics and one of its proof trees can summarize the entire
execution of a program. The recursive nature of a big-step semantics also cor-
responds more closely to structure of interpreters for high-level languages than
a small-step semantics. On the other hand, the iterative step-by-step nature of
a small-step semantics corresponds more closely to the way low-level languages
are implemented, and it is often a better framework for reasoning about compu-
tational resources, errors, and termination. Furthemore, infinite loops are easy
to model in a small-step semantics but not in a big-step semantics.

We will use small-step semantics as our default form of operational seman-
tics throughout the rest of this book. This is not because big-step semantics are
not useful — they are — but because we will tend to use denotational seman-
tics rather than big-step operational semantics for language specifications that
compose the meanings of whole phrases from subphrases.

¤ Exercise 3.15 Construct a BOS evaluation tree that shows the evaluation of

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub) on arguments 4 and 5. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

72 CHAPTER 3. OPERATIONAL SEMANTICS

¤ Exercise 3.16 Extend the BOS in Figure 3.16 to handle the full EL language. You

will need a new evaluation relation, −−→BE , to handle boolean expressions. ¢

¤ Exercise 3.17 Modify each of the BOS specifications in Figures 3.16–3.18 to

generate and propagate an error token that models signalling an error. Be careful to

handle all error situations. ¢

3.4 Operational Reasoning

3.4.1 Programming Language Properties

The suitability of a programming language for a given purpose largely depends
on many high-level properties of the language. Important global properties of a
programming language include:

• universality: the language can express all computable programs;

• determinism: the set of possible outcomes from executing a program on
any particular inputs is a singleton;

• termination: all programs are guaranteed to terminate (i.e., it is not
possible to express an infinite loop);

• static checkability: a class of program errors can be found by static
analysis without resorting to execution;

• referential transparency: different occurrences of an expression within
the same context always have the same meaning.

Languages often exhibit equivalence properties that allow safe transforma-
tions: systematic substitutions of one program phrase for another that are
guaranteed not to change the behavior of the program. Finally, properties of
particular programs are often of interest. For instance, we might want to show
that a given program terminates, that it uses only bounded resources, or that it
is equivalent to some other program. For these sorts of purposes, an important
characteristic of a language is how easy it is to prove properties of particular
programs written in a language.

A language exhibiting a desired list of properties may not always exist. For
example, no language can be both universal and terminating because a universal
language must be able to express infinite loops.9

9But it is often possible to carve a terminating sublanguage out of a universal language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 73

The properties of a programming language are important to language design-
ers, implementers, and programmers alike. The features included in a language
strongly depend on what properties the designers want the language to have.
For example, designers of a language in which all programs are intended to ter-
minate cannot include general looping constructs, while designers of a universal
language must include features that allow nontermination. Compiler writers
extensively use safe transformations to automatically improve the efficiency of
programs. The properties of a language influence which language a programmer
chooses for a task as well as what style of code the programmer writes.

An important benefit of a formal semantics is that it provides a framework
that facilitates proving properties both about the entire language and about
particular programs written in the language. Without a formal semantics, our
understanding of such properties would be limited to intuitions and informal
(and possibly incorrect) arguments. A formal semantics is a shared language for
convincing both ourselves and others that some intuition that we have about a
program or a language is really true. It can also help us develop new intuitions.
It is useful not only to the extent that it helps us construct proofs but also to
the extent that it helps us find holes in our arguments. After all, some of the
things we think we can prove simply aren’t true. The process of constructing a
proof can give us important insight into why they aren’t true.

Below we use operational semantics to reason about EL and PostFix. We
first discuss the deterministic behavior of EL under various conditions. Then we
show that all PostFix programs are guaranteed to terminate. We conclude by
considering conditions under which we can transform one PostFix command
sequence to another without changing the behavior of a program.

3.4.2 Deterministic Behavior of EL

Recall that a programming language is deterministic if there is exactly one pos-
sible outcome for any pair of program and inputs. In Section 3.2.1, we saw that
a deterministic SOS transition relation implies that programs behave determin-
istically. In Section 3.2.3.1, we argued that the PostFix transition relation is
deterministic, so PostFix is a deterministic language.

We can similarly argue that EL is deterministic. We will give the argument
for the sublanguage ELMM, but it can be extended to full EL. We will use
the SOS for ELMM given in Figure 3.7, which has just three rules: [arithop],
[prog-left], and [prog-right]. For a given ELMM numerical expression NE , we
argue that there is at most one proof tree justifying a transition for NE . The
proof is by structural induction on the height of the AST for NE .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

74 CHAPTER 3. OPERATIONAL SEMANTICS

• (Base cases) If NE is a numeral, it matches no rules, so there is no tran-
sition. If NE has the form (A N1 N2), it can match only the [arithop]
rule, since there are no transitions involving numerals.

• (Induction cases) NE must have the the form (A NE 1 NE2), where at
least one of NE 1 and NE2 is not a numeral. If NE 1 is not a numeral,
then NE can match only the [prog-left] rule, and only in the case where
there is a proof tree justifying the transition NE 1 ⇒ NE1

′. By induction,
there is at most one such proof tree, so there is at most one proof tree for a
transition of NE . IfNE 1 is a numeral, then NE 2 must not be a numeral, in
which case NE can match only the [prog-right] rule, and similar reasoning
applies.

Alternatively, we can prove the determinism of the ELMM transition rela-
tion using the context semantics in Figure 3.13. In this case, we need to show
that each ELMM numerical expression can be parsed into an evaluation context
and redex in at most one way. Such a proof is essentially the same as the one
given above, so we omit it.

The ELMM SOS specifies that operations are performed in left-to-right or-
der. Why does the order of evaluation matter? It turns out that it doesn’t
— there is no way in ELMM to detect the order in which operations are per-
formed! Intuitively, either the evaluation is successful, in which all operations
are performed anyway, leading to the same answer, or a divsion/remainder by
zero is encountered somewhere along the way, in which case the evaluation is
unsuccessful. Note that if we could distinguish between different kinds of errors,
the story would be different. For instance, if divide-by-zero gave a different error
from remainder-by-zero, then evaluating the expression (+ (/ 1 0) (% 2 0))

would indicate which of the two subexpressions was evaluated first. The issue
of evaluation order is important to implementers, because they sometimes can
make program execute more efficiently by reordering operations.

How can we formally show that evaluation order in ELMM does not matter?
We begin by replacing the [prog-right] rule in the SOS by the following [prog-
right ′] rule to yield a modified ELMM transition relation ⇒ ′.

NE2⇒ ′NE2
′

(A NE 1 NE2)⇒ ′ (A NE1 NE2
′)

[prog-right ′]

With this change, operands can be evaluated in either order, so the transition re-
lation is no longer deterministic. For example, the expression (* (- 7 4) (+ 5 6))

now has two transitions:

(* (- 7 4) (+ 5 6)) ⇒ ′ (* 3 (+ 5 6))

(* (- 7 4) (+ 5 6)) ⇒ ′ (* (- 7 4) 11)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 75

Nevertheless, we would like to argue that the behavior of programs is still de-
terministic even though the transition relation is not.

A handy property for this purpose is called confluence. Informally, conflu-
ence says that if two transition paths from a configuration diverge, there must
be a way to bring them back together. The formal definition is as follows:

Confluence: A relation →∈ X × X is confluent if and only if for
every x1, x2, x3 ∈ X such that x1 −∗−→ x2 and x1 −∗−→ x3, there exists
an x4 such that x2 −∗−→ x4 and x3 −∗−→ x4. Confluence is usually
displayed via the following diagram, in which solid lines are the given
relations and the dotted lines are assumed to exist when the property
holds. Due to the shape of the diagram, confluence is also called the
diamond property.

x1

x2 x3

x4

∗ ∗

∗ ∗

Suppose that a transition relation ⇒ is confluent. Then if an initial config-
uration cfi has transition paths to two final configurations cff1 and cff2 , these
are necessarily the same configuration! Why? By confluence, there must be a
configuration cf such that cff1

∗⇒ cf and cff2
∗⇒ cf. But cff1 and cff2 are

elements of Irreducible , so the only transition paths leaving them have length 0.
This means cff1 = cf = cff2 . Thus, a confluent transition relation guarantees
a unique final configuration. Indeed, it guarantees a unique irreducible configu-
ration: it is not possible to get stuck on one path and reach a final configuration
on the other.

Confluence by itself does not guarantee a single outcome. It is still possible
for a confluent transition relation to have some infinite paths, in which case
there is a second outcome (∞). This possibility must be ruled out to prove
deterministic behavior. In the case of ELMM, it is easy to prove there are no
loops (see Exercise 3.27).

We can now show that ELMM has deterministic behavior under ⇒ ′ by
arguing that ⇒ ′ is confluent. We will actually show a stronger property, known
as one-step confluence, in which the transitive closure stars in the diamond
diagram are removed; confluence easily follows from one-step confluence.

Suppose that NE 1 ⇒ ′ NE2 and NE1 ⇒ ′ NE3 . Using terminology from
context-based semantics, call the redex reduced in the first transition the “red”

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

76 CHAPTER 3. OPERATIONAL SEMANTICS

redex and the one reduced in the second transition the “blue” redex. Either these
are the same redex, in which case NE 2 = NE3 trivially joins the paths, or the
redexes are disjoint (i.e., one does not occur as a subexpression of another).
In the latter case, there must be an expression NE 4 that is a copy of NE 1 in
which both the red and blue redexes have been reduced. Then NE 2 ⇒ ′ NE4

by reducing the blue redex and NE 3 ⇒ ′ NE4 by reducing the red redex. So
NE4 joins the diverging transitions

We have shown that ELMM has deterministic behavior even when its op-
erations are performed in a non-deterministic order. A similar approach can be
used to show that ELM and EL have the same property. Confluence in these
languages is fairly straightforward. It becomes much trickier in languages where
redexes overlap or performing one redex can copy another.

We emphasize that confluence is a sufficient but not necessary condition for
a non-deterministic transition relation to give rise to deterministic behavior. In
general, many distinct final configurations might map to the same outcome.

¤ Exercise 3.18 Suppose that in addition to changing the ELMM SOS by replacing
[prog-right] with [prog-right ′], the rule [prog-both] introduced on page 58 is added to
the SOS.

a. In this modified SOS, how many different transition paths lead from the expression
(/ (+ 25 75) (* (- 7 4) (+ 5 6))) to the result 3?

b. Does the modified SOS still have deterministic behavior? Explain your answer ¢

¤ Exercise 3.19 Consider extending ELMM with a construct (either NE 1 NE 2)

that returns the result of evaluating either NE 1 or NE2 .

a. What are the possible behaviors of the following program?

(elmm (* (- (either 1 2) (either 3 4)) (either 5 6)))

b. The informal specification of either given above is ambiguous. For example,
must the expression (+ (either 1 (/ 2 0)) (either (% 3 0) 4)) return the
result 5, or can it get stuck? The semantics of either can be defined either way.
Give formal specifications for each interpretation of either that is consistent with
the informal description. ¢

¤ Exercise 3.20

a. Show that the two transition relations (one for NumExp, one for BoolExp) in an
EL SOS can be deterministic,

b. Suppose that both transition relations in an EL SOS allow operations to be per-
formed in any order, so that they are non-deterministic. Argue that the behavior
of EL programs is still deterministic. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 77

3.4.3 Termination of PostFix Programs

An important property of PostFix is expressed by the following theorem:

PostFix Termination Theorem: All PostFix programs are guar-
anteed to terminate. That is, executing a PostFix program always
either returns a numeral or signals an error.10

This theorem is based on the following intuition: existing commands are con-
sumed by execution, but no new commands are ever created, so the commands
must eventually “run out.” This intuition is essentially correct, but an intuition
does not a proof make. After all, PostFix is complex enough to harbor a sub-
tlety that invalidates the intuition. The nget command allows the duplication
of numerals — is this problematic with regards to termination? Executable se-
quences are moved to the stack, but their contents can later be prepended to the
code component. How can we be certain that this shuffling between code and
stack doesn’t go on forever? And how do we deal with the fact that executable
sequences can be arbitrarily nested?

These questions indicate the need for a more convincing argument that ter-
mination is guaranteed. This is the kind of situation in which formal semantics
comes in handy. Below we present a proof for termination based on the SOS for
PostFix.

3.4.3.1 Energy

Associate with each PostFix configuration a natural number called its energy
(so called to suggest the potential energy of a dynamical system). By considering
each rewrite rule of the semantics in turn, we will prove that the energy strictly
decreases with each transition. The energy of an initial configuration must then
be an upper bound on the length of any path of transitions leading from the
initial configuration. Since the initial energy is finite, there can be no unbounded
transition sequences from the initial configuration, so the execution of a program
must terminate.

10This theorem can fail to hold if PostFix is extended with new commands, such as a dup
command that duplicates the top stack value. See Section 3.5 for details.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

78 CHAPTER 3. OPERATIONAL SEMANTICS

The energy of a configuration is defined by the following energy functions:

Econfig [[〈Q, S〉]] = Eseq [[Q]] + Estack [[S]] (3.1)

Eseq [[[]]] = 0 (3.2)

Eseq [[C . Q]] = 1 + Ecom [[C]] + Eseq [[Q]] (3.3)

Estack [[[]]] = 0 (3.4)

Estack [[V . S]] = Ecom [[V]] + Estack [[S]] (3.5)

Ecom [[(Q)]] = Eseq [[Q]] (3.6)

Ecom [[C]] = 1, C not an executable sequence. (3.7)

These definitions embody the following intuitions:

• The energy of a configuration, sequence, or stack is greater than or equal
to the sum of the energy of its components.

• Executing a command consumes at least one unit of energy (the 1 that
appears in 3.3). This is true even for commands that are transferred from
the code component to the stack component (i.e., numerals and executable
sequences); such commands are worth one more unit of energy in the
command sequence than on the stack.11

• An executable sequence can be worth no more energy as a sequence than
as a stack value (3.6).

The following lemmas are handy for reasoning about the energy of sequences:

Ecom [[C]] ≥ 0 (3.8)

Eseq [[Q1 @ Q2]] = Eseq [[Q1]] + Eseq [[Q2]] (3.9)

These can be derived from the energy definitions above. Their derivations are
left as an exercise.

Equipped with the energy definitions and identity 3.9, we are ready to prove
the PostFix Termination Theorem.

3.4.3.2 The Proof of Termination

Proof: We show that every transition reduces the energy of a configuration.
Recall that every transition in an SOS has a proof in terms of the rewrite rules.
In the case of PostFix, where all the rules are axioms, the proof is trivial: every

11The invocation Ecom [[V]] that appears in 3.5 may seem questionable because Ecom [[]] should
be called on elements of Command, not elements of Value. But since every stack value is also
a command, the invocation is well-defined.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 79

PostFix transition is justified by one rewrite axiom. To prove a property about
PostFix transitions, we just need to show that it holds for each rewrite axiom
in the SOS. Here’s the case analysis for the energy reduction property:

• [num]: 〈N . Q, S〉 ⇒ 〈Q, N . S〉
Econfig [[〈N . Q, S〉]]
= Eseq [[N . Q]] + Estack [[S]] by 3.1
= 1 + Ecom [[N]] + Eseq [[Q]] + Estack [[S]] by 3.3
= 1 + Eseq [[Q]] + Estack [[N . S]] by 3.5
= 1 + Econfig [[〈Q, N . S〉]] by 3.1

The LHS has one more unit of energy than the RHS, so moving a numeral
to the stack reduces the configuration energy by one unit.

• [seq]: 〈Qexec . Qrest , S〉 ⇒ 〈Qrest , Qexec . S〉 Moving an executable se-
quence to the stack also consumes one energy unit by exactly the same
argument as for [num].

• [pop]: 〈pop . Q, Vtop . S〉 ⇒ 〈Q, S〉 Popping Vtop off of a stack takes
at least two energy units:

Econfig [[〈pop . Q, Vtop . S〉]]
= Eseq [[pop . Q]] + Estack [[Vtop . S]] by 3.1
= 1 + Ecom [[pop]] + Eseq [[Q]] + Ecom [[Vtop]] + Estack [[S]] by 3.3 and 3.5
= 2 + Ecom [[Vtop]] + Eseq [[Q]] + Estack [[S]] by 3.7
≥ 2 + Econfig [[〈Q, S〉]] by 3.1 and 3.8

• [swap]: 〈swap . Q, V1 . V2 . S〉 ⇒ 〈Q, V2 . V1 . S〉 Swapping the
top two elements of a stack consumes two energy units:

Econfig [[〈swap . Q, V1 . V2 . S〉]]
= Eseq [[swap . Q]] + Estack [[V1 . V2 . S]] by 3.1
= 1 + Ecom [[swap]] + Eseq [[Q]]

+ Ecom [[V1]] + Ecom [[V2]] + Estack [[S]] by 3.3 and 3.5
= 2 + Eseq [[Q]] + Estack [[V2 . V1 . S]] by 3.7 and 3.5
= 2 + Econfig [[〈Q, V2 . V1 . S〉]] by 3.1

• [execute]: 〈exec . Qrest , Qexec . S〉 ⇒ 〈Qexec @ Qrest , S〉 Executing the
exec command consumes two energy units:

Econfig [[〈exec . Qrest , Qexec . S〉]]
= Eseq [[exec . Qrest]] + Estack [[Qexec . S]] by 3.1
= 1 + Ecom [[exec]] + Eseq [[Qrest]]

+ Ecom [[(Qexec)]] + Estack [[S]] by 3.3 and 3.5
= 2 + Eseq [[Qexec]] + Eseq [[Qrest]] + Estack [[S]] by 3.6 and 3.7
= 2 + Eseq [[Qexec @ Qrest]] + Estack [[S]] by 3.9
= 2 + Econfig [[〈Qexec @ Qrest , S〉]] by 3.1

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

80 CHAPTER 3. OPERATIONAL SEMANTICS

• [nget], [arithop], [relop-true], [relop-false], [sel-true], [sel-false]: These cases
are similar to those above and are left as exercises for the reader. 3

The approach of defining a natural number function that decreases on every
iteration of a process is a common technique for proving termination. However,
inventing the function can sometimes be tricky. In the case of PostFix, we
have to get the relative weights of components just right to handle movements
between the program and stack.

The termination proof presented above is rather complex. The difficulty
is not inherent to PostFix, but is due to the particular way we have chosen
to formulate its semantics. There are alternative formulations in which the
termination proof is simpler (see exercise 3.25).

¤ Exercise 3.21 Show that lemmas 3.8 and 3.9 hold. ¢

¤ Exercise 3.22 Complete the proof of the PostFix termination theorem by showing

that the following axioms reduce configuration energy: [nget], [arithop], [relop-true],

[relop-false], [sel-true], [sel-false]. ¢

¤ Exercise 3.23 Bud “eagle-eye” Lojack notices that definitions 3.2 and 3.4 do not
appear as the justification for any steps in the PostFix Termination Theorem. He
reasons that these definitions are arbitrary, so he could just as well use the following
definitions instead:

Eseq [[[]]] = 17 (3.2 ′)
Estack [[[]]] = 23 (3.4 ′)

Is Bud correct? Explain your answer. ¢

¤ Exercise 3.24 Prove the termination property of PostFix based on the SOS for
PostFix2 from Exercise 3.7.

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy. ¢

3.4.3.3 Structural Induction

The above proof is based on a PostFix SOS that uses only axioms. But what if
the SOS contained progress rules, like [exec-done] from Section 3.2.3.3? How do
we prove a property like reduction in configuration energy when progress rules
are involved?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 81

Here’s where we can take advantage of the fact that every transition of an
SOS must be justified by a finite proof tree based on the rewrite rules. Recall
that there are two types of nodes in the proof tree: the leaves, which correspond
to axioms, and the intermediate nodes, which correspond to progress rules. Sup-
pose we can show that

• the property holds at each leaf — i.e., it is true for the consequent of every
axiom; and

• the property holds at each intermediate node — i.e., for every progress
rule, if the property holds for all of the antecedents, then it also holds for
the consequent.

Then, by induction on the height of its proof tree, the property must hold for
each transition specified by the rewrite rules. This method for proving a property
based on the structure of a tree (in this case the proof tree of a transition relation)
is called structural induction.

As an example of a proof by structural induction, we consider how the pre-
vious proof of the termination property for PostFix would be modified for an
SOS that uses the [exec-done] and [exec-prog] rules in place of the [exec] rule.
It is straightforward to show that the [exec-done] axiom reduces configuration
energy; this is left as an exercise for the reader. To show that the [exec-prog] rule
satisfies the property, we must show that if its single antecedent transition re-
duces configuration energy, then its consequent transition reduces configuration
energy as well.

Recall that the [exec-prog] rule has the form:

〈Qexec, S〉⇒ 〈Qexec
′, S ′〉

〈exec . Qrest , Qexec . S〉⇒ 〈exec . Qrest , Qexec
′ . S ′〉 [exec-prog]

We assume that the antecedent transition,

〈Qexec, S〉⇒ 〈Qexec
′, S ′〉,

reduces configuration energy, so that the following inequality holds:

Econfig [[〈Qexec, S〉]] > Econfig [[〈Qexec
′, S ′〉]].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

82 CHAPTER 3. OPERATIONAL SEMANTICS

Then we show that the consequent transition also reduces configuration energy:

Econfig [[〈exec . Qrest , Qexec . S〉]]
= Eseq [[exec . Qrest]] + Estack [[Qexec . S]] by 3.1
= Eseq [[exec . Qrest]] + Ecom [[(Qexec)]] + Estack [[S]] by 3.5
= Eseq [[exec . Qrest]] + Eseq [[Qexec]] + Estack [[S]] by 3.6
= Eseq [[exec . Qrest]] + Econfig [[〈Qexec, S〉]] by 3.1
> Eseq [[exec . Qrest]] + Econfig [[〈Qexec

′, S ′〉]] by assumption
= Eseq [[exec . Qrest]] + Eseq [[Qexec

′]] + Estack [[S
′]] by 3.1

= Eseq [[exec . Qrest]] + Ecom [[(Qexec
′)]] + Estack [[S

′]] by 3.6
= Eseq [[exec . Qrest]] + Estack [[Qexec

′ . S ′]] by 3.5
= Econfig [[〈exec . Qrest , Qexec

′ . S ′〉]] by 3.1

The > appearing in the derivation sequence guarantees that the energy spec-
ified by the first line is strictly greater than the energy specified by the last
line. This completes the proof that the [exec-prog] rule reduces configuration
energy. Together with the proofs that the axioms reduce configuration energy,
this provides an alternative proof of PostFix’s termination property.

¤ Exercise 3.25 Prove the termination property of PostFix based on the alternative
PostFix SOS suggested in Exercise 3.12:

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.

c. The termination proof for the alternative semantics should be more straight-
forward than the termination proofs in the text and in Exercise 3.24. What
characteristic(s) of the alternative SOS simplify the proof? Does this mean the
alternative SOS is a “better” one? ¢

¤ Exercise 3.26 Prove that the rewrite rules [exec-prog] and [exec-done] presented

in the text specify the same behavior as the [execute] rule. That is, show that for any

configuration cf of the form 〈exec . Q, S〉, both sets of rules eventually rewrite cf
into either (1) a stuck state or (2) the same configuration. ¢

¤ Exercise 3.27 As in PostFix, every program in the EL language terminates.

Prove this fact based on an operational semantics for EL (see Exercise 3.10). ¢

3.4.4 Safe PostFix Transformations

3.4.4.1 Observational Equivalence

One of the most important aspects of reasoning about programs is knowing when
it is safe to replace one program phrase by another. Two phrases are said to be

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 83

observationally equivalent (or behaviorally equivalent) if an instance of
one can be replaced by the other in any program without changing the behavior
of the program.

Observational equivalence is important because it is the basis for a wide
range of program transformation techniques. It is often possible to improve
a pragmatic aspect of a program by replacing a phrase by one that is equiv-
alent but more efficient. For example, we expect that the PostFix sequence
[1, add, 2, add] can always be replaced by [3, add] without changing the mean-
ing of the surrounding program. The latter may be more desirable in practice
because it performs fewer additions.

A series of simple transformations can sometimes lead to dramatic perfor-
mance improvements. Consider the following three transformations on PostFix
command sequences, which are just three of the many safe PostFix transfor-
mations:

Before After Name
[V1 ,V2 , swap] [V2 ,V1] [swap-trans]
[(Q), exec] Q [exec-trans]
[N1 ,N2 ,A] [Nresult] where Nresult = (calculate A N1 N2) [arith-trans]

Applying these to our running example of a PostFix command sequence yields
the following sequence of simplifications:

((2 (3 mul add) exec) 1 swap exec sub)

↪→ ((2 3 mul add) 1 swap exec sub) [exec-trans]
↪→ ((6 add) 1 swap exec sub) [arith-trans]
↪→ (1 (6 add) exec sub) [swap-trans]
↪→ (1 6 add sub) [exec-trans]
↪→ (7 sub) [arith-trans]

Thus, the original command sequence is a “subtract 7” subroutine. The trans-
formations essentially perform at compile time operations that otherwise would
be performed at run time.

It is often tricky to determine whether two phrases are observationally equiv-
alent. For example, at first glance it might seem that the PostFix sequence
[swap, swap] can always be replaced by the empty sequence []. While this trans-
formation is valid in many situations, these two sequences are not observationally
equivalent because they behave differently when the stack contains fewer than
two elements. For instance, the PostFix program (postfix 0 1) returns 1 as
a final answer, but the program (postfix 0 1 swap swap) generates an error.
Two phrases are observationally equivalent only if they are interchangeable in
all programs.

Observational equivalence can be formalized in terms of the notions of be-
havior and context presented earlier. Recall that the behavior of a program

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

84 CHAPTER 3. OPERATIONAL SEMANTICS

(see Section 3.2.1) is specified by a function beh that maps a program and its
inputs to a set of possible outcomes:

beh : Program× Inputs→ P(Outcome)

The behavior is deterministic when the resulting set is guaranteed to be a sin-
gleton. A program context is a program with a hole in it (see Section 3.2.3.4).

Observational Equivalence: Suppose that P ranges over program
contexts and H ranges over the kinds of phrases that fill the holes in
program contexts. Then H1 and H2 are defined to be observation-
ally equivalent (written H1 =obs H2) if and only if for all program
contexts P and all inputs I, beh 〈P{H1 }, I〉 = beh 〈P{H2 }, I〉.

We will consider PostFix as an example. An appropriate notion of program
contexts for PostFix is defined in Figure 3.19. A command sequence context
Q is one that can be filled with a sequence of commands to yield another se-
quence of commands. For example, if Q = [(2 mul), 3] @ 2 @ [exec], then
Q{[4, add, swap]} = [(2 mul), 3, 4, add, swap, exec]. The [Prefix] and [Suffix]
productions allow the hole to be surrounded by arbitrary command sequences,
while the [Nesting] production allows the hole to be nested within an executable
sequence command. (The notation [(Q)] designates a sequence containing a
single element. That element is an executable sequence that contains a single
hole.) Due to the presence of @, the grammar for PostfixSequenceContext is
ambiguous, but that will not affect our presentation, since filling the hole for
any parsing of a sequence context yields exactly the same sequence.

P ∈ PostfixProgContext
Q ∈ PostfixSequenceContext

P ::= (postfix Nnumargs Q) [Program Context]
Q ::= 2 [Hole]

| Q @ Q [Prefix]
| Q @ Q [Suffix]
| [(Q)] [Nesting]

Figure 3.19: Definition of PostFix contexts.

The possible outcomes of a program must be carefully defined to lead to
a satisfactory notion of observational equivalence. The outcomes for PostFix
defined in Section 3.2.1 are fine, but small changes can sometimes lead to sur-
prising results. For example, suppose we allow PostFix programs to return the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 85

top value of a non-empty stack, even if the top value is an executable sequence.
If we can observe the structure of a returned executable sequence, then this
change invalidates all non-trivial program transformations! To see why, take
any two sequences we expect to be equivalent (say, [1, add, 2, add] and [3, add])
and plug them into the context (postfix 0 (2)). In the modified semantics,
the two outcomes are the executable sequences (1 add 2 add) and (3 add),
which are clearly not the same, and so the two sequences are not observationally
equivalent.

The problem is that the modified SOS makes distinctions between executable
sequence outcomes that are too fine-grained for our purposes. We can fix the
problem by instead adopting a coarser-grained notion of behavior in which there
is no observable difference between outcomes that are executable sequences. For
example, the outcome in this case could be the token executable, indicating
that the outcome is an executable sequence without divulging which particular
executable sequence it is. With this change, all the expected program transfor-
mations become valid again.

3.4.4.2 Transform Equivalence

It is possible to show the observational equivalence of two particular PostFix
command sequences according to the definition on page 84. However, we will
follow another route. First, we will develop an easier-to-prove notion of equiva-
lence for PostFix sequences called transform equivalence. Then, after giving
an example of transform equivalence, we will prove a theorem that transform
equivalence implies observational equivalence for PostFix programs. This ap-
proach has the advantage that the structural induction proof on contexts needed
to show observational equivalence need only be proved once (for the theorem)
rather than for every pair of PostFix command sequences.

Transform equivalence is based on the intuition that PostFix command
sequences can be viewed as a means of transforming one stack to another. In-
formally, transform equivalence is defined as follows:

Transform Equivalence: Two PostFix command sequences are
transform equivalent if they always transform equivalent input
stacks to equivalent output stacks.

This definition is informal in that it doesn’t say how command sequences can
be viewed as transformers or pin down what it means for two stacks to be
equivalent. We will now flesh these notions out.

In order to view PostFix command sequences as stack transformers, we will
extend the PostFix SOS as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

86 CHAPTER 3. OPERATIONAL SEMANTICS

• Modify Stack to contain a distinguished element Serror :

S ∈ Stack = Value* + ErrorStack
ErrorStack = {Serror}

• Extend the transition relation, ⇒, so that for all stuck states cfstuck ∈
Stuck , cfstuck ⇒ 〈[], Serror 〉. This says that any configuration formerly
considered stuck now rewrites to a final configuration with an error stack.

• Define (finalStack Q S) to be S ′ if 〈Q, S〉 ∗⇒ 〈[], S ′〉. The finalStack
function is well-defined because PostFix is deterministic; with the exten-
sions for handling Serror , finalStack is also a total function.

As examples of finalStack, consider (finalStack [add, mul] [4, 3, 2, 1]) = [24, 1]
and (finalStack [add, exec] [4, 3, 2, 1]) =Serror .

The simplest notion of “stack equivalence” is that two stacks are equivalent
if they are identical sequences of values. But this notion has problems similar to
those discussed above with regard to outcomes in the context of observational
equivalence. For example, suppose we are able to show that (1 add 2 add) and
(3 add) are transform equivalent. Then we’d also like the transform equivalence
of ((1 add 2 add)) and ((3 add)) to follow as a corollary. But given identical
input stacks, these two sequences do not yield identical output stacks — the top
values of the output stacks are different executable sequences!

To finesse this problem, we need a notion of stack equivalence that treats
two executable sequence elements as the same if they are transform equivalent.
The recursive nature of these notions prompts us to define three mutually recur-
sive equivalence relations that formalize this approach: one between command
sequences (transform equivalence), one between stacks (stack equivalence), and
one between stack elements (value equivalence).

• Command sequences Q1 and Q2 are transform equivalent (written
Q1 ∼Q Q2) if, for all pairs of stack equivalent stacks S1 and S2 ,
(finalStack Q1 S1) is stack equivalent to (finalStack Q2 S2). The case
S1 =Serror =S2 can safely be ignored because Serror models only final
configurations, not intermediate ones.

• Stacks S1 and S2 are stack equivalent (written S1 ∼S S2) if

– both S1 and S2 are the distinguished error stack, Serror ; or

– S1 and S2 are equal-length sequences of values that are elementwise
value equivalent. I.e., S1 = [V1 , . . . ,Vn], S2 = [V1

′, . . . ,Vn
′], and

Vi ∼V Vi
′ for all i such that 1 ≤ i ≤ n.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 87

• Stack elements V1 and V2 are value equivalent (written V1 ∼V V2)
if V1 and V2 are the same integer numeral (i.e., V1 = N =V2) or if V1

and V2 are executable sequences whose contents are transform equivalent
(i.e., V1 = (Q1), V2 = (Q2), and Q1 ∼Q Q2).

Despite the mutually recursive nature of these definitions, we claim that all three
are well-defined equivalence relations as long as we choose the largest relations
satisfying the descriptions.

Two PostFix command sequences can be proved transform equivalent by
case analysis on the structure of input stacks. This is much easier than the case
analysis on the structure of contexts that is implied by observational equivalence.
Since (as we shall show below) observational equivalence follows from transform
equivalence, transform equivalence is a practical technique for demonstrating
observational equivalence.

As a simple example of transform equivalence, we show that [1, add, 2, add]
∼Q [3, add]. Consider two non-error stacks S1 and S2 such that S1 ∼S S2 . We
proceed by case analysis on the structure of the stacks:

• S1 and S2 are both [], in which case

(finalStack [3, add] [])
= (finalStack [add] [3])
= Serror
= (finalStack [add, 2, add] [1])
= (finalStack [1, add, 2, add] [])

• S1 and S2 are non-empty sequences whose heads are the same numeric
literal and whose tails are stack equivalent. I.e., S1 = N . S1

′, S2 =
N . S2

′, and S1
′∼S S2

′.

(finalStack [3, add] N . S1
′)

= (finalStack [add] 3 . N . S1
′)

= (finalStack [] N+3 . S1
′)

= (finalStack [N+3] S1
′)

∼S (finalStack [N+3] S2
′)

= (finalStack [] N+3 . S2
′)

= (finalStack [add] 2 . N+1 . S2
′)

= (finalStack [2, add] N+1 . S2
′)

= (finalStack [add, 2, add] 1 . N . S2
′)

= (finalStack [1, add, 2, add] N . S2
′)

• S1 and S2 are non-empty sequences whose heads are transform equivalent
executable sequences and whose tails are stack equivalent. I.e., S1 =
Q1 . S1

′, S2 = Q2 . S2
′, Q1 ∼Q Q2 , and S1

′∼S S2
′.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

88 CHAPTER 3. OPERATIONAL SEMANTICS

(finalStack [3, add] Q1 . S1
′)

= (finalStack [add] 3 . Q1 . S1
′)

= Serror
= (finalStack [add, 2, add] 1 . Q2 . S2

′)
= (finalStack [1, add, 2, add] Q2 . S2

′)

In all three cases,

(finalStack [1, add, 2, add] S1) ∼S (finalStack [3, add] S2) ,

so the transform equivalence of the sequences follows by definition of ∼Q.
We emphasize that stacks can be equivalent without being identical. For

instance, given the result of the above example, it is easy to construct two
stacks that are stack equivalent without being identical:

[(1 add 2 add), 5] ∼S [(3 add), 5].

Intuitively, these stacks are equivalent because they cannot be distinguished by
any PostFix command sequence. Any such sequence must either ignore both
sequence elements (e.g., [pop]), attempt an illegal operation on both sequence el-
ements (e.g., [mul]), or execute both sequence elements on equivalent stacks (via
exec). But because the sequence elements are transform equivalent, executing
them cannot distinguish them.

3.4.4.3 Transform Equivalence Implies Observational Equivalence

We wrap up the discussion of observational equivalence by showing that trans-
form equivalence of PostFix command sequences implies observational equiv-
alence. This can be explained informally as follows. Every PostFix program
context consists of two parts: the commands performed before the hole and the
commands performed after the hole. The commands before the hole transform
the initial empty stack into Spre . Suppose the hole is filled by one of two exe-
cutable sequences, Q1 and Q2 , that are transform equivalent. Then the stacks
Spost1 and Spost2 that result from executing these sequences, respectively, on
Spre must be stack equivalent. The commands performed after the hole must
transform Spost1 and Spost2 into stack equivalent stacks Sfinal1 and Sfinal2 . Since
behavior depends only on the equivalence class of the final stack, it is impossi-
ble to construct a context that distinguishes Q1 and Q2 . Therefore, they are
observationally equivalent.

Below, we present a formal proof that transform equivalence implies obser-
vational equivalence.

PostFix Transform Equivalence Theorem: Q1 ∼Q Q2 implies
Q1 =obs Q2 .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 89

This theorem is useful because it is generally easier to show that two command
sequences are transform equivalent than to construct a proof based directly on
the definition of observational equivalence.

Proof: We will show that for all sequence contexts Q, Q1 ∼Q Q2 implies
Q{Q1 } ∼Q Q{Q2}. The latter equivalence implies that, for all sequence contexts
Q and initial stacks Sinit ,

(finalStack Q{Q1} Sinit)∼S (finalStack Q{Q2 } Sinit) .

This in turn implies that for all numerals Nn and arguments sequences Nargs*,

beh 〈(program Nn Q{Q1}),Nargs*〉 = beh 〈(program Nn Q{Q2}),Nargs*〉.
So Q1 =obs Q2 by the definition of observational equivalence.

We will employ the following properties of transform equivalence, which are
left as exercises for the reader:

Q1∼QQ1
′ and Q2∼QQ2

′ implies Q1 @ Q2∼QQ1
′ @ Q2

′ (3.10)

Q1∼QQ2 implies [(Q1)]∼Q[(Q2)] (3.11)

Property 3.11 is tricky to read; it says that if Q1 and Q2 are transform equiv-
alent, then the sequences that result from nesting Q1 and Q2 in executable
sequences within a singleton sequence are also transform equivalent.

We proceed by structural induction on the grammar of the PostfixSequence-
Context domain:

• (Base case) For sequence contexts of the form 2, Q1 ∼Q Q2 trivially
implies 2{Q1} ∼Q 2{Q2}.

• (Induction cases) For each of the following compound sequence contexts,
assume that Q1 ∼Q Q2 implies Q{Q1} ∼Q Q{Q2} for any Q.

– For sequence contexts of the form Q @ Q,
Q1∼QQ2

implies Q{Q1}∼QQ{Q2} by assumption
implies Q @ (Q{Q1})∼QQ @ (Q{Q2}) by reflexivity of ∼Q and 3.10
implies (Q @ Q) {Q1}∼Q (Q @ Q) {Q2} by definition of Q

– Sequence contexts of the form Q @ Q are handled similarly to those
of the form Q @ Q.

– For sequence contexts of the form [(Q)],
Q1∼QQ2

implies Q{Q1}∼QQ{Q2} by assumption
implies [(Q{Q1})]∼Q[(Q{Q2})] by 3.11
implies [(Q)]{Q1}∼Q[(Q)]{Q2} by definition of Q 3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

90 CHAPTER 3. OPERATIONAL SEMANTICS

¤ Exercise 3.28 For each of the following purported observational equivalences, either
prove that the observational equivalence is valid (via transform equivalence), or give a
counterexample to show that it is not.

a. [N, pop] =obs []

b. [add,N, add] =obs [N, add, add]

c. [N1 ,N2 ,A] =obs [Nresult], where Nresult =(calculate A N2 N1)

d. [(Q), exec] =obs Q

e. [(Q), (Q), sel, exec] =obs pop . Q

f. [N1 , (N2 (Qa) (Qb) sel exec), (N2 (Qc) (Qd) sel exec), sel, exec]
=obs [N2 , (N1 (Qa) (Qc) sel exec), (N1 (Qb) (Qd) sel exec), sel, exec]

g. [C1 ,C2 , swap] =obs [C2 ,C1]

h. [swap, swap, swap] =obs [swap] ¢

¤ Exercise 3.29 Prove lemmas 3.10 and 3.11, which are used to show that transform

equivalence implies operational equivalence. ¢

¤ Exercise 3.30

a. Modify the PostFix semantics in Figure 3.3 so that the outcome of a PostFix
program whose final configuration has an executable sequence at the top is the
token executable.

b. In your modified semantics, show that transform equivalence still implies obser-
vational equivalence. ¢

¤ Exercise 3.31 Prove the following composition theorem for observationally equiv-
alent PostFix sequences:

Q1 =obs Q1
′ and Q2 =obs Q2

′ implies Q1 @ Q2 =obs Q1
′ @ Q2

′
¢

¤ Exercise 3.32 Which of the following transformations on EL numerical expressions
are safe? Explain your answers. Be sure to consider stuck expressions like (/ 1 0).

a. (+ 1 2) ↪→ 3

b. (+ 0 NE) ↪→ NE

c. (* 0 NE) ↪→ 0

d. (+ 1 (+ 2 NE)) ↪→ (+ 3 NE)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.4. OPERATIONAL REASONING 91

e. (+ NE NE) ↪→ (* 2 NE)

f. (if (= N N) NE 1 NE2) ↪→ NE1

g. (if (= NE 1 NE1) NE2 NE3) ↪→ NE2

h. (if BE NE NE) ↪→ NE ¢

¤ Exercise 3.33† Develop a notion of transform equivalence for EL that is powerful

enough to formally prove that the transformations in Exercise 3.32 that you think are

safe are really safe. You will need to design appropriate contexts for EL programs,

numerical expressions, and boolean expressions. ¢

¤ Exercise 3.34‡ Given that transform equivalence implies observational equiva-
lence, it is natural to wonder whether the converse is true. That is, does the following
implication hold?

Q1 =obs Q2 implies Q1∼QQ2

If so, prove it; if not, explain why. ¢

¤ Exercise 3.35† Consider the following TP function, which translates an ELMM
program to a PostFix program:

TP : ProgramELMM → ProgramPostFix

TP [[(elmm NE body)]] = (postfix 0 TNE [[NE body]])

TNE : NumExp→ Commands
TNE [[N]] = [N]
TNE [[(A NE1 NE2)]] = TNE [[NE 1]] @ TNE [[NE 2]] @ [TA[[A]]]
TA : ArithmeticOperatorELMM → ArithmeticOperatorPostFix
TA[[+]] = add

TA[[-]] = sub, etc.

a. What is TP [[(elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6))))]]?

b. Intuitively, TP maps an ELMM program to a PostFix program with the same
behavior. Develop a proof that formalizes this intuition. As part of your proof,
show that the following diagram commutes:

CELMM1 CELMM2

CPostFix1 CPostFix2

ELMM

PostF ix

TNE TNE

The nodes CELMM1
and CELMM2

representELMM configurations, and the nodes
CPostF ix1

and CPostF ix2
represent PostFix configurations of the form introduced

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

92 CHAPTER 3. OPERATIONAL SEMANTICS

in Exercise 3.12. The horizontal arrows are transitions in the respective systems,
while the vertical arrows are applications of TNE . It may help to think in terms
of a context-based semantics.

c. Extend the translator to translate (1) ELM programs and (2) EL programs. In
each case, prove that the program resulting from your translation has the same
behavior as the original program. ¢

3.5 Extending PostFix

We close this chapter on operational semantics by illustrating that slight per-
turbations to a language can have extensive repercussions for the properties of
the language.

You have probably noticed that PostFix has a very limited expressive
power. The fact that all programs terminate gives us a hint why. Any lan-
guage in which all programs terminate can’t be universal, because any universal
language must allow nonterminating computations to be expressed. Even if we
don’t care about universality (maybe we just want a good calculator language),
PostFix suffers from numerous drawbacks. For example, nget allows us to
“name” numerals by their position relative to the top of the stack, but these
positions change as values are pushed and popped, leading to programs that
are challenging to read and write. It would be nicer to give unchanging names
to values. Furthermore, nget only accesses numerals, and there are situations
where we need to access executable sequences and use them more than once.

We could address these problems by allowing executable sequences to be
copied from any position on the stack and by introducing a general way to name
any value; these extensions are explored in exercises. For now, we will consider
extending PostFix with a command that just copies the top value on a stack.
Since the top value might be an executable sequence, this at least gives us a way
to copy executable sequences — something we could not do before.

Consider a new command, dup, which duplicates the value at the top of the
stack. After execution of this command, the top two values of the stack will be
the same. The rewrite rule for dup is given below:

〈dup . Q,V . S〉⇒ 〈Q,V . V . S〉 [dup]

As a simple example of using dup, consider the executable sequence (dup mul),
which behaves as a squaring subroutine:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 93

(postfix 1 (dup mul) exec) −[12]−−→ 144

(posttfix 2 (dup mul) dup 3 nget swap exec swap 4 nget swap exec)

−[5,12]−−−→ 169

The introduction of dup clearly enhances the expressive power of Post-
Fix. But adding this innocent little command has a tremendous consequence
for the language: it destroys the termination property! Consider the program
(postfix 0 (dup exec) dup exec). Executing this program on zero argu-
ments yields the following transition sequence:

〈((dup exec) dup exec), []〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ 〈(exec), [(dup exec), (dup exec)]〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ . . .

Because the rewrite process returns to a previously visited configuration, it is
clear that the execution of this program never terminates.

It is not difficult to see why dup invalidates the termination proof from
Section 3.4.3. The problem is that dup can increase the energy of a configuration
in the case where the top element of the stack is an executable sequence. Because
dup effectively creates new commands in this situation, the number of commands
executed can be unbounded.

It turns out that extending PostFix with dup not only invalidates the ter-
mination property, but also results in a language that is universal!12 That is,
any computable function can be expressed in PostFix+{dup}.

This simple example underscores that minor changes to a language can have
major consequences. Without careful thought, it is never safe to assume that
adding or removing a simple language feature or tweaking a rewrite rule will
change a language in only minor ways.

We conclude this chapter with numerous exercises that explore various ex-
tensions to the PostFix language.

¤ Exercise 3.36 Extend the PostFix SOS so that it handles the following commands:

• pair: Let V1 be the top value on the stack and V2 be the next to top value. Pop
both values off of the stack and push onto the stack a pair object 〈V2 ,V1 〉.

• fst: If the top stack value is a pair 〈Vfst ,Vsnd 〉, then replace it with Vfst . Oth-
erwise signal an error.

• right: If the top stack value is a pair 〈Vfst ,Vsnd〉, then replace it with Vsnd .
Otherwise signal an error. ¢

12We are indebted to Carl Witty and Michael Frank for showing us that PostFix+{dup} is
universal.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

94 CHAPTER 3. OPERATIONAL SEMANTICS

¤ Exercise 3.37 Extend the PostFix SOS so that it handles the following commands:

• get: Call the top stack value vindex and the remaining stack values (from top
down) v1 , v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n, push vi onto the stack. Signal an error if the stack does not contain
at least one value, if vindex is not a numeral, or if i is not in the range [1, n]. (get
is like nget except that it can copy any value, not just a numeral.)

• put: Call the top stack value vindex , the next-to-top stack value vval , the remaining
stack values (from top down) v1 , v2 , . . ., vn . Pop vindex and vval off the stack. If
vindex is a numeral i such that 1 ≤ i ≤ n, change the slot holding vi on the stack
to hold vval . Signal an error if the stack does not contain at least two values, if
vindex is not a numeral, or if i is not in the range [1, n]. ¢

¤ Exercise 3.38 Write the following programs in PostFix+{dup}. You may also use
the pair commands from Exercise 3.36 and/or the get/put commands from Exercise 3.37
in your solution, but they are not necessary — for an extra challenge, program purely
in PostFix+{dup}.

a. A program that takes a single argument (call it n) and returns the nth factorial.
The factorial f of an integer is a function such that (f 0) = 1 and (f n) =
(n× (f (n− 1))) for n ≥ 1.

b. A program that takes a single argument (call it n) and returns the nth Fibonacci
number,. The Fibonacci function f is such that (f 0) = 0, (f 1) = 1, and (f n)
= ((f (n− 1)) + (f (n− 2))) for n ≥ 2. ¢

¤ Exercise 3.39 Abby Stracksen wishes to extend PostFix with a simple means
of iteration. She suggests that PostFix should have a new command of the form
(for N (Q)). Abby describes the behavior of her command with the following rewrite
axioms:

〈(for N (Qfor)) . Qrest , S〉
⇒〈N . Qfor @ [(for Ndec (Qfor))] @ Qrest , S〉 ,

where Ndec =(calculate sub N 1)
and (compare gt N 0)

[for-once]

〈(for N (Qfor)) . Qrest , S〉⇒ 〈Qrest , S〉,
where ¬ (compare gt N 0)

[for-done]

Abby calls her extended language PostLoop.

a. Give an informal specification of Abby’s for command that would be appropriate
for a reference manual.

b. Using Abby’s for semantics, what are the results of executing the followingPost-
Loop programs when called on zero arguments?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 95

i. (postloop 0 1 (for 5 (mul)))

ii. (postloop 0 1 (for 5 (2 mul)))

iii. (postloop 0 1 (for 5 (add mul)))

iv. (postloop 0 0 (for 17 (pop 2 add)))

v. (postloop 0 0 (for 6 (pop (for 7 (pop 1 add)))))

c. Extending PostFix with the for command does not change its termination prop-
erty. Show this by extending the termination proof described in the notes in the
following way:

i. Define the energy of the for command.

ii. Show that the transitions in the [for-once] and [for-done] rules decrease
configuration energy.

d. Bud Lojack has developed a repeat command of the form (repeat N (Q)) that
is similar to Abby’s for command. Bud defines the semantics of his command
by the following rewrite rules:

〈(repeat N (Qrpt)) . Qrest , S〉
⇒〈N . (repeat Ndec (Qrpt)) . Qrpt @ Qrest , S〉,

where Ndec =(calculate sub N 1)
and (compare gt N 0)

[repeat-once]

〈(repeat N (Qrpt)) . Qrest , S〉⇒ 〈Qrest , S〉,
where ¬ (compare gt N 0)

[repeat-done]

Does Bud’s repeat command have the same behavior as Abby’s for command?
That is, does the following observational equivalence hold?

[(repeat N (Q))] =obs [(for N (Q))]

Justify your answer. ¢

¤ Exercise 3.40 Alyssa P. Hacker has created PostSafe, an extension to PostFix
with a new command called sdup: safe dup. The sdup command is a restricted form
of dup that does not violoate the termination property of PostFix. The informal
semantics for sdup is as follows: if the top of the stack is a number or a command
sequence that doesn’t contain sdup, duplicate it; otherwise, signal an error.

As a new graduate student in Alyssa’s AHRG (Advanced Hacking Research Group),
you are assigned to give an operational semantics for sdup, and a proof that all Post-
Safe programs terminate. Alyssa set up several intermediate steps to make your life
easier.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

96 CHAPTER 3. OPERATIONAL SEMANTICS

a. Write the operational semantics rules that describe the behavior of sdup. Model
the errors through stuck states. You can use the auxiliary function

contains sdup : Commands→ Bool

that takes a sequence of commands and checks whether it contains sdup or not.

b. Consider the product domain P = N × N (recall that N is the set of natural
numbers, starting with 0). On this domain, Alyssa defined the ordering <P as
follows:

Definition 1 (lexicographic order) 〈a1, b1〉 <P 〈a2, b2〉 iff
i. a1 < a2 or

ii. a1 = a2 and b1 < b2.

E.g., 〈3, 10000〉 <P 〈4, 0〉, 〈5, 2〉 <P 〈5, 3〉.

Definition 2 A strictly decreasing chain in P is a sequence of elements p1, p2, . . .
such that ∀i . pi ∈ P and ∀i . pi+1 <P pi.

i. Consider a finite strictly decreasing chain p1, p2, . . . , pk, where ∀i . pi =
〈ai, bi〉 ∈ P , such that k > b1 + 1 (i.e., the chain has more than b1 + 1
elements). Prove that ak < a1.

ii. Show that there is no infinite strictly decreasing chain in P .

c. Prove that each PostSafe program terminates by defining an appropriate en-
ergy function ESconfig . Note: If you need to use some helper functions that are
intuitively easy to describe but tedious to define (e.g., contains sdup), just give
an informal description of them. ¢

¤ Exercise 3.41 Sam Antix extends the PostFix language to allow programmers to
directly manipulate stacks as first-class values. He calls the resulting language Stack-
Fix. StackFix adds three commands to the PostFix collection.

• package: This command packages a copy of the stack as a first-class value, S. It
then clears the stack, leaving S as the only value on the stack.

• unpackage: This command pops the top of the stack, which must be a stack-value
S, and replaces the stack with an “unpackaged” version of S.

• switch: This command pops the top of the stack, which must be a stack-value,
S. Then the rest of the stack is packaged (as if by the package command); this
results in a new stack-value, Srest. Finally, the stack is completely replaced with
an “unpackaged” version of S, and the stack-value Srest is pushed on top of the
resulting stack. Thus, switch effectively switches the roles of the stack-value on
top of the stack and the rest of the stack.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 97

As a warm-up, Sam has written some simple StackFix programs. First-class stack
values may be returned as the final result of a program execution; in the case, the
outcome is the token stack-value, which hides the details of the stack value.

(stackfix 0 1 2 package) −[]−→ stack-value

(stackfix 0 1 2 package unpackage) −[]−→ 2

(stackfix 0 1 2 package 3 switch) −[]−→ {error: top of stack not stack-value}
(stackfix 0 1 2 package 3 swap switch) −[]−→ stack-value

(stackfix 0 2 package 3 swap switch pop) −[]−→ 2

(stackfix 0 1 2 package 3 swap switch unpackage) −[]−→ 3

a. Write a definition of the Value domain for the StackFix language.

b. Give transition rules for the package, unpackage, and switch commands.

c. Does unpackage add new expressive power to StackFix? If yes, argue why. If no,
provide an equivalent sequence of commands from PostFix+{package,switch}.

d. Does every StackFix program terminate? Give a short, intuitive description of
your reasoning. ¢

¤ Exercise 3.42 Rhea Storr introduces a new PostFix command called execs that
permits executing a sequence of commands while saving the old stack. She calls her
extended language PostSave.

Rhea asks you to help her define transition rules for PostSave that in several steps
move 〈execs . Q, Qexec . S〉 to the configuration 〈Q, V . S〉. This sequence of
transformations assumes that the configuration 〈Qexec, S〉 will eventually result in a
final configuration 〈[]Command, V . S ′〉.

Here are some examples that contrast exec with execs:

(postsave 0 1 2 (3 mul) exec add) −[]−→ 7

(postsave 0 1 2 (3 mul) execs add) −[]−→ 8

(postsave 0 (1) execs) −[]−→ 1

(postsave 0 2 3 (mul) execs add add) −[]−→ 11

To implement the SOS for PostSave, Rhea modifies the configuration space:

cf ∈ CF = Layer*
L ∈ Layer = Commands × Stack

Rhea’s transition rule for execs is:

〈execs . Q, Qexec . S〉 . L*⇒〈Qexec, S〉 . 〈Q, S〉 . L* [execs]

Note that the entire stack is copied into the new layer!

a. If 〈Q, S〉 =PF=⇒ 〈Q ′, S ′〉 is a transition rule in PostFix, provide the correspond-
ing rule in PostSave.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

98 CHAPTER 3. OPERATIONAL SEMANTICS

b. Provide the rule for an empty command sequence in the top layer.

c. Show that programs in PostSave are no longer guaranteed to terminate by giving
a command sequence that is equivalent to dup. ¢

¤ Exercise 3.43 One of the chief limitations of the PostFix language is that there is
no way to name values. In this problem, we consider extending PostFix with a simple
naming system. We will call the resulting language PostText.

The grammar for PostText is the same as that for PostFix except that there are
three new commands:

C ::= . . .
| I [Name]
| def [Definition]
| ref [Name-reference]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the PostText command names (pop, exec, def, etc.), which are
treated as reserved words of the language.

The model of the PostText language extends the model of PostFix by including
a current dictionary as well as a current stack. A dictionary is an object that maintains
bindings between names and values. The commands inherited from PostFix have no
effect on the dictionary. The informal behavior of the new commands is as follows:

• I: I is a literal name that is similar to an immutable string literal in other lan-
guages. Executing this command simply pushes I on the stack. The Value domain
must be extended to include identifiers in addition to numerals and executable
sequences.

• def: Let v1 be the top stack value and v2 be the next to top value. The def
command pops both values off of the stack and updates the current dictionary
to include a binding between v2 and v1. v2 should be a name, but v1 can be any
value (including an executable sequence or name literal). It is an error if v2 is
not a name.

• ref: The ref command pops the top element vname off of the stack, where vname
should be a name I. It looks up the value vval associated with I in the current
dictionary and pushes vval on top of the stack. It is an error if there is no binding
for I in the current dictionary or if vname is not a name.

For example:

(posttext 0 average (add 2 div) def 3 7 average ref exec) −[]−→ 5

(posttext 0 a 3 def dbl (2 mul) def a ref

dbl ref exec 4 dbl ref exec add) −[]−→ 14

(posttext 0 a b def a ref 7 def b ref) −[]−→ 7

(posttext 0 a 5 def a ref 7 def b ref) −[]−→ error {5 is not a name.}
(posttext 0 c 4 def d ref 1 add) −[]−→ error {d is unbound.}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 99

In an SOS for PostText, the usual PostFix configuration space must be extended
to include a dictionary object as a new state component:

CFPostText = Commands× Stack×Dictionary

a. Suppose that a dictionary is represented as a sequence of identifier/value pairs:

D ∈ Dictionary = (Identifier × Value)*

i. Define the final configurations, input function, and output function for the
PostText SOS.

ii. Give the rewrite rules for the I, def, and ref commands.

b. Redo the above problem, assuming that dictionaries are instead represented as
functions from identifiers to values, i.e.,

D ∈ Dictionary = Identifier → (Value + {unbound})

where unbound is a distinguished token indicating an identifier is unbound in the
dictionary.

You may find the following bind function helpful:

bind : Identifier→ Value→ Dictionary→ Dictionary
=λIbindVD . λIref . if Ibind =Iref then V else (D Iref) fi

bind takes a name, a value, and dictionary, and returns a new dictionary in
which there is a binding between the name and value in addition to the existing
bindings. (If the name was already bound in the given dictionary, the new binding
effectively replaces the old.) ¢

¤ Exercise 3.44 After several focus-group studies, Ben Bitdiddle has decided that
PostFix needs a macro facility. Below is Ben’s sketch of the informal semantics of the
facility for his extended language, which he dubs PostMac.

Macros are specified at the beginning of a PostMac program, as follows:

(postmac Nnumargs ((I1 V1) ... (In Vn)) Q)

Each macro (Ii Vi) creates a command, called Ii ∈ Identifier, that, when executed,
pushes the value Vi (which can be an integer or a command sequence) onto the stack.
It is illegal to give macros the names of existing PostFix commands, or to use an
identifier more than once in a list of macros. The behavior of programs that do so is
undefined. Here are some examples Ben has come up with:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

100 CHAPTER 3. OPERATIONAL SEMANTICS

(postmac 0 ((inc (1 add))) (0 inc exec inc exec)) −[]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A B exec)) −[]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A C exec)) −[]−→ error

{undefined macro C}
(postmac 0 ((A 1) (B (C mul)) (C 2)) (A B exec)) −[]−→ 2

(postmac 0 ((A pop)) (1 A)) −[]−→ error

{Ill-formed program: macro bodies must be values, not commands}
Ben started writing an SOS for PostMac, but had to go make a presentation for

some venture capitalists. It is your job to complete the SOS.
Before leaving, Ben made the following changes/additions to the domain definitions:

M ∈ MacroList = (Identifier × Value)*
P ∈ Program = Commands × Intlit × MacroList

CF = Commands × Stack × MacroList

C ∈Commands ::= . . . | I [Macro Reference]
He also introduced an auxiliary partial function, lookup, with the following signature:

lookup : Identifier×MacroList⇀ Value

If lookup is given an identifier and a macro list, it returns the value that the identifier
is bound to in the macro list. If there is no such value, lookup gets stuck.

a. Ben’s notes begin the SOS for PostMac as follows:

〈Q, S〉 =PF=⇒ 〈Q ′, S ′〉
〈Q,S,M〉=PM==⇒〈Q ′,S ′,M〉

[PostFix commands]

where =
PF
=⇒ is the original transition relation for PostFix and =

PM
==⇒ is the new

transition relation for PostMac. Complete the SOS for PostMac. Your com-
pleted SOS should handle the first four of Ben’s examples. Don’t worry about
ill-formed programs. Model errors as stuck states.

b. Louis Reasoner finds out that your SOS handles macros that depend on other
macros. He wants to launch a new advertising campaign with the slogan: “Guar-
anteed to terminate: PostFix with mutually recursive macros!” Show that Louis’
new campaign is a bad idea by writing a nonterminating program in PostMac.

c. When Ben returns from his presentation, he finds out you’ve written a nontermi-
nating program in PostMac. He decides to restrict the language so nonterminat-
ing programs are no longer possible. Ben’s restriction is that the body (or value)
of a macro cannot use any macros. Ben wants you to prove that this restricted
language terminates.

i. Extend the PostFix energy function so that it assigns an energy to config-
urations that include macros. Fill in the blanks in Ben’s definitions of the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 101

functions Ecom [[C,M]], Eseq [[Q,M]] and Estack [[S,M]] and use these functions
to define the configuration energy function Econfig [[〈Q,S,M〉]].

Ecom [[(Q),M]] = Eseq [[Q, M]]

Ecom [[C,M]] = 1 (C is not an identifier or
an executable sequence)

Ecom [[I,M]] =

Eseq [[[]Command, M]] = 0

Eseq [[C . Q, M]] =

Estack [[[]Value, M]] = 0

Estack [[V . S,M]] =

Econfig [[〈Q,S,M〉]] =

ii. Use the extended energy function (for the restricted form of PostMac)
to show that executing a macro decreases the energy of a configuration.
Since it is possible to show all the other commands decrease the energy
of a configuration (by adapting the termination proof for PostFix without
macros), this will show that the restricted form ofPostMac terminates. ¢

¤ Exercise 3.45 Dan M. X. Cope, a Lisp hacker, is unsatisfied with PostText, the
name binding extension of PostFix introduced in Exercise 3.43. He claims that there
is a better way to add name binding to PostFix, and creates a brand new language,
PostLisp, to test out his ideas.

The grammar for PostLisp is the same as that for PostFix except that there are
four new commands:

C ::= . . .
| I [Name]
| bind [Push new binding]
| unbind [Remove binding]
| lookup [Name lookup]

Here, I is an element of the syntactic domain Identifier, which includes all alphabetic
names except for the PostLisp command names (pop, exec, bind, etc.), which are
treated as reserved words of the language.

The model of the PostLisp language extends the model of PostFix by including
a name stack for each name. A name stack is a stack of values associated with a name
that can be manipulated with the bind, unbind, and lookup commands as described
below. The commands inherited from PostFix have no effect on the name stacks. The
informal behavior of the new commands is as follows:

• I: I is a literal name that is similar to an immutable string literal in other
languages. Executing this command simply pushes I onto the stack. The Value
domain is extended to include names in addition to numerals and executable
sequences.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

102 CHAPTER 3. OPERATIONAL SEMANTICS

• bind: Let v1 be the top stack value and v2 be the next-to-top value. The bind
command pops both values off of the stack and pushes v1 onto the name stack
associated with v2. Thus v2 is required to be a name, but v1 can be any value
(including an executable sequence or name literal). It is an error if v2 is not a
name.

• lookup: The command lookup pops the top element vname off of the stack,
where vname should be a name I. If vval is the value at the top of the name stack
associated with I, then vval is pushed onto the stack. (vval is not popped off of
the name stack.) It is an error if the name stack of I is empty, or if vname is not
a name.

• unbind: The command unbind pops the top element vname off of the stack,
where vname should be a name I. It then pops the top value off of the name stack
associated with I. It is an error if the name stack of I is empty, or if vname is not
a name.

• In the initial state, each name is associated with the empty name stack.

For example:

(postlisp 0 a 3 bind a lookup) −[]−→ 3

(postlisp 0 a 8 bind a lookup a lookup add) −[]−→ 16

(postlisp 0 a 4 bind a 9 bind a lookup a unbind a lookup add) −[]−→ 13

(postlisp 0 19 a bind a lookup) −[]−→ error {19 is not a name.}
(postlisp 0 average (add 2 div) bind 3 7 average lookup exec) −[]−→ 5

(postlisp 0 a b bind a lookup 23 bind b lookup) −[]−→ 23

(postlisp 0 c 4 bind d lookup 1 add) −[]−→ error {d name stack is empty.}
(postlisp 0 b unbind) −[]−→ error {b name stack is empty}

In an SOS for PostLisp, the usual PostFix configuration space must be extended
to include the name stacks as a new state component. Name stacks are bundled up into
an object called a name file.

CFPostLisp = Commands × Stack × NameFile
F ∈ NameFile = Name → Stack

A NameFile is a function mapping a name to the stack of values bound to the name. If
F is a name file, then (F I) is the stack associated with I in F. The notation F[I = S]
denotes a name file that is identical to F except that I is mapped to S.

a. Define the final configurations, input function, and output function for the PostLisp
SOS.

b. Give the rewrite rules for the I, bind, unbind, and lookup commands. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 103

¤ Exercise 3.46 Abby Stracksen is bored with vanilla PostFix (it’s not even univer-
sal!) and decides to add a new feature, which she calls the heap. A heap maps locations
to elements from the Value domain, where locations are simply integers:

Location = Intlit

Note that a location can be any integer, including a negative one. Furthermore, integers
and locations can be used interchangeably in Abby’s language, very much like pointers
in pre-ANSI C.

Abby christens her new language PostHeap. The grammar for PostHeap is the
same as that for PostFix except that there are three new commands:

C ::= . . .
| allocate [Allocation]
| store [Store in heap location]
| access [Access from heap location]

The commands inherited from PostFix have no effect on the heap. The informal
behavior of the new commands is as follows:

• allocate: Executing this command pushes onto the stack a location that is not
used in the heap.

• store: Let v1 be the top stack value and v2 be the next-to-top value. The store
command pops v1 off the stack and writes it into the heap at location v2. Thus
v1 can be any element from the Value domain and v2 has to be an Intlit. It is an
error if v2 is not an Intlit. Note that v2 remains on the stack.

• access: Let v1 be the top stack value. The access command reads from the
heap at location v1 and pushes the result onto the stack. Thus v1 has to be an
Intlit. It is an error if v1 is not an Intlit or if the heap at location v1 has not been
written with store before. Note that v1 remains on the stack.

For example:

(postheap 0 allocate) −[]−→ N {implementation dependent}
(postheap 0 allocate 5 store access) −[]−→ 5

(postheap 0 allocate 5 store 4 swap access swap pop add) −[]−→ 9

(postheap 0 4 5 store) −[]−→ 4

(postheap 0 4 5 store access) −[]−→ 5

(postheap 0 access) −[]−→ error {no location given}
(postheap 0 allocate access) −[]−→ error {location has not been written}
(postheap 0 5 store) −[]−→ error {no location given}

After sketching this initial description of the heap, Abby realizes that it is already
8:55 on a Friday night and she goes off to watch the X-Files. It is your task to flesh out
her initial draft:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

104 CHAPTER 3. OPERATIONAL SEMANTICS

a. Give the definition of the Heap domain and the configuration domain CF .

b. Let access-from-heap be a partial function that, given a Location and a Heap in
which Location has been bound, returns an element from the Value domain. In
other words, access-from-heap has the following signature and definition:

access-from-heap: Location → Heap⇀Value

(access-from-heap N 〈N,V〉 . H) =V

(access-from-heap N1 〈N2 ,V〉 . H) = (access-from-heap N1 H), where N1 6=N2

Give the rewrite rules for the allocate, store, and access commands. You may
use access-from-heap.

c. Is PostHeap a universal programming language? Explain your answer.

d. Abby is concerned about security because PostHeap treats integers and loca-
tions interchangeably. Since her programs don’t use this “feature”, she decides to
restrict the language by disallowing pointer arithmetic. She wants to use tags to
distinguish locations from integers. Abby redefines the Value domain as follows:

V ∈ Value = (Intlit × Tag) + Command
Tag = {integer, pointer}

Informally, integers and locations are represented as pairs on the stack: integers
are paired with the integer tag, while locations are paired with the pointer tag.

Give the revised rewrite rules for integers, add, allocate, store, and access. ¢

¤ Exercise 3.47‡ Prove that PostFix+{dup} is universal. This can be done by
showing how to translate any Turing machine program into a PostFix+{dup} program.
Assume that integer numerals may be arbitrarily large in magnitude. ¢

Reading

Early approaches to operational semantics defined the semantics of programming
languages by translating them to standard abstract machines. Landin’s SECD
machine [Lan64] is a classic example of such an abstract machine. Plotkin [Plo75]
used it to study the semantics of the lambda calculus.

Later, Plotkin introduced Structured Operational Semantics [Plo81] as a
more direct approach to specifying an operational semantics. The context-based
approach to specifying transition relations for small-step operational semantics
was invented by Felleisen and Friedman in [FF86] and explored in a series of
papers culminating in [FH92]. Big-step (natural) semantics was introduced by

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

3.5. EXTENDING POSTFIX 105

Kahn in [Kah87]. A concise overview of various approaches to semantics, includ-
ing several forms of operational semantics, can be found in the first chapter of
[Gun92]. The early chapters of [Win93] present an introduction to operational
semantics in the context of a simple imperative language.

Other popular forms of operational semantics include term rewriting sys-
tems ([DJ90, BN98]) and graph rewriting systems ([Cou90]).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

106 CHAPTER 3. OPERATIONAL SEMANTICS

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 4

Denotational Semantics

But this denoted a foregone conclusion

— Othello, William Shakespeare

4.1 The Denotational Semantics Game

We have seen how an operational semantics is a natural tool for evaluating pro-
grams and proving properties like termination. However, it is less than ideal
for many purposes. A framework based on transitions between configurations
of an abstract machine is usually better suited for reasoning about complete
programs than program fragments. In PostFix, for instance, we had to extend
the operational semantics with elaborate notions of observational equivalence
and transform equivalence in order to effectively demonstrate the interchange-
ability of command sequences. Additionally, the emphasis on syntactic entities
in an operational semantics can complicate reasoning. For example, syntacti-
cally distinct executable sequence answers in PostFix must be treated as the
same observable value in order to support a non-trivial notion of observational
equivalence for command sequences. Finally, the step-by-step nature of an op-
erational semantics can suggest notions of time and dependency that are not
essential to the language being defined. For example, an operational semantics
for the expression language EL might specify that the left operand of a binary
operator is evaluated before the right even though this order may be impossible
to detect in practice.

An alternative framework for reasoning about programs is suggested by the
notion of transform equivalence developed for PostFix. According to this no-
tion, each PostFix command sequence is associated with a stack transform that

107

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

108 CHAPTER 4. DENOTATIONAL SEMANTICS

describes how the sequence maps an input stack to an output stack. It is natural
to view these stack transforms as functions. For example, the stack transform
associated with the command sequence [3, add] would be an add3 function with
the following graph:1

{〈errorStack, errorStack〉, 〈[], errorStack〉, . . . ,
〈[− 1], [2]〉, 〈[0], [3]〉, 〈[1], [4]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [8, 23]〉, 〈[5, mul2, 17, add3], [8, mul2, 17, add3]〉, . . . }.

Here, errorStack stands for a distinguished error stack analogous to Serror in
the extended PostFix SOS. Stack elements that are executable sequences are
represented by their stack transforms (e.g., add3 and mul2) rather than some
syntactic phrase.

Associating stack transform functions with command sequences has several
benefits. First, this perspective directly supports a notion of equivalence for pro-
gram phrases. For example, the add3 function is the stack transform associated
with the sequence [1, add, 2, add] as well as the sequence [3, add]. This implies
that the two sequences are behaviorally indistinguishable and can be safely in-
terchanged in any PostFix context. The fact that stack elements that are
executable sequences are represented by functions rather than syntactic entities
greatly simplifies this kind of reasoning.

The other major benefit of this approach is that the stack transform associ-
ated with the concatenation of two sequences is easily composed from the stack
transforms of the component sequences. For example, suppose that the sequence
[2, mul] is modeled by the mul2 function, whose graph is sketched below:

{〈errorStack, errorStack〉, 〈[], errorStack〉, . . . ,
〈[− 1], [− 2]〉, 〈[0], [0]〉, 〈[1], [2]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [10, 23]〉, 〈[5, mul2, 17, add3], [10, mul2, 17, add3]〉, . . . }.

Then the stack transform of [3, add, 2, mul] = [3, add] @ [2, mul] is simply the
function mul2 ◦ add3, whose graph is:

{〈errorStack, errorStack〉, 〈[], errorStack〉, . . . ,
〈[− 1], [4]〉, 〈[0], [6]〉, 〈[1], [8]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [16, 23]〉, 〈[5, mul2, 17, add3], [16, mul2, 17, add3]〉, . . . }.

1Here, and for the rest of this chapter, we rely heavily on the metalanguage concepts and
notations described in Appendix A. Consult this appendix as necessary to unravel the formal-
ism.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.1. THE DENOTATIONAL SEMANTICS GAME 109

Similarly the stack transform of [2, mul, 3, add] = [2, mul] @ [3, add] is the
function add3 ◦ mul2, whose graph is:

{〈errorStack, errorStack〉, 〈[], errorStack〉, . . . ,
〈[− 1], [1]〉, 〈[0], [3]〉, 〈[1], [5]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [13, 23]〉, 〈[5, mul2, 17, add3], [13, mul2, 17, add3]〉, . . . }.

The notion that the meaning of a program phrase can be determined from
the meaning of its parts is the essence of a framework called denotational
semantics. A denotational semantics determines the meaning of a phrase in
a compositional way based on its static structure rather than on some sort of
dynamically changing configuration. Unlike an operational semantics, a denota-
tional semantics emphasizes what the meaning of a phrase is, not how the phrase
is evaluated. The name “denotational semantics” is derived from its focus on
the mathematical values that phrases “denote.”

The basic structure of the denotational framework is illustrated in Figure 4.1.
A denotational semantics consists of three parts:

1. A syntactic algebra that describes the abstract syntax of the language
under study. This can be specified by the s-expression grammar approach
introduced in Chapter 2.

2. A semantic algebra that models the meaning of program phrases. A
semantic algebra consists of a collection of semantic domains along with
functions that manipulate these domains. The meaning of a program may
be something as simple as an element of a primitive semantic domain like
Int, the domain of integers. More typically, the meaning of a program is an
element of a function domain that maps context domains to an answer
domain, where

• Context domains are the denotational analog of state components
in an SOS configuration. They model such entities as name/value
associations, the current contents of memory, and control information.

• An answer domain represents the possible meanings of programs. In
addition to a component that models what we would normally think
of as being the result of a program phrase, the answer domain may
also include components that model context information that was
transformed by the program.

3. A meaning function that maps elements of the syntactic algebra (i.e.,
nodes in the abstract syntax trees) to their meanings in the semantic alge-
bra. Each phrase is said to denote its image under the meaning function.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

110 CHAPTER 4. DENOTATIONAL SEMANTICS

Syntactic
 Algebra

Semantic
 Algebra

 Meaning
 Function
(Homomorphism)

(M q)

(M p)

(M r)

t M

M

M

M
r

q

p

t
(f (M p) (M q) (M r))

Figure 4.1: The denotational semantics “game board.”

Not any function can serve as a meaning function; the function must be
a homomorphism between the syntactic algebra and the semantic alge-
bra. This is just the technical condition that constrains the meaning of
an abstract syntax tree node to be determined from the meaning of its
subnodes. It can be stated more formally as follows:

Suppose M is a meaning function and t is a node in an abstract
syntax tree, with children t1, . . . , tk. Then

(M t) must equal (ft (M t1) . . . (M tk))

where ft is a function that is determined by the syntactic class of t.

The advantage of restricting meaning functions to homomorphisms is that
their structure-preserving behavior greatly simplifies reasoning. This design
choice accounts for the compositional nature of denotational semantics, whose
essence is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts”.

4.2 A Denotational Semantics for EL

As our first example, we will develop a denotational semantics for the EL ex-
pression language. We begin with a pared-down version of the language and
show how the semantics changes when adding features to yield full EL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 111

4.2.1 Step 1: Restricted ELMM

Recall that ELMM (Figure 3.6) is a simple expression language in which pro-
grams are expressions, and expressions are trees of binary operators (+,-,*,/,%)
whose leaves are integer numerals. For the moment, let’s ignore the / and %

operations, because removing the possibility of divide-by-zero and remainder-
by-zero errors simplifies the semantics. In a version of ELMM without / and %,
the meaning of each numeral, expression, and program is just an integer.

This meaning is formalized in Figure 4.2. There is only one semantic domain:
the domain Int of integers. The meaning of an ELMM program is specified by
a collection of so-called valuation functions, one for each syntactic domain
defined by the abstract syntax for the language. For each syntactic domain,
the name of the associated valuation function is usually a script version of the
metavariable that ranges over that domain. For example, P is the valuation
function for P ∈ Program, NE is the valuation function for NE ∈ NumExp,
and so on.

The meaning P [[(elmm NE body)]] of an ELMM program (elmm NE body) is
simply the integer NE [[NE body]] denoted by its body expression NE body . Since an
ELMM numerical expression may be either an integer numeral or an arithmetic
operation, the definition of NE has a clause for each of these two cases. In the
integer numeral case, the N function maps the syntactic representation of an
integer numeral into a mathematical integer. We will treat integer numerals as
atomic entities, but their meaning could be determined in a denotational fashion
from their component signs and digits (see Exercise 4.1). In the arithmetic
operation case, the A function maps the operator (one of +, -, and *) into a
binary integer function that determines the meaning of the operation from the
meanings of the operands.

Figure 4.3 illustrates how the denotational semantics for the restricted ver-
sion of ELMM can be used to determine the meaning of the sample ELMM
program (elmm (* (+ 1 2) (- 9 5))). Because P maps programs to their
meanings, P [[(elmm (* (+ 1 2) (- 9 5)))]] is the meaning of this program.
However, this fact is not very useful as stated because the element of Int denoted
by the program is not immediately apparent from the form of the metalanguage
expression P [[(elmm (* (+ 1 2) (- 9 5)))]]. We would like to massage the
metalanguage expression for the meaning of a program into another metalan-
guage expression more recognizable as an element of the answer domain. We
do this by using equational reasoning to simplify the metalanguage expres-
sion. That is, we are allowed to make any simplifications that are allowed by
usual mathematical reasoning about the entities denoted by the metalanguage
expressions. Equational reasoning allows such manipulations as:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

112 CHAPTER 4. DENOTATIONAL SEMANTICS

Semantic Domain

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}

Valuation Functions

P : Program→ Int
P [[(elmm NE body)]] =NE [[NE body]]

NE : NumExp→ Int
NE [[N]] = (N [[N]])
NE [[(A NE1 NE2)]] = (A[[A]] (NE [[NE 1]]) (NE [[NE2]]))

A : ArithmeticOperator→ (Int → Int → Int)
A[[+]] = +Int
A[[-]] = −Int

A[[*]] = ×Int

N : Intlit→ Int
N maps integer numerals to the integer numbers they denote.

Figure 4.2: Denotational semantics for a version of ELMM without / and %.

P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= (A[[*]] (NE [[(+ 1 2)]]) (NE [[(- 9 5)]]))

= ((NE [[(+ 1 2)]]) ×Int (NE [[(- 9 5)]]))

= ((A[[+]] (NE [[1]]) (NE [[2]])) ×Int (A[[-]] (NE [[9]]) (NE [[5]])))
= ((1 +Int 2) ×Int (9−Int 5))

= (3×Int 4)

= 12

Figure 4.3: Meaning of a sample program in restricted ELMM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 113

• substituting equals for equals;

• applying functions to arguments;

• equating two function-denoting expressions when, for each argument, they
map that argument to the same result (this is called extensionality).

Instances of equational reasoning are organized into equational proofs
that contain a series of equalities. Figure 4.3 presents an equational proof that
P [[(elmm (* (+ 1 2) (- 9 5)))]] is equal to the integer 12. Each equality in
the proof is justified by familiar mathematical rules. For example, the equality

NE [[(* (+ 1 2) (- 9 5))]] = (A[[*]] (NE [[(+ 1 2)]]) (NE [[(- 9 5)]]))

is justified by the arithmetic operation clause in the definition of NE , while the
equality

((1 +Int 2) ×Int (9 -Int 5)) = (3 ×Int 4)

is justified by algebraic rules for manipulating integers. We emphasize that
P [[(elmm (* (+ 1 2) (- 9 5)))]], as well as every other line in Figure 4.3,
denotes exactly the same integer. The whole purpose of the equational proof is
to simplify the original expression into another metalanguage expression whose
form more directly expresses the meaning of the program.

4.2.2 Step 2: Full ELMM

What happens to the denotational semantics for ELMM if we add back in the /
and % operators? We now have to worry about the meaning of expressions like
(/ 1 0) and (% 2 0). We will model the meaning of such expressions by the
distinguished token error. Since ELMM programs, numerical expressions, and
arithmetic operators can now return errors in addition to integers, we invent an
Answer domain with both of these kinds of entities to represent their meanings
and change the valuation functions P , NE , and A accordingly (Figure 4.4).
The integer numeral clause for NE now needs the injection Int 7→ Answer, and
the arithmetic operation clause must now propagate any errors found in the
operands. The A clauses for / and % handle specially the case where the second
operand is zero, and Int 7→ Answer injections must be used in the “regular” cases
for all operators.

In full ELMM, the sample program (elmm (* (+ 1 2) (- 9 5))) has the
meaning (Int 7→ Answer 12). Figure 4.5 presents an equational proof of this fact.
All the pattern matching clauses appearing in the proof are there to handle
the propagation of errors. The sample program has no errors, but we could

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

114 CHAPTER 4. DENOTATIONAL SEMANTICS

Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
Error = {error}

a ∈ Answer = Int + Error

Valuation Functions

P : Program→ Answer

P [[(elmm NE)]] = NE [[NE]]

NE : NumExp→ Answer

NE [[N]] = (Int 7→ Answer (N [[N]]))
NE [[(A NE1 NE2)]] = matching 〈NE [[NE 1]],NE [[NE 2]]〉

. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[A]] i1 i2)

. else (Error 7→ Answer error) endmatching

A : ArithmeticOperator→ (Int → Int → Answer)

A[[+]] = λi1 i2 . (Int 7→ Answer (i1 +Int i2))
- and * are handled similarly.

A[[/]] = λi1 i2 . if i2 = 0
then (Error 7→ Answer error)
else (Int 7→ Answer (i1 /Int i2)) fi

% is handled similarly.

N : Intlit→ Int
N maps integer numerals to the integer numbers they denote.

Figure 4.4: Denotational semantics for a version of ELMM with / and %.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 115

P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= matching 〈NE [[(+ 1 2)]],NE [[(- 9 5)]]〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= matching 〈matching 〈NE [[1]],NE [[2]]〉
. 〈(Int 7→ Answer i3), (Int 7→ Answer i4)〉 [] (A[[+]] i3 i4)
. else (Error 7→ Answer error) endmatching ,
matching 〈NE [[9]],NE [[5]]〉
. 〈(Int 7→ Answer i5), (Int 7→ Answer i6)〉 [] (A[[-]] i5 i6)
. else (Error 7→ Answer error) endmatching 〉

. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)

. else (Error 7→ Answer error) endmatching

= matching 〈matching 〈(Int 7→ Answer 1), (Int 7→ Answer 2)〉
. 〈(Int 7→ Answer i3), (Int 7→ Answer i4)〉 [] (A[[+]] i3 i4)
. else (Error 7→ Answer error) endmatching ,
matching 〈(Int 7→ Answer 9), (Int 7→ Answer 5)〉
. 〈(Int 7→ Answer i5), (Int 7→ Answer i6)〉 [] (A[[-]] i5 i6)
. else (Error 7→ Answer error) endmatching 〉

. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)

. else (Error 7→ Answer error) endmatching

= matching 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer (1 +Int 2)), (Int 7→ Answer (9 +Int 5))〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer 3), (Int 7→ Answer 4)〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= (A[[*]] 3 4)
= (Int 7→ Answer (3×Int 4))

= (Int 7→ Answer 12)

Figure 4.5: Meaning of a sample program in full ELMM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

116 CHAPTER 4. DENOTATIONAL SEMANTICS

introduce one by replacing the subexpression (- 9 5) by (/ 9 0). Then the
part of the proof beginning

= matching 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉 . . .
would become:

= matching 〈(A[[+]] 1 2) , (A[[/]] 9 0)〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= matching 〈(Int 7→ Answer (1 +Int 2)), (Error 7→ Answer error)〉
. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 [] (A[[*]] i1 i2)
. else (Error 7→ Answer error) endmatching

= (Error 7→ Answer error).

Expressing error propagation via explicit pattern matching makes the equa-
tional proof in Figure 4.5 rather messy. As in programming, in denotational
semantics it is good practice to create abstractions that capture common pat-
terns of behavior and hide messy details. This can improve the clarity of the
definitions and proofs while at the same time making them more compact.

We illustrate this kind of abstraction by introducing the following higher-
order function for simplifying error handling in ELMM:

with-int : Answer → (Int → Answer)→ Answer
=λaf . matching a

. (Int 7→ Answer i) [] (f i)

. else (Error 7→ Answer error) endmatching .

with-int takes an answer a and a function f from integers to answers and returns
an answer. It automatically propagates errors, in the sense that it maps an input
error answer to an output error answer. The function f specifies what is done for
inputs that are integer answers. Thus, with-int hides details of error handling
and extracting integers from integer answers.

A metalanguage expression of the form (with-int a (λi . E)) serves as a kind
of binding construct, i.e., a construct that introduces a name for a value. One
way to pronounce this is:

“If a is an integer answer, then let i name the integer in E and return
the value of E. Otherwise, a must be an error, in which case an error
should be returned.”

The following equalities involving with-int are useful:

(with-int (Error 7→ Answer error) f) = (Error 7→ Answer error)

(with-int (Int 7→ Answer i) f) = (f i)

(with-int (NE [[N]]) f) = (f (N [[N]]))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 117

P [[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]]

= with-int (NE [[(+ 1 2)]])
(λi1 . with-int (NE [[(- 9 5)]])

(λi2 . (A[[*]] i1 i2)))

= with-int (with-int (NE [[1]])
(λi3 . with-int (NE [[2]])

(λi4 . (A[[+]] i3 i4))))
(λi1 . with-int (with-int (NE [[9]])

(λi5 . with-int (NE [[5]])
(λi6 . (A[[-]] i5 i6))))

(λi2 . (A[[*]] i1 i2)))

= with-int (A[[+]] 1 2)
(λi1 . with-int (A[[-]] 9 5)

(λi2 . (A[[*]] i1 i2)))

= with-int (Int 7→ Answer (1 +Int 2))
(λi1 . with-int (Int 7→ Answer (9−Int 5))

(λi2 . (Int 7→ Answer (i1 ×Int i2))))

= (Int 7→ Answer ((1 +Int 2) ×Int (9−Int 5)))
= (Int 7→ Answer (3×Int 4))

= (Int 7→ Answer 12)

Figure 4.6: Example illustrating how with-int hides error propagation.

Using with-int, the NE valuation clause for arithmetic expressions can be
redefined as:

NE [[(A NE1 NE2)]]
= with-int (NE [[NE1]]) (λi1 . (with-int (NE [[NE 2]]) (λi2 . (A[[A]] i1 i2)))).

With this modified definition and the above with-int equalities, details of er-
ror propagation can be hidden in equational proofs for ELMM meanings (see
Figure 4.6).

One of the powers of lambda notation is that it supports the invention of new
binding constructs like with-int via higher-order functions without requiring any
new syntactic extensions to the metalanguage. We will make extensive use of
this power to simplify our future denotational definitions. Later we will see how
this idea appears in practical programming under asmonadic style (Chapter 8)
and continuation passing style (Chapters 9 and 17).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

118 CHAPTER 4. DENOTATIONAL SEMANTICS

4.2.3 Step 3: ELM

The ELM language (Exercise 3.10) is obtained from ELMM by adding indexed
input via the expression (arg Nindex), where Nindex specifies the index (start-
ing at 1) of a program argument. The program form is (elm Nnumargs NE body),
where Nnumarg indicates the number of integer arguments expected by the pro-
gram when it is executed. Intuitively, the meaning of ELM programs and nu-
merical expressions must now be extended to include the program arguments.
In Figure 4.7, this is expressed by modeling the meaning of programs and ex-
pressions as functions with signature Int* → Answer that map a sequence of
integers (the program arguments) to an answer (either an integer or an error).
The program argument sequence i* must be “passed down” the syntax tree to
the body of a program and the operands of an arithmetic operation so that they
can eventually be referenced in an arg form at a leaf of the syntax tree. The
elm program form must check that the number of supplied arguments matches
the expected number of arguments inumargs , and the arg form must check that
the index iindex is between 1 and the number of arguments, inclusive.

Figure 4.8 uses denotational definitions to find the result of applying the
ELM program (elm 2 (+ (arg 2) (* (arg 1) 3))) to the argument sequence
[4, 5]. The equational proof assumes the following equalities, which are easy to
verify:

(with-int (NE [[N]] i*) f) = (f (N [[N]]))
(with-int (NE [[(arg N)]] [i1 , . . . , ik , . . . , in]) f) = (f ik) , where N [[N]] = k

(with-int (A[[A]] i1 i2) f) = (f ires) , where (A[[A]] i1 i2) = (Int 7→ Result ires)

In Figure 4.8, if we replace the concrete argument integers 4 and 5 by abstract
integers iarg1 and iarg2 , respectively, then the result would be

(Int 7→ Answer (iarg2 +Int (iarg1 ×Int 3))).

Based on this observation, we can give a meaning to the sample program itself
(i.e., without applying it to particular arguments). Such a meaning must be
abstracted over an arbitrary argument sequence:

P [[(elmm 2 (+ (arg 2) (* (arg 1) 3)))]]
= λi* . matching i*

. [iarg1 , iarg2] [] (Int 7→ Answer (iarg2 +Int (iarg1 ×Int 3)))

. else (Error 7→ Answer error) endmatching .

Here we have translated the if that appears in the P definition in Figure 4.7
into an equivalent matching construct that gives the names iarg1 and iarg2 to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 119

Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
Error = {error}

a ∈ Answer = Int + Error

Valuation Functions

P : Program→ Int*→ Answer

P [[(elm Nnumargs NE body)]]
=λi* . if (length i*) =N [[Nnumargs]]

then NE [[NE]] i*
else (Error 7→ Answer error) fi

NE : NumExp→ Int*→ Answer

NE [[Nnum]] =λi* . (Int 7→ Answer N [[Nnum]])

NE [[(arg Nindex)]] =λi* . if (1 ≤ N [[Nindex]]) and (N [[Nindex]] ≤ (length i*))
then (Int 7→ Answer (nth (N [[Nindex]]) i*))
else (Error 7→ Answer error) fi

NE [[(A NE1 NE2)]]
= (with-int (NE [[NE 1]] i*) (λi1 . (with-int (NE [[NE 2]] i*) (λi2 . (A[[A]] i1 i2)))))

A and N are unchanged from ELMM.

Figure 4.7: Denotational semantics for ELM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

120 CHAPTER 4. DENOTATIONAL SEMANTICS

P [[(elm 2 (+ (arg 2) (* (arg 1) 3)))]] [4, 5]

= if (length [4, 5]) = N [[2]]
then (NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5])
else (Error 7→ Answer error)

= (NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5])

= with-int (NE [[(arg 2)]] [4, 5])
(λi1 . with-int (NE [[(* (arg 1) 3)]] [4, 5])

(λi2 . (A[[+]] i1 i2)))

= with-int (with-int (NE [[(arg 1)]] [4, 5])
(λi3 . with-int (NE [[3]] [4, 5])

(λi4 . (A[[*]] i3 i4)))
(λi2 . (A[[+]] 5 i2))

= (with-int (A[[*]] 4 3) (λi2 . (A[[+]] 5 i2)))

= (A[[+]] 5 12)
(Int 7→ Answer 17)

Figure 4.8: Meaning of an ELM program applied to two arguments.

the two integer arguments in the case where the argument sequence i* has two
elements. We showed above that the result in this case is correct, and we know
that an error is returned for any other length.

4.2.4 Step 4: EL

Full EL (Figure 2.4) is obtained from ELM by adding a numerical if expres-
sion and boolean expressions for controlling these expressions. Boolean expres-
sions BE include the truth literals true and false, relational expressions like
(< NE1 NE2), and logical expressions like (and BE 1 BE2). Since boolean
expressions can include numerical expressions as subexpressions and such subex-
pressions can denote errors, boolean expressions can also denote errors (e.g.
(< 1 (/ 2 0))). In Figure 4.9, we model this by having the valuation func-
tion BE for boolean expressions return an element in the domain BoolAnswer
of “boolean answers” that is distinct from the domain Answer of “integer an-
swers”. Since a numerical subexpression of a relational expression could be an
arg expression, the meaning of a boolean expression is a function with signa-
ture Int* → BoolAnswer that maps implicit program arguments to a boolean
answer. The error handling for relational and logical operations is handled by
BE , so the R and L valuation functions manipulate only non-error values.

Note that the error-handling in BE [[(Rrator NE1 NE2)]] is performed by

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 121

Semantic Domains

i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Error = {error}
a ∈ Answer = Int + Error
ba ∈ BoolAnswer = Bool + Error

Valuation Functions

P : Program→ Int*→ Answer

The P clause is unchanged from ELM (except the keyword elm becomes el).

NE : NumExp→ Int*→ Answer

NE [[(if BE test NE then NE else)]]
=λi* . matching (BE[[BE test]] i*)

. (Bool 7→ BoolAnswer b) []
if b then NE [[NE then]] i* else NE [[NE else]] i* fi

. else (Error 7→ Answer error) endmatching

The other NE clauses are unchanged from ELM.

BE : BoolExp→ Int*→ BoolAnswer

BE [[true]] =λi* . (Bool 7→ BoolAnswer true)

BE [[false]] =λi* . (Bool 7→ BoolAnswer false)

BE [[(Rrator NE1 NE2)]]
=λi* . matching 〈NE [[NE 1]] i*,NE [[NE 2]] i*〉

. 〈(Int 7→ Answer i1), (Int 7→ Answer i2)〉 []
(Bool 7→ BoolAnswer (R[[R]] i1 i2))

. else (Error 7→ BoolAnswer error) endmatching

BE [[(Lrator BE 1 BE2)]]
=λi* . matching 〈BE [[BE 1]] i*,BE[[BE 2]] i*〉

. 〈(Bool 7→ BoolAnswer b1), (Bool 7→ BoolAnswer b2)〉 []
(Bool 7→ BoolAnswer (L[[L]] b1 b2))

. else (Error 7→ BoolAnswer error) endmatching

R : RelationalOperator→ (Int → Int → Bool)

R[[<]] =<Int

= and > are handled similarly.

L : LogicalOperator→ (Bool → Bool → Bool)

L[[and]] =λb1 b2 . (b1 and b2)
or is handled similarly.

A and N are unchanged from ELM.

Figure 4.9: Denotational semantics for EL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

122 CHAPTER 4. DENOTATIONAL SEMANTICS

pattern matching. Could it instead be done via with-int? No. The final return
value of with-int is in Answer, but the final return value of BE is in BoolAnswer.
However, we could define and use a new auxiliary function that is like with-int
but returns an element of BoolAnswer(see Exercise 4.3).

Something that stands out in our study of the denotational semantics of
the EL dialects is the importance of semantic domains and the signatures of
valuation functions. Studying these gives insight into the fundamental nature of
a language, even if the detailed valuation clause definitions are unavailable. For
example, consider the signature of the numerical expression valuation function
NE in the various dialects we studied. In ELMM without / and %, the signature

NE : NumExp→ Int

indicates that expressions simply stands for an integer. In full ELMM, the
“unwound” signature

NE : NumExp→ (Int + Error)

indicates that errors may be encountered in the evaluation of some expressions.
The ELM signature

NE : NumExp→ Int*→ (Int + Error)

has a context domain Int* representing program arguments that are passed
down the abstract syntax tree. We will see many kinds of contexts in our study
of other languages. Some, like ELM program arguments, only flow down to
subexpressions. We shall see later that other contexts can have more complex
flows, and that these flows are reflected in the valuation function signatures.

4.2.5 A Denotational Semantics is Not a Program

You may have noticed that the denotational definitions for the dialects of EL
strongly resemble programs in certain programming languages. In fact, it is
straightforward to write an executable EL interpreter that reflects the structure
of its valuation clauses, especially in functional programming languages like ML,
Haskell, and Scheme. Of course, an interpreter has to be explicit about many
of the details suppressed in the denotational definition (parsing the concrete
syntax, choosing appropriate data structures to represent domain elements, etc.).
Furthermore, details of the implementation language may complicate matters.
In particular, the correspondence will be much less direct if the implementation
programming language does not support first-class procedures.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.2. A DENOTATIONAL SEMANTICS FOR EL 123

Although a denotational definition often suggests an approach for implement-
ing an interpreter program, it can be misleading to think of the denotational
definition itself as a program. Programming language procedures typically im-
ply computation; denotational specifications do not. An interpreter specifies a
process for evaluating program phrases, often one with particular operational
properties. In contrast, there is no notion of process associated with a valuation
function: it is simply a declarative description for a mathematical function (i.e.,
a triple of a source, a target, and a graph).

For example, consider the following metalanguage expression, which might
arise in the context of reasoning about an ELMM program:

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (A[[-]] 3 3) (λi2 . (A[[*]] i1 i2)))) .

If we (incorrectly) view this as an expression in a programming language like ML
or Scheme, we might think that no evaluation can take place until an integer
is supplied for i0 , and, after that happens, the division must be performed
first, followed by the subtraction, and finally the multiplication. But there is no
inherent notion of evaluation order associated with the metalanguage expression.
We can perform any mathematical simplifications in any order on this expression.
For example, observing that (A[[-]] 3 3) has the same meaning as (N [[0]]) allows
us to rewrite the expression to

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (N [[0]]) (λi2 . (A[[*]] i1 i2)))) .

This is equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (A[[*]] i1 0)) ,

which is in turn equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (Int 7→ Answer 0)) ,

since the product of 0 and any integer is 0. A division result cannot be an error
when the second argument is non-zero, so this can be further simplified to:

λi0 . (Int 7→ Answer 0).

The moral of this example is that many simplifications can be done with meta-
language expressions that would be difficult to justify with expressions in most
programming languages.2

2Certain real-world programming languages, particularly the purely functional language
Haskell, were designed to support the kind of mathematical reasoning that can be done with
metalanguage expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

124 CHAPTER 4. DENOTATIONAL SEMANTICS

Despite the above warning, sometimes it is useful to think of denotational
descriptions as programs, if only for building intuitions about what they mean.
This situation is reminiscent of the dy/dx notation in calculus, which teachers
and textbooks commonly warn should never be viewed as a fraction. And yet,
viewing it as a fraction has many advantages for understanding its meaning as
well as for remembering formulae (the chain rule in particular). Similarly, view-
ing denotational definitions as programs can sometimes be helpful, especially for
a beginner. To avoid misleading processing intuitions from familiar program-
ming languages, you should view the lambda notation of the metalanguage as a
typed, curried, normal-order programming language.

¤ Exercise 4.1 We have treated integer numerals atomically, but we could express
them in terms of their component signs and digits via an s-expression grammar:

SN ∈ SignedNumeral
UN ∈ UnsignedNumeral

D ∈ Digit

SN ::= (+ UN) | (- UN) | UN

UN ::= D | (@ UN D)

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example, the numeral traditionally written as -273 would be written in s-expression

form as (- (@ (@ 2 7) 3)). Give a denotational semantics for numerals by providing

valuation functions for each of SignedNumeral, UnsignedNumeral, and Digit. ¢

¤ Exercise 4.2 Use the ELM semantics to determine the meaning of the following

ELM program: (elm 2 (/ (arg 1) (- (arg 1) (arg 2)))). ¢

¤ Exercise 4.3 o By analogy with the with-int auxiliary function in the ELM
semantics, define functions with the following signatures and use them to “hide” error-
handling in the EL valuation clauses for conditional expressions, relational operations,
and logical operations:

with-bool : BoolAnswer → (Bool → Answer) → Answer
with-intBA : Answer → (Int → BoolAnswer) → BoolAnswer
with-boolBA : BoolAnswer → (Bool → BoolAnswer) → BoolAnswer ¢

4.3 A Denotational Semantics for PostFix

We are now ready to flesh out the details of the denotational description of
PostFix that were sketched in Section 4.1. The abstract syntax for PostFix
was already provided in Figure 2.8, so the syntactic algebra is already taken
care of. We therefore need to construct the semantic algebra and the meaning
function.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 125

t ∈ StackTransform = Stack → Stack
s ∈ Stack = Value* + Error
v ∈ Value = Int + StackTransform
r ∈ Result = Value + Error
a ∈ Answer = Int + Error

Error = {error}
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Figure 4.10: Semantic domains for the PostFix denotational semantics.

4.3.1 A Semantic Algebra for PostFix

What kind of mathematical entities should we use to model PostFix programs?
Suppose that we have some sort of entity representing stacks. Then it’s natural
to model both PostFix commands and command sequences as functions that
transform one stack entity into another. For example, the swap command could
be modeled by a function that takes a stack as an argument, and returns a stack
in which the top two elements have been swapped.

We need to make some provision for the case where the stack contains an in-
sufficient number of elements or the wrong type of elements. For this purpose we
will assume that there is a distinguished stack, errorStack, that indicates that an
error has occurred. For example, calling the transform associated with the swap
command on a stack with fewer than two elements should return errorStack. All
transforms should return errorStack when given errorStack as an argument.

Figure 4.10 presents domain equations that describe one implementation of
this approach. The StackTransform domain consists of functions from stacks to
stacks, where an element of the domain Stack is either a sequence of values or
the distinguished error stack (here modeled by the single element of the unit
domain Error). The domain Value of stackable values includes not only integers
but also stack transforms, which model executable sequences that have been
pushed on the stack. The Result domain models intermediate results obtained
via stack manipulations or arithmetic operations. It includes an error result to
model situations like popping an empty stack and dividing by zero. The Answer
domain models the final outcome of a PostFix program. Like Result, Answer
includes an error answer, but its only non-error answers are integers (because
executable sequences at the top of a final stack cannot be observed and are
treated as errors).

A somewhat unsettling property of the domain equations in the figure is that
they are defined recursively — transforms operate on stacks, which themselves

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

126 CHAPTER 4. DENOTATIONAL SEMANTICS

may contain transforms. In Chapter 5 we will discuss how to understand a set
of recursively defined equations. For now, we’ll just assume that these equations
have a sensible interpretation.

We extend the semantic domains into a semantic algebra by defining a col-
lection of functions that manipulate the domains. Right now we’ll just specify
the interfaces to these functions. We’ll defer the details of their definitions un-
til after we’ve studied the meaning function. This will allow us to move more
quickly to the core of the denotational semantics — the meaning function —
without getting sidetracked by various issues concerning the definition of the
semantic functions.

Figure 4.11 gives informal specifications for the functions that we will use
to manipulate the semantic domains. We will defer studying the implemen-
tation of these functions until later. errorResult, errorAnswer, errorStack, and
errorTransform are just names for useful constants involving errors. push, pop,
and top are the usual stack operations. Their specifications are complicated
somewhat by the details of error handling. For example, top returns an element
of Result rather than just Value because it must return errorResult in the case
where the given stack is empty. push takes its argument from Result rather
than Value so that it can be composed with top. intAt is an auxiliary function
that simplifies the specification of nget. arithop simplifies the specifications for
arithmetic and relational commands; it serves to abstract over common behav-
ior (replacing the top two integers on the stack by some value that depends
on them) while suppressing error detail (return an error stack if any error is
encountered along the way). transform facilitates error handling when a result
that is expected to be a transform turns out to be an integer or an error result
instead. resToAns handles the conversion from results to answers.

The signatures of the functions, especially the stack functions, may seem
strange at first glance, because few of them explicitly refer to the Stack domain.
But recall that StackTransform is defined to be Stack → Stack , so that the
signature of push, for instance, is really

Result → (Stack → Stack) .

From this perspective, push probably seems more familiar: it is a function that
takes an result and stack (in curried form) and returns a stack. However, since
stack transforms are the key abstraction of this semantics, we have written the
signatures to emphasize this fact. Under this view, push is a function that takes
a result and returns a stack transform. Of course, in either case push is exactly
the same mathematical entity; the only difference is in how we think about it!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 127

• errorResult : Result
An error in the domain Result.

• errorAnswer : Answer
An error in the domain Answer.

• errorStack : Stack
The distinguished error stack.

• errorTransform : StackTransform
A transform that maps all stacks to errorStack.

• push : Result → StackTransform
Given the result value v, return a transform that pushes v on a stack; otherwise
return errorTransform.

• pop : StackTransform
For a nonempty stack s, return the stack resulting from popping the top value;
otherwise return errorStack.

• top : Stack → Result
Given a nonempty stack s, return result that is the top element of s; otherwise
return errorResult.

• intAt : Int → Stack → Result
Given an integer iindex and a stack whose iindex th element (starting from 1) is
the integer iresult , return iresult ; otherwise return errorResult.

• arithop : (Int → Int → Result)→ StackTransform
Let f : Int → Int → Result be the functional argument to arithop. Return a
transform with the following behavior: if the given stack has two integers i1
and i2 followed by srest , then return a stack whose top value vresult is followed
by srest , where (Value 7→ Result vresult) is the result of the application (f i2 i1).
If the given stack is not of this form or if the result of applying f is errorResult,
then return errorStack.

• transform : Result → StackTransform
Given a result that is a stack transform, return it; otherwise return
errorTransform.

• resToAns : Result → Answer
Given a result that is an integer, return it as an answer; otherwise return
errorAnswer.

Figure 4.11: Specifications for functions on PostFix semantic domains.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

128 CHAPTER 4. DENOTATIONAL SEMANTICS

P : Program→ Int*→ Answer
Q : Commands→ StackTransform
C : Command→ StackTransform
A : ArithmeticOperator→ (Int → Int → Result)
R : RelationalOperator→ (Int → Int → Bool)
N : Intlit→ Int

Figure 4.12: Signatures of the PostFix valuation functions.

4.3.2 A Meaning Function for PostFix

Now we’re ready to study the meaning function for PostFix. As in EL, we
specify the meaning function by a collection of valuation functions, one for each
syntactic domain defined by the abstract syntax for the language.

As we learned in studying the denotational semantics of EL, the signatures
of valuation functions contain valuable information about the meaning of the
language. It is always prudent to study the signatures before delving into the
details of the definitions for the valuation functions.

The signatures for the PostFix valuation functions appear in Figure 4.12.
In the case of PostFix, one of the things the signatures say is that a PostFix
program is like an EL program: it takes a sequence of integers as arguments and
either returns an integer or signals an error. If the signature of P were instead

P : Program→ Int*→ Result,

it would indicate that some PostFix programs could return a stack transform
(i.e., an executable sequence) instead of an integer. If the signature were one of

P : Program→ Int*→ Int or P : Program→ Int*→ Value,

it would tell use that errors could not be signaled by a PostFix program.
The signatures also tell us that both commands and command sequences map

to stack transforms. Since stack transforms are easily composable, this suggests
that the meaning of a command sequence will be some sort of composition of
the meanings of its component commands. This turns out to be the case. The
return type of A matches the argument type of arithop, one of the auxiliary
functions specified in Figure 4.11. This is more than coincidence; the auxiliary
functions and valuation functions were designed to dovetail in a nice way.

Now we’re ready to study the definitions of the PostFix valuation functions,
which appear in Figure 4.13. The meaning of a program (postfix Nnumargs Q)

is a function that transforms an initial stack consisting of the integers in the ar-
gument sequence i* via the transform Q[[Q]] and returns the top integer of the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 129

P [[(postfix Nnumargs Q)]]
=λi* . if (length i*) =N [[Nnumargs]]

then (resToAns (top (Q[[Q]] (Value* 7→ Stack (map Int 7→ Value i*)))))
else errorAnswer fi

Q[[C . Q]] =Q[[Q]] ◦ C[[C]]
Q[[]] =λs . s

C[[N]] = (push (Value 7→ Result (Int 7→ Value (N [[N]]))))
C[[(Q)]] = (push (Value 7→ Result (StackTransform 7→ Value Q[[Q]])))
C[[pop]] = pop

C[[swap]] =λs . (push (top (pop s)) (push (top s) (pop (pop s))))

C[[nget]] =λs . matching (top s)
. (Value 7→ Result (Int 7→ Value i)) [] (push (intAt i (pop s)) (pop s))
. else errorStack endmatching

C[[sel]] =λs . matching (top (pop (pop s)))
. (Value 7→ Result (Int 7→ Value i)) []
(push (if (i =Int 0) then (top s) else (top (pop s)) fi)

(pop (pop (pop s))))
. else errorStack endmatching

C[[exec]] =λs . (transform (top s) (pop s))

C[[A]] = (arithop A[[A]])
C[[R]] = (arithop (λi1 i2 . (Value 7→Result

(Int 7→ Value (if (R[[R]] i1 i2) then 1 else 0 fi)))))

A[[sub]] =λi1 i2 . (Value 7→ Result (Int 7→ Value (i1 −Int i2)))
Similarly for add, mul

A[[div]] =λi1 i2 . if (i2 =Int 0) then errorResult
else (Value 7→ Result (Int 7→ Value (i1 /Int i2))) fi

R[[lt]] = <Int

Similarly for eq and gt

N maps integer numerals to the integer numbers they denote.

Figure 4.13: Valuation functions for PostFix.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

130 CHAPTER 4. DENOTATIONAL SEMANTICS

resulting stack. The definitions of resToAns and top guarantee that an error
answer is returned when the stack is empty or does not have an integer as its
top element. An error is also signaled when the number of arguments does not
match the expected number Nnumargs .

The meaning of a command sequence is the composition of the transforms
of its component commands. The order of the composition

Q[[Q]] ◦ C[[C]] = λs . (Q[[Q]] (C[[C]] s))

is crucial, because it guarantees that the stack manipulations of the first com-
mand can be observed by the subsequent commands. Reversing the order of the
composition would have the effect of executing commands in a right-to-left order
instead. The stack transform associated with the empty command sequence is
the identity function on stacks.

Most of the clauses for the command valuation function C are straightfor-
ward. The integers and transforms corresponding to numerals and executable
sequences are simply pushed onto the stack after appropriate injections into the
Value and Result domains.3 The transform associated with the pop command
is simply the pop auxiliary function, while the transform associated with swap

is expressed as a composition of push, top, and pop. If the top stack element is
an integer i, the nget transform replaces it by the ith element from the rest of
the stack if that element is an integer; in all other cases, nget returns an error
stack. The sel transform selects one of the top two stack elements based on the
numeric value of the third stack element; an error is signaled if the third element
is not an integer. In the exec transform, the top stack element is expected to be
a stack transform t representing an executable sequence. Applying t to the rest
of the stack yields the stack resulting from executing the executable sequence. If
the top stack element is not a stack transform, an error is signaled. The meaning
of arithmetic and relational commands is determined by arithop in conjunction
with A and R, valuation functions that map operator symbols like add and lt

to the expected functions and predicates. A treats div specially so that division
by 0 signals an error.

Before we move on, a few notes about reading the PostFix denotational
definitions are in order. Valuation functions tend to be remarkably elegant and
concise. But this does not mean that they are always easy to read! To the
contrary, the density of information in a denotational definition often demands

3Whereas the operational semantics used a stack with syntactic values — integer numerals
and command sequences — the denotational semantics uses a stack of semantic values —
integers and stack transforms. This is because the valuation functions N and Q are readily
available for translating the syntactic elements to the semantic ones. Here and elsewhere, we
will follow the convention of using explicit injections in denotational descriptions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 131

meticulous attention from the reader. The ability to read semantic functions
and valuation functions is a skill that requires patient practice to acquire. At
first, unraveling such a definition may seem like solving a puzzle or doing de-
tective work. However, the time invested in reading definitions of this sort pays
off handsomely in terms of deep insights into the meanings of programming
languages.

The conciseness of a denotational definition is due in large part to the lib-
eral use of higher-order functions, i.e., functions that take other functions as
arguments or return them as results. arithop is an excellent example of such a
function: it takes an argument in the function domain Int → Int → Result,
and returns a stack transform, which itself is an element of the function domain
Stack → Stack.

Definitions involving higher-order functions can be rather daunting to read
until you acquire a knack for them. A typical problem is to think that pieces are
missing. For example, a common reaction to the valuation clause for numerals,

C[[N]] = (push (Value 7→ Result (Int 7→ Value (N [[N]])))) ,

is that a stack is somehow missing. After all, the value has to be pushed onto
something — where is it? Carefully considering types, however, will show that
nothing is missing. Recall that the signature of push is Result → StackTrans-
form. Since

(Value 7→ Result (Int 7→ Value N [[N]]))

is clearly an element of Result, the result of the push application is a stack trans-
form. Since C is supposed to map commands to stack transforms, the definition
is well-typed. It’s possible to introduce an explicit stack in this valuation clause
by wrapping the right hand side in a λ of a stack argument:

C[[N]] = λs . (push (Value 7→ Result (Int 7→ Value N [[N]])) s) .

This form of the definition probably seems much more familiar, because it’s
more apparent that the meaning of the command is a function that takes a
stack and returns a stack, and push is actually given a stack on which to push
its value. But the two definitions are equivalent. In order to stress the power
of higher-order functions, we will continue to use the more concise versions. We
encourage you to type check the definitions and expand them with extra λs as
ways of improving your skill at reading them.

Figure 4.14 illustrates using the PostFix denotational semantics to deter-
mine the result of applying the program (postfix 2 3 sub swap pop) to the
argument integers [7, 8]. To make the figure more concise, we use the shorthand

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

132 CHAPTER 4. DENOTATIONAL SEMANTICS

Note: n̂ is a shorthand for (Int 7→ Value n)

P [[(postfix 2 3 sub swap pop)]] [7, 8]

= if (length [7, 8]) = N [[2]]
then resToAns

(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

else errorAnswer fi

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
((Q[[sub swap pop]]) ◦ (C[[3]])) (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
Q[[sub swap pop]]

(
C[[3]] (Value* 7→ Stack [7̂, 8̂])

)))

= resToAns (top ((Q[[sub swap pop]]) (push (Value 7→ Result 3̂)

(Value* 7→ Stack [7̂, 8̂]))))

= resToAns
(
top

(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
((Q[[swap pop]]) ◦ (C[[sub]])) (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
Q[[swap pop]]

(
C[[sub]] (Value* 7→ Stack [3̂, 7̂, 8̂])

)))

= resToAns
(
top

(
Q[[swap pop]]

(
arithop (A[[sub]]) (Value* 7→ Stack [3̂, 7̂, 8̂])

)))

= resToAns (top (Q[[swap pop]] (push (Value 7→ Result ̂(7−Int 3))

(Value* 7→ Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
((Q[[pop]]) ◦ (C[[swap]])) (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]]

(
C[[swap]] (Value* 7→ Stack [4̂, 8̂])

)))

= resToAns (top (Q[[pop]] (push
(
top

(
pop (Value* 7→ Stack [4̂, 8̂])

))

(push
(
top (Value* 7→ Stack [4̂, 8̂])

)

(
pop

(
pop (Value* 7→ Stack [4̂, 8̂])

))
))))

= resToAns (top (Q[[pop]] (push
(
top (Value* 7→ Stack [8̂])

)

(push (Value 7→ Result 4̂)
(Value* 7→ Stack [])))))

= resToAns
(
top

(
Q[[pop]]

(
push (Value 7→ Result 8̂) (Value* 7→ Stack [4̂])

)))

= resToAns
(
top

(
Q[[pop]] (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
((Q[[]]) ◦ (C[[pop]])) (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
Q[[]]

(
C[[pop]] (Value* 7→ Stack [8̂, 4̂])

)))

= resToAns
(
top

(
(λs . s) (Value* 7→ Stack [4̂])

))

= resToAns
(
top (Value* 7→ Stack [4̂])

)

= resToAns (Value 7→ Result 4̂)

= (Int 7→ Answer 4)

Figure 4.14: Equational proof that applying the PostFix program (postfix 2

3 sub swap pop) to the arguments [7, 8] yields the answer 4.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 133

n̂ to stand for (Int 7→ Value n). Each line of the equational proof is justified by
simple mathematical reasoning. For example, the equality

resToAns
(
top

(
((Q[[pop]]) ◦ (C[[swap]])) (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]]

(
C[[swap]] (Value* 7→ Stack [4̂, 8̂])

)))

is justified by the definition of function composition, while the equality

resToAns (top (Q[[swap pop]] (push (Value 7→ Result ̂(7−Int 3))

(Value* 7→ Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

is justified by the definition of −Int and the specification for the push function.
The proof shows that the result of the program execution is the integer 4.

Just as programs can be simplified by introducing procedural abstractions,
equational proofs can often be simplified by structuring themmore hierarchically.
In the case of proofs, the analog of a programming language procedure is a
theorem. For example, it’s not difficult to prove a theorem stating that for any
numeral N, any command sequence Q, and any stack s, the following equality
is valid:

(Q[[N . Q]] (Value* 7→ Stack v*))
= (Q[[Q]] (Value* 7→ Stack ((Int 7→ Value N [[N]]) . v*))).

This theorem is analogous to the operational rewrite rule for handling integer
numeral commands. It can be used to justify equalities like

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

)

=
(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

)

A few such theorems can greatly reduce the length of the sample proof. In fact,
if we prove other theorems analogous to the operational rules, we can obtain a
proof whose structure closely corresponds to the configuration sequence for an
operational execution of the program (see Figure 4.15).

Figure 4.16 shows how the equational proof in Figure 4.15 can be generalized
two handle two arbitrary integer arguments. Based on this result, we conclude
that the meaning of the PostFix program (postfix 2 3 sub swap pop) is:

P [[(postfix 2 3 sub swap pop)]]
= λi* . matching i*

. [i1 , i2] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

134 CHAPTER 4. DENOTATIONAL SEMANTICS

P [[(postfix 2 3 sub swap pop)]] [7, 8]

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value* 7→ Stack [7̂, 8̂])

))

= resToAns
(
top

(
Q[[sub swap pop]] (Value* 7→ Stack [3̂, 7̂, 8̂])

))

= resToAns
(
top

(
Q[[swap pop]] (Value* 7→ Stack [4̂, 8̂])

))

= resToAns
(
top

(
Q[[pop]] (Value* 7→ Stack [8̂, 4̂])

))

= resToAns
(
top

(
Q[[]] (Value* 7→ Stack [4̂])

))

= resToAns
(
top (Value* 7→ Stack [4̂])

)

= resToAns (Value 7→ Result 4̂)

= (Int 7→ Answer 4)

Figure 4.15: Alternative equational proof with an operational flavor.

P [[(postfix 2 3 sub swap pop)]] [i1 , i2]

= resToAns
(

top
(

Q[[3 sub swap pop]] (Value* 7→ Stack [î1 , î2])
))

= resToAns
(

top
(

Q[[sub swap pop]] (Value* 7→ Stack [3̂, î1 , î2])
))

= resToAns
(

top
(

Q[[swap pop]] (Value* 7→ Stack [̂(i1 −Int 3), î2])
))

= resToAns
(

top
(

Q[[pop]] (Value* 7→ Stack [î2 , ̂(i1 −Int 3)])
))

= resToAns
(

top
(

Q[[]] (Value* 7→ Stack [̂(i1 −Int 3)])
))

= resToAns
(

top (Value* 7→ Stack [̂(i1 −Int 3)])
)

= resToAns (Value 7→ Result ̂(i1 −Int 3))
= (Int 7→ Answer (i1 −Int 3))

Figure 4.16: Version of equational proof for two arbitrary integer arguments.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 135

¤ Exercise 4.4 Use the PostFix denotational semantics to determine the values of

the PostFix programs in Exercise 1.1. ¢

¤ Exercise 4.5 Modify the PostFix denotational semantics to handle PostFix2.

Include valuation functions for :, (skip), and (exec). ¢

¤ Exercise 4.6 For each of the following, modify the PostFix denotational semantics
to handle the specified extensions:

a. The pair, left, and right commands from Exercise 3.36.

b. The for and repeat commands from Exercise 3.39.

c. The I, def, and get commands from Exercise 3.43. ¢

4.3.3 Semantic Functions for PostFix: the Details

Now that we’ve studied the core of the PostFix semantics, we’ll flesh out the
details of the functions specified in Figure 4.11. Figure 4.17 presents one imple-
mentation of the specifications. As an exercise, you should make sure that these
definitions type check, and that they satisfy the specifications in Figure 4.11.

Notice that several functions in Figure 4.17 describe similar manipulations.
push, pop, and arithop all check to see if their input stack is an error stack. If so,
they return errorStack; if not, they perform some manipulation on the sequence
of values in the stack. We can abstract over these similarities by introducing
three abstractions (Figure 4.18) similar to the with-int error hiding function
defined in the EL denotational semantics:

• with-stack-values takes a function f from value sequences to stacks and
returns a stack transform that (1) maps a non-error stack to the result of
applying f to the value sequence in the stack, and (2) maps an error stack
to an error stack.

• with-val&stack takes a function f from a value to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of the value v followed by vrest* to the result of applying f to v
and the stack whose values are vrest*, and (2) maps any stack not of this
form to the error stack.

• with-int&stack takes a function f from an integer to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence
consists of an integer i followed by vrest* to the result of applying f to v

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

136 CHAPTER 4. DENOTATIONAL SEMANTICS

empty-stack : Stack =(Value* 7→ Stack []Value)
errorStack : Stack =(Error 7→ Stack error)
errorTransform : StackTransform =λs . errorStack
errorResult : Result =(Error 7→ Result error)
errorAnswer : Answer =(Error 7→ Answer error)

push : Result → StackTransform
=λrs . matching 〈r, s〉

. 〈(Value 7→ Result v), (Value* 7→ Stack v*)〉 [] (v . v*)

. (Error 7→ Result error) [] errorStack endmatching

pop : StackTransform
=λs . matching s

. (Value* 7→ Stack (vhead . vtail*)) [] (Value* 7→ Stack vtail*)

. else errorStack endmatching

top : Stack → Result
=λs . matching s

. (Value* 7→ Stack (vhead . vtail*)) [] (Value 7→ Result vhead)

. else errorResult endmatching

intAt : Int → Stack → Result
=λis . matching s

. (Value* 7→ Stack v*) []
if (1≤Int iindex) and (iindex ≤Int (length v*))
then matching (nth i v*)

. (Int 7→ Value iresult) [] (Value 7→ Result (Int 7→ Value iresult))

. else errorResult
else errorResult fi

. else errorResult endmatching

arithop : (Int → Int → Result)→ StackTransform
=λf s . matching s

. (Value* 7→ Stack ((Int 7→ Value i1) . (Int 7→ Value i2) . vrest*)) []
(push (f i2 i1) vrest*)

. else errorStack endmatching

transform : Result → StackTransform
=λr . matching r

. (Value 7→ Result (StackTransform 7→ Value t)) [] t

. else errorTransform endmatching

resToAns : Result → Answer
=λr . matching r

. (Value 7→ Result (Int 7→ Value i)) [] (Int 7→ Answer i)

. else errorAnswer endmatching

Figure 4.17: Functions manipulating the semantic domains for PostFix.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.3. A DENOTATIONAL SEMANTICS FOR POSTFIX 137

with-stack-values : (Value*→ Stack)→ StackTransform
=λf s . matching s

. (Value* 7→ Stack v*) [] (f v*)

. else errorStack endmatching

with-val&stack : (Value → StackTransform)→ StackTransform
=λf . (with-stack-values

(λv* . matching v*
. v1 . vrest* [] (f v1 (Value* 7→ Stack vrest*))
. else errorStack endmatching))

with-int&stack : (Int → StackTransform)→ StackTransform
=λf . (with-val&stack

(λv . matching v
. (Int 7→ Value i) [] (f i)
. else errorTransform endmatching))

push : Result → StackTransform
=λr . matching r

. (Value 7→ Result v) [] (with-stack-values (λv* . (Value* 7→ Stack (v . v*))))

. else errorTransform
endmatching

pop : StackTransform = with-val&stack (λvhdstl . stl)

arithop : (Int → Int → Result)→ StackTransform
=λf . (with-int&stack (λi1 . (with-int&stack (λi2 . (push (f i2 i1))))))

Figure 4.18: The auxiliary functions with-stack-values, with-val&stack, and
with-integer&stack simplify some of the semantic functions for PostFix. (Only
the modified functions are shown.)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

138 CHAPTER 4. DENOTATIONAL SEMANTICS

and the stack whose values are vrest*, and (2) maps any stack not of this
form to the error stack.

The purpose of these new functions is to hide the details of error handling in
order to highlight more important manipulations. As shown in Figure 4.18,
rewriting push in terms of with-stack-values removes an error check from the
definition. Using with-val&stack and with-int&stack greatly simplify pop and
arithop; the updated versions concisely capture the essence of these functions
without the distraction of case analyses and error checks.

As with the valuation functions, these highly condensed semantic functions
can be challenging for the uninitiated to read. The fact that push, pop, and
arithop are ultimately manipulating a stack is even harder to see in the new
versions than it was in the original ones. As suggested before, reasoning about
types and inserting extra λs can help. For example, since the result of a call to
with-int&stack is a stack transform t, and t is equivalent to λs . (t s), the new
version of arithop can be rewritten as:

λf s0 . ((with-int&stack
(λi1 s1 . ((with-int&stack

(λi2 s2 . (push (f i2 i1) s2)))
s1)))

s0).

At least in this form it’s easier to see that there are stacks from which each
occurrence of with-int&stack can extract an integer and substack.

Even more important is recognizing the pattern

((with-int&stack (λisrest . E)) s)

as a construct that binds names to values. This pattern can be pronounced as:

“Let i be the top value of s and srest be all but the top value of s in
the expression E. Return the value of E, except when s is empty or
its top value isn’t an integer, in which cases the error stack should
be returned instead.”

Some of the PostFix valuation functions can be re-expressed using the
error hiding functions directly. For example, the valuation clause for swap can
be written as:

C[[swap]] =with-val&stack (λv1 . (with-val&stack (λv2 . (push v2) ◦ (push v1))))

You should convince yourself that this has the same meaning as the version
written using push, top, and pop.

¤ Exercise 4.7

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 139

a. By analogy with with-int&stack, define a function with-trans&stack whose sig-
nature is (StackTransform → StackTransform) → StackTransform.

b. Rewrite the valuation clauses for the commands nget, sel, and exec using
with-val&stack, with-int&stack, and with-trans&stack to eliminate all occur-
rences of top, pop, transform, and matching. ¢

4.4 Denotational Reasoning

The denotational definitions of EL and PostFix presented in the previous sec-
tion are mathematically elegant, but how useful are they? We have already
shown how they can be used to determine the meanings of particular programs.
In this section we show how denotational semantics helps us to reason about pro-
gram equality and safe program transformations. The compositional structure
of the denotational semantics makes it more amenable to proving certain prop-
erties than the operational semantics. We also study the relationship between
operational semantics and denotational semantics.

4.4.1 Program Equality

Above, we studied the PostFix program (postfix 2 3 sub swap pop), which
takes two integer arguments and returns three less than the first argument:

P [[(postfix 2 3 sub swap pop)]]
= λi* . matching i*

. [i1 , i2] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

Intuitively, the purpose of the swap pop is to get rid of the second argument,
which is ignored by the program. But in a PostFix program, only the integer at
the top of the final stack can be observed and any other stack values are ignored.
So we should be able to remove the swap pop from the program without changing
its behavior.

We can formalize this reasoning using denotational semantics. Figure 4.19
shows a derivation of the meaning of the program (postfix 2 3 sub) when
it is applied to two arguments. From this, we deduce that the meaning of
(postfix 2 3 sub) is:

P [[(postfix 2 3 sub)]]
= λi* . matching i*

. [i1 , i2] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

140 CHAPTER 4. DENOTATIONAL SEMANTICS

P [[(postfix 2 3 sub)]] [i1 , i2]

= resToAns
(

top
(

Q[[3 sub]] (Value* 7→ Stack [î1 , î2])
))

= resToAns
(

top
(

Q[[sub]] (Value* 7→ Stack [3̂, î1 , î2])
))

= resToAns
(

top
(

Q[[]] (Value* 7→ Stack [̂(i1 −Int 3), î2])
))

= resToAns

(

top (Value* 7→ Stack [̂(i1 −Int 3) , î2])
)

= resToAns (Value 7→ Result ̂(i1 −Int 3))
= (Int 7→ Answer (i1 −Int 3))

Figure 4.19: The meaning of (postfix 2 3 sub) on two arguments.

Since (postfix 2 3 sub) and (postfix 2 3 sub swap pop) have exactly the
same meaning, they cannot be distinguished as programs.

Denotational semantics can also be used to show that programs from different
languages have the same meaning. For example, it is not hard to show that the
meaning of the EL program (el 2 (- (arg 1) 3)) is:

P [[(el 2 (- (arg 1) 3)]]
= λi* . matching i*

. [i1 , i2] [] (Int 7→ Answer (i1 −Int 3))

. else errorAnswer endmatching .

If you review the semantic domains for EL and PostFix, you will see that
the Answer domain is the same for both languages. So the above fact means
that this EL program is interchangeable with the two PostFix programs whose
meanings are given above.

4.4.2 Safe Transformations: A Denotational Approach

Because denotational semantics is compositional, it is a natural tool for proving
that it is safe to replace one phrase by another. Recall the following three facts
from the operational semantics of PostFix:

1. Two PostFix command sequences are observationally equivalent if they
behave indistinguishably in all program contexts.

2. Two PostFix command sequences are transform equivalent if they map
equivalent stacks to equivalent stacks.

3. Transform equivalence implies observational equivalence.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 141

Since the PostFix denotational semantics models command sequences as stack
transforms, the denotational equivalence of PostFix command sequences cor-
responds to transform equivalence in the observational framework. So we expect
the following theorem:

PostFix Denotational Equivalence Theorem:
Q[[Q1]] =Q[[Q2]] implies Q1 =obs Q2 .

This theorem is a consequence of a so-called adequacy property of PostFix,
which we will study later in Section 4.4.4.2.

We can use this theorem to help us prove the behavioral equivalence of two
command sequences. For instance, consider the pair of command sequences
[1, add, 2, add] and [3, add]. Figure 4.20 shows that these are denotationally
equivalent, so, by the above theorem, they must be observationally equivalent.
The equational reasoning in Figure 4.20 uses the following three equalities, whose
proofs are left as exercises:

(Q[[C1 C2 . . .Cn]]) = (C[[Cn]]) ◦ . . . ◦ (C[[C2]]) ◦ (C[[C1]]) (4.1)

(with-int&stack f) ◦ (push (Value 7→ Result (Int 7→ Value i))) = (f i) (4.2)

t ◦ (with-int&stack f) = (with-int&stack (λi . (t ◦ (f i)))) (4.3)
where t maps errorStack to errorStack

It is worth noting that the denotational proof that [1, add, 2, add] =obs [3, add]
has a very different flavor than the operational proof of this fact given in Sec-
tion 3.4.4. The operational proof worked by case analysis on the initial stack.
The denotational proof in Figure 4.20 works purely by equational reasoning —
there is no hint of case analysis here. This is because the all the case analyses
are hidden within the carefully chosen abstractions with-int&stack and push and
equalities (4.1)–(4.3). The case analyses would become apparent if these were
expanded to show explicit matching expressions.

Denotational justifications for the safety of transformations are not limited
to PostFix. For example, Figure 4.21 shows that EL numerical expressions
(+ NE NE) and (* 2 NE) have the same meaning. So one can safely be
substituted for the other in any EL program without changing the meaning of
the program.

¤ Exercise 4.8

a. Prove equalities (4.1)–(4.3).

b. Equality (4.3) requires that t maps errorStack to errorStack. Show that the
equality is not true if this requirement is violated. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

142 CHAPTER 4. DENOTATIONAL SEMANTICS

(Q[[1 add 2 add]])

= (C[[add]]) ◦ (C[[2]]) ◦ (C[[add]]) ◦ (C[[1]]) , by (4.1)
= (with-int&stack

(λi1
′ . (with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + i1
′))))))))

◦ (push (Value 7→ Result (Int 7→ Value (N [[2]]))))
◦ (with-int&stack

(λi1 . (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + i1))))))))

◦ (push (Value 7→ Result (Int 7→ Value (N [[1]])))) , by definition of C
=(with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + 2))))))
◦ (with-int&stack

(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + 1)))))) , by (4.2)

= (with-int&stack
(λi2 . (with-int&stack

(λi2
′ . (push (Value 7→ Result (Int 7→ Value (i2

′ + 2))))))
◦ (push (Value 7→ Result (Int 7→ Value (i2 + 1)))))), by (4.3)

= (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value ((i2 + 1) + 2)))))) , by (4.2)

= (with-int&stack
(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + 3)))))) , by definition of +Int

=(with-int&stack
(λi3 . (with-int&stack

(λi2 . (push (Value 7→ Result (Int 7→ Value (i2 + i3))))))))
◦ (push (Value 7→ Result (Int 7→ Value (N [[3]])))) , by (4.2)

= (C[[add]]) ◦ (C[[3]]) , by definition of C
=(Q[[3 add]]) , by (4.1)

Figure 4.20: Proof that [1, add, 2, add] and [3, add] are denotationally equivalent.
This implies that the two sequences are observationally equivalent.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 143

NE [[(+ NE NE)]]

=λi* . with-int (NE [[NE]] i*) (λi1 . with-int (NE [[NE]] i*) (λi2 . (A[[+]] i1 i2)))

=λi* . with-int (NE [[NE]] i*) (i2 +Int i2)
=λi* . with-int (NE [[NE]] i*) (2×Int i2)

=λi* . with-int (NE [[NE]] i*) (λi2 . (A[[+]] i2 i2))

=λi* . with-int (NE [[NE]] i*) (λi2 . (A[[*]] 2 i2))

=λi* . with-int (NE [[2]] i*) (λi1 . with-int (NE [[NE]] i*) (λi2 . (A[[*]] i1 i2)))

= NE [[(* 2 NE)]]

Figure 4.21: Denotational proof that (+ NE NE) may safely be replaced by
(* 2 NE) in EL.

¤ Exercise 4.9

a. We have seen that (postfix 2 3 sub swap pop) and (postfix 2 3 sub) are
equivalent programs. But in general it is not safe to replace the command se-
quence 3 sub swap pop by 3 sub. Give a context in which this replacement
would change the meaning of a program.

b. Use denotational reasoning to show that it is safe to replace any of the following
command sequences by 3 sub swap pop:

i. swap pop 3 sub

ii. (3 sub) swap pop exec

iii. 3 2 nget swap sub swap pop swap pop ¢

¤ Exercise 4.10 Use the PostFix denotational semantics to either prove or disprove

the purported observational equivalences in Exercise 3.28. ¢

¤ Exercise 4.11 Use the EL denotational semantics to either prove or disprove the

safety of the EL transformations in Exercise 3.32. ¢

4.4.3 Technical Difficulties

The denotational definition of PostFix depends crucially on some subtle details.
As a hint of the subtlety, consider what happens to our denotational definition
if we extend PostFix with our old friend dup. A valuation clause for dup seems
straightforward:

C[[dup]] = λs . (push (top s) s) .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

144 CHAPTER 4. DENOTATIONAL SEMANTICS

At the same time we know that adding dup to the language introduces the
possibility that programs may not terminate. Yet, the signature for P declares
that programs map to the Answer domain, and the Answer domain does not
include any entity that represents nontermination. What’s going on here?

The source of the problem is the recursive structure of the semantic domains
for PostFix. As the domain equations show, the StackTransform, Stack, and
Value domains are mutually recursive:

StackTransform = Stack → Stack
Stack = Value* + Error
Value = Int + StackTransform

It turns out that solving such recursive domain equations sometimes requires
extending some domains with an element that models nontermination, written
⊥ and pronounced “bottom.” We will study this element in more detail in the
next chapter, where it plays a prominent role. In the case of PostFix, it turns
out that both the Stack and Answer domains must include ⊥, and this is able
to model the meaning of non-terminating command sequences.

4.4.4 Relating Operational and Denotational Semantics

We have presented the operational and denotational semantics of several simple
languages, but have not studied the connection between them. What is the
relationship between these two forms of semantics? How can we be sure that
reasoning done with one form of semantics is valid in the other?

4.4.4.1 Soundness

Assume that an operational semantics has a deterministic behavior function of
the form

behdet : (Program× Inputs)→ Outcome

and that the related denotational semantics has a meaning function

meaning : (Program× Args)→ Answer ,

where Args is a domain of program arguments and Answer is the domain of
final answers. Also suppose that there is a function in that maps between the
syntactic and semantic input domains and a function out that maps between
the syntactic and semantic output domains:

in : Inputs→ Args
out : Outcome→ Answer .

Then we define the following notion of soundness:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 145

I ∈ Inputs = Intlit*
o ∈ Outcome = Intlit + StuckOut

StuckOut = {stuckout}
ar ∈ Args = Int*
a ∈ Answer = Int + Error

Error = {error}

in : Inputs→ Args
in = λN* . (map N N*)

out : Outcome→ Answer
out = λo . matching o

. (Intlit 7→ Outcome N) [] (Int 7→ Answer (N [[N]]))

. else (Error 7→ Answer error) endmatching

behdet : (Program× Inputs)→ Outcome
behdetEL is defined in Exercise 3.10
and behdetPostFix is defined in Section 3.2.2.

meaning : (Program×Args)→ Answer
meaningEL = λ〈P, ar 〉 . (PEL[[P]] ar) , where PEL is defined in Section 4.2.4.
meaningPostFix = λ〈P, ar 〉 . (PPostFix [[P]] ar),
where PPostFix is defined in Section 4.3.2.

Figure 4.22: Instantiation of soundness components for EL and PostFix.

Denotational Soundness: A denotational semantics is sound
with respect to (wrt) an operational semantics if for all programs
P and inputs I,

meaning 〈P, (in I)〉 = (out (behdet 〈P,I〉)) .

This definition says that the denotational semantics agrees with the operational
semantics on the result of executing a program on any given inputs. Figure 4.22
shows how the parts of the soundness definition can be instantiated for EL and
PostFix.

We will now sketch a proof that the denotational semantics for PostFix is
sound wrt the operational semantics for PostFix. The details of this proof,
and a denotational soundness proof for EL, are left as exercises. The essence
of the denotational soundness proof for PostFix is to define the meaning of
an operational configuration, and show that each step in the PostFix SOS
preserves this meaning. Recall that a configuration in the PostFix SOS has
the form Commands × Stack, where

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

146 CHAPTER 4. DENOTATIONAL SEMANTICS

V : Value→ Value
‘ = λV . matching V

. (Intlit 7→ Value N) [] (Int 7→ Value (N [[N]]))

. (Commands 7→ Value Q) [] (StackTransform 7→ Value (Q[[Q]]))
endmatching

S : Stack→ Stack = λV* . (Value* 7→ Stack (map V V*))

CF : Commands× Stack→ Answer = λ〈Q,S〉 . resToAns (top (Q[[Q]] (S [[S]])))

Figure 4.23: Meaning of a PostFix configuration.

S ∈ Stack = Value*
V ∈ Value = Intlit + Commands

Figure 4.23 defines a function CF that maps an operational configuration to an
element of Answer. We establish the following lemmas:

1. For any PostFix program P = (postfix Nnumargs Q) and numerals N*,

(P [[P]] (in N*)) = CF [[(IF 〈P,N*〉)]],

where IF is the input function defined in Figure 3.3 that maps a PostFix
program and inputs into an initial SOS configuration. There are two cases:

(a) WhenN [[Nnumargs]] = (length N*), both the left and right hand sides
of the equation denote

resToAns (top (Q[[Q]] (Value* 7→ Stack (map (Int 7→ Value ◦ N) N*)))) .

(b) When N [[Nnumargs]] 6= (length N*), the left hand side of the equation
denotes errorAnswer and the right hand side denotes

CF [[(IF 〈P,N*〉)]]
= CF [[〈[]Commands, []Stack〉]]
= resToAns (top (Q[[[]Commands]] (Value* 7→ Stack []Stack)))

= resToAns (top (Value* 7→ Stack []Stack))

= errorAnswer.

2. For any transition cf ⇒ cf ′, CF [[cf]] = CF [[cf ′]]. This can be shown by
demonstrating this equality for each of the PostFix transition rules in
Figure 3.4. For example, one such rule is:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 147

〈exec . Qrest , (Qexec) . S〉⇒ 〈Qexec @ Qrest , S〉 [execute]

For this rule we have

CF [[〈exec . Qrest , (Qexec) . S〉]]
= resToAns (top (Q[[exec . Qrest]] (Value* 7→ Stack (V[[(Qexec)]] . v*)))),

where v* = (map V S)

= resToAns
(top (Q[[Qrest]] (C[[exec]] (Value* 7→ Stack (V[[(Qexec)]] . v*)))))

= resToAns
(top (Q[[Qrest]]

(transform (top (Value* 7→ Stack (V [[(Qexec)]] . v*)))
(pop (Value* 7→ Stack (V[[(Qexec)]] . v*))))))

= resToAns
(top (Q[[Qrest]]

(transform (Value 7→ Result (StackTransform 7→ Value (Q[[Qexec]])))
(Value* 7→ Stack v*))))

= resToAns (top (Q[[Qrest]] (Q[[Qexec]] (Value* 7→ Stack v*))))

= resToAns (top ((Q[[Qrest]] ◦ Q[[Qexec]]) (Value* 7→ Stack v*)))

= resToAns (top (Q[[Qrest @ Qexec]] (Value* 7→ Stack (map V S))))

= CF [[〈Qexec @ Qrest , S〉]].

3. For any stuck configuration cf, CF [[cf]] = errorAnswer. This can be shown
by enumerating the finite number of configuration patterns that stand for
configurations in IrreduciblePFSOS, and showing that each denotes the
error answer. For example, one such pattern is 〈swap . Q, [V]〉:

CF [[〈swap . Q, [V]〉]]
= resToAns (top (Q[[swap . Q]] (Value* 7→ Stack [V V])))

= resToAns
(top (Q[[Q]] (push (top (pop (Value* 7→ Stack [V V])))

(push (top (Value* 7→ Stack [V V]))
(pop (pop (Value* 7→ Stack [V V])))))))

= resToAns (top (Q[[Q]] (push (top (Value* 7→ Stack []))
(push (Value 7→ Result (V [[V]]))

(pop (Value* 7→ Stack []))))))

= resToAns (top (Q[[Q]] (push errorResult
(push (V[[V]]) errorStack))))

= resToAns (top (Q[[Q]] errorStack))
= resToAns (top errorStack)

= errorAnswer.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

148 CHAPTER 4. DENOTATIONAL SEMANTICS

We’re now ready to put the lemmas together to show denotational soundness
for a PostFix program (postfix Nnumargs Qbody) executed on inputs Ninputs*.
There are two cases:

1. N [[Nnumargs]] = (length Ninputs*) and the initial program configuration
has a transition path to a final configuration:

〈Qbody , Ninputs*〉 ∗⇒ 〈[]Commands, Nans . Vrest*〉

In this case,

meaning 〈(postfix Nnumargs Qbody), (in Ninputs*)〉
=P[[(postfix Nnumargs Qbody)]] (in Ninputs*)

= CF [[(IF 〈(postfix Nnumargs Qbody),Ninputs*〉)]] , by lemma 1
= CF [[〈Qbody , (map Intlit 7→ Value Ninputs*)〉]]
= CF [[〈[]Commands, (Intlit 7→ Value Nans) . Vrest*〉]] , by lemma 2 on each ⇒
= resToAns

(top (Q[[]] (Value* 7→ Stack ((Int 7→ Value (N [[Nans]])) . (map V Vrest*)))))

= resToAns (top (Value* 7→ Stack ((Int 7→ Value (N [[Nans]])) . (map V Vrest*))))

= (Int 7→ Answer (N [[Nans]]))

= (out (Intlit 7→ Outcome Nans))

= (out (behdetPostFix 〈(postfix Nnumargs Qbody),Ninputs*〉)).

2. N [[Nnumargs]] 6= (length Ninputs*) or the initial program configuration has
a transition path to a stuck configuration. In these cases,

IF 〈(postfix Nnumargs Qbody),N*〉 ∗⇒ cfstuck,

where cfstuck is a stuck configuration. Then we have:

meaning 〈(postfix Nnumargs Qbody), (in Ninputs*)〉
=P[[(postfix Nnumargs Qbody)]] (in Ninputs*)

= CF [[(IF 〈(postfix Nnumargs Qbody),Ninputs*〉)]] , by lemma 1
= CF [[cfstuck]] , by lemma 2 on each ⇒
= errorAnswer, by lemma 3

= (out stuck)

= (out (behdetPostFix 〈(postfix Nnumargs Qbody),Ninputs*〉)).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 149

This completes the sketch of the proof that the denotational semantics for
PostFix is sound with respect to the operational semantics for PostFix. The
fact that all PostFix programs terminate simplifies the proof, because it is not
necessary to consider the case of infinitely long transition paths (in which case
(behdet 〈P, I〉) = ∞). For languages containing nonterminating programs, a
denotational soundness proof must also explicitly handle this case.

¤ Exercise 4.12 Complete the proof that the denotational semantics for PostFix is
sound with respect to its operational semantics by fleshing out the following details:

a. Show that lemma 2 holds for each transition rule in Figure 3.4.

b. Make a list of all stuck configuration patterns in the PostFix SOS and show that
lemma 3 holds for each such pattern. ¢

¤ Exercise 4.13 Show that the denotational semantics for each of the following

languages is sound with respect to its operational semantics: (1) a version of ELMM

whose operators include only +, -, and *; (2) full ELMM; (3) ELM; and (4) EL. ¢

4.4.4.2 Adequacy

The notion of soundness developed above works at the level of a whole pro-
gram. But often we want to reason about smaller phrases within a program.
In particular, we want to reason that we can substitute one phrase for another
without changing the operational behavior of the program. The following ade-
quacy property says that denotational equivalence implies the operational notion
of observational equivalence:

Adequacy: Suppose that P ranges over program contexts, H ranges
over the kinds of phrases that fill the holes in program contexts, and
H is a denotational meaning function for phrases. A denotational
semantics is adequate with respect to (wrt) an operational se-
mantics if the following holds:

H[[H1]] = H[[H2]] implies H1 =obs H2 .

Recall from page 84 that H1 =obs H2 means that for all program contexts P and
all inputs I, beh 〈P{H1 }, I〉 = beh 〈P{H2 }, I〉

In the case of a deterministic behavior function, the following reasoning
shows that adequacy is almost implied by denotational soundness:

H[[H1]] = H[[H2]]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

150 CHAPTER 4. DENOTATIONAL SEMANTICS

implies P [[P{H1}]] = P [[P{H2}]] , by compositionality of denotational semantics
implies meaning 〈P{H1}, (in I)〉 = meaning 〈P{H2}, (in I)〉 for any inputs I
implies (out (behdet 〈P{H1}, I〉)) = (out (behdet 〈P{H2}, I〉)) , by soundness

But demonstrating the observational equivalence requires showing

behdet 〈P{H1}, I〉 = behdet 〈P{H2 }, I〉.

To conclude this from the above line of reasoning requires an additional prop-
erty. Suppose that A ranges over observable answer expressions in the syntactic
domain Answer. Then we need a property we shall call denotational distinct-
ness of observables:

(out A1) = (out A2) implies A1 = A2 .

Recall that out maps syntactic answers to semantic ones. So the above property
requires that syntactically distinct answers be denotationally distinct. That
is, we cannot have two observationally distinct answers answers with the same
meaning.

Both EL and PostFix have denotational distinctness of observables. In
each language, observable answers are either integer numerals or an error token.
Assuming that only canonical integer numerals are used (e.g., 17 rather than
017 or +17) distinct integer numerals denote distinct integers. Note that Post-
Fix would not have this property if executable sequences at the top of a final
stack could be returned as observable answers. For example, the syntactically
distinct sequences (1 add 2 add) and (3 add) would both denote the same
transformation:

(push (Value 7→ Result (Int 7→ Value 3))) .

The above discussion allows us to conclude that any language with denota-
tional soundness and denotational distinctness of observables has the adequacy
property. In turn, this property justifies the use of denotational reasoning for
proving the safety of program transformations. For example, the PostFix De-
notational Equivalence Theorem on page 141 is a corollary of the adequacy of
PostFix.

4.4.4.3 Full Abstraction

Changing the unidirectional implication of adequacy to a bidirectional implica-
tion yields a stronger property called full abstraction:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 151

Full Abstraction: Suppose that P ranges over program contexts,
H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A
denotational semantics is adequate with respect to (wrt) an
operational semantics if the following holds:

H[[H1]] = H[[H2]] iff H1 =obs H2 .

In addition to adequacy, full abstraction requires that observational equivalence
imply denotational equivalence. That is, program fragments that behave the
same in all contexts must have the same denotational meaning.

The various dialects of EL we have considered are all fully abstract. Consider
the restricted version of ELMM in which the only operations are +, -, and *. In
this language, every numerical expression denotes an integer. We already know
that this language is adequate; to prove full abstraction, we need to show that
observational equivalence implies denotational equivalence. We will prove this
by contradiction. Suppose that NE 1 =obs NE2 , but NE [[NE 1]] 6= NE [[NE 2]].
Consider the ELMM context P = (elmm 2). Modeling the non-existent inputs
in this case by unit, we have:

(out (behdet 〈P{NE1}, unit〉))
=P[[P{NE1}]] , by soundness
=NE [[NE1]] , by definition of P
6=NE [[NE2]] , by assumption

=P[[P{NE2}]] , by definition of P
=(out (behdet 〈P{NE2}, unit〉)) , by soundness

Because ELMM has denotational distinctness of observables, we conclude that
NE1 6=obs NE2 , contradicting our original assumption. A similar proof works
to show full abstraction for the other dialects of EL we have studied.

Surprisingly, PostFix is not fully abstract! As argued in Section 4.4.3, even
though all PostFix programs terminate, the denotational domains for answers
and stacks in PostFix must include an entity denoting nontermination, which
we will write as ⊥. This is the denotational analog of the operational token ∞.
Even though no PostFix command sequence can loop, the presence of ⊥ in
the semantics can distinguish the meanings of some observationally equivalent
command sequences.

For example, consider the following two command sequences:

Q1 = 1 0 div

Q2 = exec 1 0 div.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

152 CHAPTER 4. DENOTATIONAL SEMANTICS

Q1 signals an error for any stack. Q2 first executes the top value Vtop on the
stack and then executes 1 0 div. We argue that Q2 is observationally equivalent
to Q1 , because it will also signal an error for any stack:

• if the stack is empty or if Vtop is not an executable sequence, the attempt
to perform exec will fail with an error;

• if Vtop is an executable sequence, Q2 will execute it. Since all PostFix
command sequences terminate, the execution of Vtop will either signal an
error, or it will terminate without an error. In the latter case, the execution
continues with 1 0 div, which necessarily signals an error.

Even though Q1 =obs Q2 , they do not denote the same stack transform! To
see this, consider a stack transform tweird =λs .⊥ and a stack sweird whose top
value is (StackTransform 7→ Value tweird). Both tweird and sweird are “weird” in
the sense that they can never arise during a PostFix computation, in which
all stack transforms necessarily terminate. Nevertheless, tweird is a legal element
of the domain StackTransform, and it must be considered as a legal stack ele-
ment in denotational reasoning. Observe that (Q[[Q1]] sweird) = errorStack, but
(Q[[Q2]] sweird) = ⊥ — i.e., the latter computation does not terminate. So Q1

and Q2 denote distinct stack transforms even though they are observationally
equivalent.

Intuitively, full abstraction says that the semantic domains don’t contain any
extra “junk” that can’t be expressed by phrases in the language. In the case
of PostFix, the domains harbor ⊥ even though it cannot be expressed in the
language.

4.4.5 Operational vs. Denotational: A Comparison

We have noted in this chapter that a denotational semantics expresses the mean-
ing of a program in a much more direct way than an operational semantics. Fur-
thermore, the compositional nature of a denotational semantics is a real boon
for proving properties of programs and languages. Why would we ever want to
choose an operational semantics over a denotational semantics?

For one thing, an operational semantics is usually a more natural medium for
expressing the step-by-step nature of program execution. The notion of “step”
is an important one: it is at the heart of a mechanistic view of computation; it
provides a measure by which computations can be compared (e.g., which takes
the fewest steps); and it provides a natural way to talk about nondeterminism
(choice between steps) and concurrency (interleaving the steps of more than one
process). What counts as a natural step for a program is explicit in the rewrite

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

4.4. DENOTATIONAL REASONING 153

rules of an SOS. These notions cannot always be expressed straightforwardly in
a denotational approach. Furthermore, in computer science, the bottom line is
often what actually runs on a machine, and the operational approach is much
closer to this bottom line.

From a mathematical perspective, the advantage of an operational seman-
tics is that it’s often much easier to construct than a denotational semantics.
Since the objects manipulated by an SOS are simple syntactic entities, there
are very few constraints on the form of an operational semantics. Any SOS
with a deterministic set of rewrite rules specifies a well-defined behavior func-
tion from programs to answer expressions. Creating or extending a set of rewrite
rules is fairly painless since it rarely requires any deep mathematical reasoning.
Of course, the same emphasis on syntax that facilitates the construction of an
operational semantics limits its usefulness for reasoning about programs. For
example, it’s difficult to see how some local change to the rewrite rules affects
the global properties of a language.

Constructing a denotational semantics, on the other hand, is mathematically
much more intensive. It is necessary to build consistent mathematical represen-
tations for each kind of meaning object. The difficulty of building such models
in general is illustrated by the fact that there was no mathematically viable in-
terpretation for recursive domain equations until Dana Scott invented one in the
early 1970s. Since then, a variety of tools and techniques have been developed
that make it easier to construct a denotational semantics that maps programs
into a restricted set of meanings. Extending this set of meanings requires po-
tentially difficult proofs that the extensions are sound, so most semanticists are
content to stick with the well-understood meanings. This class of meanings
is large enough, however, to facilitate a wide range of formal reasoning about
programs and programming languages.

Reading

Denotational semantics was invented by Christopher Strachey and Dana Scott.
For a tutorial introduction to denotational semantics, we recommend the articles
[Ten76] and [Mos90]. Coverage of both operational and denotational semantics
along with their use in reasoning about several simple programming languages
can be found in several semantics textbooks [Gun92, Win93, Mit96]. Full-length
books devoted to denotational semantics include [Gor79, Sto85, Sch86a].

Our notions of denotational soundness and adequacy are somewhat different
than (but related to) those in the literature. For a discussion of (the traditional
approach to) soundness, adequacy, and full abstraction, see [Gun92].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

154 CHAPTER 4. DENOTATIONAL SEMANTICS

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 5

Fixed Points

Bottom! O most courageous day! O most happy hour!

— A Midsummer Night’s Dream, William Shakespeare

Recursive definitions are a powerful and elegant tool for specifying complex
structures and processes. While such definitions are second nature to experi-
enced programmers, novices are often mystified by recursive definitions. Their
confusion often centers on the following question: “how can something be de-
fined in terms of itself?” Sometimes there is a justifiable cause for confusion —
not all recursive definitions make sense!

In this chapter, we carve out a class of recursive definitions that do make
sense, and present a technique for assigning meaning to them. The technique
involves finding a fixed point of a function derived from the recursive definition.
We will make extensive use of this technique in our denotational descriptions
of programming languages to define recursive valuation functions and recursive
domains.

5.1 The Fixed Point Game

5.1.1 Recursive Definitions

For our purposes, a recursive definition is an equation of the form

x = . . . x . . .

155

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

156 CHAPTER 5. FIXED POINTS

where . . . x . . . designates a mathematical expression that contains occurrences
of the defined variable x. Mutually recursive definitions of the form

x1 = . . . x1 . . . xn . . .
...

xn = . . . x1 . . . xn . . .

can always be rephrased as a single recursive definition

x = 〈. . . (Proj 1 x) . . . (Proj n x) . . . ,

...

. . . (Proj 1 x) . . . (Proj n x) . . . 〉,

where x stands for the n-tuple 〈x1, . . ., xn〉 and Proj i extracts the ith element
of the tuple. For this reason, it is sufficient to focus on recursive definitions
involving a single variable.

A solution to a recursive definition is a value that makes the equation
true when substituted for all occurrences of the defined variable. A recursive
definition may have zero, one, or more solutions. For example, suppose that x
ranges over the integers. Then:

• x = 1 + x has no solutions;

• x = 4− x has exactly one solution (2);

• x = 9
x has two solutions (-3, 3);

• x = x has an infinite number of solutions (each integer).

It is important to specify the domain of the defined variable in a recursive
definition, since the set of solutions depends on this domain. For example, the
recursive definition x = 1

16x3 has

• zero solutions over the integers1;

• one solution over the positive rationals (1
2);

• two solutions over the rationals (1
2 , −1

2);

• four solutions over the complex numbers (1
2 , −1

2 ,
i
2 , − i

2).

1In this case, division is interpreted as a quotient function on integers.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.1. THE FIXED POINT GAME 157

In fact, many numerical domains were invented precisely to solve classes of
equations that were insoluble with existing domains.

Although we are most familiar with equations that involve numeric variables,
equations can involve variables from any domain, including product, sum, se-
quence, and function domains. For example, consider the following recursive
definitions involving an element p of the sequence domain Nat × Nat:

• p= 〈(Proj 2 p) , (Proj 1 p)〉 has an infinite number of solutions of the form
〈n,n〉, where n :Nat.

• p= 〈(Proj 2 p) , (Proj 1 p) - 1〉 has the unique solution 〈0, 0〉.2

• p= 〈(Proj 2 p) , (Proj 1 p) + 1〉 has no solutions in Nat × Nat. The first
element n of a solution p = 〈n, . . .〉 would have to satisfy the equation
n = n + 1, and this equation has no solutions.

We can also have recursive definitions involving an element s of the sequence
domain Nat*:

• s=(cons 3 (tail s)) has an infinite number of solutions: all non-empty
sequences s whose first element is 3.

• s=(cons 3 s) has no solutions in Nat*, which includes only finite se-
quences of natural numbers and so does not contain an infinite sequence of
3s. However, this equation does have a solution in a domain that includes
infinite sequences of numbers in addition to the finite ones. We shall use
the notation Nat* to designate this domain.

• s=(cons 3 (tail (tail s))) has the unique solution [3]. This definition
requires that (tail s) = (tail (tail s)), and in Nat* only a singleton se-
quence s satisfies this requirement.3 However, in Nat*, this equation has
an infinite number of solutions, since for any integer i, an infinite sequence
of is satisfies (tail s) = (tail (tail s)).

We will be especially interested in recursive definitions over function domains.
Suppose that f is an element of the domain Nat → Nat . Consider the following
recursive function definition of f :

f = λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi.

2Recall that (n1 − n2)= 0 if n1 ,n2 :Nat and (n1 < n2).
3Recall that (tail []) is defined to be [].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

158 CHAPTER 5. FIXED POINTS

Intuitively, this equation is solved when f is a doubling function, but how do we
show this more formally? Recall that a function in Nat → Nat can be viewed as
its graph, the set of input/output pairs for the function. The graph associated
with the lambda expression is

{〈0, if (0= 0) then 0 else (2 + (f 0))〉,
〈1, if (1= 0) then 0 else (2 + (f 0))〉,
〈2, if (2= 0) then 0 else (2 + (f 1))〉,
〈3, if (3= 0) then 0 else (2 + (f 2))〉,
. . . }.

After simplification, this becomes

{〈0, 0〉, 〈1, (2 + (f 0))〉, 〈2, (2 + (f 1))〉, 〈3, (2 + (f 2))〉, . . . }.

If f is a doubling function, then the graph of the right-hand side can be further
simplified to

{〈0, 0〉, 〈1, 2〉, 〈2, 4〉, 〈3, 6〉, . . . }.
This is precisely the graph of the doubling function f on the left-hand side of the
equation, so the equation holds true. It is not difficult to show that the doubling
function is the only solution to the equation; we leave this as an exercise.

As with recursive definitions over other domains, recursive definitions of
functions may have zero, one, or more solutions. Maintaining the assumption
that f is in Nat → Nat , the definition

f = λn . (1 + (f n))

has zero solutions, because the result nr for any given input would have to satisfy
nr = nr + 1. On the other hand, the definition

f = λn . (f (1 + n))

has an infinite number of solutions: for any given constant nc, a function with
the graph {〈n,nc〉 | n : Nat} is a solution to the equation.

5.1.2 Fixed Points

If d ranges over domain D, then a recursive definition

d = (. . . d . . .)

can always be encoded as the D → D function

λd . (. . . d . . .).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.1. THE FIXED POINT GAME 159

We will call this the generating function for the recursive definition. For
example, if r :Real, the numeric equation

r = 1− r 2

can be represented by the Real → Real generating function

λr . (1 − (r * r)) .

Similarly, the recursive function definition

dbl : Nat → Nat = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) fi

can be represented by the generating function

gdbl : (Nat → Nat)→ (Nat → Nat)
=λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi,

where f :Nat → Nat. A generating function is not recursive, so its meaning can
be straightforwardly determined from its component parts.

A solution to a recursive definition is a fixed point of its associated generating
function. A fixed point of a function g :D → D is an element d :D such that
(g d) = d. If a function in D → D is viewed as moving elements around
the space D, elements satisfying this definition are the only ones that remain
stationary; hence the name “fixed point.”

To build intuitions about fixed points, it is helpful to consider functions from
the unit interval4 [0, 1] to itself. Such functions can be graphed in the following
box:

0 1
0

1

Every point where the function graph intersects the y = x diagonal is a fixed
point of the function. For example, Figure 5.1 shows the graphs of functions
with zero, one, two, and an infinite number of fixed points.

It is especially worthwhile to consider how a generating function like gdbl
moves elements around a domain of functions. Here are a few examples of how
gdbl maps various functions f :Nat → Nat :

4The unit interval is the set of real numbers between 0 and 1, inclusive.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

160 CHAPTER 5. FIXED POINTS

0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Figure 5.1: Functions on the unit interval with zero, one, two, and an infinite
number of fixed points.

• If f is the identity function λn . n, then (gdbl f) is the function that incre-
ments positive numbers and returns 0 for 0:

λn . if (n = 0) then 0 else (n + 1) fi

• If f is the function λn .
(

(n + 1)2 − 2
)

then (gdbl f) is the function λn .n2

• If f is a doubling function, then (gdbl f) is also the doubling function, so
the doubling function is a fixed point of gdbl . Indeed, it is the only fixed
point of gdbl .

Since generating functions D → D correspond to recursive definitions, their
fixed points have all the properties of solutions to recursive definitions. In partic-
ular, such a function may have zero, one, or more fixed points, and the existence
and character of fixed points depends on the details of the function and the
nature of the domain D.

5.1.3 The Iterative Fixed Point Technique

Above, we saw that recursive definitions can make sense over any domain. How-
ever, the methods we used to find and/or verify solutions in the examples were
rather ad hoc. In the case of numeric definitions, there are many familiar tech-
niques for manipulating equations to find solutions. Are there any techniques
that will help us solve recursive definitions over more general domains?

There is a class of recursive definitions for which an iterative fixed point
technique will find a distinguished solution of the definition. This technique
finds a unique fixed point to the generating function encoding the recursive
definition. The iterative fixed point technique is motivated by the observation
that it is often possible to find a fixed point for a generating function by iterating
the function starting with an appropriate initial value.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.1. THE FIXED POINT GAME 161

As a graphical example of the iteration technique, consider a transformation
T on two-dimensional line drawings that is the sequential composition of the
following three steps:

1. Rotate the drawing 90 degrees counter-clockwise about the origin.

2. Translate the drawing right by one unit.

3. Add a line from (0,0) to (0,1).

Figure 5.2 shows what happens when T is iterated starting with the empty
drawing. Each of the first four applications of T adds a new line until the unit
square is produced. Subsequent applications of T do not modify the square; it
is a fixed point of T .

T T T T T

Figure 5.2: Iterating the transformation T starting with an empty line drawing
leads to a fixed point in four steps.

In the line drawing example, a fixed point is reached after four iterations of
the transformation. Often, iterating a generating function does not yield a fixed
point in a finite number of steps, but only approaches one in the limit. A classic
numerical example is finding square roots. The square root of a non-negative
rational number n is a solution of the recursive definition

x =
x+ n

x

2
.

Iterating the generating function for this definition starting with n yields a
sequence of approximations that converge to

√
n. For example, for n = 3 the

generating function is

gsqrt3 : Rat → Rat = λq .
q + 3

q

2

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

162 CHAPTER 5. FIXED POINTS

and the first few iteration steps are:

(
g0sqrt3 3

)
= 3

(
g1sqrt3 3

)
= 2

(
g2sqrt3 3

)
=

7

4
= 1.75

(
g3sqrt3 3

)
=

97

56
≈ 1.7321428571428572

(

g4sqrt3 3
)

=
18817

10864
≈ 1.7320508100147276

...

Since
√
3 is not a rational number, the fixed point clearly cannot be reached in

a finite number of steps, but it is approached as the limit of the sequence of
approximations.

Even in non-numeric domains, generating functions can produce sequences
of values approaching a limiting fixed point. For example, consider the following
recursive definition of the even natural numbers:

evens = {0} ∪ {(n + 2) | n ∈ evens}.

The associated generating function is

gevens : P(Nat)→ P(Nat) = λs . {0} ∪ {(n + 2) | n ∈ s},

where s ranges over the powerset of Nat. Then iterating gevens starting with the
empty set yields a sequence of sets that approaches the set of even numbers in
the limit:

(
g0evens {}

)
= {}

(
g1evens {}

)
= {0}

(
g2evens {}

)
= {0, 2}

(
g3evens {}

)
= {0, 2, 4}

(
g4evens {}

)
= {0, 2, 4, 6}
...

The above examples of the iterative fixed point technique involve different
domains but exhibit a common structure. In each case, the generating function
maps an approximation of the fixed point into a better approximation, where
the notion of “better” depends on the details of the function:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.1. THE FIXED POINT GAME 163

• In the line drawing example, picture b is better than picture a if b contains
at least as many lines of the unit square as a.

• In the square root example, number b is a better approximation to
√
n

than number a if |b2 − n| ≤ |a2 − n|.

• In the even number example, set b is better than set a if a ⊆ b.

Moreover, in each of the examples, the sequence of approximations produced
by the generating functions converges to a fixed point in the limit. This doesn’t
necessarily follow from the fact that each approximation is better than the pre-
vious one. For example, each element of the series 0, 0.9, 0.99, 0.999, . . . is closer
to
√
2 than the previous element, but the series converges to 1, not to

√
2. The

notion of approaching a limiting value is central to the iterative fixed point
technique.

The basic structure of the iterative fixed point technique is depicted in Fig-
ure 5.3. The generating function g :D → D is defined over a domain D whose
values are assumed to be ordered by their information content. A line connects
two values when the lower value is an approximation to the higher value. That
is, the higher value contains all the information of the lower value plus some ex-
tra information. What counts as “information” and “approximation” depends
on the problem domain. When values are sets, for instance, a line from a up to
b might indicate that a ⊆ b.

In the iterative fixed point technique, iteratively applying g from an appro-
priate starting value d0 yields a sequence of values with increasing information
content. Intuitively, iterative applications of g climb up through the ordered
values by refining the information of successive approximations. If this process
reaches a value di such that di = (g di), then the fixed point di has been found.
If this process never actually reaches a fixed point, it should at least approach
a fixed point as a limiting value.

We emphasize that the iterative fixed point technique does not work for every
generating function. It depends on the details of the domain D, the generating
function g :D → D, and the the starting point d0. The technique must certainly
fail for generating functions that have no fixed points. Even when a generating
function has a fixed point, the iterative technique won’t necessarily find it. For
example, iterating the generating function for n = 3

n
starting with any non-zero

rational number q yields an alternating sequence q, 3
q
, q, 3

q
, . . . that never gets

any closer to the fixed point
√
3. presented earlier in this section. As shown in

Figure 5.4, if we start with an “X” in the upper right quadrant, the iterative
fixed point technique yields a different fixed point than when we start with an
empty picture. Figure 5.5 shows an example in which the technique does not

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

164 CHAPTER 5. FIXED POINTS

g

g

g

g

g g

.

.

.

.

.

.

d

d

d

d

d

0

1

2

3

i

least fixed point

.

.

.

.

.

.

Figure 5.3: The “game board” for the iterative fixed point technique.

find a fixed point of T for an initial picture. Instead, it eventually cycles between
four distinct pictures.

T T T T T

Figure 5.4: A different initial picture can lead to a different fixed point for the
picture transformation T .

In the next section, we describe an important class of generating functions
that are guaranteed to have a fixed point. A fixed point of these functions can
be found by applying the iterative fixed point technique starting with a special
informationless element called bottom. Such functions may have more than one
fixed point, but the one found by iterating from bottom has less information than
all the others — it is the least fixed point. We will choose this distinguished
fixed point as the solution of the associated recursive definition. This solution
matches our operational intuitions about what solution the computer will find
when the recursive definition is expressed as a program. We are guaranteed
to be able to solve any recursive definition whose generating function is in this

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.1. THE FIXED POINT GAME 165

T T T

T

T T T

T

Figure 5.5: An example in which the iterative fixed point technique cannot find
a fixed point of the picture transformation T for a non-empty initial picture.

special class.

¤ Exercise 5.1 Above, we showed two fixed points of the picture transformation T .

a. Draw a third line drawing that is a fixed point of T .

b. How many fixed points does T have?

c. Characterize all the fixed points of T . That is, what properties must a picture
have in order to be a fixed point of T ?

d. Figure 5.5 shows an initial picture for which the iterative technique finds a cycle
of four distinct pictures related by T rather than a fixed point of T . Give an
initial picture for which the iterative technique finds a cycle containing only two
distinct picture related by T . In the case of T , can the iterative technique find
cycles of pictures with periods other than 1, 2, and 4? ¢

¤ Exercise 5.2 For each of the following classes of functions from the unit interval to
itself, indicate the minimum and maximum number of fixed points of functions in the
class.

a. constant functions (i.e., functions of the form λx . a);

b. linear functions (i.e., functions of the form λx . ax+ b);

c. quadratic functions (i.e., functions of the form λx . ax2 + bx+ c);

d. continuous functions (i.e., functions whose graph is an unbroken curve);

e. non-decreasing functions (i.e., functions f for which a ≤ b implies (f a) ≤ (f b).

f. non-increasing functions (i.e., functions f for which a ≤ b implies (f a) ≥ (f b).
¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

166 CHAPTER 5. FIXED POINTS

e f

d

a b c

Figure 5.6: A Hasse diagram for the partial order PO.

5.2 Fixed Point Machinery

In this section we (1) present the mathematical machinery for defining a class
of functions for which a distinguished fixed point always exists and (2) illustrate
the use of this machinery via several examples.

5.2.1 Partial Orders

A partial order is a pair 〈D,v〉 of a domainD and a relation v that is reflexive,
transitive, and anti-symmetric. A relation is anti-symmetric if a v b and b v
a together imply a = b. The notation a v b is pronounced “a is weaker than b”
or “b is stronger than a.” Later, we shall be ordering elements by information
content, so we will also pronounce a v b as “a approximates b.” When the
relation v is understood from context, it is common to refer to the partial order
〈D,v〉 as D.

Partial orders are commonly depicted byHasse diagrams in which elements
(represented by points) are connected by lines. In such a diagram, a v b if and
only if there is a path from the point representing a to the point representing b
such that each link of the path goes upward on the page. For example, Figure 5.6
shows the Hasse diagram for the partial order PO on six symbols whose relation
is defined by the following graph:

{〈a, a〉, 〈a, d〉, 〈a, e〉, 〈a, f〉, 〈b, b〉, 〈b, d〉, 〈b, e〉, 〈b, f〉,
〈c, c〉, 〈c, e〉, 〈c, f〉, 〈d, d〉, 〈d, e〉, 〈d, f〉, 〈e, e〉, 〈f, f〉}.

Elements of a partial order are not necessarily related. Two elements of
a partial order that are unrelated by v are said to be incomparable. For
example, here is a listing of all the pairs of incomparable elements in PO: 〈a, b〉,
〈a, c〉, 〈b, c〉, 〈c, d〉, and 〈e, f〉.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 167

· · ·0 1 2 3

Figure 5.7: The domain Nat is assumed to have the discrete ordering.

An upper bound of a subset X of a partial order D is an element u ∈ D
that is stronger than every element of X; i.e., for every x in X, x v u. In PO,
the subset {a, b} has upper bounds d, e, and f; the subset {a, b, c} has upper
bounds e and f; and the subset {e, f} has no upper bounds. The least upper
bound (lub5) of a subset X of D, written

⊔

DX, is the upper bound of X that
is weaker than every other upper bound of X; such an element may not exist.
In PO, the lub of {a, b} is d, but neither {a, b, c} nor {e, f} has a lub. There
are symmetric notions of lower bound and greatest lower bound (glb6),
but our fixed point machinery will mainly use upper bounds.

An element that is weaker than all other elements in a partial order D is
called the bottom element and is denoted ⊥D . Symmetrically, an element that
is stronger that all other elements in D is the top element (written >D). Bottom
and top elements do not necessarily exist. For example, PO has neither.

Any partial order D can be lifted to another partial order D⊥ that has all
the elements and orderings of D, but includes a new element ⊥D⊥ that is weaker
than all elements of D. If D already has a bottom element ⊥D , then ⊥D and
⊥D⊥ are distinct, with ⊥D⊥ being the weaker of the two. Symmetrically, the
notation D> designates the result of extending D with a new top element.

A discrete partial order is one in which every pair of elements is incom-
parable. By default, we will assume that primitive semantic domains have the
discrete ordering. For example, Figure 5.7 depicts the discrete ordering for Nat.
In this partial order, numbers are not ordered by their value, but by their infor-
mation content. Each number approximates only itself.

A flat partial order D is a lifted discrete partial order. Flat partial orders
will play an important role in our treatment of semantic domains. Figure 5.8
depicts the flat partial order Nat⊥ of natural numbers. Note that ⊥Nat⊥ acts as
an “unknown natural number” that approximates every natural number.

A total order is a partial order in which every two elements are related (i.e.,
no two elements are incomparable). For example, the natural numbers under the
traditional value-based ordering form a total order called ω. The elements of a
total order can be arranged in a vertical line in a Hasse diagram (see Figure 5.9).

5The pronunciation of “lub” rhymes with “club.”
6“glb” is pronounced “glub.”

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

168 CHAPTER 5. FIXED POINTS

· · ·0 1 2 3

⊥Nat⊥

Figure 5.8: The flat partial order Nat⊥.

...

0

1

2

3

Figure 5.9: The partial order ω of natural numbers under the traditional value-
based ordering.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 169

G H

a

b

c

d e

Figure 5.10: Two simple partial orders.

〈b, d〉

〈a, d〉

〈b, e〉

〈a, e〉〈b, c〉

〈a, c〉

Figure 5.11: The product partial order G × H.

A chain is a totally-ordered, non-empty subset of a partial order. The chains
of PO include {a, d, e}, {c, f}, {b, f}, and {d}. In Nat⊥, the only chains are (1)
singleton sets and (2) doubleton sets containing ⊥Nat⊥ and a natural number.

Given partially ordered domains, we would like to define orderings on prod-
uct, sum, sequence, and function domains such that the resulting domains are
also partially ordered. That way, we will be able to view all our semantic do-
mains as partial orders. In the following definitions, assume that D and E are
arbitrary partial orders ordered by vD and vE , respectively. We will illustrate
the definitions with examples involving the two concrete partial orders G and
H in Figure 5.10.

5.2.1.1 Product Domains

D × E is a partial order under the following ordering:

〈d1, e1〉vD×E〈d2, e2〉 iff d1vDd2 and e1vEe2.

The partial order G ×H is depicted in Figure 5.11. Note how the Hasse diagram
for G × H is visually the product of the Hasse diagrams for G and H. G × H
results from making a copy of G at every point of H (or, symmetrically, making
a copy of H at every point of G) and adding the extra lines specified by the
ordering.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

170 CHAPTER 5. FIXED POINTS

5.2.1.2 Sum Domains

D + E is a partial order under the following ordering:

(
Inj 1D,E d1

)
vD+E

(
Inj 1D,E d2

)
iff d1 vD d2

(
Inj 2D,E e1

)
vD+E

(
Inj 2D,E e2

)
iff e1 vE e2.

This ordering preserves the order between elements of the same summand, but
treats elements from different summands as incomparable. The Hasse diagram
for a sum partial order is simply the juxtaposition of the diagrams for the sum-
mands (see Figure 5.12).

(
Inj 1G,H a

)

(
Inj 1G,H b

)

(
Inj 2G,H c

)

(
Inj 2G,H d

) (
Inj 2G,H e

)

Figure 5.12: The sum partial order G + H.

5.2.1.3 Function Domains

D → E is a partial order under the following ordering:

f 1vD→Ef 2 iff, for all d in D, (f 1 d)vE (f 2 d) .

Consider using this ordering on the elements of G → H. As usual, a total
function from G to H can be represented by a graph of input/output pairs, but
here we employ a more compact notation in which such a function is represented
as a pair of the elements that a and b map to, respectively. Thus, the function
with graph {〈a, c〉, 〈b, d〉} can be abbreviated as 〈c, d〉. Using this notation, the
partial orderG→ H is isomorphic7 to the partial orderH ×H (see Figure 5.13).

This sort of isomorphism holds whenever D is a finite domain. That is, if D
has n elements, then D → E is isomorphic to En.

7Informally, two partial orders are isomorphic if their Hasse diagrams can be rearranged
to have the same shape (ignoring the labels on the vertices). Formally, two partial orders
A and B are isomorphic if there is a bijective function f :A → B that preserves ordering in
both directions. That is, a vA a ′ implies (f a) vB (f a ′) and b vB b ′ implies

(
f −1 b

)
vA(

f −1 b ′
)
.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 171

〈d, d〉 〈d, e〉

〈d, c〉

〈e, d〉 〈e, e〉

〈e, c〉〈c, d〉 〈c, e〉

〈c, c〉

Figure 5.13: The function partial order G → H. Each pair 〈x, y〉 is shorthand
for a function with a graph {〈a, x〉, 〈b, y〉}.

5.2.1.4 Sequence Domains

There are two common ways to order the elements of D*. These differ in whether
sequence elements of different lengths are comparable.

• Under the prefix ordering,

[d1, d2, . . . , dk]vD*[d1
′, d2

′, . . . , dl
′]

iff k ≤ l and divDdi ′ for all 1 ≤ i ≤ k

If D is a discrete domain, this implies that a sequence s1 is weaker than
s2 if s1 is a prefix of s2 — i.e., s2 = s1 @ s ′ for some sequence s ′.

As an example, suppose that Bit is the discrete partial order of the binary
digits 0 and 1. Then Bit* under the prefix order is isomorphic to the
partial order of binary numerals shown in Figure 5.14. (For example, the
numeral 110 corresponds to the sequence [1, 1, 0].) This partial order is an
infinite binary tree rooted at the empty sequence. Each element of the tree
can be viewed as an approximation to all of the elements of the subtree
rooted at it. For example, 110 is an approximation to 1100, 1101, 11000,
11001, 11010, etc. In computational terms, this notion of approximation
corresponds to the behavior of a computation process that produces its
answer by printing out a string of 0s and 1s from left to right, one character
at a time. At any point in time, the characters already printed are the
current approximation to the final string that will be produced by the
process.

Note that if D has some non-trivial ordering relations, i.e., D is not a
discrete domain, the prefix ordering of D* is more complex than a simple
tree.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

172 CHAPTER 5. FIXED POINTS

000 001 010 011 100 101 110 111

...
...

...
...

...
...

...
...

00 01 10 11

0 1

Figure 5.14: The sequence partial order Bit* under the prefix ordering.

• Under the sum-of-products ordering, D* is treated as isomorphic to
the infinite sum of products

D0 +D1 +D2 +D3 + · · ·

As in the prefix ordering, sequences are ordered component-wise by their
elements, but the sum-of-products ordering treats sequences of different
lengths as incomparable. For example, under the sum-of-products order-
ing, Bit⊥* is isomorphic to the partial order depicted in Figure 5.15.

· · ·

Bit⊥
0 Bit⊥

1 Bit⊥
2

0 1

⊥

00 01

0⊥

10 11

1⊥⊥0 ⊥1

⊥⊥

Figure 5.15: The sequence partial order Bit⊥* under the sum-of-products or-
dering.

Although we have stated that the above definitions are partial orders, we
have not argued that each ordering is in fact reflexive, transitive, and anti-
symmetric. We encourage the reader to show that these properties hold for each
of the definitions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 173

The orderings defined above are not the only ways to order compound do-
mains, but they are relatively natural and are useful in many situations. Later,
we will refine some of these orderings (particularly in the case of function do-
mains). But, for the most part, these are the orderings that will prove useful
for our study of semantic domains.

¤ Exercise 5.3 Using the partial orders G and H in Figure 5.10, draw a Hasse
diagram for each of the following compound partial orders:

a. G × G

b. H × H

c. G→ G

d. H → H

e. H → G

f. G* under the prefix ordering (show the first four levels)

g. H* under the prefix ordering (show the first four levels)

h. G* under the sum-of-products ordering (show the first three summands)

i. H* under the sum-of-products ordering (show the first three summands) ¢

¤ Exercise 5.4 Suppose that A and B are finite partial orders with the same number
of elements, but they are not isomorphic. Partition the following partial orders into
equivalence classes based on isomorphism. That is, each class should contain all the
partial orders that are isomorphic to each other.

A × A, A × B, B × A, B × B,
A + A, A + B, B + A, B + B,
A→ A, A→ B, B → A, B → B ¢

¤ Exercise 5.5 Given a discretely ordered domain D, the powerset P(D) is a partial
order under the subset ordering:

SvP(D)S
′ if S ⊆ S ′

Draw the Hasse diagram for the partial order P({a, b, c}) under the subset ordering.
If D is a partial order that is not discrete, it turns out that there are many “natural”

ways to order the elements of the powerdomain P(D), each of which is useful for
different purposes. See [Sch86a] or [GS90] for details. ¢

¤ Exercise 5.6 For each ordering on a compound domain defined above, show that

the ordering is indeed a partial order. I.e., show that the orderings defined for product,

sum, function, and sequence domains are reflexive, transitive, and anti-symmetric. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

174 CHAPTER 5. FIXED POINTS

5.2.2 Complete Partial Orders (CPOs)

A partial order D is complete if every chain in D has a least upper bound in
D. The term “complete partial order” is usually abbreviated CPO. Intuitively,
completeness means that any sequence of elements visited on an upward path
through a Hasse diagram must converge to a limit. Completeness is important
because it guarantees that the iterative fixed point technique converges to a
limiting value.

Here are some examples of CPOs:

• Any partial order with a finite number of elements is a CPO because every
chain is finite and necessarily contains its lub. PO, G, and H from the
previous section are all finite CPOs.

• Any flat partial order is a CPO because every chain has at most two
elements, the stronger of which must be the lub. Nat⊥ is a CPO with an
infinite number of elements.

• P(Nat) is a CPO in which the elements (each of which is a subset of the
naturals) are ordered by subset inclusion (see Exercise 5.5). It is complete
because the lub of every chain C is the (possibly infinite) union of the
elements of C. Unlike the previous examples of CPOs, this is one in which
a chain may be infinite and not contain its own lub. Consider the chain C
with elements ci, where ci is defined to be {n | n ≤ i,n : Nat} Then:

⊔

P(Nat)

C =
⋃

{{0}, {0, 1}, {0, 1, 2}, . . .} = Nat

The lub of C is the entire set of natural numbers, but no individual ci is
equal to this set.

• The unit interval under the usual ordering of real numbers is a CPO. It is
complete because the construction of the reals guarantees that it contains
the least upper bound of every subset of the interval. The unit interval is
another CPO in which chains do not necessarily contain their own lubs.
For example, the set of all rational numbers less than

√
.5 does not contain√

.5.

• The partial functions from Nat to Nat (denoted Nat ⇀ Nat) form a
CPO. Recall that a partial function can be represented by a graph of
input/output pairs. So the function that is undefined everywhere is rep-
resented by {}, the function that returns 23 given 17 and is elsewhere

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 175

...

0

1

2

3

>ω>

Figure 5.16: The partial order ω> is the partial order ω of natural numbers
extended with a largest element >ω> .

undefined is represented by {〈17, 23〉}, and so on. The ordering of ele-
ments in this CPO is just subset inclusion on the graphs of the functions.
It is complete for the same reason that P(Nat) is complete.

It is worthwhile to consider examples of partial orders that are not CPOs:

• The total order ω depicted in Figure 5.9 is not a CPO because the chain
consisting of the entire set has no least upper bound (i.e., there is no
largest natural number). This partial order can be turned into a CPO ω>

by extending it with a top element >ω> that by definition is larger than
every natural number (see Figure 5.16.)

• The partial order of rational numbers (under the usual ordering) between
0 and 1, inclusive, is not complete because it does not contain irrational

numbers like
√

1
2 . It can be made complete by extending it with the

irrationals between 0 and 1; this results in the unit interval [0, 1].

• The partial order of sequences Bit* under the prefix ordering is not a CPO.
By definition, D* is the set of finite sequences whose elements are taken
from D. But the chain {[], [1], [1, 1], [1, 1, 1], . . . } has as its lub an
infinite sequence of 1s, which is not an element of Bit*. To make this
partial order complete, it is necessary to extend it with the set of infinite
sequences over 0 and 1, written Bit∞. So the set of strings Bit* ∪ Bit∞

under the prefix ordering is a CPO.

Generalizing Bit∞, we introduce the notation D∞ to denote the set of all
infinite sequences whose elements are taken from the domain D. We also intro-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

176 CHAPTER 5. FIXED POINTS

duce the notation D* to stand for D* ∪ D∞ under the prefix ordering. (The
overbar notation is commonly used to designate the completion of a set, which
adds to a set all of its limit points.)

As with partial orders, we are interested in combination properties of CPOs.
As indicated by the following facts, we can use ⊥, × , + , → , and * to build
new CPOs out of existing CPOs. Suppose that D and E are CPOs. Then:

• D⊥ is a CPO;

• D × E is a CPO under the partial order for products;

• D + E is a CPO under the partial order for sums;

• D → E is a CPO under the partial order for functions;

• D* is a CPO under the sum-of-products ordering for sequences;

• D* is a CPO under the prefix ordering for sequences.

¤ Exercise 5.7 For each of the compound CPOs described above, show that the com-

pound partial order is indeed complete. That is, show that the completeness property

of D and E implies that each chain of the compound domain has a lub in the compound

domain. ¢

5.2.3 Pointedness

A partial order is pointed if it has a bottom element. Pointedness is important
because the bottom element of a CPO is the natural place for the iterative fixed
point technique to start. Here are some of the pointed CPOs we have studied,
listed with their bottom elements:

• G, bottom = a;

• H, bottom = c;

• Nat⊥, bottom = ⊥Nat ;

• P(Nat), bottom = {};

• [0, 1], bottom = 0;

• Nat ⇀ Nat , bottom = the function whose graph is {};

• ω>, bottom = 0;

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 177

• Bit*, bottom = [].

CPOs that we have studied that are not pointed include PO, G + H, and
Bit⊥* under the sum-of-products ordering.

In the iterative fixed point technique, the bottom element of a pointed CPO
is treated as the element with least information — the “worst” approximation
to the desired value. For example, ⊥Nat⊥ is the unknown natural number,
[] is a (bad) approximation to any sequence of 0s and 1s, and {} is a (bad)
approximation to the graph of any partial function from Nat to Nat.

In computational terms, the bottom element of a CPO can informally be
viewed as representing a process that diverges (i.e., gets caught in an infinite
loop). For example, a procedure that returns a boolean for even numbers but
diverges on odd numbers can be modeled as an element of the domain Int →
Bool⊥ that maps every odd number to ⊥Bool⊥ .

Pointed CPOs are commonly used to encode partial functions as total func-
tions. Any partial function f in D ⇀ E can be represented as a total function
f ′ in D → E⊥ by having f ′ map to ⊥E⊥ every element d :D on which f is
undefined. For example, the partial function in PO ⇀ PO with graph

{〈a, d〉, 〈c, b〉, 〈f, f〉}.

can be represented as the total function in PO → PO⊥ with graph

{〈a, d〉, 〈b,⊥PO⊥〉, 〈c, b〉, 〈d,⊥PO⊥〉, 〈e,⊥PO⊥〉, 〈f, f〉}

Because of the isomorphism between D ⇀ E and D → E⊥, we casually perform
implicit conversions between the two representations.

The following are handy facts about the pointedness of partial orders con-
structed out of parts. Suppose that D and E are arbitrary partial orders (not
necessarily pointed). Then:

• D⊥ is pointed.

• D × E is pointed if D and E are pointed.

• D + E is never pointed.

• D → E is pointed if E is pointed.

• D* under the sum-of-products ordering is never pointed.

• D* and D* under the prefix ordering are pointed.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

178 CHAPTER 5. FIXED POINTS

Unpointed compound domains like D + E and D* under the sum-of-products
ordering can always be made pointed by lifting them with a new bottom element
or by coalescing their bottom elements if they are pointed (see Exercise 5.9).

¤ Exercise 5.8 Prove each of the facts about pointedness claimed above. ¢

¤ Exercise 5.9 The smash sum (also known as coalesced sum) of two pointed
partial orders D and E, written D ⊕ E, consists of the elements

{⊥D⊕E} ∪ {
(
Inj 1D,E d

)
| d ∈ (D −⊥D)} ∪ {

(
Inj 2D,E e

)
| e ∈ (E −⊥E)},

where ⊥D⊕E is a single new bottom element that combines the bottom elements ⊥D

and ⊥E . D ⊕ E is a partial order under the following ordering:

⊥D⊕E vD⊕E x for all x ∈ D ⊕ E
(
Inj 1D,E d1

)
vD⊕E

(
Inj 1D,E d2

)
iff d1, d2 ∈ (D −⊥D) and d1 vD d2

(
Inj 2D,E e1

)
vD⊕E

(
Inj 2D,E e2

)
iff e1, e2 ∈ (E −⊥E) and e1 vE e2.

a. Using the CPOs G and H from Figure 5.10, draw a Hasse diagram for the partial
order G ⊕ H .

b. If D and E are CPOs, show that D ⊕ E is a CPO.

c. What benefit does D ⊕ E have over D + E.

d. Suppose that D is a pointed CPO. Extend the notion of smash sum to a smash
sequence D⊕⊗ such that D⊕⊗ is a pointed CPO under an ordering analogous to
the sum-of-product ordering. What does Bit⊥⊕⊗ look like? ¢

5.2.4 Monotonicity and Continuity

Suppose that f :D → E, where D and E are CPOs (not necessarily pointed).
Then

• f is monotonic if d1 vD d2 implies (f d1) vE (f d2).

• f is continuous if, for all chains C inD, (f (
⊔

D C)) =
⊔

E{(f c) | c ∈ C}.
A monotonic function preserves order between CPOs, while a continuous func-
tion preserves limits. In the iterative fixed point technique, monotonicity is
important because when f :D → D is monotonic, the set of values

{⊥, (f ⊥) , (f (f ⊥)) , (f (f (f ⊥))) , . . .}

is guaranteed to form a chain. Continuity guarantees that this chain approaches
a limit.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 179

As an example of these properties, consider the CPO of functions G →
H depicted in Figure 5.13. Any function represented by the pair 〈x, y〉8 is
monotonic if and only if x v y. Although there are 32 = 9 total functions from
G to H, only five of these are monotonic:

{〈c, c〉, 〈c, d〉, 〈d, d〉, 〈c, e〉, 〈e, e〉}
The reason that there are fewer monotonic functions than total functions is that
choosing the target t for a particular source element s constrains all the source
elements stronger than s to map to a target stronger than t. For example, a
monotonic function that maps a to e must necessarily map b to e. With larger
domains, the reduction from total functions to monotonic functions can be more
dramatic.

What functions fromG toH are continuous? The only non-singleton chain in
G is {a, b}. By the definition of continuity, this means that a function f :D → E
is continuous if (

f

(
⊔

D

{a, b}
))

=
⊔

E

{(f a) , (f b)}.

In this case, this condition simplifies to (f a) vE (f b), which is equivalent to
saying that f is monotonic. Thus, the continuous functions from G to H are
exactly the five monotonic functions listed above.

The relationship between monotonic and continuous functions in this exam-
ple is more than coincidence. Monotonicity and continuity are closely related,
as indicated by the following facts:

• On finite CPOs (and even infinite CPOs with only finite chains), mono-
tonicity implies continuity.

• On any CPO, continuity implies monotonicity.

We leave the proof of these facts as exercises.
Although monotonicity and continuity coincide on finite-chain CPOs, mono-

tonicity does not imply continuity in general. To see this, consider the following
function from ω> to the two-point CPO Two= {⊥,>}:

mon-not-con : ω> → Two = λn . if (n = >ω>) then > else ⊥ fi

(See Figure 5.17 for a depiction of this function.) This function is clearly mono-
tonic, but it is not continuous because on the subset ω of ω>,
(

f

(
⊔

ω

))

= (f >ω>) = > 6= ⊥ =
⊔

Two

{⊥} =
⊔

Two

{(f n) | n ∈ ω}

8Recall that in this compact notation from page 170, we simply record the function’s value
on a and b, respectively.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

180 CHAPTER 5. FIXED POINTS

ω> Two

...

0

1

2

3

>ω> >

⊥

Figure 5.17: An example of a function that is monotonic but not continuous.

An important fact about continuous functions is that the set of continuous
functions between CPOs D and E is itself a CPO. For example, Figure 5.18
depicts the CPO of the five continuous functions between G and H. If E is
pointed, the function that maps all elements of D to ⊥E is continuous and
serves as the bottom element of the continuous function CPO.

〈d, d〉 〈e, e〉

〈c, d〉 〈c, e〉

〈c, c〉

Figure 5.18: The CPO G −C−→ H of continuous functions between G and H.

Since the CPO of total functions between D and E and the CPO of contin-
uous functions between D and E are usually distinct, it will be helpful to have
a notation that distinguishes them. We will use D −T−→ E to designate the CPO
of total functions from D to E and D −C−→ E to designate the CPO of continuous
functions from D to E. It turns out that the CPO of continuous functions is
almost always the “right thing” in semantics, so we adopt the convention that,
throughout the rest of this text, any unannotated → should be interpreted as
−C−→. We shall use −T−→ whenever we wish to discuss set-theoretic functions, and
will explicitly use −C−→ only when we wish to emphasize the difference between −T−→
and −C−→.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 181

A B

a

b

c

d

e f g

Figure 5.19: CPOs A and B.

¤ Exercise 5.10 Using the CPOs G and H from Figure 5.10, draw Hasse diagrams
for the following CPOs:

a. G −C−→ G

b. H −C−→ H

c. H −C−→ G ¢

¤ Exercise 5.11 Consider the CPOs A and B pictured in Figure 5.19. For each of
the following functional domains, give the number of the (1) total, (2) monotonic, and
(3) continuous functions in the domain:

a. A→ A

b. B → B

c. A→ B

d. B → A ¢

¤ Exercise 5.12

a. Show that a continuous function between CPOs is necessarily monotonic.

b. Show that a monotonic function must also be continuous if its source is a CPO
all of whose chains are finite.

c. Show that if D and E are pointed CPOs then D −C−→ E is a pointed CPO. ¢

¤ Exercise 5.13 This problem considers functions f from [0, 1] to itself. We will say

that f is continuous in the CPO sense if it is a member of [0, 1] −C−→ [0, 1], where [0, 1]
is assumed to have the traditional ordering. We will say that f is continuous in the
classical sense if for all x and ε there exists a δ such that

(f [x− δ, x+ δ]) ⊆ [(f x)− ε, (f x) + ε].

(Here we are abusing the function call notation to designate the image of all of the
elements of the interval.)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

182 CHAPTER 5. FIXED POINTS

a. Does classical continuity imply CPO continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the classical sense but not
in the CPO sense.

b. Does CPO continuity imply classical continuity? If so, give a proof; if not, provide
a counter-example of a function that is continuous in the CPO sense but not in
the classical sense. ¢

5.2.5 The Least Fixed Point Theorem

Suppose D is a domain and f :D → D. Then d :D is a fixed point of f if
(f d) = d. If 〈D,v〉 is a partial order, then d :D is the least fixed point of f
if it is a fixed point of f and d v d ′ for every fixed point d ′ of f .

Everything is now in place to prove the following fixed point theorem:

Least Fixed Point Theorem: If D is a pointed CPO, then a con-
tinuous function f :D → D has a least fixed point (fixD f) defined
by
⊔

D{(f n ⊥D) | n ≥ 0}.

Proof:
First we show that the above definition of (fixD f) is a fixed point of f :

• Since ⊥D is the least element in D, ⊥D v (f ⊥D).

• Since f is monotonic (recall that continuity implies monotonicity), ⊥D

v (f ⊥D) implies (f ⊥D) v (f (f ⊥D)). By induction, (f n ⊥D) v(
f n+1 ⊥D

)
for every n ≥ 0, so {(f n ⊥D) | n ≥ 0} is a chain in D.

• Now,

(f (fixD f))
=

(
f
⊔

D{(f n ⊥D) | n ≥ 0}
)

By definition of fixD .
=

⊔

D{(f (f n ⊥D)) | n ≥ 0} By continuity of f .
=

⊔

D{(f n ⊥D) | n ≥ 1}
=

⊔

D{(f n ⊥D) | n ≥ 0}
(
f 0 ⊥D

)
=⊥D can’t change lub.

= (fixD f) By definition of fixD .

Thus, (f (fixD f)) = (fixD f), showing that (fixD f) is indeed a fixed point
of f .

To see that this is the least fixed point of f , suppose d ′ is some other fixed
point. Then clearly ⊥D v d ′, and by the monotonicity of f , (f n ⊥D) v (f n d ′)
= d ′. So d ′ is an upper bound of the set S = {(f n ⊥D) | n ≥ 0}. But then, by
the definition of least upper bound, (fixD f) =

(⊔

D S
)
v d ′. 3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 183

We can treat fixD as a function of type (D → D) → D. It turns out that
fixD is itself a continuous function, and satisfies some other properties that make
it “the right thing” for many semantic purposes (see Gunter and Scott [GS90]).

The Least Fixed Point Theorem describes an important class of situations
in which fixed points exist, and we shall use it to specify the meaning of various
recursive definitions. However, we emphasize that there are many generating
functions that have least fixed points but do not satisfy the conditions of the
Least Fixed Point Theorem. In these cases, some other means must be used to
find the least fixed point.

5.2.6 Fixed Point Examples

Here we present several brief examples of the Least Fixed Point Theorem in
action. We have discussed many of these examples informally already but will
now show how the fixed point machinery formalizes the intuition underlying the
iterative fixed point technique.

5.2.6.1 Sequence Examples

As a first application of the Least Fixed Point Theorem, we consider some
examples. In order to model sequences of natural numbers, we will use the
domain

s ∈ Natseq = Nat⊥*.

We use the flat domain Nat⊥ instead of Nat to model the elements of a sequence
so that there is a distinguished bottom element to which head can map the empty
sequence. We will assume that (tail []) = [], though we could alternatively in-
troduce a new bottom element for sequences if we wanted to distinguish (tail [])
from []. We use Nat⊥* rather than Nat⊥* because the former is a pointed CPO
that contains all the limiting values that are missing from the latter. In order
to apply the iterative fixed point technique, we will need to assume that Natseq
has the prefix ordering on sequences rather than the sum-of-products ordering.

The equation s = (cons 3 (cons (1 + (head s)) [])) has as its associated
generating function the following:

gseq1 : Natseq → Natseq = λs . (cons 3 (cons (1 + (head s)) [])) .

Natseq is a pointed CPO with bottom element [], and it is not hard to show
that gseq1 is continuous. Thus, the Least Fixed Point Theorem applies, and the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

184 CHAPTER 5. FIXED POINTS

least fixed point can be found by iterating g starting with []:
(
fixNatseq gseq1

)

=
⊔

Natseq {
(
g0seq1 []

)
,
(
g1seq1 []

)
,
(
g2seq1 []

)
,
(
g3seq1 []

)
, . . . }

=
⊔

Natseq{[], [3,⊥Nat⊥], [3, 4]}
= [3, 4].

In this case, the unique fixed point [3,4] of gseq1 is reached after two iterations
of gseq1 .

What happens when we apply this technique to an equation like

s = (cons (head s) (cons (1 + (head s)) [])) ,

which has an infinite number of fixed points? The corresponding generating
function is

gseq2 : Natseq → Natseq = λs . (cons (head s) (cons (1 + (head s)) [])) .

This function is continuous as long as + returns⊥Nat⊥ when one of its arguments
is ⊥Nat⊥ . The Least Fixed Point Theorem applies, and iterating gseq2 on [] gives:

(
fixNatseq gseq2

)

=
⊔

Natseq {
(
g0seq2 []

)
,
(
g1seq2 []

)
,
(
g2seq2 []

)
,
(
g3seq2 []

)
, . . . }

=
⊔

Natseq{[], [⊥Nat⊥ ,⊥Nat⊥]}
= [⊥Nat⊥ ,⊥Nat⊥]

After one iteration, the iterative fixed point technique finds the fixed point
[⊥Nat⊥ ,⊥Nat⊥], which is indeed less than all the other fixed points [n, (n + 1)].
Intuitively, this result indicates that the solution is a sequence of two numbers,
but that the value of those numbers cannot be determined without making
an arbitrary decision. Note the crucial roles that the bottom elements [] and
⊥Nat⊥ play in this example. Each represents the value of a domain with the
least information. Iterative application of the generating function may or may
not refine these values by adding information.

A similar story holds for equations like

s = (cons (1 + (head s)) (cons (head s) []))

that have no solutions in Nat*. The reader can verify that this equation does
have the unique solution [⊥Nat⊥ ,⊥Nat⊥] in Natseq and that this solution can be
found by an application of the Least Fixed Point Theorem.

As a final sequence example, we consider the equation s = (cons 1 s), whose
associated generating function is

gseq3 : Natseq → Natseq = λs . (cons 1 s) .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 185

This function is continuous, and the Least Fixed Point Theorem can be invoked
to find a solution to the original equation:

(
fixNatseq gseq3

)

=
⊔

Natseq {
(
g0seq3 []

)
,
(
g1seq3 []

)
,
(
g2seq3 []

)
,
(
g3seq3 []

)
, . . . }

=
⊔

Natseq{[], [1], [1, 1], [1, 1, 1], . . . }
= [1, 1, 1, . . .].

In this case, the unique fixed point of gseq3 is an infinite sequence of 1s. This
fixed point is not reached in a finite number of iterations, but is the limit of

the sequence of approximations
(

gnseq3 []
)

. This example underscores why it is

necessary to extend Nat⊥* with Nat⊥
∞ to make Natseq a CPO. Without the

infinite sequences in Nat⊥
∞, the iterative fixed point technique could not find a

solution to some equations.

5.2.6.2 Function Examples

In the remainder of this book, we will typically apply the iterative fixed point
technique to generating functions over function domains. Here we consider a
few examples involving fixed points over the following domain of functions:

f ∈ Natfun = Nat → Nat⊥.

Since we assume that → designates continuous functions, Natfun is a domain
of the continuous functions between Nat and Nat⊥. Natfun is a CPO because
the set of continuous functions between CPOs is itself a CPO under the usual
ordering of functions. Furthermore, Natfun is pointed because Nat⊥ is pointed.
Recall that Nat → Nat⊥ is isomorphic to Nat ⇀ Nat , so elements of Natfun
can be represented by a function graph in which pairs whose target is ⊥Nat⊥ are
omitted.

Our first example is the definition of the doubling function studied earlier:

dbl = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) fi.

A solution to this definition is the fixed point of the generating function gdbl :

gdbl : Natfun → Natfun
=λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) fi.

Natfun is a pointed CPO, and Natfun’s bottom element is the function whose
graph is {}. In this CPO,

⊔
on a chain of functions in Nat → Nat is equivalent

to
⊔

on a chain of graphs of functions in Nat ⇀ Nat . It can be shown that gdbl

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

186 CHAPTER 5. FIXED POINTS

is continuous, so the Least Fixed Point Theorem applies:

(fixNatfun gdbl)
=

⊔

Natfun {
(
g0dbl {}

)
,
(
g1dbl {}

)
,
(
g2dbl {}

)
,
(
g3dbl {}

)
, . . . }

=
⊔

Natfun{{}, {〈0, 0〉}, {〈0, 0〉, 〈1, 2〉}, {〈0, 0〉, 〈1, 2〉, 〈2, 4〉}, . . . }
= {〈n, 2n〉 | n : Nat}.

Each (gndbl {}) is a finite approximation of the doubling function that is only
defined on the naturals 0 ≤ i ≤ n − 1. The least (and only) fixed point is the
limit of these approximations: a doubling function defined on all naturals.

As an example of a function with an infinite number of fixed points, consider
the following recursive definition of a function in Natfun:

even0 : Natfun = λn . if (n = 0) then 0 else (even0 (n mod 2)) fi.

Here (amod b) returns the remainder of dividing a by b. For each constant c in
Nat⊥, the function whose graph is

⋃

n :Nat

{〈2n, 0〉, 〈2n + 1, c〉}

is a solution for even0. Each solution maps all even numbers to zero, but maps
every odd number to the same constant c, where c is a parameter that distin-
guishes one solution from another. Each of these solutions is a fixed point of the
generating function geven0 :

geven0 : Natfun → Natfun
=λf . λn . if (n = 0) then 0 else (f (n mod 2)) fi.

It turns out that this function is continuous, so the Least Fixed Point Theorem
gives:

(fixNatfun geven0)
=

⊔

Natfun {
(
g0even0 {}

)
,
(
g1even0 {}

)
,
(
g2even0 {}

)
,
(
g3even0 {}

)
, . . . }

=
⊔

Natseq{{}, {〈0, 0〉}, {〈0, 0〉, 〈2, 0〉}, {〈0, 0〉, 〈2, 0〉, 〈4, 0〉}, . . . }
= {〈2n, 0〉 | n : Nat}.

The least fixed point is a function that maps every even number to zero, but
is undefined (i.e., yields ⊥Nat⊥) on the odd numbers. Indeed, this is the least
element of the class of fixed points described above; it uses the least arbitrary
value for the constant c.

The solution for even0 matches our intuitions about the operational behavior
of programming language procedures for computing even0. For example, the
definition for even0 can be expressed in the Scheme programming language via
the following procedure:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 187

(define (even0 n)

(if (= n 0)

0

(even0 (mod n 2)))).

We expect this procedure to return zero in a finite number of steps for an even
natural number, but to diverge for an odd natural number. The fact that the
function even0 maps odd numbers to ⊥Nat⊥ can be interpreted as signifying that
the procedure even0 diverges on odd-numbered inputs.

¤ Exercise 5.14 For each of the following equations:

• Characterize the set of all solutions to the equation in the specified solution
domain;

• Use the iterative fixed point technique to determine the least solution to the
equation.

Assume that s :Natseq, p :P(Nat), f :Natfun, and h : Int → Int⊥.

a. s =(cons 2 (cons (head (tail s)) s))

b. s =(cons (1 + (head (tail s))) (cons 3 s))

c. s =(cons 5 (mapinc s)), where mapinc is a function in Natseq → Natseq that
maps every sequence [n1 ,n2 ,n3 , . . .] into the sequence
[(1 + n1), (1 + n2), (1 + n3), . . .]

d. p = {1} ∪{x+ 3 | x ∈ p}

e. p = {1} ∪{2x | x ∈ p}

f. p = {1} ∪{|2x− 4| | x ∈ p}

g. f = λn . (f n)

h. f = λn . (f (1 + n))

i. f = λn . (1 + (f n))

j. f = λn . if (n = 1)
then 0
else if (even? n)

then (1 + (f (n / 2)))
else (f (n + 2))
fi

fi

where even? is a predicate determining if a number is even.

k. h = λi . if (i = 0) then 0 else (h (i − 2)) fi ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

188 CHAPTER 5. FIXED POINTS

¤ Exercise 5.15 Section 5.1.3 sketches an example involving the solution of an
equation on line drawings involving the transformation T . Formalize this example by
completing the following steps:

a. Represent line drawings as an appropriate pointed CPO Lines.

b. Express the transformation T as a continuous function gT in Lines → Lines .

c. Use the iterative fixed point technique to find the least fixed point of gT . ¢

¤ Exercise 5.16 A binary relation R on a set A is a subset of A × A. The reflexive
transitive closure of R is the smallest subset R ′ of A × A satisfying the following
properties:

• If a ∈A, then 〈a, a〉 ∈R ′;

• If 〈a, b〉 is in R ′ and 〈b, c〉 is in R, then 〈a, c〉 is in R ′.

a. Describe how the reflexive transitive closure of a binary relation can be expressed
as an instance of the Least Fixed Point Theorem. What is the pointed CPO?
What is the bottom element? What is the generating function?

b. Use the iterative fixed point technique to determine the reflexive transitive closure
of the following relation on the set {a, b, c, d, e}:

{〈a, c〉, 〈c, e〉, 〈d, a〉, 〈d, b〉, 〈e, c〉} ¢

¤ Exercise 5.17 Show that each of the generating functions gseq1 , gseq2 , gseq3 , gdbl ,

geven0 is continuous. ¢

5.2.7 Continuity and Strictness

We have seen how compound CPOs can be assembled out of component CPOs
using the domain operators ⊥, × , + , *, and → . We have also seen how the
pointedness of a compound CPO is in some cases dependent on the pointedness
of its components.

But a pointed CPO D is not the only prerequisite of the Least Fixed Point
Theorem. The other prerequisite is that the generating function f :D → D
must be continuous. In the examples of the previous section, we waved our
hands about the continuity of the generating functions, but did not actually
prove continuity in any of the cases. The proofs are not difficult, but they are
tedious. Below, we argue that all generating functions that can be expressed in
the metalanguage summarized in Section A.4 are guaranteed to be continuous, so
we generally do not need to worry about the continuity of generating functions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 189

We also introduce strictness, an important property for characterizing functions
on pointed domains.

Recall that metalanguage expressions include:

• constants (both primitive values and primitive functions on such values);

• variables;

• assembly and disassembly operators for compound domains (e.g., 〈 . . . 〉
and Proj i notation for products, Inj i and matching notation for sums,
cons, empty?, head, and tail for sequences, λ abstraction and application
for functions);

• syntactic sugar like if and the generalized pattern-matching version of
matching .

It turns out that all of the assembly and disassembly operators for compound
domains are continuous and that the composition of continuous functions is con-
tinuous (see [Sch86a] for the details). This implies that any function expressed
as a composition of assembly and disassembly operators is continuous. As long
as primitive functions are continuous and the if and matching notations pre-
serve continuity, all functions expressible in this metalanguage subset must be
continuous. Below, we refine our interpretation of primitive functions and the
sugar notations so that continuity is guaranteed.

Assume for now that all primitive domains are flat CPOs. What does it
mean for a function between primitive domains to be continuous? Since all
chains on a flat domain D can contain at most two elements (⊥D and a non-
bottom element d), the continuity of a function f :D → E between flat domains
D and E is equivalent to the following monotonicity condition:

(f ⊥D)vE (f d) .

This condition is only satisfied in the following two cases:

• f maps ⊥D to ⊥E, in which case d can map to any element of E;

• f maps all elements of D to the same non-bottom element of E.

In particular, f is not continuous if it maps ⊥D and d to distinct non-bottom
elements of E.

For example, a function sqr in Nat⊥ → Nat⊥ that maps ⊥Nat⊥ to ⊥Nat⊥

and every number to its square is continuous. So is the constant function three

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

190 CHAPTER 5. FIXED POINTS

that maps every element of Nat⊥ (including ⊥Nat⊥) to 3. But a function f that
maps every non-bottom number n to its square and maps ⊥Nat⊥ to 3 is not
continuous, because (f n) is not a refinement of the approximation (f ⊥Nat⊥)
= 3.

From a computational perspective, the continuity restriction makes sense
because it only permits the modeling of computable functions. Uncomputable
functions cannot be expressed without resorting to non-continuous functions.
The celebrated halting function, which determines whether or not a program
halts on a given input, is an example of an uncomputable function. Intuitively,
the halting function requires a mechanism for detecting whether a computation
is caught in an infinite loop; such a mechanism must map ⊥ to one non-bottom
element and other inputs to different non-bottom elements.

If D and E are pointed domains, a function f :D → E is strict if (f ⊥D)
=⊥E. Otherwise, f is non-strict. For example, the sqr function described
above is strict, while the three function is non-strict. Although strictness and
continuity are orthogonal properties in general, strictness does imply continuity
for functions between flat domains (see Exercise 5.18).

Strictness is important because it captures the operational notion that a
computation will diverge if it depends on an input that diverges. For example,
strictness models the parameter-passing strategies of most modern languages,
in which a procedure call will diverge if the evaluation of any of its arguments
diverges. Non-strictness models the parameter-passing strategies of so-called
lazy languages. See Chapters 7 and 11 for a discussion of these parameter-
passing mechanisms.

When pointed CPOs are manipulated in our metalanguage, we shall assume
the strictness of various operations:

• All the primitive functions on flat domains are strict. When such a function
has multiple arguments, we will assume it is strict in each of its arguments.
Thus, +Nat⊥ returns ⊥Nat⊥ if either argument is ⊥Nat⊥ , and =Nat⊥ returns
⊥Bool⊥ if either argument is ⊥Nat⊥ .

• An if expression is strict in its predicate whenever it is an element of
Bool⊥ rather than Bool. Thus the expression

if x =Nat⊥ y then 3 else 3 fi

is guaranteed to return ⊥Nat⊥ (not 3) if either x or y is ⊥Nat⊥ . Together
with the strictness of =Nat⊥ , the strictness of if predicates thwarts at-
tempts to express non-computable functions. For example, the expression

if x = ⊥Nat⊥ then true else false fi

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.2. FIXED POINT MACHINERY 191

will always return ⊥Bool⊥ .

• A matching expression is strict in its discriminant whenever it is an
element of a pointed CPO. As with the strictness of if predicates, this
restriction matches computational intuitions and prevents the expression
of non-computable functions.

• If D is a pointed domain, we require the head operation on sequences to
be strict on D* under the prefix ordering. That is, (head []) must equal
⊥D. If D is not pointed, or if D* has the sum-of-products ordering, head
is undefined for []; i.e., it is only a partial function.

With the above provisions for strictness, it turns out that all functions express-
ible in the metalanguage are continuous.

Since we often want to specify new strict functions, it is helpful to have
a convenient notation for expressing strictness. If f is any function between
pointed domains D and E, then (strictD ,E f) is a strict version of f . That is,
(strictD ,E f) maps ⊥D to ⊥E and maps every non-bottom element d of D to
(f d). As usual, we will omit the subscripts on strict when they are clear from
context. For example, a strict function in Nat⊥ → Nat⊥ that returns 3 for all
non-bottom inputs can be defined as:

strict-three = (strict (λn . 3)) .

We adopt the abbreviation λ for (strict (λ)), so λn . 3 is another
way to write the above function.

¤ Exercise 5.18

a. Show that strictness and continuity are orthogonal by exhibiting functions in
D → D that have the properties listed below. You may choose different Ds for
different parts.

i. Strict and continuous;

ii. Non-strict and continuous;

iii. Strict and non-continuous;

iv. Non-strict and non-continuous.

b. Which combinations of properties from the previous part cannot be achieved if
D is required to be a flat domain? Justify your answer. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

192 CHAPTER 5. FIXED POINTS

5.3 Reflexive Domains

Reflexive domains are domains that are defined by recursive domain equa-
tions. We have already seen reflexive domains in the context of PostFix:

StackTransform = Stack → Stack
Stack = Value* + Error
Value = Int + StackTransform.

These equations imply that a stack may contain as one of its values a function
that maps stacks to stacks. A simpler example of reflexive domains is provided
by the lambda calculus (see Chapter 6), which is based upon a single domain
Fcn defined as follows:

Fcn = Fcn → Fcn.

We know from set theory that descriptions of sets that contain themselves
(even indirectly) as members are not necessarily well-defined. In fact, a simple
counting argument shows that equations like the above are nonsensical if inter-
preted in the normal set-theoretic way. For example, if we (improperly) view
→ as the domain constructor for set theoretic functions from Fcn to Fcn, by
counting the size of each set we find:

|Fcn| = |Fcn||Fcn |.

For any set Fcn with more than one element, |Fcn ||Fcn| is bigger than |Fcn|.
Even if |Fcn | is infinite, |Fcn||Fcn | is a “bigger” infinity! In the usual theory of
sets, the only solution to this equation is a trivial domain Fcn with one element.
A computational world with a single value is certainly not a very interesting,
and is a far cry from computationally complete world of the lambda calculus!

Dana Scott had the insight that the functions that can be implemented on
a computer are limited to continuous functions. There are fewer continuous
functions than set theoretic functions on a given CPO, since the set theoretic
functions do not have to be monotonic (you can get more information out of
them than you put in!). If we treat → as a constructor that describes com-
putable (continuous) functions and we interpret “equality” in domain equations
as isomorphisms, then we have a much more interesting world. In this world,
we can show an isomorphism between Fcn and Fcn → Fcn:

Fcn ≈ Fcn → Fcn .

The breakthrough came when Scott [Sco77] provided a constructive tech-
nique (the so-called inverse limit construction) that showed how to build
such a domain and prove the isomorphism. Models exist as well for all of the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

5.4. SUMMARY 193

other domain constructors we have introduced (lifting, products, sums, sum-of-
products, prefix ordering of sequences) and as long as we stick to well defined
domain constructors, we can be assured that there is a non-trivial solution to
our reflexive domain equations.

The beauty of this mathematical approach is that there is a formal way of
giving meaning to programming language constructs without any use of compu-
tation. We shall not describe the details of the inverse limit construction here.
For these, see Scott’s 1976 Turing Award Lecture [Sco77], Chapter 11 of Schmidt
[Sch86a], and Chapter 7 of Stoy [Sto85].

It is important to note that this construction requires that certain domains
have bottom elements. For example, in order to solve the PostFix domain
equations, we need to lift the Stack and Answer domains:

StackTransform = Stack → Stack
Stack = (Value* + Error)⊥
Value = Int + StackTransform
Answer = (Int + Error)⊥

This lifting explains how non-termination can “creep in” when PostFix is ex-
tended with dup.

The inverse limit construction is only one way to understand reflexive do-
main equations. Many approaches to interpreting such equations have been
proposed over the years. One popular modern approach is based on the no-
tion of information systems. You can find out more about this approach in
[GS90, Gun92, Win93].

5.4 Summary

Here are the “big ideas” of this chapter:

• The meaning of a recursive definition over a domain D can be understood
as the fixed point of a function D → D.

• Complete partial orders (CPOs) model domain elements as approximations
that are ordered by information. In a CPO, every sequence of information-
consistent approximations has a well-defined limit.

• A CPO D is pointed if it has a least element (bottom, written ⊥D). The
bottom element, which stands for “no information,” is used as a starting
point for the fixed point process. Bottom can be used to represent a partial
function as a total function. It is often used to model computations that
diverge (go into an infinite loop). A function between CPOs is strict if it
preserves bottom.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

194 CHAPTER 5. FIXED POINTS

• Functions between CPOs are monotonic if they preserve the information
ordering and continuous if they preserve the limits. Continuity implies
monotonicity, but not vice versa.

• If D is a pointed CPO, every continuous function f :D → D has a least
fixed point (fixd f) that is defined as the limit of iterating f starting at
⊥D .

• The domain constructors ⊥, × , + , → , and * can be viewed as
operators on CPOs. In particular, D1 → D2 is interpreted as the CPO
of continuous functions from D1 to D2. Only some of these constructors
preserve pointedness. The new domain constructor ⊥ extends a domain
with a new bottom element, guaranteeing that it is pointed.

• Functions that can be expressed in the metalanguage of Section A.4 are
guaranteed to be continuous. Intuitively, such functions correspond to the
computable functions.

• Recursive domain equations that are not solvable when domains are viewed
as sets can become solvable when domains are viewed as CPOs. The key
ideas (due to Scott) are to interpret equality as isomorphism and to focus
only on continuous functions rather than all set-theoretic functions. There
are restricted kinds of CPOs for which any domain equations over a rich
set of operators are guaranteed to have a solution.

Reading

This chapter is based largely on Schmidt’s presentation in Chapter 6 of [Sch86a].
The excellent overview article by Gunter and Scott [GS90] presents alternative
approaches involving more restricted domains and touches upon many technical
details omitted above. See Mosses’s article on denotational semantics [Mos90]
to see how these more restricted domains are used in practice. Gunter’s book
[Gun92] discusses many domain issues in detail.

For an introduction to the techniques of solving recursive domain equations,
see [Sto85, Sch86a, GS90, Gun92, Win93].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 6

FL: A Functional Language

Things used as language are inexhaustible attractive.

— The Philosopher, Ralph Waldo Emerson

6.1 Decomposing Language Descriptions

The study of a programming language can often be simplified if it is decomposed
into three parts:

1. A kernel language that forms the essential core of the language.

2. Syntactic sugar that extends the kernel with convenient constructs. Such
constructs can be automatically translated into kernel constructs via a
process known as desugaring.

3. A standard library of primitive constants and operators supplied with
the language.

We shall refer to the combination of a kernel, syntactic sugar, and a standard
library as a full language to distinguish it from its components.

Decomposing a programming language definition into parts relieves a com-
mon tension in the design and analysis of programming languages. From the
standpoint of reasoning about a language, it is desirable for a language to have
only a few simple parts. However, from the perspective of programming in a
language, it is desirable to concisely and conveniently express common program-
ming idioms. A language that is too pared down may be easy to reason about
but horrendous to program in — try writing factorial in PostFix+{dup}. On

195

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

196 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

the other hand, a language with many features may be convenient to program
in but difficult to reason about — try proving some non-trivial properties about
your next Java, C, Ada, or Common Lisp program.

The technique of viewing a full language as mostly sugar coating around a
kernel lets us have our cake and eat it too. When we want to reason about
the language, we consider only the small kernel upon which everything else is
built. But when we want to program in the language, we make heavy use of the
syntactic sugar and standard library to express what we want in a readable fash-
ion. Indeed, we can even add new syntactic sugar and new primitives without
changing the properties of the kernel.

There are limitations to this approach. We’d like the kernel and full language
to be close enough so that the desugaring is easy to understand. Otherwise we
might have the situation where the kernel is a machine instruction set and the
desugaring is a full-fledged compilation from high-level programs into object
code. For this reason, we require that syntactic sugar be expressed via simple
local transformations; no global program analysis is allowed.

We shall study this language decomposition technique in the context of a
mini-language we call FL (for Functional Language).1 FL provides us with
the opportunity to use the semantic tools developed in the previous chapters to
analyze a programming language that is much closer to a “real” programming
language than PostFix or EL. Along the way, we will introduce two approaches
for modeling names in a programming language: substitution and environments.

FL is a language that examplifies what is traditionally known as the func-
tional programming paradigm. As we shall see, functional programming
languages are characterized by an emphasis on the manipulation of values that
model mathematical functions. The name “functional language” is a little
bit odd, since it suggest that languages not in this paradigm are somehow
dysfunctional — a perception that many functional language aficionados ac-
tively promote! Perhaps function-oriented languages would be a more ac-
curate term for this class of languages.

6.2 The Structure of FL

FL is a typical functional programming language for computing with numeric,
boolean, symbolic, procedural, and compound data values. The computational
model of FL is based on the functional programming paradigm exemplified by

1Our FL language is not to be confused with any other similarly-named language. In partic-
ular, our FL is not related to the FL functional programming language [BWW90, BWW+89]
based on Backus’s FP [Bac78].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 197

such languages as Erlang, FX, Haskell, ML, and Scheme. FL programs
are free of side effects and make heavy use of first-class functional values (here
called procedures2. Syntactically, FL bears a strong resemblance to Scheme,
but semantically we shall see that it is closer to so-called purely functional
lazy languages like Haskell and Miranda.

6.2.1 FLK: The Kernel of the FL Language

We begin by presenting the syntax and informal semantics of FLK, the FL
kernel.

6.2.1.1 The Syntax of FLK

A well-formed FLK program is a member of the syntactic domain Program
defined by the s-expression grammar in Figure 6.1. FLK programs have the
form (flk (Iformal*) Ebody), where Iformal* are the formal parameters of the
program and Ebody is the body expression of the program. Intuitively, the
formal parameters name program inputs and the body expression specifies the
result value computed by the program for its inputs.

FLK expressions are s-expression syntax trees whose leaves are either literals
or variable references. FLK literals include the unit literal, booleans, integers,
and symbols. We adopt the Scheme convention of writing the boolean literals
as #t (true) and #f (false). The unit literal (#u) is used in situations where the
value of an expression is irrelevant, such as contexts in C and Java modeled
by the void type. For symbolic (i.e., non-numeric) processing, FLK supports
the Lisp-like notion of a symbol. Symbols are similar to strings in traditional
languages, except that they a written with a different syntax (using the keyword
symbol rather than double quotes) and they are atomic entities that cannot be
decomposed into their component characters. For simplicity, FLK assumes a
Lisp-like convention in which symbols are sequences of characters (1) that do
not include whitespace, bracket characters ({, }, (,), [,]), or quote characters
(", ‘, ’); (2) that do not begin with #; and (3) in which case is ignored. So
the symbols xcoord, xCoord, and XCOORD are considered equivalent.

2We shall consistently use the term procedure to refer to entities in programming lan-
guages that denote mathematical functions, and function to refer to the mathematical notion
of function. In some languages, these two terms are used to distinguish different kinds of pro-
gramming language entities. For example, in Pascal, “function” refers to a subroutine that
returns a result whereas “procedure” refers to a subroutine performs its work via side effect
and returns no result. Much of the functional programming literature uses the term “function”
to refer both to the programming language entity and the mathematical entity it denotes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

198 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

P ∈ Program
E ∈ Exp
L ∈ Lit
K ∈ Keyword = {call, if, pair, primop, proc, rec, symbol, error}
Y ∈ Symlit = {x, lst, make-point, map tree, 4/3*pi*r^21, . . .}
I ∈ Identifier = Symlit − Keyword
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primop = Defined by standard library (Section 6.2.3).

P ::= (flk (Iformal*) Ebody) [Program]

E ::= L [Literal]
| I [Variable Reference]
| (primop Oname Earg*) [Primitive Application]
| (proc Iformal Ebody) [Abstraction]
| (call Erator Erand) [Application]
| (if Etest Ethen Eelse) [Branch]
| (pair Efst Esnd) [Pairing]
| (rec Ivar Ebody) [Recursion]
| (error Imsg) [Errors]

L ::= #u [Unit Literal]
| B [Boolean Literal]
| N [Integer Literal]
| (symbol I) [Symbolic Literal]

Figure 6.1: An s-expression grammar for FLK

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 199

A key difference between FLK and PostFix/EL is that that FLK provides
constructs (flk, proc, and rec) that introduce names for values. Syntactically,
names are expressed via identifiers. The rules for what constitutes a well-
formed identifier differs from language to language. In FLK we shall assume
that any symbol that is not one of the reserved keywords of the language
(call, if, pair, primop, proc, rec, symbol, and error) can be used as an
identifier. This means that expressions like x-y and 4/3*pi*r^2 are treated
as atomic identifiers in FLK. In many other languages, these would be infix
specifications of trees of binary operator applications.

For compound expressions, FLK supports procedural abstractions (proc)
and applications (call), primitive applications (primop), conditional branches
(if), pair creation (pair), simple recursion (rec), and error signaling (error).

Although many of the syntactic conventions of FLK are borrowed from Lisp-
like languages, especially Scheme, it’s worth emphasizing that FLK differs from
these languages in some fundamental ways. For example, in Scheme, abstrac-
tions may take any number of formal parameters, are introduced via the keyword
lambda, and are invoked via an application syntax with no keyword. In con-
trast, FLK abstractions have exactly one formal parameter, are introduced via
the keyword proc, and are applied via the keyword call.

6.2.1.2 An Informal Semantics for FLK

Intuitively, every FLK expression denotes a value that is tagged with its type in
addition to whatever information distinguishes it from other values of the same
type. The primitive values supported by FLK include the unit value, boolean
truth values, integers, and textual symbols. The unit value is the unique value
of a distinguished type that has a single element. In addition, FLK supports
pairs and procedures. A pair is a compound value that allows any two values
(which may themselves be pairs) to be glued together to form a single value. A
procedure is a value that represents a mathematical function by specifying how
to map an input value to an output value.

We will informally describe the semantics of FLK by considering some sam-
ple evaluations of FLK expressions. We use the notation E −−−−FLK→ V to indicate
that the expression E evaluates to the value V. Here are some example values
that indicate our conventions for writing FLK values:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

200 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

unit The unit value
false , true The boolean values
17 , −3 Integer values
′abstraction , ′captain Symbolic values
procedure Procedural values
〈17 , true〉, 〈procedure , 〈 ′abstraction , unit〉〉 Pair values
error:not-an-integer Errors
∞−loop Non-termination

(represents an infinite loop)

Additionally, the following abbreviation will be handy for representing lists of
values that are encoded as a unit-terminated chain of pairs:

[V1, V2, . . . , Vn] = 〈V1, 〈V2, . . . 〈Vn, unit〉 . . .〉〉

For example, the notation [17 , true, 〈 ′foo, procedure〉] is an abbreviation for a
three-element list values 〈17 , 〈true, 〈〈 ′foo, procedure〉, unit〉〉〉.

Our value notation does not distinguish procedural values that denote differ-
ent mathematical functions. For instance, a squaring procedure and a doubling
procedure are both written procedure . This is because our operational seman-
tics will not allow us to directly observe the function designated by a procedural
value that is the outcome of a program. As explained in Section 3.4.4, inten-
tionally blurring distinctions between certain values is sometimes necessary to
enable program transformations. However, our notation for errors does distin-
guish errors with different messages.

The literal expressions designate constants in the language:

#u −−−−FLK→ unit
#t −−−−FLK→ true
23 −−−−FLK→ 23

(symbol captain) −−−−FLK→ ′captain

The primitive application (primop O E1 . . . En) denotes the result of ap-
plying the primitive operator named by O to the n values of the argument
expressions Ei . The behavior of most of the primitive operators should be ap-
parent from their names. E.g.,

(primop not? #t) −−−−FLK→ false
(primop integer? 1) −−−−FLK→ true
(primop integer? #t) −−−−FLK→ false
(primop + 1 2) −−−−FLK→ 3
(primop / 17 5) −−−−FLK→ 3 {integer division}
(primop rem 17 5) −−−−FLK→ 2
(primop sym=? (symbol captain) (symbol abstraction)) −−−−FLK→ false

(primop sym=? (symbol captain) (symbol Captain)) −−−−FLK→ true

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 201

The last example illustrates that FLK symbols are case-insensitive. The full list
of primitive operations is specified by the FL standard library in Section 6.2.3.

The value of a primitive application is not defined when primitive functions
are given the wrong number of arguments, when an argument has an unexpected
type, or when integer division or remainder by 0 is performed. These situations
are considered program errors:

(primop + 1) −−−−FLK→ error:too-few-args
(primop not? 1) −−−−FLK→ error:not-a-bool
(primop + #t 1) −−−−FLK→ error:not-an-integer

(primop / 1 0) −−−−FLK→ error:divide-by-zero

The abstraction (proc I E) specifies a procedural value that represents a
mathematical function. The application (call E1 E2) stands for the result of
applying the procedure denoted by E1 to the operand value denoted by E2 . It
is an error to use any value other than a procedure as an operator. Multiple-
argument procedures can be simulated by currying (see Section A.2.5.1).

(proc x (primop * x x)) −−−−FLK→ procedure
(call (proc x (primop * x x)) 5) −−−−FLK→ 25
(call (call (proc a (proc b (primop - b a))) 2) 3) −−−−FLK→ 1
(call 3 5) −−−−FLK→ error:non-procedural-rator
(call not? #t) −−−−FLK→ error:unbound-variable
{not? is a primop, not a variable name}

(call (proc x (call x x)) (proc x (call x x))) −−−−FLK→ ∞-loop

As in Haskell, FLK’s procedures are non-strict. This means that a call to
a procedure may return a value even if one of its arguments denotes an error
or a non-terminating computation. Intuitively, non-strictness indicates that an
expression will never be evaluated if the rest of the computation does not require
its value. For example:

(call (proc x 3) (primop / 1 0)) −−−−FLK→ 3
(call (proc x (primop + x 3))

(primop / 1 0)) −−−−FLK→ error:divide-by-zero
(call (proc x 3)

(call (proc x (call x x))

(proc x (call x x)))) −−−−FLK→ 3
(call (proc x (primop + x 3))

(call (proc x (call x x))

(proc x (call x x)))) −−−−FLK→ ∞-loop

Unlike FLK, most real-world languages (including C, Java, Pascal, Scheme,
and ML) have strict procedures. In these langauges, operands of procedure
applications are always evaluated, even if they are never referenced by the pro-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

202 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

cedure body.

The branch expression (if Etest Ethen Eelse) requires the value of Etest to
be a boolean, and evaluates one of Ethen or Eelse depending on whether the test
is true or false:

(if (primop > 8 7) (primop + 2 3) (primop * 2 3)) −−−−FLK→ 5
(if (primop < 8 7) (primop + 2 3) (primop * 2 3)) −−−−FLK→ 6
(if (primop - 8 7) (primop + 2 3) (primop * 2 3))

−−−−FLK→ error:non-bool-in-if-test

The pairing expression (pair Efst Esnd) is the means of gluing two values
together into a single value of the pair type. The values of the two components
can be extracted via the primitive operators fst and snd. A chain pairs linked
by their second components and terminated by the unit value is a standard way
of encoding a list:

(pair 1 (pair 2 (pair 3 #u))) −−−−FLK→ [1 , 2 , 3]

Like procedure calls, pairing in FLK is non-strict. The result of pair is always
a well-defined pair even if one (or both) of its argument expressions is not an
FLK value. The unspecified nature of a contained value can only be detected
when it is extracted from the pair.

(pair (primop not? #f) (primop / 1 0))

−−−−FLK→ 〈true, error:divide-by-zero〉
(primop fst (pair (primop not? #f) (primop / 1 0))) −−−−FLK→ true
(primop snd (pair (primop not? #f) (primop / 1 0)))

−−−−FLK→ error:divide-by-zero

As we shall see in Section 10.1.3, non-strict data structures are an important
mechanism for supporting modularity in programs.

We choose to make pair a special form rather than a primitive like not? or
+ to emphasize the fact that pairing is non-strict. If we made pair a primitive
operator, we would still have to treat it specially when we describe the semantics
of the primop form because all the other primitives are strict. Treating pair as
a special form provides a cleaner description of the semantics. This is a purely
stylistic decision; it is also possible to treat pair as a binary primitive operator
(see Exercise 6.20).

The recursion expression (rec I E) allows the expression of recursion equa-
tions over one variable. The value of the rec expression is the value of its body,
where the value of I within E is the value of the entire rec expression. That is,
the value returned by a recursion is the solution to the equation I = E. rec is
used to specify recursive procedures and data structures. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 203

(rec fact (proc n

(if (primop = n 0)

1

(primop * n (call fact (primop - n 1))))))

−−−−FLK→ procedure {A factorial procedure.}

(rec ones (pair 1 ones))

−−−−FLK→ [1 , 1 , 1 , . . .] {An infinite sequence of 1s.}

FLK programs are parameterized expressions. We use the notation P

−[V1 ,...,Vn]−−−−−−FLK → Vresult to indicate that running the FLK program P on argument
values V1 , . . ., Vn yields the result value Vresult . For example:

(flk (x) (* x x)) −[5]−−−FLK→ 25

(flk (a b) (/ (+ a b) 2)) −[2 ,8]−−−FLK→ 5

(flk (a b) (/ (+ a b) 2)) −[2 ,8 ,11]−−−−−FLK→ error:wrong-number-of-args
(flk (x nums)

(call (rec scale

(proc ys

(if (primop unit? ys) {Is ys the empty list?}
ys {If so, return it;}
(pair {otherwise, prepend the}
(primop * x (primop fst ys)) {scaled first number}
(call scale {to the result of scaling}

(primop snd xs)))))) {the rest of the numbers.}
nums)) −[4 ,[1 ,2 ,3]]−−−−−−FLK → [4 , 8 , 12]

The penultimate example illustrates that it is an error if the number of argu-
ments supplied to the program differs from the number of formal parameters
declared. The final example illustrates that FLK program arguments may in-
clude values other than integers, such as lists of integers in this case.

In general, the values considered to be valid program arguments will be a
proper subset of the values manipulated by a language. In languages such as
C and Java, program arguments must be strings, and these can be parsed into
other kinds of values (such as integers, floating-point numbers, arrays of num-
bers, etc.) where necessary. Program arguments are typically limited to literal
data with simple textual representations, which excludes procedural values as
program arguments. In the case of FLK, we shall assume that program argu-
ments may be any of the literal values (unit, booleans, integers, symbols) and
binary trees (i.e., trees with pair nodes) whose leaves are such literals. Since
s-expressions can be represented as such trees, this will allow us to write FLK
programs that manipulate representations of programming language ASTs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

204 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

This concludes our informal description of the semantics of FLK. While FLK
has considerably more expressive punch than PostFix or FL, expressing even
simple programs within FLK is rather cumbersome. In the next section, we will
see how to extend FLK to another language, FL, that maintains simplicity in
the semantics but yields a language in which it is practical to write (and read!)
non-trivial functional programs.

6.2.2 FL Syntactic Sugar

6.2.2.1 Syntactic Sugar Forms

P ∈ Program
D ∈ Def

SX ∈ SExp
E ∈ Exp
I ∈ Identifier
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}

P ::= (fl (Iformal*) Ebody Ddefinitions*) [Program]

D ::= (define Iname Evalue) [Definition]

E ::= . . . [FLK constructs]
| (lambda (Iformal*) Ebody) [Multi-Abstraction]
| (Erator Erand*) [Multi-Application]
| (list Eelement*) [List]
| (quote SX) [S-Expression]
| ’SX [S-Expression Shorthand]
| (cond (Etest Eaction)* (else Edefault)) [N-Way Branch]
| (scand Econjunct*) [Short-Circuit And]
| (scor Edisjunct*) [Short-Circuit Or]
| (let ((Ivar Edefn)*) Ebody) [Local Binding]
| (letrec ((Ivar Edefn)*) Ebody) [Recursive Binding]

SX ::= I [Symbol]
| #u [Unit]
| B [Boolean]
| N [Integer]
| (SX elt*) [List]

Figure 6.2: Grammar for FL syntactic sugar.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 205

The syntax of FL’s syntactic abbreviations are specified in the grammar
presented in Figure 6.2. In the definition of E, the ellipses . . . stand for all
the expression productions in the FLK grammar. The new expression forms
in Figure 6.2 can be used anywhere the nonterminal E appears in the kernel
FLK constructs as well as in the new syntactic abstractions. We first explain
informally the meaning of each abbreviation before showing how to desugar
them into FLK. Many of these syntactic abbreviations are inspired by constructs
in Lisp dialects, but we shall see that some of them have somewhat different
meanings in FL than in Lisp.

FL’s lambda construct can bind any number (possibly zero) of identifiers
within a procedure body. In the tagless multi-application form, a procedure
can be applied to any number (possibly zero) of arguments. Because multi-
applications are the only tagless form, the lack of an explicit tag is not am-
biguous. Because applications tend to be the most common kind of compound
expression, eliminating the explicit tag for this case makes expressions more con-
cise. The multi-abstraction and multi-application forms are inspired by Scheme
syntax. Unlike Scheme, FL supports implicit currying with these constructs.
For example, suppose that Eabs3 is the three-parameter multi-abstraction

(lambda (a b c) (primop * a (primop + b c))).

Then (Eabs3 2 3 4) denotes 14 , (Eabs3 2 3) denotes the same procedure as
(lambda (c) (primop * 2 (primop + 3 c))), and (Eabs3 2) denotes the same
procedure as (lambda (b c) (primop * 2 (primop + b c))).

The list construct is a shorthand for creating lists by a sequence of nested
pairings. (list E1 . . . En) constructs a unit-terminated, chain of n pairs
linked by their second components where the value of Ei is the value of the
first element of the ith pair in the chain. For example,

(list (primop + 1 2) (primop = 3 4) (pair 4 5))

is equivalent to

(pair (primop + 1 2)

(pair (primop = 3 4)

(pair (pair 4 5)

#u))).

The quote construct facilitates the construction of s-expressions , which
are recursively defined to be literals (unit, numeric, boolean, and symbolic) and
lists of s-expressions. Quoted s-expressions are a very concise way to specify tree-
structured data. The quote form can be viewed as a means of a constructing a
tree from a printed representation of the tree. For example, the s-expression

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

206 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(quote (1 (#t three) (four 5 six)))

is a shorthand for

(list 1

(list #t (symbol three))

(list (symbol four) 5 (symbol six))).

To make the abbreviation even more concise, we adopt the Lisp convention
that ’SX is a shorthand for (quote SX), so the above example can also be
written ’(1 (#t three) (four 5 six)). The ability to express s-expressions
so concisely with the quotation forms makes them very handy for specifying
programs that manipulate program phrases from languages with s-expression
syntax. For example, the PostFix program (postfix 1 (2 mul) exec) can
be represented as the FL s-expression form ’(postfix 1 (2 mul) exec).

The cond construct is an n-way conditional branch that stands for a nested
sequence of if expressions. For example,

(cond ((primop > temp 80) (symbol hot))

((primop < temp 50) (symbol cold))

(else (symbol mild)))

is equivalent to

(if (primop > temp 80)

(symbol hot)

(if (primop < temp 50)

(symbol cold)

(symbol mild))).

The scand and scor expressions provide for so-called short-circuit eval-
uation of boolean conjunctions and disjunctions, respectively. If a false value
is encountered in the left-to-right evaluation of the conjuncts of a scand form,
then the result of the form is the false value, regardless of whether subsequent
conjuncts contain errors or infinite loops. So

(scand (primop = 1 2) (primop / 3 0))

evaluates to false but

(scand (primop / 3 0) (primop = 1 2))

signals a divide-by-zero error. Similarly, if a true value is encountered in the
left-to-right evaluation of the disjuncts of a scor form, then the result of the
form is the true value, regardless of whether the subsequent disjuncts contain
errors or infinite loops.

The (let ((I1 E1) . . . (In En)) E0) expression evaluates E0 in a con-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 207

text where the names I1 . . . In are bound to the values of the expressions E1 . . .
En . For example,

(let ((a (primop * 4 5))

(b (primop + 3 4)))

(/ (primop + a b) (primop - a b)))

evaluates to 2 .
The (letrec ((I1 E1) . . . (In En)) Ebody) expression is similar to the

let expression except that the names I1 . . . In are visible inside of the expressions
E1 . . . En . The letrec expression is similar to the rec expression, except that
it can be thought of as solving a group of mutually recursive equations. For
example,

(letrec ((even? (lambda (x)

(if (primop = x 0)

#t

(odd? (primop - x 1)))))

(odd? (lambda (y)

(if (primop = y 0)

#f

(even? (primop - y 1))))))

(list (even? 0) (odd? 1) (odd? 2) (even? 3)))

evaluates to [true, true , false, false].
The top-level program construct (program (Iformals*) Ebody Ddefinitions*)

evaluates the body expression Ebody in a context where

• the formal program parameters Iformals* are bound to the program argu-
ments;

• the definition names Ddefinitions* in are bound to the values of the corre-
sponding definition expressions;

• and each member of a set of standard identifiers (names in the standard
library) is bound to the value specified by the library.

The advantage of a standard library is that many primitive constants and pro-
cedures can be factored out of the syntax of the language. Of course, it is still
necessary to specify the components of the library somewhere in a language de-
scription. Typically the library is specified by listing all elements in the library
along with a description of the semantics of each one. We will do this for the
FL library in Section 6.2.3.

Definitions make it convenient to name top-level values (typically procedures)
that are used within Ebody . The value expressions of the definitions are evaluated

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

208 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

in a mutually recursive context: the expression in a definition may refer to any
name introduced by the definitions.

Consider the following sample FL program:

(fl (ns) (pair (map even? ns) (map odd? ns))

(define even? (lambda (x)

(if (= x 0)

#t

(odd? (- x 1)))))

(define odd? (lambda (y)

(if (= y 0)

#f

(even? (- y 1)))))

(define map (lambda (f xs)

(if (unit? xs)

xs

(pair (f (fst xs))

(map f (snd xs)))))))

The body expression (pair (map even? ns) (map odd? ns)) refers to the
procedures even?, odd?, and map defined via definitions within P. As above,
even? and odd? are mutually recursive. The fact that standard identifiers are
bound to appropriate procedures in the program body and definitions means
that =, -, unit?, fst, and snd can all be used without the primop tag.

6.2.2.2 Desugaring

The transformation that desugars FL into FLK is presented in Figures 6.3
and 6.4. The transformation is specified by two desugaring functions:

1. Dexp maps an FL expression to a FLK expression.

2. Dprog maps FL programs to FLK programs.

As these desugaring functions walk down FL program and expression ASTs,
they perform local transformations that replace the syntactic sugar constructs
of FL by FLK constructs. Some clauses of the functions require the introduction
of an identifier. In these cases, we want to ensure that the name does not conflict
with any identifiers used by the programmer (or other identifiers introduced by
the rules themselves). An implementation of the desugaring rules will include
a way to generate such new names. We refer to these variables as fresh. (See
page 237 for further discussion of fresh variables.)

In Figure 6.3, the top clauses descend the syntactic constructs of FL that are
inherited from FLK, recursively applying Dexp to all subexpressions. This will

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 209

Dexp : ExpFL → ExpFLK

Dexp[[L]] = L
Dexp[[I]] = I
Dexp[[(primop O E1 . . . En)]] = (primop O Dexp[[E1]] . . . Dexp[[En]])
Dexp[[(call E1 E2)]] = (call Dexp[[E1]] Dexp[[E2]])
Dexp[[(if Etest Ethen Eelse)]] = (if Dexp[[Etest]] Dexp[[Ethen]] Dexp[[Eelse]])
Dexp[[(pair Efst Esnd)]] = (pair Dexp[[Efst]] Dexp[[Esnd]])
Dexp[[(rec Ivar Ebody)]] = (rec Ivar Dexp[[Ebody]])
Dexp[[(error Imsg)]] = (error Imsg)

Dexp[[(lambda () E)]] = (proc Ifresh Dexp[[E]]) , where Ifresh is fresh
Dexp[[(lambda (I) E)]] = (proc I Dexp[[E]])
Dexp[[(lambda (I1 Irest

+) E)]] = (proc I1 Dexp[[(lambda (Irest
+) E)]])

Dexp[[(E)]] = (call Dexp[[E]] #u)
Dexp[[(E1 E2)]] = (call Dexp[[E1]] Dexp[[E2]])
Dexp[[(E1 E2 Erest

+)]] = Dexp[[((call E1 E2) Erest
+)]]

Dexp[[(list)]] = #u

Dexp[[(list E1 Erest*)]] = (pair Dexp[[E1]] Dexp[[(list Erest*)]])

Dexp[[(quote #u)]] = #u

Dexp[[(quote B)]] = B
Dexp[[(quote N)]] = N
Dexp[[(quote I)]] = (symbol I)
Dexp[[(quote (SX 1 . . . SX n))]] = Dexp[[(list (quote SX 1) . . . (quote SX n))]]

Dexp[[(cond (else Edefault))]] = Dexp[[Edefault]]
Dexp[[(cond (Etest1 Eaction1) (Etesti Eactioni)* (else Edefault))]]
= (if Dexp[[Etest1]]

Dexp[[Eaction1]]
Dexp[[(cond (Etesti Eactioni)* (else Edefault))]])

Dexp[[(scand Econjunct*)]] and Dexp[[(scor Edisjunct*)]] Left as exercises.

Dexp[[(let ((I1 E1) . . . (In En)) E0)]]
= Dexp[[((lambda (I1 . . . In) E0) E1 . . . En)]]

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
= Dexp[[(call (rec IchurchList

(proc Iselector
(Iselector (IchurchList (lambda (I1 . . . In) E1))

...

(IchurchList (lambda (I1 . . . In) En)))))
(lambda (I1 . . . In) E0))]]

where IchurchList 6= Iselector are fresh and 6∈
⋃n
i = 0 FreeIds [[Ei]]

Figure 6.3: Desugaring FL expressions into FLK expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

210 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Dprog : ProgramFL → ProgramFLK

Dprog [[(fl (Iformal*) Ebody (define I1 E1) . . . (define In En))]]
= (flk (Iformal*)

Dexp[[(let ((unit? (lambda (x) (primop unit? x)))

(boolean? (lambda (x) (primop boolean? x)))
...

(+ (lambda (x y) (primop + x y)))
...

(unit #u)

(true #t)

(false #f)

(cons (lambda (x y) (pair x y)))

(car (lambda (p) (primop fst p)))

(cdr (lambda (p) (primop snd p)))

(null? (lambda (x) (primop unit? x)))

(null (lambda () #u))

(nil #u)

(equal? . . .) {Definition of this predicate left as an exercise.})
)

(letrec ((I1 E1)
...

(In En))
Ebody))]]

Figure 6.4: Desugaring FL programs into FLK programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 211

expand any syntactic sugar constructs appearing in the subexpressions. Note
that Dexp acts as the identity function when applied to an FLK expression.

The rules for desugaring multi-abstraction into proc and multi-applications
into call are based on the same currying trick that we use extensively in the
metalanguage. (See Exercise 6.15 for an alternative approach to desugaring these
constructs.) The recursive list desugaring creates a unit-terminated chain of
pairs. The recursive quote desugaring descends an s-expression tree and builds
up a corresponding tree of pairs with constants as leaves. The cond construct
desugars into a nested sequence of ifs. The scand and scor desugarings are
left as exercises.

A let desugars into an application of an abstraction. This underscores the
fact that abstractions are a fundamental means of naming in FL. Note that
E1 . . . En are outside the scope of I1 . . . In and therefore cannot refer to the
variables named by these identifiers.

However, in a letrec, the E1 . . . En are inside the scope of I1 . . . In and
should refer to the variables named by these identifiers. Achieving this effect is
challenging. We will present the desugaring in two stages. Suppose that nth is
a standard identifier bound to a procedure that takes a list and an integer n and
returns the nth element of the list (where elements are numbered from 1 up).
Then an almost-correct desugaring for letrec is:

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
=
Dexp[[(let ((Iouter (rec Iinner

(let ((I1 (nth Iinner 1))
...

(In (nth Iinner n)))
(list E1 . . . En)))))

(let ((I1 (nth Iouter 1))
...

(In (nth Iouter n)))
E0))]]

where Iouter 6= Iinner are fresh identifiers

and Iouter , Iinner 6∈ ⋃n
i = 0 FreeIds [[Ei]]

FreeIds is defined in Section 6.3.1 and in Figure 6.10. Assume for the moment
that Iouter and Iinner are brand new names that don’t conflict with any other
names.

The basic idea of the desugaring is this: since rec can only find a single
fixed point, design that fixed point to be a list of the n fixed points we really
want. Inside the rec, the value of formal Iinner (which is a list of length n)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

212 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

is destructured into its n elements, and the list expression is evaluated in a
context where Ii is bound to the ith element of the list. Since let and list are
both non-strict in FL, the solution to the rec is nontrivial. The name Iouter is
bound to the solution of the rec and this list of length n is similarly destructured
so that the body expression E0 can be evaluated in a context where each Ii is
bound to its individual solution.

The above result is an adequate desugaring, but it is complicated, and its use
of the standard identifier nth is not only unaesthetic but also can lead to bugs
due to name capture. For this reason, we will present an alternative desugaring
that is more elegant. This desugaring is based on the same idea but represents
lists as procedures. In this representation, which we shall call a Church list,
an n-element list is a unary procedure whose single argument is an n-argument
selector procedure that is applied to the n elements of the list. If IchurchList is
bound to an n-element Church list, then the application

(IchurchList (lambda (I1 . . . In) Ii))

extracts the ith element of the list. More generally, the application

(IchurchList (lambda (I1 . . . In) E))

returns the value of E in a context where each Ii is bound to the ith element of
the list. Church lists give rise to the desugaring for recursive bindings shown in
Figure 6.3.

Dprog is defined by a single clause, which transforms the definitions and
body of a program using the let and letrec constructs. The desugaring makes
standard identifiers available to the definitions and the body of the program by
using an outer let to binding them to functions that perform the corresponding
primitive applications via primop. Since multi-argument lambdas are used in the
bindings, functions associated with the binary function names are appropriately
curried. For example, in an FL program, (+ 1) stands for the incrementing
function. The standard identifier cons makes FLK’s pair construct available
as a curried FL procedure, and the traditional Lisp names car, cdr, null?, and
nil are provided as synonyms for fst, snd, unit?, and #u. There are a few other
handy synonyms as well. The mutually recursivene nature of the definitions is
implemented by desugaring them into a letrec.

Note that Dexp is applied once again to the result of Dexp on letrec and
Dprog on program.

¤ Exercise 6.1 Provide the missing desugarings for FL’s scand and scor constructs

(see Figure 6.3). ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 213

¤ Exercise 6.2 The desugaring for letrec in Figure 6.4 requires a pair of fresh
identifiers. There is another desugaring for letrec that requires no fresh identifiers
whatsoever. This desugaring has a recursive structure not exhibited by the other ver-
sions. Below is a skeleton of the desugaring.

Dexp[[(letrec ((I1 E1) . . . (In En)) E0)]]
=
Dexp[[(let ((I1 (rec I1 21)) . . . (In (rec In 2n))) E0)]]

where the boxes 2i are to be filled in appropriately.

a. Give the general form for expressions that fill the boxes 2i in such a way that
the above skeleton defines a correct desugaring for letrec.

b. Using your approach, how many recs will appear in a desugaring of a letrec

with 5 bindings?

c. Give a closed form solution for the number of recs that will appear in a desugaring
of a letrec with n bindings.

d. Comment on the practicality of this letrec desugaring. ¢

¤ Exercise 6.3 Two constructs are said to be idempotent (roughly, “of equal power”)
if each can be expressed as a desugaring into the other. For example, multi-argument
procedures and single-argument procedures are idempotent: multi-argument abstrac-
tions and calls can be desugared into single-argument ones via currying; and single-
argument abstractions and calls are a special subcase of the multi-argument ones. On
the other hand, pairs and procedures are not idempotent; although Church’s techniques
give a desugaring of pairs into procedures, procedure abstractions and calls cannot be
desugared into pairs.

We have considered a version of FLK where rec is the kernel recursion construct

and FL’s letrec is desugared into rec. Show that rec and letrec are idempotent by

providing a desugaring of rec into letrec. ¢

¤ Exercise 6.4 Many Lisp dialects support an alternative version of define for
constructing new functions. The syntax is of the form

(define (function-name arg-1 . . . arg-n) function-body)

For example, the squaring function can be defined as:

(define (square x) (* x x))

Extend the desugaring for FL to handle this syntax. Hint: It is easier to add another

processing step for definitions rather than modifying the desugaring of program expres-

sions. ¢

¤ Exercise 6.5 It is often useful for the value of a let-bound variable to depend on
the value of a previous let-bound variable. In the current version of FL, achieving this

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

214 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

behavior requires nested let expressions. For example:

(let ((r (+ 1 2)))

(let ((square-r (* r r)))

(let ((circum (* 2 (* pi square-r))))

. . . code using r, square-r, and circum . . .
)))

Many Lisp dialects support a let* construct that looks just like let except that its
variables are guaranteed to be bound to their associated values in the order that they
appear in the list of bindings. A val expression in let* can refer to the result of
a previous binding within the same let*. Using let*, the above example could be
rendered:

(let* ((r (+ 1 2))

(square-r (* r r))

(circum (* 2 (* pi square-r))))

. . . code using r, square-r, and circum . . .
)

Write an appropriate desugaring for let*. ¢

¤ Exercise 6.6 It is common to create locally recursive procedures and then call
them immediately to start a process. For example, iterative factorial can be expressed
in FL as:

(define fact

(lambda (n)

(letrec ((iter (lambda (num ans)

(if (= num 0)

ans

(iter (- num 1) (* num ans))))))

(iter n 1)))))

Some versions of Lisp have a “named let” or “let loop” construct that makes this
pattern easier to express. The construct is of the form

(let Iname ((Ivar Eval)*) Ebody)

It looks like a let expression except that it has an additional identifier Iname . The n
variables Ivar are first bound to the values Eval and then the Ebody is evaluated in a
context where these bindings are in effect and the name Iname refers to a procedure
of the n variables Ivar that computes Ebody . Using named let, the iterative factorial
construct can be expressed more succinctly as:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 215

(define fact

(lambda (n)

(let iter ((num n) (ans 1))

(if (= num 0)

ans

(iter (- num 1) (* num ans))))))

Extend the desugaring for let to handle named let. ¢

¤ Exercise 6.7 In FL, definitions are only allowed within the program construct

at “top-level”; yet a local form of definition within lambda and let expressions would

often be useful. Generalize the idea of definitions by modifying FL to support local

definitions. Design a syntax for your change, and show how to express it in terms of a

desugaring. ¢

¤ Exercise 6.8 Ben Bitdiddle is upset by the desugaring for nullary (i.e., zero-
argument) abstractions and applications. He argues (correctly) that, according to the
desugarings, the FL expression ((lambda (x) x)) will return #u. He believes that
evaluating this expression should give an error.

One way to fix this problem is to package up multiple arguments into some sort of
data structure. See Exercise 6.15 for an example of this approach. Here we will consider
other approaches for handling nullary abstractions and applications.

a. Bud Lojack suggests desugaring (lambda () E) into E and (E) into E. Give
examples of FL expressions that have a questionable behavior under this desug-
aring.

b. Paula Morwicz suggests a desugaring in which

Dexp[[(E)]] = (call (call Dexp[[E]] #t) #u)

Dexp[[(E1 E2)]] = (call (call Dexp[[E1]] #f) Dexp[[E2]])
Dexp[[(E1 E2 Erest

+)]] = ((call (call Dexp[[E1]] #f) Dexp[[E2]])
Dexp[[Erest

+]])

i. Give the corresponding desugarings for multi-abstractions.

ii. What value does ((lambda (x) x)) have under this desugaring?

c. Ben reasons that the fundamental problem exhibited by the nullary desugarings
is that there is no way to call a procedure without passing it an argument. He
decides to extend FLK with the following kernel forms for parameterless proce-
dures:

(freeze E): Return a “frozen” value that suspends the evaluation of E.

(thaw E): Unsuspends the expression frozen within a frozen value. Gives
an error if called on any value other than one created by freeze.

Show how freeze and thaw can be used to fix Ben’s problem.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

216 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

d. Sam Antix doesn’t like the fact that multi-abstractions and multi-applications
both have three desugaring clauses. Figuring that only two clauses should suffice
in each case, he develops the following desugaring rules based on Ben’s freeze
and thaw commands:

Dexp[[(lambda () E)]] = Dexp[[(freeze E)]]
Dexp[[(lambda (I1 Irest*) E)]]
= (proc I1 Dexp[[(lambda (Irest*) E)]])

Dexp[[(E)]] = Dexp[[(thaw E)]]
Dexp[[(E1 Erest*)]] = Dexp[[((call E1 E2) Dexp[[Erest*]])]]

Discuss the strengths and weaknesses of Sam’s desugaring. ¢

¤ Exercise 6.9† Show that a desugaring process based on the rules in Figures 6.3

and 6.4 is guaranteed to terminate. ¢

6.2.3 The FL Standard Library

The FL standard library is shown in Figure 6.5. All of FLK’s primitives (those
names that can be used in primop) are included as curried procedures. Note
that FL only supports integers and not floating point numbers, so arithmetic
operations like +, *, <=, etc. only work on integers. It would be straightforward
to extend FL to support floating point numbers, and in some code examples
it will be convenient to assume that FL does support floating point numbers.
In such examples, we will use arithmetic operation names prefixed with f to
indicate floating point operations: e.g., f+, f*, and f<=.

The standard library also includes a number of other standard identifiers
that are convenient, such as constants (unit, true, false, and nil), Scheme-
style operations on lists (cons, car, cdr, null?), a generic binary equality tester
(equal?) that tests for equality between any two FL values that are not proce-
dures.

6.2.4 Examples

Although FL is a toy language, it packs a fair bit of expressive punch. In this
section, we illustrate the expressive power of FL in the context of a few examples.

6.2.4.1 List Utilities

As a simple example of FL procedures, consider the list procedures in Figure 6.6.
The list? procedure takes a value and determines if it is a list – i.e., a sequence
of pairs terminated with the unit value. The length procedure returns the length

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 217

Primitives (can be used in primop):
unit? Unary type predicate for the unit value.
boolean? Unary type predicate for booleans.
integer? Unary type predicate for integers.
symbol? Unary type predicate for symbols.
procedure? Unary type predicate for procedures (i.e., a functional value).
pair? Unary type predicate for pairs.

not? Unary boolean negation.
and? Binary boolean conjunction (not short-circuit).
or? Binary boolean disjunction (not short-circuit).
bool=? Binary boolean equality predicate.

+ Binary integer addition.
- Binary integer subtraction.
* Binary integer multiplication.
/ Binary integer division.
% Binary integer remainder.
= Binary integer equality predicate.
!= Binary integer inequality predicate.
< Binary integer less-than predicate.
<= Binary integer less-than-or-equal-to predicate.
> Binary integer greater-than predicate.
>= Binary integer greater-than-or-equal-to predicate.

sym=? Binary symbol equality.

fst Unary selector of the first element of a given pair.
snd Unary selector of the second element of a given pair.

Other Standard Identifiers:
unit The unit value.
true Boolean truth.
false Boolean falsity.

cons Binary list constructor.
car Unary list selector — head of list.
cdr Unary list selector — tail of list.
nil The empty list (synonym for the unit value).
null Unary empty list constructor.
null? Unary empty list predicate.

equal? Generic binary equality test

Figure 6.5: FL Standard Library.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

218 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

of a list. The member? procedure determines if a value is an element of a list.
The merge procedure takes a less-than-or-equal-to predicate leq and two lists
xs and ys that are assumed to be sorted according to this predicate and returns
the sorted list containing all the elements of both lists (including duplicates, if
any). The alts procedure returns a pair of (1) all the odd-indexed3 elements
and (2) all the even-indexed elements of a given list, preserving the relative
order of elements in each sublist. The merge-sort procedure takes an ordering
predicate and a list of elements and returns a list of the same elements ordered
according to the ordering predicate.

Here are some sample uses of these procedures:

(list? 17) −−−FL→ false
(list? (list 7 2 5)) −−−FL→ true

(list? (pair 3 (pair 4 5))) −−−FL→ false

(length (list)) −−−FL→ 0

(length (list 7 2 5)) −−−FL→ 3

(member? 2 (list 7 2 5)) −−−FL→ true
(member? 17 (list 7 2 5)) −−−FL→ false

(member? ’* ’(+ - * /)) −−−FL→ true

(merge < (null) (list 3 4 6)) −−−FL→ [3 , 4 , 6]

(merge < (list 1 6 8) (list 3 4 6)) −−−FL→ [1 , 3 , 4 , 6 , 6 , 8]

(alts (null)) −−−FL→ 〈[], []〉
(alts (list 7)) −−−FL→ 〈[7], []〉
(alts (list 7 2)) −−−FL→ 〈[7], [2]〉
(alts (list 7 2 4 5 1 4 3)) −−−FL→ 〈[7 , 4 , 1 , 3], [2 , 5 , 4]〉

(merge-sort <= (list 7 2 4 1 5 4 3)) −−−FL→ [1 , 2 , 3 , 4 , 4 , 5 , 7]
(merge-sort >= (list 7 2 4 1 5 4 3)) −−−FL→ [7 , 5 , 4 , 4 , 3 , 2 , 1]
(merge-sort (lambda (a b) (<= (% a 4) (% b 4)))

(list 7 2 4 1 5 4 3)) −−−FL→ [4 , 4 , 1 , 5 , 7 , 2 , 3]

3Assume that list elements are indexed starting with 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 219

6.2.4.2 An ELM Interpreter

As a more interesting example of an FL program, in Figure 6.7 we use FL to
write an interpreter for the ELM subset of the EL language (Exercise 3.10).
Recall that ELM is EL without conditional and boolean expressions. The
elm-eval procedure evaluates an ELM expression relative to a list of num-
bers, args, which are the the program inputs. ELM expressions are represented
as FL s-expressions. elm-eval is written as a dispatch on the type of expression,
which is determined by the syntax predicates lit?, arg?, and arithop?. The
selectors lit-num, arg-index, arithop-op, arithop-rand1, arithop-rand2

extract components of syntax nodes. The arg-index procedure returns the
indexth element of the given list nums (where indices are assumed to start at
1). The primop->proc procedure converts a symbol (such as ’+) to a binary
FL procedure (such as the addition procedure +).

Here are some examples of the elm-eval procedure in action:

(elm-eval ’(* (arg 1) (arg 1)) ’(5)) −−−FL→ 25
(elm-eval ’(/ (+ (arg 1) (arg 2)) 2) ’(6 8)) −−−FL→ 7
(elm-eval ’(+ (arg 1) (arg 2)) ’(3)) −−−FL→ error:arg-index-out-of-bounds

6.2.4.3 A Pattern Matcher

Programs that match a pattern against a tree structure are so useful that they
should be part of every programmer’s bag of tricks. Figures 6.8 and 6.9 present
a simple pattern matching program written in FL.

The pattern matcher manipulates trees represented as s-expressions. Pat-
terns are trees whose leaves are either constants (unit, booleans, integers, or
symbols) or pattern variables. We represent the pattern variable named I by
the s-expression (? I). Because of this convention, the symbol ? is considered
special and should never be used as one of the symbol constants in the pattern
or the structure being matched. Examples of legal patterns include:

(? pat)

(The (? adjective) programmer (? adverb) hacked (? noun))

((? a) is equal to (? a))

(((? a) (? b)) is the reflection of ((? b) (? a)))

A pattern p matches an s-expression s if there is some set of bindings between

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

220 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

(define list?

(lambda (val)

(scor (null? val)

(scand (pair? val) (list? (snd val))))))

(define length

(lambda (lst)

(if (null? lst)

0

(+ 1 (length (cdr lst))))))

(define member?

(lambda (elt lst)

(scand (not (null? lst))

(scor (equal? elt (car lst))

(member? elt (cdr lst))))))

(define merge

(lambda (leq xs ys)

(cond ((null? xs) ys)

((null? ys) xs)

((leq (car xs) (car ys))

(cons (car xs) (merge leq (cdr xs) ys)))

(else

(cons (car ys) (merge leq xs (cdr ys)))))))

(define alts

(lambda (ws)

(if (null ws)

(pair (null) (null))

(let ((alts-rest (alts (cdr ws))))

(pair (cons (car ws) (snd alts-rest))

(fst alts-rest))))))

(define merge-sort

(lambda (leq zs)

(if (scor (null? zs) (null? (cdr zs)))

zs

(let ((split (alts zs)))

(merge (fst split) (snd split))))))

Figure 6.6: Some list procedures written in FL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 221

(fl (pgm args)

(cond ((not? (elm-program pgm)) (error ill-formed-program))

((not? (list? args)) (error ill-formed-argument-list))

((not? (= (elm-nargs pgm) (length args)))

(error wrong-number-of-args))

(else (elm-eval (elm-body pgm) args)))

(define elm-eval

(lambda (exp args)

(cond ((lit? exp) (lit-num exp))

((arg? exp) (get-arg (arg-index exp) args))

((arithop? exp)

((primop->proc (arithop-op exp))

(elm-eval (arithop-rand1 exp) args)

(elm-eval (arithop-rand2 exp) args)))

(else (error illegal-expression)))))

(define get-arg

(lambda (index nums)

(cond ((scor (<= index 0) (null? nums))

(error arg-index-out-of-bounds))

((= index 1) (car nums))

(else (get-arg (- index 1) (cdr nums))))))

(define primop->proc

(lambda (sym)

(cond ((sym=? sym ’+) +) ((sym=? sym ’-) -)

((sym=? sym ’*) *) ((sym=? sym ’/) /)

(else (error illegal-op)))))

;; Abstract syntax

(define elm-program?

(lambda (sexp)

(scand (list? sexp) (= (length sexp) 3) (sym=? (car exp) ’elm))))

(define elm-program-nargs (lambda (sexp) (car (cdr sexp))))

(define elm-program-body (lambda (sexp) (car (cdr (cdr sexp)))))

(define lit? integer?)

(define lit-num (lambda (lit) lit))

(define arg?

(lambda (exp)

(scand (list? exp) (= (length exp) 2) (sym=? (car exp) ’arg))))

(define arg-index (lambda (exp) (car (cdr exp))))

(define arithop?

(lambda (exp)

(scand (list? exp) (= (length exp) 3) (member? (car exp) ’(+ - * /)))))

(define arithop-op (lambda (exp) (car exp)))

(define arithop-rand1 (lambda (exp) (car (cdr exp))))

(define arithop-rand2 (lambda (exp) (car (cdr (cdr exp)))))

;; List utilities

(define list? (lambda (sexp) . . .))
(define length (lambda (xs) . . .))
(define member? (lambda (x xs) . . .))

Figure 6.7: An interpreter for ELM, a subset of EL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

222 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

pattern variables and s-expressions such that instantiating the variables with
their bindings in p yields s. Constraints on the form of the pattern can be
specified by using the same pattern variable in more than one place.

For example, consider the pattern ((? a) is equal to (? a)). It matches
the following two s-expressions:

(1 is equal to 1) and

((Ben Bitdiddle) is equal to (Ben Bitdiddle))

but not

(1 is equal to 2) or

(Ben Bitdiddle is equal to Ben Bitdiddle)

In the final example, Ben Bitdiddle is two s-expressions and cannot be matched
by a single pattern.

The entry point of the pattern matcher is the match-sexp procedure, which
takes a pattern and an s-expression as arguments. If the pattern does not
match the s-expression, match-sexp returns the symbol *failed*. Otherwise,
match-sexp returns a dictionary structure that contains pattern variable bind-
ings that make the match successful. match-sexp just passes responsibility to
match-with-dict, which does the real work.

In addition to a pattern and an s-expression, match-with-dict takes a dic-
tionary. It matches the pattern to the s-expression in the context of the dictio-
nary. That is, any match of a variable in the pattern must be consistent with the
binding that is already in the dictionary. In high-level terms, match-with-dict
performs a left-to-right depth-first walk in lock-step over both the pattern tree
and s-expression tree. A dictionary representing the bindings of variables seen
so far flows along this depth-first path. Along the path, the matching process
checks whether:

• an internal node of the pattern tree has the same number of subtrees as
the corresponding internal node of the s-expression.

• a constant leaf in the pattern is matched by exactly the same constant leaf
in the corresponding position of the pattern.

• a variable leaf in the pattern is matched by an s-expression that is consis-
tent with the bindings represented by the current dictionary.

A successful check allows the dictionary to flow to the next part of the path, pos-
sibly extended with a new binding. After an unsuccessful check, the dictionary
is replaced by a failure symbol that propagates through the rest of the path.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.2. THE STRUCTURE OF FL 223

(define match-sexp (lambda (pat sexp)

(match-with-dict pat sexp (dict-empty))))

(define match-with-dict

(lambda (pat sexp dict)

(cond ((failed? dict) dict) ; Propagate failures.

((null? pat)

(if (null? sexp)

dict ; PAT and SEXP both ended.

(fail))) ; PAT ended but SEXP didn’t.

((null? sexp) (fail)) ; SEXP ended but PAT didn’t.

((pattern-constant? pat)

(if (sexp=? pat sexp) dict (fail)))

((pattern-variable? pat)

(dict-bind (pattern-variable-name pat) sexp dict))

(else (match-with-dict (cdr pat)

(cdr sexp)

(match-with-dict (car pat)

(car sexp)

dict))))))

(define pattern-variable?

(lambda (pat) (if (pair? pat)

(sexp=? (car pat) ’?)

#f)))

(define pattern-variable-name (lambda (sexp) (car (cdr sexp))))

(define pattern-constant?

(lambda (p) (or (symbol? p) (integer? p) (boolean? p) (unit? p))))

(define fail (lambda () ’*failed*))

(define failed? (lambda (dict) (sexp=? dict ’*failed*)))

Figure 6.8: A pattern matcher in FL, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

224 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

There are many possible representations for dictionaries. We represent a
dictionary as a list of bindings, where each binding is a pair of a pattern variable
identifier and the associated s-expression.

Examples of using match-sexp:

(match-sexp ’(a short sentence) ’(a short sentence))

−−−FL→ [] {Match succeeds with the empty dictionary.}

(match-sexp ’(a short sentence) ’(a longer sentence))

−−−FL→ ′∗failed∗ {Match failed.}

(match-sexp ’((? article) (? adjective) sentence)

’(a longer sentence))

−−−FL→ [〈 ′article , ′a〉, 〈 ′adjective , ′longer 〉]

;; Can make use of FL’s currying

(define m1 (match-sexp ’((a (b (? c))) (((? c) b) a))))

(m1 ’((a (b (c (d)))) (((c (d)) b) a))) −−−FL→ [〈 ′c, [′c, [′d]]〉]

(m1 ’((a (b (c (d)))) ((((d) c) b) a))) −−−FL→ ′∗failed∗

6.3 Variables and Substitution

Intuitively, the meaning of an FLK abstraction (proc I E) shouldn’t depend
on the particular name chosen for I, which is known as its formal parameter.
Just as we expect the meaning of an integral to be independent of the choice
of the variable of integration (so that

∫ b
a f(x)dx =

∫ b
a f(y)dy), we expect the

meaning of an FLK abstraction to be invariant under a change to the name of its
variable. Thus, the identity abstraction (proc a a) should also be expressible
as (proc x x) or (proc square square). Furthermore, the variable references
named by a, x, and square are logically distinct from any variable references
coincidentally sharing the same name in other expressions.

This section formalizes this intuition about variables in FLK expressions.

6.3.1 Terminology

First, it’s important to tease apart several related but distinct concepts in our
terminology concerning names. We reserve the word variable for the logi-
cal entity that is introduced by an abstraction and is referenced by a variable
reference. The word identifier designates the name that stands for a given
variable within an expression. The identity abstraction discussed above has a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 225

;;; Dictionaries

(define dict-bind

(lambda (sym1 sexp dict)

(let ((value (dict-lookup sym1 dict)))

(cond ((unbound? value)

(dict-adjoin-binding (binding-make sym1 sexp) dict))

((sexp=? value sexp) dict)

(else (fail))))))

(define dict-lookup

(lambda (name dict)

(cond ((dict-empty? dict) (unbound))

((sym=? name (binding-name (dict-first-binding dict)))

(binding-value (dict-first-binding dict)))

(else (dict-lookup name (dict-rest-bindings dict))))))

(define dict-empty (lambda () (list)))

(define dict-empty? null?)

(define dict-adjoin-binding cons)

(define dict-first-binding car)

(define dict-rest-bindings cdr)

(define unbound (lambda () ’*unbound*))

(define unbound? (lambda (sym) (sexp=? sym ’*unbound*)))

;;; Bindings

(define binding-make cons)

(define binding-name car)

(define binding-value cdr)

;; Utilities

(define sexp=?

(lambda (obj1 obj2)

(cond ((unit? obj1) (unit? obj2))

((and (boolean? obj1) (boolean? obj2)) (boolean=? obj1 obj2))

((and (integer? obj1) (integer? obj2)) (= obj1 obj2))

((and (symbol? obj1) (symbol? obj2)) (sym=? obj1 obj2))

((and (pair? obj1) (pair? obj2))

(and (sexp=? (car obj1) (car obj2))

(sexp=? (cdr obj1) (cdr obj2))))

(else #f))))

Figure 6.9: A pattern matcher in FL, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

226 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

single variable, and the identifier that names it is arbitrary. In the expression
(proc x (call x (proc x x))) there are two logically distinct variables, but
they happen to be named by the same identifier.

Sometimes it is useful to distinguish different occurrences of an identifier
or subexpression within an expression. In the expression

(call (proc x x) (proc x x))

there are four occurrences of the identifier x and two occurrences of the subex-
pression (proc x x). In order to refer to a particular occurrence, we can imagine
that each distinct identifier or expression has been numbered from left to right
starting with 1. Thus, we could view the above application as

(call (proc x1 x2)1 (proc x3 x4)2) ,

where the superscripts distinguish the occurrences of an identifier or subexpres-
sion. When we say “the ith occurrence of x” we mean xi .

We shall say that the formal parameter I appearing in an FLK abstraction
(proc I E) is a binding occurrence of I and that the abstraction binds
I. An occurrence of an identifier in an FLK expression I is bound if it is
a binding occurrence or it occurs in the body of some abstraction that binds
I; otherwise, that occurrence of the identifier is said to be free. For exam-
ple, in (proc a (proc b (call a c))), the single occurrence of b and both
occurrences of a are bound, while the single occurrence of c is free. The
freeness or boundness of an identifier occurrence depends on the context in
which the identifier is viewed. Thus, in the previous example, the second oc-
currence of a is free in (call a c) and in (proc b (call a c)) but not in
(proc a (proc b (call a c))). It is possible in one expression to have some
occurrences of an identifier that are bound and other occurrences of the same
identifier that are free. In (call (proc a a) a) the first and second occur-
rences of a are bound, while the third occurrence is free.

An identifier (as opposed to an occurrence of an identifier) is said to be a free
identifier (likewise, bound) in an expression if at least one of its occurrences
is free (likewise, bound) in the expression. For instance, in the expression

(call b (proc a (proc b (call a c)))),

a and b are bound identifiers and b and c are free identifiers. Similarly, a variable
is said to be free (likewise, bound) in an expression if the identifier that names
it is free (likewise, bound). Note that an identifier may be both bound and free
in an expression, but a variable can only be one or the other. An expression
is closed if it contains no free identifiers (or, equivalently, no free variables).
Expressions with free variables often arise when considering subexpressions of a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 227

given expression. For instance, in the subexpression (proc b (call b a)) of
the closed expression (proc a (proc b (call b a))), the identifier a names
a free variable.

Using definition by structural induction, it is straightforward to define func-
tions FreeIds and BoundIds that map FLK expressions to sets of their free and
bound identifiers, respectively. These functions are presented in Figure 6.10.
Both functions have signature

Exp→ P(Identifier)

where P(Identifier) is the power set (set of all subsets) of Identifier. For example,

FreeIds[[(call b (proc a (proc b (call a c))))]] = {b, c}
BoundIds[[(call b (proc a (proc b (call a c))))]] = {a, b}

One subtle note deserves mention. An I that appears within double brackets
on the left hand side of the definitions stands for a variable reference that is
an element of the syntactic domain Exp. On the other hand, an unbracketed I
on the right hand side of the definitions stands for an element of the syntactic
domain Identifier.

¤ Exercise 6.10 For each of the following FLK expressions:

• Indicate for every occurrence of an identifier whether it is bound or free.
• Determine the free identifiers and bound identifiers of the expression.

a. (proc x (call x y))

b. (call (proc z (proc x (call (call x y) z))) z)

c. (call z (proc y (call (proc z (call x y)) z)))

d. (proc x (call (call (proc y (call (proc z (call x r)) y)) y) z)) ¢

6.3.2 General Properties of Variables

Throughout mathematical and computational notation, variables serve as syn-
tactic placeholders that range over some set of semantic entities. Variables are
manipulated in two different kinds of expressions:

1. A variable declaration introduces a new placeholder into an expression.

2. A variable reference uses a placeholder within an expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

228 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

FreeIds : Exp→ P(Identifier)
FreeIds[[L]] = {}
FreeIds[[I]] = {I}

FreeIds[[(primop O E1 . . . En)]] =

n⋃

i=1

FreeIds[[Ei]]

FreeIds[[(proc I E)]] = FreeIds[[E]]− {I}
FreeIds[[(call E1 E2)]] = FreeIds[[E1]] ∪ FreeIds[[E2]]

FreeIds[[(if E1 E2 E3)]] = FreeIds[[E1]]∪FreeIds[[E2]]
∪FreeIds[[E3]]

FreeIds[[(pair E1 E2)]] = FreeIds[[E1]] ∪ FreeIds[[E2]]

FreeIds[[(rec I E)]] = FreeIds[[E]]− {I}

BoundIds : Exp→ P(Identifier)
BoundIds[[L]] = {}
BoundIds[[I]] = {}

BoundIds[[(primop O E1 . . . En)]] =
n⋃

i=1

BoundIds[[Ei]]

BoundIds[[(proc I E)]] = {I} ∪ BoundIds[[E]]

BoundIds[[(call E1 E2)]] = BoundIds[[E1]] ∪ BoundIds[[E2]]

BoundIds[[(if E1 E2 E3)]] = BoundIds[[E1]]∪BoundIds[[E2]]
∪BoundIds[[E3]]

BoundIds[[(pair E1 E2)]] = BoundIds[[E1]] ∪ BoundIds[[E2]]

BoundIds[[(rec I E)]] = {I} ∪ BoundIds[[E]]

Figure 6.10: Definition of the free and bound identifiers of a FLK expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 229

The region of an expression in which a particular variable may be referenced is
called the scope of that variable.

In standard notations, variables are typically represented by identifiers, and
declarations and references are distinguished in the format of expressions. For
example, compare how variables are declared and referenced in notations for
FLK, integration, summation, union, and logical quantification (in each case,
the declaring occurrence of the variable x has been boxed):

(proc x x)

∫ b

a

x d x
n∑

x =1

x2
⋃

x ∈A

x ∀ x .f(x) = g(x)

Notations in which variables are represented by identifiers share the following
properties:

1. Modulo certain restrictions to be discussed shortly, it is possible to con-
sistently rename a variable within its scope without changing the meaning
of the entire expression. Thus, in each of the above notations, the x can
be changed to y without changing the meaning:

(proc y y)

∫ b

a

y dy

n∑

y=1

y2
⋃

y∈A

y ∀y.f(y) = g(y)

2. Within the scope S of a variable I, the declaration of a new variable
with the same name I creates a new scope S ′ in which the outer variable
cannot be referenced. The region S ′ is called a hole in the scope of S.
For example, any reference to x within the empty box (2) in the following
examples would refer to the variable declared by the inner x, not the outer
x.

(proc x (call x (proc x 2)))

∫ b

a

x ·
(∫ x

c

2 dx

)

dx

n∏

x=1

(
x∑

x=1

2

)

⋃

x∈A

〈x,
⋂

x∈B

2〉 ∀x. ((f(x) = g(x)) ∧ ∃x.2)

6.3.3 Abstract Syntax DAGs and Stoy Diagrams

The chief structural feature of variables is that they permit sharing in an ex-
pression: the same variable introduced by a declaration can be used by many
variable reference occurrences. We have said before that syntactic expressions
can be viewed as abstract syntax trees, but since trees allow no sharing of sub-
structure, they are inadequate for illustrating the sharing nature of variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

230 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

We need the more general directed acyclic graph (DAG) to faithfully show the
structure of an expression with variables.

As an example, consider the following FLK expression:4

(call (proc a (call a a)) (proc a (proc b a)))

In this expression, there are two distinct variables named a, and the variable
named by b is declared without being referenced. Figure 6.11 shows an abstract
syntax DAG corresponding to this expression. In the DAG, the three distinct
variables in the expression are represented by distinct nodes labeled variable.

abstraction

application

variable-
reference

variable-
reference

variable

operandoperator

body

application

abstraction

abstraction

variable

variable-
reference

variable

body

body
formal formal formal

Figure 6.11: Abstract syntax DAG for (call (proc a (call a a))

(proc a (proc b a)))

Since sharing is explicit in the structure of the DAG, no identifiers are neces-
sary in the DAG representation of the expression. The key reason variables are
traditionally represented with identifiers is that they allow DAGs to be encoded
within linear and tree-based notational frameworks. Unfortunately, encodings
of DAGs based on identifiers complicate reasoning about expressions because
of incidental properties of the identifiers. For example, the notion of a “hole
in the scope” introduced earlier is not inherent in the nature of variables, but
is a side effect of the fact that when variables are represented by identifiers, a
nested pair of variables can accidentally share the same name. We’ll see below
that identifiers are the major sore spot when defining notions of renaming and
substitution on FLK expressions.

4In the following discussion, we shall focus only on FLK expressions, but the same tech-
niques could be applied to any notation using variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 231

Every closed expression can always be represented by a DAG with no identi-
fiers. However, expressions containing free variables pose a problem because they
contain references to a variable without also containing its declaration. Since
expressions with free variables are common, we’d like to handle them within
the DAG framework. The DAG representation must include the names of any
free identifiers because the names of free identifiers actually matter (for exam-
ple, the expression (proc b (call b a)) does not have the same meaning as
(proc b (call b c)) in every context). Figure 6.12 shows the DAG represen-
tation of (proc b (call b a)). The free variable is declared by a special free
variable node annotated with the name of the variable.

abstraction

application

variable-
reference

variable-
reference

variable

operandoperator

body

variable

free-variable-declaration

avariable

name

formal

Figure 6.12: Abstract syntax DAG for (proc b (call b a))

Abstract syntax DAGs take up a lot of real estate on the printed page, so we
shall use a more compact notation due to Joseph Stoy [Sto85]. Stoy’s notation
is a kind of wiring diagram for expressions in which the position corresponding
to a variable reference is connected by a wire to the position corresponding to
the variable declaration. For example, a Stoy diagram for the expression

(call (proc a (call a a)) (proc a (proc b (proc c (call c a)))))

is

(call (proc (call)) (proc (proc (proc (call))))).

We extend Stoy’s notation to handle free variables by simply leaving every free
variable reference where it occurs in the expression. Thus, the Stoy diagram for
(proc b (call a (call b a))) is:

(proc (call a (call a)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

232 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Observe that all identifiers sharing the same name in a Stoy diagram must name
the same free variable.

6.3.4 Alpha-Equivalence

Since we really care about the implied DAG structure of an expression and not
the vagaries of particular choices of identifiers for variable names, it is natural
to equate FLK expressions that share the same DAG representation. We shall
use the notation

E1 =α E2

(pronounced “E1 is alpha-equivalent to E2”) to mean that E1 and E2 designate
the same abstract syntax DAG. Thus,

(proc a (proc b (call b a))) =α (proc b (proc a (call a b)))

=α (proc one

(proc two (call two one)))

and
(proc b (call b a)) =α (proc c (call c a))

but

(proc a (proc b (call b a))) 6=α (proc a (proc a (call a a)))

and
(proc b (call b a)) 6=α (proc b (call b c))

Since alpha-equivalence is an equivalence relation, it partitions FLK ex-
pressions into equivalence classes that share the same DAG. We shall generally
assume throughout the rest of our discussion on FLK that each FLK expression
serves as a representative of its equivalence class and that syntactic manipula-
tions on expressions are functions on these equivalence classes rather than on
individual expressions. For example, FreeIds is a well-defined function not only
on FLK expressions but also on alpha-equivalence classes of FLK expressions
because

E1 =α E2

implies
FreeIds[[E1]] = FreeIds[[E2]].

On the other hand, BoundIds is not a meaningful function on alpha-equivalence
classes because it depends on syntactic details of an expression that are not
represented in its DAG structure. Thus (proc a a) =α(proc b b), but

BoundIds[[(proc a a)]] = {a} 6=α {b} = BoundIds[[(proc b b)]] .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 233

6.3.5 Renaming and Variable Capture

Equipped with a deeper understanding of the structure of variables, we’re ready
to consider the subtleties of renaming a variable introduced by an abstraction.
A correct variable renaming is one that preserves the alpha-equivalence class of
the expression — i.e., does not alter its abstract syntax DAG or Stoy diagram.
The näıve approach of consistently renaming the declaration occurrence of the
variable and all its references is not always appropriate because of a situation
known as variable capture. There are two kinds of variable capture, both of
which will be illustrated in the following example.

Consider the expression (proc a (proc b (call a c))), whose Stoy dia-
gram is shown below:

(proc (proc (call c)))

Suppose we want to rename the variable named a in this expression. For almost
all possible identifiers, a simple consistent renaming will do. For example, re-
naming a to x produces the expression (proc x (proc b (call x c))) which
has the same Stoy diagram as the original.

Suppose, however, that we choose the identifier b as the new name for
a. Then the näıve renaming method yields (proc b (proc b (call b c))),
whose Stoy diagram,

(proc (proc (call c)))

is not the same as that for the original expression. The inner binding occurrence
of b has created a hole in the scope of the outer binding occurrence of b in
which the outer b cannot be seen. Because an inner abstraction just happens to
bind the new name, all references to the new name within the body of the inner
abstraction are accidentally captured by that abstraction. We shall refer to this
situation as internal variable capture.

A slightly different problem is encountered if we choose c as the new name
for a. In that case, näıve renaming yields (proc c (proc b (call c c))),
whose Stoy diagram is

(proc (proc (call)))

The free identifier c has accidentally been captured by the declaration occur-
rence of the new name. Here the declaration of the new name has captured
a free identifier in the body of the renamed abstraction; above, the internal
abstraction captured a reference to the renamed variable. Since the captured

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

234 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

variable is declared external to the renamed abstraction, we shall refer to this
second situation as external variable capture.

Internal and external variable capture are not unique to FLK. They can
occur in any naming system in which logically distinct variables can accidentally
be identified. As we shall see later, variable capture commonly rears its ugly
head in languages supporting dynamic scoping or macro expansion.

We would like it to be the case that such coincidental choices of identifiers
in renamings do not destroy the structural integrity of an FLK expression. One
way of doing this is to guarantee that each new variable name introduced by a
renaming appears nowhere else in the FLK expression. However, this approach
is overly restrictive and gives little insight into the true nature of the problem.
Below, we shall precisely define a general syntactic renaming operator that avoids
both forms of variable capture.

6.3.6 Substitution

Variable renaming is a special case of a more general syntactic operation on
FLK expressions called substitution. It is often desirable to substitute a given
expression for all free variable references of the variable named by a given iden-
tifier within another expression. For example, we might want to replace each
free a within

(call a (proc b (call (proc a (call a b)) a)))

by the application (call c d) to yield

(call (call c d) (proc b (call (proc a (call a b)) (call c d))))

We use the notation [E/I] to denote a function that maps a given expression
into another expression in which E has been substituted for all free variable
references named by I. Thus, [E1/I]E2 denotes the result of substituting E1 for
the free occurrences of I in E2 . Using this notation, the above example can be
expressed as:

[(call c d)/a](call a (proc b (call (proc a (call a b)) a)))

= (call (call c d) (proc b (call (proc a (call a b)) (call c d))))

A correct substitution is one which preserves the logical structure both of the
expression being substituted (E1) and the expression substituted into (E2) —
except, of course, for the free variable being substituted for. Although substitu-
tion might seem like a straightforward idea, it is plagued with variable capture
subtleties similar to those that lurk in renaming. In fact, several well-known lo-
gicians gave incorrect definitions for substitution before a correct one was found.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 235

As an example of a problematic situation, suppose that (call b d) rather
than (call c d) were being substituted for a in the above example. Since the
expression being substituted into has the Stoy diagram

(call a (proc (call (proc (call)) a))),

[(call b d)/a](call a (proc b (call (proc a (call a b)) a))) should have
the Stoy diagram

(call (call b d) (proc (call (proc (call)) (call b d)))).

However, a näıve syntactic approach to substitution would yield the expression

(call (call b d) (proc b (call (proc a (call a b)) (call b d)))),

whose Stoy diagram,

(call (call b d) (proc (call (proc (call)) (call d)))),

shows that variable capture violates the integrity of the free variable b within
the second occurrence of (call b d).

Figure 6.13 presents a method of substitution that avoids variable capture.
Substitution is defined by structural induction on the expression substituted
into. However, there is sometimes more than one clause per expression type be-
cause some expression types have subcases that depend on interactions between
the variable Isubst being replaced and variables within the expression substituted
into. For example, [E/Isubst]Iexp is E if Isubst and Iexp are syntactically identical,
but is the original expression Iexp if Isubst and Iexp are not the same. These
different subcases are expressed in Figure 6.13 by implicit pattern matching or
explicit restrictions.

As seen in Figure 6.13, most of the rules straightforwardly distribute the
substitution over the subexpressions of an expression. The tricky case is substi-
tuting into a variable declaration construct (proc or rec). For example, consider
the case for proc:

[Enew/Isubst](proc Ibound Ebody),

In the case where Isubst and Ibound are the same, no substitutions can be per-
mitted inside the abstraction because Ibound declares a variable that is distinct
from the one named by Isubst . Without this restriction, we could derive results
like

[b/a](proc a (call a b)) = (proc b (call b b))

in which external variable capture invalidates the purported substitution.
When Isubst and Ibound are distinct, the crucial situation to handle is where

Isubst appears free in Ebody (so a substitution will definitely take place) and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

236 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

[Enew/Isub]L = L

[Enew/Isub]Isub = Enew

[Enew/Isub]Iexpr = Iexpr , where Isub 6= Iexpr

[Enew/Isub](primop O
E1 . . . En)

= (primop O [Enew/Isub]E1 . . . [Enew/Isub]En)

[Enew/Isub](proc Isub Ebody) = (proc Isub Ebody)

[Enew/Isub](proc I Ebody) = (proc Ifresh [Enew/Isub]([Ifresh/I]Ebody)) ,

where Isub 6=I and
Ifresh 6∈{Isub}∪FreeIds[[Enew]]

∪FreeIds[[Ebody]]

[Enew/Isub](call Erator Erand) = (call [Enew/Isub]Erator [Enew/Isub]Erand)

[Enew/Isub](if E1 E2 E3) = (if [Enew/Isub]E1
[Enew/Isub]E2
[Enew/Isub]E3)

[Enew/Isub](pair E1 E2) = (pair [Enew/Isub]E1 [Enew/Isub]E2)

[Enew/Isub](rec Isub Ebody) = (rec Isub Ebody)

[Enew/Isub](rec I Ebody) = (rec Ifresh [Enew/Isub]([Ifresh/I]Ebody)) ,

where Isub 6=I and
Ifresh 6∈{Isub}∪FreeIds[[Enew]]

∪FreeIds[[Ebody]]

Figure 6.13: The definition of substitution.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.3. VARIABLES AND SUBSTITUTION 237

Enew contains a free reference to Ibound . This reference will be captured by the
bound variable of the abstraction unless we’re careful. A simple example of this
situation is:

[b/a](proc b (call b a)).

Here, the substituted expression b contains (in fact, is) a free reference to a
variable whose name happens to be the same as the name of the variable bound
by the abstraction. A näıve substitution would yield (proc b (call b b)),
in which the outer variable named b has been accidentally captured by the
inner variable of the same name. To prevent this internal variable capture, it is
necessary to first consistently rename the bound variable of the abstraction with
an identifier that is not the same as Isubst and is free neither in Enew nor in Ebody .
After this renaming, substitution can be performed on Ebody without threat of
variable capture. In our example, the bound variable b can be renamed to
c, say, yielding the alpha-equivalent abstraction (proc c (call c a)). Then
substitution can be performed on the body to yield the correct expression

(proc c [b/a](call c a)) = (proc c (call c b)).

In the case where Isubst 6=Ibound , it is always correct to perform the described
renaming of the bound variable of the abstraction, but it is not always necessary.
If Isubst is not free in Ebody , renaming is not required because no substitution
will be performed inside the abstraction anyway. And if Ibound doesn’t appear in
Enew , no internal variable capture can arise, and it is safe to directly substitute
into the body of the abstraction without a renaming step.

In the rule for substituting into an abstraction, it is necessary to choose an
identifier that is not the same as Isubst and is free neither in Enew nor in Ebody .
The notion of choosing an identifier that satisfies certain properties often arises
when manipulating syntactic expressions in which variables are represented by
identifiers. Such an identifier is said to be fresh. When describing a syntac-
tic manipulation, it is always necessary to specify any constraints involved in
choosing the fresh identifiers.

Keep in mind that all the complexity for renaming and substitution arises
from dealing with linear (in this case, textual) representations for declaration/ref-
erence relationships that are not linear or even tree-like. If FLK expressions were
represented instead as DAGs or Stoy diagrams, renaming would be unnecessary
and substitution would be straightforward.

¤ Exercise 6.11 Use the definition of substitution in Figure 6.13 to determine the
results of the following substitutions. Assume that fresh identifiers are taken from the
list v1 , v2 , v3 , . . ., and that the first identifier from the list that satisfies the given
constraint is chosen as the fresh identifier.

a. [(call (call b c) d)/a](proc a (proc b (call (call c b) a)))

b. [(call (call b c) d)/b](proc a (proc b (call (call c b) a)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

238 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

c. [(call (call b c) d)/c](proc a (proc b (call (call c b) a)))

d. [(call (call b c) d)/d](proc a (proc b (call (call c b) a)))

e. [(call (call b c) d)/b](proc a (proc b (call c a))) ¢

¤ Exercise 6.12 Consider the case for substituting into proc abstractions,

[Enew/Isubst](proc Ibound Ebody),

where Isubst 6=Ibound . Here Ibound is consistently renamed to be a variable Ifresh that is
not free in either Enew or Ebody and is not equal to Isubst .

a. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6∈FreeIds[[Enew]] were lifted.

b. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6∈FreeIds[[Ebody]] were lifted.

c. Provide an example of an incorrect substitution that would be permitted if the
restriction Ifresh 6=Isubst were lifted.

d. Would it be possible to consistently rename the free variables of Enew (within
both Enew and Ebody) instead of renaming Ibound? Explain your answer, using
examples where appropriate. ¢

¤ Exercise 6.13 Assuming that I1 and I2 are distinct, and that I2 6∈FreeIds[[E1]],
prove the following useful equivalence:

[E1 /I1]([E2 /I2]E3) = [([E1 /I1]E2)/I2]([E1 /I1]E3)

(Hint: Do the proof by induction on the height of E3 .) ¢

¤ Exercise 6.14 The notion of simultaneous substitution is an extension to the
substitution function we have seen. A simultaneous substitution, [E1 . . .En/I1 . . . In],
is a function of a single expression that performs the substitutions [E1/I1] . . .[En/In]
in parallel on that expression. It differs from a sequence of substitutions in that an
Ii appearing in one of the Ej is never substituted for. For example, simultaneous
substitution of I2 for I1 and I1 for I2 in the expression (call I1 I2) swaps the two
identifiers:

[I2 , I1/I1 , I2](call I1 I2) = (call I2 I1)

whereas neither ordering of two single substitutions has this behavior:

[I2/I1]([I1/I2](call I1 I2)) = (call I2 I2)

[I1/I2]([I2/I1](call I1 I2)) = (call I1 I1)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 239

Write a formal definition of simultaneous substitution for FLK. ¢

¤ Exercise 6.15 Suppose that FL is extended with the following constructs for
manipulating tuples of elements:

(tuple E*): Non-strict constructor of a tuple with any number of ele-
ments.

(tuple-ref E i): Suppose i is a positive integer i and E is a tuple t. Return
the ith element of t (assume 1-based indexing).

(tuple? E): Predicate determining if E is a tuple.
(tuple-length E): Returns the number of elements in the tuple.

Tuples provide an alternate way to desugar multi-abstractions and multi-applications.
Multi-applications can package arguments into a tuple that is unpackaged by a multi-
abstraction.

a. Provide tuple-based desugarings for multi-abstractions and multi-applications.
You may find substitution helpful. Explain any design choices that you make.

b. Discuss the advantages and disadvantages of the tuple-based desugaring versus
the desugaring based on currying. ¢

6.4 An Operational Semantics for FLK

6.4.1 An SOS for FLK

Figure 6.14 presents an SOS for FLK. In addition to the semantic domains of
FLK, the SOS uses the following domains:

• The ValueExp domain is a subset of ExpFLK consisting of expressions
that model the values manipulated by FLK programs. The notations
{(symbol I)}, {(proc I E)}, {(pair E1 E2)}, and {(error Imsg)} in-
dicate the set of all expressions that match the given pattern. The value
expressions include all the literals, as well as abstractions (representing
procedural values), pairings (representing pair values), and error expres-
sions.

• Each input to an FLK program is an s-expression value from the SExpVal
domain. This is a subset of ValueExp that excludes all proc and error

forms.

• The Answer domain models final answers in the execution of FLK pro-
grams. It is similar to ValueExp except that it replaces all proc expressions
by the procedure value token procval and replaces all pair expressions

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

240 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Domains

V ∈ ValueExp = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}
∪{(proc I E)} ∪{(pair E1 E2)} ∪{(error Imsg)}

SV ∈ SExpVal = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}
{(pair SV 1 SV 2)}

I ∈ Inputs = SExpVal*
A ∈ Answer = {#u} ∪ Boollit ∪ Intlit ∪ {(symbol I)}

∪{procval} ∪{pairval} ∪{(error Imsg)}

SOS

The FLK SOS has the form FLKSOS = 〈ExpFLK ,⇒,ValueExp, IF ,OF 〉, where:
⇒ is a deterministic transition relation defined in Figures 6.15 and 6.16.

IF : ProgramFLK × Inputs→ ExpFLK
=λ〈(flk (I1 . . . In) Ebody), [SV 1 , . . . ,SV k]〉 .

if n = k then ([SV i/Ai]
n
i=1)Ebody

else (error wrong-number-of-args) fi

OF : ValueExp→ Answer
=λV . matching V

. (proc I E) [] procval

. (pair E1 E2) [] pairval

. elseV endmatching

Figure 6.14: An SOS for FLK.

by the pair value token pairval. These tokens distinguish the types of
procedure and pair values, but the structure of these values is not observ-
able.

The configuration space for the FLK SOS consists of FLK expressions. The
input function IF maps an FLK program and a sequence of s-expression ar-
gument values to an initial configuration by substituting the arguments for the
formal parameter names in the body of the program. The final configurations of
the SOS are modeled by the ValueExp domain. The output function OF erases
the details of all procedure and pair values.

The SOS rewrite relation ⇒ is defined by the rewrite rules in Figures 6.15
and 6.16. Applications are handled by the [call-apply] and [call-operator] rules.
The [call-apply] rule makes use of the FLK substitution operator to evaluate the
application of an abstraction. The [call-operator] progress rule permits rewrites
on the operator. No rewrites are performed on the operand so these rules are
non-strict, like if and unlike primop.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 241

(call (proc I E1) E2)⇒ [E2/I]E1 [call-apply]

E1⇒ E1
′

(call E1 E2)⇒ (call E1
′ E2)

[call-operator]

(if #t E1 E2)⇒E1 [if-true]

(if #f E1 E2)⇒E2 [if-false]

E1⇒E1
′

(if E1 E2 E3)⇒ (if E1
′ E2 E3)

[if-test]

(rec I E)⇒ [(rec I E)/I]E [rec]

E⇒E ′

(primop O E)⇒ (primop O E ′)
[unary-arg]

E1⇒E1
′

(primop O E1 E2)⇒ (primop O E1
′ E2)

[binary-arg-1]

E2⇒E2
′

(primop O V E2)⇒ (primop O V E2
′)

[binary-arg-2]

Figure 6.15: FLK rewrite rules, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

242 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Strict languages would include progress rules for operands of procedure calls
(as FLK does for primitives), and these rules would reflect constraints on evalu-
ation order. However, even strict languages have non-strict conditionals to avoid
errors (e.g., division by zero) and infinite loops (the base case of a recursion, such
as the factorial of 0).

The semantics of recursion is especially simple in the SOS framework. It is
obtained by simply “unwinding” the recursion equation one level. Programmers
often follow the same approach when trying to hand-simulate the behavior of
recursive procedures.

The three progress rules [unary-arg], [binary-arg-1], and [binary-arg-2] suf-
fice for forcing the evaluation of arguments in a primitive application. The
metavariable V in rule [binary-arg-2] is used to express a constraint that the
first operand must be a value; thus the first argument must be fully evalu-
ated before the second argument is evaluated. These three rules are actually
instantiations of a single general rule to evaluate any number of arguments in
left-to-right order:

Ei⇒Ei
′

(primop O V1 . . .Vi−1 Ei . . .En)
⇒(primop O V1 . . .Vi−1 Ei

′ . . .En)
[prim-arg]

where n can be any nonnegative integer (including 0) and i ranges between 0
and n. The notation is intended to indicate that the first i− 1 arguments have
all been fully evaluated, and the ith expression is in the process of evaluation.

A sampling of the remaining primitive operator rules are given in Figure 6.16.
These rules define the behavior of each primitive operator. The calculate func-
tion used in the [+] rule serves the same purpose as it did in the PostFix
SOS.

Like the PostFix SOS, the FLK SOS models most errors with stuck states.
If the final configuration happens to be an error form, then this will be returned
as the outcome of the program. But if a configuration is stuck because it contains
a problematic subexpression such as (primop + 1 #t) or an error form, the
outcome of the program will be stuck. See Exercise 6.21 for an alternative
approach to handle errors in FLK.

6.4.2 Example

Figure 6.17 illustrates a sample proof-structured evaluation of the expression

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 243

• not: (primop not? #f)⇒ #t [not-1]

(primop not? #t)⇒ #f [not-2]

• left and right: (primop left (pair E1 E2))⇒E1 [left]

(primop right (pair E1 E2))⇒E2 [right]

• integer? (other predicates are defined similarly):
(primop integer? N)⇒ #t [integer?-integer]

(primop integer? #u)⇒ #f [integer?-unit]

(primop integer? B)⇒ #f [integer?-boolean]

(primop integer? (symbol I))⇒ #f [integer?-symbol]

(primop integer? (proc I E))⇒ #f [integer?-abstraction]

(primop integer? (pair E1 E2))⇒ #f [integer?-pair]

• and? (or? is defined similarly):
(primop and? #t #t)⇒ #t [and-true-true]

(primop and? #t #f)⇒ #f [and-true-false]

(primop and? #f #t)⇒ #f [and-false-true]

(primop and? #f #f)⇒ #f [and-false-false]

• + (other binary operators are similar, except for / and rem):
(primop + N1 N2)⇒ (calculate + N2 N1) [+]

• / (rem is similar):
(primop / N1 N2)⇒ (calculate / N2 N1),

where N2 6= 0
[/]

Figure 6.16: FLK rewrite rules, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

244 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

based on the above rewriting rules. Each rewriting step is annotated with a
justification that explains how the step follows from previous steps and a rewrite
rule.

A more condensed form of the evaluation in Figure 6.17 treats as a single
rewrite any axiom rewrite in conjunction with any number of rewrites implied by
progress rules. This gives rise to a linear sequence of rewrites, where the rewrite
arrow can be subscripted with the name of the axiom applied. The example
from the figure then becomes:

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

⇒[call-apply] (call (call (proc a (proc b (primop - b a)))

(primop + 4 1))

3)

⇒[call-apply] (call (proc b (primop - b (primop + 4 1)))

3)

⇒[call-apply] (primop - 3 (primop + 4 1))

⇒[+] (primop - 3 5)

⇒[−] -2

¤ Exercise 6.16 Use the rewrite rules to show the evaluation of the following expres-
sions:

a. (primop left (pair 1 (primop not? 3)))

b. (primop left (primop right (primop right

(rec p (pair 1 (pair 2 p))))))

The first expression illustrates the non-strictness of pair while the second illustrates

the unwinding nature of rec. ¢

¤ Exercise 6.17 Since FLK is non-strict, it is not necessary for if to be a dis-
tinguished construct. Instead, if could be a unary primitive operator that returns a
(curried) binary function. That is, instead of being written (if E1 E2 E3), condi-
tionals could be expressed as

(call (call (primop if E1) E2) E3)

Give the rewrite rules for if as a unary primitive operator. ¢

¤ Exercise 6.18 Functional computation in a dynamically typed language can be
viewed as a bureaucracy where envelopes (values containing a type and other informa-
tion) are shuffled around by the interpreting agent that performs the computation.5

In many steps of the computation, envelopes are simply moved around without being

5Phil Agre introduced us to this point of view.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 245

(call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

⇒ (call (proc a (proc b (primop - b a))) 1: call-apply
(primop + 4 1))

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)

⇒ (call (call (proc a (proc b (primop - b a))) 2: 1 & call-operator
(primop + 4 1))

3)

(call (proc a (proc b (primop - b a)))

(primop + 4 1))

⇒ (proc b (primop - b (primop + 4 1))) 3: call-apply

(call (call (proc a (proc b (primop - b a)))

(primop + 4 1))

3)

⇒ (call (proc b (primop - b (primop + 4 1))) 4: 3 & call-operator
3)

(call (proc b (primop - b (primop + 4 1)))

3)

⇒ (primop - 3 (primop + 4 1)) 5: call-apply

(primop + 4 1) ⇒ 5 6: +

(primop - 3 (primop + 4 1)) ⇒ (primop - 3 5) 7: binary-arg-2

(primop - 3 5) ⇒ -2 8: +

(call (call (proc f (call f (primop + 4 1)))

(proc a (proc b (primop - b a))))

3)
∗⇒ -2 9: 2 & 4 & 5 & 7 & 8

Figure 6.17: Example evaluation of an FLK expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

246 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

opened. In the formation of a non-strict pair, for instance, two envelopes are simply
stuffed into a larger envelope without ever having their contents examined. During
other stages — a primitive addition, for instance — the contents (type and content
information) of envelopes must definitely be examined.

With this perspective in mind, for each FLK expression describe when the contents

of envelopes must be examined. In other words, which contexts demand the value of an

expression? ¢

¤ Exercise 6.19 Suppose we want to extend FL with a least construct. Given
a numeric predicate, least returns the least non-negative integer that satisfies the
predicate. For example,

(least (proc (x) (= x (* x x)))) −−−FL→ 0
(least (proc (a) (> (* a a) 10))) −−−FL→ 4
(least (proc (x) (< x 0))) −−−FL→ ∞-loop {Looks, but no solution}
(least (proc (x) x)) −−−FL→ error:Non-bool-in-if-test

a. Must the argument to least always be an abstraction? If so, explain why; if not,
give a counterexample.

b. One way to add least is to extend the syntax of FLK to include (least E) as
a new expression type. Extend the operational semantics of FLK to handle the
least expression. Keep in mind that a SOS has five parts; make the appropriate
modifications to each of the parts.

Hint: In addition to adding (least E) to the configuration space, it is also
desirable to add a configuration of the form (*least* E N). Configurations like
least that are not valid as expressions in the language are often useful for
representing intermediate states of computations.

c. Alternately, least could be written as a user-defined procedure that is standardly
available in the body of a program. Show how to implement least with this
approach. ¢

¤ Exercise 6.20 In FLK, pair is a primitive construct built into the syntax. In a
non-strict language, though, there is no need for pair to be primitive.

a. One option is to include pair as a primitive primop operator. Implement this
change by modifying the operational semantics of FLK.

b. Is it possible to define pair as a user-defined procedure? How would you imple-
ment left, right, and pair? ? ¢

¤ Exercise 6.21 Like the PostFix SOS, the FL SOS uses stuck states to model
errors. For example, all of the following stuck states correspond to error situations:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.4. AN OPERATIONAL SEMANTICS FOR FLK 247

a ; Unbound variable

(primop / 1 0) ; Division by 0

(primop + 1 #t) ; Inappropriate argument type

(primop + 1 2 3) ; Inappropriate number of arguments

(call 1 2) ; Attempt to apply a non-procedure

(if (symbol nonbool) 2 3) ; Non-boolean test in an IF.

Rather than using stuck states to model errors, we can use the fact that ValueExp
includes the form (error Imsg) to explicit represent and propagate errors. For this
approach, the rewrite rules need to (1) convert stuck expressions to an appropriate error
form and (2) propagate error forms so that they eventually become final configurations.
For example, we could have the rule

(call N E)⇒ (error non-procedural-rator) [integer-operator-error]

to express the fact that it is an error to use an integer in the operator position of an
application.

Make all necessary modifications and additions to the FLK rewrite rules in order
to handle the explicit introduction and propagation of error forms. Make sure that
errors propagate appropriately; e.g.,

(primop + 1 (primop / 1 0))

should rewrite to an error because it has a subexpression that rewrites to an error. ¢

¤ Exercise 6.22 After carefully studying the SOS for FLK, Paula Morwicz proclaims
that it is safe to use a naive substitution strategy (i.e., one that does not rename bound
variables) in the [call-apply] and [rec] rules as long as the original expression being
evaluated does not contain any unbound variables (i.e., free identifiers).

a. Show that Paula is right. That is, show that the name capture problems addressed
by the definition of substitution in Figure 6.13 cannot occur during the evaluation
of an FLK expression that has no unbound variables.

b. Give an example of an FLK expression containing an unbound variable that
evaluates to the wrong answer if the the naive substitution strategy is used.

c. Suppose that every FLK expression were alpha-renamed so that all variables had
distinct identifiers and no bound variable used the same identifier as any unbound
variable. Under these conditions, is it always safe to use the naive substitution
strategy? If so, explain; if not, give a counter-example. ¢

¤ Exercise 6.23 After reading up on the the lambda calculus, Sam Antix decides to
experiment with some new rewrite rules for the FL SOS.

a. The first rule he tries is the so-called eta rule:

(proc I (E I))⇒ E,
where I 6∈ FreeIds[[E]]

[eta]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

248 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Although this rule is reasonable in the lambda calculus, it greatly changes the
semantics of FLK. Demonstrate this fact by showing a FLK expression that can
evaluate to two different values along two different transition paths.

b. The eta rule can be made safe by restricting the form of E. Describe such a
restriction, and explain why the rule is safe.

c. After getting rid of the [eta] rule, Sam experiments with a rule that allows rewrites
within the body of an abstraction:

E⇒E ′

(proc I E)⇒ (proc I E ′)
[proc-body]

How does the addition of this rule change the semantics of FLK? For example,
does it make it possible for an expression to rewrite to two different values via
two different transition paths? Does it enable new kinds of transition paths? ¢

6.5 A Denotational Definition for FLK

In this section, we develop a denotational semantics for FLK. A complete deno-
tational semantics for FLK appears in Figures 6.18–6.22. The semantic algebras
for this semantics appear in Figure 6.18, and Figures 6.19 and 6.20 define auxil-
iary functions and values. These definitions provide the landscape that serves as
the backdrop for our future denotational definitions, as well as for the valuation
functions in Figures 6.21 and 6.22.

It is always best to begin a study of a denotational semantics with a careful
look at the semantic algebras. Here is what we can see by looking at the FLK
semantic algebras in Figure 6.18.

The values that can be expressed by an FLK expression are modeled by
the Expressible domain, which is a lifted sum of Value and Error. Errors, like
symbols, are modeled as identifiers.6 Value contains unit, boolean, integer, and
symbol values, as well as pair and procedure values, which are defined recursively
in terms of Expressible. The bottom element of the Expressible domain represents
a non-terminating computation in FLK.

Whereas the SOS for FLK used substitution to model naming, the denota-
tional semantics uses environments as a kind of virtual substitution. When a
value is bound to an identifier, that binding is stored in the environment used to
evaluate expressions within the scope of that binding. Identifiers that represent

6We are being a little loose here. Program identifiers often exclude language key words, like
let. Such restrictions should not be applied to program data or errors.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 249

c ∈ Computation = Expressible
δ ∈ Denotable = Computation
p ∈ Procedure = Denotable → Computation
β ∈ Binding = (Denotable +Unbound)⊥
e ∈ Environment = Identifier→ Binding

Unbound = {unbound}
x ∈ Expressible = (Value + Error)⊥
v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure

Unit = {unit}
i ∈ Int = {. . . , -2, -1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}
y ∈ Sym = Identifier
a ∈ Pair = Computation × Computation

Error = Identifier

Figure 6.18: The semantic algebras for FLK.

variable references are looked up in the current environment. Environments map
identifiers to bindings, where Binding is a lifted sum of denotable values and the
trivial domain Unbound. The trivial element acts as an “unbound marker” that
indicates that an identifier is not bound in an environment.

The environment functions (Figure 6.19) have been updated to be consistent
with the Binding domain. In particular, there is now a distinction between
extend, which associates a name with a denotable in an environment, and bind,
which associates a name with a binding in an environment. The figure introduces
shorthand notation for these functions that will be used in future valuation
clauses.

There is no a priori reason why the class of entities that can be named in an
environment has to be the same as that denoted by arbitrary expressions. For
this reason, there is a separate semantic domain, Denotable, for the set of values
that can be associated with names in environments. There are many possible
relationships between Denotable and Expressible:

• Denotable may be the same as Expressible. This is the case in FL.

• Denotable may be a superset of Expressible — some entities may be named
but not computed. For example, languages in which procedures are not
first-class typically have ways to name procedures (usually via a declara-
tion) even though procedures cannot be values of expressions.

• Denotable may be a subset of Expressible — some entities may be com-
puted, but not named. For example, in certain languages variables cannot

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

250 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Environment operations:

empty-env : Environment
= λI . (Unbound 7→ Binding unbound)

lookup : Environment → Identifier→ Binding
= λeI . (e I)

bind : Environment → Identifier→ Binding → Environment
= λeI1β . λI2 . if (same-identifier? I1 I2) then β else (lookup e I2) fi

(bind e I β) will be abbreviated [I :: β]e; this notation associates to the right:
[I2 :: β2][I1 :: β1]e = [I2 :: β2]([I1 :: β1]e)

extend : Environment → Identifier→ Denotable → Environment
= λeIδ . (bind e I (Denotable 7→ Binding δ))

(extend e I δ) will be abbreviated [I : δ]e; this notation associates to the right:
[I2 : δ2][I1 : δ1]e = [I2 : δ2]([I1 : δ1]e)

Figure 6.19: Auxiliary functions and values for FLK, Part II.

name values that represent errors and nontermination. We shall study this
example in detail when we discuss call-by-value semantics in Chapter 7.

• The relationship between Denotable and Expressible may be more complex.
Consider a language in which procedures are denotable but not express-
ible, and errors are expressible but not denotable. (Fortran is in this
category.)

Thus, the definitions of Denotable and Expressible in the denotational semantics
of a given language contain some important information about high-level features
of the language. The availability of this kind of information is the reason why,
when reading a denotational semantics, it is advisable to first carefully study
domain equations and function signatures before delving into the details of the
valuation functions.

The meaning of an expression with respect to an environment depends on
the formulation of the meaning function used. To provide a level of abstraction,
we will define a new domain called Computation. The Computation domain
names the domain of meanings that we can get from evaluating an expression
in an environment:

E : Exp→ Environment → Computation

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 251

The Computation domain, with the helper functions in Figure 6.20 (described
more below), allows us to factor out some complex details and have compact
clauses in our valuation functions. In FLK, the benefit is largely that we can
factor out much of the error checking. When we extend FL, e.g., in order to add
state in Chapter 8, Computation will become more complex, but it will allow
the valuation functions to remain relatively simple.

The Computation, Denotable, and Value domains all serve as knobs that can
be tweaked to specify different languages. The Procedure domain’s argument
value must be denotable (otherwise the argument could not be named by a
formal parameter).

We assume that the Computation domain comes equipped with a set of helper
functions shown in Figure 6.20. val-to-comp treats a value as computation,
while err-to-comp treats an error as one. with-value is a generalized version
of the various functions we have already seen with this name. It unpackages
a computation into a value (if possible) and applies to this value a function
that returns another computation. In the case where the computation cannot
be coerced to a value, it is passed along unchanged. The other with- functions
(which can be written in terms of with-value), are similar, except that they may
also generate new error computations rather than just passing along old ones.

The valuation functions of Figures 6.21 and 6.22 are relatively compact,
thanks in large part to the Computation abstraction and the associated helper
functions. However, semantics written in this style can take some time to get
used to. It is helpful to keep in mind the signatures of all functions, as well as the
purposes of the various auxiliary functions. To see how much more complicated
the valuation clauses would be, compare the one-line if clause of Figure 6.21
with:

E [[(if E1 E2 E3)]] =
λe . matching (E [[E1]] e)

. (Value 7→ Computation v) [] matching v
. (Bool 7→ Value b) []
if b then (E [[E2]] e) else (E [[E3]] e) fi

. else (err-to-comp non-bool-in-if-test)
endmatching

. else (E [[E1]] e)
endmatching

This sort of error checking would be repeated throughout the valuation clauses.

¤ Exercise 6.24 Recall that the integer division and remainder operators (/ and rem)

are different than other binary operators because they are ill-defined when the second

argument is 0. Write the valuation clause for P [[/]]. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

252 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Usual operations on Bool: not, and, or
Usual operations on Int: +, -, *, /, . . .
Equality operation on Identifier: same-identifier?

val-to-comp : Value → Computation =Value 7→ Computation

err-to-comp : Error → Computation =Error 7→ Computation

den-to-comp : Denotable → Computation =λδ . δ
error-comp : Computation =(err-to-comp error)

with-value : Computation → (Value → Computation)→ Computation
=λcf . matching c

. (Value 7→ Computation v) [] (f v)

. else c
endmatching

with-values : Computation*→ (Value*→ Computation)→ Computation
=λc*f . matching c*

. []Computation [] (f []Value)

. cfst . crest* [] (with-value cfst
(λvfst . (with-values crest* (λvrest* . (f (vfst . vrest*)))))

endmatching

with-boolean-val : Value → (Bool → Computation)→ Computation
=λv . matching v

. (Bool 7→ Value b) [] (f b)

. else (err-to-comp not-a-boolean)
endmatching

Similar for with-unit-val, with-integer-val, with-symbol-val, with-pair-val.

with-boolean-comp : Computation → (Bool → Computation)→ Computation
=λcf . (with-value c (λv . (with-boolean-val v f)))
Similar for with-procedure-comp.

with-denotable : Binding → (Denotable → Computation)→ Computation
=λβ f . matching β

. (Denotable 7→ Binding δ) [] (f δ)

. (Unbound 7→ Binding Unbound) [] (err-to-comp unbound-var)
endmatching

Figure 6.20: Auxiliary functions and values for FLK, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 253

E : Exp→ Environment → Computation
E* : Exp*→ Environment → Computation*
L : Lit→ Value
P : Primop→ Value*→ Computation
B : Boollit→ Bool
N : Intlit→ Int

E [[L]] =λe . (val-to-comp L[[L]])

E [[I]] =λe . (with-denotable (lookup e I) λδ . (den-to-comp δ))

E [[(proc I E)]] =
λe . (val-to-comp (Procedure 7→ Value (λδ . (E [[E]] [I : δ]e))))

E [[(call E1 E2)]] =λe . (with-procedure-comp (E [[E1]] e) (λp . (p (E [[E2]] e))))

E [[(if E1 E2 E3)]] =
λe . (with-boolean-comp (E [[E1]] e) (λb . if b then (E [[E2]] e) else (E [[E3]] e) fi))

E [[(rec I E)]] =λe . (fixComputation (λc . (E [[E]] [I : c]e)))

E [[(pair E1 E2)]] =λe . (val-to-comp (Pair 7→ Value 〈(E [[E1]] e), (E [[E2]] e)〉))

E [[(primop O E*)]] =λe . (with-values (E*[[E*]] e) (λv* . (P [[O]] v*)))

E [[(error I)]] =λe . (err-to-comp I)

E*[[]] =λe . []Computation

E*[[Efst . Erest*]] =λe . (E [[Efst]] e) . (E*[[Erest*]] e)

L[[#u]] = (Unit 7→ Value unit)
L[[B]] = (Bool 7→ Value B[[B]])
L[[N]] = (Int 7→ Value N [[N]])
L[[(symbol I)]] = (Sym 7→ Value I)

B and N defined as usual.

Figure 6.21: Valuation functions for FLK, Part I

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

254 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

P [[not?]] =λv* . matching v*
. [v]Value [] (with-boolean-val

v
λb . (val-to-comp (Bool 7→ Value (not b))))

. else (err-to-comp not?-wrong-number-of-args)
endmatching

P [[left]] =λv* . matching v*
. [v]Value [] (with-pair-val v λclcr . cl)
. else (err-to-comp left-wrong-number-of-args)
endmatching

Similarly for right

P [[integer?]] =
λv* . matching v*

. [v]Value [] matching v
. (Int 7→ Value i) [] (val-to-comp (Bool 7→ Value true))
. else (val-to-comp (Bool 7→ Value false))
endmatching

. else (err-to-comp integer?-wrong-number-of-args)
endmatching

Similarly for other predicates

P [[+]] =λv* . matching v*
. [v1 v2]Value [] (with-integer v1

(λi1 . (with-integer v2
(λi2 . (val-to-comp

(Int 7→ Value (+ i1 i2)))))))
. else (err-to-comp +-wrong-number-of-args)
endmatching

Similarly for other binary operators, except / and rem, which give an error on a
second argument of 0.

Figure 6.22: Valuation functions for FLK, Part II

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

6.5. A DENOTATIONAL DEFINITION FOR FLK 255

¤ Exercise 6.25 In FLK, error expressions take a manifest constant as the name of
the error. There are other possible error strategies. One is to have only a single error
value, which might simplify the semantics while making errors less helpful in practice.
Another approach is to allow the argument of error to be a computed value. If we alter
the syntax of FLK to support the form (error E), then

a. Write the evaluation clause for (error E).

b. What is the meaning of an error expression whose argument results in an error?
¢

¤ Exercise 6.26 Construct an operational semantics for FLK that uses explicit

environments rather than substitutions. [Hint: it is a good idea to introduce a closure

object that pairs a lambda expression with the environment it is evaluated in.] ¢

¤ Exercise 6.27 Write a denotational semantics for FL that does not depend on

its desugaring into FLK. That is, the valuation clauses should directly handle features

such as define, let, letrec, and procedures with multiple arguments. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

256 CHAPTER 6. FL: A FUNCTIONAL LANGUAGE

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 7

Naming

A good name is rather to be chosen than great riches

— Proverbs 22:1

Naming is a central issue in programming language design. The fact that
programming languages use names to refer to various objects and processes is
at the heart of what makes them languages.

At the very least, a programming language must have a primitive set of names
(literals and standard identifiers) and a means of combining the names into com-
pound names (expressions). In a purely functional programming language, every
expression is a name for the value it computes. In FL, for instance, 9, (+ 4 5),
and ((lambda (a) (* a a)) (+ 1 2)) are just three different names for the
number nine. In non-functional languages, there are more complex relationships
between names and values that we shall explore later.

Expressions built merely out of primitives and a means of combination
quickly become complex and cumbersome. Any practical language must also
provide a means of abstraction for abbreviating a long name with a shorter one.
Programming languages typically use symbolic identifiers as abbreviations and
have binding constructs that specify the association between the abbreviation
and the entity for which it stands. FL has the binding constructs lambda, let,
letrec, and define; these are built on top of FLK’s binding constructs: proc
and rec. Using such constructs, it is possible to remove duplications to obtain
more concise, readable, and efficient expressions. For example, naming allows
us to transform the procedure:

257

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

258 CHAPTER 7. NAMING

(lambda (a b c)

(list (+ (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))

(- (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))

into the equivalent procedure:

(lambda (a b c)

(let ((discriminant (sqrt (- (* b b)

(* 4 (* a c)))))

(-b (- 0 b)))

(list (+ -b discriminant)

(- -b discriminant))))

Naming seems like such a simple idea that it’s hard to imagine the subtleties
hidden therein. A sampling of naming facilities in modern programming lan-
guages reveals a surprising number of ways to think about names. Some of the
dimensions along which these facilities vary are:

• Denotable Values: What entities in a language can be named by global
variables? By local variables? By formal parameters of procedures? By
field names of a record?

• Parameter Passing Mechanisms: What is the relationship between the
actual arguments provided to a procedure call and the values named by
the formal parameters of the procedure?

• Scoping: How are new variables declared? Over what part of the program
text and its associated computation does a declaration extend? How are
references to a variable matched up with the associated declaration?

• Name Control: What mechanisms exist for structuring names to minimize
name clashes in large programs?

• Multiple Namespaces: Can an identifier refer to more than one variable
within a single expression?

• Name Capture: Does the language exhibit any name capture problems like
those that cropped up with näıve substitution in FLK?

• Side Effects: Can the value associated with a name change over time?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 259

The goal of this chapter is to explore many of the above dimensions. Our
discussion of FL already introduced some of the basic concepts and terminology
of naming, e.g., scope, free and bound variables, name capture, substitution, and
environments. Here we give a fuller account of the issues involved in naming.
Along the way, we shall pay particular attention to the effects that choices in
naming design have on the expressive power of a language.

Certain naming issues (e.g., side effects, many parameter passing mecha-
nisms) are intertwined with other aspects of dynamic semantics that we will
cover later: state, control, data, nondeterminism, and concurrency. We defer
these topics until the necessary concepts have been introduced.

7.1 Parameter Passing

Procedure application is the inverse operation to procedural abstraction. An
abstraction packages formal parameters together with a body expression that
refers to them, while application unpackages the body and evaluates it in a con-
text where the formal parameters are associated with the arguments to the call.
There are numerous methods for associating the formal parameter names with
the arguments. These methods are called parameter passing mechanisms.
Here we shall focus on two such mechanisms:

• In the call-by-name (CBN) mechanism, a formal parameter names the
computation designated by an unevaluated argument expression. This
corresponds to the non-strict argument evaluation strategy exhibited by
FL in the previous chapter. CBN evolved out of the lambda calculus,
and variants of CBN have found their way into Algol 60 and various
functional programming languages (such as Haskell and Miranda).

• In the call-by-value (CBV) mechanism, a formal parameter names the
value of an evaluated argument expression. This corresponds to the strict
argument evaluation strategy used by most modern languages (e.g., C,
Pascal, Scheme, ML, SmallTalk, PostScript, etc.).

Later we shall explore additional parameter passing mechanisms (e.g., call-by-
denotation on page 275 and call-by-reference in Chapter 8).

7.1.1 Call-by-Name and Call-by-Value: The Operational View

Figure 7.1 summarizes the difference between CBN and CBV in an operational
framework. Both mechanisms share the following progress rule for the operator
of a call expression, which is not shown in the figure:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

260 CHAPTER 7. NAMING

(call (proc I E1) E2)⇒ [E2/I]E1 [cbn-call]

Call-By-Name

E2 ⇒E2
′

(call V1 E2)⇒ (call V1 E2
′)

[cbv-rand-progress]

(call (proc I E1) V)⇒ [V/I]E1 [cbv-call]

Call-By-Value

Figure 7.1: Essential operational semantics of CBN and CBV parameter passing.

E1 ⇒E1
′

(call E1 E2)⇒ (call E1
′ E2)

[rator-progress]

Under CBN, the entire operand expression (not just its value) is substituted
for the formal parameter of the abstraction. Figure 7.2 illustrates how this
substitution works in some particular examples. Notice that the number of
times the operand expression is evaluated under CBN depends on how many
times the formal parameter is used within the body. If the formal is never used,
the operand is never evaluated.

(call (proc x (primop * x x)) (primop + 2 3))

⇒ (primop * (primop + 2 3) (primop + 2 3))

⇒ (primop * 5 (primop + 2 3))

⇒ (primop * 5 5)

⇒ 25

(call (proc x 3) (primop / 1 0)) ⇒ 3

(call (proc x 3) (call (proc a (call a a))

(proc a (call a a)))) ⇒ 3

Figure 7.2: Under CBN, the entire operand expression is substituted for a formal
parameter.

In the CBV strategy, the operand of an application is first completely evalu-
ated, and then the resulting value is substituted for the formal parameter within

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 261

the body of the abstraction. The [cbv-call] rule is only applicable when the
operand of the application is a value in the syntactic domain ValueExp of value
expressions. The [cbv-rand-progress] rule permits evaluation of the operand. To-
gether, these two rules force complete evaluation of the operand position before
substitution.

Figure 7.3 shows some examples of CBV evaluation. The first example shows
that in CBV, the operand expression is evaluated exactly once, regardless of how
many times the formal is needed within the evaluation of the abstraction body.
The other examples illustrate that CBV can yield errors or nontermination in
cases where CBN would return a value.

(call (proc x (primop * x x)) (primop + 2 3))

⇒ (call (proc x (primop * x x)) 5)

⇒ (primop * 5 5)

⇒ 25

(call (proc x 3) (primop / 1 0)) {This stuck expression models
an error.}

(call (proc x 3) (call (proc a (call a a))

(proc a (call a a))))

⇒ (call (proc x 3) (call (proc a (call a a))

(proc a (call a a))))

⇒ . . . {An infinite loop.}

Figure 7.3: Under CBV, argument expressions are evaluated before being sub-
stituted for formal parameters.

Each of the two mechanisms has benefits and drawbacks. The above exam-
ples showed that CBN can evaluate an operand expression multiple times when
the formal parameter is referenced more than once. This is less efficient than
CBV, which is guaranteed to evaluate the operand exactly once. On the other
hand, the CBV strategy of evaluating the operand exactly once may cause the
computation to hang even when the operand value is not required by the pro-
cedure body. This is the situation where the CBN strategy of evaluating the
operand at every parameter reference pays off; since there are no references, the
operand is never evaluated. As Joseph Stoy has noted, CBN means evaluating
the operand as many times as necessary, but sometimes this means no times at
all! In this case CBN is “infinitely” more efficient than CBV, because it produces
an answer when CBV does not.

The CBN mechanism has its roots in the lambda calculus, which is essentially
a pared down version of FL that supports only applications, abstractions, and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

262 CHAPTER 7. NAMING

variable references. CBN corresponds to a leftmost, outermost reduction strat-
egy for the lambda calculus called normal order reduction. An important
feature of normal order reduction in the lambda calculus is that it is guaranteed
to find a normal form (i.e., value) for an expression if one exists. Furthermore,
if any other reduction strategy finds a normal form, it must find the same one
as the normal order strategy (modulo alpha equivalence).

The reduction strategy that corresponds to CBV, i.e., arguments must be
reduced to normal form before substitution for formals, is called applicative
order reduction.

We believe that a similar statement holds for FL:

FLK CBN/CBV Conjecture: If an FLK expression E
∗⇒CBV

V, then E
∗⇒CBN V ′, where V and V ′ are equivalent in some ap-

propriate sense.

The fuzziness of “some appropriate sense” is due to the fact that ValueExp is
different for the two mechanisms. In CBN, ValueExp includes pairs with arbi-
trary expression as parts, while in CBV, it includes only pairs with component
values. As of this writing, we are still fleshing out a formal proof of this conjec-
ture. But the intuition is clear: CBN terminates more often than CBV, and if
they both terminate, they must terminate with “equivalent” values.

From the theoretical perspective, CBN clearly seems superior to CBV. Then
why do so many languages use CBV and hardly any use CBN? As hinted above,
a pragmatic reason is that CBN implies certain implementation overheads. Per-
haps an even more important reason is that CBN and side-effects do not mix. As
we shall see in the next chapter, imperative programs using CBN are notoriously
hard to reason about. But here we shall focus only on the issue of overheads.

As a non-trivial example, let’s compare the CBN and CBV mechanisms on
the following call to an iterative factorial procedure written in FL:1

((rec fact-iter (lambda (n ans)

(if (= n 0)

ans

(fact-iter (- n 1) (* n ans)))))

3 1)

Transition sequences for the two parameter passing mechanisms are shown in
Figures 7.4 and 7.5. In the transition sequences, the abbreviation FACT-ITER
stands for the expression

1We use FL rather than FLK for this example because it would be too cumbersome to
express in FLK. We assume in the example an SOS in which FL expressions are appropriate
configurations. For instance, in this SOS, multi-argument applications are performed in a single
rewrite step.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 263

(rec fact-iter (lambda (n ans)

(if (= n 0)

ans

(fact-iter (- n 1) (* n ans)))))

while the abbreviation UNWOUND-FACT-ITER stands for the expression

(lambda (n ans)

(if (= n 0)

ans

(FACT-ITER (- n 1) (* n ans))))

(FACT-ITER 3 1)
∗⇒ (UNWOUND-FACT-ITER 3 1)
∗⇒ (if (= 3 0) 1 (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (if #f 1 (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER (- 3 1) (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER 2 (* 3 1)))
∗⇒ (UNWOUND-FACT-ITER 2 3)
∗⇒ (if (= 2 0) 3 (FACT-ITER (- 2 1) (* 2 3)))
∗⇒ (if #f 3 (FACT-ITER (- 2 1) (* 2 3)))
∗⇒ (FACT-ITER (- 2 1) (* 2 3))
∗⇒ (UNWOUND-FACT-ITER (- 2 1) (* 2 3))
∗⇒ (UNWOUND-FACT-ITER 1 (* 2 3))
∗⇒ (UNWOUND-FACT-ITER 1 6)
∗⇒ (if (= 1 0) 6 (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (if #f 6 (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (UNWOUND-FACT-ITER (- 1 1) (* 1 6)))
∗⇒ (UNWOUND-FACT-ITER 0 (* 1 6))
∗⇒ (UNWOUND-FACT-ITER 0 6)
∗⇒ (if (= 0 0) 6 (FACT-ITER (- 0 1) (* 0 6)))
∗⇒ 6

Figure 7.4: CBV transition path computing the iterative factorial of 3.

As indicated by the figures, CBN can be much less efficient than CBV. There
are two important sources of overhead:

1. CBN often requires more time2 than CBV in the case where an argument

2Here we assume that the time taken by an evaluation is related to the number of evaluation
steps in the operational semantics. This is often a reasonable assumption.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

264 CHAPTER 7. NAMING

(FACT-ITER 3 1)
∗
⇒ (UNWOUND-FACT-ITER 3 1)
∗
⇒ (if (= 3 0) 1 (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (if #f 1 (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (UNWOUND-FACT-ITER (- 3 1) (* 3 1)))
∗
⇒ (if (= (- 3 1) 0) (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if (= 2 0) (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if #f (* 3 1) (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (UNWOUND-FACT-ITER (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (if (= (- (- 3 1) 1) 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if (= (- 2 1) 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if (= 1 0)

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (if #f

(* (- 3 1) (* 3 1))

(FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))))
∗
⇒ (FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (UNWOUND-FACT-ITER (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))
∗
⇒ (if (= (- (- (- 3 1) 1) 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= (- (- 2 1) 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= (- 1 1) 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1)

(* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if (= 0 0)

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (if #t

(* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))

(FACT-ITER (- (- (- (- 3 1) 1) 1) 1) (* (- (- (- 3 1) 1) 1) (* (- (- 3 1) 1) (* (- 3 1) (* 3 1))))))
∗
⇒ (* (- (- 3 1) 1) (* (- 3 1) (* 3 1)))
∗
⇒ (* (- 2 1) (* (- 3 1) (* 3 1)))
∗
⇒ (* 1 (* (- 3 1) (* 3 1)))
∗
⇒ (* 1 (* 2 (* 3 1)))
∗
⇒ (* 1 (* 2 3))
∗
⇒ (* 1 6)
∗
⇒ 6

Figure 7.5: CBN transition path computing the factorial of 3.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 265

is used more than once in the body of an abstraction, because then the
same argument expression must be evaluated multiple times. For example,
in Figure 7.5, the value of (- 3 1) is calculated five times, compared to
only once in Figure 7.4.

2. CBN often requires more space than CBV because expressions whose values
are not currently needed may grow as their evaluations are deferred until
later. For example, the expression in the ans operand position of a call to
FACT-ITER grows by one multiplication with every recursive call.

In practice, there are techniques for ameliorating both of these sources of
overhead. The time inefficiency is typically finessed by memoization, a tech-
nique that evaluates an operand and caches its value the first time it is refer-
enced. Further references simply return the cached value rather than evaluating
the operand again. We shall bump into it again when we study lazy evaluation
in Chapter 8.

The space overhead is perhaps more insidious. It can be improved by graph-
based expression representations that share substructure, but this trick does not
stop the space consumed by operands for parameters like ans from growing in
size with every call. This problem, known as a dragging tail, is disturbing
because it destroys desirable space management properties for FL. The CBV
version of factorial requires only a constant amount of space to keep track of
control and state variables.3 In contrast, the CBN version requires space for the
unevaluated state variables that grows linearly with the input to factorial. When
executing these kinds of programs on a machine with finite storage resources,
a CBN strategy is more likely to run out of space than a CBV strategy. A
technique called strictness analysis can improve CBN by modifying it to use
CBV for operand evaluation when it is possible to prove that the operand will
be required at least once.

The various tricks for improving CBN make it much more palatable, but the
techniques still require overheads that some implementors find unacceptable.
For example, memoization implies that a flag must be tested at every variable
reference. Since variable references are rather common, the extra check is often
considered prohibitive without special hardware support.

Parameter passing mechanisms are used to describe not only procedure calls,
but also other constructs that bind names to values. For example, FL’s binding
constructs (lambda, let, letrec, and define) have an implicit method for as-
sociating names with values because they desugar into FLK’s abstractions and

3For simplicity, we ignore the fact that the larger numbers required for larger inputs to
factorial actually require more space.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

266 CHAPTER 7. NAMING

applications. We shall assume (unless stated otherwise) that all binding con-
structs inherit their parameter passing mechanism from procedure calls. Thus,
(let ((a (/ 1 0))) 3) evaluates to 3 in a CBN language, but generates an
error in a CBV language.

¤ Exercise 7.1 In a CBV language, it is often useful to delay the evaluation of an
argument until a later time. This behavior can be specified with the pair of constructs
(lazy E) and (touch E). Informally, (lazy E) wraps E up without evaluating it,
while (touch E) unwraps E until it is no longer embedded in a lazy. On a non-lazy
value, touch acts as an identity. For example, in CBV FL:

(touch (+ 1 2)) −−−FL→ 3

(touch (lazy (+ 1 2))) −−−FL→ 3

(touch (lazy (lazy (+ 1 2)))) −−−FL→ 3

(let ((a (lazy (+ 1 2)))

(b (lazy (/ 1 0))))

(touch a)) −−−FL→ 3

(let ((a (lazy (+ 1 2)))

(b (lazy (/ 1 0))))

(touch b)) −−−FL→ error:divide-by-zero

a. Extend the operational semantics of FLK to handle lazy and touch. Recall that
an SOS has five parts; make whatever changes are necessary to each of the parts.

b. Can lazy and touch be implemented by syntactic sugar? If so, give the desug-
arings; if not, explain why.

c. Show how to translate CBN FL into a CBV version of FL that is equipped with
lazy and touch. ¢

¤ Exercise 7.2 The desugaring rule for letrec specified in Section 6.2 was designed
for a CBN language. Does it still work in a CBV language? Explain, using concrete
example(s) to justify your answer.

¢

¤ Exercise 7.3 Show by example that an FL expression that diverges under CBN

need not diverge under CBV. How does this fact relate to the CBN/CBV conjecture

made above? ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 267

7.1.2 Call-by-Name and Call-by-Value:
The Denotational View

The denotational descriptions of CBN and CBV FL semantics have an interest-
ing and important difference. This difference is found in the kinds of things that
a formal parameter can name. In CBN, a formal parameter can name a value, an
error, or a non-terminating computation. In short, a formal parameter in CBN
can name the unrestricted meaning of an FL expression. This makes sense, as
in CBN we conceptually pass an unevaluated expression as an actual parameter,
and we only evaluate an actual parameter when absolutely necessary. In CBN,
a formal parameter can name the arbitrary result of an FL expression. A CBV
FL semantics is substantially more restrictive than a CBN semantics. In CBV,
we can only pass values (e.g., integers, booleans, pairs, etc.) as actual parame-
ters, and thus formal parameters can only name values. As we shall describe in
detail below, the difference in the kinds of entities that can be named by formal
parameters is reflected in the definition of the Denotable domain.

Rather than giving the clauses of the valuation function E in full for each
of the parameter passing mechanisms, we shall only describe clauses for those
constructs that are pertinent to parameter passing: variable references, proc,
and call. (The rec and pair clauses are also relevant, but we defer discussion of
them until later.) The valuation clause for proc is the same for both mechanisms:

E [[(proc I E)]] =λe . (val-to-comp (Procedure 7→ Value (λδ . (E [[E]] [I : δ]e))))

Figure 7.6 gives the denotational semantics for CBN versus CBV. The essen-
tial difference is that CBN environments name elements of Computation while
CBV environments can only name elements of Value. In FL,

Computation = Expressible = (Value + Error)⊥

so that CBN environments can name all expressible values (including error and
divergence), while CBV environments can only name “regular” values.

The CBN domain equation

δ ∈ Denotable = Computation

indicates that a formal parameter can denote any computation, which in the case
of FL includes error and divergence. A CBN procedure can return an element
of Value even when it is passed one of these irregular values. Thus, call-by-name
procedures are not strict. Here’s an example of CBN (where e is an arbitrary
environment):

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

268 CHAPTER 7. NAMING

δ ∈ Denotable = Computation

E [[I]] =λe . (with-denotable (lookup e I) (λδ . δ))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e) (λp . (p (E [[E2]] e))))

Call-By-Name

δ ∈ Denotable = Value

E [[I]] =λe . (with-denotable (lookup e I) (λδ . (val-to-comp δ)))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (with-value (E [[E2]] e) p)))

Call-By-Value

Figure 7.6: Essential denotational semantics of CBN and CBV parameter pass-
ing. For FLK, Computation =Expressible, but the CBN semantics will still be
valid later when Computation is updated to reflect extensions to FLK. Likewise,
the CBV semantics will still be valid when the Value domain is extended.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 269

(E [[(call (proc x 3) (primop / 1 0))]] e)
= (with-procedure (E [[(proc x 3)]] e) (λp . (p (E [[(primop / 1 0)]] e))))
= (with-procedure (val-to-comp

(Procedure 7→Value

(λδ . (E [[3]] [x : δ]e))))
(λp . (p error)))

= ((λδ . (E [[3]] [x : δ]e)) error)
= (E [[3]] [x : error]e)
= (val-to-comp (Int 7→ Value 3))

The CBV domain equation

δ ∈ Denotable = Value

indicates that identifiers may be bound to values such as integers, booleans,
symbols, procedures, and pairs, but may not be bound to objects denoting an
error or nontermination. The treatment of error and bottom is the only semantic
difference between CBV and CBN.

The CBV clause for call uses with-value to guarantee that only elements of
the domain Value are passed to p. This accounts for the strict nature of CBV
evaluation. As an illustration of CBV, let’s once again consider the meaning of
the FLK expression (call (proc x 3) (primop / 1 0)):

(E [[(call (proc x 3) (primop / 1 0))]] e)
= (with-procedure (E [[(proc x 3)]] e)

(λp . (with-value (E [[(primop / 1 0)]] e) p)))
= (with-procedure (E [[(proc x 3)]] e) (λp . (with-value error p)))
= (with-procedure (E [[(proc x 3)]] e) (λp . error))
= (with-procedure (val-to-comp

(Procedure 7→Value

(λδ . (E [[3]] [x : δ]e))))
(λp . error))

= error

7.1.3 Discussion

7.1.3.1 Extensions

Numerous additional features may be layered on top of the above mechanisms
to yield further variations in parameter passing for functional languages. For
example, it is possible to pass parameters by keyword, to specify optional ar-
guments, or to describe formal parameters that are pattern-matched against
arguments that are compound data structures. While these are important ways
of capturing common patterns of usage, they are orthogonal to and less funda-
mental than the CBN vs. CBV distinction. The introduction of side-effects, on

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

270 CHAPTER 7. NAMING

the other hand, will lead to fundamental variations of the above mechanisms.
We will explore these in Chapter 8.

It is possible to include more than one parameter passing mechanism within
a single language. This possibility is explored in Exercise 7.7.

7.1.3.2 Non-Strict vs. Strict Pairs

Data constructors (such as pair) are typically non-strict in a CBN language but
strict in a CBV language. Figure 7.7 summarizes the operational and denota-
tional differences between non-strict and strict pairs. In both perspectives, the
difference boils down to whether the components of pair values must themselves
be values. The figure omits the semantics of the left and right primitives,
which do not differ between the non-strict and strict versions.

7.1.3.3 Denotable vs. Passable Values vs. Component Values

We have assumed in our discussion that every entity that is nameable may be
passed as an argument or bundled into a pair. While this tends to be true
in (and is a major source of power for) functional languages, it is not true
in general. For example, while procedures are almost universally nameable,
there are many languages (e.g., Fortran, Basic, Pascal) in which procedures
cannot be passed as arguments, or can only be passed in a limited way. Similarly,
many languages do not permit data structure components to be procedures.
In order to give an accurate denotational description of such languages, it is
necessary to distinguish the class of nameable entities from those which may be
passed as arguments and those which can be components of data structures. We
could therefore introduce new domains, Passable and Component, that describe
these classes of values.

7.1.3.4 Semantic Derivation of Thunking

The denotational descriptions of parameter passing emphasize that CBN and
CBV differ only in their treatment of error and nontermination. They also give
another perspective on simulating CBN in a CBV language. From a denotational
view, the essence of such a simulation in CBV FL is to find a way of naming error
and ⊥Computation . It is not possible to name these directly in a CBV language,
but it is always possible to name them indirectly, via procedures. For every
computation c, we can construct a procedural value that returns c when called:

(val-to-comp (Procedure 7→ Value (λδ . c)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 271

Operational:

V ∈ ValueExp = . . . ∪ {(pair E1 E2)}

Non-Strict Pairs

V ∈ ValueExp = . . . ∪ {(pair V1 V2)}

E1⇒ E1
′

(pair E1 E2)⇒ (pair E1
′ E2)

[pair-left-progress]

E2⇒E2
′

(pair V1 E2)⇒ (pair V1 E2
′)

[pair-right-progress]

Strict Pairs

Denotational:

a ∈ Pair = Computation × Computation

E [[(pair E1 E2)]] =λe . (val-to-comp (Pair 7→ Value 〈(E [[E1]] e), (E [[E2]] e)〉))

Non-Strict Pairs

a ∈ Pair = Value ×Value

E [[(pair E1 E2)]] =
λe . (with-value (E [[E1]] e)

(λv1 . (with-value (E [[E2]] e)
(λv2 . (val-to-comp (Pair 7→ Value 〈v1 , v2 〉))

Strict Pairs

Figure 7.7: Operational and denotational views of non-strict and strict pairs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

272 CHAPTER 7. NAMING

This means that we can effectively put any computation into an environment
by transforming it into the above form before it is bound to a name and then
perform the inverse transformation when the name is looked up. Since the
parameter δ of the above form is ignored, the transform and its inverse are
equivalent to, respectively, creating a procedure of no arguments (a so-called
thunk) and calling that procedure on no arguments.

7.1.3.5 CBV Versions of rec

In an operational semantics, rec is handled by the same rule regardless of
whether the language is CBN or CBV:

(rec I E)⇒ [(rec I E)/I]E [rec]

Unforutnately, things are not so simple in a denotational semantics. In CBN,
where Denotable =Computation, the valuation clause for a CBN version of rec
is very pretty:

E [[(rec I E)]] =λe . fixComputation (λc . (E [[E]] [I : c]e))

The fixed point defined by this clause is well-defined as long as Computation is
a pointed CPO. For this reason, we will always guarantee that Computation is
a pointed domain.

However, developing a valuation clause for rec in a CBV language is rather
tricky. In CBV, the corresponding version of the CBN clause is:

E [[(rec I E)]] =λe . fixValue(λv . (E [[E]] [I : v]e))

But since Denotable=Value is not a pointed domain, the fixed point is not well
defined, and the clause is nonsensical.

There are several ways of circumventing this impasse. Here we present two
approaches:

1. In (rec I E), we can limit E to a subset of expressions that are syntac-
tically guaranteed to be procedures. In CBV,

Proc = Value → Computation

is pointed (because Computation is always pointed), so it is always possible
to fix over Procedure. That is, suppose we modify the syntax of FLK as
follows:

E ::= . . .
| (rec Ivar Abody) [Recursion]

A ::= (proc Iformal Ebody) [Abstraction]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 273

If we suppose that A is a valuation function of signature

Abstraction→ Environment → Procedure

then rec is definable as:

E [[(rec I A)]] =
λe . (Value 7→ Expressible

(Procedure 7→ Value

(fixProcedure
(λp . ((A [[A]])(extend e

I
(Value 7→ Denotable

(Procedure 7→ Value p))))))))

Unfortunately, the syntactic restriction results in a restriction of the ex-
pressive power of rec. It is no longer possible to specify recursions over
pairs or over procedures whose describing expression is not a manifest
proc. The following examples, though contrived, are indicative of useful
patterns that are disallowed by an approach that requires the body of a
rec to be a manifest abstraction in a CBV language:

(rec ones (pair 1 (lambda () ones)))

(rec fact

(let ((fact-of-0 1))

(lambda (f)

(lambda (n)

(if (= n 0)

fact-of-0

(* n (fact (- n 1))))))))

2. An alternative is to make use of ⊥Binding to compute fixed points. Here is
a version that works in the case of Computation =Expressible:

E [[(rec I E)]] =λe . (fixComputation
(λc . (E [[E]] [I :: (extract-value c)]e))

extract-value : Computation → Binding
=λc . matching c

. (Value 7→ Expressible v) [] (Denotable 7→ Binding v)

. (Error 7→ Expressible error) [] ⊥Binding

endmatching

extract-value coerces a computation into a binding. The resulting binding
is either an element of Denotable =Value, or it is ⊥Binding . (Recall that

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

274 CHAPTER 7. NAMING

matching is strict, so that extract-value maps ⊥Computation to ⊥Binding .)
By effectively naming a bottom element in the environment, this trick gives
a starting point for the fixed-point iteration. It would also be possible to
add a bottom element directly to the Denotable domain, but that would
not faithfully model the intuition behind CBV. The ⊥Binding element helps
to clarify the difference between using bottom to solve a recursion equation
expressed by a rec and allowing bottom to be passed as an argument to
a procedure.

It is worth noting that the extract-value function works only for
Computation=Expressible and needs to be tweaked if the domain of com-
putations changes.

7.1.3.6 The Perils of Reading Denotational Descriptions
Operationally

The valuation clause for call in CBN illustrates the potential dangers of giving
operational interpretations to denotational definitions. If (p (E [[E2]] e)) were
read as if it were, for example, a Lisp or Scheme program fragment, it would
say something like: “First evaluate the expression E2 in the environment e
and then call p on the resulting value.” Unfortunately, this reading introduces
inappropriate notions of evaluation order and time (based on when the argument
is evaluated) that are inherited from the CBV nature of Lisp or Scheme. Such
a reading can cause confusion in the cases where E2 denotes error or bottom;
the reader might (incorrectly) think that, as in Lisp, errors or bottom in an
argument would propagate to errors or bottom for the call.

Rather than reading E as “evaluate” (in the operational sense), it is safer to
read it as “the meaning of.” Thus (p (E [[E2]] e)) means “Apply p to the meaning
of E2 in the environment e.” Additionally, it is important to remember that
the application of a total function (as opposed to the application of a procedure
in a programming language) is well-defined as long as the arguments are in the
appropriate domains. In particular, the result is independent of any evaluation
strategy that might be associated with the metalanguage expressions used to
represent the application. For example, the term

(λy . 3) ((λx . xx) (λx . xx))

denotes 3 even though a CBV-like strategy for equation rewriting would not find
this value.

In the case of (p (E [[E2]] e)), if the meaning of E2 is error or bottom, these
are simply handed to p, which is constructed by the clause for proc. The proc
clause shows that any such argument is simply associated with an identifier in

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 275

the environment, while the variable reference clause indicates that this denotable
value is retrieved upon lookup without any ado.

It is natural to wonder at this point how error or nontermination in an argu-
ment can ever lead to error or nontermination for an application in a CBN lan-
guage. That is, if an argument is simply inserted into the environment upon call
and retrieved upon lookup, who ever actually examines the value denoted by the
argument? There are several spots in the denotational definition where informa-
tion about the values is required. For example, in the clause for [[(call E1 E2)]]
the value of E1 is required to be the denotation of a procedure; the semantics
must check the value to ensure this is the case (such checks are hidden in the
abstraction with-procedure). Similarly, an if clause must not only check that
the test expression denotes a boolean, but also uses the boolean value in order to
determine which arm is denoted by the entire conditional construct. Handling
primitive operators in FLK is perhaps the most common case where details of
the values must be examined.

These facts imply that in any implementation of CBN FLK, the argument
expression E2 cannot be evaluated before the procedure p is invoked. For if E2

initiated a nonterminating computation, p would never be invoked. The moral of
this discussion is that operational conclusions of this sort aren’t always obvious
from a denotational definition. Indeed, factoring out operational concerns is a
source of power for denotational semantics. It is not necessary to worry about
details like the practical implications of binding errors or nontermination in an
environment. Instead, the denotational approach helps us to focus on high-level
descriptions like: “The essential difference between CBN and CBV is that the
former allows errors and nontermination to be named whereas the latter does
not.”

7.1.3.7 Call-by-Denotation

Sometimes a denotational semantics suggests alternative perspectives. A case
in point is call-by-denotation (CBD), a parameter passing mechanism that
is obtained by tweaking call-by-name semantics in a straightforward way (see
Figure 7.8). Whereas call-by-name determines the meaning of an argument
expression relative to the environment available at the point of call, call-by-
denotation instead determines the meaning of an argument expression relative
to the environment where the formal parameter is referenced.

In this case, the domain equation

δ ∈ Denotable = Environment → Computation

indicates that the nameable entities in the language are functions that map

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

276 CHAPTER 7. NAMING

δ ∈ Denotable = Environment → Computation

E [[I]] =λe . (with-denotable (lookup e I) (λδ . (δ e)))

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e) (λp . (p E [[E2]])))

Call-By-Denotation

Figure 7.8: Essential semantics of call-by-denotation.

environments to computations. The call clause simply embeds the actual pa-
rameter in a function of this type. Variable references are handled by applying
the function associated with the variable to the environment in effect where the
variable is referenced.

CBD is not very useful but does model some of the name capture problems
associated with macro expansion. As a somewhat bizarre example of CBD,
consider the meaning of the FL expression

((let ((x 3))

(lambda (y) y))

x)

in an environment e0 in which the identifier x is not bound. In both call-by-name
and call-by-value, the meaning of this expression is an error because the value
of (the outer) x is required but nowhere defined. In call-by-denotation, however,
the body of the identity procedure — i.e., the variable y — will eventually be
evaluated in an environment e1 where x is bound to

(Denotable 7→ Binding (λe . (Value 7→ Expressible (Int 7→ Value 3))))

and y is bound to

(Denotable 7→ Binding (λe . (with-denotable (lookup e x) (λδ . (δ e)))))

(We leave the details of how this point is reached as an exercise.) At this point,
the denotation of y will be applied to e1 , with the following result:

((λe . (with-denotable (lookup e x) (λδ . (δ e)))) e1)
= (with-denotable (lookup e1 x) (λδ . (δ e1)))
= (with-denotable (Denotable 7→ Binding

(λe . (Value 7→ Expressible (Int 7→ Value 3))))
(λδ . (δ e1)))

= ((λδ . (δ e1)) (λe . (Value 7→ Expressible (Int 7→ Value 3))))
= (Value 7→ Expressible (Int 7→ Value 3))

Thus, in a CBD semantics, the meaning of this expression is the number 3!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.1. PARAMETER PASSING 277

The weird behavior of call-by-denotation in this example is due to a kind
of name capture. The evaluation of the outer x yields not what we would
normally think of as a value but an environment accessor that is eventually
applied to an environment with a binding for the inner x. Had the inner x been
named something other than x or y, no capture would have occurred, and the
expression would have denoted an error, as expected. But x is not the only
outer name which would cause trouble; if we replace the outer x by a reference
to y, the expression diverges! (Check it and see.) Because the semantics of call-
by-denotation are so convoluted, it is hardly surprising that this mechanism is
not used in any real programming language. (However, call-by-denotation does
exhibit some of the behavior of macro languages.)

Then what is our purpose in introducing so contrived a mechanism? First,
we wanted to emphasize that in a denotational semantics, names can be bound
to entities much more complex than simple values or expressible values. We
shall see many examples of this in the future. Second, we wanted to emphasize
that just because a mechanism has an elegant denotational description doesn’t
necessarily mean that it is of any use in real programming languages. Although
in some cases denotational descriptions do suggest powerful language constructs,
other extensions suggested by denotational semantics (like call-by-denotation)
turn out to be downright duds.

¤ Exercise 7.4 For each of the following FL expressions, use the denotational se-
mantics to give the meaning of the expression in CBN, CBV, and CBD. (Recall that
let and lambda inherit their semantics from proc.)

a. (let ((x 3)

(y (/ 1 0)))

x)

b. (let ((x 7))

(let ((f (lambda (y) (+ x y))))

(let ((x 10))

(f x))))

c. (let ((x 3))

((let ((y 19))

(lambda (z) y))

x))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

278 CHAPTER 7. NAMING

d. (let ((x 23))

(let ((x x))

x)) ¢

¤ Exercise 7.5

a. Write a single FL expression that has a different meaning in each of the three
parameter passing mechanisms. Give the meaning of your expression in each
mechanism.

b. Bud Lojack hopes to solve part a. above with an expression that evaluates to one
of the symbols call-by-name, call-by-value, or call-by-denotation depend-
ing on which parameter passing mechanism is being used. Kindly explain why
the expression that Bud desires does not exist. ¢

¤ Exercise 7.6

a. Can a CBN FL interpreter be written in CBV FL?

b. Can a CBV FL interpreter be written in CBN FL?

Justify your answers. ¢

¤ Exercise 7.7 In this exercise we explore combining call-by-name and call-by-value
in a single language.

Imagine a languageNAVALNAVAL (NAme/VAlue Language) that is just like CBN
FLK except that (proc I E) has been replaced by the two constructs (vproc I E)
and (nproc I E). Both of these constructs act like proc in that they create single-
argument procedures. The only difference between them is that procedures created by
nproc pass parameters using CBN, while those created by vproc use CBV.

For example:

(call (nproc x 3) (primop / 1 0)) −−−FL→ 3
(call (vproc x 3) (primop / 1 0)) −−−FL→ error:divide-by-zero

a. Provide a denotational semantics for NAVAL (only give those domain equations
and valuation clause that differ from those for CBN FLK). Hint: In a simple
approach to this problem, by-name and by-value procedures can both be elements
of a single Procedure domain. What should Denotable be?

b. Just as it was convenient to extend FLK with the notion of multiple argument
procedures, it would be nice to extend NAVAL with a similar notion. Some
method must be chosen for specifying which parameters are by name and which
are by value. For example, parameters might default to the by-value mechanism,
but could be declared by-name with the token name, as illustrated below:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 279

(define unless

(lambda (test (name default) (name exception))

(if test exception default)))

(unless (= 1 2) (+ 3 4) (/ 5 0)) −−−eval→ [int 7]

Give the rules for desugaring such a multiple-argument lambda construct into
NAVAL’s one-argument nproc and vproc.

c. We have seen how CBN can be simulated in a CBV language using thunks.
Formalize this transformation by showing how to translate NAVAL into CBV
FLK. ¢

¤ Exercise 7.8 Write a program that translates CBN FL into CBV FL. (Note that

a very similar program could be used to translate CBN FL into Scheme.) ¢

¤ Exercise 7.9 Show that when Computation=Expressible, the CBV valuation clause

for rec denotes the same function as the CBN valuation clause for rec. ¢

¤ Exercise 7.10 Use both the operational and denotational rec semantics to compute
the values of the following expressions in both CBN and CBV versions of FL:

a. (rec a 4)

b. (rec a (1 0))

c. (rec a a)

d. (rec a b)

e. (rec a (if #t 3 a))

f. (rec a (lambda (x) a))

g. (rec a (pair 1 a))

h. (rec a (pair (lambda (x) a)))

i. (let ((b 3)) (rec a b)) ¢

7.2 Name Control

The phrase “too much of a good thing” evokes images such as a child getting a
stomach ache after eating too much candy or the crew of the starship Enterprise
being swamped by the cute but prolific tribbles. The recent explosion in infor-
mation technology has added a new twist to this phrase. Information consumers,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

280 CHAPTER 7. NAMING

such as television viewers, magazine subscribers, and readers of electronic mail,
now have rapid access to incredible stores of information. But these changes in
the information landscape have brought new problems, perhaps the most daunt-
ing of which is information overload: there is simply too much information to
weed through, to absorb, to remember.

The area of naming in programming languages harbors its own version of
the information overload problem. While names are an indispensable means of
abstraction, the abundance of names in even modestly sized programs can lead
to a host of complications.

From a cognitive point of view, more names can mean more learning, re-
membering, and model building for programmers. One of the simplest naming
strategies, a single global namespace (in which distinct variables are named by
distinct identifiers), is also one of the most nightmarish for program writers and
readers alike. This approach foists a tremendous amount of mental bookkeeping
on the programmer:

• Nonlocality of naming structure impairs readability because there are no
constraints on which names the user needs to search or remember in order
to understand a given fragment of code. At all times, the reader must
potentially be aware of the entire namespace. For this reason, a global
namespace is not scalable in a cognitive sense; large programs are much
harder to comprehend than shorter ones.

• The reader has to infer structural groupings intended by the writer but
not expressed due to the flatness of the namespace.

• Every time a new name is needed, the writer must find one that does not
clash with any names already in use.

In order to reduce such unreasonable cognitive demands, programming languages
typically provide mechanisms for reusing names and structuring the scope of
names. Even when these are not supported by the naming system, programmers
often develop naming conventions to simulate such mechanisms.

From an engineering point of view, more names can mean more complex
interactions between program parts. One of the chief methods of controlling
the complexity of large programs is to break them up into smaller units having
well-defined interfaces that separate the use of a unit from its implementation.
An interface specifies:

• the names defined external to the unit that are to be imported for use
within the implementation of the unit; and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 281

• the names defined internal to the unit that are to be exported for use
outside of the unit.

It is desirable to make such interfaces narrow — i.e., importing and exporting
few names — to limit dependencies among program parts. Wide interfaces give
rise to spaghetti-like dependencies among program units that are difficult for
a programmer to keep track of. And the complexities are only exacerbated in
the more common situation where a large program is developed in collaboration
with others. In this case, wider interfaces imply increased communication and
coordination between members of a programming team.

From this engineering perspective, a programming language should provide
mechanisms that facilitate the construction of narrow interfaces. The simple
approach of a single global namespace strikes out again because it allows every
name to be used everywhere throughout a program. A crucial ingredient for
narrow interfaces is some means of name hiding, whereby names purely local
to the implementation of a unit are effectively hidden from the rest of a program.

In this section, we shall investigate techniques for name control that ad-
dress the cognitive and engineering problems outlined above. Unlike our discus-
sion of names up to this point, these issues are largely orthogonal to the choice
of denotable values. Rather, they specify the relationship between patterns of
name usage and the logical structure of variables in the program.

7.2.1 Hierarchical Scoping: Static and Dynamic

Recall the following terms from our study of variables in FLK:

• A variable is an entity that names a value.

• An identifier is a name for a variable. Distinct variables may be named
by the same identifier.

• A variable declaration is a construct that introduces a variable.

• A variable reference is a construct that stands for the value of a variable.

• The scope of a variable declaration is the portion of the program text over
which the declared variable may be referenced.

For example, in FL, variables are declared in lambda, letrec, and let expres-
sions. All variable references are written as unadorned identifiers.

For a given language, it may or may not be possible to determine the scope
of a given declaration without running the program. If the scope of a declaration
can always be determined from the abstract syntax tree of a program, the scope

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

282 CHAPTER 7. NAMING

of the declaration is said to be static or lexical. In this case, the variable
declaration associated with any variable reference is apparent from the lexical
structure of the program. If the scope of the declaration depends on details of
the run-time behavior of the program, the declaration is said to have dynamic
scope. A language in which all declarations have static (dynamic) scope is said
to be a statically (dynamically) scoped language.

Figure 7.9 summarizes the difference between static and dynamic scoping.
We explain these in turn.

p ∈ Procedure = Denotable → Computation

E [[(proc I E)]] =λeproc . (val-to-comp
(Procedure 7→ Value (λδ . (E [[E]] [I : δ]eproc))))

E [[(call E1 E2)]] =λecall . (with-procedure (E [[E1]] ecall) (λp . (p (E [[E2]] ecall))))

Statically (Lexically) Scoped Procedures

p ∈ Procedure = Denotable → Environment → Computation

E [[(proc I E)]] =λeproc . (val-to-comp
(Procedure 7→ Value (λδecall . (E [[E]] [I : δ]ecall))))

E [[(call E1 E2)]] =
λecall . (with-procedure (E [[E1]] ecall) (λp . (p (E [[E2]] ecall) ecall)))

Dynamically Scoped Procedures

Figure 7.9: The essential semantics of statically and dynamically scoped CBN
procedures (CBV is analogous). In a statically (lexically) scoped procedure, free
identifiers appearing in a proc body are resolved relative to eproc , the environ-
ment determined by the text enclosing the proc expression. In a dynamically
scoped procedure, free identifiers appearing in a proc body are resolved relative
to ecall , the environment determined by the dynamic chain of procedure calls in
which the procedure is being called.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 283

7.2.1.1 Static Scope

All of the languages we have studied so far (other than call-by-denotation FL)
have been statically scoped. In fact, all of these languages support a particular
discipline of static scoping known as block structure. In a block structured
language, declarations can be nested arbitrarily, and every variable reference
refers to the variable introduced by the nearest lexically enclosing variable dec-
laration of that identifier. The nearest lexically enclosing declaration is found
by starting at the identifier and walking up the abstract syntax tree until a
declaration introducing the identifier name is found.

As an example, consider the CBV FL expression

(let ((x 20))

((let ((increment-by-x (lambda (y) (+ x y)))

(double (lambda (x) (* x 2))))

(letrec ((x (cons 1 x)))

(lambda (z)

(cons (double (increment-by-x (double z)))

x))))

(- x 15)))

In this expression there are three distinct variables named x introduced by three
declarations:

1. (let ((x 20)) . . .) declares x and binds it to the number 20.

2. The (lambda (x) (* x 2)) expression named by double declares x but
does not bind it; x will be bound on application of the procedural value
of this abstraction. (In fact, the binding of x may be different for every
distinct application of this procedure.)

3. (letrec ((x (cons 1 x))) . . .) declares x and binds it to an infinite list
of 1s.

There are also five variable references involving x:

1. In (+ x y), x is a reference to the let-bound variable named x, so its
meaning in this context is 20. This means that increment-by-x is a
procedure that always adds 20 to its argument, regardless of the binding
for x in whatever environment it happens to be applied.

2. In (* x 2), x is a reference to the lambda-bound variable named x, whose
meaning will be determined at application time.

3. In (cons 1 x), x is a reference to the letrec-bound variable named x, so
its meaning is an infinite list of 1s.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

284 CHAPTER 7. NAMING

4. In (cons (double (increment-by-x (double z))) x), x refers to the
variable introduced by the first lexically enclosing declaration of x, which
in this case is the letrec-bound variable. So here x is an infinite list of 1s
as well.

5. In (- x 15), x is a reference to the variable introduced by the first lexically
enclosing declaration of x, which in this case is the let-bound variable. So
here x means the number 20.

Putting together all of the above information, the value of the example expres-
sion is an infinite list whose first element is 60, and the rest of whose elements
are all 1.

Variables in a block structured language have a structure reminiscent of
variables in the lambda calculus.

As we noted before for FLK, when the scope of a declaration contains an-
other declaration of the same name, the inner declaration carves out a hole
in the scope of the outer one. The Stoy diagrams we used to represent the
structure of lambda terms could easily be adapted to show declaration/reference
relationships in any block structured language.

The essence of block structure is in the way environments are handled by
abstractions. Figure 7.9 shows the domains and valuation functions that are
crucial for block structure in CBN FLK. The clause for proc dictates that
the body of the abstraction will be evaluated with respect to the environment
in effect when the procedure was created. In particular, the environment in
which the procedure is called can have no effect on the meaning of names within
the abstraction body. This is clear from the domain definition for Procedure,
which simply maps denotable values to computations and ignores whatever the
current environment might be. Though the details of expressible and denotable
values might differ under other parameter passing mechanisms, the handling of
environments will have this form in any block structured language.

7.2.1.2 Dynamic Scope

SNOBOL4, APL, most early Lisp dialects, and many macro languages are
dynamically scoped. In each of these languages, a free variable in a procedure
(or macro) body gets its meaning from the environment at the point where
the procedure is called rather than the environment at the point where the
procedure is created. Thus, in these languages, it is not possible to determine a
unique declaration corresponding to a given free variable reference; the effective
declaration depends on where the procedure is called. It is therefore generally
impossible to determine the scope of a declaration simply by considering the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 285

abstract syntax tree of the program. Instead, the scope of a variable declaration
depends on the run-time tree of procedure calls.

Figure 7.9 also shows essential semantics of dynamic scoping for a CBN lan-
guage. The Procedure domain has been modified to indicate that procedures
take an extra argument: the dynamic environment (i.e., the call-time environ-
ment). In the valuation clause for proc, the body of the abstraction is evaluated
in the dynamic environment rather than the lexical one. The clause for call has
been modified to pass the current environment to the procedure being called.

As an example of static vs. dynamic scoping, consider the following expres-
sion in CBV FL:

(let ((a 1))

(let ((f (lambda (x) (primop + x a))))

(let ((a 20))

(f 300))))

Informally, we can reason as follows. The procedure named f refers to a free
variable a. Under static scoping, this variable is bound to the value of a where the
procedure is defined (i.e., 1). Thus, the binding between a and 20 is irrelevant,
and the result of the call (f 300) is 301. On the other hand, under dynamic
scoping, the free variable gets its value from whatever binding of a is dynamically
apparent. In the call (f 300), the binding between a and 20 shadows the binding
between a and 1, so the value of the call is 320.

We can use the denotational definitions of scoping to formally analyze this
example. The example FL expression desugars into the following FLK program:

(call (proc a ; Eproc:a1
(call (proc f ; Eproc:f

(call (proc a (call f 300)) ; Eproc:a20
20))

(proc x (primop + x a)))) ; Eproc:x
1)

The four proc expressions have been commented with names that will be used
to abbreviate them. Figure 7.10 and 7.11 highlight the key steps for using the
denotational definitions to derive the value of the expression under static scoping
and dynamic scoping.

A more graphical perspective of these derivations appears in Figure 7.12.
Each derivation is summarized by an environment diagram that shows key
expressions along with the environments they are evaluated in. An environment
is represented by a chain of bindings that go up the page; this helps to clarify
the relationship between the different environments. The static scoping example
is depicted in Figure 7.12(a). The arrow from within the procedural value to the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

286 CHAPTER 7. NAMING

Static Scoping

E [[(call Eproc:a1 1)]] e0

(with-procedure (E [[Eproc:a1]] e0) (λp . (p (Int 7→ Value 1))))

E [[(call Eproc:f Eproc:x)]] e1
where e1 = [a: (Int 7→ Value 1)] e0

(with-procedure (E [[Eproc:f]] e1)
(λp . (p (Procedure 7→ Value (λδ . (E [[(primop + x a)]] [x : δ]e1))))))

E [[(call Eproc:a20 20)]] e2
where e2 = [f: (Procedure 7→ Value

(λδ . (E [[(primop + x a)]] [x : δ]e1)))]e1

(with-procedure (E [[Eproc:a20]] e2) (λp . (p (Int 7→ Value 20))))

E [[(call f 300)]] e3
where e3 = [a : (Int 7→ Value 20)]e2

(with-procedure (E [[f]] e3) (λp . (p (Int 7→ Value 300))))

((λδ . (E [[(primop + x a)]] [x : δ]e1)) (Int 7→ Value 300))

E [[(primop + x a)]] [x : (Int 7→ Value 300)]e1

E [[(primop + x a)]] [x : (Int 7→ Value 300)][a : (Int 7→ Value 1)]e0

=(Int 7→ Value 301)

Figure 7.10: (call Eproc:a1 1) evaluation using static scoping

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 287

Dynamic Scoping

E [[(call Eproc:a1 1)]] e0

(with-procedure (E [[Eproc:a1]] e0) (λp . (p (Int 7→ Value 1) e0)))

E [[(call Eproc:f Eproc:x)]] e1
where e1 = [a : (Int 7→ Value 1)]e0

(with-procedure (E [[Eproc:f]] e1)
(λp . (p (Procedure 7→ Value (λδe ′ . (E [[(primop + x a)]] [x : δ]e ′)))

e1))

E [[(call Eproc:a20 20)]] e2
where e2 = [f: (Procedure 7→ Value

(λδe ′ . (E [[(primop + x a)]] [x : δ]e ′)))]e1

(with-procedure (E [[Eproc:a20]] e2) (λp . (p (Int 7→ Value 20) e2)))

E [[(call f 300)]] e3
where e3 = [a : (Int 7→ Value 20)]e2

(with-procedure (E [[f]] e3) (λp . (p (Int 7→ Value 300) e3)))

((λδe ′ . (E [[(primop + x a)]] [x : δ]e ′)) (Int 7→ Value 300) e3)

E [[(primop + x a)]] [x: (Int 7→ Value 300)][a: (Int 7→ Value 20)] e2

=(Int 7→ Value 320)

Figure 7.11: (call Eproc:a1 1) evaluation using dynamic scoping

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

288 CHAPTER 7. NAMING

E [[(call Eproc:a1 1)]] e0

E [[(call Eproc:f Eproc:x)]] [a :]-
6

(Int 7→ Value 1)

E [[(call Eproc:a20 20)]] [f :]

6
- (Procedure 7→ Value

(λδ . E [[(primop + x a)]] [x : δ]•))

@@I

E [[(call f 300)]] [a :]

6
- (Int 7→ Value 20)

(a) Environment diagram for the sample expression under static scoping.

E [[(call Eproc:a1 1)]] e0

E [[(call Eproc:f Eproc:x)]] [a :]-
6

(Int 7→ Value 1)

E [[(call Eproc:a20 20)]] [f :]

6
- (Procedure 7→ Value

(λδe ′ . E [[(primop + x a)]] [x : δ]e ′))

E [[(call f 300)]] [a :]

6

- (Int 7→ Value 20)

(b) Environment diagram for the sample expression under dynamic scoping.

Figure 7.12: Environment diagrams illustrating the difference between statically
and dynamically scoped procedures.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 289

environment starting with [a : 1] emphasizes that a statically scoped procedure
“remembers” the environment in which it was created. This lexical environ-
ment is determined by the text lexically surrounding the proc expression that
gave rise to the procedure value.

The dynamic scoping example is depicted in Figure 7.12(b). Here, there is
no arrow emanating from the procedural value because the environment e ′ in
which the body is evaluated will be the dynamic environment in effect when
the procedure is called. The dynamic environment is determined by the bindings
in the current branch of the tree of procedure calls made during the execution of
the program. In this example, it is constructed by the procedure calls associated
with the three nested let expressions.

Although the environment chains happen to be the same for these two exam-
ples, lexically scoped languages tend to give rise to shallow, bushy environment
diagrams, while dynamically scoped languages tend to give rise to deep thin ones
(see Exercise 7.13).

Dynamic scoping seems rather odd. Is it useful? Yes! Dynamic scope is
convenient for specifying the values of implicit parameters that are cumbersome
to list explicitly as formal parameters to procedures. For example, consider the
derivative procedure:

(define derivative

(lambda (f x)

(/ (- (f (+ x epsilon))

(f x))

epsilon)))

Note that epsilon appears as a free variable in derivative. With dynamic
scoping, it is possible to dynamically specify the value of epsilon via any binding
construct. For example, the expression

(let ((epsilon 0.001))

(derivative (lambda (x) (* x x)) 5.0))

would evaluate (derivative (lambda (x) (* x x)) 5.0) in a context where
epsilon is bound to 0.001.

However, with lexical scoping, the variable epsilon must be defined at top
level, and, without using mutation, there is no way to temporarily change the
value of epsilon while the program is running. If we really want to abstract
over epsilon with lexical scoping, we must pass it to derivative as an explicit
argument:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

290 CHAPTER 7. NAMING

(define derivative

(lamdba (f x epsilon)

(/ (- (f (+ x epsilon))

(f x))

epsilon)))

But then any procedure that uses derivative and wants to abstract over
epsilon must also include epsilon as a formal parameter. In the case of
derivative, this is only a small inconvenience. But in a system with a large
number of tweakable parameters, the desire for fine-grained specification of vari-
ables like epsilon can lead to an explosion in the number of formal parameters
throughout a program.

As an example along these lines, consider the huge parameter space of a
typical window system (colors, fonts, stippling patterns, line thicknesses, etc.).
It is untenable to specify each of these as a formal parameter to every window
routine. At the very least, all these parameters need to be bundled up into a
data structure that represents the graphics state. But then we still want a means
of executing window routines in a temporary graphics state in such a way that
the old graphics state is restored when the routines are done. Dynamic scoping
is one technique for achieving this effect; side-effects are another.

Another typical use of dynamic scope is to specify error handling routines
that are in effect during the execution of an expression. We shall see an example
of this in Chapter 9.

Although dynamic scoping is good for allowing the specification of implicit
parameters, it is seriously at odds with modularity, especially in a language that
has first-class procedure values. We explore this issue in the exercises.

¤ Exercise 7.11

a. Can a dynamically scoped FL interpreter be written in statically scoped FL?

b. Can a statically scoped FL interpreter be written in dynamically scoped FL? ¢

¤ Exercise 7.12 Write a single FL expression that exhibits a different behavior in
each of the four following scenarios:

a. statically scoped CBN FL

b. statically scoped CBV FL

c. dynamically scoped CBN FL

d. dynamically scoped CBV FL ¢

¤ Exercise 7.13 This problem considers a dynamically scoped variant of FL called
FLUID. The abstract syntax for FLUID is the same as that for FL except that the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 291

grammar for FLUID does not include any recursion constructs. That is, the FLUID
kernel does not contain the rec construct (rec I E); and FLUID does not contain
the letrec construct (letrec ((I E)*) E). The denotational semantics for FLUID
is the same for that as FL except for the changes specified in Figure 7.9.

a. For each of the expressions below, show the result of evaluating the expression
both in FL and in FLUID. Refer to the denotational semantics as necessary to
reason about the evaluation process, but don’t get lost in a symbol manipulation
quagmire. You may find environment diagrams helpful for thinking about these
problems.

i. (let ((a 1))

(let ((f (lambda (a) (primop + a 20))))

(f a)))

ii. (let ((a 1))

(let ((f (lambda (a b) (primop + a b))))

(f 20 300)))

iii. (let ((a 1))

(let ((a 20)

(b 300))

(primop + a b)))

iv. (let ((a 1))

(let ((f (lambda (b) (primop + a b))))

(f (let ((a (f 20)))

(f 300)))))

v. (let ((a 1))

(let ((f (lambda (b) (primop + a b))))

(let ((g (lambda (a) (f a))))

(g (g a)))))

b. In FLUID, the usual desugaring of multiple-argument abstractions into single
argument abstractions no longer behaves as expected. Explain what goes wrong
with the usual desugaring. (You do not need to describe how to fix the problem.)

c. In FLK, the factorial procedure is written as the expression:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

292 CHAPTER 7. NAMING

(rec fact (proc n

(if (primop = n 0)

1

(primop * n (fact (primop - n 1))))))

FLUID has no recursion constructs, but none are needed to write recursive defi-
nitions.

i. Briefly explain why the above claim is true.

ii. Show the definition for factorial procedure in FLUID.

iii. Explain why your FLUID definition for factorial wouldn’t work in FL.

d. Consider the factorial procedure from part c. When using the denotational seman-
tics to determine the meaning of (call fact 3) in environment e0 , the meaning
of (primop = n 0) is determined in four distinct environments. For both CBV
FL and for FLUID, draw an environment diagram that shows the relationship
between these four environments. ¢

¤ Exercise 7.14 Consider a version of FL called FLAT in which a procedure (a

lambda or kernel proc expression) is not allowed to have free identifiers. Can the

meaning of a FLAT expression differ under lexical and dynamic scope? If so, exhibit

such an expression; if not, explain why. ¢

¤ Exercise 7.15 Develop an operational semantics for CBV FL that uses explicit

environments instead of substitution. ¢

¤ Exercise 7.16 Develop an operational semantics for a dynamically scoped version

of CBV FL. ¢

¤ Exercise 7.17 The static scope expressed in Figure 7.9 is typical of block structured
languages. However, other kinds of static scope are imaginable. For example, suppose
that eglobal is the top-level FL environment — the one that defines the meanings of all
of the standard library names (e.g., +, boolean?, cons, etc.). Then global scoping is
a static scoping mechanism in which free identifiers in a proc expression are resolved
relative to eglobal rather than the environment at the time of procedure creation or at
the time of procedure call.

a. Write the valuation clauses for proc and call for a CBV variant of FL with
global scoping.

b. Write a single FL expression whose value is a symbol (one of global,
block-structure, or dynamic) indicating the scoping mechanism under which it
is evaluated. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 293

¤ Exercise 7.18 In this problem, we ask you to give a translation from dynamically
scoped, call-by-value FLK to PostLisp, the language defined in Exercise 3.45. You are
only required to translate a subset of FLK, defined by the following grammar:

E ::= U | I | (proc I E) | (call E1 E2) | (primop / E1 E2)

Your translation should map every expression EFLK of the subset to a sequenceQPostLisp

of PostLisp commands such that:
EFLK −−−−−DCBV→ U if and only if (QPostLisp) −−−−−−PostLisp→ U,

EFLK −−−−−DCBV→ error if and only if (QPostLisp) −−−−−−PostLisp→ error , and

EFLK −−−−−DCBV→ ∞−loop if and only if (QPostLisp) −−−−−−PostLisp→∞−loop,
where −−−−−DCBV→ means dynamically scoped, call-by-value FLK evaluation. ¢

¤ Exercise 7.19 Alyssa P. Hacker is asked by Analog Equipment Corporation to
change their version of FL to be dynamically scoped in response to customer demand.
Alyssa is asked to do this over a weekend, but she does not panic. Instead, she realizes
that by implementing just a few new primitives, the entire job can be accomplished
with clever desugaring.

More specifically, Alyssa added the following three new primitives:

• (%new): Creates a new, empty environment.

• (%extend ENV (symbol I) V): Returns a new environment equal to ENV ,
except that I is bound to V.

• (%lookup ENV (symbol I)): Returns the value of identifier I in environment
ENV . It is is a fatal error if I is not bound in ENV .

In Alyssa’s desugaring, the *dynenv* variable is always bound to the current dy-
namic environment. For this problem, consider only single argument procedures and
calls. Here is Alyssa’s desugaring rule for call:

D[[(call E1 E2)]] = (call D[[E1]] *dynenv* D[[E2]])

a. What is the desugaring rule for I (variable reference)?

b. What is the desugaring rule for (lambda (I) E)?

c. What is the desugaring rule for (let ((I1 E1) . . . (In En)) Ebody)?

d. Do all identifiers have to be looked up in the dynamic environment? If not, state
what optimizations of the desugarings for identifiers and lambda are possible, and
when and how they could be accomplished.

e. Desugar the following expression in this dynamically scoped version of FL:

(lambda (g) (call g x))

¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

294 CHAPTER 7. NAMING

7.2.2 Multiple Namespaces

Sometimes a single environment is not sufficient to model the naming features of
a programming language. Languages commonly supportmultiple namespaces
— i.e., several different contexts in which names are associated with values of
various sorts. For example, Figure 7.13 shows a piece of Common Lisp code in
which the name x is used to name five different entities at the same time: an
exit point, a special (dynamic) variable, a lexical variable, a procedure, and a
tagbody tag.

(block x ; x1, name of exit point

(let ((x 2)) ; x2, declared to be

(declare (special x)) ; a special variable

(let ((x 3)) ; x3, normal lexical variable

(flet ((x (y) ; x4, names a procedure that

(+ x y))) ; refers to x3 in its body

(tagbody

x ; x5, a tagbody tag

(if (> x 6) ; this x = x3 = 3

(go x) ; go to x5 if we get here

(return-from

x ; return from exit point x1
(locally (declare (special x))

; Make 2nd x special below

(x x) ; Apply procedure x4 to

)))))))) ; special x2
; The value of this expression is 5.

Figure 7.13: Common Lisp code that uses multiple namespaces

There are two typical situations in which multiple namespaces are useful:

1. The language provides multiple scoping mechanisms. In this case, differ-
ent namespaces can be used for different scoping mechanims. Common
Lisp, for example, supports both lexical and dynamic scoping of variables;
variables are ordinarily scoped lexically, but those marked as special are
dynamically scoped.

2. Different namespaces are used to name different kinds of entities. For
example, exit points, tag labels, and procedures are in non-overlapping
namespaces in Common Lisp. Namespaces used this way are especially
useful for modeling values that are not first-class.

Of course, any language with multiple namespaces must provide methods

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 295

for both binding names and accessing names within each namespace. For ex-
ample, consider the namespaces for exit points and tags in the Common Lisp
example above. block introduces a name into the exit point namespace, and
return-from accesses the exit point name, whereas tagbody introduces new tag
names into the namespace of tags, and go can refer to these tags.

Multiple namespaces are modeled in denotational semantics by using multi-
ple environments. For example, we could modify the semantics of FL to

• support both lexical and dynamic scoping;

• make procedures second-class objects.

These modifications are left as exercises.

¤ Exercise 7.20 DYNALEX Understanding the virtues of both lexical and dynamic
scoping, Sam Antix decides to design a language, DYNALEX, that supports both kinds
of scoping mechanisms. The kernel of DYNALEX is statically scoped CBV FLK, ex-
tended with the following extra constructs to support dynamic scoping:

(dylambda (Idyn*) Ebody) is like lambda, but binds the names Idyn* in a dy-
namic environment rather than a static one.

(dyref I) looks up I in the dynamic environment rather than the lexical one.

The full DYNALEX language includes the usual FL sugar as well as the following sugar
for the dylet construct:

Dexp[[(dylet ((I1 E1) . . . (In En)) Ebody)]] =
((dylambda (I1 . . . In) Dexp[[Ebody]]) Dexp[[E1]] . . . Dexp[[En]])

The following DYNALEX expression illustrates both dynamic and lexical scoping:

(let ((a 1) (b 20))

(let ((f (lambda () (+ a (dyref b)))))

(dylet ((a 300) (b 4000))

(f)))) −−−−−−−−DYNALEX→ 4001

a. Sketch a denotational semantics for DYNALEX that includes the the signature
of E , and the valuation clauses for the following constructs: I, proc, call, dyref,
and dylambda.

b. Explain why Sam chose to make the multi-argument dylambda abstraction a ker-
nel form rather than treating dylambda as sugar for a single argument abstraction
for dynamic variables.

c. Write a set of translation rules for translating the DYNALEX kernel into FLK.
¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

296 CHAPTER 7. NAMING

7.2.3 Non-hierarchical Scope

7.2.3.1 Philosophy

The binding constructs we have seen so far are all hierarchical in nature. Each
construct establishes a parent-child relationship between an outer context in
which the declaration is not visible and an inner (body) context in which the
declaration is visible. In static scoping, the hierarchy is determined by the
abstract syntax tree, while in dynamic scoping, the hierarchy is determined
by the tree of procedure calls generated at run-time. In both these scoping
mechanisms, there is no natural way to communicate a declaration laterally
across the tree-structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large pro-
gram is broken into independent pieces, ormodules, the constraint of hierarchy
can be a problem. Modules connect and communicate with each other via col-
lections of bindings; a module provides services by exporting a set of bindings
and makes use of other modules’ services by importing bindings from those other
modules. In a hierarchical language, the scope of a binding is a single region of
a program, so all the clients of a module must reside in the region where the
module’s bindings are in scope.

The traditional solution to the problem of communicating modules is to use
a global namespace. All exported bindings from all modules are defined in a
single environment, so all exported bindings are available to all modules. This
technique is certainly widespread, but it has some major drawbacks:

• In order to avoid accidental name collisions, every module must be aware
of all definitions made by all other modules, even those definitions that
are completely irrelevant.

• In practice, the dependencies among modules are often poorly documented,
making intermodule dependencies difficult to track.

A way for languages to overcome the hierarchical scoping of binding con-
structs is to provide a value with named subparts. For this purpose, we will
introduce a new module value that bundles up a set of bindings at one point in
a program and can communicate them to a point that is related neither lexi-
cally nor dynamically to the declarations of those bindings. Typically, a module
defines a set of named values, especially procedures, that provide a particular
function. For example, a matrix module might provide a set of matrix manipula-
tion procedures like matrix-invert and gaussian-elimination. The modules
described here are similar to Pascal records and C structures.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 297

We will study modules here in the context of a record package for FL. (Chap-
ter 15 will explore a more complete module system.) Figure 7.14 lists new kernel
forms for records.

(record (I E)*) Create a record.
(select I E) Select field I from record E.
(override E1 E2) Append the named components of two records, giving prece-

dence to names in E2 .
(conceal (I*) E) Return a new record without specified fields.

Figure 7.14: Kernel record constructs.

record builds a data structure of name/value bindings. Values can be extracted
by name using the select construct. Two records can be combined into a new
record with override, which gives precedence to the bindings in the second
record argument. conceal returns a new record in which some bindings of the
original record have been removed. For example:

(define m1 (record

(a (+ 2 3))

(square (lambda (x) (* x x)))))

(select a m1) −−−FL→ 5

((select square m1) (select a m1)) −−−FL→ 25

(select b m1) −−−FL→ error:no-such-record-field

(define m2 (record (a 7) (b 11)))

(select a (override m1 m2)) −−−FL→ 7

(select a (override m1 (conceal (a) m2))) −−−FL→ 5

Notice that there is a design choice in the semantics of conceal: the language
designer must choose whether or not it is an error when conceal attempts to
hide a name that is not actually a field in the record.

Figure 7.15 shows some convenient sugar constructs for records. Like many
desugarings, these capture handy idioms programmers would invent on their
own. recordrec allows the fields of a record to be mutually recursive. This is
useful when records are used to construct separate program modules that contain
procedures. with-fields provides a lexical scope that binds the specified names
exported by a record, saving the programmer the tiresome task of writing select

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

298 CHAPTER 7. NAMING

(recordrec (I E)*) A record with mutually recursive bindings.
(with-fields (I*) E1 E2) Bind the I* to the corresponding fields in the record

value E1 and then evaluate E2 .
(restrict (I*) E) Return a new record with only the specified fields.

The dual of conceal.
(rename ((Iold Inew)*) E) Rename Iold fields to Inew fields in E.

Figure 7.15: Record sugar constructs.

everywhere (or introducing the lets manually). Note that with-fields requires
the list of identifiers to be bound. This allows the bindings in this lexical scope
to be apparent,4 which is necessary in a block structured language, and it also
allows the programmer to avoid introducing unnecessary names. restrict is
the natural dual to conceal, useful when exporting comparatively few names.
rename helps programmers avoid name conflicts.

The desugarings for these constructs appear in Figure 7.16. Just as with conceal,
the language designer must choose whether names not defined by a record gen-
erate errors. In a CBV language, the desugaring rules will generate an error
when the undefined name is selected.

D[[(recordrec (I1 E1) ... (In En))]] =
(letrec ((I1 D[[E1]]) ... (In D[[En]]))

(record (I1 I1) ... (In In)))

D[[(with-fields (I1 ... In) E1 E2)]] =
(let ((Ifresh D[[E1]]))

(let ((I1 (select I1 Ifresh)) ... (In (select In Ifresh)))
D[[E2]]))

D[[(restrict (I1 . . . In) E)]] =
(let ((Ifresh D[[E]]))

(record (I1 (select I1 Ifresh)) ... (In (select In Ifresh))))

D[[(rename ((I1 I1
′) . . . (In In

′)) E)]] =
(let ((Ifresh D[[E]]))

(override (conceal (I1 . . . In) Ifresh)
(record (I1

′ (select I1 Ifresh)) ... (In
′ (select In Ifresh)))))

Figure 7.16: Desugarings for the record syntactic sugar.

4We will see in Chapters ?? and 15 how a statically typed language could deduce this
information.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 299

7.2.3.2 Semantics

Figure 7.17 and 7.18 present a denotational semantics for records. Since both
records and environments associate names and values, it is natural to model
a record as an environment. You are encouraged to develop an operational
semantics for the record constructs.

v ∈ Value = . . .+Record
r ∈ Record = Environment

with-record : Computation → (Record → Computation)→ Computation
Defined like with-boolean and with-procedure.

extend-env* : Environment → Identifier*→ Denotable*→ Environment
=λeI*δ* . matching 〈I*, δ*〉

. 〈[], []〉 [] e

. 〈I.Irest*, δ.δrest*〉 [] (extend (extend* e Irest* δrest*) I δ)

. else (err-to-comp no-such-record-field)
endmatching

combine-env : Environment → Environment → Environment
=λe1 e2 . λI . matching (lookup e1 I)

(Denotable 7→ Binding δ) [] (lookup e1 I)
(Unbound 7→ Binding unbound)[] (lookup e2 I)
endmatching

Figure 7.17: Domains and auxiliary functions for a denotational semantics of
the kernel record constructs in a CBV language.

7.2.3.3 Examples

Figure 7.19 presents two modules for arithmetic: one for integers and one for
rational numbers.

The gcd routine is used by the rats module to remove common factors from
the numerator and denominator. Note how recordrec (and not record) is
used to create a recursive scope in which the rat constructor is visible to other
procedures in the module. Here is a sample use of the two modules:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

300 CHAPTER 7. NAMING

E [[(record (I1 E1) ... (In En))]] e =
(with-values E*[[[E1 ... En]]]
(λv* . (val-to-comp (Record 7→ Value (extend* [I1 . . . In] v* empty-env)))))

E [[(select I E)]]e =
(with-record (E [[E]] e)
(λr . (with-denotable (lookup (Record 7→ Environment r) I)

(λδ . (den-to-comp δ))))

E [[(override E1 E2)]]e =
(with-record (E [[E1]] e)
(λr1 . (with-record (E [[E2]] e)

(λr2 . (val-to-comp
(Record 7→Value

(combine-env (Record 7→ Environment r2)
(Record 7→ Environment r1))))))))

E [[(conceal (I1 ... In) E)]]e =
(with-record (E [[E]] e)
(λr . (val-to-comp

(Record 7→Value

(λI . if I ∈ [I1 . . . In]
then (Unbound 7→ Binding unbound)
else (lookup (Record 7→ Environment r) I)
fi)))))

Figure 7.18: Valuation functions for the kernel record constructs in a CBV
language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.2. NAME CONTROL 301

(define ints (record (zero 0) (add +) (sub -) (mul *) (div quotient)

(neg (lambda (x) (- 0 x)))

(recip (lambda (x) (quotient 1 x)))

(eq =) (lt <) (gt >)))

(define gcd (lambda (a b) (if (= b 0)

a

(gcd b (rem a b)))))

(define rats

(recordrec

(rat (lambda (numer denom)

(let ((common (gcd numer denom)))

(pair (/ numer common) (/ denom common)))))

(numer car)

(denom cdr)

(zero (rat 0 1))

(add (lambda (r1 r2)

(rat (+ (* (numer r1) (denom r2)) (* (denom r1) (numer r2)))

(* (denom r1) (denom r2)))))

(sub (lambda (r1 r2) (add r1 (neg r2))))

(mul (lambda (r1 r2)

(rat (* (numer r1) (numer r2))

(* (denom r1) (denom r2)))))

(div (lambda (r1 r2) (mul r1 (recip r2))))

(neg (lambda (r) (rat (- 0 (numer r)) (denom r))))

(recip (lambda (r) (rat (denom r) (numer r))))

(eq (lambda (r1 r2)

(and (= (numer r1) (numer r2))

(= (denom r1) (denom r2)))))

(lt (lambda (r1 r2) (< (* (numer r1) (denom r2))

(* (denom r1) (number r2)))))

(gt (lambda (r1 r2) (lt r2 r1)))))

Figure 7.19: Two modules for arithmetic.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

302 CHAPTER 7. NAMING

(define sum-of-squares

(lambda (mod)

(with-fields (add mul) mod

(lambda (a b)

(add (mul a a) (mul b b))))))

((sum-of-squares ints) 3 4) −−−FL→ 25

(with-fields (rat) rats

((sum-of-squares rats) (rat 1 3) (rat 1 4))) −−−FL→ 〈25 , 144 〉

As a meatier example of using these arithmetic modules, consider the ma-
trix module generator in Figure 7.20. In this example, matrices are represented
as lists of rows.5 make-matrix-module takes a number n and an arithmetic
module a and constructs a new module that implements n× n matrices whose
components are manipulated by a. For example, if n is 3 and a is rats, then
make-matrix-module returns a module of 3× 3 matrices over the rational num-
bers. The input module a must supply a zero constant and binary add and mul

procedures. The resulting module is a matrix module that also exports these
names as matrix operations. This means it is possible to use n× n matrices as
elements of another matrix. Figures 7.21–7.23 show some matrix examples that
run on a CBV FL interpreter:

7.3 Object-Oriented Programming

Object-oriented programming has emerged as an extremely popular program-
ming paradigm. Definitions of what constitutes object-oriented programming
vary, but they typically involve state-based entities called objects that commu-
nicate via messages. The behavior of an object is defined by its class, which
specifies the object’s state variables and its responses to messages. Classes and
objects can be organized into inheritance hierarchies that describe how the
behavior of one object can be inherited from other objects or classes. Although
we will not discuss issues of state until the next chapter, it is worthwhile to
introduce object-oriented programming here because most of the issues involved
in this paradigm are issues of naming, not issues of state.

We introduce a purely functional object-oriented kernel called HOOK (Hum-
ble Object-Oriented Kernel) and its associated full language, HOOPLA (Hum-
ble Object-Oriented Programming Language). Figure 7.24 presents an s-expression
grammar for HOOK. Figure 7.25 gives the syntax of the syntactic sugar; the

5In practice, we would import the list routines from their own list module.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.3. OBJECT-ORIENTED PROGRAMMING 303

(define make-matrix-module

(lambda (n element-module)

(with-fields (elt-add elt-mul elt-zero)

(rename ((add elt-add) (mul elt-mul) (zero elt-zero))

element-module)

(conceal (map map2 reduce make-list)

(recordrec

(zero (make-list n (make-list n elt-zero)))

(add (lambda (m1 m2)

(map2 (lambda (row1 row2) (map2 elt-add row1 row2))

m1

m2)))

(mul (lambda (m1 m2)

(map (lambda (row1)

(map (lambda (row2)

(reduce elt-add

elt-zero

(map2 elt-mul row1 row2)))

(transpose m2)))

m1)))

(transpose (lambda (m) (if (null? (car m))

nil

(cons (map car m)

(transpose (map cdr m))))))

(map (lambda (f lst)

(if (null? lst)

nil

(cons (f (car lst)) (map f (cdr lst))))))

(map2 (lambda (f lst1 lst2)

(if (or (null? lst1) (null? lst2))

nil

(cons (f (car lst1) (car lst2))

(map2 f (cdr lst1) (cdr lst2))))))

(reduce (lambda (binop identity lst)

(if (null? lst)

identity

(binop (car lst)

(reduce binop identity (cdr lst))))))

(make-list (lambda (n elt)

(if (= n 0)

nil

(cons elt (make-list (- n 1) elt))))))))))

Figure 7.20: A generator for NxN matrix modules.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

304 CHAPTER 7. NAMING

(define 2x2-int-matrices (make-matrix-module 2 ints))

(define im1 ’((1 2) (3 4)))

(define im2 ’((2 3) (4 5)))

fl-CBV> ((select add 2x2-int-matrices) im1 im2)

(list (list 3 5) (list 7 9))

fl-CBV> ((select mul 2x2-int-matrices) im1 im2)

(list (list 10 13) (list 22 29))

Figure 7.21: 2× 2 matrices of integers.

(define 2x2-rat-matrices (make-matrix-module 2 rats))

(define rm1 (with-fields (rat) rats

(list (list (rat 1 4) (rat 2 4))

(list (rat 3 4) (rat 4 4)))))

(define rm2 (with-fields (rat) rats

(list (list (rat 1 5) (rat 2 5))

(list (rat 3 5) (rat 4 5)))))

fl-CBV> ((select add 2x2-rat-matrices) rm1 rm2)

(list (list (pair 9 20) (pair 9 10))

(list (pair 27 20) (pair 9 5)))

fl-CBV> ((select mul 2x2-rat-matrices) rm1 rm2)

(list (list (pair 7 20) (pair 1 2))

(list (pair 3 4) (pair 11 10)))

Figure 7.22: 2× 2 matrices of rationals.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.3. OBJECT-ORIENTED PROGRAMMING 305

(define 2x2-matrices-of-2x2-int-matrices

(make-matrix-module 2 2x2-int-matrices))

(define im3 ’((3 4) (5 6)))

(define im4 ’((5 6) (7 8)))

(define imm1 (list (list im1 im2) (list im3 im4)))

(define imm2 (list (list im2 im3) (list im4 im1)))

fl-CBV> ((select add 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

(list (list (list (list 3 5) (list 7 9))

(list (list 5 7) (list 9 11)))

(list (list (list 8 10) (list 12 14))

(list (list 6 8) (list 10 12))))

fl-CBV> ((select mul 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

(list (list (list (list 41 49) (list 77 93))

(list (list 24 32) (list 48 64)))

(list (list (list 89 107) (list 125 151))

(list (list 52 70) (list 76 102))))

Figure 7.23: 2× 2 Matrices of matrices of integers.

desugarings themselves are defined in Figure 7.26.

Figure 7.27 contains some sample HOOPLA classes. For example, a point
is created by sending make to the point class. The resulting point responds to
the x, y, and move messages. The language does not support side-effects; move
does not change the existing point but creates a new one. Every method has as
its first formal parameter a self variable that names the object that originally
received the message. This self variable is crucial for getting inheritance to
work. The turtle class inherits behavior from both points and directions.
Figure 7.28 shows some examples of interacting with a HOOPLA interpreter.

7.3.1 Semantics of HOOK

The inheritance structure in HOOK programs is reminiscent of records in FL.
In fact, the similarity is so great that we will define the semantics of HOOK
programs by compiling them into a version of the FL language extended with
records. The key to this transformation is that objects are represented as records
that bind message names to procedures that represent methods. A message
send is then handled by simply looking up the method/procedure in the receiver
record and applying it to the actual arguments.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

306 CHAPTER 7. NAMING

E ∈ Exp
M ∈ Message = Identifier
I ∈ Identifier
L ∈ Lit = Intlit + Boollit + . . .

E ::= L [Literal]
| I [Identifier]
| (method Mmessage (Iself Iformal*) Ebody) [Simple Object]
| (object-compose Eobj1 Eobj2) [Object Composition]
| (null-object) [Null Object]
| (send Mmessage Ereceiver Earg*) [Message Send]

Figure 7.24: The abstract syntax for HOOK.

P ∈ Program
D ∈ Def

P ::= (program Ebody Ddef *) [Program]

D ::= (define Iname Evalue) [Definition]

E ::= . . .
| (object Eobject*) [Object]
| (class (Iinit*) Einstance*) [Class]
| (lambda (Iformal*) Ebody) [Abstraction]
| (Erator Erand*) [Application]
| (let ((Iname Evalue)*) Ebody) [Local-Binding]
| (if Etest Econsequent Ealternative) [Branch]

Figure 7.25: The syntax of the HOOPLA language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.3. OBJECT-ORIENTED PROGRAMMING 307

D[[(object)]] = (null-object)

D[[(object Efst Erest*)]] = (object-compose D[[Efst]] D[[(object Erest*)]])

D[[(class (Iinit*) Einst1 . . . Einstn)]] =
(method make (Iignore Iinit*) D[[(object Einst1 . . . Einstn)]])
where Iignore 6∈

⋃n
i=1 FreeIds[[Einsti]]

D[[(lambda (Iformal*) Ebody)]] = (method call (Iignore Iformal*) D[[Ebody]])
where Iignore 6∈FreeIds[[Ebody]]

D[[(Erator Erand*)]] = (send call D[[Erator]] D[[Erand*]])

D[[(let ((Ivar Eval)*) Ebody)]] = D[[((lambda (Ivar*) Ebody) Eval*)]]

D[[(if Etest Econ Ealt)]] = (send if-true D[[Etest]]
D[[(lambda () Econ)]]
D[[(lambda () Ealt)]])

Figure 7.26: Rules for desugaring HOOPLA into HOOK.

We formally define the transformation from HOOK code to CBV FL code
in terms of the compilation function T : ExpHOOK → ExpFL. This function is
defined in Figure 7.29. To be complete, we also would need functions that map
HOOK programs to FL programs and HOOK definitions to FL definitions,
but since these are straightforward, we will leave them out.

The core of the compilation is the handling of methods, objects, and mes-
sage sends. A HOOK method construct is transformed into an FL record

construct with a single binding of the message name to a procedure that does
the work of the method. A HOOK object-compose construct compiles into an
FL override construct; the semantics of override are such that methods from
Eobj1 will take precedence over methods from Eobj2 . A HOOK message send
compiles to a procedure application in FL; the procedure is found by looking
up the message name in the record that represents the receiver.

The handling of literals (via T lit) is perhaps the trickiest part of the compi-
lation. HOOK literals stand not for simple values but for full-fledged message-
passing objects. A HOOK number object, for instance, must compile into an
FL record that has methods for all the numeric operations. In addition, such
a record must also be able to supply the unadorned version of the value it is
holding onto; this is the purpose of the binding involving Iint . The identifier
Iint must be the same for all literal objects. Note that operations returning the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

308 CHAPTER 7. NAMING

(define point

(class (init-x init-y)

(method x (self) init-x)

(method y (self) init-y)

(method move (self dx dy)

(object (send make point

(send + (send x self) dx)

(send + (send y self) dy))

self) ; Allows mixins

)))

(define direction

(class (init-angle)

(method angle (self) init-angle)

(method turn (self delta)

(object (send make direction

(send + (send angle self) delta))

self)) ; Allows mixins

))

(define turtle

(class (x y angle)

(method home (self)

(object (send make turtle x y angle)

self)) ; Allows mixins

(send make point x y)

(send make direction angle)))

(define color

(class (clr)

(method color (self) clr)

(method new-color (self new)

(object (send make color new)

self))))

(define colored-point

(class (x y col)

(send make point x y)

(send make color col)))

Figure 7.27: Sample HOOPLA classes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.3. OBJECT-ORIENTED PROGRAMMING 309

;;; Define a turtle T1

(define t1 (send make turtle 0 0 0))

(send x t1) −−−−−−−HOOPLA→ 0 {This is the object 0}
(send y t1) −−−−−−−HOOPLA→ 0

(send angle t1) −−−−−−−HOOPLA→ 0

;;; Define T2 as a rotated and translated version of T1.

(define t2 (send move (send turn t1 45) 17 23))

(send x t2) −−−−−−−HOOPLA→ 17

(send y t2) −−−−−−−HOOPLA→ 23

(send angle t2) −−−−−−−HOOPLA→ 45)

;;; Note that T1 is unchanged. E.g.:

(send x t1) −−−−−−−HOOPLA→ 0

;;; Now define T3 as a version of T2 sent home.

(define t3 (send home t2))

(send x t3) −−−−−−−HOOPLA→ 0

(send y t3) −−−−−−−HOOPLA→ 0

(send angle t3) −−−−−−−HOOPLA→ 0

Figure 7.28: Example interactions with a HOOPLA interpreter.

same kind of object being defined (e.g., +, *) return an extended version of self
rather than just a fresh instance of the object. This means that the returned
object retains all the behavior of the receiver that is not explicitly specified by
the definition.

Booleans, symbols, and whatever other literals or standard identifiers we
might support are handled like integers.

¤ Exercise 7.21 What is the value of the following HOOPLA expression?

(let ((ob1 (object (method value (self) 1)))

(ob2 (object (method value (self) 2)))

(ob3 (object (method value (self) 3)

(method evaluate (self) (send value self)))))

(send evaluate (object ob1 ob2 ob3))) ¢

¤ Exercise 7.22 Following the example for integer literals, show how boolean literals

in HOOK compile into FL. HOOK boolean objects handle the messages not?, and?,

or?, if-true, and if-false. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

310 CHAPTER 7. NAMING

T : ExpHOOK → ExpFL
T lit : LitHOOK → ExpFL

T [[I]] =I

T [[L]] =T lit [[L]], where T lit is described below.

T [[(method Mmessage (Iself Iformal*) Ebody)]] =
(record (Mmessage (lambda (Iself Iformal*) T [[Ebody]])))

T [[(object-compose Eobj1 Eobj2)]] =(override T [[Eobj2]] T [[Eobj1]])

T [[(null-object)]] =(record)

T [[(send Mmessage Ereceiver Earg1 . . .Eargn)]] =
(let ((Ireceiver T [[Ereceiver]]))
((select Mmessage Ireceiver) Ireceiver T [[Earg1]] . . .T [[Eargn]]))

where Ireceiver 6∈
⋃n
i=1 FreeIds[[Eargi]]

T lit [[N]] =(letrec ((make-integer

(lambda (n)

(record

(Iint n)

(+ (lambda (self arg)

(override self

(make-integer

(primop + n (select Iint arg))))))

(* (lambda (self arg)

(override self

(make-integer

(primop * n (select Iint arg))))))
...

))))

(make-integer N))
where Iint is the same for all integers but distinct from all other message names.

Similarly for other literals.

Figure 7.29: The rules for translating HOOK to FL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

7.3. OBJECT-ORIENTED PROGRAMMING 311

¤ Exercise 7.23 Anoop Hacker is confused about namespace issues in HOOPLA. In
the syntax of the full language, there are several binding constructs: class, lambda,
let, and method. The first three constructs all bind formal parameters; the last one
binds a message name and a name for self in addition to the formal parameters of the
method. You have volunteered to help Anoop answer the following questions. Carefully
study the definitions of HOOPLA to HOOK desugaring and HOOK to FL translation
to justify your answers. Give examples where appropriate.

a. How many distinct namespaces are there in HOOPLA?

b. Is it possible for a method formal parameter named x to be shadowed by a message
named x?

c. Is it possible for a message named x to be shadowed by a method formal parameter
named x?

d. Do the answers to parts b and c change if the record in the translation for
object-compose becomes a recordrec instead? If so, how? ¢

¤ Exercise 7.24 Does HOOPLA’s lambda construct support currying? Explain. ¢

¤ Exercise 7.25 Paula Morwicz doesn’t like the fact that it’s always necessary to
explicitly name self within a HOOPLA method. She decides to implement a version
of HOOPLA called Selfish in which a reserved word self is implicitly bound within
every method body. For example, in Selfish the point class would be written as follows:

(define point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(object (send make point

(send + (send x self) dx)

(send + (send y self) dy))

self) ; Allows mixins

)))

In this example, the instances of self within the move method evaluate to the receiver
of the move message. Because self is a reserved word in Selfish, it is illegal to use it
as a formal parameter to a method.

a. Describe what modifications would have to be made to the following in order to
specify the semantics of Selfish:

i. The HOOK grammar.

ii. The HOOPLA to HOOK desugarer.

iii. The HOOK to FL translator.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

312 CHAPTER 7. NAMING

b. Unfortunately, SELFISH doesn’t always give the behavior Paula expects. For
example, she makes a simple modification to the definition of the point class:

(define point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(let ((new-x (send + (send x self) dx))

(new-y (send + (send y self) dy)))

(object (method x () new-x)

(method y () new-y)

self)

))))

After this change, turtle objects (which are implemented in terms of points) no
longer work as expected. Explain what has gone wrong.

c. Show how to get Paula’s new point definition to work as expected. You can add
new code, but not remove any. You may perform alpha-renaming where necessary.

d. Which do you think is better: the explicit self approach of HOOPLA or the
implicit self approach of SELFISH? Explain your answer. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 8

State

Man’s yesterday may ne’er be like his morrow;
Nought may endure but Mutability

— Mutability, st. 4, Percy Bysshe Shelley

I woke up one morning and looked around the room. Something
wasn’t right. I realized that someone had broken in the night before
and replaced everything in my apartment with an exact replica. I
couldn’t believe it...I got my roommate and showed him. I said, “Look
at this — everything’s been replaced with an exact replica!” He said,
“Do I know you?”

— Steven Wright

8.1 What is State?

8.1.1 Time, State, Identity, and Change

We naturally view the world around us in terms of objects. Each object is
characterized by a set of attributes that can vary with time. The state of an
object is the set of particular attributes it has at a given point in time. For
example, the state of a box of chocolates includes its size, shape, color, location,
whether its lid is on or off, and the number, types, and positions of the chocolates
inside.

Every object has a unique, time-independent attribute that distinguishes it
from other objects: its identity. The notion of identity is at the very heart of

313

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

314 CHAPTER 8. STATE

objectness, for it formalizes the intuition that objects exist over extents of time
rather than just at instants of time. Identity allows us to say that an object
at one point in time is the “same” as that at another point, regardless of any
changes of state that may have taken place in between. It also gives us a way of
saying that two objects with otherwise indistinguishable states are “different.”

Consider our box of chocolates again. If we open the lid, the state of the
box has changed, but we still consider it to be the same box of chocolates. Even
after we eat all the goodies inside, we think that the box has become empty, not
that we have a different box of chocolates.

On the other hand, suppose we leave an unopened box of chocolates on the
kitchen table one day and find an unopened box there the next day. We are
likely to assume that it’s the same box. However, a housemate might later
confess to consuming the entire original box in a fit of the munchies, but then
buying a replacement box after feeling pangs of guilt. In light of this confession,
we concede that the box on the table is not the same as the one we bought, even
though, from our perspective, its state is indistinguishable from that of the box
we left there the day before.

How could we monitor similar situations in the future without the help of
explicit confessions? Before placing an unopened box of chocolates on the table
we could alter the box in some irreversible way. The next day we could check
if the box on the table had the same alteration. If the box on the table the
next day does not exhibit the alteration, we are sure that the new box is not
the same as the original. If it does have the alteration, we aren’t 100% sure
(our housemate might have diabolically copied our alteration, or a new box by
chance might exhibit the same alteration), but there is reasonable evidence that
the box is in fact the same one we left the previous day.

This example emphasizes that the notions of time, state, identity, and change
are all inextricably intertwined.1 The purpose of this chapter is to see how these
notions are expressed in a computational framework. We shall see that state and
its friends provide new ways to decompose problems but can greatly complicate
reasoning about programs.

8.1.2 FL Does Not Support State

Computing with time-varying state-based entities is an extremely popular pro-
gramming paradigm, both in traditional imperative languages, such as For-
tran, Cobol, Pascal, C, and Adaas well as in object-oriented languages
like SmallTalk, C++, C#, and Java. We shall call such languages stateful.

1For a further discussion of this philosophical point in a computational framework, see
Chapter 3 of [ASS96].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 315

One reason that stateful languages are so popular is that they resonate with the
experience that many programmers have in interacting with objects that change
over time in the world. At the opposite side of the spectrum are stateless
languages like the so-called purely functional programming languages such as
Haskell and Miranda. Mostly functional languages are those, like Com-
mon Lisp, Scheme, and ML, that add stateful features on top of a stateless
function-oriented core.

The FL language we have studied thus far is a stateless language – it provides
no support for expressing computational objects with identity and state. In par-
ticular, neither variables nor data structures (pairs) may exhibit time-dependent
behavior. To underscore this point, we will show the difficulties encountered in
modeling a classic example of state – bank accounts – within FL. The goal is to
implement the following bank account procedures in FL:

• (make-account amount): Creates an account with amount as the initial
balance.

• (balance account): Returns the balance in account.

• (deposit! amount account): If amount is non-negative, increases the
balance of account by amount and returns the symbol succeeded. If
amount is negative, leaves the balance unchanged and returns the sym-
bol failed.

• (withdraw! amount account): If amount is less than or equal to the bal-
ance of account, decreases the balance of account by amount, and returns
the symbol succeeded. If amount is negative or is greater than the balance
of account, leaves the balance unchanged and returns the symbol failed.

We adopt the convention that names of procedures that change the state of an
object (such as deposit! and withdraw!) end in the ‘!’ character (pronounced
“bang”).

Note that the specifications of deposit! and withdraw! indicate not only
what value the procedures return (in both cases, one of the symbols succeeded
or failed) but also what effect the procedure has on the state of the account
(increasing or decreasing the balance). Even make-account has the effect of
updating the banking system to include a new account. Such changes in state are
referred to as side effects ormutations. In programming languages supporting
state, the specification of a procedure includes both its return value and its side
effects.2

2This is true for languages like Scheme and C in which procedure calls are expressions —

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

316 CHAPTER 8. STATE

It turns out that it is impossible to write a set of FL procedures that
satisfy the above specifications. We will demonstrate this fact by studying a
nullary (i.e., zero-argument) procedure test-deposit! that performs the fol-
lowing steps in order:

• create an account acct with a balance of 100;

• determine the balance bal of acct;

• deposit 17 dollars into acct;

• determine the new balance bal ′ of acct;

• return the difference bal ′ − bal.

In a stateful language, (test-deposit!) should return 17. However, we can
show that in FL test-deposit! must return 0!

If we try to write test-deposit! in FL, we immediately run into a stumbling
block. The specified actions are clearly ordered by time, but FL provides no
explicit construct for specifying that expressions should be evaluated in any
particular order. To get around this problem, we assume the existence of a
construct (begin E1 E2) that evaluates E1 before E2 . Since all FL expressions
must return a value, we dictate that the value returned by a begin expression is
the value of E2 . The formal semantics of begin are specified by the operational
rewrite rules and the denotational valuation clause in Figure 8.1.

Operational Semantics

(begin V E)⇒E [begin-return]

E1 ⇒E1
′

(begin E1 E2)⇒ (begin E1
′ E2)

[begin-progress]

Denotational Semantics

E [[(begin E1 E2)]] =λe . (with-value (E [[E1]] e) (λv . (E [[E2]] e)))

Figure 8.1: Operational and denotational semantics of begin.

Using begin, we can write test-deposit! in FL as follows:

constructs that appear in value-accepting contexts. But in many languages, procedure calls
are commands — constructs that do not produce values but are executed for effect only. In
such languages, procedure specifications do not describe a return value.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 317

(define test-deposit!

(lambda ()

(let ((acct (make-account 100)))

(let ((old (balance acct)))

(begin (deposit! 17 acct)

(- (balance acct) old))))))

The abstraction can be translated into FLK as follows:

(proc ignore

(call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100)))

We can now use our semantics frameworks to show that the FLK call

(call test-deposit! #u)

must evaluate to 0 regardless of how deposit! is defined. We will assume a
CBN version of FLK; since termination is not an issue here, the result will be
the same for CBV.

An operational trace of (call test-deposit! #u) appears in Figure 8.2.
Note the three copies of the expression (call make-account 100) generated
by substitution. In FL’s operational semantics, an expression representing a
data structure for all intents and purposes is the data structure. Since the
second operand of deposit! and the operand of the two calls of balance are
syntactically distinct copies of the make-account expression, any operations
performed by deposit! can’t possibly affect the operands of the balance calls.
If we make the assumption that

(call balance (call make-account 100))
∗⇒ 100

(this would seem to be required of any reasonable bank account implementation),
then the trace shows that (test-deposit!) indeed evaluates to 0.

Denotational semantics offers another perspective on this example. Recall
that FL’s valuation function E maps expressions and environments to expressible
values. If an environment econtext is specified, then a given expression must
always denote the same meaning relative to econtext because E is a mathematical
function. Suppose that e1 is an environment in which acct is bound to a
representation of an account with a balance of b dollars (b need not be 100).
Then the following must be true:

(E [[(call balance acct)]] e1) = b

Now consider the meaning of the following expression Ecore with respect to e1 :

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

318 CHAPTER 8. STATE

(call (proc ignore

(call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100)))

#u)

⇒ (call (proc acct

(call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct)))

(call make-account 100))

⇒ (call (proc old

(begin (call (call deposit! 17) (call make-account 100))

(primop - (call balance (call make-account 100))

old)))

(call balance (call make-account 100)))

⇒ (begin (call (call deposit! 17) (call make-account 100))

(primop -

(call balance (call make-account 100))

(call balance (call make-account 100))))
∗⇒ (primop -

(call balance (call make-account 100))

(call balance (call make-account 100)))
∗⇒ (primop - 100 100)

⇒ 0

Figure 8.2: Operational trace showing that (call test-deposit! #u) evalu-
ates to 0.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 319

Ecore = (call (proc old

(begin (call (call deposit! 17) acct)

(primop - (call balance acct) old)))

(call balance acct))

This expression contains two occurrences of (call balance acct) that are eval-
uated in environments containing the same binding for acct. So both of these
occurrences denote the same number b. But then the meaning of old is clearly
b, so the meaning of

(primop - (call balance acct) old)

must be 0. Thus, we have shown that Ecore denotes 0, regardless of which
account is denoted by acct. So (test-deposit!) must also denote 0.

In both the operational and denotational analyses, the fundamental insight
is that (test-deposit!) returns the difference of two occurrences of the expres-
sion (call balance acct), and these must necessarily have the same value. A
language in which distinct occurrences of any expression always have the same
meaning within a given naming context is said to be referentially transpar-
ent. Of course, the notion of “naming context” needs to be fully specified.
Intuitively, two occurrences of an expression are in the same naming context if
they share the same Stoy diagram — i.e., if every occurrence of a free identifier in
one refers to the same binding occurrence as the corresponding identifier in the
other. Stateless languages, such as our mini-language FL and the real language
Haskell, are referentially transparent, while stateful languages are not.

Referential transparency is a property that we frequently use in mathematical
reasoning in the form of “substituting equals for equals.” But it is seriously at
odds with the notions of state and time. State is predicated on the idea that
observable properties of an object can change. But if we make the reasonable
assumption that a property of an object can be accessed by applying a single-
argument procedure to that object (as in (balance acct) above), referential
transparency dictates that all occurrences of such an expression within a given
environment must denote the same value. Thus, the observable properties of
an object cannot change. And if changes to the state of objects cannot be
observed, how meaningful is it to talk about one action happening before or
after another? We shall have more to say about referential transparency and
state in Section 8.2.5.

Finally, suppose we actually try to write the definition of deposit! in FL.
What kind of difficulties do we run into? Below is a skeleton for such a procedure:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

320 CHAPTER 8. STATE

(define deposit!

(lambda (amount account)

(if (< amount 0)

’failed

(begin EIncreaseBalance
’succeeded))))

The body of deposit! returns the right value (one of the symbols failed or
succeeded). But how do we write EIncreaseBalance? By the same reasoning used
above, no FL expression can possibly alter the state of the account. Obviously,
we are missing something. Shortly, we will introduce constructs that allow us
to fill in the blanks here, and we will explore how the semantics of FL needs to
be changed to accommodate their introduction.

But before we do that, consider the following. Since FL is a universal lan-
guage, it is capable of expressing any computation. So surely examples such as
the bank account scenario must be expressible within FL, albeit not necessarily
in a way that corresponds to our intuitions about the physical world. Next, we’ll
examine some ways in which state can be simulated in FL. The purpose of this
exploration is to give us insight into the nature of state. Later, we will be able
to apply what we learn to the semantics for our modified dialect of FL.

8.1.3 Simulating State In FL

8.1.3.1 Iteration

The simulation of state in FL is exemplified by the handling of iteration. An
iteration is a computation that characterizes the state of a system in terms of
the values of a set of variables known as its state variables. The value of each
state variable in an iteration at time t is a function of the values of the state
variables at time t− 1.

As an example of an iteration, consider the problem of reversing the order
of cards in a deck of playing cards. A natural solution is to use two piles, called
old and new, where old is initially the original deck and new is an empty pile.
Then, one by one, cards can be moved from the old pile to the new pile until the
old pile is empty. At this point, the new pile contains the reversed deck of cards.
In this example the state variables are the (ordered) contents of the old and new
piles. These two variables completely characterize the state of the system. If a
person performing the reversal for some reason had to leave before completing
the task, someone else could take over as long as it was apparent which was the
old pile and which was the new.

It is straightforward to express iterations in FL. For example, the above

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 321

technique can be applied to list reversal as follows:

(define reverse

(lambda (lst)

(letrec ((iterate

(lambda (old-pile new-pile)

(if (null? old-pile)

new-pile

(iterate (cdr old-pile)

(cons (car old-pile) new-pile)))))))

(iterate lst ’())))

In this case, the state variables are the arguments old-pile and new-pile to
the internal procedure iterate. For example, here is a trace of the reversal of a
three-element list (where REVERSE and ITERATE stand for the appropriate
expressions):

(REVERSE (list 1 2 3))
∗⇒ (ITERATE (list 1 2 3) (list))
∗⇒ (ITERATE (list 2 3) (list 1))
∗⇒ (ITERATE (list 3) (list 2 1))
∗⇒ (ITERATE (list) (list 3 2 1))
∗⇒ (list 3 2 1)

The above example suggests a general approach for expressing iterations in
FL. State variables simply become the arguments to an iterating procedure, and
updating the state variables is expressed by calling the iterating procedure on
values computed from the previous values of the state variables.

Note carefully how an iteration manages to circumvent the constraints of
referential transparency to represent state and time. The state at any point in
time is represented by the values of formal parameter names associated with a
particular application of the iterating procedure. In the list reversal example,
the state variables correspond to the formal parameters old-pile and new-pile.
The value of a particular variable named old-pile or new-pile never changes.
However, each application of the iterate procedure effectively creates new vari-
ables that happen to be named by these same identifiers. So for each point in
time t, there are distinct variables old-pilet and new-pilet . State is encoded
not as the changing value of a variable, but rather as the values of a sequence
of immutable variables.

Events in time are ordered by the only means available for ordering in a
stateless language: data dependency. If the value of E1 is needed to compute E2 ,
then E2 is said to have a data dependency on E1 . In the list reversal example,
since old-pilet is equal to (cdr old-pilet−1), it has a data dependency on

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

322 CHAPTER 8. STATE

old-pilet−1 ; new-pilet is dependent on both old-pilet−1 and new-pilet−1 .
Data dependencies can be interpreted as a kind of time: if E2 depends on the
result of E1 , it is natural to view the evaluation of E1 as happening before the
evaluation of E2 .

8.1.3.2 Single-Threaded Data Flow

Iteration is an instance of a general technique for simulating state in a stateless
language. State can always be simulated by adding state variables both as
arguments and return values to every procedure in a program whose body either
accesses or changes the state variables. The state of the program upon entering
a procedure is encoded in the values of the state variable arguments, and the
state of the program upon exiting a procedure is encoded in the values of the
state variables returned as results. Because state is based on a notion of linearly-
ordered time, we must guarantee that the data dependencies among the state
variables form a linear chain. State variables satisfying this constraint are said
to be passed through the program in a single-threaded fashion.

From this perspective, the problem with the bank account procedures is that
the state of the system is not appropriately threaded through calls to these pro-
cedures. Suppose the state of the banking system is modeled by an entity called
a bank-state. Then we can simulate state with the bank account procedures by
extending each procedure to accept an additional bank-state argument and to
return a pair of its usual return value and a (potentially updated) bank-state.

Suppose that every bank account bears a unique account number. Then we
can represent a bank-state as a list of account-number/current-balance pairs. For
example, the bank-state [〈1729 , 200 〉, 〈6821 , 17 〉] indicates that account 1729
has a current balance of 200 dollars and account 6821 has a current balance
of 17 dollars. We will allow the same account number to appear more than
once in a bank-state; in this case, the leftmost pair with a given account num-
ber indicates the current balance of that account. For example, in bank-state
[〈6821 , 52 〉, 〈1729 , 200 〉, 〈6821 , 17 〉], account 6821 has 52 dollars.

Here is an implementation of the deposit! procedure in this approach:

(define deposit!

(lambda (amount account bank-state)

(if (< amount 0)

(pair ’failed bank-state)

(let ((old&bank1 (balance account bank-state)))

(let ((old (left old&bank1))

(bank1 (right old&bank1)))

(pair ’succeeded

(cons (pair account (+ old amount)) bank1)))))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 323

We assume that accounts are represented by their account numbers and that
balance has been similarly modified to accept and return a bank-state. When
it succeeds, deposit! creates a new bank state by prepending a new account-
number/current-balance pair to the old one. A bank-state can be threaded
through make-account3, balance, and withdraw! in a similar fashion.

The test-deposit! procedure can also be modified to take a bank-state and
thread it through each of the bank account operations:

(define test-deposit!

(lambda (bank)

(let ((acct&bank1 (make-account 100 bank)))

(let ((acct (left acct&bank1))

(bank1 (right acct&bank1)))

(let ((old&bank2 (balance acct bank1)))

(let ((old (left old&bank2))

(bank2 (right old&bank2)))

(let ((sym&bank3 (deposit! 17 acct bank2)))

(let ((sym (left sym&bank3))

(bank3 (right sym&bank3)))

(let ((new&bank4 (balance acct bank3)))

(let ((new (left new&bank4))

(bank4 (right new&bank4)))

(pair (- new old)

bank4)))))))))))

Given any initial bank-state, the new version of test-deposit! will return a
pair of 17 (the desired result) and an updated bank-state.

¤ Exercise 8.1 Provide definitions of make-account, balance, and withdraw! in

which a bank-state is single-threaded through each procedure. ¢

¤ Exercise 8.2 It is only necessary to single-thread a store through procedures that
may update the store. For procedures that only access the store without updating it, it
is sufficient to pass the store as an argument; such a procedure need not return a store
as its result. An example of such a procedure is balance, which reads the balance of a
bank account but does not write it.

• Write a version of balance that takes an account and a bank-state and returns
only the balance of the account.

• Modify the state-simulating definitions of deposit! and test-deposit! to use

3make-account must also create a new, previously unused account number. Asking the
caller to specify the number is an option, but it is better to include the next available account
number as part of the bank state. If we don’t care about wasting computational resources, we
can compute a fresh account number from the current bank-state representation by adding 1

to the largest account number in the bank.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

324 CHAPTER 8. STATE

the new version of balance. ¢

8.1.3.3 Monadic Style

The bank-state threading details make the test-deposit! code hard to read,
but some well-chosen abstractions can significantly increase readability. It helps
to have a with-pair procedure that decomposes a pair into its component parts
and passes these to a receiver procedure that names them:

(define with-pair

(lambda (pair receiver)

(receiver (left pair) (right pair))))

Using with-pair, test-deposit! can be simplified as follows:

(define test-deposit!

(lambda (bank)

(with-pair (make-account 100 bank)

(lambda (acct bank1)

(with-pair (balance acct bank1)

(lambda (old bank2)

(with-pair (deposit! 17 acct bank2)

(lambda (sym bank3)

(with-pair (balance acct bank3)

(lambda (new bank4)

(pair (- new old) bank4)))))))))))

Readability can be increased even further by hiding the threading of the
bank-state altogether. Suppose that we define an action as any procedure that
takes a bank-state and returns a pair of a value and a bank-state. In order
to perform an action, we apply the action to a bank-state, which returns a
value/bank-state pair. Such actions can be glued together by the after proce-
dure in Figure 8.3, which takes a first action and a procedure that maps the value
from performing the first action to a second action and returns a single action
that performs the first action followed by the second. The figure also contains
a return procedure that converts a value into an action and curried versions of
make-account, balance, and deposit! that return actions when supplied with
their non-bank-state arguments. With these abstractions, the test-deposit!

procedure can be composed using four occurrences of after and one return

(Figure 8.4).

This final version of test-deposit! illustrates a technique for threading
state through a program that is known as monadic style. This style is based
on gluing together state-threading components like the bank account actions in

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.1. WHAT IS STATE? 325

(define after

(lambda (action receiver)

(lambda (bank)

(with-pair (action bank)

(lambda (val bank1)

((receiver val) bank1))))))

(define return

(lambda (val)

(lambda (bank) (pair val bank))))

(define *make-account

(lambda (amount)

(lambda (bank) (make-account amount bank))))

(define *deposit!

(lambda (amount acct)

(lambda (bank) (deposit! amount acct bank))))

(define *balance

(lambda (acct)

(lambda (bank) (balance acct bank))))

Figure 8.3: Procedures supporting a monadic style of threading bank-states
through a program.

(define test-deposit!

(after (*make-account 100)

(lambda (acct)

(after (*balance acct)

(lambda (old)

(after (*deposit! 17 acct)

(lambda (sym)

(after (*balance acct)

(lambda (new)

(return (- new old)))))))))))

Figure 8.4: A version of test-deposit! written in monadic style.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

326 CHAPTER 8. STATE

a way that hides the details of the “plumbing.” We have already seen monadic
style in the denotational semantics of FL in Section 6.5. There, the Compu-
tation domain and functions like with-value are used to hide the messy details
of propagating errors. In Section 8.2.4, we will extend the Computation do-
main to include a threaded store. By changing the meanings of a few functions
like with-value, it is possible to thread the state through the semantics without
changing many of the existing valuation functions. This illustrates the power of
the monadic style.

In stateless languages, monadic style is commonly used to express stateful
computations. The awkwardness of using a combiner like after can be avoided
by syntactic sugar. For example, Haskell supports a “do notation” in which
the bank account testing function can be written as:

testDeposit =

do a <- makeAccount 100

b1 <- balance a

deposit 17 a

b2 <- balance a

return (b2-b1)

As we shall see, this notation is not far from the way that stateful computations
are expressed in stateful languages.

The name “monadic style” is derived from an algebraic structure, themonad,
that captures the essence of manipulating state-threading components. For more
information on monads and how monadic style can be used to express stateful
computations in stateless languages like Haskell, see [Wad95] and [JW93].

8.1.4 Imperative Programming

The bank account example demonstrates how it is possible to simulate state
within a stateless language. However, even in monadic style, such simulations
can be cumbersome. An alternative strategy is to develop a language paradigm
that abstracts over the notion of state in such a way that the details of single-
threading are automatically managed by the language. This is the essence of
the imperative programming paradigm. In the imperative paradigm, all
program state is conceptually bundled into a single entity called a store that
is implicitly single-threaded through the program execution. Elements of the
store are addressed by locations, unique identifiers that serve as unchanging
names for time-dependent values. In the bank account example, bank-states
correspond to stores and account numbers correspond to locations.

The advantage of the imperative programming paradigm is that programs
can be shorter and more modular when the details of single-threading are im-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 327

plicitly handled by the language. However, implicit single-threading has a down
side: making explicit state variables implicit destroys referential transparency
and thus makes programs harder to reason about.

The rest of this chapter explores how to model languages that exhibit state.
We will see that the notions of store, location, and single-threading crop up in
both operational and denotational descriptions of stateful languages.

8.2 Mutable Data: FL!

8.2.1 Mutable Cells

A one-slot cons is called a cell,
A two-slot cons makes pairs as well.
But I would bet a coin of bronze
There isn’t any three-slot cons.

— Guy L. Steele, Jr.

Data structures whose components can change over time are said to be mu-
table. The simplest kind of mutable data is the mutable cell, a data structure
characterized by a single time-dependent value called its content. A mutable
cell corresponds to a one-slot cons cell in Scheme or a pointer variable in lan-
guages like C and Pascal. We will study mutable data in the context of FL!,
a version of FL that supports mutable cells. We will use CBV as the default
evaluation strategy for FL! because, as we shall see later, it makes more sense
than CBN in languages that support mutation.

We begin by extending CBV FLK with features for supporting mutable cells.
The modified kernel, FLK!, has the following syntax:

EFLK ! ::= . . . [FLK expressions]
| (cell Econtent) [Cell]
| (begin Esequent1 Esequent2) [Begin]

O ∈ PrimopFLK ! = PrimopFLK ∪ {cell-ref, cell-set!, cell=?, cell?}

Here is an informal description of the extensions:

• (cell E) returns a new mutable cell whose initial content is the value of E.
We shall write cells as id:val, where id is a number that uniquely identifies
the cell, and val is the content of the cell. In the following example, the
expression allocates a cell with id number 1729 and content 3:

(cell (+ 1 2)) −−−−FLK!→ 1729:3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

328 CHAPTER 8. STATE

• (primop cell-ref E) fetches the content of the cell computed by E. If
the value of E is not a cell, this expression yields an error.

(primop cell-ref (cell (+ 1 2))) −−−−FLK!→ 3

(primop cell-ref (+ 1 2)) −−−−FLK!→ error:not-a-cell

• (primop cell-set! E1 E2) stores the value of E2 in the cell computed
by E1 . If the value of E1 is not a cell, this expression yields an error.
Since every FLK! expression must return a value, we shall arbitrarily
specify that the value returned by a cell assignment expression is the unit
value.

(primop cell-set! (cell (+ 1 2)) 4) −−−−FLK!→ unit

• (primop cell=? E1 E2) returns true if E1 and E2 evaluate to the same
cell and false if they evaluate to different cells. If at least one of E1 or E2

is not a cell, the expression yields an error.

(let ((c1 (cell 1))

(c2 (cell 1)))

(let ((c3 c1))

(list (primop cell=? c1 c1)

(primop cell=? c1 c2)

(primop cell=? c1 c3)))) −−−−FLK!→ [true, false , true]

• (primop cell? E) returns true if E evaluates to a cell and false if it eval-
uates to some other value.

(pair (primop cell? 0) (primop cell? (cell 0))) −−−−FLK!→ 〈false , true〉

• (begin E1 E2) first evaluates E1 , then evaluates E2 , and then returns
the value of E2 . The value of E1 is discarded.

(call (proc c

(begin (primop cell-set! c 4)

(primop cell-ref c)))

(cell (+ 1 2)))

−−−−FLK!→ 4

FL! is built on top of the kernel provided by FLK!. It has the same syntax
as FL except that it includes the cell construct and a version of begin that
can have an arbitrary number of sequents.

EFL! ::= . . . [FL expressions]
| (cell E) [Cell]
| (begin Esequent*) [Begin]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 329

The extended begin construct is defined by the following desugarings:

Dexp[[(begin)]] = #u

Dexp[[(begin E)]] = Dexp[[E]]

Dexp[[(begin E1 E2 Erest*)]] =

(begin Dexp[[E1]] Dexp[[(begin E2 Erest*)]])

This is the first time we’ve seen a sugar construct that has the same phrase
tag as a kernel construct. This situation is common in practice. Of course,
the desugaring for such a construct must guarantee that the general sugar form
rewrites to the more restricted kernel form.

Like other primitive operator names, cell-ref and cell-set! are standard
identifiers in FL!, where, respectively, they stand for procedures that access the
content of a cell and change the content of a cell. Because these names are
verbose, we will also introduce shorter synonyms in the standard environment:
the name ^ is a synonym for cell-ref, and := is a synonym for cell-set!.

8.2.2 Examples of Imperative Programming

The imperative programming paradigm is characterized by the use of side effects
to perform computations. Because it is equipped with mutable cells, FL! sup-
ports the imperative paradigm. In this section, we present a few FL! programs
that illustrate the imperative programming style.

8.2.2.1 Factorial

Here is an imperative version of an iterative factorial procedure written in FL!:

(define factorial

(lambda (n)

(let ((num (cell n))

(ans (cell 1)))

(letrec ((loop

(lambda ()

(if (= (cell-ref num) 0)

(cell-ref ans)

(begin

(cell-set! ans (* (cell-ref num)

(cell-ref ans)))

(cell-set! num (- (cell-ref num) 1))

(loop))))))

(loop)))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

330 CHAPTER 8. STATE

num and ans are cells that serve as the state variables of the iteration. The
nullary loop procedure corresponds to a while loop in traditional imperative
languages. On each round through the loop, the contents of the state vari-
ables are updated appropriately. The loop terminates when the content of num
becomes zero.

It is instructive to compare the imperative version to a purely functional
version:

(define factorial

(lambda (n)

(letrec ((loop (lambda (num ans)

(if (= num 0)

ans

(loop (- num 1) (* num ans))))))

(loop n 1))))

In the functional version, every call to loop creates a new pair of variables named
num and ans. In contrast, the imperative version shares one num and one ans

variable across all the calls to loop. The correctness of the imperative version de-
pends crucially on the order of the assignment expressions (cell-set! ans . . .)
and (cell-set! num . . .). If these expressions are swapped, then the impera-
tive factorial no longer computes the right answer. This bug is due purely to
the time-based nature of the imperative paradigm; the functional version does
not exhibit the potential for this bug since all expressions have time-independent
values. This illustrates one of the dangers of imperative programming: since
many dependencies are implicit rather than explicit, subtle bugs are more likely,
and they are harder to locate.

8.2.2.2 Bank Accounts

Using mutable cells, it is straightforward to implement the bank account scenario
introduced in Section 8.1.2 and examined further in Section 8.1.3.

(define make-account

(lambda (amount)

(if (< amount 0)

’failed

(cell amount))))

(define balance

(lambda (account) (cell-ref account)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 331

(define deposit!

(lambda (amount account)

(if (< amount 0)

’failed

(begin

(cell-set! account (+ amount (cell-ref account)))

’succeeded))))

(define withdraw!

(lambda (amount account)

(let ((bal (cell-ref account)))

(if (or (< amount 0) (> amount bal))

’failed

(begin

(cell-set! account (- bal amount))

’succeeded)))))

Each account is represented by a distinct cell, and the bank account operations
examine and change the content of this cell. Figure 8.5 shows the transcript of
an interpreter session testing bank account objects.

(define a (make-account 100))

(define b (make-account 100))

(balance a) −−−FL!→ 100
(balance b) −−−FL!→ 100

(deposit! 17 b) −−−FL!→ ′succeeded

(balance a) −−−FL!→ 100
(balance b) −−−FL!→ 117

(deposit! 23 a) −−−FL!→ ′succeeded
(deposit! -23 b) −−−FL!→ ′failed
(withdraw! 120 a) −−−FL!→ ′succeeded
(withdraw! 120 b) −−−FL!→ ′failed

(balance a) −−−FL!→ 3
(balance b) −−−FL!→ 117

Figure 8.5: Sample interactions with bank account objects.

While it is natural to represent accounts directly as cells, it is also somewhat
insecure to do so. Every account should maintain the invariant that the balance

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

332 CHAPTER 8. STATE

never slips below zero. But if an account is just a cell, then it is possible to
violate this invariant by using cell-set! to directly store a negative number
into an account. In general, it is wise to package up mutable data in a way that
guarantees that important invariants cannot be violated (either accidentally or
maliciously) by some other part of a software system.

First-class procedures provide an elegant means of encapsulating state so
that it can only be manipulated in constrained ways. Figure 8.6 presents an
alternate implementation in which bank accounts are represented as procedures
that dispatch a message. The advantage to this approach is that the procedure
provides a security wall for accessing and updating the account balance. In
particular, the alternate implementation guarantees that the balance can never
fall below zero.

8.2.2.3 Pattern Matching Revisited

The pattern matcher presented in Section 6.2.4.3 passes a dictionary through
the computation in a single-threaded fashion. This means that the time-based
sequence of dictionary values can alternately be represented as the changing
content of a mutable cell. Figure 8.7 presents an imperative version of the
match-sexp procedure that is based on this idea. (Procedures not defined in
the figure are assumed to be the same as before.)

The match-with-dict procedure from Section 6.2.4.3 has been replaced by
the internal match! procedure. Rather than taking a dictionary as its third ar-
gument, match! implicitly takes the current value of dict-cell as its argument.
The failed-flag cell is used to simplify the handling of unsuccessful pattern
matches.

8.2.3 An Operational Semantics for FLK!

In order to model the state exhibited by FLK!, we will use the notions of a
location and a store introduced above. A location is a unique identifier for a
mutable entity, and a store is a structure that associates each location with its
value at a particular point in time. There are many ways to represent locations
and stores. In our operational treatment, we will represent locations as numeric
literals and stores as a sequence of location/value pairs:

L ∈ Location = Nat
S ∈ Store = Assignment*
Z ∈ Assignment = Location×ValueExp

We will assume the existence of a partial function get that finds the first
value associated with a location in a store:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 333

(define make-account

(lambda (amount)

(if (< amount 0)

’failed

(let ((account (cell amount)))

(lambda (message)

(cond ((sym=? message ’balance)

(cell-ref account))

((sym=? message ’deposit!)

(lambda (amount)

(if (< amount 0)

’failed

(begin

(cell-set! account

(+ amount (cell-ref account)))

’succeeded))))

((sym=? message ’withdraw!)

(lambda (amount)

(let ((bal (cell-ref account)))

(if (or (< amount 0) (> amount bal))

’failed

(begin

(cell-set! account (- bal amount))

’succeeded)))))))))))

(define balance (lambda (account) (account ’balance))

(define deposit!

(lambda (amount account) ((account ’deposit!) amount)))

(define withdraw!

(lambda (amount account) ((account ’withdraw!) amount)))

Figure 8.6: A message passing implementation of bank accounts.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

334 CHAPTER 8. STATE

;;; Imperative version of the MATCH-SEXP program. Procedures not defined

;;; here are the same as before.

(define match-sexp

(lambda (pat sexp)

(let ((dict-cell (cell (dict-empty)))

(failed-flag (cell #f)))

(letrec ((match!

;; MATCH! sets FAILED-FLAG true upon failure, and

;; updates the content of the DICT-CELL otherwise.

;; It always returns unit.

(lambda (pat sexp)

(cond

((failed-flag?) #u)

((null? pat)

(if (null? sexp)

#u

(fail!)))

((null? sexp) (fail!))

((pattern-constant? pat)

(if (sexp=? pat sexp) #u (fail!)))

((pattern-variable? pat)

(dict-bind! (pattern-variable-name pat) sexp))

(else

(begin (match! (car pat) (car sexp))

(match! (cdr pat) (cdr sexp)))))))

(failed-flag? (lambda () (cell-ref failed-flag)))

(fail! (lambda () (cell-set! failed-flag #t)))

(dict-bind!

(lambda (sym sexp)

(let ((new-dict (dict-bind

pat sexp (cell-ref dict-cell))))

(if (failed? new-dict)

(fail!)

(cell-set! dict-cell new-dict))))))

(begin

(match! pat sexp)

(if (cell-ref failed-flag)

’failed

(cell-ref dict-cell)))))))

Figure 8.7: Version of match-sexp written in an imperative style.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 335

get : Location→ Store⇀ ValueExp
(get L 〈L,V〉 . S) =V
(get L1 〈L2 ,V〉 . S) = (get L1 S), where L1 6=L2

The FLK! SOS uses the syntactic domain Emixed ∈MixedExp, which has a
grammar isomorphic to FLK! except for the addition of a (*cell* L) construct
that is used to represent cell values:

Emixed ::= . . . [FLK! expressions]
| (*cell* L) [Cell Value]

The *cell* construct may not appear in a user program. ValueExp is the same
as that for CBV FLK except that it also contains cell values:

V ∈ ValueExp = Lit ∪ {(proc I E)}
∪{(pair V1 V2)} ∪{(*cell* L)}

An operational semantics for FLK! is specified by

〈CFFLK !,⇒ ,FCFLK !, IFFLK !,OFFLK !〉,

where the rewrite rules defining ⇒ are specified later and

CFFLK ! = MixedExp× Store
FCFLK ! = ValueExp× Store
IFFLK ! = λE . 〈E, []Assignment 〉
OFFLK ! = λ〈V,S〉 . (output V)

(output L) = L

(output (proc I E)) = procedure

(output (pair V1 V2)) = (pair (output V1) (output V2))

(output (*cell* L)) = cell.

The first component (code component) of an FLK! configuration is a mixed
expression that serves the same role as an entire FLK configuration. An FLK!
configuration has an additional state component: a store that models the cur-
rent mapping of locations to value expressions. A computation begins with the
initial expression and an empty store, []Assignment, and runs until the code com-
ponent becomes a value (or the configuration becomes stuck). At this point, an
approximation to the final value is returned as the result of the original FLK!
expression.

The core rewrite rules for the FLK! semantics appear in Figure 8.8. The
cell construct and the primitive operators cell-ref and cell-set! are the
only constructs that directly manipulate the store. The [cell-alloc] axiom allo-
cates a new location, Lfresh , which does not appear in the store, and extends the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

336 CHAPTER 8. STATE

〈E,S〉⇒ 〈E ′,S ′〉
〈(cell E),S〉⇒ 〈(cell E ′),S ′〉 [cell-progress]

〈(cell V),S〉⇒ 〈(*cell* Lfresh), (〈Lfresh ,V〉 . S)〉,
where Lfresh is a location that does not appear in S.

[cell-alloc]

〈(primop cell-ref (*cell* L)),S〉⇒ 〈V,S〉,
where (get L S) =V

[cell-ref]

〈(primop cell-set! (*cell* L) V),S〉⇒ 〈#u, 〈L,V〉 . S〉 [cell-set!]

〈(primop cell=? (*cell* L) (*cell* L)),S〉⇒ 〈#t,S〉 [cell=?-true]

〈(primop cell=? (*cell* L1) (*cell* L2)),S〉⇒ 〈#f,S〉,
where L1 6= L2

[cell=?-false]

〈(primop cell? (*cell* L)),S〉⇒ 〈#t,S〉 [cell?-true]

〈(primop cell? V),S〉⇒ 〈#f,S〉,
where V 6= (*cell* L)

[cell?-false]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(begin E1 E2),S〉⇒ 〈(begin E1

′ E2),S
′〉 [begin-first]

〈(begin V E),S〉⇒ 〈E,S〉 [begin-rest]

〈E,S〉⇒ 〈E ′,S ′〉
〈(rec I E),S〉⇒ 〈(rec I E ′),S ′〉 [rec-body]

〈(rec I V),S〉⇒ 〈[(rec I V)/I]V,S〉 [cbv-rec]

Figure 8.8: Core rewrite rules for FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 337

store with a new binding between Lfresh and the given value. The result of this
operation is a *cell* value that maintains an index into the store. The [cell-
ref] rule uses get to extract the binding at the location specified by the *cell*
value. Even though get is only a partial function, a cell-ref expression can
never get stuck because every location appearing in a *cell* value must appear
in the store. The [cell-set!] rule returns a unit value but also prepends a new
location/value pair to the store to reflect the assignment.

We have chosen to represent stores as explicit sequences of bindings, but
other representations are certainly possible (e.g., representing stores as functions
that map locations to values). In our approach, the number of bindings in a
store is equal to the number of allocations and assignments performed by the
program. An implementation based on such a strategy would be disastrously
inefficient: the size of the store would grow throughout the computation, and cell
references would take time linear in the size of the growing store. But our goal
here is to give a simple semantics for stores, not to implement them efficiently.
Any reasonable implementation of FLK! would represent stores in a way that
takes advantage of the state-based nature of addressable memory in physical
computers.

Of the remaining rules in Figure 8.8, the begin rules are straightforward,
but the rec rules deserve some explanation. Handling rec is a bit tricky in the
presence of side effects. The basic problem is illustrated by the following FL!
example:

(let ((counter (cell 0)))

(begin ((rec fact

(begin (cell-set! counter

(+ (cell-ref counter) 1))

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1)))))))

5)

(cell-ref counter)))

Here the value computed by the rec expression is a factorial procedure. But
we’re not so much interested in the value of the rec as we are in the value of the
counter cell at the end of the expression. This value tells us how many times
counter is incremented during the evaluation of the rec expression. Presumably,
the content of counter should be 1. However, if the CBN rule

〈(rec I E),S〉⇒ 〈[(rec I E)/I]E,S〉 [cbn-rec]

were used, then the value of the above expression would be 6 because the begin

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

338 CHAPTER 8. STATE

expression that is the body of the rec would be copied in each unwinding and
would be evaluated six times.

To avoid this behavior, the [cbv-rec] rule only unwinds the rec when the
body is a value. The [rec-body] rule takes care of rewriting the body of the rec
into a member of ValueExp. This means that any side effects encountered during
the evaluation of the rec body are performed only once. In a CBV semantics,
the rewriting of the rec body will only terminate in a non-stuck state when all
uses of the formal parameter introduced by rec that appear in the body are
“shielded” from immediate evaluation by a proc.

The rest of the rules for FLK! appear in Figure 8.9. These rules never
actually examine or update the store. Rather, they just specify the “plumbing”
that passes the store through the computation in a single-threaded fashion. This
guarantees that any changes made by cell or cell-set! are visible to later
uses of cell-ref. Except for the additional shuffling of the store component,
these rules are the same as those for CBV FLK. The [FLK-prim] rule says
that the behavior of primitive applications from FLK (as specified by ⇒FLK)
is inherited by FLK! (as specified by ⇒), where the store is unaffected by all
such applications.

As a simple example of the FLK! SOS, consider the operational evaluation
of the expression (call Eproc (cell 3)) where Eproc is:

(proc c

(begin (primop cell-set! c

(primop + 1

(primop cell-ref c)))

(primop cell-ref c)))

Figure 8.10 shows the transition sequence associated with this expression. Note
how the cell value (*cell* 0) serves as an unchanging index into the time-
dependent store.

¤ Exercise 8.3 The begin construct need not be primitive in FLK!. A desugaring of
begin into other FLK! constructs must take advantage of the fact that the only notion
of time in FL has to do with data dependency. That is, the only thing that forces an
expression to be evaluated is that its value is used in the evaluation of another expression.
This suggests the following desugaring for begin into other FLK! expressions.

Dexp[[(begin E1 E2)]] = (call (proc (Iignore) Dexp[[E2]]) Dexp[[E1]])

where Iignore 6∈FreeIds[[E2]].

a. The desugaring for begin given above uses constructs only from FLK, which
does not support state. Is it possible to determine whether begin actually works
as advertised (i.e., evaluates E1 before E2) in a language that does not support
state? Explain your answer, using examples where appropriate.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 339

〈(call (proc I E) V),S〉⇒ 〈[V/I]E,S〉 [cbv-call]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(call E1 E2),S〉⇒ 〈(call E1

′ E2),S
′〉 [rator-progress]

〈E2 ,S〉⇒ 〈E2 ′,S ′〉
〈(call (proc I E1) E2),S〉

⇒〈(call (proc I E1) E2
′),S ′〉

[rand-progress]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(if E1 E2 E3),S〉⇒ 〈(if E1

′ E2 E3),S
′〉 [test-progress]

〈(if #t E1 E2),S〉⇒ 〈E1 ,S〉 [if-true]

〈(if #f E1 E2),S〉⇒ 〈E2 ,S〉 [if-false]

〈Eleft ,S〉⇒ 〈Eleft ′,S ′〉
〈(pair Eleft Eright),S〉⇒ 〈(pair Eleft

′ Eright),S
′〉 [left-progress]

〈Eright ,S〉⇒ 〈Eright ′,S ′〉
〈(pair Vleft Eright),S〉⇒ 〈(pair Vleft Eright

′),S ′〉 [right-progress]

〈E,S〉⇒ 〈E ′,S ′〉
〈(primop O E),S〉⇒ 〈(primop O E ′),S ′〉 [unary-arg]

〈E1 ,S〉⇒ 〈E1 ′,S ′〉
〈(primop O E1 E2),S〉⇒ 〈(primop O E1

′ E2),S〉 [binary-arg1]

〈E2 ,S〉⇒ 〈E2 ′,S ′〉
〈(primop O V1 E2),S〉⇒ 〈(primop O V1 E2

′),S ′〉 [binary-arg2]

(primop OFLK V*)⇒FLK Vresult

〈(primop OFLK V*),S〉 ⇒ 〈Vresult ,S〉,
where OFLK ∈PrimopFLK ! − {cell-ref, cell-set!, and cell?}

[FLK-prim]

Figure 8.9: FLK! rewrite rules for single-threading the store.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

340 CHAPTER 8. STATE

〈(call Eproc (cell 3)), []〉
⇒ 〈(call Eproc (*cell* 0)), [〈0, 3〉]〉 [rand-progress & cell-alloc]
⇒ 〈(begin (primop cell-set!

(*cell* 0)

(primop + 1

(primop cell-ref

(*cell* 0))))

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[cbv-call]

⇒ 〈(begin (primop cell-set!

(*cell* 0)

(primop + 1 3))

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[begin-first, 2×binary-arg2, cell-ref]

⇒ 〈(begin (primop cell-set!

(*cell* 0)

4)

(primop cell-ref

(*cell* 0))),
[〈0, 3〉]〉

[begin-first, binary-arg2, FLK-prim]

⇒ 〈(begin #u

(primop cell-ref

(*cell* 0))),
[〈0, 4〉]〉

[begin-first & cell-set!]

⇒ 〈(primop cell-ref

(*cell* 0)),
[〈0, 4〉]〉

[begin-rest]

⇒ 〈4, [〈0, 4〉]〉 [cell-ref]

Figure 8.10: Operational evaluation of a sample FLK! expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 341

b. Explain why the above desugaring would not work for a CBN version of FL!.

c. Write a desugaring for begin in CBV FLK! that does not require any condition
involving the free variables of E1 or E2 . (Hint: use thunks!)

d. Is it possible to write a desugaring for begin that works in both CBV and CBN
FLK! ? If so, give the desugaring; if not, explain why not. ¢

¤ Exercise 8.4 The introduction of side effects can complicate reasoning about
programs. For example, program transformations that are safe in FL aren’t necessarily
safe in FL!.

• List three transforms that are safe in FL but not in FL!. Provide counter-
examples to demonstrate why they are not safe in FL!.

• List three transforms that are safe in both FL and FL!.

• Consider transforms that do not mention any of the new features of FLK!. Are
there any such transforms that are safe in FL! but not in FL? If so, exhibit such
a transform. If not, explain. ¢

8.2.4 A Denotational Semantics for FLK!

Now we’ll study the semantics of FLK! from the denotational perspective. As
in the operational approach, notions of location and store will be used to model
state. The notion of computation will be modified so that stores flow through
a computation in a single-threaded fashion. The power of the computation ab-
straction will be illustrated by the fact that only those constructs that explicitly
refer to the store need new valuation clauses; other constructs are described by
their (unmodified) FLK valuation clauses.

8.2.4.1 Stores

The denotational treatment of stores and locations is summarized in Figure 8.11.

Here locations are represented as natural numbers and stores are represented
as functions that map locations to elements of the Assignment domain. Stores
do not map locations directly to values because it is necessary to encode the
fact that not all locations have values assigned to them. The distinguished
element unassigned in the lifted sum domain Assignment is used to indicate
that a location is unassigned. unassigned serves the same purpose for stores
that unbound serves for environments.

The domain Storable of storable entities varies from language to language.
In FLK!, which is a CBV language, Storable =Value, but a CBN version of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

342 CHAPTER 8. STATE

s ∈ Store = Location → Assignment
l ∈ Location = Nat
α ∈ Assignment = (Storable +Unassigned)⊥
σ ∈ Storable = language dependent ;Value in CBV

Unassigned = {unassigned}
same-location? : Location → Location → Bool =λl1 l2 . (l1 =Nat l2)
next-location : Location → Location =λl . (l +Nat 1)

empty-store : Store =λl . (Unassigned 7→ Assignment unassigned)
fetch : Location → Store → Assignment =λls . (s l)
assign : Location → Storable → Store → Store
=λl1σs . λl2 . if (same-location? l1 l2)

then (Storable 7→ Assignment σ)
else (fetch l2 s)
fi

fresh-loc : Store → Location =λs . (first-fresh s 0)
first-fresh : Store → Location → Location
=λsl . matching (fetch l s)

. (Unassigned 7→ Assignment unassigned) [] l

. else (first-fresh s (next-location l))
endmatching

Figure 8.11: Denotational treatment of stores.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 343

FLK! would have Storable =Computation. In both CBV and CBN FLK!, it
happens that Storable =Denotable, but this need not be the case in general. For
example, in Pascal, procedures can be named and (with certain restrictions)
be passed as arguments, but they may not be assigned to variables or stored as
the components of data structures.

There are several auxiliary functions for manipulating stores. fetch and
assign are functions on stores that are reminiscent of lookup and extend on
environments. The purpose of fresh-loc is to return an unassigned location
from the given store. Since locations are natural numbers, one way of doing this
is by scanning the store starting with location 0 and incrementing the location
until an unassigned location is found. We assume an unbounded store, so that
fresh-loc never fails to return a fresh location. To model a bounded store (which
would be more realistic), fresh-loc could potentially return an indication that
the attempt to find a fresh location failed.

8.2.4.2 Computations

Previously, a computation was just an expressible value. But in the presence of
state, a computation needs to embody the single-threaded nature of stores. The
following domain definition captures this idea:

c ∈ Computation = Store → (Expressible × Store)

Here, a computation accepts an initial store and returns two entities:

• The expressible value computed by the computation.

• A final store that reflects all the allocations and assignments performed by
the computation.

When composing two computations, single-threadedness can be achieved by sup-
plying the final store of the first computation as the initial store of the second.

It is not difficult to show that the new Computation domain is pointed. This
means that it is possible to find fixed points over computations, as required in
the semantics of rec.

Recall that numerous auxiliary functions must be defined as part of the
computation abstraction. Figure 8.12 shows the definitions of these functions
for the store-based version of Computation. val-to-comp injects a value into a
computation by injecting it into an expressible value and passing a store around
it unchanged. Similarly, error-comp passes a store around an error expressible
value.

The main means of gluing computations together is with-value. It takes a
computation c1 and a function f that maps a value to a computation c2 and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

344 CHAPTER 8. STATE

c ∈ Computation = Store → (Expressible × Store)

expr-to-comp : Expressible → Computation =λx . λs . 〈x, s〉

val-to-comp : Value → Computation =λv . (expr-to-comp (Value 7→ Expressible v))

err-to-comp : Error → Computation =λI . (expr-to-comp (Error 7→ Expressible I))

error-comp : Computation =(err-to-comp error)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λs1 . matching (c s1)

. 〈(Value 7→ Expressible v), s2 〉 [] (f v s2)

. 〈(Error 7→ Expressible error), s2 〉 [] (error-comp s2)
endmatching

with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.

check-location : Value → (Location → Computation)→ Computation
=λvf . matching v

. (Location 7→ Value l) [] (f l)

. else error-comp
endmatching

check-boolean, check-procedure, etc. are similar.

Figure 8.12: Store-based implementation of the computation abstraction.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 345

returns the computation that results from composing c1 and c2 . Like the action-
combining after procedure in Section 8.1.3.3, the main purpose of with-value
is to support the monadic style of threading state by handling the “plumbing”
between computations: the value argument to f is the (non-error) expressible
value produced by c1 and the initial store of c2 is the final store of c1 . In
the case where c1 produces an error rather than a value, f is ignored and the
resulting computation is equivalent to c1 . It is instructive to unwind the type
of f :

Value → Computation = Value → Store → (Expressible × Store)

This makes it clear that f can be viewed as a function that maps two (curried)
arguments (a value and store) to two (paired) results (an expressible value and
store).

Other with- functions, like with-values, with-procedure, with-boolean can be
written in the same style as with-value. There is a parallel collection of check-
functions that differ from the with- functions only in that their initial argument
is a value rather than a computation.

In the presence of state, there are a few more auxiliary functions involv-
ing computations that are especially handy. These are defined in Figure 8.13.
allocating allocates a location for a storable value and passes it (and the up-

allocating : Storable → (Location → Computation)→ Computation
=λσ f . λs . (f (fresh-loc s) (assign (fresh-loc s) σ s))

fetching : Location → (Storable → Computation)→ Computation
=λlf . λs . matching (fetch l s)

. (Storable 7→ Assignment σ) [] (f σ s)

. else (error-comp s)
endmatching

update : Location → Storable → Computation
=λlσ . λs . 〈(Value 7→ Expressible (Unit 7→ Value unit)), (assign l σ s)〉

sequence : Computation → Computation → Computation
=λc1 c2 . (with-value c1 (λv . c2))

Figure 8.13: Auxiliary functions for store-based computations.

dated store) to a computation-producing function. fetching finds the storable
value at a location and passes it (and the unchanged store) to a computation-
producing function. update takes a location and storable value and returns a
unit-producing computation whose final store includes an assignment between
the location and value. sequence glues two computations together by supplying

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

346 CHAPTER 8. STATE

the final store of the first as the initial store of the second; the expressible value
produced by the first is ignored.

Reasoning about computations directly in terms of the auxiliary functions
can be very tedious. Figure 8.14 presents a number of high-level equalities that
greatly facilitate reasoning about computations. We leave the proofs of these

1. (with-value (val-to-comp v) f)= (f v)

2. (with-value c (λv . (val-to-comp v)))= c

3. (with-procedure (val-to-comp (Procedure 7→ Value p)) f)= (f p)
Similarly for with-boolean, with-integer, etc.

4. (with-value (with-value c f) g) = (with-value c (λv . (with-value (f v) g)))

5. (with-value (check-location v f) g)
= (check-location v (λl . (with-value (f l) g)))
similarly for check-boolean, check-integer

6. (with-value (allocating σ f) g) = (allocating σ (λl . (with-value (f l) g)))

7. (with-value (fetching l f) g) = (fetching l (λσ . (with-value (f σ) g)))

8. (with-value (update l σ) f)
= (sequence (update l σ) (f (Unit 7→ Value unit)))

9. (with-value (sequence c1 c2) f) = (sequence c1 (with-value c2 f))

Figure 8.14: Useful equalities on computations. It is assumed that newly intro-
duced variables do not conflict with free identifiers elsewhere in the expression.

equalities as exercises for the reader. We require the first four equalities in
Figure 8.14 to be true of any notion of computation that we introduce, and
equalities 5–9 to be true of any notion of computation that supports state.

8.2.4.3 Valuation Clauses

The denotational specification of FLK! is summarized in Figure 8.15. The
Value domain has been extended with locations, which represent cell values.
Since FLK! is a CBV language, both Denotable and Storable equal Value. As
always, E has the signature Exp→ Environment→ Computation. There are two
semantic functions for primitives. PFLK ! is the version for FLK!, while PFLK

is the version inherited from FLK.

With the help of the auxiliary functions, the valuation clauses are surprisingly
compact. In fact, only one clause (rec) explicitly mentions the store! begin

sequences two computations. cell allocates a location for its content and returns

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 347

c ∈ Computation = Store → (Expressible × Store)
v ∈ Value = Unit + Bool + Int + Sym + Pair + Procedure+ Location
δ ∈ Denotable = Value
σ ∈ Storable = Value

p ∈ Procedure = Denotable → Computation

E : Exp→ Environment → Computation
PFLK : Primop→ Value*→ Expressible
PFLK ! : Primop→ Value*→ Computation

E [[(begin E1 E2)]] =λe . (sequence (E [[E1]] e) (E [[E2]] e))

E [[(cell E)]]
=λe . (with-value (E [[E]] e)

(λv . (allocating v (λl . (val-to-comp (Location 7→ Value l))))))

PFLK ![[cell-ref]] =λ[v] . (check-location v (λl . (fetching l (λv . (val-to-comp v)))))

PFLK ![[cell-set!]] =λ[v1 , v2] . (check-location v1 (λl . (update l v2)))

PFLK ![[cell=?]] =
λ[v1 , v2] . (check-location v1

(λl1 . (check-location v2
(λl2 . (val-to-comp (Bool 7→ Value (l1 = l2)))))))

PFLK ![[cell?]] =λ[v] . matching v
. (Location 7→ Value l) [] (val-to-comp (Bool 7→ Value true))
. else (val-to-comp (Bool 7→ Value false))
endmatching

PFLK ![[O]] ; O ∈Primop − {cell-ref, cell-set!, cell?}
=λv* . (expr-to-comp (PFLK [[O]] v*))

E [[(rec I E)]] =λe . fixComputation (λc . λs . E [[E]] [I :: (extract-value c s)]e s)

extract-value : Computation → Store → Binding
=λcs . matching (c s)

. < (Value 7→ Expressible v), s’ > [] (Denotable 7→ Binding v)

. < (Error 7→ Expressible error), s’ > [] ⊥Binding

endmatching

Figure 8.15: Essential valuation clauses for FLK!. Clauses not shown here
inherit their definition from FLK.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

348 CHAPTER 8. STATE

the location as its resulting value. cell-ref fetches the value of a location and
returns it, while cell-set! updates a location to contain a new value. cell?

simply checks the tag on a value. Other primitives are handled by passing them
off to PFLK and converting the result into a computation. This works because
none of the primitives inherited from FLK has any effect on the store.

The only really tricky clause is the one for rec. The valuation clause pre-
sented here is a variant of the CBV version presented in Section 7.1.3. The only
difference is that it is necessary to supply extract-value with the current store
in order to coerce the computation into a binding.

And that’s it! By the magic of the monadic style, all the other valuation
clauses are inherited unchanged from the denotational definition of CBV FLK.
For example, the clause for call is still:

E [[(call E1 E2)]] =
λe . (with-procedure (E [[E1]] e) (λp . (with-value (E [[E2]] e) p)))

The valuation clauses are very concise, but their level of abstraction can make
them difficult to understand. To get a better feel for the valuation clauses, it can
be helpful to strip away the abstractions by “in-lining” the auxiliary functions.
For example, here is a version of the call clause without any auxiliary functions:

E [[(call E1 E2)]] =
λes0 . matching (E [[E1]] e s0)

. 〈(Value 7→ Expressible (Procedure 7→ Value p)), s1 〉 []
matching (E [[E2]] e s1)
. 〈(Value 7→ Expressible v), s2 〉 [] (p v s2)
. 〈(Error 7→ Expressible error), s2 〉 [] 〈(Error 7→ Expressible error), s2 〉
endmatching

. 〈(Value 7→ Expressible v), s1 〉 [] 〈(Error 7→ Expressible error), s1 〉

. 〈(Error 7→ Expressible error), s1 〉 [] 〈(Error 7→ Expressible error), s1 〉
endmatching

The single-threaded nature of the store that is implicit in the original clause is
explicit in the expanded clause. Evaluating E1 in e with s0 yields an expressible
value (call it x1) and a store s1 . If the x1 is a procedure value p, E2 is evaluated
in e with s1 to yield a second expressible value (call it x2) and another store,
s2 . If x2 is a value v, then p, whose signature is

Value → Store → (Expressible × Store)

is applied to the value and the store. In error situations (x1 is not a procedure
or x2 is not a value), expressible error values are propagated along with the
updated store.

You may find it helpful to perform this sort of expansion on other valuation
clauses. After you have done several, you may start to appreciate the purpose

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 349

of the auxiliary functions! As usual, it is also instructive to make sure that all
of the valuation clauses type check.

8.2.5 Referential Transparency, Interference, and Purity

We noted earlier (page 319) that stateless languages like FL are referentially
transparent. Referential transparency is an important property when reason-
ing about programs, especially when analyzing and transforming programs.

For example, consider the following program transformations:

T1: (+ Ea Ea) −→ (* 2 Ea)

T2: (+ Eb Ec) −→ (+ Ec Eb)

Under what conditions are such transformations safe, i.e., guaranteed to pre-
serve the meaning of a program?4

In a referentially transparent language like FL, these two transformations
are always safe. In T1, Ea always has the same value no matter how many
times it is evaluated. In T2, reordering Eb and Ec cannot change their values
because they are still in the same naming context as before.

However, in a stateful language like FL!, neither of these transformations is
always safe. For example, in T1, suppose that Ea increments a counter in ad-
dition to returning a result. Then (+ Ea Ea) will increment the counter twice,
but (* 2 Ea) will only increment it once. In T2, suppose that Eb increments a
counter whose value is returned by Ec. Then swapping Eb and Ec changes the
value returned by Ec. The problem in these cases is that expressions can depend
on the implicit store threaded through their evaluation, so it is generally not safe
to replace them by a value or change their relative positions. In particular, an
expression can depend on the store by:

• allocating a location in the store (which includes initialization in our se-
mantics),

• reading the value stored at a location, or

• writing a value into a location.

Nevertheless, there are still many situations in which the transformations are
safe, even in a stateful language. Let us say that an expression E1 interferes
with E2 when E1 allocates or writes a store location that is read and/or written
by E2 . Then T1 is safe as long as Ea does not interfere with itself or the rest

4For the purposes of this discussion, we choose to treat all errors and divergence as obser-
vationally equivalent. That is, we do not care if a transformation changes the error signaled
by a program or changes an error-signaling program to a diverging one (or vice versa).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

350 CHAPTER 8. STATE

of the program and T2 is safe as long as Eb or Ec do not interfere with each
other. Classical compiler optimizations like code motion, common subexpression
elimination, and dead code removal require reasoning about the interference
between expressions.

A particularly simple form of non-interference involves expressions that do
not depend on the store at all. An expression is pure when it does not allocate,
read, or write any store locations. A pure expression does not interfere with
any other expression, and so it can be treated as if it were in a referentially
transparent language. For instance, it is safe to replace a pure expression by
an expression having the same value or to move a pure expression to a different
position in the same naming context.

Neither interference nor purity is a computable property. However, there
are conservative approximations to these properties that are computable. For
example, a common syntactic technique for approximating purity is to observe
the following in a language with cells:

• variable references and abstractions (lambda expressions) do not depend
on the store and so are syntactically pure;

• conditionals, let expressions, pair expressions, and primitive applications
(except those involving cell primitives) are syntactically pure if all their
subexpressions are syntactically pure;

• all other expressions, including primitive applications of cell primitives and
procedure applications, are assumed to be impure.

Expressions that are pure by these rules are called syntactic values. We shall
use this notion later in our discussion of polymorphic types, type reconstruction,
and abstract types (Chapters ?? and 15). Chapter 16 will present a more flexible
mechanism for statically determining the side effects (and therefore interference
properties) an expression may have.

¤ Exercise 8.5 Show that the store-based definition of Computation is pointed. ¢

¤ Exercise 8.6

a. Prove that the first four equalities in Figure 8.14 hold when
Computation=Expressible.

b. Prove that all nine equalities in Figure 8.14 hold when
Computation = Store → (Expressible × Store). ¢

¤ Exercise 8.7

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 351

a. What is the value of (rec a a) under the call-by-value denotational semantics
for FLK in the previous chapter?

b. What is the value of (rec a a) under the operational semantics for FLK!?

c. What is the value of (rec a a) under the denotational semantics for FLK!?

d. Explain any discrepancy in your answers to the first three parts of this question.
¢

¤ Exercise 8.8 The FL! language definition includes a simple immutable data struc-
ture called the pair. In this problem, we introduce a mutable pair. Mutable pairs
are a simple kind of mutable structure similar to the mutable records found in many
imperative languages. (See Section 10.1.4 for a discussion of mutable data structures.)

Suppose the FLK! language is extended in the following way:

E ::= . . .
| (mpair El Er) | (mfst Emp) | (msnd Emp)

| (set-mfst! Emp El) | (set-msnd! Emp Er)

The new constructs have the following informal semantics:

• (mpair El Er) creates a new mutable pair value with two fields called mfst and
msnd. The values of El and Er are stored in themfst andmsnd fields, respectively.

• If Emp evaluates to a mutable pair, then (mfst Emp) returns the content of the
mfst field of the pair. Otherwise, mfst produces an error. Similarly for msnd.

• If Emp evaluates to a mutable pair, then (set-mfst! Emp El) mutates the
mutable pair so that the mfst field contains the value of El . If Emp evaluates
to anything else, or if evaluating El gives an error, then set-mfst! generates an
error. Similarly for set-msnd!.

For example, here are some expressions involving mutable pairs:

(let ((foo (mpair 1 2)))

(begin

(set-mfst! foo 6)

(+ (mfst foo) (msnd foo)))) −−−eval→ 8

(let ((bar (mpair 8 (mpair 4 3))))

(begin

(set-mfst! bar (msnd bar))

(set-msnd! (msnd bar) (mfst (mfst bar)))

(+ (mfst (msnd bar)) (msnd (msnd bar))))) −−−eval→ 8

a. Extend the denotational semantics of FLK! to handle mpair, mfst, msnd, set-mfst!,
and set-msnd!.

i. Describe any additions or modifications you make to the semantic domains
of FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

352 CHAPTER 8. STATE

ii. Give valuation clauses for the five constructs. (You should not have to
modify any of the existing valuation clauses.)

iii. Define any auxiliary functions necessary for your valuation clauses.

b. Consider the following potential desugaring for mpair, mfst, and set-mfst!

(msnd and set-msnd! would be handled similarly):

D[[(mpair El Er)]] = (pair (cell D[[El]]) (cell D[[Er]]))

D[[(mfst Emp)]] = (cell-ref (left D[[Emp]]))

D[[(set-mfst! Emp El)]] = (cell-set! (left D[[Emp]]) D[[El]])

Is this desugaring consistent with the semantics of mutable pairs? If it is, explain
why; if not, show an expression whose meaning differs under this desugaring. ¢

¤ Exercise 8.9 A common problem when working with state is data consistency.
For example, consider a database application that manages the accounts of a bank.
Transferring an amount of money between two accounts implies subtracting the amount
from the first account and adding it to the second one. If we transfer money only between
accounts of the same bank, the total amount of money present in all the accounts should
remain the same. However, if something bad occurs between the subtraction and the
addition (e.g., a system crash), a certain amount might simply vanish! To prevent this,
in database programming, all modifications to the database are required to occur within
a transaction.

Intuitively, a transaction is a series of modifications to a database that become
permanent only when the transaction is successfully terminated (the technical term is
committed). If the user decides to abort (i.e., cancel) the transaction, or the system
crashes before the transaction is committed, all the modifications are “undone.”

Abe Stract, president and CEO of Intrusive Databases, Inc., decides to add trans-
actions to FL!. In Abe’s language, the store will act as the database: queries of the
database are cell-refs, and modifications are performed by cell-set!. It is an error
to perform a cell-set! when there is no active transaction.

Abe extends the grammar of FLK! by the following clauses:

E ::= . . . [As before]
| (begin-transaction!) [Begin Transaction]
| (commit!) [Commit Transaction]
| (abort!) [Abort Transaction]

The informal semantics of transactions are:

• (begin-transaction!) begins a transaction. The transaction continues until
either a commit! or an abort! is encountered — it is an error if the program
ends and a transaction has not been ended or aborted.

• (commit!) successfully terminates the current transaction. It is an error if no
transaction is in progress.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 353

• (abort!) ends the current transaction and undoes all of its modifications. It is
an error if no transaction is in progress.

Like cell-set!, the three transaction operations all return unit .

Transactions may be nested, in which case abort! and commit! only end the current
(innermost) transaction. An abort! of a transaction undoes the modifications of the
transaction including modifications made by nested transactions.

Here is how Abe might write a transfer between two bank accounts (represented as
cells) using transactions:

(define transfer

(lambda (from to amount)

(begin (begin-transaction!)

(cell-set! from (- (cell-ref from) amount))

(cell-set! to (+ (cell-ref to) amount))

(if (< (cell-ref from) 0)

(begin (abort!)

’failed)

(begin (commit!)

’succeeded)))))

Here are more examples of the behavior of transactions; we assume the expressions
are evaluated in order.

(define cell-1 (cell 0))

(define cell-2 (cell 10))

(define inc!

(lambda (a-cell) (cell-set! a-cell (+ (cell-ref a-cell) 1))))

(define current-state

(lambda ()

(list (cell-ref cell-1) (cell-ref cell-2))))

(current-state) −−−FL!→ [0, 10]

(begin (begin-transaction!)

(inc! cell-1)

(commit!)

(current-state)) −−−FL!→ [1, 10]

(begin (begin-transaction!)

(inc! cell-2)

(abort!)

(current-state)) −−−FL!→ [1, 10]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

354 CHAPTER 8. STATE

(begin (begin-transaction!)

(inc! cell-1)

(begin (begin-transaction!)

(inc! cell-2)

(abort!))

(commit!)

(current-state)) −−−FL!→ [2, 10]

(begin (begin-transaction!)

(inc! cell-1)

(begin (begin-transaction!)

(inc! cell-2)

(commit!)) ;; End inner transaction,

(abort!) ;; but abort! outer transaction.

(current-state)) −−−FL!→ [2, 10]

(begin (begin-transaction!) ;; commit! returns #u

(inc! cell-2)

(commit!)) −−−FL!→ unit

(current-state) −−−FL!→ [2, 12]

Abe also points out some programs that generate errors (each interacts with the
database in a completely independent session):

(begin-transaction!) −−−FL!→ error : transaction − not − terminated

(commit!) −−−FL!→ error : no − current − transaction

(let ((a-cell (cell 0)))

(begin (cell-set! a-cell 5)

(cell-ref a-cell))) −−−FL!→ error : not − in − a − transaction

(let ((a-cell (cell 0)))

(begin (begin-transaction!)

(cell-set! a-cell 5)

(commit!)

(cell-set! a-cell 7) ;; commit! ends transaction,

;; so invalid modification

(cell-ref a-cell))) −−−FL!→ error : not − in − a − transaction

a. Extend the operational semantics of FLK! (Section 8.2.3) to handle transactions:

i. Define the configurations, the set of final configurations, the input function,
and the output function.

ii. Provide transition rules for begin-transaction!, commit!, abort!, and
cell-set!:

b. Modify the denotational semantics of FLK! to handle transactions.

i. Give the necessary additions or modifications to the semantic domains of
FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.2. MUTABLE DATA: FL! 355

ii. Some auxiliary functions used by the FLK! denotational semantics might
need to be modified (e.g., as a result of the changes in the semantic domains).
Give their new definitions.

iii. Write the valuation clauses for the three new constructs. ¢

¤ Exercise 8.10 Clark Smarter of the Photocopy Research Center has developed a
new backtracking construct for FLK! called try:

E ::= . . .
| (try E1 E2) [Backtracking]

The informal semantics of (try E1 E2) is as follows: First E1 is evaluated, and if
E1 returns true, then try ignores E2 and returns true. If E1 evaluates to false , then
the side effects of E1 are discarded, and the value of try is the value of E2 . If the value
of E1 is neither true nor false , then the try expression yields an error. try is thus an
elementary backtracking construct. It allows the exploration of one alternative, and, if
that does not work, restores the initial state and tries a second alternative.

Here’s an example of a program that uses try:

(let ((balance (cell 200)))

(let ((withdraw (lambda (n)

(begin (cell-set! balance

(- (cell-ref balance) n))

(> (cell-ref balance) 0)))))

; First try to withdraw 250; if that fails, withdraw 10 from

; the original balance.

(begin (try (withdraw 250)

(withdraw 10))

(cell-ref balance))))

−−−FL→ 190

Clark knows the pitfalls of informal semantics. When writing up the documenta-
tion for try, he decides to give an operational and denotational semantics for his new
construct.

a. First Clark tries to find an operational semantics for try:

i. In attempting to give an operational semantics for try, Clark realizes that
he must extend the configuration space CF , so he adds a new intermediate
expression to E. Describe the new intermediate form and its purpose. (Hint:
you may want to think about the next part before answering this one.)

ii. Provide all of the rewrite rules which are necessary to handle the try con-
struct.

b. Next Clark wants to find a denotational semantics for try. Help Clark by writing
the valuation clause that handles the try expression.

c. Clark shows his operational and denotational semantics definitions of try to lan-
guage implementor Hardy Ware. Hardy says, “These semantic definitions are all
well and good, but implementing try efficiently is going to be tough.”

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

356 CHAPTER 8. STATE

i. Explain what Hardy means by describing what difficulties would be encoun-
tered in implementing try efficiently on physical computers where state-
based memory devices implement the binding of locations to values.

ii. Sketch a strategy for implementing try that does not require making a copy
of the entire store. ¢

8.3 Mutable Variables: FLAVAR!

In FLK!, the only entity that can change over time is the contents of a muta-
ble cell. So-called “variables” are actually constants whose value cannot change
during the execution of a program. While mutable cells are sufficient for imple-
menting any state-based program, they are not always convenient to use. Here
we explore a variant of FLK! called FLAVAR! in which every variable becomes
a mutable entity. We will also revisit the issue of parameter-passing in the con-
text of state by examining four parameter-passing mechanisms for FLAVAR!.

8.3.1 Mutable Variables

In FL!, it can be difficult to modify a program to make a previously constant
quantity mutable. For example, suppose an FLK program binds the variable
addresses to a list of names and addresses. Since both variables and pairs
are immutable in FL!, the meaning of addresses cannot change during the
execution of the program. Suppose that we later decide to modify the program
so that it dynamically updates the address list. Then it is necessary to rebind
addresses to a mutable cell whose contents is a list. Furthermore, we must
find all references to addresses in the existing program and replace them by
(cell-ref addresses).5

Most programming languages offer a more convenient way of making such
changes: mutable variables. A variable is mutable if the value it is bound to
can change over time. The variables of FL and FL! are somewhat misnamed,
because their values can’t vary over time; rather, they are names for constants.
In contrast, variables in languages like Scheme, C, Pascal, and Fortran can
have their values changed by assignment during the execution of the program.
In these languages, modifying the address program would not require finding
and updating all references to addresses, because all variables are assignable
by default. On the other hand, programs in these languages can be tougher
to reason about because it can be hard to determine which variables change

5We shall see in Section 17.7 that compilers often perform a program transformation like
this called assignment conversion.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 357

over time and which do not. This situation can be improved if the languages
provide a mechanism for declaring that certain named entities are immutable
(e.g., constant declarations).

We have two motivations for studying mutable variables:

• Many real languages support mutable variables.

• Mutable variables shift the way we think about naming. In languages
with mutable variables, names do not denote values, but instead denote
locations in the store at which values are stored.

8.3.2 FLAVAR!

We will study mutable variables in FLAVAR!, a dialect of FL! that supports
assignments to variables. The syntax of FLAVAR! (and its kernel, FLAVARK!)
is the same as that for FL! (and its kernel, FLK!) except for the addition of a
Scheme-like set! construct:

EFLAVARK ! ::= . . . [FLK! Expressions]
| (set! I E) [Assignment]

Informally, (set! I E) assigns the value of the expression E to the variable
named by I. For example,

(let ((a 3))

(begin (set! a 4)

a)) −−−−−−−FLAV AR!→ 4

Note the differences between the cell assignment operator, cell-set!, and
the variable assignment construct, set!. The former changes the value of a first-
class data value (a cell), while the latter changes the value of a variable (which
is not a first-class value). In (cell-set! E1 E2), E1 can be any expression
that evaluates to a cell, while in (set! I E), I is constrained to be an identifier
visible in the current scope. Mutable cells and mutable variables are orthogonal
language features. FLAVAR! contains both.

The semantics of FLAVARK! is based on the denotational semantics of
FLK! presented in the previous section. We will only note the ways in which the
semantics for FLAVARK! differs from that for FLK!. Some of the differences
are highlighted in Figure 8.16. The key feature of FLAVARK! is that variables,
like mutable cells, are represented as locations in the store. This means that
locations are the only entity in the language that can be named; i.e., Denotable =
Location. The association between a name I and a value v that is represented by
a single environment binding in FL! is represented by two bindings in FLAVAR!:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

358 CHAPTER 8. STATE

δ ∈ Denotable = Location
σ ∈ Storable = depends on parameter passing mechanism

val-to-storable : Value → Storable = depends on parameter passing mechanism

E [[I]] = depends on parameter passing mechanism

E [[(call E1 E2)]] = depends on parameter passing mechanism

E [[(set! I E)]] =λe . (with-value (E [[E]] e)
(λv . (with-denotable (lookup e I)

(λl . (update l (val-to-storable v))))))

Figure 8.16: Semantics of mutable variables. The definitions of Storable,
val-to-storable, and the valuation clauses for I and call depend on the pa-
rameter passing mechanism.

an environment binding between a name I and a location l, and an assignment
between l and v. The indirection through l allows the value associated with the
name to be changed. The details of how the locations are allocated, how they
are looked up, and what values may legally be stored in them are determined
by the parameter passing mechanism of the language. We shall discuss several
mechanisms shortly.

The other interesting aspect of the FLAVAR! semantics is the valuation
clause for set!. In (set! I E), E is evaluated and stored in the location named
by I. The auxiliary function val-to-storable, which depends on the definition of
Storable, is needed to inject the value into the Storable domain. Note that in the
expression (set! a a), the left and right occurrences of a are treated differently.
A location is found for the left occurrence, but the value stored at that location
is found for the right occurrence. For this reason, the location is called the L-
value (left value) of the variable, and the value stored at that location is called
the R-value (right value) of the variable. Determining the R-value associated
with an L-value is called dereferencing the variable. The notions of L-value
and R-value can be extended to expressions. Variables can be viewed as cells in
which dereferencing corresponds to automatically performing a cell-ref upon
every variable reference, and (set! I E) performs a cell-set! of the L-value
of I to the R-value of E.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 359

8.3.3 Parameter Passing Mechanisms for FLAVAR!

Parameter passing mechanisms for languages with mutable variables are deter-
mined by the domain Storable, the function val-to-storable, and the valuation
clauses for call and I. Figures 8.17 and 8.18 summarize four parameter passing
mechanisms for FLAVAR!. These are explained in the following sections.

σ ∈ Storable = Value

val-to-storable=λv . v

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (with-value (E [[E2]] e)

(λv . (allocating v p)))))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l val-to-comp)))

Call-by-Value

σ ∈ Storable = Computation

val-to-storable= val-to-comp

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (allocating (E [[E2]] e) p)))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l (λc . c))))

Call-by-Name

Figure 8.17: Parameter passing mechanisms in FLAVAR!, part I.

8.3.3.1 Call-by-value

The CBV mechanism for FLAVAR! is similar to CBV for FL and FLK! except
that a procedure call allocates a new location for the argument value and passes
this location (rather than the value) to the procedure. Since the meaning of an
identifier is a location and not a value, every variable reference requires both
a lookup in the environment (to find the location) and a fetch from the store
(to dereference the location). In CBV, only elements of the domain Value are
storable. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

360 CHAPTER 8. STATE

σ ∈ Storable = Memo
mm ∈ Memo = Computation +Value

val-to-storable=λv . (Value 7→ Memo v)

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (allocating (Computation 7→ Memo (E [[E2]] e)) p)))

E [[I]] =λe . (with-denotable (lookup e I)
(λl . (fetching l

(λmm . matchingmm
. (Computation 7→ Memo c)
[] (with-value c

(λv . (sequence (update l (Value 7→ Memo v))
(val-to-comp v))))

. (Value 7→ Memo v) [] (val-to-comp v)
endmatching))))

Call-by-Need (Lazy Evaluation)

σ ∈ Storable = Value

E : Exp→ Environment → Computation
LV : Exp→ Environment → Computation

val-to-storable=λv . v

E [[(call E1 E2)]] =λe . (with-procedure (E [[E1]] e)
(λp . (with-location (LV [[E2]] e) p)))

E [[I]] =λe . (with-denotable (lookup e I) (λl . (fetching l val-to-comp)))

LV [[I]] =λe . (with-denotable (lookup e I) (λl . (val-to-comp (Location 7→ Value l))))

LV [[Eother]] ; where Eother is not I
=λe . (with-value (E [[Eother]] e)

(λv . (allocating v (λl . (val-to-comp (Location 7→ Value l)))))

Call-by-Reference

Figure 8.18: Parameter passing mechanisms in FLAVAR!, part II.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 361

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBV FLAV AR!→ 2

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBV FLAV AR!→ error

8.3.3.2 Call-by-name

CBN in FLAVAR! is similar to CBN in FL, except that here it is Storable
(not Denotable) that equals Computation. The call clause indicates that the
computation of the argument expression (not its value) is stored at a newly
allocated location. In FLAVAR!, computations are functions that accept a
store, so the current store is supplied to a computation every time the variable
that names it is referenced. If the computation performs a side effect, this
side effect will be performed every time the variable is looked up. Consider the
following example:

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBN FLAVAR!→ 3

In the example, calling f binds x to a location that holds the computation
(E [[(begin (set! a (+ a 1)) a)]] e1), where e1 is an environment with bind-
ings for a and f. Each variable reference to x within the procedure body (+ x x)

performs this computation with the current store. So the left reference to x in-
crements a and returns 1, while the right reference to x increments a again
and returns 2. This behavior illustrates the perils of mixing state with CBN
parameter passing.

As in FL, certain computations in FLAVAR! correspond to errors or non-
termination. Because such computations are nameable in CBN (by an indirec-
tion through the store), procedures can be non-strict:

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBN FLAVAR!→ 3

8.3.3.3 Call-by-need (Lazy Evaluation)

The presence of state in FLAVAR! suggests a parameter passing mechanism
based on the memoization trick introduced in the FL interpreter. That is,
a formal parameter name can be bound to a location that originally stores
the computation of the argument expression. The first time the parameter
is referenced, the computation is performed, but the resulting value is cached
at the location and is used on every subsequent reference. Thus, the argument
expression is evaluated at most once and is never evaluated at all if the parameter

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

362 CHAPTER 8. STATE

is never referenced. This mechanism is called call-by-need or lazy evaluation.
Because the acronym CBN is already taken, we will abbreviate call-by-need as
CBL (call-by-lazy).

Call-by-need can exhibit the desirable behavior of both CBV and CBN:

(let ((a 0)

(f (lambda (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−−CBL FLAV AR!→ 2

((lambda (x) 3) (/ 1 0)) −−−−−−−−−−−CBL FLAV AR!→ 3

However, because side effects in argument expressions are performed at the time
of lookup rather than at the time of call, CBL can exhibit different behavior
from CBV. For example, consider the following expression:

(let ((a 0))

(let ((f (lambda (x)

(begin (set! a 17)

(+ x x)))))

(f (begin (set! a (+ a 1)) a))))

Under CBV, the call to f first increments a and then binds x to a location holding
1. The assignment of 17 to a does not affect x, so the result is 2 . However,
under CBL, the call to f binds x to a location that holds the computation of
(begin (set! a (+ a 1)) a). This computation is not performed until the
first reference of x, which occurs after a has been set to 17. So CBL returns 36
for this expression.

8.3.3.4 Call-by-reference

So far, all the parameter passing mechanisms we have discussed allocate a new
location for every argument. But in the case where the argument expression is a
variable reference, there is already a location associated with the variable. This
suggests a mechanism that uses the existing location rather than allocating a
new one. Such a mechanism is termed call-by-reference (CBR). Fortran
and Pascal and are examples of languages that support CBR.

In CBR, there is the question of what to do with an argument that is not
a manifest identifier. For example, in the application (test (+ 1 2)), the
value of (+ 1 2) has no associated location. Languages handle this situation
in different ways. In Pascal, it is an error to supply anything but an identifier
as a CBR argument. In Fortran, however, a new location will be allocated
for any argument that is not a manifest identifier. The semantics in Figure 8.18
takes this latter approach. In fact, this is the only mechanism for creating

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

8.3. MUTABLE VARIABLES: FLAVAR! 363

new variables in CBR FLAVAR!. This is a somewhat unrealistic aspect of
our language; real CBR languages have special declarations for introducing new
variables.

The denotational semantics for CBR models the special handling of variable
arguments by providing two valuation functions for expressions: E and LV. LV
finds the L-value of an expression, while E finds the R-value of an expression.
For an expression that is an identifier, LV returns the location of that identifier.
For any other expression, LV allocates a new location for the R-value of the ex-
pression and returns this location. The key feature of the CBR semantics is that
LV (rather than E) is used to evaluate the operand of a procedure application.

In FLAVAR!, procedure calls are expressions that return results, but in
many imperative languages, procedure calls are commands that do not return
results. In such languages, CBR is useful as a means of extracting a result from
a procedure call. One (or more) arguments to a procedure can be a variable
that the procedure uses to communicate the result(s) back to the caller. Here is
an example of this idiom in CBR FLAVAR!:

(let ((a 0)

(double (lambda (in out)

(set! out (+ in in)))))

(begin

;; A is 0 here.

(double 17 a)

;; Now A is 34.

(+ a 1))) −−−−−−−−−−−CBR FLAVAR!→ 35

The double procedure takes a numeric argument (in) and variable (out) for
returning the result of doubling in. In the example, the variable a is used to
communicate the result of the doubling operation back to the point of call.

One characteristic of CBR (or any paradigm that allows mutable entities
to be passed as arguments) is that two different names may refer to the same
location. This situation is known as aliasing. Consider the following example:

(let ((x 1))

(let ((test (lambda (a)

(begin

(set! x 20)

(+ a x)))))

(test x))) −−−−−−−−−−−CBR FLAVAR!→ 40

Within the call (test x), both x and a are aliases for the same location, so the
assignment to x changes a. Aliasing is often considered undesirable because it
complicates reasoning about programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

364 CHAPTER 8. STATE

CBR is similar to passing a mutable cell as an argument to a procedure. The
difference is that variables are more restricted than cells. A mutable cell is a
first-class value: it may be named, passed as an argument to a procedure, re-
turned as a result from a procedure, and stored in any data structure, including
another cell. On the other hand, while a variable may be named by an identifier
and passed as an argument to a procedure, it cannot be returned as a result
from a procedure, and it cannot be stored in a data structure (including another
variable). Unlike cells, therefore, variables are not first-class values. Although
this restricts the expressive power of variables, it permits variables to be imple-
mented more efficiently than cells. A variable may be allocated on a stack, while
cells generally must be allocated from a garbage-collected heap. We will have
much more to say about tradeoffs between expressiveness and efficiency when
we study pragmatic issues later on.

¤ Exercise 8.11

a. Give a translation of call-by-value FLAVARK! into call-by-value FLK!. You do
not need to translate rec.

b. Give a translation of call-by-reference FLAVARK! into call-by-value FLK!. You
do not need to translate rec. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 9

Control

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

— The Road Not Taken, st. 4, Robert Frost

“Did he ever return, no he never returned
And his fate is still unlearned”

— MTA, performed by the Kingston Trio,
written by Bess Hawes & Jacqueline Steiner

9.1 Motivation: Control Contexts and Continuations

So far, we have studied two different kinds of contexts important in the evalua-
tion of programming language expressions:

• A naming context that determines the meaning of free variable names
within an expression.

• A state context that specifies the time-dependent behavior of mutable
entities.

365

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

366 CHAPTER 9. CONTROL

By objectifying both of these contexts as mathematical entities — environments
and stores — the denotational approach provides significant leverage for us to
investigate the space of language features that depend on these contexts. In the
case of naming, environments help us to understand issues like parameter pass-
ing, scoping, and inheritance. In the case of state, stores help us to understand
issues involving mutable variables and data structures.

There is a third major context that is still missing from our toolbox: a
control context. Informally, control describes the path taken by a programmer’s
eyes and fingertips when hand-simulating the code in a listing. For example,
when simulating a while or for loop in an imperative language, it is often
necessary to refocus attention on the beginning of the loop after the end of
the loop code is reached. Conditional expressions and procedure calls are other
simple examples of control constructs that we have seen.

What does it mean for expressions to have a control context? As an example,
consider the following FL! expression:

(let ((square (lambda (x) (* x x))))

(+ (square 5) (* (+ 1 2) (square 5))))

There are two different occurrences of the (square 5) expression. What is the
difference between them? Both are evaluated in the same environment and the
same store, so they are guaranteed to yield the same value. What distinguishes
them is how their value is used by the rest of the program. Reading from left
to right, the first (square 5) returns 25 to a process that is collecting the first
of two arguments to the procedural value of +. The second (square 5) yields
its result to a process that is collecting the second of two arguments to the
procedural value of *; this, in turn, is a subtask of the process that is collecting
the second of two arguments to +, which itself is a subtask of the process that
is waiting for the answer to the entire let expression. What distinguishes the
occurrences of (square 5) is their control context: the part of the computation
that remains to be done after the expression is evaluated.

The denotational descriptions we have employed so far have not explicitly
represented the notion of “the rest of the computation.” A denotational seman-
tics without an explicit control model is said to be a direct semantics. A direct
semantics for a programming language cannot deal elegantly with interruptions
of the normal flow of control of a program. As long as valuation clauses are
recursive in the obvious way, the flow of control in the clauses has no choice but
to follow the structure of the program’s parse tree.

A simple example of the limitation of direct semantics can be seen in its
clumsy handling of error conditions in the languages that we have already en-
countered. An error is detected in one part of the semantics, and every other

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.1. MOTIVATION: CONTROL CONTEXTS AND CONTINUATIONS 367

part of the semantics must be able to cope with the possibility that some subex-
pression has produced an error instead of a normal result. This approach to error
checking does not capture the intuition that a computation encountering an er-
ror immediately aborts without further processing. Abstractions like with-value
help to hide this error checking, but they do not remove it. Indeed, interpreters
based on the direct semantics of FL and its variants expend considerable effort
performing such checks.

More generally, a direct semantics cannot easily explain constructs that in-
terrupt the “normal” flow of control:

• non-local exits as provided by C’s break and continue or Common Lisp’s
throw and catch.

• unrestricted jumps permitted in numerous languages via goto.

• sophisticated exception handling as seen in CLU, ML, Common Lisp,
Dylan, and Java.

• coroutines such as iterators in CLU and communicating sequential pro-
cesses in many languages, notably occam and even Java (JCSP).

• backtracking, which is used to model nondeterminism, e.g., to search a tree
of possibilities, as in Prolog and other logic programming languages.

In each of these cases, a program phrase does not simply return some value
and/or an updated store, but instead bypasses the control context that invoked
it and transfers control to some other place in the program.

The notion of continuation addresses this problem and provides a math-
ematical model of such transfers of control. A continuation is an entity that
explicitly represents the “rest” of some computation. In implementation terms,
it corresponds to the part of the machine state that comprises the current config-
uration of the runtime stack, together with a return address that specifies what
code to run when the current computation returns a value. The continuation
corresponding to the textually subsequent code in a program is usually referred
to as the normal continuation. Many control constructs achieve their effect
by substituting some other continuation for the normal one.

This chapter shows how continuations simplify the descriptions of the lan-
guages we have studied so far and allow the modeling of advanced control fea-
tures in these languages. Be forewarned that control constructs are notoriously
hard to think about. Even though many of the formal descriptions of control
constructs are surprisingly concise, this does not imply that they are propor-
tionately easier to understand. The often convoluted nature of control can lead

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

368 CHAPTER 9. CONTROL

the reader into mental gymnastics that are likely to leave the brain a little bit
sore at first. Luckily, with sufficient practice, the concepts can begin to seem
natural.

To help build up some intuitions about continuations, we will first discuss
how to achieve some sophisticated control behavior using only first class proce-
dures. Then we will be better prepared to understand the use of continuations
in denotational definitions.

9.2 Using Procedures to Model Control

We said before that continuations represent the rest of a computation. In a func-
tional language, the continuation for an expression E is “waiting for” the value
of E. It is therefore natural to think of continuations in a functional language
as being procedures of one argument. For example, in the FL expression

(let ((square (lambda (x) (* x x))))

(+ (square 5) (* (+ 1 2) (square 5))))

the continuation of the first (square 5) might be thought of as

(lambda (v1) (+ v1 (* (+ 1 2) (square 5))))

and the continuation for the second (square 5) might be thought of as

(lambda (v2) (+ 25 (* 3 v2)))

The above approximations indicate that operands to an FL application are
evaluated in left-to-right order. When the first call to square is being evaluated,
the second argument to + is the unevaluated (* (+ 1 2) (square 5)). But by
the time the second call to square is evaluated, the first (square 5) has been
evaluated to 25 and the (+ 1 2) argument has been evaluated to 3.

Even in languages that do not support mutation, continuations require a
computation to be viewed in a purely sequential way; some expressions are
evaluated “before” other expressions. In fact, it is really control, not state, that
must be linearly threaded through a sequential computation. State is just a piece
of information carried along by the control in its linear walk. This separation of
control and state makes it easier to think about sophisticated control constructs
like backtracking, where a computation may revert to a previous state even
though it is progressing in time.

First-class procedures are powerful enough to implement some fancy control
behavior. In this section, we show how first-class procedures can be used to
implement procedures returning multiple values, non-local exits, and coroutines.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.2. USING PROCEDURES TO MODEL CONTROL 369

9.2.1 Multiple-value Returns

It is often useful for a procedure to return more than one result. A classic
example of the utility of multiple-value returns concerns integer division and
remainder. Languages often provide two primitives for these operations even
though the same algorithm computes both. It would make more sense to have
a single operation that returns two values.

As another example, suppose that we want to write an FL program that,
given a binary tree with integers as leaves, computes both the depth and the
sum of the leaves in the tree and returns their product. One approach is to apply
two different procedures to the tree and combine the results as in Figure 9.1.
Notice that depth*sum1 requires two walks over the given tree.

(define depth*sum1
(lambda (tr)

(letrec ((depth (lambda (tree)

(if (leaf? tree)

0

(+ 1 (max (depth (tree-left tree))

(depth (tree-right tree)))))))

(sum (lambda (tree)

(if (leaf? tree)

tree

(+ (sum (tree-left tree))

(sum (tree-right tree)))))))

(* (depth tr) (sum tr)))))

Figure 9.1: The first version of depth*sum performs two tree traversals.

A procedure that returns multiple values allows one to perform the compu-
tation in a single tree walk. A simple method of doing this is to return a pair at
each node of the tree as in Figure 9.2. However, the bundling and unbundling
of values makes this approach to multiple values messy and hard to read.

An alternate approach to returning multiple values is to use first-class pro-
cedures. If procedure M is supposed to return multiple values, we can modify it
to take an extra argument R1, called the receiver. The receiver is a procedure
that expects the multiple values as its arguments and will combine them into
some result. M returns its results by calling R on them. We have already seen
numerous examples of this strategy in metalanguage functions and interpreter
procedures (e.g., with- functions have this form). Figure 9.3 shows how to apply
this idea to our example.

1By convention, the extra argument usually comes last.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

370 CHAPTER 9. CONTROL

(define depth*sum2
(lambda (tr)

(letrec ((inner

(lambda (tree)

(if (leaf? tree)

(cons 0 tree)

(let ((depth&sum1 (inner (tree-left tree)))

(depth&sum2 (inner (tree-right tree))))

(cons (+ 1 (max (car depth&sum1)

(car depth&sum2)))

(+ (cdr depth&sum1) (cdr depth&sum2))))))))

(let ((depth&sum (inner tr)))

(* (car depth&sum) (cdr depth&sum))))))

Figure 9.2: The second version of depth*sum uses pairs to return multiple values.

(define depth*sum3
(lambda (tr)

(letrec ((inner

(lambda (tree receiver)

(if (leaf? tree)

(receiver 0 tree)

(inner

(tree-left tree)

(lambda (depth1 sum1)

(inner (tree-right tree)

(lambda (depth2 sum2)

(receiver (+ 1 (max depth1 depth2))

(+ sum1 sum2))))))))))

(inner tr *))))

Figure 9.3: The third version of depth*sum passes multiple values to procedural
continuations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.2. USING PROCEDURES TO MODEL CONTROL 371

This style of code can be difficult to read. The receiver argument to the
inner procedure acts as a continuation encoding what computation needs to
be performed on the two values that inner “returns.” For example, the call
(inner tr *) starts off the process by applying inner to the tree tr with a
receiver * that will take the two results and return their product.

Even though the receiver is an argument, it is typical to ignore its argu-
ment status and view it as a different entity when reading a call like inner. So
(inner E1 (lambda (I1 I2) E2)) can be read as “Call inner on E1 and ap-
ply the procedure (lambda (I1 I2) E2) to the results” or “Evaluate E2 in an
environment where I1 and I2 are bound to the two results of applying inner to
E1 .” Note that these readings treat inner as a procedure of one argument that
returns two results, not a procedure of two arguments. Viewing continuation
argument(s) as different entities from other arguments is important for getting
a better working understanding of them.

Unlike the other two approaches, using a receiver forces us to choose a par-
ticular order for examining the branches of the binary tree. The main advantage
of a receiver is that it allows the multiple returned values to be named using the
standard naming construct, lambda. It is not necessary to invent a new syntax
for naming intermediate values: lambda suffices.

As a concrete example, consider the following application of depth*sum3 :

(depth*sum3 ’((5 7) (11 (13 17))))

An operational trace of the evaluation of this expression appears in Figures 9.4
and 9.5. Here, a tree node is represented by a list of the left and right subtrees,
while a leaf is represented by an integer. Note how the continuation argument
to inner acts like a stack that keeps track of the pending operations.

9.2.2 Non-local Exits

A continuation represents all the pending operations that are waiting to be done
after the current operation. When continuations are implicit, the computation
can only terminate successfully when all of the pending operations have been
done. Yet we sometimes want a computation buried deep in pending opera-
tions to terminate immediately with a result or at least circumvent a number of
pending operations. We can achieve these so-called non-local exits by using
explicit procedure objects representing continuations.

For example, consider the task of multiplying a list of numbers. Figure 9.6
shows the natural recursive solution to this problem. E.g.,

(product-of-list1 (list 2 4 8)) −−−eval→ 64

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

372 CHAPTER 9. CONTROL

(depth*sum3 ((5 7) (11 (13 17))))

⇒ (inner ((5 7) (11 (13 17))) *)

⇒ (inner (5 7) (lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2))

(+ s1 s2))))))

⇒ (inner 5 (lambda (d3 s3)

(inner 7 (lambda (d4 s4)

((lambda (d1 s1)

(inner (11 (13 17))

(lambda (d2 s2)

(* (+ 1 (max d1 d2)) (+ s1 s2)))))

(+ 1 (max d3 d4))

(+ s3 s4))))))

⇒ (inner 7 (lambda (d4 s4)

((lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2))

(+ s1 s2)))))

(+ 1 (max 0 d4))

(+ 5 s4))))

⇒ ((lambda (d1 s1)

(inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max d1 d2)) (+ s1 s2)))))

(+ 1 (max 0 0))

(+ 5 7))

⇒ (inner (11 (13 17)) (lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2))))

⇒ (inner 11 (lambda (d5 s5)

(inner (13 17) (lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max d5 d6))

(+ s5 s6))))))

Figure 9.4: Stylized operational trace of a procedural implementation of
multiple-value return, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.2. USING PROCEDURES TO MODEL CONTROL 373

⇒ (inner (13 17) (lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6))))

⇒ (inner 13 (lambda (d7 s7)

(inner 17 (lambda (d8 s8)

((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max d7 d8))

(+ s7 s8))))))

⇒ (inner 17 (lambda (d8 s8)

((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max 0 d8))

(+ 13 s8))))))

⇒ ((lambda (d6 s6)

((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 d6))

(+ 11 s6)))

(+ 1 (max 0 0))

(+ 13 17))))))

⇒ ((lambda (d2 s2)

(* (+ 1 (max 1 d2)) (+ 12 s2)))

(+ 1 (max 0 1))

(+ 11 30))

⇒ (* (+ 1 (max 1 2))

(+ 12 41))

⇒ 159

Figure 9.5: Stylized operational trace of a procedural implementation of
multiple-value return, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

374 CHAPTER 9. CONTROL

(define product-of-list1
(lambda (nums)

(if (null? nums)

1

(* (car nums) (product-of-list1 (cdr nums))))))

Figure 9.6: A first cut at the product of a list.

Figure 9.7 shows a continuized version of product-of-list1 . The behavior
is exactly the same; we have just made the continuations explicit. For an empty
list, product-of-list1 continues with the value 1. For a non-empty list, we
compute the product of the tail of the list passing along a new continuation
that passes the product of the list tail and the current element to the current
continuation.

(define product-of-list2
(lambda (nums cont)

(if (null? nums)

(cont 1)

(product-of-list2 (cdr nums)

(lambda (v)

(cont (* v (car nums))))))))

Figure 9.7: A continuized procedure for computing the product of a list.

Notice that product-of-list1 and product-of-list2 dutifully multiply
all the elements of the list even if it contains a zero element. This is a waste
since the answer is known to be 0 the moment a 0 is encountered. There is no
need to look at any other list elements or to perform any more multiplications.
product-of-list3 in Figure 9.8 performs this optimization.

To accomplish a non-local exit, product-of-list3 distinguishes the con-
tinuation passed to the initial call from continuations generated by recursive
calls. The escape continuation is kept in final-cont. The local recursive pro-
cedure prod behaves like product-of-list2 except that it jumps immediately
to final-cont upon encountering a 0, thus avoiding unnecessary recursive calls
by-passing all pending multiplications.

As a more complicated example, consider the pattern matching program for
FL presented in Section 6.2.4.3. The core of the program is the match-with-dict
procedure in Figure 9.9, where we have unraveled the failure abstractions to
make the present discussion more concrete.

As written, match-with-dict performs a left-to-right depth-first walk simul-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.2. USING PROCEDURES TO MODEL CONTROL 375

(define product-of-list3
(lambda (nums final-cont)

(letrec ((prod

(lambda (nums normal-cont)

(if (null? nums)

(normal-cont 1)

(let ((thisnum (car nums)))

(if (= thisnum 0)

(final-cont 0)

(prod (cdr nums)

(lambda (val)

(normal-cont

(* val thisnum))))))))))

(prod nums final-cont))))

Figure 9.8: Computing the product of list, exiting as soon as the answer is
apparent.

(define match-sexp

(lambda (pat sexp)

(match-with-dict pat sexp (dict-empty))))

(define match-with-dict

(lambda (pat sexp dict)

(cond ((eq? dict ’*failed*) ; Propagate failures

’*failed*)

((null? pat)

(if (null? sexp)

dict ; Pat and sexp both ended

’*failed*)) ; Pat ended but sexp didn’t

((null? sexp) ’*failed*) ; Sexp ended but pat didn’t

((pattern-constant? pat)

(if (sym=? pat sexp) dict ’*failed*))

((pattern-variable? pat)

(dict-bind (pattern-variable-name pat) sexp dict))

(else (match-with-dict (cdr pat)

(cdr sexp)

(match-with-dict (car pat)

(car sexp)

dict))))))

Figure 9.9: Core of the pattern matching program.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

376 CHAPTER 9. CONTROL

taneously over the pat and sexp trees. It carries along a dictionary representing
bindings for variables that have already been matched. Failure is represented in
a rather ad hoc manner by replacing the dictionary with the symbol *failed*.
Since failure may occur deep in the tree where many pending matches are waiting
to be performed, each call of match-with-dict must check for and propagate
failure tokens that appear as the dictionary argument.

It would be more desirable to handle failures by by-passing all the pending ac-
tivations and simply returning the symbol *failed* as the value of match-sexp.
This effect can be achieved by passing two extra arguments to match-with-dict:
a success continuation and a failure continuation. A success continuation is a
procedure of one argument, a dictionary, that continues a thus-far successful
match with the given dictionary. A failure continuation is a procedure of no argu-
ments that effectively returns *failed* for the initial call to match-with-dict.
It is necessary to package up both continuations so that the program has the
option of ignoring one. This strategy is implemented in Figure 9.10. Note
in the final clause of the cond, match-inner works from the outside in while
match-with-dict works from the inside out. This explains why the calls to car

and cdr appear differently in the two programs, even though both walk the tree
in a left-to-right depth-first manner.

In the modified version of the pattern matcher, the interface to match-sexp

would be cleaner if it took success and failure continuations as well. Then we
could more easily specify the behavior we want in these cases.

(define match-sexp

(lambda (pat sexp succeed fail)

(match-inner pat sexp (dict-empty) succeed fail)))

(match-sexp ’((? a) (? a)) ’(x x)

(lambda (dict) #t)

(lambda () #f))

−−−FL!→ true

(match-sexp ’((? a) (? a)) ’(x y)

(lambda (dict) #t)

(lambda () #f))

−−−FL!→ false

¤ Exercise 9.1

a. Modify the code in product-of-list3 to return an error symbol if there is a
non-integer element in the list.

b. Suppose the final continuation of product-of-list3 must receive an integer
value. How would you handle errors? Rewrite product-of-list3 to incorpo-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.2. USING PROCEDURES TO MODEL CONTROL 377

(define match-sexp

(lambda (pat sexp)

(match-inner pat

sexp

(dict-empty)

(lambda (dict) dict)

(lambda () ’*failed*))))

(define match-inner

(lambda (pat sexp dict succeed fail)

(cond ((null? pat)

(if (null? sexp)

(succeed dict) ; Pat and sexp both ended

(fail))) ; Pat ended but sexp didn’t

((null? sexp) (fail)) ; Sexp ended but pat didn’t

((pattern-constant? pat)

(if (sym=? pat sexp)

(succeed dict)

(fail)))

((pattern-variable? pat)

(succeed

(dict-bind (pattern-variable-name pat) sexp dict)))

(else (match-inner (car pat)

(car sexp)

dict

(lambda (car-dict)

(match-inner (cdr pat)

(cdr sexp)

car-dict

succeed

fail))

fail)))))

Figure 9.10: A version of the pattern matcher that uses success and failure
continuations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

378 CHAPTER 9. CONTROL

rate your changes and show a sample call. ¢

9.2.3 Coroutines

Coroutining is a situation in which control jumps back and forth between con-
ceptually independent processes. The most common version is producer/consum-
er coroutines, where a consumer process transfers control to a producer process
when it wants the next value generated by the producer, and the producer re-
turns control to the consumer along with the value. The standard example of
this kind of coroutine is a compiler front end in which a parser requests tokens
from the lexical scanner.

Here, we will show how simple producer/consumer coroutines can be imple-
mented by using first-class procedures to represent control. The stream notion
we will see in Chapter 10 (beginning on page 431) is an alternate technique for
implementing such coroutines.

We represent a producer as a procedure that takes a consumer as its argu-
ment and hands that consumer the requested value along with the next producer.
We represent a consumer as a procedure that takes a value and producer, and
either returns or calls the producer on the next consumer.

For example, suppose (count-from n) makes a producer which generates
the (conceptually infinite) increasing sequence of integers beginning with n, and
(add-first m) makes a consumer that adds up the firstm elements of the pro-
ducer it’s attached to. Then ((count-from 3) (add-first 5)) should return
the sum of the integers from 3 to 7, inclusive. This example,coded in FL, is in
Figure 9.11.

9.3 A Standard Semantics of FL!

To handle state in our semantics, we took the idiom of single-threading a store
through a computation and made it part of the computational model. Similarly,
we will handle control in our semantics by embedding in our computational
model the idiom of passing continuations through a computation. The strategy
of capturing common programming idioms in a semantic framework — or any
language — is a powerful idea that lies at the foundation of programming lan-
guage design. Indeed, languages can be considered expressive to the extent that
they relieve the programmer of managing the details of common programming
idioms.

Together, environments, stores, and continuations are sufficiently powerful
to model most programming languages. As noted earlier, a semantics that uses

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 379

(define (count-from num)

(letrec ((new-producer

(lambda (n)

(lambda (consumer)

(consumer n (new-producer (+ n 1)))))))

(new-producer num)))

(define (add-first count)

(letrec ((new-consumer

(lambda (c)

(lambda (value next-producer)

(if (= c 0)

0

(+ value (next-producer

(new-consumer (- c 1)))))))))

(new-consumer count)))

;; Add up the 5 consecutive integers starting at 3

((count-from 3) (add-first 5)) −−−FL→ 25

Figure 9.11: An example producer/consumer example.

only environments and stores is called a direct semantics. A semantics that
adds continuations to a direct semantics is called a standard semantics, since
most denotational definitions are written in this style. A standard semantics
also implies particular conventions about the signatures of valuation functions.
One advantage of standard semantics is that following a set of conventions sim-
plifies the comparison of different programming languages defined by standard
semantics. We already saw this kind of advantage when we studied parameter
passing and scoping. Comparing different approaches was facilitated by the fact
that the styles of the denotational definitions we were comparing were similar.

Now that we’ve built up some intuitions about continuations, it’s time to
model continuations explicitly in our denotational definitions. Figures 9.12–9.14
present the standard semantics for FLK!. The definition given in the figures
is just an alternate way to write the same semantics that we gave before. In
fact, there are mechanical transformations that could transform the denotational
definition from the previous chapter into the definition in Figures 9.12–9.14.2

We introduce a standard semantics for FLK! because it is a much more
powerful tool for studying control features than the direct semantics. In fact,

2Section 17.9 presents a mechanical transformation of FLAVAR! programs into continua-
tion passing style.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

380 CHAPTER 9. CONTROL

γ ∈ Cmdcont = Store → Answer
k ∈ Expcont = Value → Cmdcont
j ∈ Explistcont = Value* → Cmdcont

Answer = language dependent ; Typically Expressible
p ∈ Procedure = Denotable → Expcont → Cmdcont
x ∈ Expressible = (Value + Error)⊥ ; As before
v ∈ Value = language dependent
y ∈ Error = Sym ; Modified

New auxiliaries:
top-level-cont : Expcont
=λv . λs . (Value 7→ Expressible v) ; Assume Answer =Expressible

error-cont : Error → Cmdcont
= λI . λs . (Error 7→ Expressible I) ; Assume Answer =Expressible

test-boolean : (Bool → Cmdcont)→ Expcont
= λf . (λv . matching v

. (Bool 7→ Value b) [] (f b)

. else (error-cont non-boolean)
endmatching)

Similarly for:
test-procedure : (Procedure → Cmdcont)→ Expcont
test-location : (Location → Cmdcont)→ Expcont
etc.

ensure-bound : Binding → Expcont → Cmdcont
= λβk . matching β

. (Denotable 7→ Binding v) [] (k v) ; Assume CBV

. (Unbound 7→ Binding unbound) [] (error-cont unbound-variable)
endmatching

Similarly for:
ensure-assigned : Assignment → Expcont → Cmdcont
ensure-value : Expressible → Expcont → Cmdcont

Figure 9.12: Semantic algebras for standard semantics of FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 381

T L : Exp→ Answer ; Assume Answer = Expressible
E : Exp→ Environment → Expcont → Cmdcont
E* : Exp*→ Environment → Explistcont → Cmdcont
L : Lit→ Value ; Defined as usual
Y : Symlit→ Sym ; Y ∈Symlit are symbolic literals

T L[[E]] = (E [[E]] empty-env top-level-cont empty-store)

E [[L]] =λek . (k L[[L]])

E [[I]] =λek . (ensure-bound (lookup e I) k)

E [[(proc I E)]] =λek1 . (k1 (Procedure 7→ Value (λδk2 . (E [[E]] [I : δ]e k2))))

E [[(call E1 E2)]]
=λek . (E [[E1]] e (test-procedure (λp . (E [[E2]] e (λv . (p v k))))))

E [[(if E1 E2 E3)]] =
λek . (E [[E1]] e (test-boolean (λb . if b then (E [[E2]] e k) else (E [[E3]] e k) fi)))

E [[(pair E1 E2)]]
=λek . (E [[E1]] e (λv1 . (E [[E2]] e (λv2 . (k (Pair 7→ Value 〈v1 , v2 〉))))))

E [[(cell E)]] =λek . (E [[E]] e (λvs . (k (Location 7→ Value (fresh-loc s))
(assign (fresh-loc s) v s))))

E [[(begin E1 E2)]] =λek . (E [[E1]] e (λvignore . (E [[E2]] e k)))

E [[(primop O E*)]] =λek . (E*[[E*]] e (λv* . (PFLK ![[O]] v* k)))

E [[(error I)]] =λek . (error-cont I)

E*[[[]]] =λej . (j []Value)

E*[[Efirst . Erest*]] =λej . (E [[Efirst]] e (λv . (E*[[Erest]] e (λv* . (j v . v*)))))

Figure 9.13: Valuation clauses for standard semantics of FLK!, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

382 CHAPTER 9. CONTROL

PFLK ! : Primop→ Value*→ Expcont → Cmdcont
PFLK : Primop→ Value*→ Expressible ; Defined as usual

PFLK ![[cell-ref]]
=λ[v]ks . ((test-location (λls ′ . ((ensure-assigned (fetch l s ′) k) s ′)))

v s)

PFLK ![[cell-set!]]
=λ[v1 , v2]ks . ((test-location (λls

′ . (k (Unit 7→ Value unit) (assign l v2 s ′))))
v1 s)

PFLK ![[OFLK]] =λv*k . (ensure-value (PFLK [[OFLK]] v*) k)
where OFLK ∈Primop − {cell-ref, cell-set!}

Figure 9.14: Valuation clauses for standard semantics of FLK!, Part II.

the area of control is the big payoff for our investment in denotational semantics;
many control constructs that have succinct denotational descriptions are difficult
to describe in an operational framework.

The standard semantics for FLK! differs from the direct semantics for FLK!
in the following ways:

• The Expressible domain has been replaced by the Answer domain. In a
standard semantics, the Answer domain is used to represent the “final”
value of a program. Not all standard semantics actually return a value
for an expression. For example, the initial continuation might be an in-
terpreter’s read-eval-print loop, which never returns. In this case, the
behavior of the program could be modeled as a mapping from a sequence
of input s-expressions to a sequence of output s-expressions. Nevertheless,
in the particular case of FLK!, Answer is the same as Expressible.

• The standard semantics introduces two continuation domains, Expcont and
Cmdcont:

k ∈ Expcont = Expressible → Cmdcont
γ ∈ Cmdcont = Store → Answer

Expcont is the domain of expression continuations; Cmdcont is the domain
of command continuations. These types of continuations reflect a common
distinction in programming languages between commands and expres-
sions. An expression yields a value in addition to any modifications it

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 383

might make to the store. The example languages in this book are expres-
sion languages because all program constructs are expressions that return
a value. Many languages, e.g., Pascal, have syntactically distinct expres-
sions and commands as well as contexts that require one or the other.3

A command, on the other hand, is executed for its effect(s) and does not
produce a meaningful value. Program output is the classic example of a
command: writeln in Pascal, for example, prints its arguments as a
line of output on the standard output device. Variable assignment is also
naturally thought of as a command. In FLAVAR!, set! expressions re-
turn the uninteresting value #u simply because they are required to return
something, but the reason to execute an assignment is to modify the store.
Sequencing using begin is a natural command context: it exists to enforce
an order of state transformations.

Since expressions return a value and modify the store, the continuation for
an expression expects both the value and store produced by that expres-
sion. A command continuation expects only a store. Note that because
Cmdcont = Store → Answer, we can also view Expcont as:

k ∈ Expcont = Expressible → Store → Answer

That is, we can think of an expression continuation as taking an expressible
value and returning a command continuation; or we may think of it as
taking an expressible value and a store and returning an answer. Which
perspective is more fruitful depends on the situation.

• The signature of E has been modified:

E : Exp→ Environment → Expcont → Cmdcont

Recall that since Cmdcont=Store → Answer we can also view E as:

E : Exp→ Environment → Expcont → Store → Answer

That is, E takes a syntactic expression and representations of the naming
(Environment), control (Expcont), and state (Store) contexts, and finds
the meaning of the expression (an answer) with respect to these contexts.

3It is possible to coerce an expression to a command by ignoring its return value. This is
what FL does with all but the final subexpression in a begin.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

384 CHAPTER 9. CONTROL

An expression of the form

(E [[E]] e (λv . 2))

can be read as “Find the value of E in e and name the result v in 2.”

Since evaluating an expression requires a store in FLK!, why doesn’t a
store appear in the above expression? The reason is that the order of
arguments to E has been chosen to take the store as its final argument,
rather than the continuation. This argument order is one of the conven-
tions of a standard semantics; it is used because it hides the store when it
is threaded through an expression untouched. In essence, Cmdcont fulfills
the role that the Computation domain did when we introduced state into
FL. To specify that an expression takes in one store, say s0 , and returns
another, s1 , we write:

(E [[E]] e (λvs1 . 2) s0)
(Observe the explicit store parameters in the denotations for constructs
involving cells.)

• The definition of the Procedure domain is changed to take an expression
continuation:

p ∈ Procedure = Denotable → Expcont → Cmdcont

Again, we can also view this definition as:

p ∈ Procedure = Denotable → Expcont → Store → Answer

The Procedure domain in the standard semantics differs from the Procedure
domain in the direct semantics in that procedures take an additional argu-
ment from the Expcont domain. Intuitively, this argument is the “return
address” that a procedure returns to when it returns a value.

• The new test-xxx auxiliary functions are used to convert continuations
expecting arguments of type xxx into expression continuations. Like the
with-xxx functions from previous semantics, the test-xxx functions hide
details of error generation. However, unlike the with-xxx functions, the
test-xxx functions do not propagate errors.

Even though FL! does not have any advanced control features (we’ll add
quite a few in the remainder of this chapter), the standard semantics still has an
advantage over a direct semantics: the modelling of errors. A valuation clause
in a standard semantics generates an error by ignoring the current continuation
and directly returning an error. See, for example, the valuation clause for error.
This captures the intuition that an error immediately aborts the computation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 385

The standard semantics valuation clauses in Figures 9.13 and 9.14 do not
employ the computation abstraction that we have been using in our denotational
definitions. We presented them in a concrete manner to help build intuitions
about continuations. However, it is not difficult to recast standard semantics
into the computation framework. Figures 9.15 and 9.16 show an implementation
of the computation abstraction that defines Computation as Expcont → Store
→ Expressible. (We assume that Answer is Expressible, but we could readily
redefine Answer to be another domain.) With this implementation of the com-
putation abstraction, the FLK! valuation clauses from the previous chapter still
hold, except for a minor tweak in the handling of CBV rec:

E [[(rec I E)]]
=λe . fixComputation (λc . λks0 . (E [[E]] [I :: (extract-value c s0)]e k s0))

extract-value : Computation → Store → Binding
=λcs0 . matching (c (λvs . (Value 7→ Expressible v)) s0)

. (Value 7→ Expressible v) [] (Denotable 7→ Binding v)

. (Error 7→ Expressible y) [] ⊥Binding

endmatching

There are two important changes in the valuation clause for rec:

• extract-value must account for the fact that the Answer domain is Ex-
pressible rather than Expressible × Store.

• The new E function requires a continuation argument, which we use to
hijack the value used in the binding for I. Notice that this continuation is
rather like the top level continuation in Figure 9.12.

Figure 9.17 introduces two continuation-specific auxiliary functions along
with their associated reasoning laws. Since no FLK! construct does anything
interesting with a continuation, these auxiliaries would not appear in valuation
clauses for FLK!. However, they will be useful when we extend FLK! with
advanced control features.

¤ Exercise 9.2 Imperative Languages Inc. was impressed with the simplicity and
power of FL!. Noticing that it lacks a looping construct and not willing to support a
product not in consonance with the company’s programming language philosophy, the
company calls Ben Bitdiddle to extend the language. Instead of a myriad of different
constructs (e.g. for, while, do-while, etc.) Ben designs a single loop expression that
embodies all forms of looping. The syntax of FLK! was extended as follows:

E ::= . . . [As before]
| (loop E) [Evaluate E repeatedly]
| (break E) [End lexically enclosing loop with value of E]
| (continue) [Restart evaluation of enclosing loop expression]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

386 CHAPTER 9. CONTROL

c ∈ Computation = Expcont → Store → Expressible
k ∈ Expcont = Value → Store → Expressible
x ∈ Expressible = (Value + Error)⊥ ; As before
v ∈ Value = language dependent
y ∈ Error = Sym ; Modified

expr-to-comp : Expressible → Computation
=λx . matching x

. (Value 7→ Expressible v) [] (val-to-comp v)

. (Error 7→ Expressible y) [] (err-to-comp y)
endmatching

val-to-comp : Value → Computation =λv . λk . (k v)

err-to-comp : Error → Computation =λI . λks . (Error 7→ Expressible I)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λk . (c (λv . (f v k)))
with-values, with-boolean, with-procedure, etc. can be written in terms of with-value.

check-location : Value → (Location → Computation)→ Computation
=λvf . matching v

. (Location 7→ Value l) [] (f l)

. else (err-to-comp non-location)
endmatching

check-boolean, check-procedure, etc. are similar.

Figure 9.15: Continuation-based computation abstraction, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 387

State-based auxiliaries:

allocating : Storable → (Location → Computation)→ Computation
=λσ f . λks . (f (fresh-loc s) k (assign (fresh-loc s) σ s))

fetching : Location → (Storable → Computation)→ Computation
=λlf . λks . matching (fetch l s)

. (Storable 7→ Assignment σ) [] (f σ k s)

. else ((err-to-comp unassigned-location) k s)
endmatching

update : Location → Storable → Computation
=λlσ . λks . (k (Value 7→ Expressible (Unit 7→ Value unit)) (assign l σ s))

sequence : Computation → Computation → Computation
=λc1 c2 . (with-value c1 (λv . c2)) ; Unchanged from before

Figure 9.16: Continuation-based computation abstraction, Part II.

New auxiliary functions for control:

capturing-cont : (Expcont → Computation)→ Computation
=λf . λk . ((f k) k)

install-cont : Expcont → Computation → Computation
=λknewc . λkold . (c knew)

New Reasoning Laws:

(with-value (install-cont k c) f) = (install-cont k c)

(with-value (capturing-cont f) g) = (capturing-cont (λk . (with-value (f k) g)))
where k is not free in f or g.

(capturing-cont (λk . (install-cont k c))) = c
where k is not free in c.

Figure 9.17: Continuation-specific auxiliary functions on computations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

388 CHAPTER 9. CONTROL

Here’s the informal semantics of the new constructs:

a. (loop E): Evaluates E (the “looping expression”) repeatedly forever.

b. (break E): Ends the nearest lexically enclosing loop, which then returns the
value of E.

c. (continue): Restarts the evaluation of the looping expression for the nearest
lexically enclosing loop.

It is an error to evaluate either a break or a continue expression outside a lexically
enclosing loop expression.

Here’s an example of Ben’s looping constructs in action:

; Ben’s iterative factorial procedure

(lambda (n)

(let ((fact 1))

(loop

(if (= n 0)

(break fact)

(begin

(set! fact (* fact n))

(set! n (- n 1)))))))

In addition to extending the language, Ben has been asked to extend its standard
denotational semantics. It is here that Ben has subcontracted you.

a. Give the new signature of the meaning function E .
b. Give the meaning function clauses for (loop E), (break E), and (continue).

¢

¤ Exercise 9.3 Ben Bitdiddle is very excited about the power of the standard se-
mantics to describe complicated flows of control. Wanting to practice more with this
wonderful tool, he started churning out a lot of FL! extensions (not all of them useful).
Most recently, Ben added a construct (self E) in order to allow a procedure to call
itself, without using rec or letrec. Ben modified the FLK! grammar as follows:

E ::= . . . existing FLK! constructs . . .
| (self E)

Informally, (self E) recursively calls the current procedure with an actual argu-
ment that is the result of evaluating E. Here is a small example:

(let ((fact (lambda (n) (if (= n 0) 1 (* n (self (- n 1)))))))

(fact 4)) −−−eval→ 24

When (self E) is used outside a procedure, it causes the program to terminate
immediately with a value that is the result of evaluating E.

Ben started describing the formal semantics of (self E) by modifying the signature
of the meaning function E as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 389

E : Exp→ Environment → SelfProc → Expcont → Cmdcont
where SelfProc = Procedure

In spite of his enthusiasm, Ben is still inexperienced with standard semantics. It is
your task to help him specify the formal semantics of the self construct.

a. Give the revised definition of the top level meaning function T L[[E]].
b. Give the meaning function clause for (call E1 E2), (self E) and (proc I E).

c. Prove that (self (self 1)) evaluates to (Value 7→ Expressible (Int 7→ Value 1)).

d. Prove that (proc x (self 1)) evaluates to a procedure that, no matter what
input it is called with, loops forever. ¢

¤ Exercise 9.4 Ben Bitdiddle is now working in a major research university where he’s
investigating a new approach to programming based on coroutines. Of course, he bases
his research on FLK! and its standard semantics. He adds the following expressions to
the FLK! grammar:

E ::= ...| (coroutine (I E1) E2)| (yield E)

The meaning of the expression (coroutine (I E1) E2) is simply E2 , unless E2
performs a (yield E3). If E2 performs a (yield E3), then the value of the corou-
tine expression is simply E1 , except that I is bound to E3 . However, if E1 per-
forms a (yield E4), then control transfers back to E2 , with the value of the origi-
nal (yield E3) — the point where control was originally transferred to E1 — being
replaced by E4 . Thus, yield transfers control back and forth between the two expres-
sions, passing a value between them. A (yield E) in one expression transfers control
to the other expression; that expression resumes at the point of its last yield, whose
value is set to E.

The following example coroutine expressions may help to make things clear. The
underline mark shows the active expression; the series of dots · · · · · · shows a yield

expression that has already yielded control to the other expression.

(coroutine (x 1) 2)

⇒ 2

(coroutine (x 1) (yield 2))

⇒ (coroutine (x 1) · · · · · ·)
⇒ 1

(coroutine (x x) (yield 2))

⇒ (coroutine (x x) · · · · · ·)
⇒ (coroutine (x 2) · · · · · ·)
⇒ 2

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

390 CHAPTER 9. CONTROL

(coroutine (x (yield (+ 1 x))) (yield 2))

⇒ (coroutine (x (yield (+ 1 x))) · · · · · ·)
⇒ (coroutine (x (yield (+ 1 2))) · · · · · ·)
⇒ (coroutine (x (yield 3)) · · · · · ·)
⇒ (coroutine (x · · · · · ·) 3)

⇒ 3

(coroutine (x (yield (+ 1 x))) (+ 2 (yield 3)))

⇒ (coroutine (x (yield (+ 1 x))) (+ 2 · · · · · ·))
⇒ (coroutine (x (yield (+ 1 3))) (+ 2 · · · · · ·))
⇒ (coroutine (x (yield 4)) (+ 2 · · · · · ·))
⇒ (coroutine (x · · · · · ·) (+ 2 4))

⇒ 6

As one of Ben’s students, your job is to write the denotational semantics for FLK!
+ coroutines. Ben has already revised the domain equations to include both normal
and yield continuations, as follows:

k ∈ Normal-Cont = Expcont
y ∈ Yield-Cont = Expcont

Expcont = Value → Cmdcont
Cmdcont = Yield-Cont → Store → Expressible

p ∈ Procedure = Denotable → Normal-Cont → Cmdcont

He’s also changed the signature of the E meaning function so that every expression
is evaluated with both a normal and a yield continuation:

E : Exp → Environment → Normal-Cont → Cmdcont
= Exp → Environment → Normal-Cont → Yield-Cont → Store → Expressible

He didn’t get that far when defining E , but he did give you the meaning function
clause for (if E1 E2 E3) for reference.

E [[(if E1 E2 E3)]] =
λeky . (E [[E1]] e

(test-boolean (λb . if b then (E [[E2]] e k)
else (E [[E3]] e k)))

y)

a. Give the meaning function clause for L, given the new domains.

b. Give the meaning function clause for (yield E).

c. Give the meaning function clause for (coroutine (I E1) E2).

d. Compute the meaning of (yield (yield 3)) according to your semantics. ¢

¤ Exercise 9.5 Alyssa P. Hacker thinks coroutines (see Section 9.2.3) make programs
too hard to reason about. She suggests a simplified version of coroutines: the pro-
ducer/consumer paradigm. Informally, a producer generates values one at a time, and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 391

the values are used by a consumer in the order they are produced. Alyssa modifies the
FLK! grammar as follows:

E ::= . . . normal FLK! constructs . . .
| (producer Iyield Ebody)
| (consume Eproducer Icurrent Ebody)

The informal semantics of these two newly added constructs are:

• (producer Iyield Ebody) creates a new kind of first-class object called a producer.
When a producer is invoked (by consume) the identifier Iyield is bound to a yield-
ing procedure. Calling Iyield in Ebody with a value passes control and the yielded
value to the consumer. When the consumer is done processing the value, the Iyield
procedure returns #u to the producer. The value of Ebody is the value returned
by the producer when there are no more values to yield.

• (consume Eproducer Icurrent Ebody) invokes the producer that Eproducer evaluates
to (it is an error if Eproducer doesn’t evaluate to a producer). Whenever the
producer yields a value, Icurrent is bound to that value and Ebody is evaluated. The
result of evaluating Ebody is then discarded, and control returns to the producer.
The result returned by consume is the result returned by the producer.

For example, up-to is a procedure that takes an integer n as an argument, and
returns a producer that yields the integers from 1 up to and including n.

(define up-to

(lambda (n)

(producer emit

(letrec ((loop (lambda(i)

(if (> i n)

#f

(begin (emit i)

(loop (+ i 1)))))))

(loop 1)))))

The sum procedure adds all the numbers yielded by a given producer:

(define sum

(lambda (prod)

(let ((ans (cell 0)))

(begin

(consume prod n (cell-set! ans (+ n (cell-ref ans))))

(cell-ref ans)))))

For example, sum can be used to add up the values produced by the producer (up-to 5):

(sum (up-to 5)) −−−eval→ 33

Note that when a producer does not yield additional values and returns a normal
value v, execution of the invoking consume form is terminated and v is returned.

(consume (up-to 5) i 7) −−−eval→ false

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

392 CHAPTER 9. CONTROL

Assume in the following questions that FL! is desugared in the usual way to FLK!.

a. Alyssa wants to update the standard semantics of FLK! in order to specify the
formal semantics of the newly introduced constructs. Alyssa starts by creating a
new domain for producers, and adds it to the value domain:

v ∈ Value = Unit + Bool + . . . + Procedure + Producer
q ∈ Producer = Procedure → Expcont → Cmdcont

Alyssa’s valuation clause for the consume construct is as follows:

E [[(consume Eproducer Icurrent Ebody)]] =
λeknormal . (E [[Eproducer]] e

(test-producer
(λq . (q (λvyieldedkafter−yield .

(E [[Ebody]] [Icurrent : vyielded]e
(λv . (kafter−yield (Unit 7→ Value unit)))))

knormal))))

test-producer : (Producer → Cmdcont)→ Expcont =
λf . (λv .matching v

. (Producer 7→ Value q) [] (f q)

. else error-cont
endmatching)

Write the evaluation clause for the producer construct.

b. Alyssa also decides to specify the behavior of producer and consume in terms of
their operational semantics. She starts with the SOS semantics for FLK! from
Section 8.2.3.

State the modifications to the SOS semantics of FLK! that are necessary to
handle producer and consumer, including any relevant rules.

c. Ben Bitdiddle discovers how to desugar Alyssa’s constructs into normal FL! con-
structs. Ben’s desugaring for producer is

D(producer Iyield Ebody) = (lambda (Iyield) Ebody)

Write a corresponding desugaring for consume. ¢

¤ Exercise 9.6 Sam Antics is aggressively using the standard semantics to define the
meaning of some really non-standard FL! constructs. Most recently, he extended FL!
with some special constructs for POP (i.e., “Politically Oriented Programming”). He
extended the FLK! grammar as follows:

E ::= . . . existing FLK! constructs . . .
| (elect Epres Evp)
| (reelect)
| (impeach)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.3. A STANDARD SEMANTICS OF FL! 393

Here’s the informal semantics of the newly introduced constructs:

• (elect Epres Evp) evaluates to the value of Epres unless (impeach) is evaluated
in Epres , in which case it evaluates to the value of Evp . It is possible to have
nested elect constructs.

• If (reelect) is evaluated inside the Epres part of a (elect Epres Evp) construct,
it goes back to the beginning of the elect construct. Otherwise, it signals an
error.

• If (impeach) is evaluated within the Epres part of a (elect Epres Evp) construct,
it causes the elect expression to evaluate to Evp . Otherwise, it signals an error.

Here’s a small example that Sam plans to use in his advertising campaign for the
FL! 2000 Presidential Edition (TM):

(let ((scandals (cell 0)))

(elect (if (< (cell-ref scandals) 5)

(begin (cell-set! scandals

(+ (cell-ref scandals) 1))

(reelect))

(impeach))

(* (cell-ref scandals) 2)))

−−−eval→ 10

You are hired by Sam Antix to modify the standard denotational semantics of FLK!
in order to define the formal semantics of the newly introduced constructs. Sam has
already added the following semantic domains:

r ∈ Prescont = Cmdcont
i ∈ Vpcont = Cmdcont

He also changed the signature of the meaning function:

E : Exp→ Environment → Prescont → Vpcont → Expcont → Cmdcont

a. Give the definition of the top level meaning function T L[[E]].
b. Give the meaning function clauses for E [[(elect Epres Evp)]], (reelect), and

(impeach).

c. Use the meaning functions you defined to compute T L[[(elect (reelect 1))]].
¢

¤ Exercise 9.7 This problem requires you to modify the standard denotational se-
mantics for FLK!.

Sam Antics is working on a new language with hot new features that will appeal to
government customers. He was going to base his language on Caffeine from Moon

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

394 CHAPTER 9. CONTROL

Microsystems, but negotiations broke down. He has therefore decided to extend FLK!
and has hired you, a top FLK! consultant, to assist with modifying the language to
support these new features. The new language is called FLK#, part of Sam Antics’ new
.GOV platform. The big feature of FLK# is user tracking and quotas in the store. An
important customer observed that government users tended to use the store carelessly,
resulting in expensive memory upgrades. To improve the situation, the FLK# store will
maintain a per-user quota. The Standard Semantics of FLK! are changed as follows:

w ∈ UserID = Int
q ∈ Quota = UserID → Int

gamma ∈ Cmdcont = UserID → Quota → Store → Answer

UserID is just an integer. 0 is reserved for the case when no one is logged in. Quota is a
function that when given a UserID returns the number of cells remaining in the user’s
quota. The quota starts at 100 cells. Cmdcont, the command continuation, takes the
currently logged in user ID, the current quota, and the current store to yield an answer.
Plus, FLK# adds the following commands:

E ::= ... [Classic FLK! expressions]
| (login! w) [Log in user w]
| (logout!) [Log out current user]

(login!w) — logs in the user associated with the identifier; returns the identifier (re-
turns an error if a user is already logged in or if the UserID is 0)
(logout!) — logs the current user out; returns the last user’s identifier (returns an
error if there is no user logged in)
(check-quota) — returns the amount of quota remaining

The definition of E [[(check-quota)]] is:
E [[(check-quota)]] =
λekwq . if w = 0

then (error-cont no-user-logged-in w q)
else (k (Int 7→ Value (q w)) w q) fi

a. Write the meaning function clause for E [[(login! E)]].

b. Write the meaning function clause for E [[(logout!)]].

c. Give the definition of E [[(cell E)]]. Remember you cannot create a cell unless
you are logged in.

d. Naturally, Sam Antics wants to embed some “trap doors” into the .GOV platform
to enable him to “learn more about his customers.” One of these trap doors is the
undocumented (raise-quota! n) command, which adds n cells to the quota of
the current user and returns 0. Give the definition of E [[(raise-quota! E)]]. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.4. NON-LOCAL EXITS 395

9.4 Non-local Exits

A denotational semantics equipped with continuations is especially useful for
modelling advanced control features of programming languages. One such fea-
ture is a non-local exit, a mechanism that aborts a pending computation by
forcing control to jump to a specified place in the program.

To study non-local exits, we extend FLK! with two new constructs:

E ::= . . . | (label Ictrl pt Ebody) | (jump Ectrl pt Ebody)

The informal semantics of these constructs is as follows:

• (label Ictrl pt Ebody) evaluates Ebody in an environment where the name
Ictrl pt is bound to the control point that receives the value of the label
expression.

• (jump Ectrl pt Ebody) returns the value of Ebody to the control point that
is the value of Ectrl pt . If Ectrl pt does not evaluate to a control point, jump
generates an error.

(+ 1 (label exit (* 2 (- 3 (/ 4 1))))) −−−FL!→ −1

(+ 1 (label exit (* 2 (- 3 (/ 4 (jump exit 5)))))) −−−FL!→ 6

(+ 1 (label exit

(* 2 (- 3 (/ 4 (jump exit (+ 5 (jump exit 6)))))))) −−−FL!→ 7

(+ 1 (label exit1

(* 2 (label exit2 (- 3 (/ 4 (+ (jump exit2 5)

(jump exit1 6)))))))) −−−FL!→ 11

Figure 9.18: Some examples using label and jump.

Figure 9.18 shows some simple examples using label and jump. The first
example illustrates that the value of (label I E) is the value of E if E per-
forms no jumps. In the second example, (jump exit 5) aborts the pending
(* 2 (- 3 (/ 4 2))) computation and returns 5 as the value of the label

expression. The third example demonstrates that a pending jump can itself be
aborted by a jump within one of its subexpressions. In the final example, the left-
to-right evaluation of call subexpressions causes 5 to be returned as the value
of (label exit2 . . .). If call subexpressions were evaluated in right-to-left
order, the result of the final example would be 7.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

396 CHAPTER 9. CONTROL

In practice, non-local exits are a convenient means of communicating in-
formation between two points of a program separated by pending operations
without performing any of the pending operations. For instance, here is yet
another version of a recursive procedure for computing the product of a list of
numbers (see Section 9.2.2):

(define (prod-list a-list)

(label return

(letrec ((prod (lambda (lst)

(cond ((null? lst) 1)

((= 0 (car lst)) (jump return 0))

(else (* (car lst)

(prod (cdr lst))))))))

(prod a-list))))

Upon encountering a 0 in the list, the internal prod procedure uses jump

to immediately return 0 as the result of a call to prod-list. Any pending
multiplications generated by recursive calls to prod are flushed.

The semantics for label and jump appear in Figure 9.19. Control points are
modelled as expression continuations that are treated as first-class values. The
valuation clauses for label and jump are presented in two styles: the traditional
style of standard semantics, and a style based on the computation abstraction.
label redefines its continuation k as a control point value and evaluates Ebody

in the environment e extended with a binding between Ictrl pt and the control
point value. jump ignores its default continuation and instead evaluates Ebody

with the continuation determined by Ectrl pt .

Note that label refers to its continuation twice: it both names it and uses
it as the continuation of Ebody . (This is easier to see in the standard style
than in the computation style.) This means that a value can be returned from
a label expression in two ways: (1) by normal evaluation of Ebody (without
any jumps) and (2) by using jump with a control point that is extracted from
the environment. In contrast, jump does not refer to its continuation at all.
This means that a jump expression can never return! So it is meaningless to
ask what the value of a jump expression is. Similarly, expressions containing
jump expressions may also have no value. This is the first time we have seen
expressions without values in a dialect of FL.

Like all other values in FL!, control point values are first-class: they can be
named, passed as arguments, returned as results, and stored in data structures
(pairs, cells). An interesting consequence of this fact is that it is possible to
return to the same control point more than once. Consider the following FL!
expression:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.4. NON-LOCAL EXITS 397

Abstract Syntax:

E ::= . . . [As before]
| (label Iname Ebody) [Label]
| (jump Econtrol−point Eval) [Jump]

Semantic Domains:

ControlPoint = Expcont
v ∈ Value = . . . + ControlPoint

test-control-point : (ControlPoint → Cmdcont)→ Expcont

Valuation functions (standard version):

E [[(label Ictrl pt Ebody)]]
=λek . (E [[Ebody]] [Ictrl pt : (ControlPoint 7→ Value k)]e k)

E [[(jump Ectrl pt Eval)]]
=λekignore . (E [[Ectrl pt]] e (test-control-point (λkctrl pt . (E [[Eval]] e kctrl pt))))

Valuation functions (computation version):
E [[(label Ictrl pt Ebody)]]
=λe . (capturing-cont (λk . (E [[Ebody]] [Ictrl pt : (ControlPoint 7→ Value k)]e)))

E [[(jump Ectrl pt Eval)]]
=λe . (with-control-point

(E [[Ectrl pt]] e) (λkctrl pt . (install-cont kctrl pt (E [[Eval]] e))))

Figure 9.19: The semantics of label and jump in FLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

398 CHAPTER 9. CONTROL

(let ((c (cell ’later)))

(let ((n (label bind-n

(begin (cell-set! c bind-n)

1))))

(if (> n 17)

n

(jump (cell-ref c) (* 2 n))))) −−−FL!→ 32

Here, bind-n names the control point that: (1) accepts a value, (2) binds the
value to n, and (3) evaluates the if expression. This control point is stashed
away in the cell c for later use, and then a 1 is returned to the normal flow
of control. Since this value for n is less than 17, the jump is performed, which
returns the value of 2 to the same bind-n control point. This causes n to be
rebound to 2 and the if expression to be evaluated a second time. Continuing
in this manner, the expression behaves like a loop that successively binds n to
the values 1, 2, 4, 8, 16, and 32. The final result is 32 because that is the first
power of two that is greater than 17.

A similar trick can be used to phrase an imperative version of an iterative
factorial procedure in terms of label and jump:

(define factorial

(lambda (n)

(let ((loop (cell ’later))

(num (cell n))

(ans (cell 1)))

(begin

(label top (cell-set! loop (lambda ()

(jump top ’ignore))))

(if (= (cell-ref num) 0)

(cell-ref ans)

(begin

(cell-set! ans (* (cell-ref num) (cell-ref ans)))

(cell-set! num (- (cell-ref num) 1))

((cell-ref loop))))))))

It turns out that mutation is not necessary for exhibiting this sort of looping
behavior via label and jump (see Exercise 9.9).

The above examples of first-class continuations (i.e., control points) are
rather contrived. However, in languages that support them (such as Scheme
and some dialects of ML), first-class continuations provide a powerful mech-
anism by which programmers can implement advanced control features. For
instance, coroutines, backtracking, and multi-threading can all be implemented
in terms of first-class continuations. But any control abstraction mechanism

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.4. NON-LOCAL EXITS 399

this powerful can easily lead to programs that are virtually impossible to under-
stand. After all, it turns the notion of goto-less programming on its head by
making goto labels first-class values! Thus, great restraint should be exercised
when using first-class continuations.

In Scheme, first-class continuations are made accessible by the standard pro-
cedure call-with-current-continuation, which we will abbreviate as cwcc

(another common abbreviation is call/cc.) This procedure can be written in
terms of label and jump as follows:

(define (cwcc proc)

(label here

(proc (lambda (val) (jump here val)))))

The proc argument is a unary procedure that is applied to an escape proce-
dure that, when called, will return a result from the call to cwcc. Here is a
version of prod-list written in terms of cwcc.

(define (prod-list a-list)

(cwcc

(lambda (return)

(letrec ((prod (lambda (lst)

(cond ((null? lst) 1)

((= 0 (car lst)) (return 0))

(else (* (car lst)

(prod (cdr lst))))))))

(prod a-list)))))

The advantage of cwcc as an interface to capturing continuations is that it does
not require extending a language with any new special forms. The binding per-
formed by label is instead handled by the usual binding mechanism (lambda),
and a jump is encoded as a procedure call.

Some languages put restrictions on capturable continuations that make them
easier to reason about and to implement. For example, the Dylan language
provides a (bind-exit (I) E) form that is similar to (cwcc (lambda (I) E))
except that the lifetime of the escape procedure is limited by the lifetime of the
bind-exit form. The catch and throw constructs of Common Lisp are similar
to label and jump except that throw jumps to a named control point declared
by a dynamically enclosing catch. Dynamically declared control points are a
good mechanism for exception handling, which is our next topic of study.

¤ Exercise 9.8 What are the values of the following expressions? (Assume prod-list
is defined as above.)

a. (prod-list ’(2 3 4))

b. (prod-list ’(2 0 yow!))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

400 CHAPTER 9. CONTROL

c. (prod-list ’(yow! 0 2))

d. (let ((twice (lambda (f x) (f (f x)))))

(let ((f (label bind-f (lambda (new-f)

(jump bind-f new-f)))))

((f twice) (+ 1) 0)))

e. (jump (label a a) (label b b)) ¢

¤ Exercise 9.9 It is possible to implement loops with label and jump without using
mutation. As an example, here is a template for an iterative factorial procedure in FL
+ {label, jump} (recall that FL does not support mutation):

(define (factorial n)

(let ((triple Etriple))
(let ((loop (first triple))

(num (second triple))

(acc (third triple)))

(if (= num 0)

acc

(loop (list loop (- num 1) (* acc num)))))))

(Assume that first, second, and third are the appropriate list accessing procedures.)

Using label and jump, write an expression Etriple such that factorial behaves as

advertised. ¢

¤ Exercise 9.10 Chris Krenshall4 is dissatisfied with FLK!+{label,jump}. He’s never
sure where his thread of control will end up! Therefore, Chris would like you to give
him some control over his control points. Chris wants to have applets — syntactically
distinguished regions of code across which control points cannot be used. Here are the
proposed FLK! extensions:

E ::= . . . | (applet I E) | (label I E) | (jump E1 E2)

Informally, the label and jump constructs work as described above: label estab-
lishes first class control points and jump transfers control to them. However, there is
one important difference, related to the applet construct: it is only legal to jump to
control points created by the current applet, which is determined by the identifier of
the nearest lexically enclosing applet.

For example, the following program is legal and evaluates to 0.

4Recall the C. Krenshall Program for eliminating concurrency from government program-
ming contracts.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.4. NON-LOCAL EXITS 401

(applet hot

(let ((p (applet cool

(proc x

(label cool-return

(+ (if (= x 1)

(jump cool-return 0)

x)

7))))))

(p 1))) −−−eval→ 0

On the other hand, the following program should signal an error:

(applet hot

(let ((p (proc x

(label hot-return

(applet cool

(+ (if (= x 1)

(jump hot-return 0)

x)

7))))))

(p 1))) −−−eval→ error

In this problem you will modify the standard semantics for FLK! to specify the seman-
tics of the applet, label, and jump constructs.

a. Suppose we define an ControlPoint domain and modify the Value domain accord-
ingly:

q ∈ ControlPoint = Applet × Expcont
a ∈ Applet = Identifier
v ∈ Value = ControlPoint+ . . .

Modify the signature of E as necessary to support applets.
b. Give a new definition for top-level. In your semantics, use the special applet
identifer global-applet ∈ Applet no applet has been defined for a label or jump.

c. Give the meaning function clause for (applet I E).

d. Give the meaning function clause for (label I E).

e. Give the meaning function clause for (jump E1 E2). ¢

¤ Exercise 9.11 This exercise explores the semantics of cwcc in more detail:

a. We have shown that cwcc can be written in terms of label and jump. Show how
label and jump can be desugared in a language that provides cwcc.

b. Write a standard style valuation clause for the cwcc primitive.

c. Write a computation style valuation clause for the cwcc primitive. ¢

.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

402 CHAPTER 9. CONTROL

9.5 Exception Handling

A common reason to alter the usual flow of control in a program is to respond to
exceptional conditions. For example, upon encountering a divide-by-zero error,
the caller of the division procedure may want the computation to proceed with
a large number rather than terminate with an error. Dynamically responding
to exceptional conditions is known as exception handling.

One strategy for exception handling is for every procedure to return values
that are tagged with a return code that indicates whether the procedure is
returning normally or in some exceptional way. The caller can then test for the
return code and handle the situation accordingly. Although popular, the return
code technique is unsatisfactory in many ways. For one, it effectively requires
every call to a procedure to explicitly test for all return codes the procedure could
potentially generate. By treating normal and exceptional returns in the same
fashion, return codes fail to capture the notion that exceptions are generally
perceived as rare events compared to normal returns. In addition, return codes
provide a very limited way in which to respond to exceptional conditions. All
responsibility for dealing with the condition resides in the caller; in particular,
the point at which the condition was generated has been lost.

An alternate way to view exceptional conditions is that procedures can raise
(or signal) an exception as an alternative to returning a value. The immediate
caller may then handle the exception, or it might decline to handle the exception
and instead allow other callers in the current call chain to handle the exception.
There are two basic strategies for handling the exception:

1. In termination semantics, the handler receives control from the signaler
of the exception and keeps it. This is the approach taken by ML’s raise
and handle, Common Lisp’s throw and catch, and CLU’s signal and
except when.

2. In resumption semantics, the handler receives control from the signaler
of the exception but later passes control back to the computation that
raised the exception. Operating system traps usually follow this model.

Some languages (such as CLU) require the caller to explicitly resignal user
exceptions to propagate them up the call chain. In other languages, unhandled
exceptions propagate up the call chain until an appropriate handler is found.
In these languages, programs are implicitly wrapped in a default handler that
handles otherwise uncaught exceptions.

As a concrete example of exception handling, we extend FLK! to accommo-
date a rudimentary resumption-style exception facility:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 403

E ::= . . . | (raise Iexcept Eval) | (trap Iexcept Ehandler Ebody)

The informal semantics of these constructs is as follows:

• (raise Iexcept Eval) raises an exception named Iexcept with argument Eval .

• (trap Iexcept Ehandler Ebody) evaluates Ebody in such a way that if a raise
of Iexcept is encountered during the evaluation of Ebody , the value of the
raise form is the result of applying the handler procedure computed
by Ehandler to the argument supplied by the raise. If there is more than
one handler with the same name, the one associated with the nearest
dynamically enclosing trap is used. The value of the trap form is the
value returned by Ebody . If Ehandler does not designate a procedure, trap
generates an error.

As an example of exception handling, consider an FL! add procedure that
normally returns the sum of its two arguments, but raises a non-integer ex-
ception if one of its arguments is not an integer:

(define add

(lambda (x y)

(let ((check-integer

(lambda (a)

(if (integer? a) a (raise non-integer a)))))

(+ (check-integer x) (check-integer y)))))

(Even better, we could change the semantics of the + primitive to raise exceptions
rather than generate errors.) Now suppose we use add within a procedure that
sums the elements of a list:

(define sum-list

(lambda (lst)

(if (null? lst)

0

(add (car lst) (sum-list (cdr lst))))))

(sum-list ’(1 2 3)) −−−FL!→ 6

If we call sum-list on a list containing non-integer elements, we can use trap

to specify how these elements should be handled. For example, here is a handler
that treats false as 0, true as 1, and all symbols as 10; elements that are not
booleans or symbols abort with an error:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

404 CHAPTER 9. CONTROL

(define simple-handler

(lambda (x)

(cond ((boolean? x) (if x 1 0))

((symbol? x) 10)

(else (error not-boolean-or-symbol)))))

(trap non-integer simple-handler

(sum-list ’(5 yes #t))) −−−eval→ 16

(trap non-integer simple-handler

(sum-list ’(5 (yes no) #t))) −−−eval→ error : not − boolean − or − symbol

We will assume that exceptions not handled by any dynamically enclosing traps
are converted into errors by a default top-level exception handler; e.g.:

(sum-list ’(5 #t yes)) −−−eval→ error : non − integer

While the informal semantics for raise and trap given above may seem
like an adequate specification, it harbors some ambiguities. For example, what
should be the result of the following program?

(trap a (lambda (x) (+ 4000 x))

(trap b (lambda (x) (+ 300 (raise a (+ x 4))))

(trap a (lambda (x) (+ 20 x))

(+ 1 (raise b 2)))))

The raise of b invokes a handler that raises the exception a. But which of the
two a handlers should be used?

Once again, formal semantics comes to the rescue. In fact, because complex
control constructs can easily befuddle our intuitions, we look more than ever to
the guidance of formal semantics. Standard semantics is an excellent tool for
precisely wiring down the meaning of complex control constructs like raise and
trap.

Our approach is to treat trap as a binding construct that associates an
exception name with an exception handler in a dynamic environment. An ex-
ception handler is just a procedure. raise looks up the handler associated with
the given exception name in the current dynamic environment and applies the
resulting procedure to the argument of raise.

To express these extensions formally, we will modify the standard semantics
of FLK!. Figures 9.20 and 9.21 summarize the changes needed to accommo-
date raise and trap. Exception handlers are represented as procedure values
that are named in a special environment, Handler-Env. Augmenting compu-
tations with this handler environment treats them as dynamic (as opposed to
lexical) environments. That is, the domain Procedure, which is Denotable →

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 405

c ∈ Computation = Handler-Env → Expcont → Cmdcont
w ∈ Handler-Env = Identifier → Procedure
p ∈ Procedure = Denotable → Computation ; As usual

New auxiliaries for handler environments:

extend-handlers : Handler − Env → Identifier→ Procedure → Handler − Env
=λwI1p . λI2 . if (same-identifier? I1 I2) then p else (w I2) fi

get-handler : Handler − Env → Identifier→ Procedure =λwI . (w I)

default-handlers : Handler − Env =λI . λp . (err-to-comp I)

New computation auxiliaries:

extending-handlers : Identifier→ Procedure → Computation → Computation
=λIpc . λw . (c (extend-handlers w I p))

getting-handler : Identifier→ (Procedure → Computation)→ Computation
=λIf . λw . (f (get-handler w I) w)

Modifications to other computation auxiliaries:

val-to-comp : Value → Computation =λv . λwk . (k v)

err-to-comp : Error → Computation =λI . λwks . (Error 7→ Expressible I)

with-value : Computation → (Value → Computation)→ Computation
=λcf . λwk . (c w (λv . (f v w k)))

Other computation auxiliaries similarly pass around handler environments.

Figure 9.20: Semantics of raise and trap, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

406 CHAPTER 9. CONTROL

Valuation functions (standard version):

E [[(trap Iexcept Ehandler Ebody)]]
=λewk . (E [[Ehandler]]

e w (test-procedure
(λp . (E [[Ebody]] e (extend-handlers w Iexcept p) k))))

E [[(raise Iexcept Ebody)]]
=λewk . (E [[Ebody]] e w (λv . ((get-handler w Iexcept) v w k)))

Valuation functions (computation version):

E [[(trap Iexcept Ehandler Ebody)]]
=λe . (with-procedure (E [[Ehandler]] e)

(λp . (extending-handlers Iexcept p (E [[Ebody]] e))))

E [[(raise Iexcept Ebody)]]
=λe . (with-value (E [[Ebody]] e) (λv . (getting-handler Iexcept (λp . (p v)))))

Figure 9.21: Semantics of raise and trap, Part II.

Computation, is equivalent to the following:

Procedure = Value → Handler − Env → Expcont → Store → Expressible

The auxiliaries extend-handlers, get-handler, and default-handlers are versions
of extend, lookup, and empty-env for Handler-Env. The auxiliaries extending-
handlers and getting-handler capture manipulations of the Handler-Env com-
ponent of the computation in an abstract way. If the computation abstractions
are used, it is not necessary to modify any of the valuation clauses from the
semantics of FLK!. However, valuation clauses written in the standard style
would have to be modified to pass along an extra w argument.

The valuation clauses for trap and raise are presented in both the standard
style and the computation style. trap simply extends the dynamic handler
environment with a new binding and evaluates Ebody with respect to this new
environment. raise invokes the dynamically bound handler on the value of
Ebody . Note that default-handlers initially binds every exception name to a
handler that converts an exception into an error. A handler procedure is called
with the dynamic handler environment in effect at the point of the raise. This
gives rise to the following behavior:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 407

(trap a (lambda (x) (+ 4000 x))

(trap b (lambda (x) (+ 300 (raise a (+ x 4))))

(trap a (lambda (x) (+ 20 x))

(+ 1 (raise b 2))))) −−−FL!→ 327

(trap a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−FL!→ 421

Exception handling is an excellent example of the utility of dynamic scoping.
Suppose trap were to bind Iexcept in a lexical environment rather than a dynamic
one. Then raise could only be handled by lexically apparent handlers. It would
be impossible to specify handlers for a procedure on a per call basis.

Termination semantics for exception handlers can be simulated by using
label and jump in conjunction with raise and trap. For example, suppose we
want a call to sum-list to abort its computation and return 0 if the list contains
a non-integer. This can be expressed as follows:

(label exit

(trap non-integer (lambda (x) (jump exit 0))

(sum-list ’(5 yes #t)))) −−−FL!→ 0

Here the handler procedure forces the computation to abort to the exit point
when the symbol yes is encountered.

An alternative to using label and jump in situations like these is to develop
a new kind of handler clause:

(handle Iexcept Ehandler Ebody)

Like trap, handle dynamically binds Iexcept to the handler computed by Ehandler .
But unlike trap handlers, when a handle handler is invoked by raise, it uses
the dynamic environment and continuation of the handle expression rather than
the raise expression. For example:

(handle a (lambda (x) (+ 4000 x))

(handle b (lambda (x) (+ 300 (raise a (+ x 4))))

(handle a (lambda (x) (+ 20 x))

(+ 1 (raise b 2))))) −−−FL!→ 4006

(handle a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−FL!→ 40

We leave the semantics of handle as an exercise (raise need not be changed).

¤ Exercise 9.12 Sam Antix decides to add the new handle exception handling
primitive to FL! + {raise, trap}. He adds alters the grammar of FL! + {raise, trap}:

(handle Iexcept Ehandler Ebody)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

408 CHAPTER 9. CONTROL

As we described above, Sam’s new expression is similar to

(trap Iexcept Ehandler Ebody).

Both expressions evaluate Ehandler to a handler procedure and dynamically install
the procedure as a handler for exception Iexcept . Then the body expression Ebody is
evaluated. If Ebody returns normally, then the installed handler is removed, and the
value returned is the value of Ebody .

However, if the evaluation of Ebody reaches an expression

(raise Iexcept E),

then E is evaluated and the handler procedure is applied to the resulting value. With
trap, this application is evaluated at the point of the raise expression. But with
handle, the application is evaluated at the point of the handle expression. In partic-
ular, both the dynamic environment and continuation are inherited from the handle
expression, not the raise expression.

Here is another example besides the one given above:

(handle a (lambda (x) (* x 10))

(+ 1 (raise a (+ 2 (raise a 4))))) −−−eval→ 40

a. Extend the denotational semantics of call-by-value FLK! + {raise, trap} with
a meaning function clause for handle (the meaning function clause for raise
doesn’t need to be changed).

b. Give a desugaring of handle into FL! + {raise, trap, label, jump}. ¢

¤ Exercise 9.13 Ben Bitdiddle, whose company is fighting for survival in the com-
petitive FL! market, has an idea for getting ahead of the competition: adding recursive
exception handlers! He wants to extend FLK! as follows:

E ::= . . . existing FLK! constructs . . .
| (handle Iexcept Ehandler Ebody)
| (rec-handle Iexcept Ehandler Ebody)
| (raise Iexcept Eval)

The handle and raise constructs are unchanged from Exercise 9.12. Informally,
the rec-handle construct has the following semantics: first, Ehandler is evaluated to a
procedure p (it is an error if it evaluates to something that is not a procedure). Next,
Ebody is evaluated; if it raises the exception Iexcept , the procedure p handles it. So far,
rec-handle is identical to handle. However, if the execution of p raises the exception
Iexcept , this exception is handled by p. The exceptions have termination semantics.

Here’s a short example that Ben has prepared for you:

(rec-handle I

(lambda (x)

(if (= x 0) 1 (raise I (- x 1))))

(raise I 5)) −−−eval→ 1

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 409

Give the meaning function clause for (rec-handle Iexcept Ehandler Ebody) (the se-

mantic domains and the meaning function clauses for handle and raise remain un-

changed). ¢

¤ Exercise 9.14 Alyssa P. Hacker really likes the exception system of a certain
Internet applet language. She has decided to add that exception system to her favorite
language, FL!. In particular, she wants to modify the grammar of FLK! as follows:

E ::= . . . existing FLK! constructs (except proc) . . .
| (handle Iexcept Ehandler Ebody)
| (raise Iexcept Eval)
| (finally Ebody Efinally)
| (proc Iexcept I E)
| (try Ebody ((Iexcept I Ehandler)*) Efinally)

Note: To improve the readability of the examples, all the exception identifiers used in
this exercise start with the character %.

The handle and raise constructs are old friends, but the others are new. Here are
their informal semantics:

• (handle Iexcept Ehandler Ebody) establishes an exception handler for exception
Iexcept . First Ehandler is evaluated to a handler procedure. Then Ebody is eval-
uated. If Ebody raises Iexcept , the exception handler is called with the value of
the exception, and the value returned by the handler is returned by the handle
expression. (That is, handle provides termination semantics.)

• (raise Iexcept Eval) passes the value of Eval to the exception handler for Iexcept .
A raise expression never returns a value, because the handle expression provides
termination semantics.

• (finally Ebody Efinally) ensures that Efinally is evaluated. Specifically, it eval-
uates Ebody and either (1) returns its value or (2) propagates the exception it
raises. Whether Ebody returns normally or via an exception, Efinally is evaluated
before finally returns. The value of Efinally is discarded.

For example, the following expression always closes the input file:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

410 CHAPTER 9. CONTROL

(let ((port (open-input-file "foo.txt")))

(handle %invalid (lambda (value)

(begin

(display "invalid: ")

(display value)

(newline)

’invalid))

(finally (let ((value (read port)))

(if (valid? value)

value

(raise %invalid value)))

(close-input-file port))))

If the file’s contents are valid, the expression returns the file’s contents. Otherwise,
the exception %invalid is raised, the handler prints a message and then returns
the symbol invalid instead of the file’s contents. No matter what happens,
close-input-file is called to clean up.

• (proc Iexcept I E) returns a procedure of one argument. However, the procedure
is guaranteed to raise only exception Iexcept or %illegal-exception. If its body
raises any other exceptions, they are converted to %illegal-exception.

For example, the following procedure raises the %f exception if its argument is
#f. Otherwise it automatically raises the %illegal-exception exception:

(proc %f b (if b (raise %t b) (raise %f b)))

• (try Ebody ((Iexcept I E)*) Efinally) corresponds to the try-catch-finally

construction in a certain unmentionable language. It works like this:

– Ebody is evaluated and, if it doesn’t raise any exceptions, its value is returned
as the value of the try expression. However, if an exception is raised by
Ebody , the (Iexcept I E) clauses are consulted to handle the exception.

– If an exception Iexcept is raised by Ebody , the corresponding variable I is
bound to the value of the exception and the corresponding expression E is
evaluated. The value of the try expression becomes the value of E in this
case.

– Regardless of whether or not an exception is raised by Ebody , the expression
Efinally is evaluated immediately before control leaves the try expression.
Its value is discarded.

As usual, Alyssa has vanished, probably to another Internet startup. She’s left
you with a helper function, insert-procedure. Informally, insert-procedure takes a han-
dler environment, an identifier predicate, and a procedure. It returns a new han-
dler environment that conditionally inserts the procedure at the beginning of the
handler chain: the procedure is executed for any exception that satisfies the cor-
responding identifier predicate and was not caught yet by a handler. For example,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 411

(insert-procedure w (λIexcept . true) p)returns a handler environment that is like w ex-
cept that p will be called first on every exception. Here is the signature and the definition
of insert-procedure:

insert-procedure : Handler-Env → (Identifier → Bool)
→ Procedure
→ Handler-Env

=λwf p . (λIexcept . if (f Iexcept)
then λδw ′k . (p δ w ′ (λv . ((w Iexcept) δ w ′ k)))
else (w Iexcept)
fi

You may find insert-procedure useful in solving the following problems:

a. Give the meaning function clause for finally.

b. Give the meaning function clause for proc.

c. Give a desugaring for

(try Ebody ((Iexcept 1 I1 E1) . . . (Iexcept n In En)) Efinally)

into handle, raise, proc, and finally. Assume that the handler expression Ei
is permitted to raise only the exception it handles, Iexcept i . If it raises any other
exceptions, they are automatically converted to illegal-exception. ¢

¤ Exercise 9.15 Sam Antix thinks that exception handlers should be able to choose
dynamically between termination or resumption semantics. Sam likes the termination
semantics of handle (Exercise 9.12), but occasionally he would prefer resumption se-
mantics. He decides to extend FL!+{raise, handle} with a new construct (resume E).

E ::= . . . [As before]
| (resume E) [Resume at point of most recent raise]

Informally, (resume E) will cause a handler to resume at the point of the raise
rather than terminating at the point of the handle. resume first evaluates E using
the current dynamic handler environment and then returns control to the point of the
most recent raise with the value of E. Further, any program that does not use resume
should behave just as it would in FL!+{raise, handle}.

Sam came up with some short examples demonstrating his new (resume E) con-
struct:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

412 CHAPTER 9. CONTROL

(handle exn

(lambda (x) (+ x 2))

(+ 20 (raise exn 1))) −−−eval→ 3

(handle exn

(lambda (x) (resume (+ x 2)))

(+ 20 (raise exn 1))) −−−eval→ 23

(resume 7) −−−eval→ error : no − raise

(let ((f (lambda (x) (resume (+ x 4)))))

(handle exn

(lambda (x) (f (+ x 2)))

(+ 20 (raise exn 1)))) −−−eval→ 27

When resume is invoked, any pending computation in the handler is discarded, including
any other resumes:

(handle exn

(lambda (x) (resume (+ 300 (resume (+ x 2)))))

(+ 20 (raise exn 1))) −−−eval→ 23

(handle exn1

(lambda (x) (+ 50000 (resume (+ x 4))))

(+ 4000 (handle exn2

(lambda (x) (+ 300 (raise exn1 (+ x 2))))

(+ 20 (raise exn2 1))))) −−−eval→ 4307

(handle exn1

(lambda (x) (+ 50000 (resume (+ x 4))))

(+ 4000 (handle exn2

(lambda (x)

(resume (+ 300 (raise exn1 (+ x 2)))))

(handle exn1

(lambda (x) (+ 600000 x))

(+ 20 (raise exn2 1)))))) −−−eval→ 4327

Now handlers can choose between termination and resumption semantics:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 413

(define example-fctn

(lambda (argument)

(handle exn

(lambda (x) (if (< x 3)

(+ x 300)

(+ 500000 (resume (+ x 4000)))))

(+ 20 (raise exn argument)))))

(example-fctn 2) −−−eval→ 302

(example-fctn 4) −−−eval→ 4024

a. Unfortunately, Sam has fallen ill. You must flesh out his design. You should
extend the standard semantics for FL!+{raise, handle} as follows.
i. Give the signature of E and the definition of the semantic domain Procedure.
ii. Give the meaning function clauses for raise, handle, and resume.

b. The trap construct presented above has resumption semantics. It is possible to
translate FL!+{trap, raise} into FL!+{handle, raise, resume}. We emphasize
that this is a translation between two different languages and not a desugaring
from a language to itself.

The translation of most expressions merely requires translating their subexpres-
sions. For example,

T [[(call E1 E2)]] =(call T [[E1]] T [[E2]])

Give the translation for trap and raise. ¢

¤ Exercise 9.16 Consider a lexically-scoped, call-by-value variant of FLK, with the
following twist: it has a switch construct that allows a program to both generate and
handle exceptions. Here is the complete grammar:

E ::= L | I | (if E1 E2 E3)
| (proc I EB) | (call E0 E1)
| (switch E)

The idea behind switch is that every expression is implicitly provided with two con-
tinuations called A and B. All expressions pass their return value to the A continuation.
The top level meaning function T L is modified to call E by passing the identity function
as the A continuation (in order to get back the normal result), and an error handler as
the B continuation. Thus, the A continuation usually corresponds to a normal return,
while the B continuation usually corresponds to an exceptional return. We will call
values that are passed to A continuations “A values” and values that are passed to B
continuations “B values.”

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

414 CHAPTER 9. CONTROL

The switch form is used to swap the A and B continuations during the evaluation of
its component expression. switch can be used to both generate and handle exceptions.
Here are two example uses of switch (assuming the usual desugarings):

(define (my-func i j)

(if (< 10 (+ i j)) ; make sure that i+j > 10

(g i j) ; compute the result

(switch "size"))) ; else "size" error

(switch

(let ((bval (switch (my-func 3 4))))

(switch

(if (string-equal? bval "size")

1 ; return 1 for size error

0)))) ; return 0 for other errors

In the last example, the switch around the application of my-func will cause B
values of my-func to be bound to the variable bval. If my-func has an A value (a
normal value) then the switch around my-func will cause execution to bounce out to
the outermost switch, where the A value returned by my-func will be the A value of
the entire expression. If a B value is returned by my-func, the entire expression will
have an A value of either 1 or 0, depending on the B value returned by my-func.

a. Construct the standard semantics for the language described above: Give the
signature of E and the definition of the Procedure domain. Also give the meaning
function clauses for switch and call. Either write out the other meaning function
clauses, or describe how the corresponding clauses from the semantics for FLK!
would be modified.

b. Using your semantics, prove that (switch (switch E)) has the same meaning
as E.

c. Suppose we have a (strict) pair construct to make a pair of two values, and
the operations left and right to select the first and second values of a pair
respectively. Then we might define an FLK!-like raise construct by the following
desugaring:

D(raiseIexceptEval) = (switch (pair (symbol Iexcept) DEval))

Give a corresponding desugaring for (handle Iexcept Ehandler Ebody). Does your
solution implement termination or resumption semantics? Explain. ¢

Reading

The notion of continuation was developed in the early 1970’s by Christopher
Strachey, Christopher Wadsworth, F. Lockwood Morris, and others. See [SW74]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

9.5. EXCEPTION HANDLING 415

which was more recently reprinted in [SW00] (that issue of Higher-Order and
Symbolic Computation was dedicated to Strachey’s work). Subsequently, con-
tinuations played an important role in actor languages [Hew77] and in Scheme
[SS76, Ste78].

For more information on control, continuations, and denotational semantics,
see John Reynolds’s history of continuations [Rey93], David Schmidt’s textbook
on denotational semantics [Sch86b], as well as Joseph Stoy’s coverage of con-
tinuations in denotational semantics [Sto77, esp. pp. 251ff]. Stoy makes the
argument that it is better for expressing the meaning of programs to embed
continuations in the semantics rather than syntactically transforming programs
into continuation passing style and using direct semantics.

For transforming programs into continuation-passing style (which we will
explore further in Chapter 17), see [SF93, FSDF93, SF92].

Continuations can be used to understand other control structures, such as
shift and reset [DF92] and the amb (for “ambiguous”) operator [McC67, Cli82].

For more information on coroutines, see Melvin Conway coroutines [Con63].
See also C. A. R. Hoare’s classic text on Communicating Sequential Processes,
[Hoa85], as well as the occam reference manual [occ95] and the description of
JCSP in [Lea99].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

416 CHAPTER 9. CONTROL

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 10

Data

Conjunction Junction, what’s their function?
I got “and”. . . and “or”,
They’ll get you pretty far.

”And”: That’s an additive, like “this and that”. . . .
And then there’s “or”:
O-R, when you have a choice like “This or that”.
“And”. . . and “or”,
Get you pretty far.

— Conjunction Junction (Schoolhouse Rock), Bob Dorough

Here’s hoping we meet now and then
It was great fun
But it was just one of those things.

— Jubilee, Cole Porter

Well-designed data structures can make programs efficient, understandable,
extensible, secure, and easy to debug. For this reason, programmers focus much
of their energy on designing and using data structures. How successful they
are depends in part on the tools provided by their programming language for
declaring and manipulating data. This chapter explores some of the key data
dimensions in programming languages.

417

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

418 CHAPTER 10. DATA

10.1 Products

Products are compound values that result from gluing other values together.
They are data structures that correspond to the product domains we have been
using in our mathematical metalanguage (see Section A.3.2) to represent struc-
tured mathematical values with components. Standard examples of products
are 2-dimensional points (consisting of x and y components), employee records
(consisting of name, sex, age, identification number, hiring date, etc.), and the
sequences of points in a polygon.

There are a wide variety of product data structures in programming lan-
guages that differ along a surprising number of dimensions:

• How are product values created and later decomposed into parts?

• Are the components of the product indexed by position or by name?

• When accessing a component, can its index be calculated or must an index
be a manifest constant?

• Are the components values (as in call-by-value) or computations (as in
call-by-name/call-by-need)?

• Are the components of the product immutable or mutable?

• Is the length of the product fixed or variable?

• Are all components of the product required to have the “same type,” i.e.,
are products homogeneous?

• When products are nested, are the nested components all required to have
the same size and/or “shape”?

• How are products passed as arguments, returned as results, and stored in
assignments?

• Can the lifetime of a product exceed the lifetime of an invocation of a
procedure in which it is created?

In this section, we will explore many of these dimensions, using our operational
and denotational tools where appropriate to explain interesting points in the
design space of products.

Products are known by a confusing variety of names — such as array, vector,
sequence, tuple, string, list, structure, record, environment, table, module, and
association list — that are used inconsistently between languages. We shall be

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 419

using some of these names in our study of products, but it is important to keep
in mind that our use of a name may denote a different kind of product than
what you might be familiar with from your programming experience.

10.1.1 Positional Products

10.1.1.1 Simple Positional Products

The simplest kind of product is a pair, which glues two values together. In
Chapter 6, we studied the semantics of pairs in call-by-name and call-by-value
versions of FL.

Pairs are an example of a positional product, in which component values
are indexed by their position in the product value. We can extend pairs into
more general positional products by adding the following two constructs to call-
by-value FL!1:

E ::= ...

| (product E*) [Product Creation]
| (proj N E) [Product Projection]

The expression (product E1 ... En) constructs an immutable positional prod-
uct value whose n components are the values of the subexpressions E1 through
En . Such a value is traditionally known as a tuple. (proj N Eprod) extracts
the component of the tuple denoted by Eprod that is at literal index N, where the
components of an n-component product are indexed from 1 to n. An attempt
to extract a component outside this index range is an error. The name proj is
short for “project,” the verb traditionally used to extract the component of a
product.

An operational semantics of immutable positional products in call-by-value
FL! is presented in Figure 10.1. A product expression with value expression
components is considered a new kind of value expression. The [product-progress]
rule evaluates the subexpressions of a product expression, so that the expression

(product (= 0 1) (* 2 3) (+ 3 4))

evaluates to the value expression

(product false 6 7).

The [product projection] rule extracts the value component at index N. If N is
not in the valid range of indices, the proj expression is stuck, modeling an error.
Using these rules, it is straightforward to show that the following FL expression
evaluates to 9 :

1We study products in the context of a stateful language to facilitate coverage of product
dimensions that involve state.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

420 CHAPTER 10. DATA

V ∈ ValueExp = . . . ∪ {(product V1 ... Vn)}

〈Ei ,S〉⇒ 〈Ei ′,S ′〉
〈(product V1 ... Vi−1 Ei Ei+1 ... En),S〉

⇒〈(product V1 ... Vi−1 Ei
′ Ei+1 ... En),S

′〉
[product progress]

〈(proj N (product V1 ... Vn)),S〉⇒ 〈VN ,S〉,
where 1 ≤ N ≤ n [product projection]

Figure 10.1: Operational semantics of immutable positional products in CBV
FL!.

(let ((p (product (= 0 1) (* 2 3) (+ 4 5))))

(if (proj 1 p) (proj 2 p) (proj 3 p)))

The corresponding denotational semantics of positional products in call-by-
value FL! is presented in Figure 10.2. The Value domain is extended with a new
summand, Prod, whose elements — sequences of values — represent product
values. The evaluation of the subexpressions of a product expression is handled
by with-values, and nth is used to extract the component at a given index in a
proj expression. The validity of the index N is determined by the predicate

1 ≤ (N N) and (N N) ≤ (length v*),

which is known as a bounds check. If the bounds check fails, the proj expres-
sion denotes an error.

In many programming languages, the size of all products is known by the
implementation, and a bounds check for every projection can be performed either
at compile time or at run time. Important exceptions are C and C++, in which
arrays carry no size information and bounds checks are not performed when array
components are accessed. Programmers in these languages must pass array
size information separately from the array itself and are expected to perform
their own bounds checks. The lack of automatic bounds checks in C/C++
is the root cause of a high percentage of security flaws in modern software
applications, many of which are due to so-called buffer overrun exploits that
take advantage of C’s permissiveness to fill memory with malicious code that
can then be executed by a privileged process.

Product values with n components are often drawn as a box with n slots,
sometimes with explicit indices. For example, the three-component product
from above would be drawn as

false 6 7
1 2 3

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 421

Prod = Value*
v ∈ Value = . . . + Prod

E [[(product E*)]] =λe . (with-values (E*[[E*]] e) Prod 7→ Value)

E [[(proj N Eprod)]] =
λe . with-value (E [[Eprod]] e)

(λv . matching v
. (Prod 7→ Value v*) [] if 1 ≤ (N N) and (N N) ≤ (length v*)

then (val-to-comp (nth (N N) v*))
else error-comp
fi

. else error-comp
endmatching)

Figure 10.2: Denotational semantics of immutable positional products in CBV
FL!.

Such a diagram suggests a low-level implementation in which the n components
of a product are stored as the contents of n successive addresses in the memory
of the computer, something we shall explore in more detail in Chapter 17.

We emphasize that tuples in FL! are immutable: there is no way to change
the value stored in a slot. We will consider mutable products later. In the fol-
lowing subsections, we discuss many possible variants to the products presented
above.

10.1.1.2 Sequences

In the projection expression considered above, the index is an integer literal,
not an integer expression. This means that the projection index cannot be
calculated. One benefit of this restriction is that the bounds check can always
be performed at compile time and so need never be performed at run time. As we
discuss later (page 423), literal indices also facilitate reasoning about programs
written in statically typed languages.

The positional products studied above do not include any way to dynami-
cally determine the size of the product, i.e., the number of components. It is
assumed that the programmer knows the size of every tuple when writing the
program. However, there are many situations where it is necessary or convenient
to determine the size of a product and to extract a product component at an
index calculated from an expression. For instance, given an arbitrary product
containing numbers, determining the average of these numbers requires know-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

422 CHAPTER 10. DATA

ing the number of components and looping through all indices of the product
to find the sum of the components. Such capabilities are normally associated
with products called arrays. But since arrays usually imply mutable structures,
we will instead use the name sequence for immutable products with calculated
indices and dynamically determinable sizes. This terminology is consistent with
our use of the term “sequence” in our mathematical metalanguage.

We can extend FL! with immutable sequences by adding the following con-
structs to the language:

E ::= ...

| (sequence E*) [Sequence Creation]
| (seq-proj Eindex Eseq) [Sequence Projection]
| (seq-size Eseq) [Sequence Size]

The expression (sequence E1 ... En) creates and returns a size-n se-
quence whose components are the values of the expressions E1 through En . The
expression (seq-proj Eindex Eseq) returns the ith component of the sequence
denoted by Eseq , where i is the integer denoted by the arbitrary expression
Eindex (which must be checked against the bounds of the sequence). The ex-
pression (seq-size Eseq) returns the number of components in the sequence.
The formal semantics of sequences is left as an exercise.

As an example of sequence manipulation, here is a procedure that finds the
average of a sequence of numbers:

(define (average s)

(letrec ((n (seq-size s))

(sum-loop

(lambda (i sum)

(if (= i 0)

(/ sum n)

(sum-loop (- i 1)

(+ sum (seq-proj i s)))))))

(sum-loop n 0)))

10.1.1.3 Product indexing

The positional products discussed above use 1-based indexing, in which the
components of an n-component tuple are accessed via the indices 1 . . . n. Many
languages instead have 0-based indexing, in which the slots are accessed via
the indices 0 . . . n− 1. For example:

false 6 7
0 1 2

Why use the index 0 to access the first slot of a product? One reason is
that it can simplify some addressing calculations in the compiled code, which

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 423

results in the execution of fewer low-level instructions when projecting compo-
nents from products. Another reason is that 0-based indexing simplifies certain
addressing calculations for the programmer. For example, compare the follow-
ing expressions for accessing the slot in row i and column j of a conceptually
2-dimensional matrix m with width w and height h that is actually represented as
a one-dimensional sequence with w×h components stored in so-called row-major
order2:

; 0-based indexing of matrices and sequences

(nth (+ (* w i) j) m)

; 1-based indexing of matrices and sequences

(nth (+ (* w (- i 1)) j) m)

The 0-based approach is simpler because it does not require the subtraction by
1 seen in the 1-based approach.

Using 0 or 1 as the index for the first component are not the only choices.
Some languages allow using any integer range for product indices. Some, such
as Pascal, even allow using as index ranges any range of values that is iso-
morphic to an integer range. For instance, a Pascal array can be indexed by
the alphabetic characters from ’p’ to ’u’ or the days of the week from monday

through friday (where an enumeration of days has been declared elsewhere).

10.1.1.4 Types

FL is a dynamically typed language in which each value is conceptually
tagged with its type and type errors are not detected until the program is run.
In contrast, many modern languages are statically typed languages, in which
the type of every expression is known when the program is compiled. The goal
of static typing affects the design of positional products in these languages. In
particular, it must be possible for the compiler to determine the type of every
value projected from a product value.

For instance, ML and Haskell support so-called heterogeneous tuples
in which each tuple component may have a different type. In order to determine
the type of a projection, both tuple indices and sizes must be statically deter-
minable. ML’s vectors, Haskell’s arrays, and CLU’s sequences are examples
of updatable immutable products in typed languages. Since in general compilers
cannot determine either the size of or the index of a projection from such prod-
ucts, these products are homogeneous sequences in which all components are

2Row-major order means the elements of each row are stored in consecutive locations in
the sequence. This makes accessing elements along a row very inexpensive. Likewise, Column-
major order means elements of each column are stored in consecutive sequence locations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

424 CHAPTER 10. DATA

required to have the same type. Many languages treat homogeneous sequences
of characters, known as strings, as a special kind of positional product. Im-
mutable strings appear in languages such as Java, ML, Haskell and CLU,
while C and Scheme provide mutable strings.

Product indices are usually restricted to the integer type, but, as mentioned
above, some languages allow index types that are isomorphic to the integers or
some finite range of the integers. For example, the Haskell language allows
arrays to be indexed by any type that provides the operations of an “indexable”
type. In Pascal, arrays can be indexed by any range type that is isomorphic
to a finite integer range. Oddly, the index range (not merely the index type) is
part of the array type in Pascal, which means that the size of every Pascal
array is statically known, and it is not possible to write procedures that are
parameterized over arrays of different lengths.

In later chapters, we will have much more to say about product types when
we study types in more detail.

10.1.1.5 Specialized syntax

Many languages provide specialized syntax for product manipulation. For in-
stance, ML tuples are constructed by comma separated expressions delimited by
parentheses, and the ith tuple component is extracted via the syntax #i. Here
is an ML version of our earlier s-expression example:

let val p = (0 = 1, 2 * 3, 4 + 5)

in if #1(p) then #2(p) else #3(p)

end

For sequences (as well as for mutable arrays) a subscripting notation using
square brackets is a standard way to project components, and := might be used
for an update operation. Below is a way to swap the components at indices i
and j of an immutable vector u in a hypothetical version of ML extended with
this specialized syntax:

let val v = u[i]

val u2 = u[i] := u[j]

val u3 = u2[j] := v

in u3

end

¤ Exercise 10.1 In the first three parts below, assume 1-based indexing.

a. Give an operational semantics for sequences in call-by-value FL.

b. Give a denotational semantics for sequences in call-by-value FL.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 425

c. Explicitly enumerating the elements of a sequence in a sequence expression can
be inconvenient. For example, a sequence of the squares of the integers from 1 to
5 would be written:

(sequence (* 1 1) (* 2 2) (* 3 3) (* 4 4) (* 5 5))

An alternative means of specifying such sequences is via a new construct

(tabulate Esize Eproc)

where Esize denotes the size of the sequence and Eproc denotes a unary procedure
f that maps the index i to the value (f i). For instance, using tabulate, the
above 5-element sequence could be written

(tabulate 5 (lambda (i) (* i i)))

Given an operational and denotational semantics of tabulate in call-by-value
FL.

d. What changes would need to be made to the above three parts to specify 0-based
indexing rather than one-based indexing?

e. What changes would need to be made to the syntax for sequences and the first
three parts to specify an indexing scheme that starts at an arbitrary dynamically
determinable value lo rather than 0 or 1? ¢

¤ Exercise 10.2 Even with immutable products, it is still useful to provide a facility for
updating elements in, inserting elements into, and removing elements from a product.
Since the product is immutable, none of these operations actually change a given product
value, but they return a new product value that shares most of its components with
the given product value. We shall call sequences that support one or more of these
operations updatable sequences, though this is by no means a standard term.

Consider the following constructs for one form of updatable sequence:

E ::= ...

| (usequence E*) [Updatable Sequence Creation]
| (useq-proj Eindex Euseq) [Updatable Sequence Projection]
| (useq-size Euseq) [Updatable Sequence Size]
| (useq-update Eindex Eval Euseq) [Updatable Sequence Update]
| (useq-insert Eindex Eval Euseq) [Updatable Sequence Insertion]
| (useq-delete Eindex Euseq) [Updatable Sequence Deletion]

The usequence, useq-proj, and useq-size are the updatable sequence versions of the
corresponding (non-updatable) sequence constructs. For useq-update, useq-insert,
and useq-delete, suppose that Eindex denotes an integer i, Eval denotes a value vnew ,
Euseq denotes a size-n updatable sequence vuseq , and u denotes the sequence with integer
values [7,5,8]. If v is an updateable sequence, let #v denote the size of v and v ↓ j
denote the jth component value of v, where 1 ≤ j ≤ #v. Then:

• if 1 ≤ i ≤ n, (useq-update Eindex Eval Euseq) returns a size-n updatable se-
quence vuseq2 such that

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

426 CHAPTER 10. DATA

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j ≤ n where j 6= i.

For example, (useq-update 2 6 u) returns the updatable sequence [7,6,8].

• if 1 ≤ i ≤ n+1, (useq-insert Eindex Eval Euseq) returns a size-n+1 updatable
sequence vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i;

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ k = vuseq ↓ k − 1 for all i < k ≤ n+ 1;

For example, (useq-insert 2 6 u) returns the updatable sequence [7,6,5,8].

• if 1 ≤ i ≤ n, (useq-delete Eindex Euseq) returns a size-n−1 updatable sequence
vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i; and

vuseq2 ↓ k = vuseq ↓ k + 1 for all i ≤ k ≤ n− 1;

For example, (useq-delete 2 u) returns the updatable sequence [7,8]

a. Give an operational semantics for updatable sequences in call-by-value FL.

b. Give a denotational semantics for updatable sequences in call-by-value FL.

c. Show that useq-update is not strictly necessary in a language with updatable
sequences because it can be desugared into other constructs.

d. Consider a language with updatable sequences that also has a (useq-empty)

construct that returns an empty updatable sequence. Show that usequence is
not strictly necessary in such a language because it can be desugared into other
constructs. What are the benefits and drawbacks of such a desguaring? ¢

10.1.2 Named Products

In a named product, components are indexed by names rather than by po-
sitions. In Section 7.2, we introduced the record, a classic form of named
product, and studied its semantics. We saw that records were effectively reified
environments. Here we discuss some of the dimensions of named products.

The simplest form of named product is a named version of positional prod-
ucts with a product creator (record) and a product projector (select):

E ::= ...

| (record (I E)*) [Record Creation]
| (select I E) [Record Projection]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 427

As above, we assume that such constructs are embedded in a call-by-value lan-
guage and denote immutable products.

As a simple example of records, consider the following expression, which
evaluates to 9 :

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))

(if (select test r) (select yes r) (select no r)))

In named products, the order of bindings in the record constructor is irrele-
vant, so the value of the above expression would not be changed if the record

subexpression were changed to be

(record ((no (+ 4 5)) (test (= 0 1)) (yes (* 2 3))))

Many languages with named products have special syntax for record creation
and projection. For instance, here is our running example expressed in ML
record syntax:

let val r = {test = (0=1), yes=2*3, no=4+5}
in if #test(r) then #yes(r) else #no(r)

end

A more common syntax for record selection is the “dot notation” used with
Pascal records, C structures, and Java objects, as in:

if r.test then r.yes else r.no

In a language like ML that permits numeric record labels, positional prod-
ucts can be viewed as syntactic sugar for named products. E.g., the ML tuple
(true, 17) is syntactic sugar for {1=true, 2=17}.

Simple records can be augmented with operations that parallel many of the
extensions for positional products:

• (record-size Ercd): Returns the number of components in a record.

• (record-insert I Eval Ercd): Let vrcd be the record denoted by Ercd .
Then the record-insert expression returns a new record that has a bind-
ing of I to the value of Eval in addition to all the bindings of vrcd . If vrcd
already has a binding for I, the new binding overrides it. With named prod-
ucts, record-insert corresponds to both seq-insert and seq-update for
positional products.

• (record-delete I Ercd): Let vrcd be the record denoted by Ercd . Then
the record-delete expression returns a new record that has all the bind-
ings of vrcd except for any with the name I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

428 CHAPTER 10. DATA

The override construct from Section 7.2 is a generalization of record-insert
that combines two environments, while the conceal construct presented there
is a generalization of record-delete. Other forms of record combination and
name manipulation are also possible. For instance, it is possible to take the
“intersection” or “difference” of two environments, or to specify the names that
should be kept in a record rather than those that should be concealed.

It is even possible, but rare, to have a named index that can be calculated.
In FL, such a construct might have the form (select-sym Esym Ercd), where
Esym is an expression denoting a symbol value vsym and select-sym selects
from the record denoted by Ercd the value associated with the label that is the
underlying identifier of Isym . It would be hard to imagine such a construct in
a statically typed language. However, this idiom is often used in dynamically
typed languages (such as Lisp dialects) in the form of association lists, which
are list of bindings between explicit symbols and values.

10.1.3 Non-strict Products

Our discussion so far has focused on strict products, in which the expres-
sions specifying the product components are fully evaluated into values that are
stored within the resulting product value. Another option is to have non-strict
products, in which the component computations themselves are stored within
the product value and are only run when their values are “demanded.” Such
products are the default in non-strict languages like Haskell, but we will see
that there are considerable benefits to integrating non-strict products into a
call-by-value language, which is the focus of this section.

A simple approach to non-strict products is to adapt the call-by-name param-
eter passing mechanism to product formation. We will call the resulting data
call-by-name (CBN) products in contrast to the call-by-value (CBV)
products we have studied so far. An operational and denotational seman-
tics for immutable positional CBN products in a call-by-value version of FL!
is presented in Figure 10.3. We use the names nproduct/ nproj instead of
product/proj to syntactically distinguish CBN products from CBV products.
In the operational semantics, the delayed computation of product components
is modeled by not having any progress rules for evaluating the component ex-
pressions of an nproduct expression. In the denotational semantics, a product
value is represented as a sequence of computations rather than as a sequence
of values. Intuitively, these computations are only “forced” into values upon
projection from the CBN product by the occurrences of with-value that are
sprinkled throughout the rest of the denotational semantics for CBV FL!.

As a simple example of how CBN products differ from CBV products, con-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 429

Operational semantics for CBN products

V ∈ ValueExp = . . . ∪ {(nproduct E1 ... En)}

〈(nproj N (nproduct E1 ... En)),S〉⇒ 〈EN ,S〉,
where 1 ≤ N ≤ n [nproduct projection]

Denotational semantics for CBN products

NProd = Computation*
v ∈ Value = . . . +NProd

E [[(nproduct E*)]] =λe . (NProd 7→ Value (E*[[E*]] e))

E [[(nproj N Eprod)]] =
λe . with-value (E [[Eprod]] e)

(λv . matching v
. (NProd 7→ Value c*) [] if 1 ≤ (N N) and (N N) ≤ (length c*)

then (nth (N N) c*)
else error-comp
fi

. else error-comp
endmatching)

Figure 10.3: Operational and denotational semantics for CBN positional prod-
ucts in call-by-name FL!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

430 CHAPTER 10. DATA

sider the following expression:

(let ((c (cell 5)))

(let ((p (nproduct (begin (:= c (+ (^ c) 1)) (^ c))

(begin (:= c (* (^ c) 2)) (^ c)))))

(list (nproj 2 p) (nproj 1 p) (nproj 1 p) (nproj 2 p))))

The value of this expression is [10 , 11 , 12 , 24], indicating that the increments
and doublings of the argument expressions are performed at every projection
rather than when the CBN product is formed. If we had instead used CBV
products, the above expression would yield [6 , 12 , 12 , 6], indicating that the
side effects of the argument expressions are performed exactly once when the
product is created.

In CBN products, the component computation is re-evaluated at every pro-
jection. Another option, inspired by the call-by-need parameter passing mech-
anism, is to evaluate the component computation at the very first projection
and memoize the resulting value for later projections. We shall call this form of
non-strict product a lazy (CBL) product. Using a lazy product in the above
example would yield the list [10 , 11 , 11 , 10], which indicates that the side effects
are performed on the first projections but not on subsequent projections.

The operational semantics of lazy products is presented in Figure 10.4. We
use the names lproduct and lproj to distinguish lazy products from CBV and
CBN products. A lazy product value is a sequence of locations in the store that
may contain non-value expressions. At the first projection of a lazy product
component, the [lproj progress] rule forces the evaluation of an unevaluated
component expression to a value that is returned by the [lproduct projection]
rule. Because the resulting value is “remembered” in the component location,
subsequent projections of the component will return the value directly.

In the denotational semantics for lazy products (Figure 10.5), this memoizing
behavior is modeled by extending Storable to beMemo,3 which includes both val-
ues and computations. For a CBV language, we modify the allocating function
to inject the initial value for a location in Memo, and introduce allocatingComp
and allocatingComps for storing computations in freshly allocated locations. We
modify fetching so that whenever the contents of a location is fetched, any com-
putation stored at that location is evaluated to a value that is memoized at that
location. A lazy product itself is modeled as a sequence of locations holding
elements of Memo.

3This domain implies that computations could be stored at any location (such as cell loca-
tions), but in fact they can only be stored in lazy product locations. A practical implementation
of lazy products would localize the overhead of memoization to lazy product component loca-
tions so that the efficiency of manipulating cell locations was not affected.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 431

S ∈ Store = Assignment*
Z ∈ Assignment = Location× Exp
V ∈ ValueExp = . . . ∪ {(lproduct L1 ... Ln)}
get : Location→ Store⇀ Exp

〈(lproduct E1 ... En),S〉
⇒〈(lproduct L1 ... Ln), [〈L1 ,E1 〉, . . . , 〈Ln ,En 〉] @ S〉,
where L1 . . . Ln are fresh locations not appearing in S.

[lproduct creation]

〈E,S〉⇒ 〈E ′,S ′〉
〈(lproj N (lproduct L1 ... Ln)),S〉

⇒〈(lproj N (lproduct L1 ... Ln)), (〈LN ,E ′〉 . S ′)〉 ,
where 1 ≤ N ≤ n and (get LN S)=E

[lproj progress]

〈(lproj N (lproduct L1 ... Ln)),S〉⇒ 〈V,S〉,
where 1 ≤ N ≤ n and (get LN S)=V

[lproduct projection]

Figure 10.4: Operational semantics for CBL products.

Non-strict products may be added to stateless languages like FL. We have
chosen to focus on the stateful language FL! for two reasons:

1. It is easier to demonstrate the differences between the three forms of prod-
ucts in a language with state. In FL, only termination and errors could
be used to distinguish strict and non-strict products, and CBN and CBL
products are observationally indistinguishable.

2. Explaining the memoization of CBL products requires some form of state,
so for presentational purposes it is easier to add these to a language like
FL! that already has state.

The main benefit of non-strict products is that they enable the creation
of conceptually infinite data structures that improve program modularity. For
instance, we can introduce infinite lists, sometimes called streams, into a CBV
language with the following sugar for scons (stream cons):

Dexp[[(scons E1 E2)]] = (lproduct E1 E2)

along with the following procedures:

(define (scar x) (lproj 1 x))

(define (scdr x) (lproj 2 x))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

432 CHAPTER 10. DATA

mm ∈ Memo = Computation +Value
σ ∈ Storable = Memo

LProd = Location*
v ∈ Value = . . . + LProd

allocating : Value → (Location → Computation)→ Computation
=λvf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Value 7→ Memo v) s))

allocatingComp : Computation → (Location → Computation)→ Computation
=λcf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Computation 7→ Memo c) s))

allocatingComps : Computation*→ (Location*→ Computation)→ Computation
=λc*f . (matching c*

. []Computation [] (f []Location)

. (c . c*) [] allocatingComp c (λl . allocatingComps c* (λl* . f (l . l*)))
endmatching)

fetching : Location → (Value → Computation)→ Computation
=λlf . λs . matching (fetch l s)

. (Storable 7→ Assignment mm) []
matchingmm
. (Value 7→ Memo v) [] f v s
. (Computation 7→ Memo c) []
with-value c (λvs ′ . f v (assign l (Value 7→ Memo v) s ′))

endmatching
. else (error-comp s)
endmatching

E [[(lproduct E*)]] =λe . (allocatingComps (E*[[E*]] e) (λl* . (LProd 7→ Value l*)))

E [[(lproj N Eprod)]] =
λe . (with-value (E [[Eprod]] e)

(λv . (matching v
. (LProd 7→ Value l*) [] if 1 ≤ (N N) and (N N) ≤ (length l*)

then (fetching (nth (N N) l*) val-to-comp)
else error-comp
fi

. else error-comp
endmatching)))

Figure 10.5: Denotational semantics for CBL products in FL!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 433

The stream of all natural numbers can be created via (ints-from 0), where
the ints-from procedure is defined as

(define (ints-from n) (scons n (ints-from (+ n 1))))

The fact that the evaluation of the component expression (ints-from (+ n 1))

is delayed until it is accessed prevents what would otherwise be an infinite re-
cursion if cons were used instead of scons.

To view a prefix of a stream as a regular list, we will use the following
procedure:

(define (prefix n str)

(if (= n 0)

(list)

(cons (scar str) (prefix (- n 1) (scdr str)))))

For example:

(prefix 5 (ints-from 3)) −−−FL→ [3 , 4 , 5 , 6 , 7]

The stream mapping and filtering procedures in Figure 10.6 are handy for
creating streams, such as the examples in Figure 10.7. Note how laziness en-
ables the streams nats, twos, and fibs to all be defined directly in terms of
themselves, without the need for an explicit recursive generating function like
ints-from. The stream of prime numbers, primes, is calculated using the sieve
of Eratosthenes method, which begins at 2 and keeps as primes only those follow-
ing integers that are not multiples of previous primes. It is worth emphasizing
that all of these examples could be implemented using regular lists (manipulated
via cons, car, and cdr) in a call-by-name language or a call-by-need language;
special lazy products are only necessary in a call-by-value language.

As an example of the modularity benefits of the conceptually infinite data
structures enabled by non-strict products, consider the first-bigger-than pro-
cedure, which returns the first value in a numeric stream that is strictly bigger
than a given threshhold n.

(define (first-bigger-than n str)

(if (> (scar str) n)

(scar str)

(first-bigger-than n (scdr str))))

(first-bigger-than 1000 nats) −−−FL!→ 1001
(first-bigger-than 1000 evens) −−−FL!→ 1002
(first-bigger-than 1000 twos) −−−FL!→ 1024
(first-bigger-than 1000 fibs) −−−FL!→ 1597

(first-bigger-than 1000 primes) −−−FL!→ 1009

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

434 CHAPTER 10. DATA

; Applies a unary function F elementwise to stream STR.

(define (smap f str)

(scons (f (scar str))

(smap f (scdr str))))

; Applies a binary function G elementwise to corresponding

; elements of STR1 and STR2.

(define (smap2 g str1 str2)

(scons (g (scar str) (scar str2))

(smap2 g (scdr str1) (scdr str2))))

; Returns a stream with only those elements of STR

; satisfying the predicate PRED.

(define (sfilter pred str)

(if (pred (scar str))

(scons (scar str) (sfilter pred (scdr str)))

(sfilter pred (scdr str))

Figure 10.6: Mapping and filtering procedures for streams.

Infinite lists allow a list processing termination condition to be specified in the
consumer of a list rather than in the producer of a list. With strict lists, all
lists must be finite, so the termination condition must be specified when the
list is produced. To get the behavior of first-bigger-than with strict lists,
it would be necessary to intertwine the details of generating the next element
with checking it against the threshhold – a strategy that would compromise the
modularity of having a separate first-bigger-than procedure.

¤ Exercise 10.3 The Hamming numbers are all positive integers whose non-trivial

factors are 2, 3, and 5 exclusively. Define a stream of the Hamming numbers. What is

the first Hamming number strictly larger than 1000? ¢

¤ Exercise 10.4 Many Scheme implementations support a form of stream created
out of pairs where the second component is lazy but the first is not:

Dexp[[(cons-stream E1 E2)]] = (cons E1 (delay E2))
(define (head str) (car str))

(define (tail str) (force (cdr str)))

Here, delay and force implement a memoized delayed value, like lazy and touch did
in Exercise 7.1.

a. Show that it is possible to define all lazy lists illustrated in this section as Scheme
streams.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 435

; All natural numbers

(define nats (scons 0 (smap (+ 1) nats))

(prefix 5 nats) −−−FL→ [0 , 1 , 2 , 3 , 4]

; All even natural numbers

(define evens (sfilter (lambda (x) (= (rem x 2) 0)) nats))

(prefix 5 evens) −−−FL→ [0 , 2 , 4 , 6 , 8]

; All powers of two

(define twos (scons 1 (smap (* 2) twos)))

(prefix 5 twos) −−−FL→ [1 , 2 , 4 , 8 , 16]

; All Fibonacci numbers

(define fibs (scons 0 (scons 1 (smap2 + fibs (scdr fibs)))))

(prefix 10 fibs) −−−FL→ [0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34]

; All prime numbers

(define primes

(letrec

((sieve

(lambda (str)

(scons (scar str)

(sieve (sfilter (lambda (x)

(not (= (rem x (scar str)) 0)))

(scdr str)))))))

(sieve (ints-from 2))))

(prefix 10 primes) −−−FL→ [2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23]

Figure 10.7: Some sample streams of numbers.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

436 CHAPTER 10. DATA

b. Design a stream in which laziness in the first component is essential – that is,
which can be defined via scons/scar/scdr but not via cons-stream/head/tail.

¢

¤ Exercise 10.5

a. Use lproduct/lproj to define constructors and selectors for infinite binary trees
in which each node holds a value in addition to its left and right subtrees.

b. Use your constructs to define an infinite binary tree whose left-to-right inorder
traversal yields the positive integers in order of magnitude.

c. Define an inorder-stream procedure that returns a stream of the elements of
an infinite binary tree as they would be encountered in a left-to-right inorder
traversal. ¢

10.1.4 Mutable Products

Thus far we have discussed only immutable products — those whose components
do not change over time. But in popular imperative languages, the vast majority
of built-in data structures are mutable products. Here we explore some design
dimensions of mutable products and some examples of mutable products in real
languages.

All of the dimensions we explored above for immutable products are relevant
to mutable products. For example, mutable product components are either
named or positional. Examples of mutable products with named components
include C’s structures and Pascal’s records. A canonical example of a fixed-
size mutable product with positional components is Scheme’s pairs, whose two
components may be altered via set-car! and set-cdr!. Mutable sequences
are typically called arrays (as in C/C++, Java, Pascal, Fortran, and CLU)
or vectors (as in Scheme and Java). All of these support the ability to update
the component at any index, often via a special subscripting notation, such
as a[i] = 2*a[i]; in C/C++/Java. Only some of these — CLU’s arrays
and Java’s vectors (but not Java’s arrays) — support the ability to expand
or contract the size of the mutable sequence by inserting or removing elements.
All of these examples of mutable products have 0-based indexing except for
Fortran (which has 1-based arrays), CLU (whose arrays can have any lower
bound but are 1-based by default), and Pascal (whose arrays support arbitrary
enumerations as indices). In all of these examples, all components are required
to be of the same type, except for Scheme’s vectors (where any slot may contain
any value) and Java’s vectors (where any slot may contain any object).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 437

Although the mutable products mentioned above seem similar on the sur-
face, their semantics differ in fundamental ways. Below we explore some of the
dimensions along which mutable products can differ. For simplicity, we consider
only mutable fixed-length positional products of heterogeneous values, which
we shall call mutable tuples. It is easy to generalize these to other kinds of
mutable products. We will study the addition of mutable tuples to FL!. We
assume a CBV parameter passing mechanism unless otherwise stated. Here are
the constructs we will consider:

E ::= ...

| (mprod E*) [Mutable Tuple Creation]
| (mget Nindex Emt) [Mutable Tuple Projection]
| (mset! Nindex Emt Enew) [Mutable Tuple Assignment]

Informally, these constructs have the following semantics:

• (mprod E1 ... En) creates a new mutable tuple with n mutable slots
indexed from 1 to n where slot i is initially filled with the value of Ei .

• In (mget Nindex Emt), assume that Emt evaluates to a mutable tuple mt
with n slots, where 1 ≤ Nindex ≤ n. Then mget returns the value in the
ith slot of mt . Otherwise, mget signals an error.

• In (mset! Nindex Emt Enew), assume that Emt evaluates to a mutable
tuple mt with n slots, where 1 ≤ N ≤ n, and Enew evaluates to v. Then
mset! changes the value in the ith slot of mt to be v. Otherwise, mset!
signals an error.

For example, here is an expression involving a mutable tuple:

(let ((m (mprod 3 4)))

(begin

(mset! 1 m (+ (mget 1 m) (mget 2 m))) ; 1st slot is now 7.

(mset! 2 m (+ (mget 1 m) (mget 2 m))) ; 2nd slot is now 11.

(* (mget 1 m) (mget 2 m)))) −−−FL!→ 77

A very simple way to include mutable products in a language is to have a
single kind of mutable entity — such as a mutable cell — and allow this entity
to be a component of otherwise immutable structures. This is the approach
taken in ML, where immutable tuples, vectors, and user-defined datatypes may
have mutable cells as components. We can model this approach in FL! via the
following desugarings for mprod, mget, and mset!:

D[[(mprod El ...En)]] = (product (cell D[[El]]) ... (cell D[[En]]))
D[[(mget N Emp)]] = (cell-ref (proj N D[[Emp]]))
D[[(mset! N Emp Enew)]] = (cell-set! (proj N D[[Emp]]) D[[Enew]])

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

438 CHAPTER 10. DATA

In typical imperative languages, a more common design is to directly sup-
port various kinds of mutable products, perhaps along with some immutable
ones. The CLU language, for example, supports a variety of different built-in
datatypes, each of which comes in both mutable and immutable flavors.

In most imperative languages, mutable products would be modeled as a
sequence of locations, as shown in the denotational semantics presented in Fig-
ure 10.8, which is a straightforward generalization to the semantics of mutable
cells. Mutable tuple values are represented as sequences of locations. This is
similar to the representation of lazy products, except that in mprod, the com-
puted values of the subexpressions (rather than the computatations for these
subexpressions) are stored in the locations.

A key issue in the semantics of mutable products is how they are passed as
parameters. When mutable products are added as values to the CBV version of
FL! we have studied, we shall say that the they are passed via a call-by-value-
sharing (CBVS)mechanism because both the caller and the callee share access
to the same locations in the mutable product. For example, in the following
expression, references to t and m in the body of the procedure f refer to the
same mutable product, so that changes to the components of one are visible in
the other:

(let ((t (mprod 5 6)))

(let ((f (lambda (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−CBV S FL!→ 650

This is the behavior expected for mutable products in languages such as Java,
Scheme and CLU. Conceptually, when a mutable product is assigned to a vari-
able, passed as a parameter, returned as a result, or stored in a data structure,
no new product locations are created; the existing product locations are simply
shared in all parts of the program to which the given product value has “flowed.”

An alternative strategy for passing mutable products in a CBV language is
to create a new product with new locations whenever a product is passed from
one part of a program to another. This approach, which we shall term call-by-
value-copy (CBVC) is explained by the denotational semantics for a variant
of FL! with mutable products (Figure 10.9). Whenever a value is passed, a copy
of the value is made. Primitive values, procedures, and locations (i.e., cells)
are not copied, but a mutable tuple with n slots is copied by allocating n new
locations and filling these with copies of the contents of the existing locations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 439

v ∈ Value = . . .+ MProd
mt ∈ MProd = Location*

allocatingVals : Value*→ (Location*→ Computation)→ Computation
=λv*f . matching v*

. []Value [] (f []Location)

. (v . v*) [] (allocating v (λl . allocatingVals v* (λl* . f (l . l*))))
endmatching

E [[(mprod E*)]]
=λe . (with-values (E*[[El]] e)

(λv* . (allocatingVals v* (λl* . (MProd 7→ Value l*))))

E [[(mget N Emp)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . matching vmp
. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (fetching (nth (N N) l*) (λv . (val-to-comp v)))
else error-comp
fi

. else error-comp
endmatching))

E [[(mset! N Emp Enew)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . (with-value (E [[Enew]] e)
(λvnew . matching vmp

. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (update (nth (N N) l*) vnew)
else error-comp
fi

. else error-comp
endmatching))))

Figure 10.8: Denotational semantics of mutable tuples with CBVS parameter
passing.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

440 CHAPTER 10. DATA

In a CBVC interpretation of the example expression considered for CBVS, the
names t and m refer to two distinct mutable tuples, so that changes to one pair
are not visible in the other:

(let ((t (mprod 5 6)))

(let ((f (lambda (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−CBV C FL!→ 11

v ∈ Value = Unit + Bool + Int + Sym + Procedure+ Location+ MProd

allocatingCopies :Location*→ (Value → (Value → Computation)→ Computation)
→ (Location*→ Computation)→ Computation

=λl*gf . matching l*
. []Location [] f []Location
. (lold . lold*) [] fetching lold

(λv . g v (λv ′ . allocating v ′

(λlnew . allocatingCopies lold*
(λlnew* . f (lnew . lnew*)))))

deepCopying : Value → (Value → Computation)→ Computation
=λvf . matching v

. (MProd 7→ Value lold*)
[] (allocatingCopies lold* deepCopying (λlnew* . f (MProd 7→ Value lnew*)))

. else f v
endmatching

E [[(call E1 E2)]] =λe . with-procedure-comp (E [[E1]] e)
(λp . with-value (E [[E2]] e)

(λv . (deepCopying v val-to-comp)))

Figure 10.9: Call-by-value-copy (CBVC) semantics for passing mutable tuples.

The CBVC strategy for passing mutable products is used for passing arrays
and records by value in Pascal and for passing structures by value in C. On the
other hand, arrays in C are passed via CBVS. Passing arrays in C via CBVC can
be achieved by wrapping an array in a one-component struct! The inconsistency
between the mechanisms for passing named vs. positional products in C is
perplexing from the viewpoint of semantics but was apparently motivated by
pragmatic issues.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.1. PRODUCTS 441

The kind of data copying performed in Figure 10.9 is known as a deep copy
because the copying process is recursively applied at all levels of the data. An
alternative strategy, known as a shallow copy, is to copy only the first level of
a data structure and share the contents of the other levels. Although it would
be possible to use shallow copying in the call-by-copy strategy, we do not know
of a real programming language that uses this strategy.

In languages supporting the call-by-reference (CBR) mechanism presented in
Section 8.3.3.4, mutable products introduce new ways to alias locations between
the caller and callee. When an mget construct is used in a parameter position, its
L-value (the location of the product slot, as determined by LV in Figure 10.10)
is passed rather than its R-value (the contents of the L-value). In the following
CBR example, the L-values of (mget 2 u) and r denote the same location:

(let ((u (mprod 7 8)))

(let ((g (lambda (p r)

(begin

(set! r (+ 20 r))

(mset! 2 p (+ 100 (mget 2 p)))))))

(begin (g u (mget 2 u))

(mget 2 u)))) −−−−−−−−−−−CBR FLAVAR!→ 128

In contrast, under a CBV interpretation, changes to r would not affect u and p.
The above expression would evaluate to 108 under CBVS and 8 under CBVC.

LV [[(mget N Emp)]]
=λe . (with-value (E [[Emp]] e)

(λvmp . matching vmp
. (MProd 7→ Value l*) []
if 1 ≤ (N N) and (N N) ≤ (length l*)
then (val-to-comp (Location 7→ Value (N N))l*)
else error-comp
fi

. else error-comp
endmatching))

Figure 10.10: Extension to the CBR FLAVAR! semantics to handle mutable
tuples.

¤ Exercise 10.6 Write a single expression that returns the symbol sharing under

CBVS, deep under CBVC with deep copying, and shallow under CBVC with shallow

copying. Your expression should only use symbols, mutable tuples, and procedures. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

442 CHAPTER 10. DATA

¤ Exercise 10.7

a. Modify the CBVC denotational semantics in Figure 10.9 to use shallow rather
than deep copying.

b. Write three different versions of an operational semantics for FL! with mutable
tuples that differ in their parameter passing mechanism: (1) CBVS (2) CBVC
with deep copying (3) CBVC with shallow copying. ¢

10.2 Sums

Sums are entities that can be one of several different kinds of values. They are
data structures that correspond to the sum domains that we have been using in
our mathematical metalanguage (see Section A.3.3) to represent mathematical
values that can come from several different component domains. Intuitively, a
sum value augments an underlying component value with a tag that indicates
which kind of value it is. Whenever a sum value is processed, this tag is dy-
namically examined to determine how to handle the underlying value. Sums
are used in situations where programmers use the terms “either” or “one of” to
informally describe a data structure. For example:

• A linked list is either a list node (with head and tail components) or the
empty list.

• A graphics system might support shapes that are either circles, rectangles,
or triangles.

• In a banking system, transactions might be one of deposit, withdrawal,
transfer, or balance query.

Sums are known by such names as tagged sums, unions, tagged unions, discrim-
inated unions, oneofs, and variants.

Just as sum domains are duals of product domains, sum data structures
are dual to product data structures: for any given product structure, there is
a dual sum data structure. Sums therefore vary along the same dimensions as
products: positional vs. named, immutable vs. mutable, and dynamically typed
vs. statically typed. Our discussion will focus on the first of these dimensions:
positional sums, in which the different cases are distinguished only by their
position in the sum specification (i.e., their tags are natural numbers) vs. named
sums, in which the different cases are distinguished by specified names.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 443

10.2.1 Positional Sums

Positional product data structures use integer indices to distinguish product
components. Similarly, positional sums use integer tags to distinguish sum-
mands. To add positional sums to FL, we extend the syntax of expressions as
follows:

E ::= ...

| (inj N E) [Sum Introduction]
| (sumcase Edisc Ival Ebody*) [Sum Elimination]

(inj N E) creates a sum value whose tag is the integer N, where N is a man-
ifest constant and not a computed value. Sum values are taken apart with
(sumcase Edisc Ival Ebody*), which evaluates the discriminant Edisc to what
should be a sum value, examines the numeric tag N of this sum value, and eval-
uates the Nth body expression with Ival bound to the untagged sum component.

Figure 10.11 shows a simple bank transaction system implemented with po-
sitional sums. An account is a pair of a savings balance and a checking balance.
There are four kinds of transactions distinguished by an integer tag:

1. Deposit of an integer amount to savings.

2. Withdrawal of an integer amount from checking.

3. Transfer of an integer amount from savings to checking.

4. Transfer of an integer amount from checking to savings.

Given a transaction and account, the process procedure returns an updated
account that reflects the actions of the translation.

The operational semantics for call-by-value sums is presented in Figure 10.12.
Stuck states arise when any of the subexpressions get stuck, when the discrimi-
nant does not evaluate to a sum value, or when the integer tag does not corre-
spond to an appropriate body (e.g., the integer is negative, zero, or larger than
the number of bodies supplied). Call-by-name sums are similar (Figure 10.12),
except that no attempt is made to evaluate the expression being injected.

The denotational semantics for call-by-value sums is presented in Figure 10.14.
It might seem odd that the domain Sum of sum values is modeled via a product
that pairs an integer tag and the injected value. But such a product is isomor-
phic to an infinite sum of injected values, so it does indeed represent a sum.
The clause for sumcase calculates the denotations of all body expressions and
chooses one based on the integer tag of the sum value. However, as with the
denotational semantics of if expressions, only the chosen body is “evaluated.”
The denotational semantics of call-by-name sums is left as an exercise.

Positional sums are awkward to use in practice for several reasons:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

444 CHAPTER 10. DATA

(define (make-account checking savings) (pair checking savings))

(define (checking account) (left account))

(define (savings account) (right account))

(define (process transaction account)

(sumcase transaction amount

; Deposit to savings

(make-account (checking account)

(+ (savings account) amount))

; Withdrawal from checking

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(savings account))

(error ’insufficient-checking))

; Transfer from savings to checking

(if (<= amount (savings account))

(make-account (+ (checking account) amount)

(- (savings account) amount))

(error ’insufficient-savings))

; Transfer from checking to savings

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(+ (savings account) amount))

(error ’insufficient-checking))

))

(process (inj 1 10) (make-account 25 40)) −−−FL→ 〈25 , 50 〉
(process (inj 2 10) (make-account 25 40)) −−−FL→ 〈15 , 40 〉
(process (inj 3 10) (make-account 25 40)) −−−FL→ 〈35 , 30 〉
(process (inj 4 10) (make-account 25 40)) −−−FL→ 〈15 , 50 〉

Figure 10.11: Bank transactions with positional sums.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 445

V ∈ ValueExp = . . . ∪ {(inj N V)}

E⇒E ′

(inj N E)⇒ (inj N E ′)
[inj-progress]

E⇒E ′

(sumcase E I E1 ...)⇒ (sumcase E ′ I E1 ...)
[sumcase-progress]

(sumcase (inj N V) I E1 ... Em)⇒ [V/I]EN ,
where 1 ≤ N ≤ m

[sumcase]

Figure 10.12: CBV operational semantics for positional sums

V ∈ ValueExp = . . . ∪ {(inj N E)}

E⇒E ′

(sumcase E I E1 ...)⇒ (sumcase E ′ I E1 ...)
[sumcase-progress]

(sumcase (inj N Eval) I E1 ... Em)⇒ [Eval/I]EN ,
where 1 ≤ N ≤ m

[sumcase]

Figure 10.13: CBN operational semantics for positional sums

su ∈ Sum = Int ×Value
v ∈ Value = . . . + Sum

E [[(inj N E)]] =λe . with-value (E [[E]] e)
(λv . (val-to-comp (Sum 7→ Value 〈(N N), v〉)))

E [[(sumcase Edisc Ival E*)]] =
λe . with-value (E [[Edisc]] e)

(λvdisc . matching vdisc
. (Sum 7→ Value 〈i, v〉) [] (nthComputation i (E*[[E*]] [Ival : v]e))
. else error-comp
endmatching)

Figure 10.14: CBV denotational semantics for sums

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

446 CHAPTER 10. DATA

1. The programmer must remember the arbitrary association between each
integer tag and its intended meaning;

2. In a sumcase expression, the body expressions must be carefully ordered
to have the correct (implicit) index;

3. Since all sum values use integer tags, a sum value intended for one purpose
may accidentally be used for another without any error being reported.

¤ Exercise 10.8 In call-by-name positional sums, the expression (inj N E) does not

tag the value denoted by E but rather tags the computation denoted by E. Modify the

denotational semantics for positional sums in Figure 10.14 to be call-by-name rather

than call-by-value. ¢

¤ Exercise 10.9 The simplest kind of positional product is a pair, which glues together
two component values. Dually, the simplest kind of positional sum chooses between two
component values. Such a sum value is called an an either. It has two two possible
tags: left or right.

Here we consider an extension to FL that supports eithers rather than general
positional sums. Suppose we extend the syntax of FL as follows:

E ::= ...

| (inleft E) [Either Left Injection]
| (inright E) [Either Right Injection]
| (ecase Edisc Ival Eleft Eright) [Either Case Analysis]

(inleft E) creates an either whose tag is left and whose value is the value of E.

(inright E) creates an either with whose tag is right and whose value is the
value of E.

(ecase Edisc Ival Eleft Eright) examines the discriminant value represented by
Edisc , binds the untagged value to the identifier Ival , and then evaluates Eleft , if
the tag is left, or Eright , if the tag is right. It is an error if Edisc is not an either.

For example, we can use eithers in an extended version of FL to encode whether
a geometric shape is a square (in which case the value of the either is the length of a
side) or a circle (in which case the value of the either is the radius). We can then write
a procedure for computing the area of a shape:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.2. SUMS 447

(define (square side) (inleft side))

(define (circle radius) (inright radius))

(define pi 3.14159)

(define (area shape)

(ecase shape v

(f* v v) ; square case (f* multiplies floating point numbers)

(f* pi (f* v v)) ; circle case

))

(area (square 10.0)) −−−FL→ 100 .0

(area (circle 10.0)) −−−FL→ 314 .159

a. Write an operational semantics for CBV eithers. What causes stuck states in
your semantics?

b. Write a denotational semantics for CBV eithers. You may find it convenient to
have a new domain for eithers as well as new Left and Right domains.

c. Write an operational semantics for CBN eithers. What causes stuck states in
your semantics?

d. Write a denotational semantics for CBN eithers. You may find it convenient to
have a new domain for eithers as well as new Left and Right domains. ¢

10.2.2 Named Sums

Named sums address the problems of positional sums by using programmer-
supplied names to distinguish the various cases in a sum value. Named sums
involve two new constructs:

E ::= ...

| (one Itag E) [Oneof Intro]
| (tagcase Edisc Ival (Itag Ebody)* [(else Eelse)]) [Oneof Elim]

A named sum value, which we shall call a oneof, is created by the evalua-
tion of the expression (one Itag E), which conceptually pairs the tag Itag with
the component value given by E. Oneofs are decomposed via the expression
(tagcase Edisc Ival (Itag Ebody)*), which dispatches to a clause based on the
tag of the oneof value of the discriminant expression Edisc . The value of the
tagcase is the result of evaluating the body of the clause with the matching tag
in a scope where Ival is bound to the untagged oneof component. A tagcase

expression may have an optional else clause whose body Eelse is evaluated and
returned when no clause tag matches the discriminant tag. It is an error if Edisc

does not evaluate to a oneof or if there is no clause in an else-less tagcase

whose tag matches the discriminant tag.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

448 CHAPTER 10. DATA

Figure 10.15 shows how the bank transaction example can be expressed with
named sums. Using symbolic tags instead of integers makes such programs easier
to read and write; the tags serve as comments and allow the tagcase clauses to
be written in any order. Although it is still possible for the same symbolic tag to
be used for conceptually different oneofs, the likelihood that a oneof will be used
in a incorrect context without generating a dynamic error is greatly reduced.

(define (process transaction account)

(tagcase transaction amount

(savings-deposit

(make-account (checking account)

(+ (savings account) amount)))

(checking-withdrawal

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(savings account))

(error ’insufficient-checking)))

(savings->checking

(if (<= amount (savings account))

(make-account (+ (checking account) amount)

(- (savings account) amount))

(error ’insufficient-savings)))

(checking->savings

(if (<= amount (checking account))

(make-account (- (checking account) amount)

(+ (savings account) amount))

(error ’insufficient-checking)))

))

(process (one savings-deposit 10) (make-account 25 40)) −−−FL→ 〈25 , 50 〉
(process (one checking-withdrawal 10) (make-account 25 40)) −−−FL→ 〈15 , 40 〉
(process (one savings->checking 10) (make-account 25 40)) −−−FL→ 〈35 , 30 〉
(process (one checking->savings 10) (make-account 25 40)) −−−FL→ 〈15 , 50 〉

Figure 10.15: Bank transactions with named sums.

Oneofs have semantics similar to that for positional sums, except that iden-
tifiers are used as tags rather than integers. Figure 10.16 gives the call-by-value
operational semantics for oneofs. As before, stuck states arise when a value that
is not a oneof appears as the discriminant of a tagcase or when a tagcase does
not specify a clause appropriate for the dynamic tag of the oneof value.

The denotational semantics for call-by-value oneofs (Figures 10.17–10.18)
shows their duality with records quite clearly. Records use an environment to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 449

V ∈ ValueExp = . . . ∪ {(one I V)}

E⇒E ′

(one I E)⇒ (one I E ′)
[one-progress]

E⇒E ′

(tagcase E I ...)⇒ (tagcase E ′ I ...)
[tagcase-progress]

(tagcase (one Ii V) I (I1 E1) ... (In En))⇒ [V/I]Ei [tagcase]

(tagcase (one Itag V) I
(I1 E1) ... (In En) (else Eelse)) ⇒ [V/I]Eelse ,

where Itag 6∈ {I1 , . . . In}
[tagcase-else]

Figure 10.16: CBV operational semantics for named sums

glue together named values, one of which is later chosen at each select site.
Dually, one creates a sum that is later processed in the context of a tagcase that
uses an environment to glue together named clause bodies. In a continuation-
based semantics, the environment associated with the tagcasewould map names
to continuations, suggesting a duality between values and continuations.

¤ Exercise 10.10

a. Modify the operational semantics for named sums in Figure 10.16 to be call-by-
name rather than call-by-value.

b. Modify the denotational semantics for named sums in Figure 10.18 to be call-by-
name rather than call-by-value.

c. Write a denotational semantics for call-by-name and call-by-value named sums in
a continuation-based semantics. ¢

10.3 Sum-of-Products

In practice, sum and product data are often used together in idiomatic ways.
Many common data structures can be viewed as a tree constructed from different
kinds of nodes, each of which has multiple components. Here are some examples:

• A shape in a simple geometry system is either:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

450 CHAPTER 10. DATA

t ∈ Tag-environment = Identifier→ Denotable → Computation

empty-tenv : Tag − environment =λIδ . error-comp

extend-tenv : Environment → Identifier→ Identifier→ Exp→ Tag − environment
→ Tag − environment

= λe Ival I E t . λI ′ δ . if (same-identifier? I ′ I) then (E [[E]] [Ival : δ]e) else (t I ′)

extend-tenv* : Environment → Identifier→ Identifier*→ Exp*→ Tag − environment
→ Tag − environment

=λe Ival I* E* t . matching 〈I*,E*〉
. 〈[]Identifier, []Exp〉 [] t
. 〈I . Irest*,E . Erest*〉
[] (extend-tenv* e Ival Irest Erest*

(extend-tenv e Ival Irest Erest t))
. else empty-tenv
endmatching

Figure 10.17: Auxiliary domains and functions for denotational semantics of
named sums (oneofs)

– a circle with a radius;

– a rectangle with a width and a height;

– a triangle with three side lengths.

• A list of integers is either:

– an empty list;

– a list node with an integer head and an integer list tail.

• An ELM expression is either:

– an integer literal;

– an argument expression with an index;

– an arithmetic operation with an operator symbol, a left operand ex-
pression, and a right operand expression.

In each of the above examples, the variety of possible nodes for a data structure
can be modeled as a sum, and each individual kind of node can be modeled as a
product. For this reason, such data structures are known as sum-of-product
structures.

As a simple example, consider the following list of geometric shapes:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 451

su ∈ Sum = Identifier×Value
v ∈ Value = . . . + Sum

E [[(one I E)]] =λe . with-value (E [[E]] e)
(λv . (val-to-comp (Sum 7→ Value 〈I, v〉)))

E [[(tagcase Edisc Ival (I1 E1) ... (In En))]] =
λe . with-value (E [[Edisc]] e)

(λvdisc . matching vdisc
. (Sum 7→ Value 〈Itag , v〉)
[] ((extend-tenv* e Ival [I1 . . . In] [E1 . . .En] empty-tenv) Itag v)

. else error-comp
endmatching)

E [[(tagcase Edisc Ival (I1 E1) ... (In En) (else Eelse))]] =
λe . with-value (E [[Edisc]] e)

let elsetenv be (λIδ . (E [[Eelse]] [Ival : δ]e)) in
(λvdisc . matching vdisc

. (Sum 7→ Value 〈Itag , v〉)
[] ((extend-tenv* e Ival [I1 . . . In] [E1 . . .En] elsetenv) Itag v)

. else error-comp
endmatching)

letend

Figure 10.18: CBV denotational semantics for oneofs

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

452 CHAPTER 10. DATA

(list (one rectangle (record (width 3) (height 4)))

(one triangle (record (side1 5) (side2 6) (side3 7)))

(one square (record (side 2))))

In this encoding, oneof tags are used to distinguish squares, rectangles, and
triangles. The two sides of a rectangle (width and height) and three sides of
a triangle (side1, side2, and side3) are named as fields in a record. Even
though a square has only a single side length (side), it too is encapsulated in
a record for uniformity. Of course, we could have used positional rather than
named products, in which case the meaning of each position would need to be
specified.

Manipulating a sum-of-product datum typically involves performing a case
analysis on its tag and extracting the components of the associated record. For
example, here is a procedure that calculates the perimeter of a shape:

(define (perim shape)

(tagcase shape r

(square (* 4 (select side r)))

(rectangle (* 2 (+ (select width r) (select height r))))

(triangle (+ (select side1 r)

(+ (select side2 r) (select side3 r))))))

As another example, consider the sum-of-product encoding of the ELM tem-
perature conversion expression (/ (* 5 (- (arg 1) 32)) 9) shown in Fig-
ure 10.19. In this encoding, oneof tags distinguish arithmetic operations (arithop),
integer literals (lit), and argument references (arg). The three components of
an arithmetic operation — the operation (op) (a symbol) and two operands
(rand1 and rand2) are represented as a record. As with square shapes, the
single number component of a literal expression and index component of an
argument expression are boxed up into records for uniformity.

To handle this representation for ELM expressions, the elm-eval procedure
from Chapter 6 would be rewritten:

(define (elm-eval exp args)

(tagcase exp r

(lit rcd (select num r))

(arg rcd (arg-get (select index r) args))

(arithop rcd ((primop->proc (select op r))

(elm-eval (select rand1 r) args)

(elm-eval (select rand2 r) args)))))

The rigidity of the above sum-of-product encodings is sometimes relaxed in
practice. For instance, the case where a product has a single component can
be optimized by replacing the product by the component value. If a product

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 453

(one arithop

(record

(op ’/)

(rand1 (one arithop

(record

(op ’*)

(rand1 (one lit (record (num 5))))

(rand2 (one arithop

(record

(op ’-)

(rand1 (one arg (record (index 1))))

(rand2 (one lit (record (num 32))))))))))

(rand2 (one lit (record (num 9))))))

Figure 10.19: An ELM expression for converting temperatures from degrees
Fahrenheit to degrees Celsius.

has zero components, it can be replaced by the unit value. In several popular
data structures (including linked lists and binary trees), there are only two
summands, one of which has no components. This situation is often handled
by representing the non-trivial summand (e.g., list or tree node) directly as a
product and representing the nullary summand (e.g., empty list or tree leaf) as
a distinguished null pointer value. Conceptually, there is still a sum in this
case: a value is either a null pointer or a node. But in terms of pragmatics,
it is not necessary to associate a tag with a node because it is assumed that
there is a cheap test that determines whether or not a node is the null pointer.
For example, some runtime systems represent a null pointer with a value that
contains all zeros to take advantage of efficient machine instructions for testing
for zero.

Programming languages differ widely in terms of their support for sum-of-
product data. For example:

• The ML and Haskell programming languages have powerful facilities
for declaring and manipulating sum-of-product data. We shall see similar
facilities in the following sections.

• In object-oriented languages, such as Java, SmallTalk, and C++, the
dynamic dispatch performed when invoking a method on an object effec-
tively performs a case analysis on the class (think tag) of the object, whose
instance variables can be viewed as a record.

• In Lisp dialects, it is common to represent a sum-of-product datum as a list

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

454 CHAPTER 10. DATA

s-expression whose first element is a symbolic tag indicating the summand
and whose remaining elements are the components of the product. For
instance, the Fahrenheit-to-Centigrade conversion expression given above
can be represented as the following Lisp s-expression:

(arithop /

(arithop *

(lit 5)

(arithop - (arg 1) (lit 32)))

(lit 9))

This, in turn, can be optimized without ambiguity into an s-expression
identical to the ELM concrete s-expression syntax:

(/ (* 5

(- (arg 1)

32))

9)

Indeed, syntax trees are without a doubt the most important sum-of-
product data structure used in the study of programming languages. The
ease with which they can be represented as s-expressions is the reason we
have adopted s-expression grammars for the toy languages in this book.

• In document description languages like HTML and XML, summand tags
appear in begin/end markups and product components are encoded both in
the association lists of markups as well as in components nested within the
begin/end markups. For instance, Figure 10.20 shows how the Fahrenheit-
to-Centigrade expression might be encoded in XML. The reader is left to
ponder why XML, which at one level is a verbose encoding of s-expressions,
is a far more popular standard for expressing structured data than s-
expressions. In fact, the Water language [Plu02] goes the distance, using
XML as a representation for s-expressions in a language with Scheme-like
semantics.

• In the C programming language, programmers must “roll their own” sum-
of-product data structures using union and struct. For instance, Fig-
ure 10.21 shows how the geometric shape example from above can be
expressed in C. In C, union is used to declare storage that can con-
tain one of several different kinds of values. However, there is no built-in
support for tagging such values. Instead, an explicit struct is typically
used to associate a tag (shapetag in the example) with the value (sum in
the example). Values with multiple components (e.g., rect and tri) are

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.3. SUM-OF-PRODUCTS 455

<arithop>

<op name="/"/>

<rand1>

<arithop>

<op name="*"/>

<rand1>

<lit num=5/>

</rand1>

<rand2>

<arithop>

<op name="-"/>

<rand1>

<arg index=1/>

</rand1>

<rand2>

<lit num=32/>

</rand2>

</arithop>

</rand2>

</arithop>

</rand1>

<rand2>

<lit num=9/>

</rand2>

</arithop>

Figure 10.20: The ELM Fahrenheit-to-Centigrade expression in XML notation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

456 CHAPTER 10. DATA

themselves encoded via additional struct declarations.

As is apparent from the example in Figure 10.21, encoding sum-of-product
data in C is awkward. Nesting struct declarations to provide explicit tags is
cumbersome and leads to unwieldy name paths like s.sum.rect.width. But
much worse is the fact that the language enforces no connection between the tag
and the sum. For instance, consider the following sequence of C statements:

shape s4;

s4.tag = square;

s4.sum.rect.width = 8;

s4.sum.rect.height = 9;

printf("The perimeter of s4 is \%d\n", perim(s4));

Although conceptually it makes no sense to manipulate a rectangle’s components
in a square, in many C implementations, the above code compiles and runs
without error, yielding 32 as the perimeter of s4. Why? Because the storage
set aside for a union type is that required for the largest summand (in this
case, the three integers of a triangle) and s4.sum.side, s4.sum.rect.width,
and s4.sum.tri.side1 are all just synonyms that reference the first slot of this
storage.

This is a classic example of a type loophole in C. Pascal’s variant records,
which encode sum-of-product datatypes in a way reminiscent of C, exhibit a sim-
ilar type loophole. The same sort of undesirable behavior can be exhibited with
the Lisp s-expression (square 8 9), for which a perimeter procedure would re-
turn 32 if the means of extracting the side of a square was returning the second
element of an s-expression list. But the difference between Lisp and C/Pascal
on this score is that C and Pascal, unlike Lisp, sport a static type system that
might be expected to catch such type-related bugs at compile time. We will
have much more to say about static typing in Chapter ??.

10.4 Data Declarations

Programming with “raw” sums and products is cumbersome and error-prone.
Here we study a high-level data declaration facility that simplifies the creation
and manipulation of sum-of-product data. We extend our FL family of languages
with a define-data declaration that specifies a new kind of sum-of-product
data. We introduce this construct via a declaration for geometric shapes:

(define-data shape

(square side)

(rectangle width height)

(triangle side1 side2 side3))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 457

typedef enum {square, rectangle, triangle} shapetag;

typedef struct {

shapetag tag;

union {

int side;

struct {int width; int height;} rect;

struct {int side1; int side2; int side3;} tri;

} sum;

} shape;

int perim (shape s) {

switch (s.tag) {

case square:

return 4*(s.sum.side);

case rectangle:

return 2*(s.sum.rect.width + s.sum.rect.height);

case triangle:

return (s.sum.tri.side1 + s.sum.tri.side2 + s.sum.tri.side3);

}

}

int main () {

shape s1, s2, s3;

s1.tag = square;

s1.sum.side = 2;

s2.tag = rectangle;

s2.sum.rect.width = 3;

s2.sum.rect.height = 4;

s3.tag = triangle;

s3.sum.tri.side1 = 5;

s3.sum.tri.side2 = 6;

s3.sum.tri.side3 = 7;

printf("The perimeter of s1 is \bs\%d\bs{}n", perim(s1));

printf("The perimeter of s2 is \bs\%d\bs{}n", perim(s2));

printf("The perimeter of s3 is \bs\%d\bs{}n", perim(s3));

}

Figure 10.21: The shape example encoded using struct and union in C.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

458 CHAPTER 10. DATA

This declaration specifies that a shape is either a square with one component, a
rectangle with two components, or a triangle with three components. Each of the
names square, rectangle, and triangle is a value constructor procedure
(or just constructor for short) that takes the specified number of components
and returns a sum-of-product datum with those components. For example, the
list of shapes

(list (square 2) (rectangle 3 4) (triangle 7 8 9))

is equivalent to the list

(list (one square (product 2)))

(one rectangle (product 3 4))

(one triangle (product 5 6 7))

In contrast with the previous section, the sum-of-product data created by define-data
constructors uses positional rather than named products.

In the example, the data name shape and the component names side, width,
height, etc. are just comments. Only the number of components specified for
a constructor is relevant. For instance, we could emphasize that all components
are integers by writing

(define-data shape

(square int)

(rectangle int int)

(triangle int int int)),

or we could use nonsense words to specify an equivalent declaration, as in

(define-data frob

(square foo)

(rectangle bar baz)

(triangle quux quuux quuuux)).

The reason for requiring such comments is that the comment positions will
assume a non-trivial meaning when we study a typed version of define-data
in Chapter 15.

For every constructor procedure C that takes n arguments, define-data also
declares an associated deconstructor procedure that takes three arguments:

1. the value v to be deconstructed;

2. a success continuation, an n-argument procedure that is applied to the
n components of v in the case where v is constructed by C;

3. a failure continuation, a nullary procedure that is invoked in the case
where v is not constructed by C.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 459

We assume a convention in which the deconstructor has a name that is the
name of the constructor followed by the tilde character, ~, which is pronounced
“twiddle.” For instance, the square~, rectangle~, and triangle~ deconstruc-
tors introduced by the shape declaration can be used to calculate the perimeter
of a shape:

(define (perim s)

(square~ s (lambda (s) (* 4 s))

(lambda ()

(rectangle~ s (lambda (w h) (* 2 (+ w h)))

(lambda ()

(triangle~ s (lambda (s1 s2 s3) (+ s1 s2 s3))

(lambda ()

(error not-a-shape))))))))

Deconstructors are somewhat awkward to use directly. In the next section we
will study a pattern-matching facility based on deconstructors that significantly
simplifies the deconstruction of sum-of-product data.

As another example of constructors and deconstructors, consider the elm-exp
declaration in Figure 10.22. The lit, arg, and arithop constructors intro-
duced by this declaration are illustrated in the Fahrenheit-to-Centigrade ex-
pression f2c, and the deconstructors lit~, arg~, and arithop~ are used to
define elm-eval.

We can even use define-data to define list constructors and deconstructors
(Figure 10.23), replacing the desugaring given in Chapter 6.

A formal definition of define-data is presented in Figure 10.24. The syntax
of FL programs is extended to include define-data clauses along with the
usual definitions. The meaning of a define-data declaration can be explained
by desugaring the declaration into a sequence of procedure definitions via Ddef ,
which has signature D → D*. The resulting sequence of definitions is spliced
into the program construct, and all program definitions are further desugared
as shown in Chapter 6. Each summand clause (Itag I1 . . . In) desugars into 2
definitions:

• An n-argument constructor procedure named Itag that constructs a oneof
with tag Itag of a product whose components are I1 . . .In .

• A three-argument deconstructor procedure that applies the second argu-
ment (an n-argument success continuation) to the n components of the
product if the oneof has the right tag and otherwise invokes the third ar-
gument (a nullary failure continuation). The name of this deconstructor
is created from the name Itag by adding ~ as a suffix. We shall use the no-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

460 CHAPTER 10. DATA

(define-data elm-exp

(lit num)

(arg index)

(arithop op rand1 rand2))

(define f2c (arithop ’/

(arithop ’*

(lit 5)

(arithop ’-

(arg 1)

(lit 32)))

(lit 9)))

(define (elm-eval exp args)

(lit~ exp (lambda (n) n)

(lambda ()

(arg~ exp (lambda (i) (get-arg i args))

(lambda ()

(arithop~ exp

(lambda (op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))

(lambda () (error not-an-elm-exp))))))))

Figure 10.22: ELM examples.

(define-data list

(null)

(cons head tail))

(define (null? xs)

(null~ xs (lambda () true) (lambda () false)))

(define (car xs)

(cons~ xs (lambda (hd tl) hd)

(lambda () (error car-of-nonlist-or-empty-list))))

(define (cdr xs)

(cons~ xs (lambda (hd tl) tl)

(lambda () (error cdr-of-nonlist-or-empty-list))))

Figure 10.23: Defining lists via define-data.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 461

tation I1 ./I2 to concatenate identifiers. For example, square./~ denotes
the identifier square~.

For example, Figure 10.25 shows the constructors and deconstructors introduced
by the shape declaration.

Syntax

P ::= (program Ddefinitions* Ebody) [Program]

D ::= (define Iname Evalue) [Definition]
| (define-data Idata (Itag I*)*)

Sugar

If D = (define-data Idata (Itag1 I1 ,1 . . . I1 ,k1) ... (Itagn In,1 . . . In,kn)),

Ddef [[D]] =Dcl[[(Itag1 I1 ,1 . . . I1 ,k1)]] @ · · · @ Dcl[[(Itagn In,1 . . . I1 ,kn)]]

and Dcl[[(Itagi Ii,1 ... Ii,ki)]] =

Constructor

[(define (Itagi x1...x./ki)
(one Itagi
(product x1...x./ki)))] ,

Deconstructor

(define (Itagi./~ val succ fail)

(tagcase val x

(Itagi (succ (proj 1 x)
...

(proj ki x)))

(else (fail))))]

Figure 10.24: Syntax and desugaring of define-data.

¤ Exercise 10.11 Extend the declaration of elm-exp and the definition of elm-eval

to handle the full EL language. ¢

¤ Exercise 10.12 It is possible to tweak the desugaring of define-data to use more
efficient representations than those given in Figure 10.24.

a. Modify the define-data desugaring to avoid creating products for constructors
that take zero or one argument.

b. Modify the define-data desugaring to represent a sum-of-products datum with
tag Itag and components v1 . . . vn as the heterogeneous sequence

(sequence (symbol Itag) v1 . . . vn)

(This desugaring makes sense for a dynamically typed language but not a stati-
cally typed one.) ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

462 CHAPTER 10. DATA

(define square

(lambda (x1)

(one square (product x1))))

(define square~

(lambda (val succ fail)

(tagcase val x

(square (succ (proj 1 x)))

(else (fail)))))

(define rectangle

(lambda (x1 x2)

(one rectangle (product x1 x2))))

(define rectangle~

(lambda (val succ fail)

(tagcase val x

(rectangle (succ (proj 1 x) (proj 2 x)))

(else (fail)))))

(define triangle

(lambda (x1 x2 x3)

(one triangle (product x1 x2 x3))))

(define triangle~

(lambda (val succ fail)

(tagcase val x

(triangle (succ (proj 1 x) (proj 2 x) (proj 3 x)))

(else (fail)))))

Figure 10.25: Value constructors and deconstructors introduced by the shape

declaration.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.4. DATA DECLARATIONS 463

¤ Exercise 10.13 SML and Haskell support user-defined datatype declarations.
Below are the geometric shape declarations expressed in SML and Haskell:

SML Haskell
datatype Shape =

Square of int

| Rectangle of int * int

| Triangle of int * int * int

data Shape =

Square Int

| Rectangle Int Int

| Triangle Int Int Int

In SML, passing multiple arguments to a data constructor is modeled by collecting
the arguments into a tuple, as in Triangle(5,6,7), where the tuple (5,6,7) has type
int * int * int. It is a type error to supply the constructor with the wrong number
of arguments, as in Triangle(5,6).

In contrast, Haskell data declarations allow curried constructors that can take
multiple arguments one at a time. For instance, the invocation Triangle 5 6 denotes
a unary function that “expects” the third side of the triangle.

Is FL extended with define-data more like ML or Haskell in this respect? For

example, does (triangle 5 6) denote an error or a unary function? How would you

change the desugaring of define-data to model the other language? ¢

¤ Exercise 10.14 The desugaring for define-data in Figure 10.24 introduces two
procedures (a constructor Itag and a deconstructor Itag./~) for each summand clause
(Itag I1 . . . In). An alternative approach is to introduce n+ 2 procedures:

• An n-argument constructor procedure named Itag .
• A unary predicate named Itag./~ that returns true for a oneof value with tag Itag
and false for any other oneof value. It is an error to apply this predicate to a
value that is not a oneof value.

• n unary selector procedures named I1 . . .In , where Ii extracts the ith component
of a product tagged with Itag . It is an error to apply a selector procedure to a
value that is not a oneof value or a oneof value with a tag that is not Itag .

In this approach, the component names matter, since they are names of selectors, not
just comments. For example, here is the perim procedure in this approach:

(define (perim s)

(cond

((square? s) (* 4 (side s)))

((rectangle? s) (* 2 (+ (width s) (height s))))

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

))

a. Give a desugaring for define-data that implements the new approach.

b. In your new desugaring, compare the evaluation of the conditional clause

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

with the following deconstructor application in the original desugaring

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

464 CHAPTER 10. DATA

(triangle~ s (lambda (s1 s2 s3) (+ s1 s2 s3))

(lambda ()

(error not-a-shape)))

Which evaluation is more efficient?

c. One drawback of having define-data desugar into so many procedures is that
it increases the possibility of name conflicts. For instance, the shape declaration
introduces procedures with names like square, rectangle?, and width that very
well might be useful in other contexts. One way to address this problem is for
programmers use more specific names within data declarations, as in:

(define-data shape

(shape-square shape-side)

(shape-rectangle shape-width shape-height)

(shape-triangle shape-side1 shape-side2 shape-side3))

Another approach is to modify the desugaring for define-data to automatically
concatenate the data type name with the name of every constructor, predicate,
and selector procedure. For instance, something like this is done in Common
Lisp’s defstruct facility. Discuss the benefits and drawbacks of these two ways
to address potential name conflicts in a program with data declarations.

d. Yet another way to address name conflicts is to treat constructor, predicate, and
selector applications as special forms that refer to a different namespace than the
usual value namespace. Design an extension to FL that handles datat declarations
based on this idea. Do you think it is a good way to handle name conflicts? ¢

10.5 Pattern Matching

10.5.1 Introduction to Pattern Matching

Deconstructors are a sufficient mechanism for dispatching on and extracting the
components of sum-of-product data, but they are awkward to use in practice. It
is more convenient to manipulate sum-of-product data using a pattern match-
ing facility that simultaneously tests for a summand and names the components
of the associated product when the test succeeds. We have made extensive use of
a form of pattern matching (via the matching construct) in the mathematical
metalanguage of this book. Pattern matching is also an important feature of
some real-world programming languages, such as Prolog, ML and Haskell.

We will study pattern matching in the context of an extension to FL that
includes define-data from the previous section along with a new match con-
struct. First, we will give an informal introduction to match via a series of
examples. Then we will describe the semantics of match in detail by desugaring
it into deconstructor applications.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 465

The match construct has the form (match Edisc (Ppat Ebody)*), where Edisc

is the discriminant and each match clause of the form (Ppat Ebody) has a
pattern Ppat and a body Ebody . A pattern P consists of either an FL literal
value, an identifier, a wild card (“_”), or a tagged list of patterns:

P ::= L [Literal]
| I [Pattern Variable]
| _ [Wild Card]
| (I P*) [Tagged List]

Informally, a match expression is evaluated by first evaluating Edisc into a
value vdisc , then finding the first clause whose pattern Pi matches vdisc , and
finally evaluating the associated body Ei of this clause relative to any bindings
introduced by the successful match of vdisc to Pi . If no clause has a pattern
matching vdisc, the match expression signals an error.

We begin with a few examples of match involving patterns that are just
literals, identifiers, or wild cards. Here is a procedure that converts a boolean
to an integer (and signals an error for a non-boolean input).

(define (bool->int b)

(match b

(#f 0)

(#t 1)))

The negate procedure below returns a symbol that negates the sense of a yes

or no input but returns unknown for any other input. The underscore pattern is
a wildcard pattern that matches any discriminant.

(define (negate s)

(match s

(’yes ’no)

(’no ’yes)

(_ ’unknown)))

The following procedure returns one more than the square of a given number,
except at the inputs −1 and 1, where it returns 0:

(define (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

A pattern variable like x always successfully matches any discriminant value, and
the name may be used to denote this value in the associated body expression.

To introduce tagged list patterns, we consider pattern matching involving
lists of integers. Consider the following two procedures:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

466 CHAPTER 10. DATA

(define (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

(define (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

• The pattern (cons x (null)) matches a list that contains exactly one
element, and names that element x in the scope of the body. So both
procedures return the square of the first (only) element of the list when
given a singleton list.

• The pattern (cons 3 (cons y ns)) matches a list that has at least two
elements, the first of which is the integer 3. In the case of a match, the
body is evaluated in a scope where the second element is named y and the
list of all but the first two elements is named ns. So when this pattern
matches, the second procedure returns the sum of the second element and
the length of the rest of the list.

• The final wild card pattern in both procedures matches any value not
matched by the first two patterns, in which case a 17 is returned.

The following table shows the results returned by these two procedures when
supplied with various integer lists as an argument:

(list) (list 3) (list 3 4) (list 6 8) (list 3 6 8)

match-ints-1 17 9 17 17 17
match-ints-2 17 9 4 17 7

The most important use of match is to perform pattern matching on user-
defined sum-of-product data. For instance, here is a succinct version of the
perimeter procedure based on pattern matching:

(define (perim shape)

(match shape

((square s) (* 4 s))

((rectangle w h) (* 2 (+ w h)))

((triangle s1 s2 s3) (+ s1 (+ s2 s3)))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 467

(define (elm-eval exp args)

(match exp

((lit n) n)

((arg i) (get-arg i args))

((arithop op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))))

(define (get-arg index nums)

(match (list index nums)

((list 1 (cons n _)) n)

((list i (cons _ ns)) (get-arg i ns))))

(define (primop->proc sym)

(match sym (’+ +) (’- -) (’* *) (’/ /)))

Figure 10.26: A complete ELM evaluator based on pattern matching.

The pattern (square s) matches a sum-of-product value constructed by the
constructor application (square vside), in which case s names vside in the body
of the match clause. Similarly, the pattern (rectangle w h) matches a value
constructed by (rectangle vwidth vheight), where w names vwidth and h names
vheight . The triangle pattern is handled similarly.

Some other nice illustrations of the conciseness of pattern matching involve
the ELM language. Figure 10.26 presents a complete ELM evaluator based on
pattern matching. The twelve lines of code are easy to understand and analyze.
A compelling use of nested patterns is in the crude algebraic simplifier for ELM
expressions in Figure 10.27. The second match clause in the simp procedure
expresses that literals and argument references are self-evaluating (i.e., they
simplify to themselves). The first clause simplifies an arithop by simplifying
the arguments and then attempting to further simplify the resulting arithop.
simp-arithop handles six special cases. The first four clauses express that zero
is an identity for addition and one is an identity for multiplication. The next two
clauses capture that multiplication by zero yields zero.4 In order to appreciate
the succinctness of pattern matching, the reader is encouraged to re-express the
simp procedure in a version of FL that does not support pattern matching.

All the examples seen so far are “well-typed” in the sense that the discrimi-
nant of the match is “expected” to be a particular type (e.g., a list of integers,
a shape, an ELM expression) and the results of all the clause bodies in a given
match have the same type. But in a dynamically typed language, match is not

4This is not a safe transformation when the other subexpression contains a dynamic error!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

468 CHAPTER 10. DATA

(define (simp exp)

(match exp

((arithop p r1 r2) (simp-arithop (arithop p (simp r1) (simp r2))))

(x x)))

(define (simp-arithop exp)

(match exp

((arithop ’+ (lit 0) x) x)

((arithop ’+ x (lit 0)) x)

((arithop ’* (lit 1) x) x)

((arithop ’* x (lit 1)) x)

((arithop ’* (lit 0) _) (lit 0))

((arithop ’* _ (lit 0)) (lit 0))

(_ exp)))

Figure 10.27: An algebraic simplifier for ELM expressions.

required to have this behavior, as indicated by the following example:

(define (dynamic x)

(match x

((0 #f)

(#t ’zero)

(’one 17))))

In Chapter ??, we will study a statically typed version of FL in which dynamic

will not be a legal procedure. However, all the other match examples above will
still be legal.

10.5.2 A Desugaring-based Semantics of match

In order to motivate the structure of the desugaring of match, which is rather
complex, we will incrementally develop the desugaring in the context of some
concrete match examples rather than simply presenting the final desugaring. We
begin with the bool->int procedure from the previous subsection:

(define (bool->int b)

(match b

(#f 0)

(#t 1)))

It would be natural to desugar the match in bool->int into a series of if

expressions:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 469

(define (bool->int b)

(if (equal? b #f)

0

(if (equal? b #t)

1

(error no-match))))

The case where b is not a boolean is handled by an explicit error expression
indicating that the value of the discriminant did not match the pattern of any
match clause.

In general, the discriminant of a match will be an arbitrary expression whose
value should be calculated only once. To avoid recalculation of the discriminant,
our match desugaring first names the discriminant (using let) and then performs
a case analysis on the name. As shown in Exercise 10.19, this name can be
eliminated when it is not necessary. For example, in bool->int, the discriminant
is already bound to the variable b. Here is a revised desugaring for bool->int
that names the discriminant:5

(define (bool->int b)

(let ((disc b))

(if (equal? disc #f)

0

(if (equal? disc #t)

1

(error no-match)))))

Whenever a mismatch between a pattern and a value is discovered, the
matching process should stop processing the pattern in the current match clause
and begin processing the pattern in the next match clause. When we study the
desugaring of tagged patterns later, we will see that such a mismatch may be
discovered at many different points in the processing of a given pattern. To avoid
replicating the code that begins processing the pattern in the next match clause,
our desugaring will wrap this code into a failure thunk that may potentially
be invoked from several different points in the desugared code. Here is a version
of the desugaring for bool->int that includes failure thunks named fail1 and
fail2:

5In the examples, all new identifiers introduced by the desugaring are assumed to be fresh
so they do not clash with any program variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

470 CHAPTER 10. DATA

(define (bool->int b)

(let ((disc b))

(let ((fail1 (lambda ()

(let ((fail2 (lambda () (error no-match))))

(if (equal? disc #t)

1

(fail2))))))

(if (equal? disc #f)

0

(fail1)))))

In the simple match within bool->int, each failure thunk is invoked exactly
once. But soon we will see examples in which the failure thunk is invoked
multiple times. In the case where the failure thunk is invoked zero or one times,
it is possible for the desugarer to avoid introducing a named failure thunk. We
leave this as an exercise.

The discussion so far leads to a first cut for the match desugaring shown in
Figure 10.28. The desugaring of match is performed by Dmatch. For simplicity,
we assume that all match constructs are first eliminated by Dmatch in a separate
pass over the program before other FL desugarings are performed. It is possible
to merge all desugarings into a single pass, but that would make the description
of the match desugaring more complex.

Dmatch[[(match Edisc (P1 E1) ... (Pn En))]] =
(let ((Idisc Edisc)) ; Idisc fresh

(Dclauses [P1 , . . . ,Pn] [E1 , . . . ,En] Idisc))

Dclauses [] [] Idisc =(error no-match)

Dclauses (P1 . Prest*) (E1 . Erest*) Idisc =
(let ((Ifail (lambda () ; Failure thunk: if P1 doesn’t match, try the other clauses

(Dclauses Prest* Erest* Idisc))))
(Dpat[[P1]] Idisc E1 Ifail))

Dpat[[L]] Idisc Esucc Ifail = (if (equalL Idisc L) Esucc (Ifail))
Dpat[[_]] Idisc Esucc Ifail = To be added
Dpat[[I]] Idisc Esucc Ifail = To be added
Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail = To be added

Figure 10.28: A first cut of the match desugaring.

Dmatch first introduces the fresh name Idisc for the value of the discrimi-
nant expression Edisc and then processes the match clauses via Dclauses. The

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 471

Dclauses function takes three arguments: (1) a list of clause patterns, (2) a list
of clause body expressions, and (3) the identifier naming the discriminant. The
third argument allows the desugarer to refer to the discriminant by its identifier
when processing the clauses. The Dclauses function uses Dpat to process the first
pattern and body expression in a context where the fresh identifier Ifail names
the failure thunk that processes the rest of the clauses. When no clauses re-
main, the desugarer yields an error expression that will be reached only when
the desugared code for processing the clauses finds no pattern that matches the
discriminant.

The core of the match desugaring is the Dpat function. This takes four ar-
guments: (1) the pattern being matched, (2) the identifier naming the discrim-
inant, (3) the success expression that is evaluated when the pattern matches
the discriminant, and (4) the name of the failure thunk that is invoked when
the pattern does not match the discriminant. A literal pattern is an easy case.
The desugared code first compares the literal and discriminant via the equality
operator equalL . In a dynamically typed language, equalL is just the generic
equality-testing procedure equal?, but when desugaring match in a statically
typed language (as in Section 15.5), the equality operator equalL depends on
the domain of the literal L. If the literal and discriminant are the same, the
success expression is evaluated; otherwise, the failure thunk is invoked, which
will either process the next match clause (if there is one) or signal a no-match

error (if there is no next clause).

The literal case is the only Dpat case that is needed to explain the bool->int
desugaring. The desugarings for the other three types of patterns (wildcards,
identifiers, and tagged lists) are not shown in Figure 10.28 but will be fleshed
out in the following discussion.

We first consider the wildcard pattern, as used in the negate procedure:

(define (negate s)

(match s

(’yes ’no)

(’no ’yes)

(_ ’unknown)))

The wildcard pattern always matches the discriminant, so the desugarer can
simply emit the success expression for this case:

Dpat[[_]] Idisc Esucc Ifail = Esucc

The result of desugaring the match expression within the negate procedure is:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

472 CHAPTER 10. DATA

(define (negate s)

(let ((disc s))

(let ((fail1

(lambda ()

(let ((fail2

(lambda ()

(let ((fail3 (lambda ()

(error no-match))))

’unknown))))

(if (equal? disc ’no) ’yes (fail2))))))

(if (equal? disc ’yes) ’no (fail1)))))

It turns out that fail3 can never be referenced, so the subexpression:

(let ((fail3 (lambda () (error no-match))))

’unknown)

could simply be replaced by ’unknown. This optimization could be performed
by the desugarer itself or by a post-desugaring optimization pass (see Exer-
cise 10.19.)

The case of patterns that are identifiers is similar to the wildcard case, except
that the success expression must be evaluated in an environment where the
identifier name is bound to the value of the discriminant:

Dpat[[I]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)

As an example, consider the squarish procedure introduced above:

(define (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

After desugaring the match expression within squarish, the procedure becomes:

(define (squarish n)

(let ((disc (* n n)))

(let ((fail1

(lambda ()

(let ((fail2 (lambda () (error no-match))))

(let ((x disc))

(+ x 1))))))

(if (equal? disc 1)

0

(fail1)))))

As in the negate example, the creation of the innermost failure thunk can be
eliminated by an optimization (see Exercise 10.19). Note that the binding of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 473

the discriminant to an identifier is significant here: (* n n) would otherwise be
evaluated twice. If the discriminant expression performed any side effects, this
would be a semantic issue as well as an efficiency concern.

The last case for Dpat is a tagged list pattern of the form (I P1 ... Pn).
Recall that I in this case is some sort of constructor procedure, such as cons or
triangle in the pattern matching examples. Handling this case is tricky because
it requires decomposing a constructed value into parts and recursively matching
the subpatterns P1 . . . Pn against these parts. It turns out that deconstructor
procedures are an excellent way to deal with tagged list patterns:

Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail =
(I./~ Idisc

(lambda (I1 ...In) ; Fresh identifiers for components.
; Match the component parts of the constructed value.
(Dpats [P1 , . . . ,Pn] [I1 , . . . , In] Esucc Ifail))

Ifail)

Dpats [] [] Esucc Ifail = Esucc
Dpats (P1 . Prest*) (I1 . Irest*) Esucc Ifail =
Dpat[[P1]] I1 (Dpats Prest* Irest* Esucc Ifail) Ifail

The Dpat function processes a tagged list pattern (I P1 ... Pn) by emitting
code that invokes the deconstructor associated with I on the discriminant value
denoted by Idisc, a success expression (call it Epats) constructed by Dpats, and
the current failure thunk, denoted by Ifail . The Epats expression is constructed
by recursively matching the patterns P1 . . .Pn against the components denoted
by I1 . . . In relative to the initial success expression Esucc and the failure thunk
Ifail . Observe that Ifail is the same for all invocations of Dpat and Dpats in
the processing of a single match clause, and that this Ifail denotes the failure
thunk that processes the rest of the match clauses. This means that should
there be any mismatch between the patterns and component values when Epats

is evaluated at run-time, Ifail will be invoked, terminating the attempt to match
the current match clause against the discriminant, and starting to match the
next match clause against the discriminant. On the other hand, if no mismatch
is found when Epats is evaluated, then the initial success expression Esucc will be
evaluated in a context where all pattern variables are bound to the appropriate
component values.

As concrete examples of desugaring tagged list patterns, we will study the
desugarings of match within the match-ints-1, and match-ints-2 procedures
presented earlier. Recall that match-ints-1 was defined as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

474 CHAPTER 10. DATA

(define (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

Here is a version of match-ints-1 in which the match expression has been
desugared:

(define (match-ints-1 ints)

(let ((disc ints))

(let ((fail1 (lambda ()

(let ((fail2 (lambda ()

(error no-match))))

17))))

(cons~ disc

(lambda (v1 v2)

(let ((x v1))

(null~ v2

(lambda () (* x x))

fail1)))

fail1))))

If the value denoted by ints and disc is a singleton list, then the cons~ and
null~ deconstructors will both succeed, and (* x x) will be evaluated in an
environment where x is bound to the single element (denoted by x and v1). If
the discriminant is not a singleton list, then one of cons~ or null~ will invoke the
failure continuation fail1, which returns the 17 specified in the second clause.

The code generated by the desugarer for match-ints-1 is inefficient in many
respects. By making the desugarer cleverer and/or transforming the result of
the desugarer by a simple optimizer, it is possible to generate the following more
compact and efficient code:

(define (match-ints-1 ints)

(let ((fail1 (lambda () 17)))

(cons~ ints

(lambda (v1 v2)

(null~ v2

(lambda () (* v1 v1))

fail1))

fail1)))

As a second example of desugaring tagged list patterns, reconsider match-ints-2:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 475

(define (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

The match desugaring functions yield the desugared definition in Figure 10.29.
Everything is the same as the desugaring for match-ints-1 except that the
failure thunk fail1 now corresponds to matching the second and third clauses
of the match within match-ints-2 and the failure thunk fail2 now corresponds
to matching the third clause. Note how the desugaring guarantees that the
expression (+ y (length ns)) is evaluated in an environment that contains
correct bindings for the two names y and ns. Also observe that the second
clause pattern (cons 3 (cons y ns)) can fail to match the discriminant for
three distinct reasons, all of which cause the invocation of the failure thunk
fail2:

1. the discriminant disc is not a pair;

2. the discriminant disc is a pair whose first element v3 is not 3;

3. the discriminant disc is a pair whose first element v3 is 3 but whose second
element v4 is not a pair.

In general, a failure thunk is only invoked in two situations: (1) a literal is
not equal to the value it is matched against or (2) a deconstructor invokes the
failure thunk as its failure continuation when the discriminant does not match
the associated constructor.

With the handling of tagged lists, we have completed the presentation of
the desugaring of match. Whew! The complete desugaring rules for match are
presented in Figure 10.30. Recall that we assume the usual FL desugaring is
performed on the expression resulting from the match desugaring.

We have presented an approach to pattern matching based on desugaring and
deconstructors. But this is by no means the only way to specify or implement
pattern matching. For instance, the dynamic semantics for the core language
of SML [MTHM97] treats pattern matching as a fundamental language feature
that is explained via operational semantics rules. Whereas the deconstructor-
based desugaring requires linearly testing the match clauses one-by-one in order,
the SML definition does not imply a particular implementation. Indeed, there
are clever implementations of ML pattern matching that can greatly reduce the
number of tests that need to be performed [JM88].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

476 CHAPTER 10. DATA

(define (match-ints-2 ints)

(let ((disc ints))

(let ((fail1

(lambda ()

(let ((fail2

(lambda ()

(let ((fail3 (lambda ()

(error no-match))))

17))))

(cons~ disc

(lambda (v3 v4)

(if (equal? v3 3)

(cons~ v4

(lambda (v5 v6)

(let ((y v5))

(let ((ns v6))

(+ y (length ns)))))

fail2)

(fail2))))

fail2))))

(cons~ disc

(lambda (v1 v2)

(let ((x v1))

(null~ v2

(lambda () (* x x))

fail1)))

fail1))))

Figure 10.29: The result of desugaring match in match-ints-2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 477

Dmatch[[(match Edisc (P1 E1) ... (Pn En))]] =
(let ((Idisc Edisc)) ; Idisc fresh

(Dclauses [P1 , . . . ,Pn] [E1 , . . . ,En] Idisc))

Dclauses [] [] Idisc =(error no-match)

Dclauses (P1 . Prest*) (E1 . Erest*) Idisc =
(let ((Ifail ; Ifail fresh

(lambda () ; Failure thunk: if P1 doesn’t match, try the other clauses
(Dclauses Prest* Erest* Idisc))))

(Dpat[[P1]] Idisc E1 Ifail))

Dpat[[L]] Idisc Esucc Ifail = (if (equal? Idisc L) Esucc (Ifail))
Dpat[[_]] Idisc Esucc Ifail = Esucc
Dpat[[I]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)
Dpat[[(I P1 ... Pn)]] Idisc Esucc Ifail =
(I./~ Idisc

(lambda (I1 ...In) ; Fresh identifiers for components.
; Match the component parts of the constructed value.
(Dpats [P1 , . . . ,Pn] [I1 , . . . , In] Esucc Ifail))

Ifail)

Dpats [] [] Esucc Ifail = Esucc
Dpats (P1 . Prest*) (I1 . Irest*) Esucc Ifail =
Dpat[[P1]] I1 (Dpats Prest* Irest* Esucc Ifail) Ifail

Figure 10.30: The final version of the match desugaring

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

478 CHAPTER 10. DATA

¤ Exercise 10.15 Define the free identifiers of a match expression directly (i.e.,

without desugaring it). ¢

¤ Exercise 10.16 Extend the match desugaring to directly handle record and oneof
patterns. As an example of such patterns, consider the following alternative definition
of the perimeter procedure.

(define (perim shape)

(match perim

((one square (record (side s)))

(* 4 s))

((one rectangle (record (width w) (height h)))

(* 2 (+ w h)))

((one triangle (record (side1 s1) (side2 s2) (side3 s3)))

(+ s1 (+ s2 s3)))

)) ¢

¤ Exercise 10.17 Extend the match desugaring to handle list patterns like those
in the following procedure:

(define (match-list ints)

(match ints

((list x) (+ x 1))

((list _ y) (* 2 y)

((list x y 3) (* x y))

(_ 0)

))

For example:

(match-list (list)) −−−FL→ 0

(match-list (list 4)) −−−FL→ 5

(match-list (list 7 8)) −−−FL→ 16

(match-list (list 5 4 3)) −−−FL→ 20

(match-list (list 3 4 5)) −−−FL→ 0

(match-list (list 1 2 3 4)) −−−FL→ 0 ¢

¤ Exercise 10.18 Consider the following procedure for removing duplicates from a
sorted list of integers:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 479

(define (remove-dups sorted-list)

(match sorted-list

((cons x (cons y zs))

(if (= x y)

(remove-dups (cons y zs))

(cons x (remove-dups (cons y zs)))))

(_ sorted-list)

))

Matching with nested tagged list patterns helps to extract the first two elements (x and
y) of a list with at least two elements. But it is inelegant to name the remainder of such
a list (zs) and to rebuild the tail of sorted-list via (cons y zs).

One way to avoid these problems is to use nested match constructs:

(define (remove-dups-2 sorted-list)

(match sorted-list

((cons x ys)

(match ys

((cons y _)

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)))

(_ sorted-list)

))

But this is verbose and requires duplication of the last match clause.
A more elegant approach is to introduce named patterns of the form (<-> I P).

When such a pattern is matched against a value v:

• if P matches v, then (<-> I P) also matches v, and the environment is extended
with a binding between I and v as well as with any bindings implied by the match
of P against v;

• if P does not match v, then (<-> I P) does not match v.

For example, with named patterns, remove-dups can be elegantly expressed as:

(define (remove-dups-3 sorted-list)

(match sorted-list

((cons x (<-> ys (cons y _)))

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)

))

Extend the match desugaring to handle named patterns and show the result of your

extended match desugaring for remove-dups-3. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

480 CHAPTER 10. DATA

¤ Exercise 10.19 Modify the match desugaring functions and/or define a post-
desugaring optimizer to make the desugared code more compact and efficient. You
should handle at least the following optimizations:

• Optimize unnecessary renamings of the form (let ((I1 I2)) ...). E.g., the
expression (let ((x v1)) (* x x)) should be replaced by (* v1 v1).

• Eliminate the creation of failure thunks that are never used. E.g., the expression
(let ((fail (lambda () E1))) E2) should be replaced by E2 if fail is not
free within E2 .

• Eliminate the naming of failure thunks that are referenced only once. The single
reference should be replaced by the lambda expression itself. E.g., the expression

(let ((fail E1)) (cons~ E2 E3 fail))

should be replaced by (cons~ E2 E3 E1).

• Optimize the invocation of a manifest thunk. E.g., ((lambda () E)) should be
replaced by E. ¢

10.5.3 Views

While the deconstructor-based desugaring of pattern matching may be inher-
ently inefficient compared to other approaches, it provides an important advan-
tage in expressiveness for the programmer. In languages like ML and Haskell,
sum-of-product datatypes can only be deconstructed by referencing the construc-
tor in a pattern context. But using match, programmers can define arbitrary
deconstructors from scratch and use them in patterns.

As an example, consider the snoc6 procedure, which postpends an element
to the back of a list:

(define (snoc xs x)

(if (null? xs)

(list x)

(cons (car xs) (snoc (cdr xs) x))))

It is often handy to have a deconstructor corresponding to snoc that decomposes
a non-empty list L into two values: the list of all elements in L excluding the last,
and the last element L. This can be expressed with the following deconstructor7:

6So-called because it is a “backwards cons.”
7An alternative approach to defining snoc~ would be to express it in terms of two auxiliary

procedures, one of which returns all but the last element of a non-empty list and the other
of which returns the last element of a non-empty list. In such a definition, snoc~ would walk
over the given list twice. The definition given above effectively uses the success continuation
to return multiple values and only walks over the given list once.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 481

(define (snoc~ xs succ fail)

(if (null? xs)

(fail)

(if (null? (cdr xs))

(succ nil (car xs))

(snoc~ (cdr xs)

(lambda (but-last last)

(succ (cons (car xs) but-last) last))

(lambda () (error cant-fail))))))

For example:

(snoc~ (list 1 2 3)

(lambda (ns n) (cons n ns))

(lambda () nil)) −−−FL→ [3 , 1 , 2]

Because of the way the match desugaring is defined, it is possible to invoke
snoc~ by referencing snoc in a pattern context. For example, here is a compact
definition of a quadratic time list reversal procedure using snoc~ via pattern
matching:

(define (reverse xs)

(match xs

((null) xs)

((cons _ (null)) xs)

((snoc ys y) (cons y (reverse ys)))))

The ability to choose from multiple deconstructors when decomposing a data
structure characterizes what is known as a views facility, so-called because it
allows a compound data value to be viewed from different perspectives depending
on the context [Wad87]. For example, among the many possible views of a non-
empty length-n list are

• the cons view: the list is the first element prepended onto a list containing
elements 2 through n.

• the snoc view: the list is the nth element postpended onto the sublist
containing the elements 1 through (n− 1).

• the split view: a list is the result of appending a left sublist (elements 1
through dn/2e) and a right sublist (elements dn/2e+ 1 through n).

• the interleave view: a list is the result of interleaving a list containing
all the odd-indexed elements with a list containing all the even-indexed
elements.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

482 CHAPTER 10. DATA

• the join view: the list is the result of sandwiching element dn/2e between
a left sublist (elements 1 through dn/2e − 1) and a right sublist (elements
dn/2e+ 1 through n).

These views show up in many standard list algorithms. For instance, the
interleave (or split) view is at the heart of a mergesort algorithm for sorting
lists:

(define (mergesort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((interleave ms ns) ; Could decompose with split as well

(merge (mergesort ms) ; merge left as an exercise

(mergesort ns)))))

In addition to allowing compound data to be decomposed via pattern match-
ing in different ways in different contexts, the views facility provided by user-
defined deconstructor procedures helps to overcome a key drawback of ML and
Haskell style pattern matching: the lack of abstraction in patterns. While
such patterns are wonderful for concisely specifying algorithms that manipulate
sum-of-product data, the fact that they expose concrete implementation details
hinders program development by making it difficult to change the implementa-
tion of data abstractions.

As an example of the sort of flexibility lost with ML-style patterns, consider
a simple implementation of binary trees with integers stored in the nodes:

(define (node num left right) (product num left right))

(define (leaf) unit)

(define (leaf? t) (unit? t))

(define (val t) (proj 1 t))

(define (left t) (proj 2 t))

(define (right t) (proj 3 t))

Given these basic tree manipulation primitives, we can define many other tree
procedures. For example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 483

(define (sum t)

(if (leaf? t)

0

(+ (val t)

(+ (sum (left t))

(sum (right t))))))

(define (height t)

(if (leaf? t)

0

(+ 1 (max (height (left t))

(height (right t))))))

Suppose we wish to modify this implementation so that each node addi-
tionally keeps track of its height. This can be accomplished with only minor
changes:

(define (node num left right)

(product num left right

(+ 1 (max (height left)

(height right)))))

(define (height t) (proj 4 t))

No other changes need to be made. In particular, procedures like sum that do
not use the height remain unchanged.

Now instead suppose that we used sum-of-products data and pattern match-
ing to implement the initial version of trees, where nodes did not maintain their
height (Figure 10.31).

Let’s now modify the nodes so that they maintain a height component. If
we want node to remain a three-argument procedure, in an ML-style system, we
must give a different name (say, hnode) to the constructor that takes a fourth
argument, the height. In every pattern that uses node, we must change the
constructor name to hnode and add an extra pattern to account for the height
component (Figure 10.32).

It might seem easy to make these changes. But suppose we have hundreds
of tree procedures in our program that needed to be changed in this manner. It
would be tedious and error-prone to make the change everywhere — so much so
that we might avoid making such representation changes. The concrete nature
of ML-style patterns thus stands in the way of a software engineering principle
that dictates that programming languages should be designed in such a way to
facilitate changing representations.

A view mechanism like explicit deconstructors addresses this issue. When

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

484 CHAPTER 10. DATA

(define-data int-tree

(leaf)

(node val left right))

(define (sum t)

(match t

((leaf) 0)

((node v l r) (+ v (sum l) (sum r)))))

(define (height t)

(match t

((leaf) 0)

((node v l r)

(+ 1 (max (height l) (height r))))))

Figure 10.31: Integer binary trees expressed via define-data and match.

we introduce hnode, in addition to defining a new node procedure that has the
same meaning as the old node constructor, we can also define a new node~

deconstructor:

(define (node~ val succ fail)

(match val

((leaf) (fail))

((hnode v l r h) (succ v l r))))

With this deconstructor, the original definition of sum that used node in its
match clause need not be modified even though the representation of nodes has
changed. In this way, user-defined deconstructors (and view facilities in general)
facilitate representation changes to programs.

¤ Exercise 10.20 Define the list deconstructors split~, interleave~, and join~

described in the discussion on views. Give examples of algorithms where such views are

helpful. ¢

¤ Exercise 10.21 Define a partition~ deconstructor for a non-empty list of integers
L that decomposes it into three parts:

a. the first element of L (known as the pivot);

b. a list of all elements in the tail of L less than or equal to the pivot (with the same
relative order as in L);

c. a list of all elements in the tail of L that are strictly greater than the pivot (with
the same relative order as in L).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 485

(define-data int-tree

(leaf)

(hnode val left right height))

(define (node v l r)

(+ 1 (max (height l) (height r))))

(define (sum t)

(match t

((leaf) 0)

((hnode v l r _) (+ v (sum l) (sum r)))))

(define (height t)

(match t

((leaf) 0)

((hnode v l r h) h)))

Figure 10.32: Adding a height component requires changing all node patterns.

Using your partition~, it should be possible to define the quicksort algorithm for
sorting lists:

(define (quicksort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((partition pivot lesses greaters)

(append (quicksort lesses)

(cons pivot (quicksort greaters)))))) ¢

¤ Exercise 10.22 The convention of naming deconstructors by extending the con-
structor name with the suffix “~” is really just a crude but simple way of associating a
deconstructor with a constructor. Here we consider an alternative way to specify this
association.

Suppose that FL is extended with a declaration construct, define-constructor,
that associates a constructor name with two procedures: a constructor and its associated
deconstructor. Using this construct, new list constructors kons and knull could be
specified as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

486 CHAPTER 10. DATA

(define-constructor kons

(lambda (elt lst) (pair elt lst)) ; Constructor

(lambda (val succ fail) ; Deconstructor

(if (pair? val)

(succ (left pair) (right pair))

(fail)))

)

(define-constructor knull

(lambda () #u) ; Constructor

(lambda (val succ fail) ; Deconstructor

(if (unit? val) (succ) (fail)))

)

The intention is that the name declared by define-constructor can be used within
expressions to denote the constructor procedure and within patterns to denote the
deconstructor procedure. Sometimes it is necessary to access to the deconstructor pro-
cedure within an expression; for this case, FL is also extended with a new expression
(decon I) that accesses the “deconstructor part” of I. For example:

(kons 1 (kons 2 (knull))) −−−FL→ [1 , 2]

(match (kons 1 (kons 2 (knull)))

((kons x (kons y (knull))) (+ x y))) −−−FL→ 3

((decon kons) (kons 1 (kons 2 (knull)))

(lambda (hd tl) (kons hd (kons hd tl)))

(lambda () (kons 5 (knull))) −−−FL→ [1 , 1 , 2]

((decon kons) (knull)

(lambda (hd tl) (kons hd (kons hd tl)))

(lambda () (kons 5 (knull))) −−−FL→ [5]

The match desugaring for this extended version of FL is the same as before except that
within Dpat, the occurrence of I./~ is replaced by (decon I).

a. One way to model the semantics of (define-constructor I E1 E2) is to say
that it binds the name I to the pair of values that result from evaluating E1 and
E2 . Extend the denotational semantics of FL to reflect this model, and explain
(1) the meaning of define-constructor, (2) the invocation of constructors, and
(3) the semantics of decon.

b. Another way to model the semantics of (define-constructor I E1 E2) is to
say that the extended version of FL has two namespaces: one for “normal”
values (including constructors) and one for deconstructors. Extend the deno-
tational semantics of FL to reflect this model, and explain (1) the meaning of
define-constructor, (2) the invocation of constructors, and (3) the semantics
of decon.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

10.5. PATTERN MATCHING 487

c. What are the benefits and drawbacks of using define-constructor and decon

vs. the convention of naming deconstructors with a ~? ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

488 CHAPTER 10. DATA

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 11

Concurrency

When you come to a fork in the road, take it.

— Yogi Berra

11.1 Motivation

Thus far, all of the languages we have discussed have been characterized by a
single locus of control that flows through a program in a deterministic fashion.
Assuming all inputs are known in advance, there is only one path that control
can take through the program. This single thread of control can be viewed as a
time line along which all operations performed by the computation are arranged
in a total order. For example, a computation that sequentially performs the
operations A, B, C, and D can be depicted as the following total order:

. . .→ A→ B → C → D → . . .

X → Y means that X is performed before Y .
Control can be visualized as a token that resides on the edges of such a

diagram and moves according to a set of rules. In a simple diagram like the one
above, the only rule is that a token on the input edge to an operation can pass
through the operation and end up on its output edge. This step corresponds
to performing the operation. The path taken by control can be notated by the
sequence of observable actions it performs. If we assume that all operations are
observable, the path taken in this case is ABCD. In the languages we have
considered so far (even those with conditional branching, non-local exits, and
exception handling), every program, given a particular input, has exactly one
sequential control path.

489

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

490 CHAPTER 11. CONCURRENCY

Purely sequential orderings are too rigid for describing all of the computa-
tions we might like to specify. Sometimes it is desirable to specify a relative
order between some operations but leave the ordering of other operations un-
specified. Here is a sample partial order that declares that A precedes B and C
precedes D, but does not otherwise constrain the operation order:

→ fork join→¡¡

@@

A→ B

C → D

@@

¡¡

The diagram introduces two new nodes labeled fork and join. The purpose of
these nodes is to split and merge control paths in such a way that a computation
has a distinguished starting edge and a distinguished ending edge.

The rules governing how control moves through fork and join nodes are
different from the rules associated with the labeled operations. In one step, a
control token on the input edge of a fork node splits into two subtokens on the
output edges of the node. Each subtoken independently moves forward on its
own branch. When tokens are on both input edges of a join node, they merge
into a single token on the output node. If only one input edge to a join has a
token, it cannot move forward until the other edge contains a token. Any node
like join that forces one control token to wait for another is said to synchronize
them.

Together, a control token and the sequential subpath along which it moves
are called a thread. Although fork splits a single thread into two, it is common
to view the original thread as continuing through one branch of the fork and a
new thread as originating on the other branch of the fork.

Programs that may exhibit more than one thread of control are said to
be multi-threaded or concurrent. The interesting feature of concurrency is
that multiple threads represent a partially ordered notion of time. Concurrent
programs are non-deterministic in the sense that control can flow through
them in more than one way. Non-determinism at the level of control is often
exhibited as non-determinism at the level of program behavior: it is possible
for a single program to yield different answers on different executions. While
it is possible to add non-determinism to a purely sequential language1, non-
determinism is most commonly associated with concurrent languages.

1As an example, consider a (choose E1 E2) form that randomly chooses to return the
value of E1 or E2 .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.1. MOTIVATION 491

Suppose that on any step of a multi-threaded computation, only one control
token is allowed to move.2 Then a particular execution of a concurrent program
is associated with the sequence of its observable actions, known as its inter-
leaving. The behavior of the concurrent program is the set of all possible
interleavings that can be exhibited by the program. For example, assuming that
all operations (except for fork and join) are observable, then the behavior of the
branching diagram above is:

{ABCD, ACBD, ACDB, CABD, CADB, CDAB}

The behavior of a concurrent program may be the empty set (no interleavings
are possible), a singleton set (exactly one interleaving is possible), or a set with
more than one element (many interleavings are possible).

We will distinguish concurrency from parallelism.3 In our terminology,
concurrency refers to any model of computation supporting partially ordered
time. In contrast, we use parallelism to refer to hardware configurations that
are capable of simultaneously executing multiple threads on multiple physical
processors. Thus, concurrency is a semantic notion and parallelism is a prag-
matic one. A concurrent program may be executed by time-slicing its threads on
a single processor, or by executing each thread on a separate physical processor.

Concurrent programming languages are important for several reasons:

• Modularity: Multiple threads can be simulated in a sequential language
by interleaving code fragments or by explicitly managing the transfer of
control between program parts. Concurrent languages reap modularity
benefits by abstracting over these idioms. They enhance modularity by
permitting threads to be specified as separate entities that interact with
each other via communication and synchronization. They also separate the
specification of the threads from policy issues (such as scheduling threads
or allocating threads to processors).

For example, consider the interaction between the processor(s) of a com-
puter and its numerous input/output devices (keyboards, mice, disks, tape
drives, networks, video displays, printers, plotters, etc.). Writing a mono-
lithic program to control all these devices would be a recipe for disaster.
Such a program would be hard to understand and modify. In contrast,
representing the controller for each device as a separate thread improves
readability and facilitates the modification of existing controllers as well
as the addition of new ones.

2There are concurrent models in which multiple control tokens can move in a single step,
but we shall not consider these.

3While there is much disagreement about the definition of these terms in the programming
languages community, we will strive to use them consistently here.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

492 CHAPTER 11. CONCURRENCY

• Specifying Parallelism: Concurrent languages allow programmers to de-
clare which parts of programs can safely be run in parallel on multiple
processors or time-sliced on a single processor. Language implementations
can use this information to take advantage of the available hardware.

• Modelling: The real world can be viewed as a collection of interacting
agents. Concurrent languages are natural for simulating the world, because
they allow each agent to be represented as a thread.

• New programming paradigms: Concurrent languages support programming
paradigms that are cumbersome to express in sequential languages. Con-
sider event-based systems, in which entities generate and respond to events.
Such systems are more straightforward to express in concurrent languages
than sequential languages.

11.2 Threads

We will explore concurrency by providing a precise semantics for a multi-threaded
variant of FL!. It is fairly simple to provide an operational semantics for concur-
rency, and we will use the SOS framework to do so. The reason that operational
semantics approaches to concurrency are the easiest is that they simply incor-
porate the inherent ambiguity about process interleaving into rules, and an SOS
semantics can derive alternative meanings for a program based upon your choice
of transition ordering. An operational semantics does not necessarily give you
any help to find transition orderings that will yield all of the unique meanings
for a given program.

An alternative, more complex approach to modeling concurrency is to treat
the meaning of a program as the set of all possible answers the program can
compute. A denotational semantics of concurrency takes this approach. A de-
notational semantics represents the meaning of a concurrent program as a pow-
erdomain. A powerdomain of D is the set of all subsets of D. Thus, if D is the
set of integers, the powerdomain of D contains all possible sets of integers. A de-
notational approach considers all possible interleavings of program operations to
produce the meaning of a program. We will not pursue denotational approaches
to concurrency further because concurrency is readily described within the SOS
framework. Denotational approaches are complex because the functional nature
of denotational semantics is hard to adapt to a world where functions are one
to many, and interfering concurrent commands produce complex valuation func-
tion constructions. The interested reader can explore denotational approaches
to concurrency to see how they can be adapted to our discussion [Sch86a]).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.2. THREADS 493

11.2.1 MUFL!, a Multi-threaded Language

Our main vehicle for studying concurrency will be MUFL!, a Multithreaded
version of FL!. MUFL! is FL! extended with the following thread constructs:

E ::= ...| (fork E) | (join E) | (thread? E)

• (fork E): Creates a new thread to evaluate E and returns a unique
thread handle identifying the thread.

• (join E): E must evaluate to a thread handle t; otherwise, the expression
is an error. join waits for the thread t to compute a value and then returns
it. While join is waiting for t, the thread t ′ in which the join is executing
is said to be blocked.

join may be called more than once on the same thread. After the first
call to join returns with a value, that value is effectively memoized at the
thread handle for subsequent joins.

• (thread? E): tests whether the value of E is a thread, returning true if
it is and false otherwise.

join and thread? can actually be treated as new primitive operators, and we
will do so below in describing the semantics of these constructs. However, be-
cause fork returns before evaluating its operand, it must be a new special form.

We consider a few simple examples of the new constructs. (join (fork E))
is equivalent to E:

(join (fork (+ 1 2))) −−−−−MUFL!→ 3

A thread handle can be joined more than once:

(let ((c (cell 0)))

(let ((t (fork (begin (cell-set! c (+ 1 (cell-ref c)))

(cell-ref c)))))

(+ (join t) (join t)))) −−−−−MUFL!→ 2

Here is a procedure for summing the leaves of a binary tree that explores
subtrees concurrently:

(define tree-sum

(lambda (tree)

(if (leaf? tree)

(leaf-value tree)

(let ((thread1 (fork (tree-sum (left-branch tree))))

(thread2 (fork (tree-sum (right-branch tree)))))

(+ (join thread1) (join thread2))))))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

494 CHAPTER 11. CONCURRENCY

Without the forks and joins, the left-to-right operand evaluation order inher-
ited from FL! would specify that the sum of a left subtree be computed before
the right subtree is visited. The order would be overconstrained even if the let
expression were replaced by the result of substituting the fork expressions for
thread1 and thread2:

(+ (join (fork (tree-sum (left-branch tree))))

(join (fork (tree-sum (right-branch tree)))))

The reason is that the result of the first join would have to be computed before
control passed to the second join.

MUFL! programs can exhibit non-determinism. For example, suppose that
display prints (uninterruptably) a symbol, map maps a procedure over a list
to create a new one, and for-each performs a procedure on each element of a
list. Then the following jumble procedure may print any permutation of the
elements of its argument list before returning #u.

(define (jumble lst)

(for-each join

(map (lambda (obj) (fork (display obj)))

lst)))

For instance, (jumble ‘(a b c)) may print any of the six sequences abc, acb,
bac, bca, cab, cba.

The following choose procedure, which may return either one of its two
arguments, underscores the non-deterministic behavior of MUFL!:

(define (choose a b)

(let ((c (cell ’ignore)))

(let ((t (fork (cell-set! c a))))

(begin (cell-set! c b)

(join t)

(cell-ref c)))))

The final value returned by choose depends on the order in which the two cell
assignments are performed. This example exploits what is known as a race
condition. A race condition exists when two operations vie for the use of some
shared resource. In this case, there is contention for the use of the shared cell c,
and the thread that gets the cell last is the one that determines its value.

Threads introduce a new failure mode for programs: deadlock. Deadlock
describes a situation in which program execution cannot proceed because threads
are waiting for each other (or themselves) to complete. Consider the following
expression:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.2. THREADS 495

(let ((thread-cell (cell ’later)))

(begin

(cell-set! thread-cell

(fork (begin (join (cell-ref thread-cell))

1)))

(join (cell-ref thread-cell))))

The forked begin can only return 1 after the thread stored in thread-cell runs
to completion. But the thread stored in thread-cell is the one executing the
begin expression! Since the begin expression can never return, the final join
waits forever in a deadlocked state.

There is also a race condition in this example that shows why debugging
multi-threaded code can be very difficult. In this case, the fork begins the
execution of its begin expression while execution also procedes in the cell-set!.
If the cell-ref in the begin executes before the cell-set! completes, then the
join in the begin expression is an error. If the cell-set! expression wins the
race, then the example deadlocks. In fact, executions that contain the error may
also deadlock, depending on the precise semantics of errors and exceptions in
MUFL!.

11.2.2 An Operational Semantics for MUFL!

Given the subtleties introduced by concurrency, it is more important than ever
to precisely specify the semantics of programs. Here we introduce a complete
SOS for MUFL!. The SOS for MUFL! introduces two domains:

T ∈ Thread-Handle = Intlit
A ∈ Agenda = Thread-Handle → MixedExp

A thread handle is just an integer literal that serves as a unique identifier for
threads. An agenda is a partial function that maps a thread handle to an element
of MixedExp, the domain of intermediate expressions. We assume that the
grammar defining ValueExp for FLK! is extended to include a new intermediate
form, (*thread* T), that represents a first class thread handle value.

V ∈ ValueExp
V ::= . . . [Value Expressions]

| (*thread* T) [Thread Values]

Because an agenda is a partial function, it may be defined only on a subset
of thread handles. dom(A) is the notation for the set of inputs on which A is
defined. We will use the notation A∅ to stand for an agenda that is nowhere
defined and the notation A[T=M] to stand for an agenda that maps T to M
and maps every other T ′ in dom(A) to (A T ′). These notations are useful for
any partial function; in fact, we shall use them for stores as well as agendas.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

496 CHAPTER 11. CONCURRENCY

Suppose that Ttop is a distinguished thread handle for top-level MUFL!
expressions. Then an SOS for the MUFLK!, the MUFL! kernel, is

〈CF ,⇒ ,FC , IF ,OF 〉

where

CF = Agenda× Store
FC = 〈A[Ttop =V],S〉
IF = λE . 〈A∅[Ttop =E],S∅〉
OF = λ〈A[Ttop =V],S〉 . (output V)

(output (*thread* T)) = thread

(output V) = (outputFLK ! V) where V 6= (*thread* T)

In a configuration, the agenda keeps track of the evaluation of the expression
associated with each thread handle, while the store manages cell states. The
input function maps a top-level expression Etop to a configuration with an empty
store and an agenda whose only thread Ttop evaluates Etop . The transition rules
rewrite the configuration until the top-level expression is evaluated or no more
rules are applicable. If the top-level expression has been rewritten to a value
expression by this point, then a representation of this value is returned. If
the top-level expression is not a value and no more progress is possible, the
computation is deadlocked.

The transition rules for the MUFLK! SOS are summarized in Figure 11.1.
Each rule allows the one-step progress of the expression associated with a

single thread handle. In any configuration, at most one transition is possible at
a given thread handle. However, transitions may be possible at several thread
handles within one configuration, so the rules are non-deterministic.

The [fork] rule allocates a new thread handle for the body of the fork and
returns it to the thread containing the fork expression. fork is the only means
by which threads are created; there is no mechanism for destroying threads
(removing them from the agenda). The [join] rule indicates that the join of a
thread handle T ′ cannot proceed until the expression associated with T ′ has
progressed to a value. join is treated as a primop so that it is not necessary to
specify a progress rule for evaluating its operand. Similarly, thread? is handled
as a primop that determines whether its argument is a thread handle.

Figure 11.1 also presents two meta-rules for deriving MUFLK! rewrite
rules from the rewrite rules for FLK!. The [FLK!-axiom] meta-rule says that
any axiom for rewriting FLK! expressions can be applied to the expression of a
single MUFLK! thread. The [FLK!-progress] meta-rule similarly specifies how

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.2. THREADS 497

Rewrite Rules

〈A[T= (fork E)],S〉⇒ 〈A[T= (*thread* T ′)][T ′=E],S〉,
where T ′ 6∈ dom(A)

[fork]

〈A[T= (primop join (*thread* T ′))][T ′=V],S〉
⇒〈A[T=V][T ′=V],S〉 [join]

〈A[T= (primop thread? (*thread* T ′))],S〉
⇒〈A[T= #t],S〉 [thread?-true]

〈A[T= (primop thread? V)],S〉⇒ 〈A[T= #f],S〉,
where V is not of the form (*thread* T ′)

[thread?-false]

Meta-Rules

For each axiom
〈E,S〉⇒ 〈E ′,S ′〉

in the FLK! SOS, include the following axiom in the MUFLK! SOS:
〈A[T=E],S〉⇒ 〈A[T=E ′],S ′〉

[FLK!-axiom]

If X is an FLK expression context and X{E} is the result of filling
the hole of the context with E, then for each FLK! progress rule of
the form

〈E,S〉⇒ 〈E ′,S ′〉
〈X{E},S〉⇒ 〈X{E ′},S ′〉

include the following progress rule in the MUFLK! SOS:
〈A[T=E],S〉⇒ 〈A ′[T=E ′],S ′〉

〈A[T=X{E}],S〉⇒ 〈A ′[T=X{E ′}],S〉

[FLK!-progress]

Figure 11.1: Rewrite rules and meta-rules for MUFLK!.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

498 CHAPTER 11. CONCURRENCY

to derive MUFLK! progress rules from FLK! progress rules. Note that the
[FLK!-progress] meta-rule uses two agenda meta-variables, A and A ′. This is
necessary for handling antecedent transitions in which an inner fork extends
the agenda with a new thread. If instead A were used on both sides of the
antecedent transition, the effect of a fork nested within an expression could
never be propagated.

For deterministic languages like PostFix and FL!, behavior is defined as
the partial function that maps a program to the unique result determined by the
operational semantics. But in the presence of non-determinism, there may be
more than one result. So it is necessary to extend the notion of behavior to be a
relation between programs and results. Equivalently, we can define behavior as
a total function that maps programs to the powerset of results. In this approach,
behavior maps a program to the set of all the results that can be determined for
the program via the operational semantics.

As an example of the non-determinism of MUFL! programs, consider the
following expression:

(let ((c (cell 0)))

(let ((t (fork (cell-set! c 1))))

(begin (cell-set! c 2)

(join t)

(cell-ref c))))

The configuration representing the state of the computation after the allocation
of the cell and the thread handle is:

〈A∅[Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

(For convenience, we are being somewhat loose in our notation, allowing threads
to name expressions from the full MUFL! language rather than just kernel
expressions.) Figures 11.2 and 11.3 show two possible transition paths that can
be taken from this configuration. The first computes a final value of 1, while
the second computes a final value of 2. Since these are the only two possible
results, the behavior of the expression is {1, 2}.

11.2.3 Other Thread Interfaces

The fork/join mechanism introduced above is only one interface to threads.
Here we discuss some other approaches.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.2. THREADS 499

Transition Path 1:

〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1))

(cell-ref (*cell* L1)))]
[T1=(cell-set! (*cell* L1) 1)],

S∅[L1 =2]

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1)) (cell-ref (*cell* L1)))]
[T1 = #u],

S∅[L1 =1]〉

∗⇒〈A∅[Ttop = (cell-ref (*cell* L1))][T1 = #u],S∅[L1 = 1]〉

∗⇒〈A∅[Ttop = 1][T1 = #u],S∅[L1 = 1]〉

(OF 〈A∅[Ttop = 1][T1 = #u],S∅[L1 = 1]〉) = 1

Figure 11.2: Sample transition paths demonstrating the non-determinism of
MUFL! programs, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

500 CHAPTER 11. CONCURRENCY

Transition Path 2:

〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1=(cell-set! (*cell* L1) 1)],
S∅[L1 =0]〉

∗⇒〈A∅ [Ttop= (begin (cell-set! (*cell* L1) 2)

(join (*thread* T1))
(cell-ref (*cell* L1)))]

[T1 = #u],
S∅[L1 =1]〉

∗⇒〈A∅ [Ttop= (begin (join (*thread* T1)) (cell-ref (*cell* L1)))]
[T1 = #u],

S∅[L1 =2]〉

∗⇒〈A∅[Ttop = (cell-ref (*cell* L1))][T1 = #u],S∅[L1 = 2]〉

∗⇒〈A∅[Ttop = 2][T1 = #u],S∅[L1 = 2]〉

(OF 〈A∅[Ttop = 2][T1 = #u],S∅[L1 = 2]〉) = 2

Figure 11.3: Sample transition paths demonstrating the non-determinism of
MUFL! programs, Part II.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.2. THREADS 501

11.2.3.1 Other thread operations

Many concurrent languages support variants of fork and join. In some lan-
guages, a thread can be joined only once. In such languages, join has the effect
of destroying the thread from the agenda as well as synchronizing, and joining
a thread more than once is an error.

Some languages support other thread operations, such as destroying the
thread, suspending it (temporarily removing it from the agenda), and resuming
it (adding it back to the agenda). Sometimes there is a parent/child relationship
between the thread that contains the fork and the resulting thread. In this
case, thread operations on a parent can affect the children and vice versa. For
example, destroying a parent thread might also destroy all its descendants.

11.2.3.2 Thread Abstractions

There are many useful thread abstractions that can be built on top of fork
and join. For example, it is common to use fork and join to evaluate a
set of expressions concurrently and then manipulate their results when all are
finished. This idiom is captured in the cobegin construct, which is defined by
the following desugaring:

(cobegin E1 ... En)
= (let ((I1 (fork E1))

...

(In (fork En)))

(list (join I1) ... (join In)))

This version of cobegin returns a list of results, but other options are to return
the first value, last value, or the unit value.

A variant on cobegin is a colet construct that binds names to the results
of expressions that are computed concurrently:

(colet ((I1 E1) ... (In En)) Ebody)
= (let ((I1 (fork E1))

...

(In (fork En)))
(let ((I1 (join I1))

...

(In (join In)))

Ebody))

Using colet, the concurrent tree-sum example can be expressed as:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

502 CHAPTER 11. CONCURRENCY

(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(colet ((left-sum (tree-sum (left-branch tree)))

(right-sum (tree-sum (right-branch tree))))

(+ left-sum right-sum)))))

11.2.3.3 Futures

A future is a thread that is implicitly joined in any context that needs to
examine its value. (In the context of futures, join is usually called touch.)
Examples of such contexts are operands of strict primitives, the test position of
a conditional, and the operator position of a call. Futures are supported in a
number of Lisp dialects [Hal85, Mil87, For91].

Futures are created by the construct (future E). Using futures, the con-
current tree summation program can be expressed as:

(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(+ (future (tree-sum (left-branch tree)))

(future (tree-sum (right-branch tree)))))))

Futures are more modular than fork/join because it is possible to sprinkle
futures into a program without having to guarantee that joins are placed
wherever a future might be used. However, in a straightforward implementation,
every touching context must check whether or not a value is a future, and, if it
is, touch it. This overhead is similar to that incurred by memoization in lazy
evaluation.

11.2.3.4 Eager Evaluation

The similarity between futures and lazy evaluation suggests a parameter passing
mechanism in which every argument is implicitly wrapped in a future. This
mechanism is called eager evaluation. We will refer to it as call-by-eager
(CBE) by analogy with call-by-lazy. An example of a language supporting CBE
is Id, a mostly functional language designed to be run on parallel computers
[AN89].

Under CBE, an argument is evaluated concurrently with other arguments
and the body of the procedure. In contrast with CBL, which only evaluates an

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.3. COMMUNICATION AND SYNCHRONIZATION 503

argument if it is used in the body, CBE evaluates the argument whether or not
it is needed.

In a version of MUFL! with CBE parameter passing, the concurrent tree
summation program would be expressed as:

(define tree-sum

(lambda (tree)

(if (leaf? n)

(leaf-value n)

(+ (tree-sum (left-branch tree))

(tree-sum (right-branch tree))))))

Note that this program is indistinguishable from a program in CBV FL. CBE
removes inessential constraints governing evaluation order of expressions and
emphasizes that the only fundamental constraints are induced by data depen-
dencies.

An interesting feature of CBE is that a procedure may return before its
arguments have been evaluated. For example, suppose the following expression
is evaluated under CBE:

(begin (call (lambda (x) (display ’b))

(display ’a))

(display ’c))

Assuming display does not return until the output operation is successful, the
possible displayed outputs of this expression are abc, bac, and bca. In each
case, the fact that the procedure body must be fully evaluated before the call

returns forces b to be displayed before c. However, because the argument x is
never used within the body of the lambda, the a can be displayed at any time,
even after the procedure has returned.

11.3 Communication and Synchronization

Concurrent programs are often patterned after interacting entities in the real
world. Completely independent threads are inadequate for modelling the inter-
actions between such entities. Here we explore various ways in which threads
may interact. We focus on two kinds of interaction:

• Communication: Information computed by one thread often needs to be
transmitted to another thread.

• Synchronization: When concurrently executing threads share state, their
accesses and updates must often be carefully choreographed in order to
achieve a desired effect.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

504 CHAPTER 11. CONCURRENCY

11.3.1 Shared Mutable Data

Shared mutable data structures (like mutable cells and mutable variables) are
the most obvious mechanisms for inter-thread communication, but they are also
the ones with the most pitfalls. For example, suppose we want to define a counter
that can be incremented by several threads. A straightforward approach is to
define a cell and an associated incrementing procedure:

(define counter (cell 0))

(define increment!

(lambda ()

(begin (cell-set! counter (+ 1 (cell-ref counter)))

(cell-ref counter)))

But then concurrent threads can interact in some nasty ways through the shared
cell. For instance, what are the possible values of a call to the following MUFL!
procedure?

(define test-increment!

(lambda ()

(begin

(cell-set! counter 0)

(colet ((a (increment!))

(b (increment!)))

(+ a b)))))

If one call to increment! executes to completion before the other begins,
the value of this expression is 3. But other results are possible because the
execution of the two calls to increment! may be interleaved. The expression
can return a 2 if the first cell-ref within each increment! executes before
either cell-set!, and can return a 4 if both cell-set!s complete before either
of the second cell-refs within increment! are performed.

The problem here is that concurrency allows the internal operations of two
different calls to increment! to be interleaved. We often want procedures like
increment! to be atomic in the sense that they appear to execute indivisi-
bly with respect to other computations that manipulate the same shared state.
Without some means of guaranteeing atomicity, mutable data is not generally
a reliable communication mechanism between threads. Even simple primitives
like cell-set! and cell-refmay not be atomic, further complicating reasoning
about threads that interact via shared mutable data.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.3. COMMUNICATION AND SYNCHRONIZATION 505

11.3.2 Locks

The goal of atomicity is to constrain concurrency to avoid undesirable inter-
leaving. Atomicity can be achieved by introducing a lock that guards access to
a logical collection of shared mutable data elements. Typically, a lock can be
“owned” by a single thread in such a way that another thread cannot acquire
the lock until the owning thread determines it is safe to release it. A lock is
like a lockable door to a room that can be used by only one person at a time.
When no one is inside, the door is open to allow the next person to enter. But
upon entering the room, an individual locks the door and only unlocks it upon
leaving.

There are numerous locking schemes for concurrent languages. Here we
extend MUFL! with a simple locking mechanism that has the following interface:

(lock): Return a new lock that is not owned by any thread.

(acquire! E): If the lock l computed by E is not owned by a thread,
acquire possession of the lock. If l is already owned, wait until it is not
owned before acquiring it. It is an error if E does not evaluate to a lock.

(release! E): If the lock l computed by E is owned by the current
thread, then release possession of the lock. It is an error if the current
thread does not own the lock or if E does not evaluate to a lock.

(lock? E): Determine whether the value of E is a lock.

All of these constructs can be regarded as new primitives rather than special
forms.

Using a lock, we can implement an atomic version of increment!:

(define counter (cell 0))

(define counter-lock (lock))

(define increment!

(lambda ()

(begin (acquire! counter-lock)

(cell-set! counter (+ 1 (cell-ref counter)))

(let ((ans (cell-ref counter)))

(begin (release! counter-lock)

ans))))

Since only one thread can own counter-lock at any time, the operations of two
calls to increment! running in separate threads cannot be interleaved. Thus,
the new version of increment! guarantees that (test-increment!) will return
3.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

506 CHAPTER 11. CONCURRENCY

If a thread “forgets” to release a lock that it owns, or if it releases it at
the wrong time, it is easy to get unintentional deadlocks. For this reason, it
is wise to build some abstractions on top of locks. For example, the following
with-lock procedure takes a lock and a thunk, and executes the thunk while
holding the lock. A result is returned only when the lock is released:

(define with-lock

(lambda (lock thunk)

(begin (acquire! lock)

(let ((ans (thunk)))

(begin (release! lock)

ans)))))

Using with-lock, the atomic version of increment! can be implemented as:

(define increment!

(lambda ()

(with-lock counter-lock

(lambda ()

(begin

(cell-set! counter (+ 1 (cell-ref counter)))

(cell-ref counter))))))

If we want multiple incrementers, it is easy to bundle a lock together with
each cell:

(define make-incrementer

(lambda ()

(let ((c (cell 0))

(l (lock)))

(lambda (msg)

(cond ((eq? msg ’increment!)

(with-lock l

(lambda ()

(begin

(cell-set! c (+ 1 (cell-ref c)))

(cell-ref c)))))

((eq? msg ’reset!)

(with-lock l

(lambda ()

;; Don’t assume CELL-SET! is atomic

(cell-set! c 0))))

(else (error unknown-message))))))

Because each incrementer is equipped with its own lock, the incrementing op-
erations of two separate incrementers can be interleaved, but the incrementing

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.3. COMMUNICATION AND SYNCHRONIZATION 507

operations of two increment!s to the same incrementer cannot be interleaved.
Figure 11.4 presents the rewrite rules for the lock constructs. We assume

that the domain MixedExp of intermediate expressions and the domain Value-
Exp of value expressions have been extended with the form (*lock* L), which
represents a first-class lock value. The location in this form contains either #f

〈A[T= (primop lock)],S〉⇒ 〈A[T= (*lock* L)],S[L= #f]〉,
where L 6∈dom(S)

[lock]

〈A[T= (primop acquire! (*lock* L))],S[L= #f]〉
⇒〈A[T= #u],S[L= (*thread* T)]〉 [acquire!]

〈A[T= (primop release! (*lock* L))],S[L= (*thread* T)]〉
⇒〈A[T= #u],S[L= #f]〉 [release!]

[lock?-true] and [lock?-false] as usual for predicates.

Figure 11.4: The semantics of locks.

(indicating that the lock is currently not owned by a thread) or a thread handle
(indicating which thread owns the lock). Since a lock can only be acquired when
the associated location contains #f and acquiring the lock mutates the location,
a lock can be owned by at most one thread.

11.3.3 Channels

It is tedious to use cells and locks for all instances of communication and syn-
chronization. Sometimes higher order abstractions are better suited for the task.
One very useful abstraction is the channel, a conduit through which values may
be communicated. A channel is a First-In/First-Out (FIFO) queue that can be
accessed by multiple threads. A thread can send! a value to a channel (enqueue
it) or receive! a value from a channel (dequeue the first value from the chan-
nel). Channels have the following synchronization feature built in: an attempt
to receive a value from an empty channel blocks a thread until a value is sent.

Here is a procedural interface to channels (all of these can be primitives):

(channel): Create and return a new channel.

(send! Echan Eval): Send the value computed by Eval over the channel
computed by Echan and return #u. It is an error if the value of Echan is
not a channel.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

508 CHAPTER 11. CONCURRENCY

(receive! Echan): Receive and return the next value from the channel
computed by Echan . It is an error if the value of Echan is not a channel.

(channel? E): Determine whether the value of E is a channel.

Note that several threads may be sending to, and several threads may be
receiving from, the same channel. It is even possible for a single thread to send
and receive on the same channel.

Channels are an alternative to streams for programming in the “signal pro-
cessing style.” Figure 11.5 shows how to encode stream-like operations with
channels. For example, we can use such operations to find the sum of the squares
of the prime numbers between 0 and 100 as follows:

(let ((c1 (channel))

(c2 (channel))

(c3 (channel)))

(colet ((ignore1 (gen-channel 0

(lambda (x) (+ x 1))

(lambda (x) (> x 100))

c1))

(ignore2 (filter-channel prime? c1 c2))

(ignore3 (map-channel (lambda (x) (* x x)) c2 c3))

(ans (accum-channel 0 + c3)))

ans))

Figure 11.6 presents an operational semantics for channels. We assume that
the domain MixedExp of intermediate expressions and the domain ValueExp
of value expressions have been extended with the form (*channel* L), which
represents a first-class channel value. We also assume that storable values are
extended to include elements

Q ∈ Queue = ValueExp* ,

value sequences that implement the queue underlying a channel.
A few notes:

• The channels described above use unbounded queues. A bounded buffer
is a channel that has an upper size limit. A sending thread blocks if the
queue implementing the buffer is at its maximum size, and will unblock if
the size decreases (due to receive!s).

• In some concurrent languages, there is no buffer associated with a chan-
nel (i.e., the queue size is effectively zero). Instead, a channel defines a
rendezvous point between a sending thread and a receiving thread. The
first thread to reach the rendezvous point must wait for the complemen-
tary thread to arrive. When both threads are at the rendezvous point, a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.3. COMMUNICATION AND SYNCHRONIZATION 509

(define eoc ’*end-of-channel*)

(define (eoc? s) (sym=? s eoc))

(define (gen-channel first next done? out)

(if (done? first)

(send! out eoc)

(begin (send! out first)

(gen-channel (next first) next done? out))))

(define (map-channel proc in out)

(let ((val (receive! in)))

(if (eoc? val)

(send! out eoc)

(begin (send! out (proc val))

(map-channel proc in out)))))

(define (filter-channel pred in out)

(let ((val (receive! in)))

(if (eoc? val)

(send! out eoc)

(begin (if (pred val) (send! out val) #u)

(filter-channel pred in out)))))

(define (accum-channel null combine in)

(letrec ((loop (lambda (ans)

(let ((val (receive! in)))

(if (eoc? val)

ans

(loop (combine val ans))))))))

(loop null)))

Figure 11.5: Signal processing style procedures implemented with channels.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

510 CHAPTER 11. CONCURRENCY

〈A[T= (primop channel)],S〉
⇒〈agenda[T= (*channel* L)],S[L= []]〉 [channel]

〈A[T= (primop send! (*channel* L) V)],S[L=Q]〉
⇒〈A[T= #u],S[L= [V] @ Q]〉 [send!]

〈A[T= (primop receive! (*channel* L))],S[L=Q @ [V]]〉
⇒〈A[T=V],S[L=Q]〉 [receive!]

[channel?-true] and [channel?-false] as usual for predicates.

Figure 11.6: The semantics of channels.

value is communicated from sender to receiver, after which both threads
proceed.

• In several concurrent process languages (e.g., Hoare’s CSP and Milner’s
CCS), channels are not first-class values, but are names that must match
up between sending and receiving threads. There are renaming operators
that permit code written in terms of one channel name to use another.

• Some languages support a kind of write-once channel called a single-
assignment cell. Single-assignment cells have the following properties:

– A cell has no initial value.

– A read of the cell blocks until the cell has a value.

– An attempt to write to a cell that has already been written is an
error.

Id’s I-structures are arrays of such cells. Variables in some logic program-
ming languages are similar to single-assignment cells.

Reading

References:

• Classic: Andrew Birrel on threads [Bir89], Melvin Conway coroutines
[Con63], E. W. Dijkstra semaphores [Dij68], C. A. R. Hoare monitors
[Hoa74], P. Brinch-Hansen monitors [Bri77].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

11.3. COMMUNICATION AND SYNCHRONIZATION 511

• Languages: Concurrent ML ([CM90]), Multi-Lisp([Hal85]) , Multi-
Scheme([Mil87]), Id I-structures ([ANP89]) and M-Structures ([Bar92b]),
Linda([CG89]), Concurrent Objects ([DF96])

• Denotational Semantics: Schmidt on resumption semantics [Sch86a].

• Process Algebras: [Hoa85], [Mil89]. ATP, Pi-Calculus, Pratt’s Pomset
model, trace semantics, Milner’s overview paper on bi-simulation.

• Data Parallel: [HS86], [Ble92], [Ble90], [Sab88], Connection Machine, Con-
nection Machine Lisp.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

512 CHAPTER 11. CONCURRENCY

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 12

Simple Types

Type of the wise who soar, but never roam,
True to the kindred points of heaven and home

— To a Skylark, William Wordsworth

12.1 Static Semantics

Our emphasis until this point has been the dynamic semantics of program-
ming languages, which covers the meaning of programming language constructs
and the run time behavior of programs. We will now shift our focus to static
semantics, in which we describe and determine properties of programs that are
independent of many details of program execution (e.g., the particular values
manipulated by the program).

Programs have both dynamic and static properties:

• A dynamic property is one that can be determined in general only by
executing the program. Such a property is determined at run time – i.e.,
when the program is executed.

• A static property is one that can be determined without executing the
program. A static property can be determined at compile time – i.e.,
when the program is analyzed before execution.

For instance, consider the following FL program:

513

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

514 CHAPTER 12. SIMPLE TYPES

(fl (n)

(let ((sq (lambda (x) (* x x))))

(if (integer? n)

(+ (sq (- n 1)) (sq (+ n 1)))

0))

We assume that the program input n can be any s-expression. The result of the
program is a dynamic property, because it cannot be known until run time what
input will be entered by the user. However, there are numerous static properties
of this program that can be determined at compile time:

• the free variables of the expression are integer?, +, -, and *;

• the result of the expression is an a non-negative even integer;

• the program is guaranteed to terminate.

In general, we’re interested in static properties that aid in the verification,
optimization, and documentation of programs. For instance, we’d like to ask
the following kinds of questions about a given program:

• is this program consistent with a given specification?

• can this program possibly encounter a certain error situation?

• when the program executes, is this variable guaranteed to contain a value
consistent with its declared type?

• can this program be optimized in a particular way without changing its
meaning?

Of course, there are certain questions that simply cannot be answered in gen-
eral. “Does this program halt?” is the most famous example of an undecidable
question. Yet undecidability does not necessarily spell defeat for the goal of de-
termining static properties of programs. There are two ways that undecidability
is finessed in practice:

1. Make a conservative approximation to the desired property. E.g., for the
halting problem, allow three answers:

(a) yes, it definitely halts;

(b) it might not halt (but I’m not sure);

(c) no, it definitely doesn’t halt.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.2. AN INTRODUCTION TO TYPES 515

A termination analysis is sound if it answers (a) or (b) for a program that
halts and (b) or (c) for a program that doesn’t halt. Of course, a trivial
sound analysis answers (b) for all programs. In practice, we’re interested
in sound analyses that answer (a) or (c) in as many cases as possible.

2. Restrict the language to the point where it is possible to determine the
property unequivocally. Such restrictions reduce the expressiveness of the
language, but in return give precise static information. The ML language
is an example of this approach; in order to provide static type information,
it forbids many programs that would not give run-time type errors.

The notion of restricted subclasses of programs is at the heart of static
semantics. We will typically start with a general language about which we can
determine very few properties, and then remove features or add restrictions until
we can determine the kinds of properties we’re interested in. Unfortunately, the
increase in our ability to reason about the programs is offset by a decrease
in the expressive power of the programming language. This is a fundamental
tension in programming languages: the more we can say about programs, the less
we can say with them. Taking into account considerations of static semantics
greatly enlarges the number of dimensions in the programming language design
space. Points in the design space can often be characterized by different tradeoffs
between expressive power and static properties.

12.2 An Introduction to Types

12.2.1 What is a Type?

When reading or writing code, it is common to describe expressions in terms of
the kinds of values they manipulate. This is especially true when talking about
procedures. For example, we typically describe > as a procedure that takes two
integers and returns a boolean. At a more detailed level, > certainly performs
an operation much more specific than indicated by this fuzzy description, but
in many situations the fuzzy description is all we need.

For example, suppose we just want to know whether > would make sense as
the contents of the box in the following FL expression:

(if (2 1 2) (symbol three) (symbol four))

We can reason as follows about the contents of the box: because the box appears
as the leftmost subexpression of a combination, it must be a procedure; because
it is supplied with 1 and 2 as arguments, it must take two integer arguments; and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

516 CHAPTER 12. SIMPLE TYPES

because the result of the application is used as the test in an if expression, the
procedure in the box must return a boolean. Thus, > would make sense as the
contents of the box. But more important, any value satisfying the description “a
procedure of two integers returning a boolean” would be viable as the contents
of the box.

This simple example underscores the fact that it is not necessary to know
precise values in order to perform computations with a program. The reasoning
used above was based on classes of values rather than on particular values.
Classes of values are known as types.

There are many ways to think about types. In its most general form a
type is just a description of a value. From another perspective, a type is an
approximation to a value, or a value with partial information. For example,
the type “integer” is an approximation to the integers 1 and 2, while the type
“procedures from two integers to a boolean” is an approximation to > and =.
From yet another point of view, types are arbitrary sets. Some examples of such
sets include the integers, the natural numbers less than 5, the prime integers,
and procedures that halt on the input 3.

The last example (procedures that halt on the input 3) shows that types
we might like to describe may not even be computable. In other cases (e.g.,
the prime numbers), types might be exceedingly difficult to reason about. It is
often necessary to restrict these very general notions of type to ones that are
less general, but simpler to reason about. However, if we hope to assign types to
all expressions in a language, such simplification entails restrictions on the kinds
of programs we can write. This is an example of the general tradeoff between
expressive power and determination of static properties introduced above. In
our study of types, we shall consider several points in the design space that
handle this tradeoff in different ways.

12.2.2 Dimensions of Types

Types are not a monolithic feature that are either present or absent in a language.
Rather, there is a rich diversity of ways that types may appear in a programming
language, and almost all languages have some sort of type system. (Examples
of completely typeless languages include the untyped lambda calculus and most
assembly-level languages.) Here we shall examine three dimensions along which
type systems may vary.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.2. AN INTRODUCTION TO TYPES 517

12.2.2.1 Dynamic vs. Static

In the programming languages we have studied so far, values have types asso-
ciated with them. FL!, for instance, divides the class of (non-error) values into
six types: unit, integers, booleans, symbols, procedures, and references. The op-
erational and denotational semantics for these languages make use of the type
information to determine the meanings of programs. For example, whether or
not the expression (primop + E1 E2) denotes an integer depends on the types
of values found for E1 and E2 . Both operational and denotational semantics
provide some method for checking the types of these subparts in order to de-
termine the value of the whole. Languages in which values carry types with
them and type checks are made at run time are said to be dynamically typed.
Examples of dynamically typed languages include Lisp, SmallTalk, and APL.

An alternative to dealing with types at run time is to statically analyze a
program at compile time to determine if type information is consistent. Here,
types are associated with expressions in the language rather than with run time
values. A program that can be assigned a type in this approach is said to be
well-typed. Programs that are well-typed are guaranteed not to contain certain
classes of errors (e.g., a procedure call with the wrong number of arguments). A
program that cannot be described with a type is said to contain a type error.
The set of well-typed programs is a subset of all of the programs that are syntac-
tically well formed. Languages in which types are associated with expressions
and are computed at compile time are said to be statically typed. Examples
of statically typed languages include Java, Pascal, Ada, ML, and Haskell.
Practical statically typed languages are equipped with a type checker that can
automatically verify that programs are well-typed.

The choice between dynamic and static typing has been the source of a great
debate in the programming language community. Adherents of static typing offer
the following arguments in favor of static types:

• Safety: Type checking reduces the class of possible errors that can occur at
run time. In certain situations it is extremely desirable to catch as many
errors as possible before the program is run (e.g., programs to control a
space shuttle or nuclear power plant).

• Efficiency: Statically typed programs can be more efficient than dynami-
cally typed ones. In implementation terms, dynamic typing implies space
and time costs at run time. Space is necessary to encode the type of
a value at the bit level. Since types must be checked when performing
certain primitive operations (e.g., binary integer addition can only be ap-
plied when both operands are integers), dynamic typing has a time cost

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

518 CHAPTER 12. SIMPLE TYPES

as well. In statically typed languages, most values do not require any run
time storage for type representations. In addition, the compile time type
checks eliminate the need to check types at run time.

• Documentation Static types provide documentation about the program
that can facilitate reasoning about the program, both by humans and by
other programs (e.g. compilers). Such information is especically valuable
in large programs.

• Program Development: Static types help programmers catch errors in their
programs before running them and help programmers make representation
changes. For example, suppose a programmer decides to change the in-
terface of a procedure in a large program. The type checker helps the
programmer by finding all the places in the program where there is a mis-
match between the old and new interfaces.

Proponents of dynamic typing counter that the restrictions placed on a lan-
guage in order to make it type checkable force the programmer into a straight
jacket of reduced expressive power. They argue that in many statically typed
languages (e.g., Java and Pascal), types mainly serve to make the language
easier to implement, not easier to write programs in. Furthermore, they discount
the importance of finding type errors at compile time; they argue that the hard-
to-find errors that occur in practice are logical errors, not type errors. Finding
such errors requires testing programs with extensive test suites that would also
find type errors.

12.2.3 Explicit vs. Implicit

Another dimension on which type systems vary is the extent to which they force
a programmer to declare explicit types. Although some dynamically typed lan-
guages require some form of type declaration (e.g., array variables in Basic),
dynamically typed languages typically have no explicit types. The converse is
true in static typing, where explicit types are the norm. In traditional statically
typed languages (e.g., Pascal, ,̧ and Java) it is necessary to explicitly declare
the types of all variables, formal parameters, procedure return values, and data
structure components. However, some recent languages (e.g., FX, ML, Mi-
randa, and Haskell) achieve static typing without explicit type declarations
via a method called type reconstruction or type inference. We shall study
type reconstruction in Chapter 14.

One argument for explicit types is that the types serve as important docu-
mentation in a program and therefore make programs easier to read and write.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 519

Often, however, explicit types make programs easier for compilers to read, not
easier for humans to read; and explicit types are generally cumbersome for the
program writer as well. Implicitly typed programming languages thus have
clear advantages in terms of readability and writability. Unfortunately, certain
restrictions must be placed on a language in order to make type reconstruction
possible. This means that some programs that can be written with explicit
types cannot be written with implicit ones. A compromise between the two
approaches, adopted by ML and Haskell, is to make most types implicit by
default, but to allow explicit declarations in situations where types cannot be
reconstructed.

12.2.4 Simple vs. Expressive

A third dimension along which typed languages can vary is the expressiveness
of their type systems. Languages with very simple type systems facilitate type
checking and type reconstruction, but generally severely restrict the kinds of
programs that can be written. For example, in Pascal,1 the length of an array
is a part of its type; this makes it impossible to write a sorting procedure that
can accept an array of any length. In languages with polymorphic types, it
is possible to have procedures that are parameterized over the types of their
inputs. This makes it possible to express programs more naturally, but at the
cost of making the type system more complex. We will study polymorphism in
Chapter 13.

12.3 FL/X: A Language with Monomorphic Types

12.3.1 FL/X

We begin our exploration of types by studying FL/X, a statically typed dialect
of FL with eXplicit types. FL/X is a monomorphic language, which means
that each legal expression is described by exactly one type. In a monomorphic
language, procedures cannot be parameterized over the types of their arguments.
For example, a procedure that reverses lists of integers cannot be used to reverse
lists of strings, even though the reversal procedure never needs to examine the
components of the list.

Despite this lack of expressiveness, a monomorphic language is worth study-
ing because (1) it simplifies the discussion of many type issues and (2) a number

1At least in pre-ANSI Pascal.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

520 CHAPTER 12. SIMPLE TYPES

of popular languages (e.g., Fortran, Pascal, and C) are monomorphic.2 As
evidenced by the success of these languages, monomorphic languages can still
be very useful in practice. As we shall see, monomorphic languages can even
support features like higher-order procedures and recursive types.

The grammar for FL/X is presented in Figure 12.1. It is similar to the FL
grammar, but there are some important differences, which we discuss in detail.

There is a new syntactic domain Type that is used to specify the types of
FL/X expressions. An FL/X type has one of two forms:

1. a base type specifies one of the built-in types of primitive data:

• unit, the type of the one-point set {#u};
• bool, the type of the two-point set {#t, #f};
• int, the type of integers; and

• sym, the type of symbols.

2. an arrow type of the form (-> (Targ1 . . . Targn) Tresult) specifies the
type of an n-argument procedure that takes arguments of type Targ1

through Targn and returns a result of type Tresult . For example, an in-
crementing procedure on integers has type (-> (int) int), an addition
procedure on integers has type (-> (int int) int), and a less-than pro-
cedure on integers has type (-> (int int) bool).

Arrow types can be nested, in which case they describe higher-order pro-
cedures. For example:

• a procedure that returns either an incrementing or decrementing pro-
cedure based on a boolean argument has type

(-> (bool) (-> (int) int))

• a procedure that takes an integer predicate and determines if any
numbers in the range [1 . . . 10] satisfy this predicate has type

(-> ((-> (int) bool)) bool)

• a procedure that approximates the derivative of an integer function
has type

(-> ((-> (int) int)) (-> (int) int))

2These languages provide ad hoc overloading and type casting mechanisms that make it
possible to go beyond monomorphism in limited ways. However, because they provide no
principled mechanisms for polymorphism, we consider them to be monomorphic.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 521

P ∈ Program
D ∈ Def
E ∈ Exp
T ∈ Type
I ∈ Identifier
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
L ∈ Lit
O ∈ Primop = Usual FL primitives except list ops and predicates.

P ::= (flx ((Iformal T)*) Ebody Ddefinitions*) [Program]

D ::= (define Iname Ttype Edefn) [Value Definition]
| (define-type Iname Tdefn) [Type Definition]

E ::= L [Literal]
| I [Variable Reference]
| (if Etest Econsequent Ealternate) [Branch]
| (lambda ((Iformal T)*) Ebody) [Abstraction]
| (Erator Erand*) [Application]
| (let ((Iname Edefn)*) Ebody) [Local Value Binding]
| (letrec ((Iname Ttype Edefn)*) Ebody) [Local Value Recursion]
| (primop Oname Earg*) [Primitive Application]
| (error Imessage T) [Error]
| (the T E) [Type Ascription]
| (tlet ((Iname Tdefn)*) Ebody) [Local Type Binding]

L ::= #u [Unit Literal]
| B [Boolean Literal]
| N [Integer Literal]
| (symbol I) [Symbol Literal]

T ::= unit | bool | int | sym [Base Types]
| (-> (T*) Tbody) [Arrow Type]

Figure 12.1: Grammar for FL/X, a monomorphic, explicitly typed language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

522 CHAPTER 12. SIMPLE TYPES

Because -> is used to combine simpler types into more complex types, it is
known as a type constructor. It is the first of several type constructors
that we will encounter in FL/X. We will see several others in Section 12.4.

The prefix form of FL/X arrow types may seem unusual to those accus-
tomed to the infix type notation that is standard in the types literature and in
languages like SML and Haskell. The following table shows examples of the
two notations side by side:

FL/X types SML types

(-> (bool) (-> (int) int)) bool -> (int -> int)

(-> ((-> (int) bool)) bool) (int -> bool) -> bool

(-> ((-> (int) int)) (-> (int) int)) (int -> int) -> (int -> int)

(-> ((-> (int int) bool)) (-> (int int) int)) (int * int -> bool) -> int * int -> int

Some FL/X expressions — literals, variable references, conditionals, prim-
itive applications, and let — are unchanged from FL. But other expressions
have been extended with type annotations that will be used to determine the
types of the expressions:

• In abstractions, parameters are specified by a sequence of bindings of the
form (I T) that specify both the name and the type of each formal pa-
rameter. For example, an averaging abstraction can be written as

(lambda ((a int) (b int))

(/ (+ a b) 2)
and an abstraction that chooses an incrementing or decrementing proce-
dure based on a boolean argument can be written as

(lambda ((b bool))

(if b

(lambda ((x int)) (+ x 1))

(lambda ((x int)) (- x 1)))).
• Unlike let expression bindings, each binding in a letrec expression has a

type in addition to the name and definition expression. For example, the
following letrec expression introduces a summer procedure that sums all
the integer values in the range lo to hi that satisfy a predicate f. The
letrec syntax requires that the type of summer be written down explicitly.

(letrec

((summer (-> ((-> (int) bool) int int) int)

(lambda ((f (-> (int) bool)) (lo int) (hi int))

(if (> lo hi)

0

(+ (if (f lo) lo 0)

(summer f (+ lo 1) hi))))))

(summmer (lambda (x) (= (rem x 3) 0)) 1 100))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 523

• FL/X requires the programmer to specify the type of an error construct
explicitly. For example, consider the following higher-order procedure:

(lambda ((n int))

(if (< n 0)

(error negative (-> (int) bool))

(lambda ((d int))

(if (= d 0)

(error zero bool)

(= (rem n d) 0)))))

Although error expressions never return a value, the type annotations
specify that the first error expression should be treated as if it returns a
procedure with type (-> (int) bool) and the second error expression
should be treated as if it returns a boolean value. These type declarations
allow the error expressions to have the same type as the other arms of
their corresponding if expressions.

You may wonder why FL/X has type annotations for some expressions but
not others. For instance:

• Why are types required in letrec bindings but not let bindings?

• Why do abstractions require specifying parameter types but not the type
of the returned value? After all, procedure and method declarations in
languages like C, Java, and Pascal require explicit return types.

• Why are types required in error expressions?

The answer is that type annotations in FL/X were chosen to be the minimal
annotations that allow the type of any expression in a program to be determined
without “guessing” the types of any expressions. We will formalize this notion
when we study the type checking of FL/X expressions in Section 12.3.2.

There are several other differences between FL/X and FL:

• For simplicity, the version of FL/X we study here has no data structures
(unlike FL, which has pairs and lists). We will study typed data later in
Section 12.4.

• FL/X supports fewer primitive operations than FL. In particular, because
the type of every FL/X expression is known at type checking time, there
is no need for type predicates like boolean?, integer?, and procedure?.
Because we are ignoring lists for now, the variant of FL/X we study here
does not support any list operations either.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

524 CHAPTER 12. SIMPLE TYPES

• FL/X has a new type ascription construct (the T E) that asserts that
expression E has type T. In other languages, type ascription is often
written via a notation like E : T. The expression (the T E) returns
the value of E, so it can be used wherever E is used. For example, it can
be used to explicitly declare the return type of a procedure:

(lambda ((b bool) (x int))

(the int (if b (+ x 1) (* x 2))))

The the construct is not strictly necessary, but it is handy for documenting
the types of expressions.3 Assertions made with the are automatically
verified by a type checker. For example:

(+ 1 (the int (* 2 3))) ; Type Checks; Value = 7

(+ 1 (the bool (* 2 3))) ; Doesn’t type check: * returns int

• Later we will see that types in FL/X can become large and cumbersome.
The tlet construct improves the readability and writability of types by
allowing type expressions to be abbreviated by names. The abbreviations
are local to the body expression of the tlet. For example:

(tlet ((intfun (-> (int) int)))

(tlet ((intfun-transformer (-> (intfun) intfun)))

(the intfun-transformer

(lambda ((f intfun))

(lambda ((x int))

(* 2 (f (+ x 1))))))))

We will assume that there is a single namespace for types and values. So
the first of the following expressions is reasonable, but the second and third
are nonsensical:

;; Reasonable expression

(lambda ((x int))

(tlet ((z bool))

(lambda ((y z))

x)))

;; nonsensical expression

(lambda ((x int))

(tlet ((x bool))

(lambda ((y x))

x))) ; This X bound by TLET

3Unlike, for example, casts in C, FL/X’s the is not a coercion operator that can be used
to create type loopholes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 525

;; nonsensical expression

(tlet ((x bool))

(lambda ((x int))

(lambda ((y x)) ; This X bound by LAMBDA

x)))

It is possible to put types and values in different namespaces, but this
complicates the definitions of syntactic operations (finding free variables,
performing substitution) that we will use later.

• In the program sugar of FL/X (see Figure 12.2), define declarations
(which desugar into a letrec) must include an explicit type. There is
also a new define-type declaration that is sugar for a global tlet. The
desugaring for program assumes that all define-type forms come before
all define forms. This is not required, but it is always possible to “bubble-
up” the define-type forms to the top of the program without changing
its meaning (assuming the names used in defines and define-types are
disjoint).

Unlike FL, FL/X does not have any syntactic sugar for expressions.
Multi-argument abstractions, let, and letrec do not desugar to sim-
pler FL/X forms but are considered primitives. The reason for this is
that such desugarings would not preserve expressions types. In FL/X,
a two argument addition procedure, whose type is (-> (int int) int),
is not equivalent to the curried form of this procedure, which has type
(-> (int) (-> (int) int)). An FL/X let construct cannot desugar
into an application of a multi-argument abstraction because the parameter
types necessary for the abstraction are not manifest.

FL/X could easily be extended to support other sugared expressions from
FL, such as and, or, cond, but we omit these here to avoid clutter.

12.3.2 FL/X Type Checking

12.3.2.1 Introduction to Type Checking

In a statically typed language, a program phrase is said to be well-typed if
it is possible to assign a type to the phrase based on a process known as type
checking. This process is typically expressed by a collection of formal rules and
a reasoning system that uses these rules. A phrase is said to be ill-typed if it
is not possible to assign it a type. Only well-typed phrases are considered legal
phrases of the language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

526 CHAPTER 12. SIMPLE TYPES

Dprog [[(flx ((I T)*) Ebody
(define-type It1 Tt1) . . . (define-type Itk Ttk)
(define Iv1 Tv1 Ev1) . . . (define Ivn Tvn Evn))]]

= (flx ((I T)*)
(let ((not? (lambda ((x bool)) (primop not? x))))

(and? (lambda ((x bool) (y bool)) (primop and? x y)))
... ; Similar for or? and bool=?

(+ (lambda ((x int) (y int)) (primop + x y))))
... ; Similar for -, *, /, rem, <, <=, =, /=, >=, >

(sym=? (lambda ((x sym) (y sym)) (primop sym=? x y)))

(unit #u)

(true #t)

(false #f)

)

(tlet ((It1 Tt1))
...

(tlet ((Itk Ttk))
(letrec ((Iv1 Tv1 Ev1)

...

(Ivn Tvn Evn))
Ebody)))

Figure 12.2: Desugaring for FL/X syntactic sugar.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 527

Type checking is similar to evaluation, except that rather than manipulating
the run-time values associated with expressions, it manipulates the static types
associated with the expressions. Recall that it is possible to view types as
approximations to values. From this perspective, a type checker evaluates the
program with approximations rather than actual values. The notion that a
program can be “run” in a way that is guaranteed to terminate on a finite set
of value approximations is the basis of a style of program analysis known as
abstract interpretation.

As a simple example of the kind of reasoning used in type checking, consider
the type analysis of the following FL/X abstraction:

(lambda ((b bool) (x int) (f (-> (int int) int)))

(if b x (f 0 1)))

The type annotations on the parameters indicate that b is assumed to be a
boolean, x is assumed to be an integer, and f is assumed to be a procedure
that maps two integer arguments to an integer result. Based on the assump-
tion for f, the type of (f 0 1) is int, because applying a procedure of type
(-> (int int) int) to two integers yields an integer. Based on this conclusion
and the assumptions for b and x, the body expression (if b x (f 0 1)) is well-
typed, because the test subexpression has type bool, and the two branches both
have the same type, int. The type of the if expression is int, because that is the
type of the value returned by the expression for any values of b, x, and f satisfy-
ing the type assumptions. Since the abstraction takes three parameters, a bool,
an int, and a procedure of type (-> (int int) int), and it returns an int, the
abstraction has the arrow type (-> (bool int (-> (int int) int)) int).

If we changed the body of the example to (if x x (f 0 1)), the if expres-
sion would not be well-typed because the test subexpression does not have type
bool. Similarly, the body would not be well-typed if it were (if b b (f 0 1)),
because then the two conditional branches would have incompatible types: bool
and int.4 Even the expression (if #t b (f 0 1)) is not considered to be well-
typed, even though it is guaranteed to return a boolean value when executed.
Why? The type checker only manipulates approximations to values. It does not
“know” that the test expression is the constant true value. All it “knows” is
that the test expression is a boolean, and so it cannnot determine which branch

4There are sophisticated type systems in which (if b b (f 0 1)) would be considered
well-typed, with a so-called union type that is either bool or int. In order to guarantee type
soundness (see Section 12.3.3), such systems must constrain the ways in which a value with
union type may be manipulated. In this presentation, we focus on simpler type systems that
do not allow union types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

528 CHAPTER 12. SIMPLE TYPES

is taken.5

From the above examples, it is clear that just as the value of an expression
is determined from the values of its subexpressions, so too is the type of the
expression determined from the type of its subexpressions. However, the actual
rules for determining the type of the whole from the type of the parts may be
very different from the rules for determining the value of the whole from the
value of the parts. For instance:

• an evaluator only evaluates one branch of a conditional, but a type checker
checks both branches of a conditional.

• an evaluator does not evaluate the body of a procedure until it is applied to
arguments, but a type checker checks the body of an abstraction regardless
of whether or not it is applied.

• an evaluator associates the actual arguments with the formal parameters
when applying a procedure to arguments, but a type checker simply checks
that the types of the actual arguments are compatible with the argument
types expected by the procedure.

12.3.2.2 Type Environments

Just as expressions are evaluated with respect to a dynamic value environment
that associates free identifiers with their run-time values, they are type checked
with respect to a static type environment that associates free identifiers with
their types. Type environments are partial functions from identifiers to types:

A ∈ Type-Environment = Identifier⇀ Type

If A is a type environment and I∈dom(A), then the notation A(I) designates
the type assigned to I in A.

The association of a type T with a name I is known as a type assignment,
which we will write using the notation I :T and pronounce as “I has type T.”
We will write type environments as sets of type assignments whose names are
pairwise disjoint. For instance, {} is the empty type environment, and the type
environment used to check the abstraction body (if b x (f 0 1)) in the above
example is:

A1 = {b : bool, x : int, f : (-> (int int) int)}

5Again, in some more sophisticated type systems, (if #t b (f 0 1)) would be considered
well-typed with type bool.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 529

The body of an FL/X program is type checked with respect to a standard
type environment Astd (Figure 12.3) that assigns types to the global names
that may be used within the body. For example, Astd(+) = (-> (int int) int)

and Astd(<) = (-> (int int) bool).

{ unit : unit,
true : bool,
false : bool,
not? : (-> (bool) bool),
and? : (-> (bool bool) bool),
or? : (-> (bool bool) bool),
bool=? : (-> (bool bool) bool),
+ : (-> (int int) int),
- : (-> (int int) int),
* : (-> (int int) int),
/ : (-> (int int) int),
rem : (-> (int int) int),
< : (-> (int int) bool),
<= : (-> (int int) bool),
= : (-> (int int) bool),
/= : (-> (int int) bool),
>= : (-> (int int) bool),
> : (-> (int int) bool),
sym=? : (-> (sym sym) bool) }

Figure 12.3: Standard type environment Astd for FL/X.

As with value environments, it is often necessary to extend a type environ-
ment with additional bindings. We use the notation

A[I1 :T1, . . ., In :Tn]

to indicate the type environment that results from extending A with the given
type assignments. The identifiers Ii must be distinct, and the extensions override
any assignments that A may already have for these identifiers. For example,
suppose that A2 =A1[b : sym,t : bool]. Then dom(A2) = {b, f, x, z} and A2(b)
= sym, A2(f) = (-> (int int) int), A2(x) = int, and A2(t) = bool.

12.3.2.3 Type Rules for FL/X

We now describe a formal process by which the types of FL/X expressions can
be determined. The assertion that an expression E has type T with respect to
type environment A is known as a type judgment and is written as

A ` E : T

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

530 CHAPTER 12. SIMPLE TYPES

This is pronounced “E has type T in A” or, more loosely, “A proves that E
has type T.” When such an assertion is true, we say that the type judgment
is valid. If A ` E : T is valid, we say that E is well-typed with respect
to A. Otherwise, E is ill-typed with respect to A. If the type environment
(typically Astd) is understood from context, we just say that E is well-typed
or ill-typed. When the type environment is omitted from a type judgment, as
in ` E : T, this asserts that E has type T in every environment.

Valid type judgments can be determined via type rules that have a form
similar to the rules we introduced for operational semantics in Chapter 3. Each
type rule has the form

Premise1 ; . . .; Premisen
Conclusion

[name-of-rule]

where Conclusion and each Premisei are type judgments. If all of the premises
of a rule are valid, then the type judgment in the conclusion of the rule is valid.

The type rules for FL/X are presented in Figure 12.4. The [unit], [bool],
[int], [sym], and [error] rules are axioms that are independent of the type envi-
ronment. The other axiom, [var], says that the type of an identifier is looked up
in the type environment.

The [if] rule requires that (1) the test expression denotes a boolean and (2)
the two branches have the same type. If these requirements are met, the type
of the if expression is the type of the branches. The constraint that the two
branch types and return type must all be the same is specified by using the same
type metavariable, T, for all three types.

As in the operational semantics rules, type rules are really rule schemas in
which every metavariable can be instantiated by any element of the domain
ranged over by the metavariable. So [if] stands for an infinite number of rules in
which A can be any type environment, T can be any type, and Etest , Econ , and
Ealt can be any expressions. Many of these instantiations may not make sense
at first glance. For example, here is one instantiation of the if rule:

{} ` 1 : bool ; {} ` 2 : bool ; {} ` 3 : bool

{} ` (if 1 2 3) : bool

Certainly we should not be able to prove that (if 1 2 3) has type bool! But
the rule doesn’t say that (if 1 2 3) has type bool. Rather, it says that
(if 1 2 3) would have type bool if the integers 1, 2, and 3 all had type bool.
But it is impossible to prove these false premises, and so the false conclusion
will never be declared to be a valid judgment by the type system.

The [->-intro] and [->-elim] rules are the rules for abstractions and applica-
tions, respectively. The rule names emphasize that abstractions are the source

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 531

` #u : unit [unit] ` N : int [int] ` B : bool [bool]

` (symbol I) : sym [sym] ` (error I T) : T [error]

A ` I : A(I), where I∈dom(A) [var]

A ` Etest : bool ; A ` Econ : T ; A ` Ealt : T
A ` (if Etest Econ Ealt) : T

[if]

A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody
A ` (lambda ((I1 T1) . . . (In Tn)) Ebody)

: (-> (T1 . . . Tn) Tbody)
[->-intro]

A ` Erator : (-> (T1 . . . Tn) Tresult)
∀ni=1 . A ` Ei : Ti

A ` (Erator E1 . . . En) : Tresult

[->-elim]

∀ni=1 . A ` Ei : Ti
A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody

A ` (let ((I1 E1) . . . (In En)) Ebody) : Tbody

[let]

∀ni=1 . A ′ ` Ei : Ti
A ′ ` Ebody : Tbody

A ` (letrec ((I1 T1 E1) . . . (In Tn En)) Ebody) : Tbody

[letrec]

where A ′=A[I1 :T1, . . ., In :Tn]

Astd ` Oname : (-> (T1 . . . Tn) Tresult)
∀ni=1 . A ` Ei : Ti

A ` (primop Oname E1 . . . En) : Tresult

[primop]

A ` E : T
A ` (the T E) : T

[the]

A ` ([Ti/Ii]ni=1)Ebody : Tbody
A ` (tlet ((I1 T1) . . . (In Tn)) Ebody) : Tbody

[tlet]

A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody
A ` (flx ((I1 T1) . . . (In Tn)) Ebody) : (-> (T1 . . . Tn) Tbody)

[prog]

Figure 12.4: Typing rules for FL/X.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

532 CHAPTER 12. SIMPLE TYPES

expressions that produce values of arrow type and that applications are the
sink expressions that use values of arrow type. In our study of typed data in
Section 12.4, we shall see many other examples of introduction and elimination
rules. In the [->-intro] rule, the type of an abstraction is an arrow type that
maps the explicitly declared parameter types to the type of the body, where the
body type is determined relative to an extended environment that includes type
assignments for the parameters. The [->-elim] rule requires that the operator
of an application be an arrow type whose number of parameters is the same as
the number of supplied operands and whose parameter types are the same as
the corresponding operand types. In this case, the type of the application is the
result type of the operator type.

The [let] and [letrec] rules are similar. Both type check a body expression
with respect to the given type environment A extended with type assignments
for the named definition expressions Ei in the bindings. The difference is that
let definitions are not in the scope of the bindings, and so can be type checked
relative to A. However, letrec definitions are in the scope of the bindings, and
so must be type checked relative to an environment A ′ that extends A with
type assignments for the bindings. Since the definition types in a let can be
determined from the supplied type environment A, there is no need for types of
the definitions to be explicitly declared. But in the letrec case, determining
the extended type environment A ′ in general requires finding a fixed point over
type environments. FL/X requires the programmer to explicitly declare the
types of letrec definitions so that the type checker does not need to compute
fixed points.

The [primop] rule treats primitive operators as if they have arrow types
determined by the standard type environment, Astd. This allows the type checker
to handle primitive applications via what is essentially a specialized version of
[->-elim].

The [tlet] rule type checks the result of substituting the types T1 , . . ., Tn for
the identifiers I1 , . . ., In in the body expression Ebody . All the rules except for
tlet are purely structural in the sense that the premise judgments involve
subexpressions of the expression that appears in the conclusion judgment. When
rules are purely structural, it is easy to show by structural induction that the
type checking process will terminate. The initial expression being type checked is
finite, and in any rule each premise subexpression is necessarily strictly smaller
than the conclusion expression, so the recursion process must eventually bot-
tom out at the axioms. But tlet is not structural, because the substituted
body expression is not a subexpresion of the original tlet expression. With
non-structural rules like tlet, care must be taken that each of the premise ex-
pressions is strictly smaller than the conclusion expression by an appropriate

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 533

metric. In the case of tlet, such a metric is expression height, which measures
the height of an expression tree ignoring the height of any type nodes.

The [prog] rule is the type checking rule for a top-level program. Since a
program maps input values to an output value, it has an arrow type. Indeed,
from a type-checking perspective, the [prog] rule is identical to the [->-intro]
rule. Although FL/X allows program parameters of any type, in practice the
parameter types are often restricted. For example, Java programs have a single
program parameter that must be an array of strings. In our examples, we will
assume that the parameters to FL/X programs correspond to values that can
be expressed with s-expressions. In particular, we will assume that parameter
types cannot contain arrow types.

12.3.3 FL/X Dynamic Semantics and Type Soundness

Intuitively, types specify a static property of an FL/X expression, not a dynamic
property. We formalize this intuition by defining the dynamic semantics of
FL/X via a transformation that erases the types of FL/X. As the target of this
transformation, we introduce a variant of FL that we will call FL*. The FL*
language has the same syntax as FL, but its multiple parameter abstractions,
multiple argument applications, and multiple binding letrecs are treated as
indecomposable constructs rather than as syntactic sugar. (The multiple binding
let, on the other hand, desugars into an application of a manifest abstraction.)
The essence of the operational semantics of CBN FL* is presented in Figure 12.5.
Rewrite rules for FL* constructs not in the figure are the same as those for FL.

((lambda (I1 . . .In) Ebody) E1 . . .En)⇒ ([Ei/Ii]ni=1)Ebody [FL*-apply]

Erator⇒Erator
′

(Erator E1 . . .En)⇒ (Erator
′ E1 . . .En)

[FL*-rator]

(letrec ((I1 E1) . . .(In En)) Ebody)
⇒([(letrec ((I1 E1) . . .(In En)) Ei)/Ii]

n
i=1)Ebody

[FL*-letrec]

Figure 12.5: Operational rules distinguishing CBN FL* from CBN FL. Rules
for all other FL* constructs are the same as those for FL.

The types of an FL/X expression E can be erased via type erasure (written
dEe) to yield an FL* expression (see Figure 12.6). We define the meaning of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

534 CHAPTER 12. SIMPLE TYPES

an FL/X expression E as the meaning of its type erasure dEe. For example,
suppose that Etest is:

(let ((f (lambda ((b bool) (x int))

(if b x (primop + x 1))))

(y (primop * 3 4)))

(f (primop = 10 y) y))

Then dEteste is:

((lambda (f y) (f (primop = 10 y) y))

(lambda (b x) (if b x (primop + x 1)))

(primop * 3 4))

Since the latter expression reduces to 13 in FL*, the meaning of the FL/X
expression Etest is 13.

We will say that an FL* expression is a type error if it is stuck under the
operational rewrite rules for some reason other than (1) division or remainder
by zero or (2) an explicit error construct. For instance, the following FL*
expressions are type errors:

(primop + 1 true) ; wrong argument type to +
(primop + 1) ; too few arguments to +
(primop + 1 2 3) ; too many arguments to +
(if 1 2 3) ; non-boolean if test
(1 2 3) ; application of non-abstraction
((lambda (x y) x) 1) ; too few arguments in application
((lambda (x y) x) 1 2 3) ; too many arguments in application

We will say that an FL* expression has a type error if it can be operationally
rewritten to an expression that is a type error.

The advantage of types is that they guarantee an expression has no type
errors. This is captured in the following type soundness result for FL/X:

Theorem 1 (Type Soundness of FL/X) If E is a well-typed FL/X expres-
sion, then dEe does not have a type error.

The above theorem is the consequence of the following two theorems:

Theorem 2 (Progress for FL/X) If E is a well-typed FL/X expression, then
it is not stuck – i.e., either it is a normal form or it can be rewritten via the
operational rules to another FL/X expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.3. FL/X: A LANGUAGE WITH MONOMORPHIC TYPES 535

d.e : ExpFL/X → ExpFL∗

dLe = L

dIe = I

d(if Etest Econsequent Ealternate)e = (if dEteste dEconsequente dEalternatee)

d(lambda ((I1 T1) . . . (In Tn)) Ebody)e = (lambda (I1 . . . In) dEbodye)

d(Erator Erand1 . . . Erandn)e = (dEratore dErand1 e . . . dErandn e)

d(let ((I1 E1) . . . (In En)) Ebody)e =
((lambda (I1 . . . In) dEbodye) dE1 e . . . dEne)

d(letrec ((I1 T1 E1) . . . (In T1 En)) Ebody)e =
(letrec ((I1 dE1 e) . . . (In dEne)) dEbodye)

d(primop Oname E1 . . . En)e = (primop Oname dE1 e . . . dEne)

d(tlet ((I1 T1) . . . (In Tn)) Ebody)e = dEbodye

d(the T E)e = dEe

d(error Imessage T)e = (error Imessage)

Figure 12.6: Type erasure rules transforming FL/X to FL* expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

536 CHAPTER 12. SIMPLE TYPES

Theorem 3 (Subject Reduction for FL/X) If E is a well-typed FL/X ex-
pression with type T and dEe is not a normal form or stuck, then there is a
well-typed FL/X expression E ′ with type T such that dEe ⇒ dE ′e.

12.4 Typed Data

We now consider how to extend FL/X with typed versions of the forms of data
studied in Chapter 10. We will see that the goal of maintaining static type
checking constrains the ways in which we create and manipulate some data
structures.

12.4.1 Typed Products

Figure 12.7 shows the syntax and type rules needed to extend FL/X with pairs,
the simplest kind of product. Types formed by the pairof type constructor
keep track of the types of the first and second components of a pair. This type
is introduced by the pair construct and eliminated by either fst or snd. For
example, the type of (pair (+ 1 2) (= 3 4)) is (pairof int bool).

Although fst and snd are primitive operators in FL, they cannot be prim-
itive operators in FL/X due to the monomorphic nature of the language. For
example, the [pair-elim-F] rule says that fst returns a value whose type is the
first type component of the type (pairof Tf Ts). Without some form of poly-
morphism (see Chapter ??) it is not possible to describe this behavior via a
single type assignment for left in the standard type environment.

Pairs can be generalized to arbitrary positional products, whose syntax and
type rules are presented in Figure 12.8. The productof type tracks the number
of components and type of each component in a product value. For example,
the type of

(product (+ 1 2) (= 3 4) (lambda (x) (> x 5)))

is
(productof int bool (-> (int) bool)).

The [productof-elim] rule clarifies why the index in a proj form must be a man-
ifest integer literal rather than the result of evaluating an arbitrary expression.
Otherwise, the type checker would not “know” which component was being ex-
tracted and different types could not be allowed at different indices.

Handling named products in a typed language requires additional complexity.
As shown in Figure 12.9, the recordof type needs to associate record field
names with types. Although the [recordof-elim] rule is concise, the ellipses in the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.4. TYPED DATA 537

Syntax

E ::= . . . | (pair Efst Esnd) [Pair Intro]
| (fst Epair) [Pair Elim First]
| (snd Epair) [Pair Elim Second]

T ::= . . . | (pairof Tfst Tsnd) [Pair Type]

Type Rules

A ` Ef : Tf ; A ` Es : Ts
A ` (pair Ef Es) : (pairof Tf Ts)

[pairof-intro]

A ` Epair : (pairof Tf Ts)
A ` (fstEpair) : Tf

[pairof-elim-F]

A ` Epair : (pairof Tf Ts)
A ` (snd Epair) : Ts

[pairof-elim-S]

Figure 12.7: Handling pairs in FL/X.

Syntax

E ::= . . . | (product E*) [Product Intro]
| (proj Nindex Eprod) [Product Elim]

T ::= . . . | (productof T*) [Product Type]

Type Rules

∀ni=1 . A ` Ei : Ti
A ` (product E1 . . . En) : (productof T1 . . . Tn)

[productof-intro]

A ` Eprod : (productof T1 . . . Tn)
A ` (proj Nindex Eprod) : TNindex

, where 1 ≤ Nindex ≤ n [productof-elim]

Figure 12.8: Handling products in FL/X.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

538 CHAPTER 12. SIMPLE TYPES

premise type (recordof . . . (I T) . . .) obscure the fact that the type checker
must somehow find the binding associated with the selected field name in the list
of name/type bindings. Moreover, the fact that the name/type bindings may
be in any order complicates the notion of type equality — an issue discussed in
the next subsection.

Syntax

E ::= . . . | (record (I E)*) [Record Intro]
| (select I E) [Record Elim]

T ::= . . . | (recordof (I T)*) [Record Type]

Type Rules

∀ni=1 . A ` Ei : Ti
A ` (record (I1 E1) . . . (In En))
: (recordof (I1 T1) . . . (In Tn))

[recordof-intro]

A ` E : (recordof . . . (I T) . . .)
A ` (select I E) : T

[recordof-elim]

Figure 12.9: Handling records in FL/X.

¤ Exercise 12.1 Consider extending FL/X with a construct (pair=? Epair1 Epair2)
that returns true if the respective components of the pair values of Epair1 and Epair2
are equal, and returns false otherwise.

a. Give a type rule for pair=?.

b. In dynamically typed FL, write pair=? as a user-defined procedure (using the
generic equal? procedure to compare components).

c. In FL/X, is it possible to write pair? as a user-defined procedure? Explain. ¢

12.4.2 Digression: Type Equality

Before the introduction of recordof types, it was safe to assume that two
types were equal only if they were syntactically identical. But this assumption
is no longer valid in the presence of recordof types, because two recordof

types with different binding orders can be considered equal. For example,
(recordof (a int) (b bool)) and (recordof (b bool) (a int)) are equiv-
alent types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.4. TYPED DATA 539

One way to handle record type equality is to require that all recordof types
be put into a canonical form – e.g., with name/type bindings alphabetically
ordered by name. Another approach is to develop a collection of rules that
formalize when two types are equal. In this approach, two types are equal if and
only if a proof of equality can be derived from the rules. This second approach
is more general than the first because it handles notions of type equality that
are not so easily addressed by canonical forms.

Figure 12.10 presents a set of type equality rules for the FL/X types studied
thus far. The [reflexive-=], [symmetric-=], and [transitive-=] rules guarantee
that = is an equivalence relation. The [->-=], [pairof-=], and [productof-=]
rules ensure that = is a congruence over the ->, pairof, and productof type
constructors. The [recordof-=] rule allows the type and the tag names of a
recordof type to appear in permuted order as long as the named component
types are equivalent.

From now on, we assume that the type equality rules in Figure 12.10 are
used whenever it is necessary to determine the equality of two FL/X types.
Such tests are often implicit in the type constraints of type rules. For example,
here is a version of the [if] rule in which type equality tests are made explicit:

A ` Etest : Ttest ; A ` Econ : Tcon ; A ` Ealt : Talt

A ` (if Etest Econ Ealt) : Tresult
[if]

where Ttest = bool, Tcon =Talt , and Talt =Tresult

12.4.3 Typed Mutable Data

Mutable data, such as mutable cells, tuples, records, and arrays, are straight-
forward to handle in an explicitly typed framework. The type rules for mutable
cells are presented in Figure 12.11. Both subexpressions of a begin form are
required to be well-typed, but only the type of the second expression appears
in the result type. The cellof type constructor tracks the type of the cell con-
tents. In [cell-set], the new value is constrained to have the same type as the
value already in the cell. The unit result type of a cell-set form indicates
that it is performed for side effect, not for its value.

Note that Figure 12.11 includes a type equality rule for cellof types. From
now on, we must specify type equality rules for each new type constructor in
order to test for equality on the types it constructs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

540 CHAPTER 12. SIMPLE TYPES

T=T [reflexive-=]

T1=T2
T2=T1

[symmetric-=]

T1=T2 ; T2=T3
T1=T3

[transitive-=]

∀ni=1 . Si=Ti ; Sbody=Tbody
(-> (S1 . . . Sn) Sbody) =(-> (T1 . . . Tn) Tbody)

[->-=]

∀2i=1 . Si =Ti
(pairof S1 S2)= (pairof T1 T2)

[pairof-=]

∀ni=1 . Si =Ti
(productof S1 . . . Sn)= (productof T1 . . . Tn)

[productof-=]

(recordof (J1 S1) . . . (Jn Sn))
= (recordof (I1 T1) . . . (In Tn))

[recordof-=]

where {J1 , . . . , Jn} = {I1 , . . . , In} and
∀ni=1 . ∀nj=1 . Jj=Ii implies Sj=Ti

Figure 12.10: Type equality rules for FL/X.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.4. TYPED DATA 541

Syntax

E ::= . . . | (begin E1 E2) [Sequential Execution]
| (cell E) [Cell Creation]
| (cell-ref E) [Cell Get]
| (cell-set! Ecell Eval) [Cell Set]

T ::= . . . | (cellof T) [Cell Type]

Type Rules

∀2i=1 . A ` Ei : Ti
A ` (begin E1 E2) : T2

[begin]

A ` E : T
A ` (cell E) : (cellof T)

[cellof-intro]

A ` Ecell : (cellof T)
A ` (cell-ref Ecell) : T

[cellof-elim]

A ` Ecell : (cellof Tval) ; A ` Eval : Tval
A ` (cell-set! Ecell Eval) : unit

[cell-set]

Type Equality

T1=T2
(cellof T1)=(cellof T2)

[cellof-=]

Figure 12.11: Handling cells in FL/X.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

542 CHAPTER 12. SIMPLE TYPES

12.4.4 Typed Sums

Although sums are in some sense the duals of products, the type rules for named
sums (Figure ??) are far more complex than the type rules for named prod-
ucts in an explicitly typed language. Like the recordof type constructor,

Syntax

E ::= . . . | (one Toneof Itag Eval) [Oneof Intro]
| (tagcase Edisc Ival (Itag Ebody)* [(else Eelse)]) [Oneof Elim]

T ::= . . . | (oneof (I T)*) [Oneof Type]

Type Rules

A ` Eval : Tval
A ` (one Toneof Itag Eval) : Toneof

[oneof-intro]

where Toneof = (oneof . . . (Itag Tval) . . .)

A ` Edisc : (oneof (Iπ(1) Tπ(1)) . . . (Iπ(n) Tπ(n)))
∀ni=1 . A[Ival :Tπ(i)] ` Ei : Tresult

A ` (tagcase Edisc Ival (I1 E1) . . . (In En)) : Tresult

[oneof-elim1]

where π is a permutation on the integer range [1..n]

A ` Edisc : (oneof (J1 T1) . . . (Jm Tm))

∀ni=1 . A[Ival :Tf (i)] ` Ei : Tresult
A ` Edefault : Tresult

A ` (tagcase Edisc Ival (I1 E1) . . . (In En)
(else Edefault)) : Tresult

[oneof-elim2]

where n ≤ m and for all i ∈ [1..n] there is a unique f(i) ∈ [1..m] such that Ii=Jf (i)
Type Equality

(oneof (J1 S1) . . . (Jn Sn)) = (oneof (I1 T1) . . . (In Tn)) [oneof-=]

where {J1 , . . . , Jn} = {I1 , . . . , In} and
∀ni=1 . ∀nj=1 . Jj=Ii implies Sj=Ti

Figure 12.12: Handling oneofs in FL/X.

the oneof type constructor combines a sequence of named types whose or-
der is irrelevant (as specified by [oneof-=]). But the oneof introduction form
(one Toneof Itag Eval) must include the explicit type Toneof of the resulting
oneof value for use in the [oneof-intro] rule. This is necessary to preserve the
FL/X property that the type of any expression in a given type environment is

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.4. TYPED DATA 543

unambiguous and can be determined without any guessing. In the dual [recordof-
elim] rule for checking (select I E), the record type of E, which includes all
field types, can be determined from the type environment. In contrast, a one

form would only determine the type of one field type if the type Toneof were not
explicitly included.

The elimination rules [oneof-elim1] and [oneof-elim2] are also more complex
than the dual record introduction form. Having to bind the tagged value to the
name Ival , dealing with an optional else clause, and handling the fact that the
ordering of bindings is irrelevant all contribute to the complexity of the tagcase
rules.

As a concrete example of sum and product types, consider the typed shape
example in Figure 12.13. The shape type is an abbreviation for a oneof type
with three tags. Such abbreviations are crucial for enhancing code readability;
the example would be much more verbose without the abbreviation. We could
have consistently used productof or recordof types for all of the the oneof
components, but have chosen to use different type constructors for different
components just to show that this is possible. Note that in perim and double,
the variable v in the tagcase forms assumes different types in different clauses:
v has type int in a square clause, type (pairof int int) in a rectangle

clause, and type (productof int int int) in a triangle clause. All clauses
of a tagcase are required to return the same type. This return type is int for
perim and shape for double.

¤ Exercise 12.2 Construct type derivations showing that the perim and double

functions in Figure 12.13 are well-typed. ¢

12.4.5 Typed Lists

The geometric shape examples above shows that simple sum-of-product data
types can be expressed in FL/X by composing sums and products. However,
as it stands, FL/X does not have the power to express recursively structured
sum-of-product data types like lists and trees. Here we extend FL/X with a
built-in list data type. In Section 12.5, we extend FL/X with a recursive type
mechanism that allows lists and trees to be constructed by programmers.

Figure 12.14 presents the essence of lists in FL/X. Unlike in FL, where
lists are just sugar for idiomatic uses of pairs, FL/X supplies special forms for
creating lists (cons and null), decomposing non-empty lists (car and cdr), and
testing for empty lists (null?). All of these manipulate values of types created
with the listof type constructor. The type (listof T) describes lists whose
components all have the same type T. FL/X lists are said to be homogeneous,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

544 CHAPTER 12. SIMPLE TYPES

(define-type shape

(oneof (square int)

(rectangle (pairof int int))

(triangle (productof int int int))))

(define perim (-> (shape) int)

(lambda ((shp shape))

(tagcase shp v

(square (* 4 v))

(rectangle (* 2 (+ (left v) (right v))))

(triangle (+ (proj 1 v) (proj 2 v) (proj 3 v))))))

(define double (-> (shape) shape)

(lambda ((shp shape))

(tagcase shp v

(square (one shape square (* 2 v)))

(rectangle (one shape rectangle

(pair (* 2 (left v)) (* 2(right v)))))

(triangle (one shape triangle

(product (* 2 (proj 1 v))

(* 2 (proj 2 v))

(* 2 (proj 3 v))))))))

Figure 12.13: Typed shapes in FL/X.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.4. TYPED DATA 545

in constrast to the heterogeneous lists, of FL. To model heterogeneous lists
within FL/X, such as a list of integers and booleans, it is necessary to inject
the different types into an explicit sum type.

Syntax

E ::= . . . | (cons Ehead Etail) [List Creation]
| (car Elist) [List Head]
| (cdr Elist) [List Tail]
| (null T) [Empty List]
| (null? Elist) [Empty List Test]

T ::= . . . | (listof T) [List Type]

Type Rules

A ` Ehead : T
A ` Etail : (listof T)

A ` (cons Ehead Etail) : T(listofT)

[cons]

A ` Elist : (listof T)
A ` (car Elist) : T

[car]

A ` Elist : (listof T)
A ` (cdr Elist) : (listof T)

[cdr]

A ` (null T) : (listof T) [null]

A ` Elist : (listof T)
A ` (null? Elist) : bool

[null?]

Type Equality

T1=T2
(listof T1)=(listof T2)

[listof-=]

Figure 12.14: Handling lists in FL/X.

The null form includes the element type of the empty list. So (null int) is
an empty integer list, (null bool) is an empty boolean list, and (null (listof int))

is an empty list of integer lists.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

546 CHAPTER 12. SIMPLE TYPES

(define map-shape-int (-> ((-> (shape) int) (listof shape)) (listof int))

(lambda ((f (-> (shape) int)) (ss (listof shape)))

(if (null? ss)

(null int)

(cons (f (car ss))

(map-shape-int f (cdr ss))))))

(map-shape-int perim

(cons (rectangle (pair 4 5))

(cons (triangle (product 7 8 9))

(cons (square 3)

(null shape)))))

12.5 Recursive Types

Recursive procedures often manipulate recursively-structured data that cannot
be described in terms of compound types alone. The recof and rectype type
constructs (Figure 12.15) are used to specify the types of such data. recof

allows the specification of a single recursive type in the same manner that the
FL rec construct specifies a single recursive value. For example, here recof is
used to specify the type of a binary tree with integer leaves:

(recof int-tree

(oneof (leaf int)

(node (recordof (left int-tree)

(right int-tree)))))

rectype is the type domain analog to letrec. It permits a mutually recursive
set of named types to be used in a body type expression. For example, here is a
use of rectype to specify a binary tree that has integers at odd-numbered levels
and booleans at even-numbered levels:

(rectype ((int-level

(oneof (leaf int)

(node (recordof (left bool-level)

(right bool-level)))))

(bool-level

(oneof (leaf bool)

(node (recordof (left int-level)

(right int-level))))))

int-level)

What does it mean for two recursive types to be equivalent? For example,
consider the four types in Figure 12.16. All of the types describe infinite lists of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.5. RECURSIVE TYPES 547

E ::= . . . | (recof I T) [Recursive Type]
| (rectype ((I T)*) Tbody) [Mutually Recursive Types]

Figure 12.15: Syntax for recursive types in FL/X.

alternating integer and boolean values. T2 is a copy of T1 in which the recof

bound type variable has been consistently renamed. T3 is a copy of T1 in which
the definition of iblist has been unwound one level. In T4 , the recursive type
bilist describes an infinite list of alternating boolean and integer values. Which
pairs of these four types equivalent?

T1 = (recof iblist (pairof int (pairof bool iblist)))

T2 = (recof int-bool-list (pairof int (pairof bool int-bool-list)))

T3 = (recof iblist

(pairof int

(pairof bool

(pairof int

(pairof bool iblist)))))

T4 = (pairof int (recof bilist (pairof bool (pairof int bilist))))

Figure 12.16: Four types describing infinite lists with alternating integer and
boolean values.

The so-called iso-recursive approach to formalizing type equality on recur-
sive types is shown in Figure 12.17. The [recof-α] rule says that two recof types
are equal if their bound variables can be consistently renamed. So T1 = T2 via
[recof-α]. The [recof-β] rule says that a recof type is equivalent to the result of
substituting the entire recof type expression for its bound variable in the body
of the recof. So T1 = T3 via [recof-β], and T2 = T3 by the transitivity of
type equivalence.

(recof I T) = (recof Inew [Inew/I]T), where Inew 6∈ FreeIds[[T]] [recof-α]

(recof I T) = [(recof I T)/I]T [recof-β]

Figure 12.17: Iso-recursive type equality rules for recof types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

548 CHAPTER 12. SIMPLE TYPES

Can T4 be shown to be equivalent to T1 , T2 , or T3 using [recof-α] and
[recof-β]? No! We can prove this via the following observation. In each of T1 ,
T2 , and T3 , the number of occurrences of the type int is equal to the number
of occurrences of the type bool. In T4 , the number of occurrencs of int is one
more than the number of occurrences of bool. Since each application of [recof-α]
and [recof-β] preserves the difference between the number of occurrences of int
and of bool, T4 can never be shown to be equivalent to the other types via these
rules.

There is another approach to recursive type equivalence in which T4 is equiv-
alent to the other types. In this so-called equi-recursive approach, two recur-
sive types are considered to be equivalent if their complete (potentially infinite)
unwindings are equal. Under this criterion, all four of the types in Figure 12.16
are equivalent, because all of them unwind to an infinite type describing a list
of alternating integers and booleans:

(pairof int (pairof bool (pairof int (pairof bool . . .)))).

There are two approaches for formalizing equi-recursive type equality:

1. We can extend the type equivalence rules to maintain a set of assumed type
equivalences. This set is initially empty. Whenever T1 and T2 are com-
pared for equivalence and at least one of T1 or T2 is a recof or rectype
type, the equivalence T1 ≡ T2 is added to the set of assumptions before
unwinding a recof. If an equivalence already in the set of assumptions is
encountered, the equivalence is assumed to hold. The basic idea of this
approach is to assume that types are equivalent unless some contradiction
can be found.

2. It turns out that there is a normal form for FL/X types. recordof and
oneof types can be normalized by picking a convention for ordering their
tag and field names. recof and rectype types can be viewed as finite
state machines, which have normal forms. The existence of normal forms
implies that it is possible to perform type equivalence by normalizing two
types and syntactically comparing their normal forms.

¤ Exercise 12.3 Give iso-recursive type equality rules for rectype. ¢

¤ Exercise 12.4 Figure 12.18 presents five types. Which of these types are consid-
ered equivalent (a) under the iso-recursive approach and (b) under the equi-recursive
approach?

¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

12.5. RECURSIVE TYPES 549

Tit1 = (recof it

(oneof (leaf int)

(node (recordof (left it)

(right it))))

Tit2 = (recof int-tree

(oneof (leaf int)

(node (recordof (left int-tree)

(right int-tree)))))

Tit3 = (recof it

(oneof

(leaf int)

(node (recordof (left (recof it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))

(right it)))))

Tit4 = (recof it

(oneof

(leaf int)

(node (recordof (left it)

(right (recof it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))))))

Tit5 = (recof it

(oneof

(leaf int)

(node (recordof (left (recof it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))

(right (recof it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))))))

Figure 12.18: Five types for integer-leaved binary trees.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

550 CHAPTER 12. SIMPLE TYPES

¤ Exercise 12.5 Based on the idea of maintaining a set of type assumptions, write

a program that computes type equivalence for FL/X types. Your program should

effectively treat recursive types as their infinite unwindings. ¢

¤ Exercise 12.6

a. Show that a recof type can be viewed as a finite state machine.

b. Based on the first part, develop a notion of normal forms for FL/X types.

c. Write a program that determines the normal form for a FL/X type, and use this
as a mechanism for testing type equivalence.

¢

Reading

A good introduction to various dimensions of types is a survey article written by
Cardelli and Wegner [CW85]. A more in-depth discussion of these dimensions
can be found in textbooks by Pierce [Pie02], by Mitchell [Mit96], and by Schmidt
[Sch94]. For types in the context of the lambda calculus, see [Bar92a]. For work
on types in object-oriented programming, see [GM94].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 13

Subtyping and Polymorphism

We need a quote for this chapter.

— Mark A. Sheldon

13.1 Subtyping

13.1.1 Motivation

The typing rules presented for FL/X are rather restrictive. For example, con-
sider a get-name procedure that extracts the contents of the name field of a
record:

(define get-name (-> ((recordof (name string))) string)

(lambda ((r (recordof (name string))))

(select name r)))

According to the FL/X typing rules, the following use of get-name does not
type check:

(get-name (record (name "Paula Morwicz") (age 35) (student? #f)))

The problem is that the given record has three fields, but the type of get-name
dictates that the argument record must have exactly one field. Yet the presence
of the extra fields does not compromise the type safety of the expression. We can
reliably extract a string from the name field of any record whose type binds name
to string. No constraints on the number or nature of other fields is implied by
the extraction of the name field.

Situations like get-name can be addressed by the notion of type inclusion
(also called subtyping). We say that S is a subtype of T (written S v T) if

551

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

552 CHAPTER 13. SUBTYPING AND POLYMORPHISM

all expressions of type S can be used (in a type-safe manner) in every situation
where an expression of type T is used. Viewing types as sets, S v T means
that S ⊆ T. If S is a subtype of T, we can also say that T is a supertype of S.

13.1.2 FL/XS

We shall consider a variant of FL/X, called FL/XS (the “S” stands for “Sub-
types”), that supports subtyping. The typing rules of FL/XS are the same as
those for FL/X except for the addition of the [inclusion] rule of Figure 13.1. This
rule formalizes the notion that a subtype element can be used in any situation
where a supertype element is expected.

(A ` E : T) ; (T v T ′)
A ` E : T ′ [inclusion]

Figure 13.1: Additional typing rule for FL/XS. This rule augments the typing
rules for FL/X.

Subtyping is a relation on type expressions that can be defined by a collection
of rules. The subtyping rules for FL/XS appear in Figure 13.2. The [reflexive-

T v T [reflexive-v]

T1 v T2 ; T2 v T3
T1 v T3

[transitive-v]

∀i . ∃j . ((Ii = Jj) ∧(Sj v Ti))
(recordof (J1 S1) . . . (Jm Sm))
v (recordof (I1 T1) . . . (In Tn))

[recordof-v]

∀j . ∃i . ((Jj = Ii) ∧(Sj v Ti))
(oneof (J1 S1) . . . (Jm Sm)) v (oneof (I1 T1) . . . (In Tn))

[oneof-v]

∀i . (Ti v Si) ; Sbody v Tbody
(-> (S1 . . . Sn) Sbody) v (-> (T1 . . . Tn) Tbody)

[->-v]

∀T . ([T/I1]T1 v [T/I2]T2)
(recof I1 T1) v (recof I2 T2)

[recof-v]

Figure 13.2: Subtyping rules for FL/XS.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.1. SUBTYPING 553

v] and [transitive-v] rules guarantee that subtyping is a reflexive, transitive
closure of the relation induced by the other rules. The [recordof-v] rule says
that a record type S is a subtype of a record type T if (1) S has at least the
fields of T and (2) for each of the field names in T, the field types in S are in a
subtype relation with the corresponding field types of T. Condition (1) says that
extra fields in S can’t hurt, since they will be ignored by any code that extracts
only the fields mentioned in T. Condition (2) says that subtyping is allowed
among the corresponding component types of the fields named by T. When
corresponding type components are related via subtyping in the same direction
as the entire type, the subtyping of the components is said to be monotonic.
Thus, the second condition for record subtyping could be rephrased as “for each
of the field names in T, the corresponding field types are related monotonically.”

Figure 13.3: Procedure subtyping is monotonic on result of types and anti-
monotonic on input types.

The [oneof-v] rule is a dual of the [record-v] rule: A oneof type S is a subtype
of a oneof type T if it has fewer tags. The types of the shared tags are related
monotonically. This makes sense because if a program is prepared to handle all
the cases of the supertype (T), then it is prepared for the fewer possible cases
of the subtype (S).

In the rule for procedure subtyping, the return types are monotonic, but

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

554 CHAPTER 13. SUBTYPING AND POLYMORPHISM

the parameter types are anti-monotonic — i.e., they are related via subtyping
in a direction opposite to the subtyping of the procedure type as a whole. As
shown in Figure 13.3, procedures are supposed to handle any element in the
class specified by the type of the formal parameter. Thus if a procedure expects
type S1 , it can be used in a context where it will be passed elements from the
smaller class T1 v S1 . (Alternatively, one may always safely use a procedure
that is defined on more values.) On the other hand, it is always safe to use a
procedure that returns elements of type SR where TR is expected if SR v TR.

The rule for the subtyping of recof types says that recof type S is a subtype
of another recof type T if the result of instantiating the body of S with any
type is a subtype of the result of instantiating the body of T with the same
type.

Note that there are no special subtyping rules for cellof, listof, and
vectorof types. This is not an oversight; types of these forms are only in a
subtype relation if they are type equivalent! The following monotonic rule for
cellof subtyping seems natural, but it is actually incorrect:

T1 v T2
(cellof T1) v (cellof T2)

[incorrect-cellof-v]

It is possible to show expressions that are well-typed using this rule, but that
would raise a run-time type error in the corresponding dynamically typed sys-
tem. We leave the generation of such an example as an exercise for the reader.
Corresponding rules for listof and vectorof subtyping suffer the same prob-
lem as the cellof rule above. In all cases, the fundamental problem is due to
side effects. In fact, the expected monotonic rule for these types is valid if they
are immutable.

Finally, in a language with subtyping, it is reasonable to define type equiva-
lence as mutual inclusion.

13.1.3 Discussion

The [inclusion] rule is a simple way of extending the FL/X typing rules with
subtyping, but it harbors some problems. In FL/X, every expression has exactly
one type (actually, an expression may have many types, but they are all type
equivalent). The [inclusion] rule destroys this unique typing property allowing a
single expression to have many (non-equivalent) types. For instance, in FL/XS,
it is possible to prove that the expression

(record (a 3) (b #t))

has each of the following types:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.1. SUBTYPING 555

(recordof (a int) (b bool))

(recordof (a int))

(recordof (b bool))

(recordof)

The lack of unique typing is not in itself a problem, but it can complicate
other analysis. In the case of FL/XS, the lack of unique typing makes it difficult
to write a type checker. The problem is that a straightforward type checker needs
to choose one of many possible types before enough information is known to make
a correct decision. Consider type checking the following simple expression:

(let ((c (cell (record (a 3) (b #t)))))

(begin (cell-set! c (record (a 4)))

(select a (cell-ref c))))

This expression is well-typed according to the typing rules of FL/XS. But the
proof of well-typedness requires invoking the [inclusion] rule to hide the b field
of the first record so that c has the type (cellof (recordof (a int))). A
straightforward type checker needs to decide upon the type of c before it exam-
ines the rest of the program. At this point the type checker does not “know”
which fields of the record content of c may be accessed later and how c will be
mutated. (In fact, such details are undecidable in general.) But without such
knowledge, the type checker may make an inappropriate choice. For instance,
upon encountering the cell expression, it seems prudent to assume that c has
the type

(cellof (recordof (a int) (b bool)))

Unfortunately, the program is not well-typed under this assumption. In this
case, the correct type for c is

(cellof (recordof (a int)))

but this is only OK because it so happens that the program does not later
extract the b field. Without backtracking or some sophisticated mechanism for
managing constraints, simple expressions like the one above will not be type
checked properly.

It is possible to restore unique typing and make type checking easier by
restricting the contexts in which subtyping is allowable. Figure 13.4 presents
an alternate set of type rules that can be used in place of the [inclusion] rule.
The [call-inclusion] rule permits actual arguments to be subtypes of the formal
parameters expected by the called procedure. This rule pinpoints procedure call
boundary as the most useful spot where the power of subtyping is used implicitly.
Implicit coercion is common in other languages: Java allows methods to accept
arguments of a subclass of the expected class, and numerous languages allow
implicit coercion among numeric types (e.g., converting an integer to a floating

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

556 CHAPTER 13. SUBTYPING AND POLYMORPHISM

A ` Erator : (-> (T1 . . .Tn) Tbody)
∀i ((A ` Ei : Si) ∧(Si v Ti))
A ` (Erator E1 . . .En) : Tbody

[call-inclusion]

A ` E : S
S v T

A ` (the T E) : T
[the-inclusion]

Figure 13.4: Modified typing rules for FL/XS

point number).1

The alternate set of type rules also includes the [the-inclusion] for handling
the. Under this rule, the is no longer merely a type declaration, but a means
of type coercion — that is, a means of making a value appear to have as its
type a supertype of its actual type. In FL/XS, an item can only be coerced to
an object of a supertype, and thus no type loophole can arise. Some languages
support arbitrary coercion as a deliberate type loophole. C’s casts are a prime
example.

;; This type checks

(select a (the (recordof (a int))

(record (a 3) (b #t))))

;; This fails to type check, because B is hidden by coercion

(select b (the (recordof (a int))

(record (a 3) (b #t))))

If the [inclusion], [call], and [the] rules are replaced with the rules in 13.4,
then every FL/XS expression has a single type. This is because implicit subtyp-
ing is limited to argument positions while all other coercions must be explicitly
made by the programmer. This limitation also makes it possible to implement
a straightforward type checker that embodies the rules; the situations in which
subtyping needs to be employed are very constrained. Of course, the price of
increased simplicity is a reduction in the power of the type system. Under the
alternate set of typing rules, some expressions well-typed under the [inclusion]
rule are no longer well-typed. For example, reconsider an example from above:

1In the case of numeric coercion, there is an actual runtime change in representation that
must be inserted.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.1. SUBTYPING 557

(let ((c (cell (record (a 3) (b #t)))))

(begin (cell-set! c (record (a 4)))

(select a (cell-ref c))))

Under the alternate rules, this expression is not well-typed. The variable c is
found to have the type

(cellof (recordof (a int) (b bool)))

However, because the [cell-set] rule requires the new value to have the same type
as that stored in the cell, type checking fails at the cell-set! expression.

¤ Exercise 13.1 Show that the following subtyping rule for cellof types is unsound:

T1 v T2
(cellof T1) v (cellof T2)

[incorrect-cellof-v]

Do this by exhibiting an expression that is well-typed under this rule, but which would

raise a run-time type error in a dynamically-typed version of FL/XS. ¢

¤ Exercise 13.2 Suppose that FL/XS were extended to include immutable lists of
type (ilistof T) with operations icons, icar, and icdr. Argue that the following
subtyping rule for immutable list types is sound:

T1 v T2
(ilistof T1) v (ilistof T2)

[immutable-listof-v]

¢

¤ Exercise 13.3 The typing rules in Figure 13.4 can be extended to handle limited
subtyping for certain cell, list, and vector operations while still maintaining the unique
typing property. For example, if lst is defined as

(define lst (cons (record (a 3)) (null (recordof (a int)))))

then it seems reasonable that

(cons (record (a 7) (b #t)) lst)

should type check with (listof (recordof (a int))) as its type.

Extend the rules of Figure 13.4 to include special subtyping rules for cell, list, and

vector special forms, where they make sense. Argue that your rules are (1) safe and (2)

preserve the unique typing property of expressions. ¢

¤ Exercise 13.4 Ben Bitddidle has decided to improve FL/XS by allowing user
defined procedures to return multiple values instead of just one. Here’s an example of
a program that uses Ben’s new improvement:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

558 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(let ((f (lambda ((x int)) (result (* x x) (< x 10)))))

(result-bind (f 4) (i b)

(if b (+ i 1) 2)))

−−−eval→ 17

Multiple values are returned from a procedure by result and they are bound at the
point of application with result-bind. In the above example, i is bound to 16, and b

is bound to #t. The syntax of FL/XS expressions is expanded to include result and
result-bind:

E ::= . . . | (result E*) | (result-bind Eapp (I*) Ebody)

Values created by result can only be used with result-bind. In particular, E and
(result E) do not have the same type and are not equivalent. Procedures do not
have to return multiple values. The type domain includes a new type constructor for
multiple-value return values that are created by result:

T ::= . . . | (result-of T*)

a. Give the typing rules for the result and result-bind constructs.

b. What are the subtyping rules for result-of types? ¢

¤ Exercise 13.5 Bud Lojack decides to add exceptions with termination semantics to
FL/X. He extends the grammar as follows:

E ::= . . . | (raise Iexcept Eval) | (handle Iexcept Ehandle Ebody)

Recall the informal semantics of raise and handle from Exercise 9.12 on page 407:

• (raise Iexcept Eval) evaluates Eval and applies the current handler for the ex-
ception named Iexcept to the resulting value. This application takes place in the
handler environment and continuation of the handler.

• (handle Iexcept Ehandle Ebody) first evaluates Ehandle . It is an error if the value
of Ehandle is not a procedure of one argument. Otherwise the (procedure) value
of Ehandle is installed as the current handler of the exception named Iexcept , and
Ebody is evaluated. If Ebody returns normally, the value of Ehandle is removed as
the handler of Iexcept , and the value of Ebody is returned.

Bud wants to modify the type system of FL/X to support the newly introduced
constructs. First, he extends the type grammar to include a new type for exception
handlers:

T ::= . . . | (handlerof T)

Next, he suggests the following typing rules for handle and raise:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.1. SUBTYPING 559

A ` Ehandle : (-> (T1) T2)
A[Iexcept:(handlerof T1)] ` Ebody : T2
A ` (handle Iexcept Ehandle Ebody) : T2

[handle]

A ` Iexcept : (handlerof T), A ` Eval : T
A ` (raise Iexcept Eval) : T

′ [raise]

a. Show that Bud’s typing rules result in an unsound type system by providing ex-
pressions for Efirst and Esecond in the following expression such that the expression
is well-typed by Bud’s rules, but will generate a dynamic type error.

(handle an-exn Efirst
(let ((f (lambda () (raise an-exn 17))))

(handle an-exn Esecond
(f))))

Scared by this initial failure, Bud calls his more skilled friend Ty Pingnut and gives him
the task of defining a sound type system for raise and handle. Ty makes the following
change to the grammar of types:

T ::= . . . normal FL/X types except for -> . . .
| (-> S (T*) T)
| void

S ∈ Exn-Spec
S ::= { 〈I1 ,T1 〉, . . ., 〈In ,Tn〉 }
The type system is changed to have judgments of the form

A ` E : T $ S

This can be read, “under type environment A, expression E has type T and may raise
exceptions as specified by S.” An Exn-Spec S is a set of 〈Ii ,Ti 〉 pairs that indicates
exceptions that may be raised when E is evaluated, and the type of the value raised for
each exception. For example, the judgment

A ` E : bool $ {〈x, bool〉, 〈y, int〉}
indicates that if E returns normally, its value will have type bool; and that evaluation of
E could cause the exception x to be raised with a value of type bool, or the exception
y to be raised with a value of type int. Ty’s type system guarantees that no other
exceptions can be raised by E. Note that in Ty’s system, a procedure type includes an
Exn-Spec S that describes the latent exceptions that might be raised when the procedure
is applied.

Moreover, Ty uses exception masking to remove exceptions from judgments when it
is clear that they will be handled:

A ` (handle x (lambda ((z bool)) z) E) : bool $ {〈y, int〉}.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

560 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Ty uses void as the type of a raise expression:

` (raise x 4) : void $ {〈x, int〉}

It is a general property of Ty’s system that any expression of type void is guaranteed
to raise an exception, and therefore, will never return a result. Since an expression of
type void can never return, it makes sense to think of void as a subtype of every type.
Ty uses this idea to define a subtyping relation, v, that is similar to the subtyping
relation for FL/XS, but has the following additional rule:

void v T [void-v]

Also, the procedure subtyping rule has been modified to be monotonic on the set of
possible exceptions:

∀i . (Ti ′ v Ti), Tbody v Tbody
′, S ⊆ S ′

(-> S (T1 . . . Tn) Tbody) v (-> S ′ (T1
′ . . . Tn

′) Tbody
′)

[->-v]

All other subtyping rules for FL/XS are unchanged in Ty’s system.
Here are some of Ty’s typing rules:

A ` N : int $ {} [int]

A ` B : bool $ {} [bool]

A ` E1 : bool $ S1
A ` E2 : T $ S2
A ` E3 : T $ S3

A ` (if E1 E2 E3) : T $ S1 ∪ S2 ∪ S3

[if]

A ` E : T $ S, T v T ′, S ⊆ S ′

A ` E : T ′ $ S ′
[inclusion]

Note in particular the rule [inclusion], which is crucial in typing the following ex-
amples:

` (if #t #f (raise x 4)) : bool $ {〈x, int〉}
` (if #f (raise x 4) (raise x #t)) : void $ {〈x, int〉, 〈x, bool〉}

In the second example, values of two incompatible types (int and bool) are raised for
the same exception x. Because we are working in a language without polymorphism, it
is impossible to write a handler for both values.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.2. POLYMORPHIC TYPES 561

b. Give the typing rule for raise.

c. Give the typing rule for handle.

d. Suppose we alter the syntax of error to be (error Y). What is the new typing
rule for error? ¢

13.2 Polymorphic Types

Monomorphic type systems are easy to reason about, but they hinder the de-
velopment of reusable code. In particular, monomorphic languages prevent the
programmer from expressing polymorphic values — values (typically proce-
dures) that can have different types in different contexts. In this section, we
develop a type system that allows the expression of polymorphic values.

As an example of a polymorphic value, consider a map procedure written in
FL:

(define map

(lambda (fn lst)

(if (null? lst)

(null)

(cons (fn (car lst)) (map fn (cdr lst))))))

We have seen that aggregate data operators like map are a powerful means of
composing programs out of reusable, mix-and-match parts. In large part, this
power is due to the fact that the same operator works over many types of
operands. The map procedure, for instance, can be viewed as having an infinite
number of possible types, including:

(-> ((-> (int) int) (listof int)) (listof int))

(-> ((-> (int) bool) (listof int)) (listof bool))

(-> ((-> (bool) int) (listof bool)) (listof int))

(-> ((-> (bool) bool) (listof bool)) (listof bool))

(-> ((-> ((listof int)) int) (listof (listof int))) (listof int))

(-> ((-> (int) (-> (bool) int)) (listof int))

(listof (-> (bool) int)))

The type of map for any particular call depends on the types of its arguments.
So, in the call

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

562 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(map (lambda (x) (* x x)) (list 1 2 3)) ,

map effectively has type

(-> ((-> (int) int) (listof int)) (listof int)) ,

while in the call

(map (lambda (x) (< x 17)) (list 23 13 29)) ,

it has the type

(-> ((-> (int) bool) (listof int)) (listof bool)) .

Other common examples of useful polymorphic procedures include the iden-
tity function ((lambda (x) x)) and general sorting utilities.

Unfortunately, the type system of FL/X requires the type of values like map
to be specified where it is created, not where it is called. A programmer wishing
to use map on different types of arguments must write a different version of map
for every different set of argument types. For example, here are two FL/X
versions of map that correspond to the two calls mentioned above:

(define map (-> ((-> (int) int) (listof int)) (listof int))

(lambda ((fn (-> (int) int)) (lst (listof int)))

(if (null? lst)

(null int)

(cons (fn (car lst)) (map fn (cdr lst))))))

(define map (-> ((-> (int) bool) (listof int)) (listof bool))

(lambda ((fn (-> (int) bool)) (lst (listof int)))

(if (null? lst)

(null bool)

(cons (fn (car lst)) (map fn (cdr lst))))))

Except for type information, the two definitions are exactly the same.

Any language like FL/X that forces the programmer to reimplement func-
tionality in order to satisfy the type system thwarts the goal of writing reusable
software components. There is a broad class of general-purpose functions and
data structures that are inexpressible in such languages due to the shackles of the
type system. This lack of expressiveness is indicative of the price that program-
mers may have to pay for types. In fact, the primary limitations of languages
such as Pascal and C stem from their monomorphic type systems.

Polymorphism can be introduced into a language by generalizing the types of
values where they are created, and then specializing these types where the values
are used. Reconsider the types of map listed above. All of them are instances of
a common pattern:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.2. POLYMORPHIC TYPES 563

(-> ((-> (S) T) (listof S)) (listof T))

We would like to be able to declare that map has this general type, but then
specialize this type (by specifying S and T) wherever map is applied.

We embody this approach in a polymorphic language FL/XSP (the “P”
stands for “Polymorphism”) by adding two new expression constructs and one
new type construct to FL/XS:

E ::= . . . | (plambda (I*) E) | (pcall E T*)
T ::= . . . | (forall (I*) T)

(plambda (I*) E) creates a polymorphic value that is parameterized over
the type variables I*.

(pcall E T*) instantiates, or projects, the type variables of the poly-
morphic object denoted by E. pcall is the “call” that supplies “argu-
ments” to values created by plambda.

(forall (I*) T) is the type of a polymorphic value. In the literature,
polymorphic types are often written using ∀ notation and referred to as
“universally quantified.” For example, the type of the mapping procedure,

(forall (s t) (-> ((-> s t) (listof s)) (listof t)))

is typically rendered

∀s, t . (s → t) × (listof s) → (listof t)

Here is a polymorphic version of map written in FL/XSP:

(define map (forall (s t)

(-> ((-> (s) t) (listof s)) (listof t)))

(plambda (s t)

(lambda ((fn (-> (s) t)) (lst (listof s)))

(if ((pcall null? s) lst)

((pcall null t))

((pcall cons t) (fn ((pcall car s) lst))

((pcall map s t)

fn ((pcall cdr s) lst)))))))

The (plambda (s t) . . .) creates a polymorphic value (in this case, a proce-
dure) whose type is abstracted over the type variables s and t. The pcall

construct specializes the type of a polymorphic value by filling in the types of
these variables:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

564 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(the (-> ((-> (int) int) (listof int)) (listof int))

(pcall map int int))

(the (-> ((-> (int) bool) (listof int)) (listof bool))

(pcall map int bool))

Projection allows a polymorphic procedure to be used with different types of
arguments:

((pcall map int int) (lambda (x) (* x x)) (list 1 2 3))

((pcall map int bool) (lambda (x) (< x 17)) (list 23 13 29))

plambda and pcall have a similar contract to lambda and procedure call.
But whereas lambda and procedure call imply computation at run time, plambda
and pcall imply computation during type checking. That is, plambda builds
abstractions over types during static analysis; these abstractions are also un-
wound by pcall during static analysis. Every polymorphic value must have its
types instantiated (via pcall) before it can be used.

FL/XSP requires the explicit projection of polymorphic values via pcall.
But some polymorphic languages support implicit projection, in which the
projected types are automatically deduced from context. Implicit projection
makes polymorphic programming more palatable by removing some of the over-
head of writing explicit types.

In a polymorphic language, general operations on data structures like cells,
sums, products, and lists can once again be treated as first-class procedures
rather than as special forms. For example, here are the types of the list operators
in FL/XSP:

(the (forall (t) (-> (t (listof t)) (listof t))) cons)

(the (forall (t) (-> ((listof t)) t)) car)

(the (forall (t) (-> ((listof t)) (listof t))) cdr)

(the (forall (t) (-> ((listof t)) bool)) null?)

(the (forall (t) (-> () (listof t))) null)

In FL/XSP, it is even possible to have a polymorphic empty list nil with type
(forall (t) (listof t)). This underscores the fact that polymorphism can
be used with all values, not only procedures.

In order to type check expressions involving plambda and pcall, it is nec-
essary to extend the typing rules, type inclusion rules, and type equivalence as
shown in Figure 13.5.

The [pλ] rule gives a forall type to a plambda, while the [project] rule
specifies a beta substitution in the type domain. The [pλ] rule includes a re-
striction on the identifiers that plambda can abstract over. The restriction uses

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.2. POLYMORPHIC TYPES 565

Typing Rules

A ` E : T
A ` (plambda (I1 . . . In) E) : (forall (I1 . . . In) T)

[pλ]

where ∀ni=1 . Ii 6∈ (FTV (FreeIds[[E]])A)
and E is pure. [purity restriction]

A ` E : (forall (I1 . . . In) TE)
A ` (pcall E T1 . . . Tn) : ([Ti/Ii]

n
i=1) TE

[project]

Type Inclusion Rules

([Ii/Ji]
n
i=1) S v T, ∀i (Ii 6∈ FreeIds[[S]])

(forall (J1 . . . Jn) S) v (forall (I1 . . . In) T)
[forall-v]

Type Equivalence

(T1 v T2)
(T2 v T1)
T1 ≡T2

[≡]

Figure 13.5: New rules to handle polymorphism in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

566 CHAPTER 13. SUBTYPING AND POLYMORPHISM

a function FTV (which stands for Free Type Variables). (FTV I* A) returns
the collection of type variables that appear free in the type assignments that A
gives to the identifiers I*. This restriction prohibits a subtle form of variable
capture. Consider the following example:

(define polytest

(plambda (t)

(lambda ((x t))

(plambda (t) x))))

What is the type of polytest? To say that it is

(forall (t) (-> (t) (forall (t) t)))

is incorrect, because the t introduced by the outer plambda has been captured
by the inner one. Because of this name capture, the following expression would
not type check even though it should:

(pcall ((pcall polytest int) 3) bool)

In the [pλ] rule, we simply outlaw such situations. An implementation could
insist programmers enforce the rule, or it could α-rename type variables to
guarantee that no capture is possible no matter what names the programmer
used.

Note that the rule for type equivalence is broadened to allow equivalence of
forall types that are the same except for the names chosen for their variables.
E.g., this rule allows us to show:

(forall (s) (-> (s) s)) ≡ (forall (t) (-> (t) t))

¤ Exercise 13.6 Alyssa P. Hacker wants to remove error from the language as
a special syntactic construct. She suggests that we add an error procedure to the
standard environment.

a. Specify the type of the error procedure.

b. Illustrate its use by filling in the box in the following example to produce a well-
typed expression:

(lambda ((x int) (y int))

(if (= x 0)

(/ y x))) ¢

¤ Exercise 13.7 Louis Reasoner has had a hard time implementing letrec in a
call-by-name version of FL/XSP, and has decided to use the fixed point operator fix
instead. For example, here is the correct definition of factorial in Louis’s approach:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.3. DESCRIPTIONS 567

(let ((fact-gen

(lambda ((fact (-> (int) int)))

(lambda ((n int))

(if (= n 0) 1 (* n (fact (- n 1))))))))

((pcall fix (-> (int) int)) fact-gen))

Thus, fix is a procedure that computes the fixed point of a generating function.
Ben Bitdiddle has been called on the scene to help, and he has ensured that Louis’s
FL/XSP supports recursive types using recof.

a. What is the type of fact-gen?

b. What is the type of fix?

c. What is the type of ((pcall fix (-> (int) int)) fact-gen)?

Ben Bitdiddle defined the call-by-name version of fix to be:

(let ((fix (plambda (t)

(lambda ((f T1))
((lambda ((x T2)) (f (x x)))

(lambda ((x T2)) (f (x x))))))))

... fix can be used here ...

)

d. What is T1 ?

e. What is T2 ?

f. Louis has decided that he would like (fix E) to be a standard expression in his
language. What is the typing rule for (fix E)? ¢

13.3 Descriptions

The ability to abbreviate types with tlet is not sufficiently powerful to express
many desirable abstractions. For example, the define-type construct in FL/X
is too weak to simplify the definition of make-tree, the polymorphic version of
make-int-tree shown in Figure 13.8. Here the tree type expressions cannot be
replaced by some globally named type because they are parameterized over the
type t, which is local to the definition of make-tree. What we’d like in this
situation is a lambda-like construct in the type domain that would allow the
construction of type abstractions.2 In this case, we’d like to define a treeof

operator in the type domain that would allow us to rewrite make-tree as:

2Not to be confused with abstract types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

568 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(define make-int-tree

(-> ((recof tree

(oneof

(leaf int)

(node (recordof (left tree)

(right tree)))))

(recof tree

(oneof

(leaf int)

(node (recordof (left tree)

(right tree))))))

(recof tree

(oneof (leaf int)

(node (recordof (left tree)

(right tree))))))

(lambda ((left-branch (recof tree

(oneof

(leaf int)

(node (recordof

(left tree)

(right tree))))))

(right-branch (recof tree

(oneof

(leaf int)

(node (recordof

(left tree)

(right tree)))))))

(one

(recof tree

(oneof

(leaf int)

(node (recordof (left tree)

(right tree)))))

node (record (left left-branch)

(right right-branch)))))

Figure 13.6: Lack of type abstraction greatly complicates the definition of a
make-int-tree procedure.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.3. DESCRIPTIONS 569

(define-type int-tree

(recof tree

(oneof (leaf int)

(node (recordof (left tree) (right tree))))))

(define make-int-tree (-> (int-tree int-tree) int-tree)

(lambda ((left-branch int-tree) (right-branch int-tree))

(one int-tree

node

(record (left left-branch)

(right right-branch)))))

Figure 13.7: Type abstractions simplify the definition of make-int-tree.

(define make-tree (forall (t) (-> ((treeof t) (treeof t)) (treeof t)))

(plambda (t)

(lambda ((left-branch (treeof t))

(right-branch (treeof t)))

(one (treeof t)

node

(record (left left-branch)

(right right-branch))))))

Note that a type operator such as treeof cannot be created by lambda

or plambda; whereas lambda creates procedures that map values to values and
plambda creates procedures that map types to values, a type operator maps
types to types. Therefore, a new kind of lambda is needed.

In order to address the issues raised by the above examples, we consider a new
language FL/XSPD that is a generalized version of FL/XSP. The grammar
for FL/XSPD is given in Figures 13.9 and 13.10.3 Whereas all type expressions
in FL/XSP (generated by nonterminal T) denote types, the type expressions in
FL/XSPD (generated by nonterminal D) denote descriptions. Descriptions
encompass not only types, but also operators on types and, in fact, operators
on arbitrary descriptions.4

The define-desc construct can be used to name descriptions globally. Thus,

3The grammar for program specifies that all define-descs must precede all defines. In
spite of this, we will assume that these two forms can be freely intermingled in practice. It
is easy to imagine that the FL/X parser translates the more liberal form of program into the
restricted form specified by the grammar.

4Descriptions can be extended to include other information as well, such as effects, which
indicate the allocation, reading, or writing of a mutable data structure. FX uses descriptions
with effects to perform static side-effect analysis on programs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

570 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(define make-tree

(forall (t)

(-> ((recof tree

(oneof

(leaf t)

(node (recordof (left tree)

(right tree)))))

(recof tree

(oneof

(leaf t)

(node (recordof (left tree)

(right tree))))))

(recof tree

(oneof (leaf t)

(node (recordof (left tree)

(right tree)))))))

(plambda (t)

(lambda ((left-branch (recof tree

(oneof

(leaf t)

(node (recordof

(left tree)

(right tree))))))

(right-branch (recof tree

(oneof

(leaf t)

(node (recordof

(left tree)

(right tree)))))))

(one

(recof tree

(oneof

(leaf t)

(node (recordof (left tree)

(right tree)))))

node (record (left left-branch)

(right right-branch))))))

Figure 13.8: make-tree, a version of make-int-tree parameterized over the
leaf type.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.3. DESCRIPTIONS 571

Abstract Syntax:

P ∈ Program
I,J ∈ Identifier
E ∈ Exp
Y ∈ Symlit
L ∈ Lit=Unitlit∪Boollit∪Intlit∪Stringlit∪Symlit
D ∈ Description

E ::= L | I | (if E1 E2 E3) | (begin E1 E2) | (the D E)
| (lambda ((I D)*) Ebody) | (Eproc Eargs*)
| (let ((I E)*) Ebody) |(letrec ((I D E)*) Ebody)
| (record (I E)*) | (with Erec Ebody)
| (one D Itag Eval) | (tagcase Edisc (Itag Ival Ebody)

+)

| (tagcase Edisc (Itag Ival Ebody)
+ (else Edefault))

| (plambda (I*) E) | (pcall E D*)
| (plet ((I D)*) Ebody) | (pletrec ((I D)*) Ebody)
| (error D Y)

D ::= int | unit | bool | string | I
| (-> (Darg*) Dbody)

| (recordof (Ifield Dval)*) | (oneof (Itag Dval)*) | (cellof D)

| (forall (I*) D)

| (dlambda (I*) Dbody) | (Drator Drand*) | (dlet ((I D)*) D)

| (drecof I D) | (dletrec ((I D)*) Dbody)

Figure 13.9: A kernel grammar for FL/XSPD.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

572 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Syntactic Sugar:

P ::= (program Ebody (define-desc I D)* (define I D E)*)

E ::= . . . | (begin E1 E2 . . . En)
| (cond (Etest Econsequent)* (else Edefault))
| (letrec (I D E)* Ebody)

(program Ebody
(define-desc Id 1 D1) . . . (define-desc Id m Dm)

(define Iv 1 E1) . . . (define Iv n En))
=
(plet (Id 1 D1)

...

(plet (Id m Dm)

(letrec ((Iv 1 E1) . . . (Iv n E2))
Ebody)) . . .)

The usual desugarings for begin, cond, and letrec.

Figure 13.10: A grammar for FL/XSPD’s syntactic sugar.

it acts like the hypothetical define-type in the integer binary tree examples
above:

(define-desc int-tree

(drecof t

(oneof (leaf int)

(node (recordof (left t) (right t))))))

The dlambda construct denotes a description operator that takes descriptions
as arguments and returns a description as a result. Using dlambda, the treeof

type operator suggested above could be written as

(define-desc treeof

(dlambda (leaf-type)

(drecof tree

(oneof (leaf leaf-type)

(node (recordof (left tree) (right tree)))))))

This description operator can then be applied to another description. For ex-
ample, an alternate definition of the int-tree type described above is:

(define-desc int-tree (treeof int))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.3. DESCRIPTIONS 573

Since listof can be defined in a way similar to treeof, listof need not be
a primitive type constructor in FL/XSPD. It is worth noting in the above
examples that define-desc can be used to name both types and operators on
types.

Because the arguments and results of description operators may include ar-
bitrary descriptions, it is possible to have higher-order description operators.
As an example where this power can be put to use, suppose we are defining
mapping procedures for several different homogeneous aggregate data struc-
tures. In particular, suppose that listof and vectorof are type constructors
for lists and vectors, respectively. Then the types of the procedures list-map
and vector-map would be as follows:

list-map : (forall (in-type out-type)

(-> ((-> (in-type) out-type)

(listof in-type))

(listof out-type)))

vector-map : (forall (in-type out-type)

(-> ((-> (in-type) out-type)

(vectorof in-type))

(vectorof out-type)))

Clearly there is a common pattern in the types of the two mapping procedures.
We can capture this pattern by creating a description operator map-type.

(define-desc map-type

(dlambda (type-constructor)

(forall (in-type out-type)

(-> ((-> (in-type) out-type)

(type-constructor in-type))

(type-constructor out-type)))))

Then the types of list-map and vector-map can be written more succinctly:

list-map : (map-type listof)

vector-map : (map-type vectorof)

The dlet construct names a description in a local scope. The drecof and
dletrec constructs are used for creating recursive descriptions, such as treeof.
We have seen versions of these before in FL/XSP, where drecof was called
recof and dletrec was called rectype. plet and pletrec are similar to dlet

and dletrec except that they return values rather than descriptions; e.g.,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

574 CHAPTER 13. SUBTYPING AND POLYMORPHISM

;; DLET returns a description

(dlet ((pairof (dlambda (d1 d2)

(recordof (first d1) (second d2)))))

(pairof int (pairof bool string)))

;; PLET returns a value

(plet ((pairof (dlambda (d1 d2)

(recordof (first d1) (second d2)))))

(the (pairof int (pairof bool string))

(record (first 3)

(second (record (first #f)

(second "Alyssa"))))))

Just as let in a typed language cannot be desugared into a lambda combination
(because type information is lost), it is similarly the case that plet cannot be
desugared into plambda plus pcall, nor can dlet be desugared into dlambda

plus a description application.

Intuitively, constructs in the description domain (define-desc, dlambda,
description operator application, dlet, and dletrec) have a close correspon-
dence with value domain constructs (define, lambda, value procedure applica-
tion, let, and letrec). But how do we formally describe the meanings of the
new description expressions that we have introduced? Two new typing rules
are needed (see Figure 13.11), but these are for the value-producing plet and
pletrec, not the description producing dlambda, dlet, drecof, and dletrec.

A ` ([Di/Ii]
n
i=1)Ebody : Dbody

A ` (plet ((I1 D1) . . . (In Dn)) Ebody) : Dbody
[plet]

A ` ([Ii : (dletrec ((I1 D1) . . . (In Dn)) Di)/Ii]
n
i=1)Ebody : Dbody

A ` (pletrec ((I1 D1) . . . (In Dn)) Ebody) : Dbody
[pletrec]

Figure 13.11: New typing rules needed for FL/XSPD.

In order to perform type checking in the presence of general descriptions,
we require description equivalence rules that tell us when two descriptions
are the same. Earlier, we saw some type equivalence rules, including ones for
recof and rectype. We need to extend those rules to handle arbitrary descrip-
tions. Figure 13.12 shows the description equivalence rules that are necessary
for FL/XSPD.

Some of the the description equivalence rules correspond to the α, β, and η
conversion rules of the lambda calculus. Consider the following examples:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.3. DESCRIPTIONS 575

D ≡ D [reflexivity]

D1 ≡ D2

D2 ≡ D1
[symmetry]

D1 ≡ D2 ; D2 ≡ D3

D1 ≡ D3
[transitivity]

∀i . (Di ≡ Di
′) ; DB ≡ DB

′

(-> (D1 . . . Dn) DB) ≡ (-> (D1
′ . . . Dn

′) DB
′)

[->-≡]

∃ permuation π such that ∀i . ((Ii =I ′π(i)) ∧ (Di ≡ Dπ(i)
′))

(recordof (I1 D1) . . . (In Dn)) ≡ (recordof (I1
′ D1

′) . . . (In
′ Dn

′))
[recordof-≡]

∃ permuation π . such that ∀i . ((Ii =I ′π(i)) ∧ (Di ≡ Dπ(i)
′))

(oneof (I1 D1) . . . (In Dn)) ≡ (oneof (I1
′ D1

′) . . . (In
′ Dn

′))
[oneof-≡]

D ≡ D ′

(refof D) ≡ (refof D ′)
[refof-≡]

∀i . (Ji 6∈ FreeIds[[DB]])
(forall (I1 . . . In) DB) ≡ (forall (J1 . . . Jn) ([Ji/Ii]

n
i=1)DB)

[forall-≡]

∀i . (Ji 6∈ FreeIds[[DB]])
(dlambda (I1 . . . In) DB) ≡ (dlambda (J1 . . . Jn) ([Ji/Ii]

n
i=1)DB)

[dlambda-≡]

DP ≡ DP
′ ; ∀i . (Di ≡ Di

′)
(DP D1 . . . Dn) ≡ (DP

′ D1
′ . . . Dn

′)
[dapply-≡]

((dlambda (I1 . . . In) DB) D1 . . . Dn) ≡ ([Di/Ii]
n
i=1)DB [dbeta-≡]

∀i . (Ii 6∈ FreeIds[[DP]])
(dlambda (I1 . . . In) (DP I1 . . . In)) ≡ DP

[deta-≡]

(dlet ((I1 D1) . . . (In Dn)) DB) ≡ ([Di/Ii]
n
i=1)DB [dlet-≡]

(drecof I D) ≡ [D/I]D [drecof-≡]

(dletrec ((I1 D1) . . . (In Dn)) DB)

≡ ([(dletrec ((I1 D1) . . . (In Dn)) Di)/Ii]
n
i=1) DB

[dletrec-≡]

Figure 13.12: Description equivalence rules for FL/XSPD.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

576 CHAPTER 13. SUBTYPING AND POLYMORPHISM

(dlambda (t) t) ≡ (dlambda (s) s) ; alpha

; Assume pairof defined as above

(pairof int bool) ≡ (recordof (left int) (right bool)) ; beta

(dlambda (s t) (pairof s t)) ≡ pairof ; eta

It is enlightening to compare the three kinds of abstraction that exist in
FL/XSPD:

Abstraction Constructor Arguments Results
lambda values values
plambda descriptions values
dlambda descriptions descriptions

It is also possible to imagine a fourth kind of abstraction that takes values
as arguments and returns descriptions. These can result in what are called
dependent descriptions — descriptions that contain values. The array type
constructor in Pascal is a simple example of a dependent type; every array type
has an integer which indicates the length of the array. Of course, in order to
ensure static type checking, the argument values to such an abstraction would
have to be statically determinable.

It is disturbing that there are three different constructs that are so similar
in intent. The need for the differing constructs arises from the fact that we
have maintained a rigid distinction between types and values. In the interest
of conceptual economy, some languages, such as Pebble, blur the distinction
between types and values; in these languages, a single operator constructor can
do the job of lambda, plambda, and dlambda. Since types can be treated as
values in these languages, however, type checking can generally not be performed
statically. Instead, it may have to be interleaved with the execution of the
program; in such cases, type checking is effectively dynamic. In fact, in some
languages with first-class types, type checking might never even terminate!

13.4 Kinds and Kind Checking: FL/XSPDK

It is important to note that only a subset of descriptions serve as types of
values. For example, there is no value that has the type (dlambda (t) t) or
the type listof. Furthermore, many expressions generated by the grammar for
descriptions are nonsensical. The description (int bool), for instance, indicates
that int is being applied to bool as a description operator. But since int is
the type of a value and not a description operator, such an application is not

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.4. KINDS AND KIND CHECKING: FL/XSPDK 577

meaningful. Even the typing rules in Figure 13.11 are problematic as stated; the
notation I :D only makes sense if D is a type.

We’d like to ensure that descriptions make sense, both intrinsically and in
context. This problem seems an awful lot like the one we already solved via
types; showing that (int bool) is not a meaningful description is rather similar
to showing that (1 2) is not a meaningful expression. Just as we had types for
expressions, we’d like to have something akin to types for descriptions. These
are called kinds; kinds are the types of descriptions.

We incorporate the notion of kinds into the language FL/XSPDK, which is
just an extension of FL/XSPD. The grammatical changes necessary to extend
FL/XSPD into FL/XSPDK are presented in Figure 13.13. The nonterminal
K generates kind expressions, which are now required in plambda, forall, and
dlambda.

E ::= . . . | (plambda ((I K)*) E)

D ::= . . . | (forall ((I K)*) D) | (dlambda ((I K)*) Dbody)

K ::= type | (->> (K*) K)

Figure 13.13: The grammar for FL/XSPDK (the parts not listed are the same
as in FL/XSPD).

The simplest kind is the base kind type. All legal FL/XSP types have kind
type. For example, the following expressions all have kind type:

int

(-> (bool) string)

(recordof (name string) (age int))

Description operators have a kind that reflects the kinds of the operator’s
arguments and the kind of the operator’s results. listof, for example, has kind
(->> (type) type) because it takes a type and returns a type. Note the double
arrow ->> is used in the kind of a description operator, whereas -> is used in
the type of a procedure. This notational difference is not strictly necessary but
serves to emphasize the distinction between the two levels.

A description is well-kinded if it can be assigned a kind according to a set of
kind checking rules. Kind checking is analogous to type checking; the notation

B ` D :: K

means that kind environment B assigns kind K to description D. Figure 13.14
includes the kind checking rules for FL/XSPD. φk indicates the empty kind
environment.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

578 CHAPTER 13. SUBTYPING AND POLYMORPHISM

φk ` unit :: type, φk ` bool :: type, φk ` int :: type, φk ` string :: type, φk ` sym :: type
[literal]

[. . . , I :: K, . . .] ` I :: K [var]

∀i . (B ` Di :: type)
B ` Dbody :: type

B ` (-> (D1 . . . Dn) Dbody) :: type
[->]

∀i . (B ` Di :: type)
B ` (recordof (I1 D1) . . . (In Dn)) :: type

[recordof]

∀i . (B ` Di :: type)
B ` (oneof (I1 D1) . . . (In Dn)) :: type

[oneof]

B ` D :: type
B ` (refof D) :: type

[refof]

B[I1 :: K1, . . ., In :: Kn] ` DB :: type
B ` (forall ((I1 K1) . . . (In Kn)) DB) :: type

[forall]

B[I1 :: K1, . . ., In :: Kn] ` DB :: KB

B ` (dlambda ((I1 K1) . . . (In Kn)) DB) :: (->> (K1 . . . Kn) KB)
[dλ]

B ` DP :: (->> (K1 . . . Kn) KB)

∀i . (B ` Di :: Ki)
B ` (DP D1 . . . Dn) :: KB

[dapply]

∀i . (B ` Di :: Ki)
B[I1 :: K1, . . ., In :: Kn] ` DB :: KB

B ` (dlet ((I1 D1) . . . (In Dn)) DB) :: KB

[dlet]

B[I :: type] ` D :: type
B ` (drecof I D) :: type

[drecof]

B’ = B[I1 :: type, . . ., In :: type]
∀i . (B′ ` Di :: type)

B ′ ` DB :: KB

B ` (dletrec ((I1 D1) . . . (In Dn)) DB) :: KB

[dletrec]

Figure 13.14: Kind checking rules for FL/XSPDK

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.4. KINDS AND KIND CHECKING: FL/XSPDK 579

How do kinds and kind checking interact with types and type checking? Not
only must all user-supplied descriptions in an expression be well-kinded, but
the descriptions may also be used in a context that requires them to be of a
particular kind, typically kind type. For example, the descriptions annotating
the formal parameters to a lambda expression must be of kind type. We express
these relationships by including constraints on kinds in the antecedents of type
checking rules; see, for example, the type checking rules for FL/XSPDK shown
in Figure 13.15. The notation

A,B ` E : D

means that type environment A assigns E type D in the presence of kind en-
vironment B. (Note that a double colon is used for the “has-kind” relation,
whereas a single colon is used for the “has-type” relation.) The rules in Fig-
ure 13.15 suggest that the type checking and kind checking processes can be
interleaved into a single process that uses both a type environment and a kind
environment. Of course, it is also possible to perform kind checking and type
checking in separate phases.

Several of the rules in Figure 13.15 extend the type environment with some
bindings. Kind checking is used in these situations to guarantee that the ex-
tensions bind identifiers to types and not arbitrary descriptions. That is, the
notation

A[I1 :D1 . . . In :Dn]

only makes sense when all of the Di have kind type.

The substitution ([Di/Ii]
n
i=1)EB in the rule for plet is assumed to do the

“right thing.” That is, only occurrences of I in descriptions (not value expres-
sions) are substituted for. We leave the formal definition of substitution in this
situation as an exercise for the reader.

A desirable goal for typechecking is that it should be guaranteed to termi-
nate. Has the introduction of general descriptions compromised this goal? For
example, it is possible to imagine description operators which go into infinite
loops when applied. Type checking an expression containing such a description
might never terminate.

The kind checking and type checking rules we have presented are carefully
constructed so that this situation can never occur. The drecof, dletrec, and
pletrec constructs are constrained so that the descriptions they introduce must
be of kind type. With these kind constraints, descriptions in FL/XSPDK
have a property called strong normalization. This property means that all
descriptions can be reduced to normal form in a finite number of steps.5 Note

5There are typed versions of the lambda calculus that have the strong normalization prop-
erty; in these systems it is impossible to write a Y operator.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

580 CHAPTER 13. SUBTYPING AND POLYMORPHISM

∀i . (B ` Di :: type)
A[I1 :D1, . . ., In :Dn], B ` Ebody : Dbody

A,B ` (lambda ((I1 D1) . . . (In Dn)) Ebody) : (-> (Di . . . Dn) Dbody)

[λ]

∀i . (B ` Di :: type)
A’ = A[I1 :D1, . . ., In :Dn]

∀i . (A′, B ` Ei : Di)
A′, A ` Ebody : Dbody

A,B ` (letrec ((I1 D1 E1) . . . (In Dn En)) Ebody) : Dbody

[letrec]

A,B[I1 :: K1 . . . In :: Kn] ` E : D
∀i . (Ii 6∈FTV (FreeIds[[(]]E)))

A,B ` (plambda ((I1 K1) . . . (In Kn)) E) : (forall ((I1 K1) . . . (In Kn)) D)

[pλ]

A,B ` E : (forall ((I1 K1) . . . (In Kn)) Dbody)

∀i . (B ` Di :: Ki)
A,B ` (pcall E D1 . . . Dn) : ([Di/Ii]

n
i=1) Dbody

[project]

A,B ` ([Di/Ii]
n
i=1)EB : Dbody

A,B ` (plet ((I1 D1) . . . (In Dn)) Ebody) : Dbody
[plet]

∀i . (B ` (dletrec ((I1 D1) . . . (In Dn)) Di) :: type)
A ′ =A[I1 : (dletrec ((I1 D1) . . . (In Dn)) D1) . . . In : (dletrec ((I1 D1) . . . (In Dn)) Dn)]

A ′, B[I1 :: type . . . In :: type] ` Ebody : Dbody

A,B ` (pletrec ((I1 D1) . . . (In Dn)) Ebody) : Dbody

[pletrec]

Figure 13.15: Type checking rules for FL/XSPDK. Rules not shown are anal-
ogous to those in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

13.4. KINDS AND KIND CHECKING: FL/XSPDK 581

that strong normalization implies that it is impossible to write the Y operator
in the description language. Intuitively, this is due to the simplicity of the kind
system; there are no recursive kind constructs. Thus, in FL/XSPDK, it is
possible to write Y as an expression, but not as a description.

If you’re wondering whether it’s possible for kinds themselves have something
similar to types or kinds, the answer is yes. The types of kinds are sometimes
called sorts; all kind expressions we have examined are of sort kind. But it is
possible to consider operators on kinds — kind operators — that would have
more interesting sorts. Similarly, we could construct a “typing” system for sorts
that distinguished sorts from operators on sorts. Clearly this process could be
repeated ad infinitum (and ad nauseum!), giving rise to an infinite “tower” of
typing systems. However, only the lowest levels of the tower — types and kinds
— are useful in most practical situations.

Reading

The polymorphic typed lambda calculus was invented by Girard and later rein-
vented by Reynolds [Rey74]. See [Hue90] for some papers on the polymorphic
lambda calculus.

For work on types in object-oriented programming, see [GM94].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

582 CHAPTER 13. SUBTYPING AND POLYMORPHISM

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 14

Type Reconstruction

The faculty of deduction is certainly contagious . . .

— Sherlock Holmes in The Problem of Thor Bridge
by Sir Arthur Conan Doyle

14.1 Introduction

In the variants of FL/X that we’ve studied so far, it is necessary to specify
explicit type information in certain situations. All variables introduced by a
lambda must be explicitly typed, for instance. Not all type information needs
to be explicitly declared, however. For example, the return type of a procedure
need not be explicitly declared.

What determines the placement of explicit type information in a language?
That is, why does some type information have to be provided while other type
information can be elided? The answer to this question lies in the structure of
the type checker. As noted earlier, a simple type checker has the structure of an
evaluator. Consider the type checking of a lambda expression. When entering a
lambda expression, the type checker has no information about the types of the
formal parameters; these must be provided explicitly. However, once the types
of the formals are known, it is easy for the type checker to determine the type
of the body, so this information need not be declared.

Could a more sophisticated type checker do its job with even less explicit
information? Certainly, programmers can reason proficiently about type infor-
mation in many programs where there are no explicit types at all. Such reason-
ing is important because understanding the type of an expression, especially one

583

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

584 CHAPTER 14. TYPE RECONSTRUCTION

that denotes a procedure, is often a major step in figuring out what purpose the
expression serves in the program. As an example of this kind of type reasoning,
consider the following expression:

(lambda (f x y)

(if (f x y) (f 3 y) (f x "twenty-three"))))

By studying the various ways in which f, x, and y are used in the body of
the above lambda expression, we can piece together a lot of information about
the types of these variables. The application (f x y), for example, returns a
boolean because it is used as the predicate in an if expression. Thus, f is a
procedure of two arguments that returns a boolean. Since both branches of the
if expression are calls to f, we know that the procedure created by the lambda
expression must also return a boolean. In fact, looking at the consequent and
alternative of the if, we can even say more about f: its first argument is a
number and its second argument is a string. Thus, x must be a number and y

must be a string.

There is no reason that a program cannot carry out the same kinds of rea-
soning exhibited above. Automatically computing the type of an expression that
does not contain type information is known as type reconstruction or type
inference. Type reconstruction is more complicated than type checking be-
cause type reconstruction must operate properly without programmer supplied
type assertions.

Type reconstruction is the formalization of the kind of reasoning seen in
the example above. A type reconstruction algorithm is an automatic way of
determining the types of an expression (and all the subexpressions along the
way). We can think of the different subexpressions in the above example as
specifying constraints on the types of the expressions. It is possible to view
these constraints as a set of simultaneous type equations that restrict the type
of an expression. If these equations cannot be solved, then the expression is not
well-typed. If these equations can be solved, then the most general typing for
the expression results. In the event that several types may be assigned to an
expression, then the most general type is the type, T, such that all other possible
types are substitution instances of T. I.e., for any type, S, the expression may
have, there is a substitution that can be applied to the most general type to get
S. The type system of a type reconstructed language is usually designed so that
there is a unique most general type for every typable expression. Most general
types are often called principal types.

Consider the lambda expression studied above. Suppose that1

1Here we denote unknowns in the equations by names prefixed with a question mark, to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.1. INTRODUCTION 585

• ?l is the type of the result of evaluating the lambda expression.

• ?i is the type of the result of evaluating the if expression.

• ?f is the type of f.

• ?x is the type of x.

• ?y is the type of y

Then the equations that are implied by the expression are

?l = (-> (?f ?x ?y) ?i)

?f = (-> (?x ?y) ?a)

?a = bool

?f = (-> (int ?y) ?b)

?f = (-> (?x string) ?c)

?b = ?c

?i = ?b

A solution to the above equations yields the following variable bindings:

?a = ?b = ?c = ?i = bool

?x = int

?y = string

?f = (-> (int string) bool)

?l = (-> ((-> (int string) bool) int string) bool)

Note that a system of type equations need not always have the neat form of
solution indicated by the example. For example, the system associated with

(lambda (f x y)

(if (f x y) (f 3 y) (f y "seven")))

has no solution since it is overconstrained: the int and string types are disjoint.
On the other hand, the system may be underconstrained, as in the following
perturbation of the example:

distinguish them from variables in the language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

586 CHAPTER 14. TYPE RECONSTRUCTION

(lambda (h x y)

(if (h x y) (h x y) (h x "seven")))

In this case, the type of x is unknown, and the type deduced for the expression
is

(-> ((-> (?x string) bool) ?x string) bool)

The appearance of an unknown type variable in this type is the way that this
particular type language indicates the potential for polymorphism. We will see
below under what conditions such a type is viewed as polymorphic. In other
notations we have seen, a polymorphic type would be expressed as:

(forall (t) (-> ((-> (t string) bool) t string) bool))

or

∀t . ((string t) → bool) × t × string → bool

14.2 A Language with Type Reconstruction: FL/R

In this section, we’ll consider issues in type reconstruction for a variant of FL
called FL/R. The grammar for FL/R is given in Figure 14.1. Note that there
are no explicit type declarations in the expressions of the language.

Figure 14.2 contains the typing rules for FL/R. The rules for literals, con-
ditionals, abstractions, and applications are similar to the ones for FL/X. The
only difference is in the lambda rule. Whereas the FL/X typing rule for lambda
uses the explicit type declarations for each of the variables, the lambda rule in
FL/R “guesses” the types of the variables, and then checks to see that its guess
is correct. The typing rules do not explain how these guesses are made. The
details of guessing will be specified by the reconstruction algorithm presented in
Section 14.4 below.

The typing rules for let, letrec and variables contain some new ideas. The
motivation for these concepts is that we’d like type reconstruction to be able to
reconstruct polymorphic types, at least in some simple cases. As an example of
where we’d like to infer a polymorphic type, consider:

(let ((f (lambda (x) x)))

(if (f #t) (f 1) (f 2)))

Here, we would like f to have the type (-> (bool) bool) when applied to
#t, and the type (-> (int) int) when applied to 1 and 2. If we required
each variable to have only one type associated with it, this kind of polymorphic
behavior would not be allowed in the language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.2. A LANGUAGE WITH TYPE RECONSTRUCTION: FL/R 587

P ∈ ProgramFL/R

E ∈ ExpFL/R
AB ∈ AbstractionFL/R
L ∈ LitFL/R
T ∈ Type

TS ∈ Type-schema

I ∈ IdentifierFL/R = usual identifiers
B ∈ BoollitFL/R = {#t, #f}
N ∈ IntlitFL/R = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ PrimopFL/R

P ::= (flr (Ifml*) Ebody (define Iname Edefn)*)

E ::= L | I | (error I)
| (if Etest Ethen Eelse) | (begin E+)

| (lambda (Ifml*) Ebody) | (Erator Erand*) | (primop Oop Earg*)
| (let ((Iname Edefn)*) Ebody) | (letrec ((Iname Edefn)*) Ebody)

L ::= #u | B | N | (symlit I)

OFL/R ::= + | - | * | / | % [Arithmetic ops]
| <= | < | = | != | > | >= [Relational ops]
| not | band | bor [Logical ops]
| pair | fst | snd [Pair ops]
| cons | car | cdr | null | null? [List ops]
| cell | ^ | := [Mutable cell ops]

T ::= unit | int | bool | sym [Base Types]
| I [Type Variable]
| (-> (T*) Tbody) [Arrow Type]
| (pairof T1 T2) [Pair Type]
| (listof T) [List Type]
| (cellof T) [Cell Type]

TS ::= (generic (I*) T) [Type Schema]

Figure 14.1: Grammar for FL/R

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

588 CHAPTER 14. TYPE RECONSTRUCTION

` #u : unit [unit]

` B : bool [bool]

` N : int [int]

` (symbol I) : sym [symbol]

[. . . , I:T, . . .] ` I : T [var]

[. . . , I:(generic (I1 . . . In) Tbody), . . .] ` I : ([Ti/Ii]ni=1)Tbody [genvar]

A ` (error I) : T [error]

A ` Etest : bool ; A ` Econ : T ; A ` Ealt : T
A ` (if Etest Econ Ealt) : T

[if]

∀ni=1 . A ` Ei : Ti
A ` (begin E1 . . . En) : Tn

[begin]

A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody
A ` (lambda (I1 . . . In) Ebody) : (-> (T1 . . . Tn) Tbody)

[λ]

A ` Erator : (-> (T1 . . . Tn) Tbody)
∀ni=1 . A ` Ei : Ti

A ` (Erator E1 . . . En) : Tbody

[apply]

Astandard ` O : (-> (T1 . . . Tn) T)
∀ni=1 . A ` Ei : Ti

A ` (primop O E1 . . . En) : T
[primop]

∀ni=1 . A ` Ei : Ti
A[I1:GenPure (E1, T1, A),. . .,In:GenPure (En, Tn, A)] ` Ebody : Tbody

A ` (let ((I1 E1) . . . (In En))) Ebody) : Tbody

[let]

∀ni=1 . A[I1 :T1, . . ., In :Tn] ` Ei : Ti
A[I1:GenPure (E1, T1, A),. . .,In:GenPure (En, Tn, A)] ` Ebody : Tbody

A ` (letrec ((I1 E1) . . . (In En))) Ebody) : Tbody

[letrec]

Astandard[I1 :T1, . . ., In :Tn] `
(letrec ((Id1 E1) . . . (Idk Ek)) Ebody) : T

`prog (flr (I1 . . . In) Ebody (define Id1 E1) . . . (define Idk Ek))
: (-> (T1 . . . Tn) T)

[program]

Gen(T, A) = (generic (I1 . . . In) T),where {Ii} = FTV (T)− FTE(A)

GenPure(E,T, A) = Gen(T, A) if E is pure
T otherwise

Figure 14.2: Typing rules for FL/R.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.2. A LANGUAGE WITH TYPE RECONSTRUCTION: FL/R 589

In order to handle this simple polymorphism, we introduce the notion of
a type schema (TS in Figure 14.1). A type schema is a pattern for a type
expression that is abstracted over variables; the schema can be instantiated by
binding the variables to particular types. For example, a type schema for the
identity procedure is

(generic (t) (-> (t) t))

Type schemas for various list operations are shown below:

cons: (generic (t) (-> (t (list-of t)) (list-of t)))

car: (generic (t) (-> ((list-of t)) t))

cdr: (generic (t) (-> ((list-of t)) (list-of t)))

null? (generic (t) (-> ((list-of t)) bool))

null (generic (t) (-> () (list-of t)))

Unlike the forall type of FL/X, a type schema cannot appear as a subex-
pression of a type expression. That is, according to the grammar for type
schemas, generic can only appear once, at the outermost level. A type schema
thus represents types that are universally quantified over a set of variables.

The reason for this restriction on type schemas is that type reconstruction
is greatly complicated in the more general case. In some cases, it is unknown
whether it can even be accomplished; other situations involving general polymor-
phic types have been proven undecidable. Reconstruction using type schemas,
though, is decidable. Type reconstruction based on type schemas is usually
called Hindley-Milner type reconstruction, after its inventors.

FL/R’s use of type schemas means that certain meaningful FL programs
are not well-typed in FL/R, even if they could be assigned types in FL/X.
Consider the following program:

(lambda (f)

(if (f #t) (f 1) (f 2)))

Intuitively, the type for this procedure is something like

(-> ((generic (t) (-> (t) t))) int)

But this is not a legal type or type schema. The closest legal type schema we
could make would be:

(generic (t) (-> ((-> (t) t)) int))

Although this bears some similarity to the desired type, it is not correct. For
example, instantiating the schema with t bound to int would lead us to believe
that the above procedure could take the integer successor procedure as its ar-
gument. But this yields a type error, since we shouldn’t be able to apply the
successor procedure to #t.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

590 CHAPTER 14. TYPE RECONSTRUCTION

Type schemas are introduced into the language via let and letrec. The idea
is that any new type variables introduced by the bindings (free type variables
that do not appear already in the type environment, A) can be viewed as generic.
For example,

(let ((f (lambda (x) x)))

(if (f true) (f 3) (f 4)))

will now type check, because the type checker will guess that (lambda (x) x)

has the type (-> (t13) t13) where t13 is a newly minted type variable. Since
this type variable is not constrained by information imported into the expression
(lambda (x) x), it can be generalized, and thus f can have a different type each
time it is used (via the [genvar]). How these names are guessed will become
clearer when we present a type reconstruction algorithm below.

One way to view this type of polymorphism is to imagine that the right hand
sides of the let or letrec bindings are substituted for the identifiers to which
they are bound in the body. This would allow the expression to have different
types for any new type variables at each use. However, this transformation is
only legitimate if the expressions are referentially transparent as discussed in
Section 8.2.5.

The [let] and [letrec] rules restrict polymorphic values to be pure expressions,
just as we restricted the body of a plambda to be pure, and for the same reason.
We will see a more general way to introduce effect restrictions in Chapter 16,
but for now, we will insist that E is pure only if it is a syntactic value, i.e., E is a
literal, variable reference (note that FL/R does not have mutable variables), a
lambda expression, or an if/let/letrec all of whose components are syntactic
values. In other words, applications or compound expressions (except lambda)
is not a syntactic value.

14.3 Unification

In order to solve type equations, we will use the unification method due to
Robinson. Unification takes two types and attempts to find a substitution for
special unification variables in the two types (here prefixed with ?) such that
the two expressions are equal. A substitution is a structure that represents
constraints between unification variables. It is like a type environment in that it
contains bindings of variables (in this case, unification variables, not expression
variables) to types. These types may contain other unification variables. A
substitution can be applied to a type or expression; this returns a new type or
expression in which each unification variable has been replaced by the element
to which it is bound in the substitution. A substitution S is said to be more

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.4. A TYPE RECONSTRUCTION ALGORITHM 591

general than a substitution S ′ (written S > S ′) if there exists an S ′′ such that
S′ = (S′′ ◦ S).

More formally, a unification algorithm U unifying types T1 and T2 with
respect to a substitution S (written U(T1 ,T2 ,S)) produces the most general
substitution S ′ < S such that (S ′ T1) = (S ′ T2), where the notation (S T)
designates the result of applying substitution S to the type T. Unification can
of course fail. We will represent the result of a failing unification by the token
fail.

Here are some examples of unification. (Assume that S0 is the empty sub-
stitution, i.e., one not specifying constraints on any variables.)

U((?x ?y), (int ?x),S0) = {?x = int, ?y = int}

U((-> (int) bool), (-> (bool) ?x),S0) = fail

U((-> (?x) (-> (?x) ?y)), (-> (int) ?z),S0)

= {?x = int, ?z = (-> (int) ?y)}

Note in the examples how the same variable can be used in the two expres-
sions being unified to express a constraint between them. For example, in
U((?x ?y), (int ?x),S0) the variable ?x is used to say “the first element of
the first pair must be the same as the second element of the second pair.” This
idea is also very important in logic programming, and, in fact, unification lies
at the heart of both logic programming and type reconstruction.

14.4 A Type Reconstruction Algorithm

We now present a type reconstruction algorithm similar to one developed by
Milner. This algorithm is the basis of type reconstruction in FX, ML, and
Haskell.

This is used (via input) both by handouts 41 and 44 We shall use the following
notation to describe the steps of the algorithm:

(R[[E]] A S) = 〈T,S ′〉
The way to read this notation is “Reconstructing the type of expression E in
type environment A with respect to substitution S yields the type T and the new
substitution S ′.” Reconstruction may not always succeed; if it is not possible
to perform type reconstruction, then

(R[[E]] A S) = fail

The algorithm is defined such that the following relationship is satisfied:

(subst-in-type-env S ′ A) ` E : (S ′ T)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

592 CHAPTER 14. TYPE RECONSTRUCTION

where (S ′ T) means the result of applying the substitution S ′ to the type T,
and subst-in-type-env takes a substitution and a type environment, and returns
a new type environment in which the substitution has been applied to all the
types bound in the environment.

The type of an FL/R expression E can be found by the function reconstruct,

reconstruct(E) = (let 〈T,S〉 be (R[[E]] A0 S0) in (S T))

where A0 is the standard type environment (presumably containing the types for
all names in the standard value environment) and S0 is the empty substitution.
Recall that the metalanguage notation

let 〈T,S〉 be Eval in Ebody

is a destructuring form of let . We assume for simplicity of presentation that
let propagates failure as well. That is, if the result of evaluating Eval is fail,
then let returns fail immediately, without evaluating Ebody .

Figures 14.3 and 14.4 present the algorithm. The handling of literals, condi-
tionals, abstractions, and applications are fairly straightforward. The handling
of let and letrec is complicated by the desire to handle polymorphism. The
functions RgenPure and Rgen are like the GenPure and Gen functions encoun-
tered before, except that they take a substitution as an additional argument.
This substitution is applied to both the type and the type environment:

RgenPure(E, T, A, S) =

{
T if E is not pure
Rgen(T, A,S) otherwise

Rgen(T, A, S)
= Gen((S T), (subst-in-type-env S A))
= (generic (J1 . . . Jn) (S T)),

where {Ji} = FTV ((S T)) − FTE((subst-in-type-env S A))

Here, FTV gives the free type variables of a type expression (i.e., those type
variables that are not bound by generic), and FTE gives the free type variables
of a type environment (i.e., all type variables that appear free in some type bound
in the environment). A type variable J is a name prefixed with a ?.

14.5 Discussion

Milner proved two theorems about his type reconstruction algorithm:

1. The semantic soundness theorem states that if an expression is well-typed
(by his definition of well-typed, which is expressed as a set of reconstruc-
tion rules), then the expression cannot encounter a dynamic type error.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.5. DISCUSSION 593

(R[[#u]] A S) = 〈unit,S〉
(R[[B]] A S) = 〈bool,S〉
(R[[N]] A S) = 〈int,S〉
(R[[S]] A S) = 〈string,S〉
(R[[(symbol I)]] A S) = 〈sym,S〉
(R[[I]] A[. . ., I :T, . . .] S) = 〈T,S〉
(R[[I]] A[. . ., I : (generic (I1 . . . In) T), . . .] S) = 〈([?vi/Ii]ni=1)T,S〉,
where ?vi are fresh

(R[[I]] A S) = fail,

where I unbound in A

(R[[(if Etest Econ Ealt)]] A S) =
let 〈Ttest ,Stest〉 be (R[[Etest]] A S) in
let Stest

′ be U(Ttest , bool,Stest) in
let 〈Tcon ,Scon〉 be (R[[Econ]] A Stest

′) in
let 〈Talt ,Salt〉 be (R[[Ealt]] A Scon) in
let Salt

′ be U(Tcon ,Talt ,Salt) in
〈Talt ,Salt ′〉

(R[[(lambda (I1 . . . In) Ebody)]] A S) =
let 〈Tbody ,Sbody〉 be (R[[Ebody]] A[I1:?v1 . . . In:?vn] S) in
〈(-> (?v1 . . . ?vn) Tbody),Sbody〉,

where ?vi are fresh

(R[[(Erator E1 ... En)]] A S) =
let 〈Trator ,Srator〉 be (R[[Erator]] A S) in
let 〈T1 ,S1 〉 be (R[[E1]] A Srator) in

...

let 〈Tn ,Sn〉 be (R[[En]] A Sn−1) in
let Sfinal be U(Trator , (-> (T1 ... Tn) ?v),Sn) in
〈?v,Sfinal 〉,

where ?v is fresh.

Figure 14.3: Type reconstruction algorithm for FL/R, Part I.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

594 CHAPTER 14. TYPE RECONSTRUCTION

(R[[(let ((I1 E1) . . . (In En)) Ebody)]] A S) =
let 〈T1 ,S1 〉 be (R[[E1]] A S) in

...

let 〈Tn ,Sn〉 be (R[[En]] A Sn−1) in
R(Ebody ,
A[I1 : RgenPure (E1, T1, A, Sn), . . ., In : RgenPure (En, Tn, A, Sn)],
Sn)

(R[[(letrec ((I1 E1) . . . (In En)) Ebody)]] A S) =
let A1 be A[I1 : ?v1, . . ., In : ?vn] in
let 〈T1 ,S1 〉 be (R[[E1]] A1 S) in

...

let 〈Tn ,Sn〉 be (R[[En]] A1 Sn−1) in
let SB be U((?v1 . . . ?vn), (T1 . . . Tn),Sn) in
R(Ebody ,
A[I1 : RgenPure (E1, T1, A, SB), . . ., In : RgenPure (En, Tn, A, SB)],
SB)

where ?vi are fresh

Figure 14.4: Type reconstruction algorithm for FL/R, Part II.

More generally, he showed that, if with respect to type environment A,
an expression E has static type T (i.e., A ` E : T), then the denotation
of E with respect to an environment e that respects A has type T (i.e.,
(E [[E]] e) :T). An environment e respects type environment A if for all
variables x in A, (e x) has type (A x).

2. The syntactic soundness theorem states that if the type reconstruction
algorithm R above discovers a type for an expression E, then the type it
discovers is a provable type of E, and thus E is well-typed.

Of course there are limitations to type reconstruction. For example, in Mil-
ner’s type system the following expressions are not well-typed:

(lambda (x) (x x)) ; Self-application

(lambda (f) (cons (f 1) (f #t))) ; First-class polymorphic values

The second restriction appears to be more severe than the first. In fact, there
is presently no way of giving an independent characterization of the expressions
that are not well-typed in Milner’s system.

It is important to note that the kinds of types we can infer are closely related
to the kinds of inference rules that we are using. We are often willing to reduce

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.5. DISCUSSION 595

the power of our type inference system (in terms of the range of types that
can be inferred) for an increased simplicity in the type inference rules. Simpler
rules are easier to prove sound; they generally imply an easier-to-implement
type-inference algorithm as well.

For example, Milner’s type-inference algorithm does not handle subtyping
in any way. As exhibited by the above example, we assume that the types of
procedure arguments in different calls within the same type environment must be
exactly the same; we will not search for some “least upper bound” of the two in
some type lattice. Similarly, we assume that both branches of an if expression
have exactly the same type; no subtypting is allowed here either. This means
that the type equation solver need only deal with strict equality constraints. The
standard unification algorithm is very good at solving such equality constraints.
But the minute subtyping is added to type inference, inequality constraints are
introduced and the standard unification algorithm doesn’t work any more. This
doesn’t necessarily mean that inference with subtyping is impossible; it’s just a
lot more complex.

A key advantage of Milner’s approach to type inference is that it is decidable.
If we try to make a type inference system more powerful by including features
like first-class polymorphism, type inference may become undecidable. Here’s a
table of what is currently known about the decidability of various type inference
schemes:

Type of Inference First-class User Declarations Decidability
Polymorphism?

Hindley-Milner no optional decidable
Full 2nd-order λ-calculus yes none undecidable
Full 2nd-order λ-calculus yes optional undecidable
Full 2nd-order λ-calculus yes non-ML types declared decidable
Full 2nd-order λ-calculus yes required decidable

¤ Exercise 14.1 After Alyssa P. Hacker finished her semantics for producer and
consumer from Exercise 9.5, she realized that she also needed to specify typing rules
for the new language constructs. Alyssa started by adding the new producer-of type
to describe producer values:

T ::= . . . | (producer-of Tyield Treturn)

A producer of type (producer-of Tyield Treturn) yields values of type Tyield ; if no
more values are to be yielded, it returns a value of type Treturn .

a. What is the type of the identifier sum defined in the following example?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

596 CHAPTER 14. TYPE RECONSTRUCTION

(define sum

(lambda (prod-fn)

(let ((ans (cell 0)))

(if (consume (prod-fn #u) n

(cell-set! ans (+ n (cell-ref ans))))

(cell-ref ans)

-1))))

b. What are the typing rules for the producer and consumer constructs?

c. What are the type reconstruction algorithm clauses for producer and consumer?

¢

¤ Exercise 14.2 Sam Antix realizes that FL/R supports only homogeneous compound
datatypes. He decides to extend FL/R with heterogeneous values called tuples. An
n-tuple is a value that contains n component values, all of which may have different
types. Sam extends the syntax of FL/R as follows:

E ::= . . . | (tuple E1 . . . En) | (tuple-ref Etuple Nindex Nsize)

Here is an informal description of Sam’s new expressions:

• (tuple E1 . . . En) packages up the values E1 . . . En into an n-tuple. Unlike
lists and vectors, tuples are heterogeneous data structures: the values of the Ei
expressions can all be of different types.

• (tuple-ref Etuple Nindex Nsize) evaluates Etuple , which should be an Nsize-
tuple t, and returns the Nindex -th component of t. For example:

(tuple-ref (tuple 17 #t (symbol captain) "abstraction") 2 4)

yields the second element, #t, from a 4-tuple. In Sam’s syntax, note that the
index and size must be integer literals — they are not general expressions to be
evaluated.

a. Extend the FL/R type grammar to handle tuples.

b. Give the typing rules for tuple and tuple-ref.

c. Specify the type reconstruction algorithm clauses for tuple and tuple-ref.

d. Louis Reasoner thinks that the form of tuple-ref is unwieldy. “I don’t see why
Nsize is at all necessary,” he complains. “Why don’t you make tuple-ref have
the following form instead?”

(tuple-ref Etuple Nindex)

Briefly explain why Louis’ suggestion would complicate type reconstruction for
FL/R.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

14.5. DISCUSSION 597

e. After Sam successfully explains to Louis his rationale for Nsize , Louis has another
suggestion: “I don’t see why the form of Nindex has to be so restricted. Why not
change the form of tuple-ref to be the following?”

(tuple-ref Etuple Eindex Nsize),

where the component index is the computed value of Eindex rather than a literal
integer value.

Why is this a bad idea?

¢

¤ Exercise 14.3 Ben Bitdiddle enhanced FL/R with several parallel programming
constructs. His most important extension is a new construct called go that executes
multiple expressions in parallel. Ben extended the FL/R grammar as follows:

E ::= . . . | (go (I1 . . . In) E1 . . . Em) | (talk! I E) | (listen I)

Here is the informal semantics of the newly added constructs: go terminates when
all of E1 . . . Em terminate; it returns the value of E1 . go includes the ability to use
communication variables I1 . . . In in a parallel computation. A communication variable
can be assigned a value by talk!. An expression in go can wait for a communication
variable to be given a value with listen. listen returns the value of the variable once
it is set with talk!. For a program to be well-typed, all E1 . . . Em in go must be
well-typed.

Ben extended the type grammar of FL/R as follows:

T ::= . . . | (commof T)

Communication variables will have the unique type (commof T) where T is the type of
value they hold. This will ensure that only communication variables can be used with
talk! and listen, and that communication variables can not be used in any other
expression. Ben has already written the typing rules for talk! and listen:

A ` E : T
A ` I : (commof T)

A ` (talk! I E) : unit
[talk!]

A ` I : (commof T)

A ` (listen I) : T
[listen]

a. Give the typing rule for go.

b. Give the FL/R reconstruction algorithm clauses for talk!, listen, and go.

¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

598 CHAPTER 14. TYPE RECONSTRUCTION

Reading

Type reconstruction in programming languages is due to Milner [Mil78], who
reinvented work previously done in logic by Curry and by Hindley. Examples
of programming languages with type reconstruction are ML [MTH90, MT91],
Haskell [HJW+92], and FX [GJSO92].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 15

Abstract Types

The human heart has hidden treasures,
In secret kept, in silence sealed.

— Evening Solace, Charlotte Bronte

15.1 Data Abstraction

A cornerstone of modern programming methodology is the principle of data
abstraction, which states that programmers should be able to use data struc-
tures without understanding the details of how they are implemented. Data
abstraction is based on establishing a contract, also known as an application
programming interface (API), or just interface, that specifies the abstract
behavior of all operations that manipulate a data structure without describing
the representation of the data structure or the algorithms used in the operations.

The contract serves as an abstraction barrier that separates the concerns
of the two parties that participate in a data abstraction. On one side of the
barrier is the implementer, who is responsible for implementing the operations
so that they satisfy the contract. On the other side of the barrier is the client,
who is blissfully unaware of the hidden implementation details and uses the
operations based purely on their advertised specifications in the contract. This
arrangement gives the implementer the flexibility to change the implementation
at any time as long as the contract is still satisfied. Such changes should not
require the client to modify any code.1 This separation of concerns is especially

1However, the client may need to recompile existing code in order to use a modified imple-
mentation.

599

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

600 CHAPTER 15. ABSTRACT TYPES

useful when large programs are being developed by multiple programmers, many
of whom may never communicate except via contracts. But it is even helpful
in programs written by a single person who plays the roles of implementer and
client at different times in the programming process.

15.1.1 A Point Abstraction

As an extremely simple example of data abstraction, consider an abstraction
for points on a two-dimensional grid. The point abstraction is defined by the
following contract, which specifies an operation for creating a point from its two
coordinates and operations for extracting each coordinate:

• (make-pt x y): Create a point whose x coordinate is the integer x and
whose y coordinate is the integer y.

• (pt-x p): Return the x coordinate of the given point p.

• (pt-y p): Return the y coordinate of the given point p.

An implementation of the point abstraction should satisfy the following axioms:

1. For any integers n1 and n2, (pt-x (make-pt n1 n2)) evaluates to n1.

2. For any integers n1 and n2, (pt-y (make-pt n1 n2)) evaluates to n2.

Even for this simple abstraction, there are a surprising number of possible
implementations. For concreteness, below we give two point implementations in
the dynamically typed FL language. Our convention will be to package up the
operations of a data abstraction into a record, but that is not essential.

(define pair-point-impl

(record

(make-pt (lambda (x y) (pair x y)))

(pt-x (lambda (p) (left p)))

(pt-y (lambda (p) (right p)))))

(define proc-point-impl

(record

(make-pt (lambda (x y) (lambda (b) (if b x y))))

(pt-x (lambda (p) (p #t)))

(pt-y (lambda (p) (p #f)))))

In pair-point-impl, the two coordinates are stored in a pair. Alternatively,
we could have stored them in the opposite order or glued them together in a
different kind of product (e.g., array, record, or list). In proc-point-impl, a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.1. DATA ABSTRACTION 601

point is represented as a first-class procedure that “remembers” the coordinates
in its environment and uses a boolean argument to determine which coordinate
to return when called. Alternatively, some other key (such as a symbol or string
message) could be used to select the coordinate.

As a sample client of the point abstraction, consider the following proce-
dure, which, for a given point implementation, defines a coordinate-swapping
transpose procedure and a point->pair procedure that converts a point to a
concrete pair (regardless of its underlying representation) and uses these on the
point (1,2).

(define test-point-impl

(lambda (point-impl)

(with-fields (make-pt pt-x pt-y) point-impl

(let ((transpose (lambda (p) (make-pt (pt-y p) (pt-x p))))

(point->pair (lambda (p) (pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2)))))))

The result of invoking test-point-impl on a valid point implementation should
be the pair value 〈2 , 1 〉.

In this example, there is little reason to prefer one of the implementations
over the other. The pair implementation might be viewed as being more straight-
forward, requiring less memory space, or being more efficient because it requires
fewer procedure calls. However, judgments about efficiency are often tricky and
require a deep understanding of low-level implementation details. In more re-
alistic examples, such as abstractions for data structures like stacks, queues,
priority queues, sets, tables, databases, etc., one implementation might be pre-
ferred over another because of asymptotically better running times or memory
usage for certain operations.

15.1.2 Procedural Abstraction is not Enough

Any language with procedural abstraction can be used to implement data ab-
straction in the way illustrated in the point example. However, in order for the
full benefits of data abstraction to be realized, this approach requires that the
client never commit abstraction violations. An abstraction violation is the
inappropriate use of abstract values or their operations.

In our implementation of points that uses pairs, the client can inspect the
representation of an abstract value and use this knowledge to manipulate ab-
stract values concretely. For instance, if points are represented as pairs, then the
the client might write (left p) rather than (pt-x p) to extract the x coordi-
nate of a point p, or might create a point “forgery” using (pair 1 2) in place of
(make-pt 1 2). Although these concrete manipulations will not cause errors,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

602 CHAPTER 15. ABSTRACT TYPES

such abuses of the exposed representation are dangerous because they are not
guaranteed to work if the implementation is changed. For example, (left p)

would lead to a runtime type error if the implementation were changed to use
a procedural representation for points, and would give the incorrect value if the
implementation was changed to put the y coordinate before the x coordinate in
a pair.

Furthermore, many representations involve representation invariants that
are maintained by the abstract operations but which concrete manipulations may
violate. A representation invariant is a set of conceptual or actual predicates
that a representation must satisfy to be legal. For instance, a string collection
implementation might store the strings in a sorted array. Thus a sorted predicate
would be true for this representation. If the client creates a forgery with an
unsorted array, all bets are off concerning the behavior of the abstract operations
on this forgery.

Without an enforcement of the relationship between abstract values and their
operations, it is even possible to interchange values of different abstractions that
happen to have the same concrete representation. For instance, if an implemen-
tation of a rational number abstraction represents a rational number as a pair
of two integers, then a rational number could be dissected with pt-x and pt-y,
assuming that points are also represented as pairs of integers.

Although our examples have been for a dynamically typed language, the
same problems occur in a statically typed language with structural type equality.
Clearly, attempting to achieve data abstraction using procedural abstraction
alone is fraught with peril. There must additionally be some sort of mechanism
to guarantee that abstract data is secure. We will call a language secure when
barriers associated with a data abstraction cannot be violated. Such a security
mechanism must effectively hide the representation of abstract data by making
it illegal to create or operate on abstract values with anything other than the
appropriate abstract operations.

In the remainder of this chapter, we first consider how secure data abstrac-
tions can be achieved dynamically using a lock and key mechanism. Then we
study various ways to achieve such security statically using types.

¤ Exercise 15.1 In languages with first-class procedures, one approach to hiding the
representations of data structures is to encapsulate them in message-passing objects. For
example, the following two point-making procedures encapsulate the pair representation
and procedural representation, respectively:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 603

(define make-pair-point

(lambda (x y)

(let ((point (pair x y)))

;; Return a message dispatcher

(lambda (msg)

(cond

((sym=? msg ’pt-x) (left point))

((sym=? msg ’pt-y) (right point))

(else (error unrecognized-message))

)))))

(define make-proc-point

(lambda (x y)

(let ((point (lambda (b) (if b x y))))

;; Return a message dispatcher

(lambda (msg)

(cond

((sym=? msg ’pt-x) (point true))

((sym=? msg ’pt-y) (point false))

(else (error unrecognized-message))

)))))

How secure is this approach to hiding data abstraction representations? What kinds

of abstraction violations are prevented by this technique? What kinds of abstraction

violations can still occur? ¢

15.2 Dynamic Locks and Keys

One approach for securely encapsulating a data abstraction representation is to
make it inaccessible by “locking” abstract values with a “key” in such a way that
only the very same key can unlock a locked value to access the representation.
We explore a dynamic lock and key mechanism by extending FL! with the
following primitives:

• (new-key) generates a unique unforgeable key value.

• (lock key value) creates a new kind of “locked value” that pairs key with
value in such a way that key cannot be extracted and value can only be
extracted by supplying key.

• (unlock key locked) returns the value stored in locked if key matches the
key used to create locked. Otherwise, signals an error.

We extend FL! rather than FL because the presence of cells and a single-
threaded store simplify specifying the semantics of these constructs. Indeed,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

604 CHAPTER 15. ABSTRACT TYPES

new-key, lock, and unlock can all be implemented as user-defined procedures
in FL! (Figure 15.1). The new-key procedure creates a new cell whose location
is a unique and unforgeable key; the value in the cell is arbitrary and can be
ignored. The lock procedure represents a locked value as a procedure that
“remembers” the given key and value and only returns the value if it is invoked
on the original key (as done in unlock). The procedural representation of locked
values prevents direct access to the key, and the value can only be extracted by
supplying the key, as desired.

(define new-key (lambda () (cell 0)))

(define lock

(lambda (key val)

(lambda (key1)

(if (cell=? key key1)

val

(error wrong-key)))))

(define unlock

(lambda (key locked)

(locked key)))

Figure 15.1: Implementation of a dynamic lock and key mechanism in FL!.

Figure 15.2 shows how the lock and key mechanism can be used to securely
encapsulate two pair representations of points that differ only in the order of
the coordinates. The procedures up and down use lock and unlock to mediate
between the concrete pair values and the abstract point values. Because all op-
erators for a single implementation use the same key, the operators for pt-impl1
work together, as do those for pt-impl2. For example:

((select pt-x pt-impl1) ((select make-pt pt-impl1) 1 2)) −−−FL!→ 1

((select pt-y pt-impl2) ((select make-pt pt-impl2) 1 2)) −−−FL!→ 2

However, because different implementations use different keys, point values cre-
ated by one of the implementations cannot be dissected by operations of the
other. Furthermore, because the operators create and use locked values, neither
point implementation can be used with concrete pair operations. For example,
all of the following four expressions generate dynamic errors when evaluated:

((select pt-x pt-impl1) ((select make-pt pt-impl2) 1 2))

((select pt-y pt-impl2) ((select make-pt pt-impl1) 1 2))

(left ((select make-pt pt-impl1) 1 2))

((select pt-y pt-impl2) (pair 1 2))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 605

(define pt-impl1

(let ((key (new-key)))

(let ((up (lambda (x) (lock key x)))

(down (lambda (x) (unlock key x))))

(record

(make-pt (lambda (x y) (up (pair x y))))

(pt-x (lambda (p) (left (down p))))

(pt-y (lambda (p) (right (down p))))))))

(define pt-impl2

(let ((key (new-key)))

(let ((up (lambda (x) (lock key x)))

(down (lambda (x) (unlock key x))))

(record

(make-pt (lambda (x y) (up (pair y x))))

(pt-x (lambda (p) (right (down p))))

(pt-y (lambda (p) (left (down p))))))))

Figure 15.2: Using the lock and key mechanism to hide point representations.

Some syntactic sugar can facilitate the definition of implementation records.
We introduce a cluster macro that abstracts over the pattern used in the point
implementations:

Dexp[[(cluster (I E)*)]] =
(let ((Ikey (new-key))) ; Ikey fresh

(let ((up (lambda (x) (lock Ikey x)))

(down (lambda (x) (unlock Ikey x))))

(recordrec (I E)*)))

The up and down procedures implicitly introduced by the desugaring may be used
in any of the cluster bindings. Using recordrec in place of record allows for
mutually recursive operations. Here is the definition of pt-impl1 re-expressed
using the cluster notation:

(define pt-impl1

(cluster

(make-pt (lambda (x y) (up (pair x y))))

(pt-x (lambda (p) (left (down p))))

(pt-y (lambda (p) (right (down p))))))

Note that cluster creates a new data abstraction every time it is evaluated.
For instance, consider:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

606 CHAPTER 15. ABSTRACT TYPES

(define make-wrapper

(lambda ()

(cluster

(wrap (lambda (x) (up x)))

(unwrap (lambda (x) (down x))))))

(define wrapper1 (make-wrapper))

(define wrapper2 (make-wrapper))

Evaluating ((select unwrap wrapper2) ((select wrap wrapper1) 17)) sig-
nals a dynamic error because the wrap procedure from wrapper1 and the unwrap
procedure from wrapper2 use different keys.

¤ Exercise 15.2 Consider an integer set abstraction that supports the following
operations:

• (empty) creates an empty set of integers.

• (insert int intset) returns the set that results from inserting int into the integer
set intset.

• (member? int intset) returns true if int is a member of the integer set intset
and false otherwise.

a. Define a cluster list-intset-impl that represents an integer set as a list of
integers without duplicates sorted from low to high.

b. Define a cluster pred-intset-impl that represents an integer set as a predicate
– a procedure that takes an integer and returns true if that integer is in the set
represented by the predicate and false otherwise.

c. Extend both list-intset-impl and pred-intset-impl to handle union, inter-
section, and difference operations on two integer sets.

d. Some representations have advantages over other for implementing particular op-
erations. Show that size (which returns the number of elements in an integer
set) is easy to implement for list-intset-impl but but impossible to imple-
ment for pred-intset-impl (without changing the representation). Similarly,
show that complement (which returns the set of all integers not in the given
set) is easy to implement for pred-intset-impl but impossible to implement for
list-intset-impl. ¢

¤ Exercise 15.3

a. Extend the SOS for FLK! to directly handle the primitives new-key, lock, and
unlock. Assume that the syntactic domains MixedExp and ValueExp are ex-
tended with expressions of the form (*key* L) to represent keys and (*locked* L V)
to represent locked values.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 607

b. It is helpful to have the following additional primitives as well:

• (key? thing) determines if key is a key value.

• (key=? key1 key2) returns true if key1 is the same key value as key2 and
returns false otherwise. Signals an error if either key1 or key2 is not a key
value.

• (locked? thing) determines if thing is a locked value.

Extend your SOS to handle these primitives.

c. Can you extend the implementation in Figure 15.1 to handle the additional prim-
itives? Explain. ¢

¤ Exercise 15.4 It is not always desirable to export every binding of a cluster in
the resulting record. For example, in the following implementation of a rational number
cluster, the gcd function (which calculates the greatest common divisor of two numbers)
is intended to be an unexported local recursive function used by make-rat.

(define rat-impl

(cluster

(make-rat (lambda (x y)

(let ((g (gcd x y)))

(up (pair (div x g) (div y g))))))

(numer (lambda (r) (left (down r))))

(denom (lambda (r) (right (down r))))

(gcd (lambda (a b)

(if (= b 0)

a

(gcd b (rem a b)))))

))

In this case, we could make the definition of gcd local to make-rat, but this strategy
does not work if the local value is used in multiple bindings. Alternatively, we can
extend the cluster syntax to be:

(cluster (Iexp*) (I E)*)

where (Iexp*) is an explicit list of exports – those bindings we wish to be included in

the resulting record. For instance, if we use (make-rat numer denom) as the export list

in rat-impl, then gcd would not appear in the resulting record. Modify the desugaring

of cluster to support explicit export lists. ¢

¤ Exercise 15.5 A dynamic lock and key mechanism can be added to a statically
typed language like FL/X.

a. Extend the type syntax and typing rules of FL/X to handle new-key, lock, and
unlock.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

608 CHAPTER 15. ABSTRACT TYPES

b. We can add a cluster form to FL/X using the syntax

(cluster Trep (I1 T1 E1) . . . (In Tn En)),

where Trep is the concrete representation type of the data abstraction and Tn is
the type of En . Give a typing rule for this explicitly typed cluster form.

c. Why is it necessary to include Trep and the Ti in the explicitly typed cluster

form? Would these be necessary in a cluster form for FL/R? ¢

booksectionExistential Types
The dynamic lock and key mechanism enforces data abstraction by signaling

a run-time error whenever an abstraction violation is encountered. The main
drawback of this approach is its dynamic nature. It would be desirable to have a
static mechanism that reports abstraction violations when the program is type
checked. As usual, the constraints of computability prevent a static system
from detecting exactly those violations that would be caught by a dynamic lock
and key mechanism. Nevertheless, by relinquishing some expressive power, it is
possible to design type systems that prevent abstraction violations via a static
lock and key mechanism known as an abstract type. In the next three sections,
we shall study three designs for abstract types.

Our first abstract type system is based on extending the explicitly typed
language FL/XSP with existential types. To motivate existential types, con-
sider the types of the pair-point-impl and proc-point-impl implementations
introduced in Section 15.1:

(define-type pair-point-impl-type

(recordof

(make-pt (-> (int int) (pairof int int)))

(pt-x (-> ((pairof int int)) int))

(pt-y (-> ((pairof int int)) int)))

(define-type proc-point-impl-type

(recordof

(make-pt (-> (int int) (-> (bool) int)))

(pt-x (-> ((-> (bool) int)) int))

(pt-y (-> ((-> (bool) int)) int)))

These two types are the same except for the concrete type used to represent an
abstract point value: (pairof int int) in the first case and (-> (bool) int)

in the second. We would like to be able to say that both implementations have
the same abstract type. We call values that implement an abstract type a pack-
age. To represent the type of a package, we use a new type construct, packofexist ,
to introduce an abstract type name, point, that stands for the concrete type
used in a particular implementation:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 609

(define-type pt-eface

(packofexist point

(recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))

We informally read the above (packofexist ...) type as “there exists a concrete
point representation (call it point) such that there are make-pt, pt-x, and pt-y

procedures with the specified types that manipulate this representation.” Such a
type is called an existential type because it posits the existence of an abstract
type and indicates how it is used without saying anything about its concrete
representation.2 In the following discussion, we will often refer to this particular
existential type, so we have given it the name pt-eface, where eface is short
for existential interface.

A summary of existential types is presented in Figure 15.3. The form of an
existential type is (packofexist I T). The existential variable I is a binding
occurrence of a type variable whose scope is T. The particular name of this
variable is irrelevant; as is indicated by the [exists=] type equality rule, it can
be consistently renamed without changing the essence of the type. So the type

(packofexist q

(recordof

(make-pt (-> (int int) q))

(pt-x (-> (q) int))

(pt-y (-> (q) int))))

is equivalent to the existential type using point above.

Values of existential type, which we shall call existential packages, are
created by the form (packexist Iabs Trep Eimpl). The type identifier Iabs is a
type name that is used to hide the concrete representation type Trep within the
type of the implementation expression Eimpl . For example, Figure 15.4 shows two
existential packages that implement the type contract specified by pt-eface. In
the first package, the abstract name point stands for the type of pair of integers,
while in the second package, it stands for the type of a procedure that maps a
boolean to an integer. As in the dynamic cluster form studied in Section 15.2,
the packexist form implicitly introduces up and down procedures that convert
between the concrete and abstract values.

2In the literature, such types are often written with ∃ or exists just as ∀ and forall are
used for universal polymorphism. For example, a more standard syntax for the pt-eface type
is: ∃ point . {make-pt: int*int → point, pt-x: point → int, pt-y: point → int}.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

610 CHAPTER 15. ABSTRACT TYPES

Syntax

E ::= . . . | (packexist Iabs Trep Eimpl) [Existential Introduction]
| (unpackexist Epkg Ity Iimpl Ebody) [Existential Elimination]

T ::= . . . | (packofexist Iabs Timpl) [Existential Type]

Type Rules

A[up : (-> (Trep) Iabs), down : (-> (Iabs) Trep)] ` Eimpl : Timpl
A ` (packexist Iabs Trep Eimpl) : (packofexist Iabs Timpl)

[epack]

where Iabs 6∈{(FTV A(I)) | I ∈ FreeIds[[Eimpl]]} [import restriction]

A ` Epkg : (packofexist Iabs Timpl)
A[Iimpl : [Ity/Iabs]Timpl] ` Ebody : Tbody

A ` (unpackexist Epkg Ity Iimpl Ebody) : Tbody

[eunpack]

where Ity 6∈{(FTV A(I)) | I ∈ FreeIds[[Ebody]]} [import restriction]
Ity 6∈ (FTV Tbody) [export restriction]

Type Equality

(packofexist I T) = (packofexist I ′ [I ′/I]T) [exists=]

Type Erasure

d(packexist Iabs Trep Eimpl)e
= (let ((up (lambda (x) x))

(down (lambda (x) x)))

dEimple)

d(unpackexist Epkg Ity Iimpl Ebody)e = (let ((Iimpl dEpkge)) dEbodye)

Figure 15.3: The essence of existential types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 611

(define pair-point-epkg pt-eface

(packexist point (pairof int int)

(record

(make-pt (lambda ((x int) (y int)) (up (pair x y))))

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point) (right (down p))))))))

(define proc-point-epkg pt-eface

(packexist point (-> (bool) int)

(record

(make-pt (lambda ((x int) (y int))

(up (lambda ((b bool)) (if b x y)))))

(pt-x (lambda ((p point)) ((down p) true)))

(pt-y (lambda ((p point) ((down p) false)))))))

Figure 15.4: Two existential packages that implement pt-eface.

The [epack] type rule in Figure 15.3 specifies how different implementations
can have exactly the same existential type. The implementation expression Eimpl

is checked in a type environment where up converts from the concrete represen-
tation type Trep to the abstract type name Iabs and down converts from Iabs
to Trep . These conversions allow the implementer to hide the concrete repre-
sentation type with an opaque type name, so called because the concrete type
cannot be “seen” through the name, even though the name is an abbreviation
for the concrete type.3 If type checking of a packexist expression succeeds, we
have a proof that there is at least one representation for Iabs (namely Trep)
and one implementation using this representation (namely Eimpl) that satis-
fies the implementation type Timpl . This knowledge is recorded with the type
(packofexist Iabs Timpl), in which any implementation details related to Trep

and Eimpl have been purposely omitted.

The packexist expression can be viewed as a way to package up an imple-
mentation in such a way that representation details are hidden. As indicated by
the type erasure for packexist in Figure 15.3, the dynamic meaning of a packexist
expression is just the implementation expression in a context where up and down

are identity operations. The remaining parts of the expression (Iabs and Trep)
are just type annotations whose purpose is to specify the existential type.

The existential elimination form, (unpackexist Epkg Ity Iimpl Ebody), is the
means of using the underlying implementation hidden by an existential package.

3up and down are just one way to distinguish concrete and abstract types in an existential
type. Some alternative approaches are explored in Exercise 15.9.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

612 CHAPTER 15. ABSTRACT TYPES

The type erasure of this expression — (let ((Iimpl dEpkge)) dEbodye) — indi-
cates that the dynamic meaning of this expression is simply to give the name
Iimpl to the implementation in the scope of the body. The type name Ity serves
as a local name for the abstract type of the existential package that can be used
within Ebody . The abstract name within the existential type itself is unsuitable
for this purpose because (1) it is not lexically apparent to Ebody and (2) it is a
bound name that is subject to renaming.

As an example of unpackexist , consider the following procedure, which is a
typed version of the test-point-impl procedure presented in Section 15.1.

(define test-point-epkg (-> (pt-eface) (pairof int int))

(lambda ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(let ((transpose (lambda ((p pt))

(make-pt (pt-y p) (pt-x p))))

(point->pair (lambda ((p pt))

(pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2))))))))

The point-epkg argument to test-point-epkg is any existential package with
type pt-eface. The unpackexist form gives the local name pt to the abstract
point type and the local name point-ops to the implementation record con-
taining the make-pt, pt-x, and pt-y procedures. In the context of local bind-
ings for these procedures (made available by with), the local transpose and
point->pair procedures are created. Each of these takes a point as an argu-
ment and so must refer to the local abstract type name pt for the abstract point
type. Finally, test-point-epkg returns a pair of the swapped coordinates for
the point (1,2).

In the [eunpack] type rule, it is assumed that the package expression Epkg

has type (packofexist Iabs Timpl). The body expression Ebody is type checked
under the assumption that Iimpl has as its type a version of Timpl in which the
bound name Iabs has been replaced by the local abstract type name Ity . For
instance, in the above unpackexist example, where pt is the local abstract type
name, the make-pt procedure has type (-> (int int) pt). The fact that the
result type is pt rather than point is essential for matching up the return type
of transpose and the declared argument type of point->pair.

In the [epack] rule, there is an import restriction on the abstract type
name Iabs that prevents it from accidentally capturing a type identifier men-
tioned in the type of a free variable in Eimpl . Here is an expression that would
unsoundly be declared well-typed without this restriction:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 613

(plambda (t)

(lambda ((z t))

(packexist t int (down z))))

The application (down z) applies the down procedure to a value z of arbitrary
type t. But since down has type (-> (t) int), where t abstracts over the con-
crete type int, this application would unsoundly be declared well-typed without
the import restriction. A similar import restriction is also needed in the [eun-
pack] rule. The import restriction is not a serious issue for programmers because
it can be satisfied by automatically α-renaming a program to give distinct names
to logically distinct type identifiers.

In contrast, the export restriction Ity 6∈(FTV Tbody) in the [eunpack] rule
can be a serious impediment. This restriction says that the local abstract type
name Ity is not allowed to escape the scope of the unpackexist expression by
appearing in the type Tbody of the body expression Ebody . A consequence is that
no value of the abstract type can escape from unpackexist in any way.

Without the export restriction, the [eunpack] rule would be unsound. Con-
sider the following example of what would go wrong if the restriction were re-
moved:

(let ((p (unpackexist proc-point-epkg t point-ops1

(with point-ops1 (make-pt 1 2))))

(f (unpackexist pair-point-epkg t point-ops2

(with point-ops2 pt-x))))

(f p)).

The first unpackexist makes a procedural point whose type within the unpackexist
is the local abstract type t. This point escapes from the unpackexist and is let-
bound to the name p. The type of the point at this time is still t, which is
an unbound type variable in this context. The second unpackexist unpackages
a pair point implementation and returns its pt-x operation, which is renamed
f. Since t is also used as the local abstract type in the second unpackexist ,
the type of f is (-> (t) int), where t again is actually an unbound type
variable. Since f has type (-> (t) int) and p has type t, the application
(f p) would be well-typed. But dynamically an attempt is being made to take
the left component of a procedural point, which should be a type error! This
example makes clear that while it is powerful to be able to locally name the
abstract type within unpackexist , the local type name has no meaning outside
the scope of the unpackexist and so cannot be allowed to escape.

The export restriction fundamentally limits the usefulness of existential types
in practice. For instance, in the test-point-epkg procedure studied above,
it would be more natural to return the transposed point directly, but then

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

614 CHAPTER 15. ABSTRACT TYPES

the type of the unpackexist expression would be the abstract type pt, which
is forbidden by the export restriction. Instead we must first convert the ab-
stract point to a concrete pair in order to satisfy the export restriction. The
restriction also prevents us from writing a make-transpose procedure that
takes a point package and returns a transpose procedure appropriate for that
package. The type of make-transpose would presumably be something like
(-> (pt-eface) (-> (Iabs) Iabs)), where Iabs is the name of the abstract type
used by the given point package. But there is no way to refer to that type ex-
cept within unpackexist expressions inside the body of make-transpose, and
that type cannot escape any such expressions to end up in the result type of
make-transpose.

In practice, there are a few ways to finesse the export type restriction. One
approach is to organize programs in such a way that large regions of the program
are within the body of unpackexist expressions that open up commonly used
data abstractions. Within these large regions, it is possible to freely manipulate
values of the abstract type. The problem with this approach is that it can make
it more difficult to take advantage of one of the key benefits of existential types:
the ability to abstract code over different implementations of the same abstract
type and choose implementations at run-time based on dynamic conditions.

In cases where we really want to pass values that mention the abstract type
outside the scope of an unpackexist , we can program around the restriction by
packaging up such values together with their abstract type into a new existential
type. For example, Figure 15.5 shows how to define an extend-point-epkg pro-
cedure that can take any package with type pt-eface and return a new package
that has new operations and values in addition to the old ones. While this tech-
nique addresses the problem, it can be cumbersome, especially since all values
mentioning the same abstract type must always be put together into the same
package (or else later they could not be used with each other). Furthermore,
the components of the original package need to be repackaged to get the right
abstract type (and satisfy the import restriction).4

One paradigm in which the packaging overhead is not too onerous is a simple
form of object-oriented programming. Figure 15.6 shows how the pair and pro-
cedural point representations can be encapsulated as existential packages whose
implementations combine the state and methods of an object. As shown in the
figure, in this paradigm, it is possible to express a generic top-level transpose
method that operates on any value with type point-object. For example, the
following expression is well-typed:

4This is an artifact of using up/down to convert between abstract and concrete types. Such
repackaging is not necessary in some other approaches; see Exercise 15.9.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 615

(define-type new-pt-eface

(packofexist point

(recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int))

(transpose (-> (point) point))

(point->pair (-> (point) (pairof int int)))

(origin point)

)))

(define extend-point-epkg (-> (pt-eface) new-pt-eface)

(lambda ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(packexist newpt pt

(record

(make-pt (lambda ((x int) (y int)) (up (make-pt x y))))

(pt-x (lambda ((p newpt)) (pt-x (down p))))

(pt-y (lambda ((p newpt)) (pt-y (down p))))

(transpose (lambda ((p newpt))

(up (make-pt (pt-y (down p))

(pt-x (down p))))))

(point->pair (lambda ((p newpt))

(pair (pt-x (down p)) (pt-y (down p)))))

(origin (up (make-pt 0 0)))))))))

Figure 15.5: The extend-point-epkg procedure shows how values mentioning
an abstract type can be passed outside unpackexist as long as they are first
packaged together with their abstract type.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

616 CHAPTER 15. ABSTRACT TYPES

(let ((points (list point-object

(make-pair-point 1 2)

(make-proc-point 3 4))))

((pcall append point-object)

points

((pcall map point-object point-object) transpose points)))

For simplicity, the existential type system considered here does not permit
parameterized abstract types, but it can be extended to do so. For instance,
here is an interface type for immutable stacks that is parameterized over the
stack component type t:

(define-type stack-eface

(poly (t)

(packofexist (stackof t)

(recordof

(empty (-> () (stackof t)))

(empty? (-> ((stackof t)) bool))

(push (-> (t (stackof t)) (stackof t)))

(pop (-> ((stackof t)) (stackof t)))

(top (-> ((stackof t)) t))))

Parameterized existential types are explored in Exercise 15.8.

¤ Exercise 15.6 This exercise revisits the integer set abstraction introduced in
Exercise 15.2.

a. Define an interface type intset-eface for integer sets supporting the operations
empty, insert, and member?.

b. Define an existential package list-intset-epkg implementing intset-eface

that represents integer sets as integer lists.

c. Define an existential package pred-intset-epkg implementing intset-eface

that represents integer sets as integer predicates.

d. Define a testing procedure test-intset that takes any implementation of type
intset-eface, creates a set s containing the integers 1 and 3, and returns a three-
element boolean list whose ith element (1-indexed) indicates whether s contains
the integer i. ¢

¤ Exercise 15.7

a. Illustrate the necessity of the import restriction for the [eunpack] rule by giving
an expression that would unsoundly be well-typed without the restriction.

b. Alf Aaron Ames claims that the import restriction in the [epack] rule and the
import and export restrictions in the [eunpack] rule are all unnecessary if before

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.2. DYNAMIC LOCKS AND KEYS 617

(define-type point-object

(packofexist point

(recordof

(state point)

(methods (recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))))

(define make-pair-point (-> (int int) point-object)

(lambda ((x int) (y int))

(packexist point (pairof int int)

(let ((make-pt (lambda ((x int) (y int)) (up (pair x y)))))

(record

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point)) (right (down p)))))))))))

(define make-proc-point (-> (int int) point-object)

(lambda ((x int) (y int))

(packexist point (-> (bool) int)

(let ((make-pt (lambda ((x int) (y int))

(up (lambda ((b bool)) (if b x y))))))

(recordof

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (lambda ((p point)) ((down p) true)))

(pt-y (lambda ((p point)) ((down p) false))))))))))

(define transpose (-> (point-object) point-object)

(lambda ((pobj point-object))

(unpackexist pobj pt impl

(with impl

(with methods

(packexist newpt pt

(record

(state (up (make-pt (pt-y state) (pt-x state))))

(methods

(record

(make-pt (lambda ((x int) (y int)) (up (make-pt x y))))

(pt-x (lambda ((p newpt)) (pt-x (down p))))

(pt-y (lambda ((p newpt)) (pt-y (down p)))))))))))))

Figure 15.6: Encoding two pair object representations using existential types.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

618 CHAPTER 15. ABSTRACT TYPES

type checking the program is α-renamed to make all logically distinct type iden-
tifiers unique. Is Alf correct? Use suitably modified versions of the unsoundness
examples in this section to support your answer. ¢

¤ Exercise 15.8

a. Extend the syntax and typing rules of FL/XSP to handle parameterized existen-
tial types like (stackof t), which appears in the stack-eface example above.

b. Define an implementation stack-list-epkg of immutable stacks that has type
stack-eface and represents a stack as a list of elements ordered from the top
down.

c. Define a procedure int-stack-test that tests a stack package by (1) defining a
swap procedure that swaps the top to elements of an integer stack; (2) defining a
stack->list procedure that converts an integer stack to an integer list; and (3)
returning the result of invoking stack->list on the result of calling swap on a
stack that contains the elements 1 and 2.

d. Define an interface mstack-eface for mutable stacks and repeat parts b and c
for mutable stacks. ¢

¤ Exercise 15.9 The packexist form uses up and down procedures to explicitly convert
between a concrete representation type and an opaque type name. Here we explore
alternative ways to specify abstract vs. concrete types in packexist . These alternatives
also work for the other forms of pack that we shall study.

a. One alternative to using up and down is to extend packexist to have the form
(packexist Iabs Trep Timpl Eimpl), in which the implementation type Timpl is
explicitly supplied. For example, here is one way to express a pair implementation
of points using the modified form of packexist :

(packexist point (pairof int int)

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))

(record

(make-pt (lambda ((x int) (y int)) (pair x y)))

(pt-x (lambda ((p point)) (left p)))

(pt-y (lambda ((p (pairof int int))) (right p))))))

Within Eimpl , the abstract type point and the concrete type (pairof int int)

are interconvertible.

Give a typing rule for this form of packexist . Your rule should not introduce up
and down procedures. Use examples to justify the design of your rule.

b. An alternative to specifying Timpl in packexist is to require the programmer to
use explicit type ascriptions (via FL/XSP’s the) to cast concrete to abstract
types or vice versa. Explain, using examples.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 619

c. Yet another way to convert between concrete and abstract types is to interpret the
define-datatype form in a creative way. (The module system in Section 15.5
follows this approach.) Each constructor can be viewed as performing a conversion
up to an opaque abstract type and each deconstructor can be viewed as performing
a conversion down from this type. For example, here is a point-as-pair existential
package declared via an alternative syntax for packexist that replaces Iabs and
Trep by a define-datatype declaration:

(packexist
(define-datatype point (pt (pairof int int)))

(record

(make-pt (lambda ((x int) (y int)) (pt (pair x y))))

(pt-x (lambda ((p point)) (match p ((pt (pair x _)) x))))

(pt-y (lambda ((p point)) (match p ((pt (pair _ y)) y))))))

Give a typing rule for this modified form of packexist .

d. Express the examples in Figure 15.5 and Figure 15.6 using the alternative ap-
proaches to existential types introduced above. ¢

15.3 Nonce Types

We have seen that the export restriction makes existential types an impractical
way to express data abstraction in a typed language. The export restriction is a
consequence of the fact that the abstract type name in an existential type and the
local abstract type names introduced by unpackexist forms are not connected to
each other or to the concrete type in any way. One way to address this problem
is by replacing the abstract type names by globally unique type symbols that we
call nonce types. We shall see that nonce types are in many ways a more flexible
approach to abstract types than existential types, but suffer from problems of
their own.

As an example, the type Tpoint−npkg of one implementation of a point ab-
straction might be the nonce package type

(packofnonce #1729

(recordof

(make-pt (-> (int int) #1729))

(pt-x (-> (#1729) int))

(pt-y (-> (#1729) int)))),

where #1729 is the concrete notation for the globally unique nonce type for this
particular implementation. Another point abstraction implementation would
have the same packofnonce type, except that a different unique nonce type (say
#6821) for that implementation would be substituted for each occurrence of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

620 CHAPTER 15. ABSTRACT TYPES

#1729. Nonce types are automatically introduced by the type checker and cannot
be written down directly by the programmer.

Whereas (packofexist Iabs Timpl) is a binding construct declaring that the
name Iabs may be used in the scope of Timpl , (packofnonce νabs Timpl) is not
a binding construct. Rather, it effectively pairs the nonce type νabs with an
implementation type in such a way that the two components can be unbundled
by an elimination form (unpacknonce). Like Iabs , νabs is an opaque name that
hides a concrete representation type. But unlike Iabs , which has no meaning
outside the scope of the packofexist , νabs names a particular concrete represen-
tation throughout the entire program. It serves as a globally unique tag for
guaranteeing that the operations of a data abstraction are performed only on
the appropriate abstract values, regardless of how the operations and values
are packaged and unpackaged. For example, a value of type #1729 is necessar-
ily created by the make-pt operation with type (-> (int int) #1729), and
it is safe to operate on this value with pt-x and pt-y operations having type
(pt-x (-> (#1729) int)). In contrast, these operations are incompatible with
abstract values having nonce type #6821.

The essence of the nonce type approach to abstract data types in FL/XSP is
presented in Figure 15.7. The syntax for creating and eliminating nonce packages
(using packnonce and unpacknonce) and typing nonce packages (packofnonce)
parallels the syntax for existential packages in order to facilitate comparisons.

For example, here is an expression Epair−point−npkg that describes a pair
implementation of a point abstraction as a nonce package:

(packnonce point (pairof int int)

(record

(make-pt (lambda ((x int) (y int)) (up (pair x y))))

(pt-x (lambda ((p point)) (left (down p))))

(pt-y (lambda ((p point) (right (down p))))))).

According to the [npack] typing rule, Epair−point−npkg could have the packofnonce
type Tpoint−npkg given earlier. Each application of the [npack] rule introduces a
fresh nonce type ν (in this case #1729) that is not used in any other application
of the [npack] rule. This nonce type replaces all occurrences of the programmer-
specified abstract type name Iabs (in this case point) in Eimpl . As in existential
types, up and down procedures are used to mediate between the concrete and
abstract types. Note that the Type domain must be extended to include nonce
types (Nonce-Type), which are distinct from type identifiers and type recon-
struction variables. They are instead a sort of newly generated type constant,
similar to Skolem constants used in logic.

The following expression Epair−point−test is a use of the example package that

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 621

Syntax

E ::= . . . | (packnonce Iabs Trep Eimpl) [Nonce Package Introduction]
| (unpacknonce Epkg Ity Iimpl Ebody) [Nonce Package Elimination]

ν ∈ Nonce-Type

T ::= . . . | ν [Nonce Type]
| (packofnonce ν Timpl) [Nonce Package Type]

Type Rules

A[up : (-> (Trep) ν), down : (-> (ν) Trep)] ` [ν/Iabs]Eimpl : Timpl
A ` (packnonce Iabs Trep Eimpl) : (packofnonce ν Timpl)

[npack]

where ν is a fresh nonce type [freshness condition]
Trep does not contain any plambda-bound identifiers [rep restriction]

A ` Epkg : (packofnonce ν Timpl)
A[Iimpl :Timpl] ` [ν/Ity]Ebody : Tbody

A ` (unpacknonce Epkg Ity Iimpl Ebody) : Tbody

[nunpack]

Type Equality

No new type equality rules.

Type Erasure

Same as for packexist/unpackexist.

Figure 15.7: The essence of nonce types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

622 CHAPTER 15. ABSTRACT TYPES

is possible with nonce packages but not with existential packages:

(let ((pair-point-npkg Epair−point−npkg))
(let ((transpose (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(lambda ((p t))

(make-pt (pt-y p) (pt-x p))))))

(pt (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(make-pt 1 2)))))

(transpose pt))).

The [nunpack] typing rule can be used to show that Epair−point−test is well-
typed. Since the same nonce type #1729 is used within both occurrences of
unpacknonce , transpose has type (-> (#1729) #1729) and pt has type #1729,
so (transpose pt) (as well as Epair−point−test) has type #1729. As shown by
[nunpack], the type identifier Ity in unpacknonce allows the programmer to locally
name the nonce type of Epkg , which cannot be written down directly. There are
no import or export restrictions in [nunpack]. The substitution [ν/Ity]Ebody

converts all local type identifiers into nonce types that may safely enter and
escape from unpacknonce because they are globally unique type symbols that
denote the same implementation in all contexts.

Although [nunpack] has no restrictions, there are two restrictions in [npack].
The freshness condition requires that a different nonce type be used for each
occurrence of packnonce encountered in the type checking process. The restric-
tion requires careful attention in practice. One way to formalize it in the type
rules would be to modify the type rules to pass a nonce type counter through
the type checking process in a single-threaded fashion and increment the counter
whenever [npack] is used. In languages that allow separate analysis and com-
pilation of modular units, nonce types could include a unique identifier of the
computer on which type-checking was performed along with a timestamp of the
time when type-checking took place.

The [npack] rule also has a rep restriction that prohibits the concrete
representation type Trep from containing any plambda-bound type identifiers. In
the simple form of nonce packages that we are studying, this restriction prevents
a single nonce type from being implicitly parameterized over any types that are
not known when type checking is performed on the packnonce expression. For
example, consider the following expression, which would unsoundly be well-typed
without the restriction:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 623

(let ((make-wrapper

(plambda (t)

(packnonce abs t

(record

(wrap (lambda ((x t)) (up x)))

(unwrap (lambda ((y abs)) (down y))))))))

(let ((wrap-int (unpacknonce (pcall make-wrapper int) wint ir

(select ir wrap)))

(unwrap-bool (unpacknonce (pcall make-wrapper bool) wbool br

(select br unwrap))))

(unwrap-bool (wrap-int 3)))).

If #251 is used as the nonce type in the packnonce expression, then wrap-int

has type (-> (int) #251), unwrap-bool has type (-> (#251) bool), and
(unwrap-bool (wrap-int 3)) has type bool even though it dynamically eval-
uates to the integer 3! The problem is that #251 should not be a single nonce
type but some sort of type constructor that is parameterized over t.

The key advantage of nonce packages over existential packages for express-
ing abstract types is that they have no export restriction. As illustrated by
Epair−point−test , values of and operations on the abstract type may escape from
unpacknonce expressions. Programmers do not have to rearrange their programs
or adopt an awkward programming style to prevent these from happening.

Despite their advantages over existential packages, nonce packages suffer
from two drawbacks as a mechanism for abstract types:

1. Difficulties with expressing nonce types. The fact that nonce types cannot
conveniently be written down directly by the programmer is problematic,
especially in an explicitly typed language. For example, in FL/XSP, the
programmer cannot write a top level definition of the form

(define pair-point-npkg T Epair−point−npkg)

because there is no way to write down the concrete nonce type needed
in T. This is not just an issue of type syntax; the programmer does
not know which nonce type the type checker will choose when checking
Epair−point−npkg .

One way to address this problem is to embed nonce packages in a language
with implicit types, where type reconstruction can infer nonce package
types that the programmer cannot express (see Exercise 15.14). This is
the approach taken in SML, where the nonce-based abstype mechanism
allows the local declaration of abstract data types. But in reconstructible
languages, it is still sometimes necessary to write down explicit types, and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

624 CHAPTER 15. ABSTRACT TYPES

(let ((make-rat-impl

(lambda ((b bool))

(packnonce rat (pairof int int)

(record

(make-rat (lambda ((n int) (d int))

(up (if b (pair n d) (pair d n)))))

(numer (lambda ((r rat))

(if b (left (down r)) (right (down r)))))

(denom (lambda ((r rat))

(if b (right (down r)) (left (down r))))))))))

(let ((leftist-rat (make-rat-impl true))

(rightist-rat (make-rat-impl false)))

((unpacknonce rightist-rat rty rops (select numer rops))

((unpacknonce leftist-rat lty lops (select make-rat lops)) 1 2))

Figure 15.8: A form of abstraction violation that can occur with nonce types.

the inability to express nonce package types reduces expressivity in these
cases.

Another alternative is to require that the abstract type name Iabs in
(packnonce Iabs Trep Eimpl) is a globally unique name that serves as a
concrete nonce type. This lets the programmer rather than the type
checker choose the abstract type name. In this case, the programmer
can write down the abstract type name and there is no need for the local
abstract type name in unpacknonce . There are serious modularity prob-
lems with this approach, but it makes sense in restricted systems where
all nonce packages are created at top level; see Exercise 15.15.

2. Insufficient abstraction. Nonce packages are sound in the sense that there
are no representation violations — a well-typed program cannot en-
counter a run time type error. However, there is still a form of abstrac-
tion violation that can occur with nonce packages. An example of this
is shown in Figure 15.8. The make-rat-impl procedure makes a rational
number implementation, which in all cases represents a rational number
as a pair of integers. However, it is abstracted over a boolean argument b
that chooses one of two representations. When b is true, the numerator
is the left element of the pair and the denominator is the right element;
we will call this the “leftist representation.” When b is false, a “rightist
representation” is used, in which the numerator is on the right and the
denominator is on the left.

In the example, the numer procedure of the rightist representation is ap-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 625

plied to a leftist rational with numerator 1 and denominator 2. Since nonce
types are determined by static occurrences of packnonce and there is only
one of these in the example, the two dynamic invocations of make-rat-impl
yield implementations that use the same nonce type for rat. Thus, the
application is well-typed and at run time will return the value 2.

Thus, the nonce package system allows different implementations of a data
abstraction to intermingle as long as they are represented via the same
concrete type. Although this might seem reasonable in some cases, we
normally expect an abstract type system to enforce the contract chosen by
the designer of an abstraction. Enforcing the contract (and not just ensur-
ing compatible representations) enables the abstraction and the clients to
rely on important invariants that, among other things, ensure correctness
of programs.

¤ Exercise 15.10

a. Would the expression in Figure 15.8. be well-typed if all occurrences of packnonce
and unpacknonce were replaced by packexist and unpackexist? Explain.

b. Below are three replacements for the body of the inner let in the example in
Figure 15.8. For each replacement, indicate whether the whole example expression
would be well-typed using (1) nonce packages and (2) existential packages5. For
each case, discuss whether you think the type system does the “right thing” in
that case.

i. ((unpack leftist-rat lty1 lops1 (select numer lops2))

((unpack leftist-rat lty2 lops2 (select make-rat lops1)) 1 2))

ii. (unpack leftist-rat lty lops

(unpack rightist-rat rty rops

((select numer rops) ((select make-rat lops) 1 2))))))

iii. (unpack leftist-rat lty1 lops1

(unpack leftist-rat lty2 lops2

((select numer lops2) ((select make-rat lops1) 1 2)))) ¢

¤ Exercise 15.11 As noted above, the inability to write down nonce types is in-

compatible with top level define declarations in FL/XSP, which require an explicit

type to handle potentially recursive definitions. Design a top level definition mecha-

nism for FL/XSP that enables the declaration of non-recursive global values. Illus-

trate how your mechanism can be used to give the global name pair-point-npkg to

Epair−point−npkg . ¢

5Assume that the occurrence of packnonce in the figure is changed to packexist for the exis-
tential case.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

626 CHAPTER 15. ABSTRACT TYPES

¤ Exercise 15.12 If the abstract type name Iabs in (packnonce Iabs Trep Eimpl) were
required to be a globally unique name, then it could serve as a programmer-specified
nonce type.

a. Give typing rules for versions of packnonce and unpacknonce that are consistent
with this interpretation. In this interpretation, there is no need for the identifier
Ity in unpacknonce, since the unique name Iabs would be used instead.

b. Describe how to modify the type checking rules to verify the global uniqueness
requirement.

c. Discuss the advantages and disadvantages of this approach to nonce types. Is it
a good idea? ¢

¤ Exercise 15.13 By design, the nonce package types of two syntactically distinct
occurrences of packnonce are necessarily different. For example, two nonce packages
implementing a point abstraction would both have types of the form

(packofnonce νpoint
(recordof

(make-pt (-> (int int) νpoint))
(pt-x (-> (νpoint) int))

(pt-y (-> (νpoint) int))))

but the nonce type νpoint would be different for the two packages. Nevertheless, the
similarity in form suggests that it should be possible to abstract over different imple-
mentations of the same abstract type.

a. Suppose that we modify the syntax of packofnonce to be (packofnonce T Timpl)
but do not change the typing rules [npack] and [nunpack] in any way. Given
this change, write a make-transpose procedure that takes any nonce package
implementing a point abstraction and returns a coordinate swapping procedure
for that implementation. (Hint: use plambda to abstract over the nonce type.)

b. Explain why it is necessary to modify the syntax of packofnonce in order to write
make-transpose. ¢

¤ Exercise 15.14 In this exercise, we consider existential and nonce types in the
context of type reconstruction by adding them to FL/R.

a. Nonce packages can be added to FL/R by extending it with the expression
(packnonce Eimpl) and nonce types.

i. Give an FL/R typing rule for the modified packnonce form.

ii. Describe how to extend the FL/R reconstruction algorithm to reconstruct
the modified packnonce form.

iii. The unpacknonce expression and packofnonce type are not necessary in
FL/R for most programs. Explain why.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.3. NONCE TYPES 627

iv. In versions of FL/XSP and FL/R supporting records (without row vari-
ables), write an FL/XSP program that cannot be re-expressed in FL/R
due to the inability to write down an explicit nonce type.

b. Existential packages can be added to FL/R by extending it with the expres-
sions (packexist Eimpl) and (unpackexist Epkg Tpkg Iimpl Eimpl) and the type
(packofexist Iabs Timpl). In the modified unpackexist form, the type Tpkg is the
type of the expression Epkg .

i. Give FL/R typing rules for the modified packexist and unpackexist forms.

ii. Describe how to extend the FL/R reconstruction algorithm to reconstruct
the modified packexist and unpackexist forms.

iii. Explain why it is necessary for the reconstruction system to be explicitly
given the type Tpkg of the existential package expression Epkg . Why can’t
it reconstruct this package type?

c. What changes would need to be made above to handle existential and nonce
packages with parameterized types? ¢

¤ Exercise 15.15 Many languages support abstract types that can only be de-
clared globally. Here we explore an abstract type mechanism introduced by a top level
define-cluster form. For simplicity, we assume that programs have the form:

(program

(define-cluster Iimpl 1 Iabs 1 Trep 1 Eimpl 1)
...

(define-cluster Iimpl k Iabs k Trep k Eimpl k)

Ebody)

a. One interpretation of define-cluster is given by the following desugaring for
the above program form:

(let ((Iimpl 1 (packexist Iabs 1 Trep 1 Eimpl 1))
...

(Iimpl k (packexist Iabs k Trep k Eimpl k)))

(unpackexist Iimpl 1 Iabs 1 Iimpl 1
...

(unpackexist Iimpl k Iabs k Iimpl k

Ebody)))

Would the interpretation be any different if all occurrences of packexist and
unpackexist were replaced by packnonce and unpacknonce, respectively?

b. Give a direct typing rule for the program form with define-cluster declarations
that gives the same static semantics as the above desugaring.

c. An alternative desugaring for the program form is:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

628 CHAPTER 15. ABSTRACT TYPES

(let ((Iimpl 1 (packexist Iabs 1 Trep 1 Eimpl 1)))

(unpackexist Iimpl 1 Iabs 1 Iimpl 1
...

(let ((Iimpl k (packexist Iabs k Trep k Eimpl k)))

(unpackexist Iimpl k Iabs k Iimpl k

Ebody))))

What advantage does this desugaring have over the previous one? Give an exam-
ple where this desugaring would be preferred.

d. Give a direct typing rule for mutually recursive top level define-cluster decla-
rations.

e. Give a simple example program where mutually recursive clusters are useful.

f. Suppose that we want to be able to locally define a collection of clusters anywhere
in a program via the following form:

(let-clusters ((Iclust Iabs Trep Eimpl)*) Ebody)

Discuss the design issues involved in specifying the semantics of let-clusters.
¢

15.4 Dependent Types

As we saw with existential packages, the inability to express “the type exported
by this package” makes many programs awkward to write. Nonce types provide
a way to express this idea but suffer from two key drawbacks: (1) nonce types are
thorny to express: either they are chosen by the system, and are inconvenient or
impossible for the programmer to write down explicitly; or they are chosen by
the programmer, in which case their global uniqueness requirement is at odds
with modularity; and (2) they allow abstract types from different instances of
the same syntactic package expression to be confused.

There is another option: use a structured name to select a type out of a
package just as components are selected out of a product. In particular, we
introduce a new type form (dtype Epkg) to mean “the type exported by the
package denoted by Epkg .”

6 It is an error if Epkg does not denote a package.
As with nonce packages, such a package may be viewed as a pair containing a
type and a value. The difference is that the programmer has a convenient way
to express the type component outside the scope of an unpack expression. The
type defined by a package is sometimes referred to as the package’s carrier.

6In a practical system in which packages can export multiple abstractions, we could write
(dselect I E) just as we select named values from records.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 629

A type that contains a value expression is called a dependent type because
the type it represents depends in some sense on the value. The reader may
be justifiably concerned about this unholy commingling of types and values,
especially with respect to static type checking. As we shall see, dependent types
raise some nettlesome issues that the language designer must address in order
to reap the expressiveness benefits.

15.4.1 A Dependent Package System

This section explores a simple package system that uses dependent types to
express abstract types (see Figure 15.9). We shall use the term dependent
package to refer to a package based on dependent types. The packdepend and
packofdepend forms work in a way similar to the previous package systems. For
example, we can define a pair point implementation (pair-point-dpkg) and a
procedural point implementation (proc-point-dpkg) exactly as in Section 15.2
except that we replace all occurrences of packexist by packdepend . Both of the
new packages will have the following interface type:

(define-type point-dface

(packofdepend point

(recordof

(make-pt (-> ((x int) (y int)) point))

(pt-x (-> ((p point)) int))

(pt-y (-> ((p point)) int)))))

Notice that procedure types have been extended to include the names of the
formal parameters: the arrow type constructor -> is now a binding form in
which the formal names are available in the return type. We shall see below
how this is used.

As with existential packages, packdepend and unpackdepend have an import
restriction that prevents the local name of the abstraction from capturing an
existing type name. As before, this restriction can be eliminated by automati-
cally α-renaming programs to make all logically distinct type identifiers unique.
The unpackdepend form has an additional restriction that we will discuss in more
detail later.

As with nonce packages (but not existential packages), dependent pack-
ages have no export restriction, so abstract values may exit the scope of an
unpackdepend expression. But unlike the nonce type system, free references to
the abstract type name exported by unpackdepend are replaced by a user-writable
type: a dependent type that records the program code that generated the pack-
age exporting the type. For example, what is the type Tpair−point in the following
definition?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

630 CHAPTER 15. ABSTRACT TYPES

Syntax
E ::= . . . | (packdepend Iabs Trep Eimpl) [Dependent Package Introduction]

| (unpackdepend Epkg Ity Iimpl Ebody) [Dependent Package Elimination]

T ::= . . . | (-> ((I T)*) T) [Dependent Arrow Type]
| (packofdepend Iabs Timpl) [Dependent Package Type]
| (dtype Epkg) [Dependent Type Selection]

Type Rules

A[up : (-> ((x Trep)) Iabs), down : (-> ((x Iabs)) Trep)] ` E : T
A ` (packdepend Iabs Trep E) : (packofdepend Iabs T)

[dpack]

where Iabs 6∈ {(FTV A(I)) | I ∈ FreeIds[[E]]} [import restriction]

A ` Epkg : (packofdepend Iabs Timpl)
A[Iimpl : [(dtype Epkg)/Iabs] Timpl] ` [(dtype Epkg)/Ity] Ebdy : Tbdy

A ` (unpackdepend Epkg Ity Iimpl Ebdy) : Tbdy

[dunpack]

where Iabs 6∈ {(FTV A(I)) | I ∈ FreeIds[[Ebody]]} [import restriction]
Epkg must be pure [purity restriction]

A[I1 :T1, . . ., In :Tn] ` E : T
A ` (lambda ((I1 T1) . . . (In Tn)) E) : (-> ((I1 T1) . . . (In Tn)) T)

[λ]

A ` Erator : (-> ((I1 T1) . . . (In Tn)) Tbody)
∀ni=1 . A ` Ei : Ti

A ` (Erator E1 . . . En) : [
n
i=1Ei/Ii]Tbody

[apply]

where Ii∈FreeIds[[Tbody]] implies Ei is pure. [purity restriction]

∀ni=1 . A ` Ei : Ti
A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody

A ` (let ((I1 E1) . . . (In En)) Ebody) : [
n
i=1Ei/Ii]Tbody

[let]

where Ii∈FreeIds[[Tbody]] implies Ei is pure [purity restriction]

Rules for letrec and with are similar and left as exercises.

Type Erasure Same as for packexist/unpackexist and packnonce/unpacknonce.

Type Equality
∀ni=1 . Ii ′ 6∈FreeIds[[Tbody]]

(-> ((I1 T1)...(In Tn)) Tbody)
≡ (-> ((I1

′ T1)...(In
′ Tn))[

n
i=1Ii/Ii

′]Tbody)
[->=]

(packofdepend I T) = (packofdepend I ′ [I ′/I]T) [dpackof=]

E1 =depends E2
(dtype E1) = (dtype E2)

[dtype=]

where =depends is discussed in the text.

Figure 15.9: The essence of dependent types in FL/XSP.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 631

(define pair-point Tpair−point
(unpackdepend pair-point-dpkg point point-ops

(with point-ops (make-pt 1 2)))

The return type of the make-pt procedure in pair-point-dpkg is point. Ac-
cording to the [dunpack] rule, (dtype pair-point-dpkg) is substituted for this
type. So the invocation of make-pt, the with expression, and the unpackdepend
expression all have the type Tpair−point = (dtype pair-point-dpkg).

The expressive power of dependent types is illustrated by the make-transpose
procedure:

(define make-transpose Tmake−transpose

(lambda ((point-dpkg point-dface))

(unpackdepend point-dpkg pt point-ops

(with point-ops

(lambda ((p pt))

(make-pt (pt-y p) (pt-x p)))))))

What is the type Tmake−transpose of this procedure? It is a procedure that takes
a package that implements the point-dface interface and returns a procedure
that takes a point implemented by the given package and returns a point from
the same package with swapped coordinates:

(-> ((point-dpkg point-dface))

(-> ((p (dtype point-dpkg))) (dtype point-dpkg)))

It should now be clear why the -> type constructor is a binding form in a
dependent type system: the return type can depend on the value of a parameter
(such as point-dpkg above), so we need a way to refer to the parameter. Not all
parameter names are actually used in this fashion. For instance, the parameter
name p is ignored. We shall refer to values of the dependent arrow type as
dependent procedures.

What happens when we apply a dependent procedure? Consider the appli-
cation Etranspose−test :

((make-transpose pair-point-dpkg) pair-point-dpkg)

By the [apply] rule, when we apply make-transpose to a package satisfying
point-dface, we substitute the actual argument expression for the formal pa-
rameter point-dpkg in the type

(-> ((p (dtype point-dpkg))) (dtype point-dpkg))

to give the type

(-> ((p (dtype pair-point-dpkg))) (dtype pair-point-dpkg))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

632 CHAPTER 15. ABSTRACT TYPES

Since pair-point has type (dtype pair-point-dpkg), Etranspose−test is a well-
typed expression denoting a value with type (dtype pair-point-dpkg).

Similarly, free references to let-bound variables are substituted away in the
result type of a let. Now that types refer to values, anytime a value escapes the
scope of a variable binding, that variable is replaced with its definition expression
if it occurs free in the value’s type. The rules for letrec and with are similar
to the [apply] and [let] rules and are left as exercises.

It is instructive to revisit the rational number example from Figure 15.8 in
the context of dependent types. Consider the following two expressions:

((unpackdepend rightist-rat rty rops (select numer rops))

((unpackdepend leftist-rat lty lops (select make-rat lops))

1 2))

((unpackdepend leftist-rat lty2 lops2 (select numer lops2))

((unpackdepend leftist-rat lty1 lops1 (select make-rat lops1))

1 2))

With dependent types, the first expression is ill-typed because an attempt is
made to apply a procedure of type (-> ((r (dtype rightist-rat))) int)

to a value of type (dtype leftist-rat). However, the second expression is
well-typed since the procedure parameter and the argument point both have
type (dtype leftist-rat). So dependent types are able to catch the abstrac-
tion violation in the first expression while permitting operations and values of
the same abstract type to interoperate outside of unpackdepend in the second
expression. In contrast, neither expression is well-typed with existential pack-
ages (due to the export restriction) and both expressions are well-typed with
nonce types (which cannot distinguish different instantiations of a packnonce
expression).

15.4.2 Design Issues with Dependent Types

Dependent types are clearly very powerful. However, care must be taken to
ensure that a dependent type system is sound. Moreover, programmers typically
expect that a statically typed language will respect the phase distinction:
the well-typedness of their programs will be verified in a first (terminating)
type-checking phase that runs to completion before the second (possibly non-
terminating) run time computation phase begins. We shall see that in some
designs for dependent types these phases are interleaved and type checking may
not terminate.

There are several design dimensions in systems with dependent types. One
dimension involves how types are bundled up into and extracted from packages.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 633

In the system we have studied so far, dependent packages have a single type
that is extracted via dtype, but more generally, a dependent package can have
several type components. These are typically named and extracted in a record-
like fashion. We will see an example of this in the module system in Section 15.5.

Another design dimension involves the details of performing substitutions in
the typing rules. Some alternatives to the rules presented in Figure 15.9 are
explored in the exercises for this section.

Perhaps the most important design dimension is type equality on dependent
types: when is the type (dtype E1) considered equal to (dtype E2)? There
are a range of choices here that have significant impact on the properties of the
language. We spend the rest of this section discussing some of the options.

One option is to treat types as first-class run time entities and dependent
packages as pairs of a type and a value. Such pairs are known as strong sums7

because the type component serves as a tag that can be used for dynamic dis-
patch. In this interpretation, (dtype E) extracts the type component of the
pair, which is convertible with the package’s representation type. Since type
checking and evaluation are inextricably intertwined in this design, there is no
phase distinction. Furthermore, abstraction is surrendered by making represen-
tation types transparent. The Pebble language [BL84] took this approach and
used a lock and key mechanism (similar to that described in Section 15.2) to
support data abstraction.

Another option is to consider (dtype E1) to be the same as (dtype E2) if
the expressions E1 and E2 are “equal” for a suitable notion of equality. This is
the approach taken in the [dtype=] rule of Figure 15.9, which is parameterized
over a notion of equality (=depends) that is not defined in the figure. There are
two broad approaches to defining =depends :

• Value equality: At one end of the spectrum, we can interpret two expres-
sions to be the same under =depends if they denote the same package in
the usual dynamic semantics of expressions. In the general case, this im-
plies that type checking may require expression evaluation. As with strong
sums, type checking in this approach may not terminate or may need to be
done at run time. Even worse, determining if two package values are the
same in general requires comparing procedures for equality, which is un-
computable! In practice, some computable conservative approximation for
procedure equality must be used. Such an approximation must necessar-
ily distinguish procedures that are denotationally equivalent. A common
technique is to associate a unique identifier with each procedure value and
to say that two procedures are equal only if they have the same identifier.

7In contrast, existential packages are sometimes called weak sums.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

634 CHAPTER 15. ABSTRACT TYPES

• Static equality: In order to preserve static type checking (with no run time
requirements and a guarantee that type checking terminates), we desire a
definition of ≡depends that is statically computable. The easiest solution
is to say that two dtypes are equal if their expressions are textually the
same (more precisely, if they have equal abstract syntax trees). This is
obviously statically computable, and this simple solution is the one that
we adopt here.

There are other choices for ≡depends besides textual equality. We could, for
example, allow the expressions in equivalent dtypes to admit α-renaming.
We could allow certain substitutions to take place (say if expressions are
equivalent after their lets are substituted away). As long as the equiv-
alence is statically computable and ensures that expressions that denote
different values are not equal, the system is sound. We refer to any such
system as a static dependent type (SDT) system.

For our system to be sound, we need to guarantee that a value that uses a
type exported from one package cannot masquerade as a value of some other
type, e.g., a point from the proc-point-dpkg cannot be passed to an operation
from pair-point-dpkg.

One requirement is that programs must be α-renamed on input. Otherwise,
it would be possible for textually identical expressions to mean different things
in different contexts. Our substitutions when a value exits a binding construct
are not enough. Consider the following code:

(let ((trans (make-transpose pair-point-dpkg))

(pair-point-dpkg proc-point-dpkg))

(trans (unpackdepend pair-point-dpkg point pt-ops

(with pt-ops

(make-pt 1 2)))))

If the new binding of pair-point-dpkg were not α-renamed, then it would be
confused with the pair-point-dpkg that occurs free in the type of trans, which
would be unsound.

A second requirement is that in a dependent type (dtype Epkg), the expres-
sion Epkg be pure — i.e., it must not vary with state. This is true whether a
language uses value or static equality. In a language with mutation, the same
syntactic expression might have different meanings at different times. For ex-
ample, consider the following expression:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.4. DEPENDENT TYPES 635

(let ((c (cell pair-point-pkg)))

(let ((p (unpack (^ c) pt ops

((select make-pt ops) 1 2))))

(begin

(:= c proc-point-pkg)

((unpack (^ c) pt ops

(select pt-x ops)) p))))

When cell c contains pair-point-pkg, the pair point p is created and has type
(dtype (^ c)). Then c is modified to contain proc-point-pkg, at which time
the procedural point operation pt-x (with type (-> ((dtype (^c))) int) is
applied to p. It should be an abstraction violation to apply the procedural point
operation pt-x to a pair point, but the type system encounters no error, because
the argument type of pt-x and the type of p are both (dtype (^c)). The type
system does not track the fact that (^c) refers to different packages at different
times.

We address this problem by instituting a purity restriction on Epkg in the
[dunpack] rule, which introduces all dependent types. Of course, it is undecid-
able to know when an expression is pure. A simple conservative approximation is
to require that Epkg be a “syntactic value,” a notion introduced in Section 8.2.5
and used in polymorphic types (Section 13.2) and in the type reconstruction
system of FL/R (Section 14.2). However, we will see in Section 15.5 that this
approximation prohibits many expressions we would like to write. A better alter-
native is to use an effect system (see Chapter 16) to conservatively approximate
pure expressions.

¤ Exercise 15.16

a. Write typing rules for letrec and with in a language with dependent types.

b. Dependent types permit code to be abstracted over particular implementations of
a data abstraction. The typing rules of this section require that such abstractions
be curried by the programmer because of the scoping of parameter names in
procedure types. The make-transpose procedure studied above is an example of
such currying. In its type,

(-> ((point-dpkg point-dface))

(-> ((p (dtype point-dpkg)))

(dtype point-dpkg))),

the argument type of the transposition procedure refers to point-dpkg.

Suppose that we want to modify the typing rules for a dependently typed language
to implicitly curry multiple parameters — i.e., to allow the types of later param-
eters to refer to the names of earlier parameters. For example, in the modified
system, an uncurried form of make-transpose could have the type

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

636 CHAPTER 15. ABSTRACT TYPES

(define-type uncurried-make-transpose-type

(-> ((point-dpkg point-dface) (p (dtype point-dpkg)))

(dtype point-dpkg)))

Curiously, the [λ] rule does not need to change to support implicitly curried pa-
rameters.8 The [apply] rule, however, must change. Write a new [apply] rule that
supports procedure formals that refer to previous parameters. E.g., a procedure of
type uncurried-make-transpose-typemust be applied to two arguments where
the type of the second argument depends on the value of the first. ¢

¤ Exercise 15.17 Del Sharkmon suggests the following alternative [dunpack’] type
rule that does dependent type substitutions on the way out of unpackdepend rather than
on the way in.

A ` Epkg : (packofdepend Iabs Timpl)

A[Iimpl : [Ity/Iabs]Timpl] ` Ebdy : Tbdy

A ` (unpackdepend Epkg Ity Iimpl Ebdy) : [(dtype Epkg)/Ity]Tbdy

[dunpack ′]

a. Using dependent packages, redo Exercise 15.10(b) using (1) the original [dunpack]
rule and (2) Del’s [dunpack ′] rule. Which rule do you think is better and why?

b. Del claims that [dunpack ′] is better than [dunpack] in some situations where Epkg
contains side effects. Write an expression that is well-typed with [dunpack ′] but
not [dunpack].

c. For any expression that is well-typed with [dunpack ′] but not [dunpack], it is
possible to make the expression well-typed by naming Epkg with a let. Show this
in the context of your expression from the previous part. ¢

¤ Exercise 15.18 Ben Bitdiddle looks at the typing rules in Figure 15.9 and your

solution to Exercises 15.16 and 15.17 and complains that all the substitutions make him

dizzy. He suggests leaving them all out except for those in the [apply] rule. Under what

assumptions is his idea sound? Write a type safe program that type checks under the

given rules but does not type check under Ben’s. ¢

15.5 Modules

15.5.1 An Overview of Modules and Linking

It is desirable to decompose a program, especially a large one, into modular
components that can be separately written, compiled, tested, and debugged.

8In a system with kinds, the [λ] rule would change because we would need the scope to be
manifest to verify that dependent types are well-formed.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 637

Such components are typically called modules but are also known as packages,
structures, units, and classes.9 Ideally, each individual module is described by
an interface that specifies the components required by the module from the
rest of the program (the imports) and the components supplied by the module
to the rest of the program (the exports). Interfaces often list the names and
types of imported and exported values along with informal English descriptions
of these values. Such interfaces make it possible for programmers to implement
a module without having to know the implementation details of other modules.
They also make it possible for a compiler to check for type consistency within a
single module.

In most module systems, modules are record-like entities that have both
type and value components. In this respect, they are more elaborate versions
of the packages we have studied. Indeed, modules are often used as a means
of expressing abstract types in addition to being a mechanism for decomposing
a program into parts, which is why we study them here. The key difference
between the modules discussed here and the packages we studied earlier is that
there is an expectation that modules can be separately written and compiled
and later combined to form a whole program.

The process of combining modules to form a whole program is called linking.
The specification for how to combine the modules to form a program is written
in a linking language. Linking is typically performed in a distinct link time
phase that is performed after all the individual modules are compiled (compile
time) but before the entire program is executed (run time).

A crude form of linking involves hard-wiring the file names for imported
modules within the source code for a given module. In more flexible approaches,
a module is parameterized over names for the imported modules and the linking
language specifies the actual modules to be used for the parameters. Ideally,
the linking language should check that the interface types of the actual module
parameters are consistent with those of the formal module parameters. In this
case, the linking language is effectively a simple typed programming language.

Often, a linking language simply lists the modules to be combined. For
example, the object files of a C program are linked by supplying a list of file
names to the compiler. A linking language can be made more powerful by
adding other programming language features that allow more computation to be
performed during the linking process. But the desire to make linking languages
more expressive is often in tension with the desire to guarantee that (1) the
linking process terminates and (2) mere mortals can reliably understand and use

9In many languages, such as C, files serve as de facto modules, but in general the relationship
between source files and program modules can be more complex.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

638 CHAPTER 15. ABSTRACT TYPES

the sophisticated types that often accompany more expressive linking languages.

An extreme design point is to make the linking language the same as the
base language used to express the modules themselves. Such first-class module
systems are powerful because arbitrary modules can be created at run time and
the decision of which module to import can be based on dynamic conditions.
These systems blur the distinction between link time and run time, and for
any Turing-complete base language, the linking process may not terminate. For
these reasons, linking is usually specified in a different language from the base
language that is suitably restricted to guarantee termination and designed to
link programs in a separate phase. In such second-class module systems,
modules are not first-class values that can be manipulated in the base language.
The module systems of the CLU, SML and OCAML languages are examples
of expressive second-class module systems.

15.5.2 A First-Class Module System

We conclude this chapter by presenting a first-class module system based on
static dependent types and incorporating extensions for sum-of-product data
type definitions, pattern matching, higher-order abstractions (type construc-
tors), and multiple abstract type and value definitions in a single module. Our
module system illustrates how the simple ideas presented earlier can be com-
bined into a more realistic system, and also how delicate a balance must be
struck to make the system both useful and correct.

We add the module features to FL/R to yield the language FL/RM. A
language where types are reconstructed is far more convenient for programming
than an explicitly typed language, where the explicit types can be tedious and
challenging to write. However, as we shall see below, certain types (the types of
modules) must be declared because they cannot be reconstructed. This is not a
big drawback since explicit module types are important in software engineering
for documenting module interfaces.

15.5.2.1 The Structure of FL/RM

The syntax and semantics of FL/RM are presented in Figures 15.10–15.13. Fig-
ure 15.10 presents the new expression and type syntax that FL/RM adds to
FL/R. A module is a record-like entity whose abstract type components are
declared via define-datatype (discussed below) and whose value components
are declared via define. The type of a module is a moduleof type that records
the abstract types and the types of each of the named value components. The
named type and value components of the module denoted by Emod are made

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 639

available to a client expression Ebody via the (open Emod Ebody) form, which is
the module analog of the with form for typed records. Programmers load sepa-
rately compiled modules from an external storage system via the load construct.
Loading is described in more detail in Section 15.5.2.5.

Dependent types have the form (dselect Itc Emod), which selects the ab-
stract type constructor named Itc from the module denoted by Emod . As in
Section 15.4, dependent procedure types of the form (-> ((I T)*) T) must
be supported. Parameter names may be omitted from non-dependent procedure
types (i.e., where the parameter names don’t appear in the return type); it is
assumed that the system treats these as dependent procedure types with fresh
parameter names. The type syntax also includes type constructor applications
of the form (TC T*), where a type constructor TC is either an identifier or
the result of extracting a type constructor from a module. In both cases, the
type constructor is presumed to be either a name the programmer declares via
define-datatype or a predefined type constructor name like listof.

Conventional type reconstruction cannot, in general, infer module types. For
this reason, optional declarations have been added to the syntax for lambda and
letrec expressions and define declarations. (We use the convention that syntax
enclosed by square brackets is optional.) Whenever an identifier introduced by
lambda, letrec, or define denotes a module (or a value whose type includes a
module type), that identifier must have its type supplied. If the type is omitted,
the program will not type check.

15.5.2.2 Datatypes and Pattern Matching

The define-datatype form is a typed version of the define-data sum-of-
products declaration introduced in Section 10.4. It declares a parameterized
abstract type constructor along with a collection of constructor procedures and
their associated deconstructors. For example,

(define-datatype (treeof t)

(leaf)

(node t (treeof t) (treeof t)))

declares a binary tree type constructor, treeof, that is parameterized over the
node value type t. It also declares two constructor/deconstructor pairs with the
types shown in Figure 15.14. The constructor procedure types are quantified over
the type constructor parameter t. The deconstructor procedure types are addi-
tionally quantified over the return type r of the deconstructor. The types of the
constructor and deconstructor procedures associated with a define-datatype

declaration are formalized by the ⊕ operator (see Figure 15.12), which extends

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

640 CHAPTER 15. ABSTRACT TYPES

Syntax

E ::= ... | (lambda (LF *) E)
| (letrec ((I [T] E)*) E)
| (match Edisc (P E)*)
| (module DD* D*) [Module introduction]
| (open Emod Ebody) [Module elimination]
| (load S) [Load compiled code]

LF ::= I | (I T) [Lambda Formals]
P ::= L | I | _ | (I P*) [Patterns]

DD ::= (define-datatype AB (Icnstr Tcomp*)*) [Datatype Definition]
D ::= (define I [T] E) [Value Definition]

AB ::= (Itc Iparam*) [Abstract Type]
UID ::= System dependent [Unique File Identifier]

T ::= ... | (moduleof (AB*) (I TS)*) [Module Type]
| (TC T*) [Type Constructor Application]
| (-> ((I T)*) T) [Dependent Proc Type]
| (-> (T*) T) [Non-dependent Proc Type]
| (dselect Itc Emod) [Dependent Type]

TC ::= Itc | (dselect Itc Emod) [Type Constructor]
TS ::= T | (generic (I*) T) [Type Schema]

Sugar

The usual FL/R desugaring function D is extended as follows:

D[[(match Edisc (P E)*)]] = D[[Dmatch[[(match Edisc (P E)*)]]]]

where Dmatch is the pattern matching desugarer presented in Figure 10.30 with the
modification to equalL described in the text.

Figure 15.10: Syntax for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 641

Type Rules

∀mj=1 . (A ⊕ [DD1 , . . . ,DDn])[I1 :T1,...,Im :Tm] ` Ej : Tj
A `(module DD1 . . . DDn

(define I1 [T1] E1)...(define Im [Tm] Em))

: (moduleof ((Itc1 Ip1,1 ...Ip1,a1
)...(Itcn Ipn,1 ...Ipn,an

))

(I1 (mgen T1))...(Im (mgen Tm)))

[module]

where DD i = (define-datatype (Itci Ipi,1 ...Ipi,ai) ...)

(mgen T) = (generic (J*) T)
J* = FTV (T) − FTE(A) − {Itc1 , . . . , Itcn}

A ` Em : (moduleof ((Itc1...)...(Itcn...)) (I1 TS1)...(Im TSm))
A[I1 : sub(TS1),...,Im : sub(TSm)] ` sub(Eb) : Tb

A ` (open Em Eb) : Tb

[open]

where sub(X) = [ni=1(dselect Itci Em)/Itci]X [Dependent type introduction]
Em is pure [Purity restriction]

` contents [S] : T
A ` (load S) : T

[load]

The [proc], [apply], [let], and [letrec] rules are similar to those in Section 15.4 and are
left as exercises.

Type Equality

∀ni=1 . Ti =Ti
′

(moduleof (AB1 . . .ABk) ((I1 T1) . . .(In Tn)))
= (moduleof (AB1 . . .ABk) ((I1 T1

′) . . .(In Tn
′)))

[moduleof=]

(This is more restrictive than necessary; see discussion in text.)

Em1
=depend Em2

(dselect I Em1
) = (dselect I Em2

)
[dselect=]

where =depend is textual equality and all programs are appropriately α-renamed.

{I1 , . . . , In} = {I1 ′, . . . , In ′}
T =T ′

(generic (I1...In) T) = (generic (I1
′...In

′) T ′)

[generic=]

T = (generic () T) [type-generic=]

The [->=] rule from Figure 15.9 is used for dependent arrow types.

Figure 15.11: Static semantics for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

642 CHAPTER 15. ABSTRACT TYPES

The notation A ⊕ DD denotes a type environment such that

(A ⊕ DD)(I) =

(generic (Ip1 . . . Ipm)
(-> (T1 . . . Tn) (Itc Ip1 . . . Ipm))),
if I = Icon and DD = (define-datatype (Itc Ip1 . . . Ipm)

. . . (Icon T1 . . . Tn) . . .)

(generic (Iret Ip1 . . . Ipm) ; Iret is fresh

(-> ((Itc Ip1 . . . Ipm) ; datum

(-> (T1 . . . Tn) Iret) ; success continuation

(-> () Iret)) ; failure continuation

Iret)),
if I = Icon./˜ and DD = (define-datatype (Itc Ip1 . . . Ipm)

. . . (Icon T1 . . . Tn) . . .)

A(I), otherwise

A ⊕ [DD1 , . . ., DDn] is an abbreviation for ((A ⊕ DD1) ⊕ . . .) ⊕ DDn .

Figure 15.12: Notation for extending type environments with datatypes.

Type Erasure

d(define-datatype (Itc Ip1 . . . Ipk)
(Icnstr1 T1 ,1 . . .T1 ,m1

) . . . (Icnstrn Tn,1 . . .Tn,mn
))e

= (define-data Itc (Icnstr1 x1 . . . xm1
) . . . (Icnstrn x1 . . . xmn

))

d(module DD1 . . . DDk (define I1 [T1] E1) . . .(define In [Tn] En))e
= (let ((Idd1 Edd1) . . . (Iddm Eddm))

(recordrec (I1 dE1 e) . . .(In dEne)))
where Ddef [[dDD1 e]] @ · · · @ Ddef [[dDDke]]

= [(define Idd1 Edd1) . . . (define Iddm Eddm)]
using the Ddef function from Figure 10.24.

d(open Emod Ebody)e = (with-fields (I1 . . . In) dEmode dEbodye)
where Emod : (moduleof (AB *) (I1 T1) . . . (In Tn))

Operational Semantics

(load S)⇒ contents[S] [load]

Figure 15.13: Dynamic semantics for the module system of FL/RM.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 643

leaf : (generic (t) (-> () (treeof t)))

leaf~ : (generic (r t)

(-> ((treeof t) (-> () r) (-> () r))

r)

node : (generic (t) (-> (t (treeof t) (treeof t)) (treeof t)))

node~ : (generic (r t)

(-> ((treeof t)

(-> (t (treeof t) (treeof t)) r)

(-> () r))

r)

Figure 15.14: The types of the constructor and deconstructor procedures intro-
duced by the treeof datatype declaration.

a type environment with these types.

Although deconstructors may be used explicitly in programs, they are usually
used implicitly via the match construct introduced in Section 10.5. In the module
language, the match construct can be desugared exactly as in Figure 10.30,
except that equalL must be an equality operation appropriate for the type
of the literal L rather than the generic equal?. For instance, equal17 is =,
equaltrue is bool=?, and equal ′foo is sym=?.

For simplicity, unparameterized datatypes are required to be written as ap-
plications of nullary type constructors. For instance, a geometric shape type
could be declared as

(define-datatype (shape)

(square int)

(rectangle int int)

(triangle int int int))

in which case the figure type would be (shape) (the application of a nullary type
constructor) and not shape (which is a nullary type constructor, not a type). It
is left as an exercise to extend the language to support declarations of types in
addition to type constructors.

15.5.2.3 Example: A Parameterized Module

As a non-trivial example of a module, consider the parameterized table module
expression EmakeTableModule in Figure 15.15, which implements an immutable
but updatable table as a linked list of key/value pairs. The module declares a
tableof type constructor parameterized over the value type t. Additionally, we

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

644 CHAPTER 15. ABSTRACT TYPES

want to abstract our table implementation over the type of the key, which must
admit equality testing via a key=? procedure. We achieve this simply by using
lambda to parameterize the table module over a key module key-mod. Since
the type of key-mod cannot be inferred, it is explicitly provided. When we call
this procedure on a particular key module, we get back a table module that is
polymorphic in the type of value stored in the table.

Most languages would require that we write the table module in terms of a
key module that must be supplied at either compile time or link time. There
would be a separate language for specifying the relationship between the table
and key modules. For example, in SML we would use a functor (a linking
language function) to abstract the table module over the key module. But
because FL/RM has first class modules, the relationship can be expressed via
ordinary procedural abstraction.

15.5.2.4 Semantics of module and open

The static and dynamic semantics of the module constructs is defined in Fig-
ures 15.11–15.13. From the type erasure for module in Figure 15.13, we see
that at run time a module is just a record of values denoted by recursively
scoped definition expressions that are evaluated in the scope of the constructor
and deconstructor procedures introduced by the define-datatype declarations.
This scoping information is also apparent in the [module] type rule, where the
value bindings in the module are analyzed with respect to a type environment
that not only includes the types of all constructor and deconstructor procedures
declared in the define-datatype declarations (via ⊕) but also includes the
types of the defined expressions. In addition to types for the value bindings,
the moduleof type for a module expression includes abstract types of the form
(Itc Ip1 . . . Ipk) declared by the define-datatype declarations. Only the ab-
stract type constructor name Itc is a binding occurrence; the type parameters
Ip1 . . . Ipk are provided only to indicate arity information (the number of type
arguments for the type constructor).

As indicated by the definition of ⊕ in Figure 15.12, constructors create values
with the abstract type and deconstructors decompose values with the abstract
type. Thus, they play the role of up and down in the typing rule for packdepend in
Figure 15.9 (see Exercise 15.9). As indicated by the [module] type rule and the
module type erasure rule, the constructor and deconstructor procedures are not
exported by a module unless the programmer includes explicit value definitions
for them. Thus, the programmer has complete control over how abstract values
are constructed and deconstructed. If the constructors for an abstract type are
not exported, clients cannot create forgeries that possibly violate representation

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 645

(lambda ((key-mod (moduleof ((key))

(key=? (-> ((key) (key)) bool)))))

(open key-mod

(module

(define-datatype (tableof t)

(empty)

(non-empty (pairof (pairof (key) t)

(tableof t))))

(define make-table empty)

(define lookup

(lambda (k tbl succ fail)

(match tbl

((empty) (fail))

((non-empty (pair (pair ak x)) rest)

(if (key=? k ak)

(succ x)

(lookup rest k succ fail))))))

(define insert

(lambda (newk newval tbl)

(lookup tbl k

(lambda (x) (error alreadyInTable))

(lambda () (non-empty (pair newk newval) tbl)))))

(define delete

(lambda (k tbl)

(match tbl

((empty) tbl)

((non-empty (pair (pair ak x)) rest)

(if (key=? k ak)

rest

(non-empty (pair (pair ak x)

(delete rest k))))))))

)))

Figure 15.15: An expression EmakeTableModule denoting a procedure that takes a
key module and returns a table module.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

646 CHAPTER 15. ABSTRACT TYPES

invariants. If the deconstructor for an abstract type is not exported, then clients
cannot directly manipulate the concrete representation of an abstract value.

For example, in the table module in Figure 15.15, the empty constructor is ex-
ported by the module under a different name (make-table), but the non-empty
constructor and the empty~ and non-empty~ deconstructors are not exported.
These are used only to define the lookup, insert, delete operations. So it is
impossible for a client to create a non-empty table or manipulate the bindings
of a table except through these operations.

For simplicity, we consider two moduleof types to be equal when their ab-
stract types are exactly the same (including order and parameter names) and
their bindings have equal types in the same order. This is overly restrictive.
The reader is encouraged to develop a more lenient type equality rule as well as
subtyping rules for moduleof.

The type erasure rule for (open Emod Ebody) indicates that it dynamically
makes the value bindings of the module denoted by Emod available in the body
expression Ebody . Note that the type erasure rule needs to “know” the type of
Emod in order to determine the field names needed by with-fields. The [open]
typing rule is similar to the [dunpack] rule for dependent packages in that it
substitutes a dependent type for all occurrences of abstract type constructors
in the body expression. As in [dunpack], the expression on which a dependent
type depends must be pure. The easiest way to guarantee this is to require Emod

in (dselect Itc Emod) to be a syntactic value. However, we will see shortly
that this solution has fundamental drawbacks in the presence of parameterized
modules.

An example of the result of applying the [module] and [open] type rules
is the type TmakeTableModule (Figure 15.16) of the expression EmakeTableModule

studied earlier. Each of the procedures exported by the module has a type
schema that parameterizes over unification variables introduced by type recon-
struction. Note how all instances of the (key) type have been replaced by
((dselect key key-mod)) due to the substitution in the [open] rule.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 647

(-> ((key-mod (moduleof ((key))

(key=? (-> ((key) (key)) bool)))))

(moduleof ((tableof t))

(make-table (generic (a) (-> () (tableof a))))

(lookup (generic (b c)

(-> (((dselect key key-mod)) (tableof b)

(-> (b) c) (-> () c))

c)))

(insert (generic (d)

(-> (((dselect key key-mod)) d (tableof d))

(tableof d))))

(delete (generic (e)

(-> (((dselect key key-mod)) (tableof e))

(tableof e))))

))

Figure 15.16: The type TmakeTableModule of the expression EmakeTableModule .

15.5.2.5 Loading Modules

The load construct supports the development and construction of large pro-
grams by allowing separately developed program modules to refer to one an-
other. In our simple system, (load S) causes the desugared expression named
by the unique name S to replace (load S). The loaded expression is called
contents[S] in our rules.

Because module dependencies must be acyclic, it is not possible to have
modules that directly load each other. Nevertheless, modules with recursive
dependencies can be parameterized over their dependencies and expressed within
FL/RM; see Exercise 15.26.

Unifying the programming and linking languages via load and first-class
modules is very powerful. As illustrated above, the creation, instantiation, and
linking of parameterized modules is easily accomplished via lambda and appli-
cation. It is also possible to choose which modules to load at run time using if,
as in the following procedure:

(lambda (matrix)

(open (if (sparse? matrix)

(load "sparse-matrix-module-v3.22.cmp")

(load "dense-matrix-module.cmp-v4.5"))

... code that manipulates matrix ...))

The ability to use arbitrary computation when linking program components
permits idioms that are not expressible in most linking languages. Some down-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

648 CHAPTER 15. ABSTRACT TYPES

sides are that linking is not a separate phase from computation and it may not
terminate.

The simple module facility described here still has many important short-
comings.

• Module types can quickly become very awkward to write. Often, we don’t
need all the functionality of a module, only particular features. The table
module above can use any type with equality as a key. Subtyping can sup-
ply the necessary machinery, but it is still useful for languages to provide
special syntax for specifying that a type parameter must support certain
operations. CLU’s where mechanism was designed to solve this problem.

• Explicitly abstracting over modules is a tedious operation, and results in
overly complex code when, for example, two modules must share a common
definition. SML’s sharing specification was designed to address this issue.

• Having programmers essentially encode all version information in a man-
ifest string constant is very inconvenient. It is possible to have the pro-
grammer specify just a name, like "make-table-module.cmp", have the
compiler use the most recent version of the file, and have the compiler
and runtime system ensure that the code available during type checking
is in fact the source for the object code loaded at run time. FX used the
desugaring process to introduce a unique stamp from the file system for
this purpose. Whenever a module is modified, any other modules that
load that module name must be recompiled. Exercise ?? explores more
sophisticated approaches to the value store.

• In the presence of parameterized modules, there is a fundamental problem
with using the crude syntactic value test to conservatively approximate
which module expressions do not have side effects. To see this, suppose
that we replace the body of the open subexpression in Figure ?? by just
the insert application. In this case, the type of both the insert and
open subexpressions would be ((dselect tableof tbl-mod) bool), but
the inner let would have type

((dselect tableof (mk-tbl-mod int-key-mod)) bool)

and the outer let would have a type like

((dselect tableof ((load "make-table-module-v1.3.cmp")

(load "int-key-module-v2.0.cmp")))

bool)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 649

The problem with the last two types is that both module expressions in
the dselects are applications and therefore not syntactic values (expansive
in the literature). Even though both expressions are in fact referentially
transparent, the conservative syntactic test of non-expansiveness fails and
causes type checking to fail. This sort of failure will occur whenever an
attempt is made to export a type containing an abstract type from a
parameterized module outside the scope of an application of that module.

Thus, the syntactic value test for expression purity imposes a kind of
export restriction on abstract values, thereby reducing the power of the
module system. This problem can be mitigated somewhat by using let to
introduce names for applications, as in the let binding of tbl-mod, without
which even the type of the insert expression would contain the application
(mk-tbl-mod int-key-mod). But let only locally increases the scope
in which subexpressions are well-typed and cannot remove the effective
export restriction. What we really need is a better way to determine the
purity of an expression, which is the subject of the next chapter.

¤ Exercise 15.19 In the table implementation in Figure 15.15, the lookup procedure

takes success and failure continuations, and is polymorphic in the return type of the

continuations. Alternatively, lookup could be modified to return either the value stored

under the key or some entity indicating the value was not found. Define a new datatype

to express this return type, and modify the table implementation to use it. ¢

¤ Exercise 15.20 Sam Antix notices that the load syntax requires the value’s name

to be a manifest constant. He suggests that load should be a primitive procedure that

takes a string argument, i.e., one could apply load to any expression that returns a

string. Is this a good idea? Why or why not? ¢

¤ Exercise 15.21 The abstract type names (and their parameters) introduced by

define-datatype and used in moduleof types are binding occurrences. Extend the

definition of FTV and type substitution to properly handle these type names. ¢

¤ Exercise 15.22 Is the following FL/RM expression well-typed? If so, give the
type reconstructed for test and the type of the whole expression. If not, explain.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

650 CHAPTER 15. ABSTRACT TYPES

(let ((mk-tbl-mod (load "make-table-module-v1.3.cmp")))

(int-key-mod (load "int-key-module-v2.0.cmp"))

(let ((tbl-mod (mk-tbl-mod int-key-mod)))

(open tbl-mod

(let ((test (lambda (k v)

(lookup k

(insert k v (make-table))

(lambda (x) x)

(error shouldntHappen)))))

(pair (test 1 true) (test 2 3)))))) ¢

¤ Exercise 15.23 It would be convenient if the module system were extended to
support the declaration of types in addition to type constructors. For example, after
the extension, an alternative way to define the geometric shape type discussed in the
text would be

(define-datatype shape

(square int)

(rectangle int int)

(triangle int int int))

and (square 3) would have the type shape.

a. Extend the type syntax, typing rules, and the definition of ⊕ so that
define-datatype can declare types in addition to type constructors.

b. An alternative strategy is to transform all declarations and uses of user-defined
types to declarations and uses of nullary type constructors. Define a program
transformation that implements this strategy. ¢

¤ Exercise 15.24 Write a type equality rule for moduleof type expressions that (1)

permits the type components to be in any order; (2) permits the value components to be

in any order; and (3) ignores the names (but not the number!) of the type parameters

for each type constructor. ¢

¤ Exercise 15.25 The module system described above uses static dependent types.

Write [proc], [let], [letrec], and [apply] typing rules for this language, being careful to

carry out all necessary substitutions. You may want to refer to Figure 15.9 and Exercise

15.16. ¢

¤ Exercise 15.26 Consider the following three expressions:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

15.5. MODULES 651

EA = (module

(f (lambda (x)

(if (= x 0)

0

((open (load "B.cmp") g) (- x 1))))))

EB = (open (load "A.cmp")

(module

(g (lambda (x)

(if (= x 0)

1

(+ ((open (load "A.cmp") f) (- x 1))

(g (- x 1))))))))

EC = (let ((amod (load "A.cmp"))

(bmod (load "B.cmp")))

(+ (open amod (f 3))

(open bmod (g 3))))

a. Suppose that we want to compile EA to the file "A.cmp", EB to the file "B.cmp",
and EC to the file "C.cmp". Explain why there is no compilation order that can
be chosen that will allow us to eventually execute the code in EC that will use
EA for "A.cmp" and EB for "B.cmp". Consider the case where the file system
contains pre-existing files named "A.cmp" and "B.cmp".

b. It is possible to change EA and EB into parameterized modules that do not
directly load modules from particular files, but instead load modules from a pa-
rameter that is a (thunk of) a module. Based on this idea, rewrite EA, EB , and
EC in such a way that all three files can be compiled and executing EC will return
the desired result. ¢

¤ Exercise 15.27 Modify the type reconstruction algorithm from Chapter ?? to

handle the module, open, load, lambda, and letrec constructs. ¢

Reading

• CLU[L+79]

• SML and revised[AM87, MTH90, MTHM97]

• Mesa[MMS78]

• Benjamin Pierce’s book[Pie02]

• John Mitchell’s books[Mit96, Mit03]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

652 CHAPTER 15. ABSTRACT TYPES

• [CW85] discusses polymorphism, bounded quantification, existential types,
compares existential types to data abstraction in Ada.

• Mitchell and Plotkin’s existential types [MP84]. Impredicative Strong Ex-
istential Equivalent to Type:Type[HH86].

• MacQueen on Modules[Mac84, Mac88]. Dependent types to express mod-
ular structure[Mac86]

• Harper on modules[Har86, HMM90]

• [CHD01][CHP99]

• [Ler95]

[Ada] [Parnas?] [ML sharing]
For more information on existential types, see John Mitchell’s textbook,

[Mit96]. Luca Cardelli’s Quest language [Car89] employed first-class existential
types.

Static dependent types are due to Mark Sheldon and David Gifford [SG90].
For a somewhat different of view in which a type is its operation set, see the

programming language Russell [BDD80].
The programming language Pebble [BL84] included strong existential types

(also known as strong sums) and dependent types that could contain any value.
Type checking in Pebble could fail to terminate if values in dependent types
looped.

Putting type declarations into a language with type reconstruction, as we
did with our final module system design, can lead to some surprising results.
For example, it is easy to make type checking undecidable. To see how inferable
and non-inferable types can be combined in a decidable type system, see James
O’Toole’s work in [OG89].

[Recent work on dependent types: Cayenne, Hongwei’s work.]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 16

Effects Describe Program
Behavior

Nothing exists from whose nature some effect does not follow.

— Ethics, I, proposition 36, Benedict Spinoza

16.1 Types, Effects, and Regions - What, How, and
Where

We have seen that types are a powerful tool for reasoning about the ideas pre-
sented in the FL, Naming, and Data Chapters (Chapter ??), yet types do not
help us reason in detail about the ideas introduced in the State, Control, and
Concurrency Chapters (Chapter ??). A formal system called an effect system
allows us to reason about many of the state, control, and storage issues that
arise in practical programs.

In this chapter, we introduce effect systems and explore their applications.
An effect system produces a concise description of the observable actions of an
expression, and this description is called the effect of the expression. Example
effects include writing into a region of the store or jumping to a non-local label.
An effect is a dual to a type. Just as a type describes what an expression
computes, an effect describes how an expression computes.

As we shall see, effects describe a wide variety of properties about a pro-
gram that are usefull to programmers, compiler writers, and language designers.
Effect systems provide three benefits to the programmer: improved documen-
tation, safety, and execution efficieny. Documentation and saftey improvements

653

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

654 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

include the ability to better understand the behavior of code, including the
ability to detemine how modules developed by others may modify state, mod-
ify files, perform non-local tranfers, or be the target of non-local jumps. Ef-
ficiency improvements include parallel expression scheduling, remote procedure
call scheduling, and storage management. For example, when expressions do not
share store dependencies, they can be reordered or executed in parallel, subject
to their input values being available.

To make effects precise we introduce the idea of regions that describewhere
objects reside. In our effect system every object resides in a single region, and
this region is described by the type of the object. We can think of regions
as colors (red, blue, green, etc.) or as distinct memory banks (Bank 1, Bank
2, Bank 3, etc.), or even machines (mit.edu, cmu.edu, etc.). However, regions
are logical locations, and may or may not correspond to physical locations in a
given implementation. For example, control points can be assigned to regions
that represent locations in code as opposed to regions in a store.

When two objects are in distinct regions mutations to one of the objects will
not cause changes to the other object. This is a consequence of our invariant
that an object is only in a single region. Thus regions can be used to prove that
object references do not alias one another. Aliasing occurs when two references
refer to the same object. Aliasing can inhibit important compiler optimizations
such as caching the values of mutable objects in registers.

To produce an accurate accounting of effects we include three key innovations
in our type system. First, the type of every mutable object includes the object’s
region. Second, we will account for the effect of a procedure in the type of the
procedure as a latent effect that is realized when the procedure is called. Latent
effects communicate the effects of a procedure from the point of the procedure’s
definition to its points of use. Third, we introduce the idea of effect and region
polymorphism to permit procedures to have effects that depend on their input
parameters.

Although in this chapter we discuss an interwoven system for effects in re-
gions, it is possible to have effects without regions and regions without effects.
In the absence of regions our effect system would be coarse, and would simply
report a limited repitore of broad effects. In the absence of an effect system,
a region system alone can not deduce when a particular region is accessed or
when it becomes inaccessible. Although decoupling effects and regions is possi-
ble, we will show that there is no advantage to doing so because we can hide the
complexity of a simulatenous effect and region system from programmers.

Ultimately, programmers must find an effect system easy to use and it must
produce valuable results. In this chapter we will make an effect system easy
to use by making it invisible to programmers. We will make it invisible by

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.1. TYPES, EFFECTS, AND REGIONS - WHAT, HOW, AND WHERE655

performing effect and region reconstruction without programmer declarations
or assistance. Early experiments with effect systems showed that programmers
had a difficult time composing appropriate effect declarations, and thus the
existance of a sound effect reconstruction algorithm is necessary for the practical
application of a novel effect system you might think of creating!

Since the types of procedures include effects, effect reconstruction naturally
depends upon type reconstruction and vice-versa. We will use FL/R as our
base langauge in this chapter, and demonstrate how to reconstruct effects fully
automatically in this language context.

In this chapter we introduce two classes of example effects. The first class,
store effects (read, write, and create), describe the creation or observation of
store based state. The second class, control effects (comefrom, goto), describe
the creation of control points (labels) and the transfer of control to control points
(gotos). As described above, both store and control effects are subscripted by
a region that delinates the scope of the effect. A store region describes a set of
cells (usually one), and a control region describes a set of control points (usually
one). We will use store and control effects for concreteness, but new effects
are readily introduced in the effect system framework, and abstract effects that
encapsulate base effects are also possible.

We will introduce store effects with a few short examples, and then provide
a complete set of effect system rules. We begin with the standard operations on
cells:

E ::= ... | (cell E) [Allocate and initialize a cell]
| (:= E E) [Cell set]
| (^ E) [Cell read]

The := and ^ procedures are respectively implemented with the cell-ref and
cell-set! primitives that we previously defined in Chapter 8.

Our effect system will produce a summary of how we use these procedures
in an expression. The simple effect system we discuss here does not keep track
of the ordering or number of times a particular effect is used. However, we will
keep track of what region of the store is subject to an effect. We will use “!” as
the “has effect” relation for expressions as a complement to the “:” relation for
“has type.”

First, we create a mutable cell that contains an integer. The expression that
creates the cell is assigned an init (initialize) effect in a new store region named
?r-1:

(cell 1) : (cellof int ?r-1) ! (init ?r-1)

Next, we create a boolean cell, set it to true, and read out the contents of the
cell. Note that the effects on this boolean cell are in a new store region called

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

656 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

?r-2. Whenever possible, we will use a new region for each object we create:

(let ((x (cell #f)))

(begin

(:= x #t)

(^ x))) : bool ! (maxeff (init ?r-2) (write ?r-2) (read ?r-2))

Higher order procedures, such as the apply-twice procedure below, can
be polymorphic both in type and effect. In this example, the application of
apply-twice has the store effects (read ?r-3) and (write ?r-3):

(let ((apply-twice (lambda (f x) (f (f x))))

(add-one (lambda (c)

(begin (:= c (+ (^ c) 1))

c)))

(counter (cell 0)))

(begin (apply-twice add-one counter)

(^ counter))))) : int

! (maxeff (init ?r-3)

(write ?r-3)

(read ?r-3))

The type schema of apply-twice in this example is

apply-twice : (generic (tf ft) ; tf is input and output type of f

; ft is latent effect of f

(-> ((-> (tf) ft tf) ; f

tf) ; x

ft ; latent effect of apply-twice

tf)) ; result

Note in this instance that effect polymorphism carries the effect of the procedure
provided to apply-twice to apply-twice itself.

Procedure types in standard environment now have latent effects. Here are
the entries in the standard type envirnoment for the free variables in the above
example:

+ : (-> (int int) pure int)

cell : (generic (t r) (-> (t) (init r) (cellof t r)))

:= : (generic (t r) (-> ((cellof t r) t) (write r) unit))

^ : (generic (t r) (-> ((cellof t r)) (read r) t))

When we generalize over a region in a type schema we are indicating that any
region can be assigned. For example, every time that cell is used we assign
a new region variable to the newly created cell. Thus we try to maximize the
number of distinct regions used in a program to provide a fine grained accounting

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.2. AN EFFECT SYSTEM FOR FL/R 657

of storage (or other assets). However, keep in mind that we assign a single region
for each static occurance of cell, and all of the dynamically created cells from
a single static occurance of cell will wind up in the same region. In addition,
when cells are used interchangably, their types will be unified, forcing them to
be in the same region.

Of course, many expressions will not have any effects:

(+ 1 2) : int ! pure

When an expression has no effects we say that the expression is pure, and con-
versely when it has effects we call it impure. The pure effect is a shorthand
for the effect (maxeff). A pure expression is guaranteed to be referentially
transparent. An expression is referentially transparent when different syntac-
tic occurrences of the expression are guaranteed to have the same value assuming
identical bindings for all of the free variables in the expression. We have already
discussed the idea of referential transparency in the chapter on state (Chapter 8).
Programming languages do not guarantee referential transparency when expres-
sions observe mutable state with expressions that have effects. Thus when an
expression is pure, it will be referentially transparent becuase it can not observe
mutable state.

Advanced properties of effect systems are beyond the scope of this book,
including effect algebras that can associate execution times or storage costs with
expressions. These advanced effect algebras require different approaches to type
and effect reconstruction than the one we discuss below. The interested reader
can consult the bibliography at the end of this chapter for reserach papers on
these topics.

In the rest of this chapter, we introduce rules for assigning effects to expres-
sions (Section 16.2), we will discuss how effects can be used to analyze program
behavior (Section 16.3), and how effects can be reconstructed as an integral part
of a type and effect system (Section 16.4).

16.2 An Effect System for FL/R

Formally, an effect system is a set of rules for assigning an effect and a type to
an expression. Our effect system needs to assign types to expressions to permit
us to analyze the behavior of user defined procedures. Thus, we first extend the
syntax of procedure types to include latent effects:

(-> (T*) F T)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

658 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

where the T* are the types of the procedure’s parameters, F describes the pro-
cedure’s latent effect, and T is the output type of the procedure.

Figure 16.1 shows the grammar for FL/R language with types that include
latent effects. An effect system inherits the names of effects from the latent ef-
fects of the primitive operators and procedures that are available in the standard
top-level environment. We combine effects with the effect union operator maxeff
that is associative (A), commutative (C), unitary (U), and has an identity (I)
(pure is the identity element). Thus, effect combination is an ACUI algebra.

Our algebra of effects is important to consider because the equality of latent
effects that occur in procedure types must be considered with respect to our
ACUI effect algebra. Because effect combination is commutative, the order in
which effects occur is not preserved when effects are combined. Thus procedures
that perform equivent operations in different orders will have the same effect
according to our algebra of effects.

E ::= L | (if E E E) | (primop O E*) | (let ((I E)*) E)
| (letrec ((I E)*) E) | (lambda (I*) E) | (E E*)

T ::= I | (I T) | (-> (T*) F T) | (cellof T R)

F ::= pure | (maxeff F*) | (I R)

R ::= I

TS ::= (generic (I*) T)

Figure 16.1: Grammar for FL/R with latent effects.

We will now introduce a set of rules for assigning types and effects to FL/R
expressions. The rules show us how to deduce the type T and effect F of an
expression E given a type environment A:

A ` E : T ! F

The standard environment A includes a library of standard procedures (such as
^, :=, etc.), and the types of these procedures include latent effects that describe
their actions.

The effect system shown in Figure 16.2 consists of rules that simultaneously
compute the type and effect of an expression. FL/R’s [lambda] and application
[app] typing rules are extended to permit latent effects to move in and out
of procedure types. The [lambda] rule moves the effect of a procedure’s body
into the procedure type of the lambda expression, and the [app] rule moves the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.2. AN EFFECT SYSTEM FOR FL/R 659

latent effect of a procedure type into the effect of a procedure application. Latent
effects and these rules are the mechanism that communicates effect information
from the point of procedure definition to the point of procedure call. Other rules
such as [if] simply combine the effects of all subexpressions of E to compute a
conservative approximation of the effects of E.

When our typing rules require that two types T1 and T2 be equal, any latent
effects that are in identical positions in T1 and T2 must be equivalent according
to our effect algebra. This occurs when T1 and T2 are procedure types since
procedure types include latent effects. Recall that effect equivalence is considered
with respect to the ACUI algebra for effects, and thus the order of effects does
not matter. For example the effects (maxeff (read ?r-1) (write ?r-2)) and
(maxeff (write ?r-2) (read ?r-1)) are identical.

However, even with our algebra of equivalence over effects, it is a simple
matter to construct a program that does not “effect check.” We say a program
does not effect check when two effects are compared during type checking and
the effects do not match. For example

(if #t ^ (lambda (c) 1))

is not well typed in a strict sense since the cell reference operator ^ and the
lambda must have identical types but their types do not contain identical latent
effects. Note that we do not insist that the consequent and alternative of an if

have the same effect. Only effects in the types of the consequent and alternative
must be the same, and this will only occur when if is returning a type that
contains a procedure type.

We can make the latent effects in two procedure types equivalent by permit-
ting expressions to take on more effects than they may actually cause to ensure
that programs always effect check. Thus our effect system for FL/R includes a
subeffecting rule called [does] that permits effect expansion. For example, the
[does] rule permits our example

(if #t ^ (lambda (c) 1))

: (-> ((cellof int ?r-1)) (read ?r-1) int) ! pure

to be well typed by expanding the latent effect of (lambda (c) 1) to be (read ?r-1)

to match the latent effect of the cell reference operator ^.

Henceforth when we refer to the effect of an expression, we will mean the
smallest effect that can be proven by our rules. This is because [does] permits
an expression to take on many possible effects. Effects form a lattice under
maxeff and thus the notion of a smallest effect is well defined. Later in this
chapter when we discuss effect reconstruction (Section 16.4), we will show how
to compute the smallest effect allowed by the rules.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

660 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

Our typing rules for let have two forms, [impure-let] and [pure-let]. As
we discussed in our introduction to FL/R, only let bindings that do not have
side effects can be generalized. In the literature, such let expressions are called
“non-expansive.” For simplicity we will assume that any expression that is not
a lambda that includes an application is expansive. It would seem logical to use
our own effect system to determine which let expressions are pure and thus can
be generalized. We leave this extension to the interested reader.

In our typing rules we use FV to denote a function that returns the free type,
effect, or region variables in a description expression (type or effect), and FDV
to denote a function that returns all of the free type, effect, or region variables
in a type environment.

16.3 Using Effects to Analyze Program Behavior

Our exploration of the application of effects will consider how effects can be
made to disappear with effect masking, how effects can be used to describe the
actions of applets, how effects can be used to describe control transfers, and how
static storage allocation can use effects.

16.3.1 Effect Masking Hides Invisible Effects

Effect masking is an important tool for encapsulation. It allows effects to
be erased from an expression when the effects cannot be observed from outside
of the expression. For example, let’s reconsider the effect of the expression we
introduced above:

(let ((apply-twice (lambda (f x) (f (f x))))

(add-one (lambda (c) (begin (:= c (+ (^ c) 1)) c)))

(counter (cell 0)))

(begin

(apply-twice add-one counter)

(^ counter)))))

: int ! (maxeff (init ?r-3) (write ?r-3) (read ?r-3))

Since region ?r-3 is not in the type of this expression and is not in the types
of the free variables of this expression (:=, +, ∧, cell), we know that region
?r-3 is invisible outside of the expression. It is impossible for any context for
this expression to determine if the expression has performed any side effects to
?r-3. Thus, effects on ?r-3 can be erased, leaving this expression with no effect.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.3. USING EFFECTS TO ANALYZE PROGRAM BEHAVIOR 661

A[I:T] ` I : T ! pure [id]

[. . . , I:(generic (I1 . . . In) Tbody), . . .] ` I : ([Ti/Ii]ni=1)Tbody ! pure [genvar]

A[I1:T1 . . . In:Tn] ` E : Tr ! F
A ` (lambda (I1 . . . In) E) : (-> (T1 . . . Tn) F Tr) ! pure

[lambda]

A ` Eo : (-> (T1 . . .Tn) Fp Tr) ! Fo ∀ni=1 . A ` Ei : Ti ! Fi
A ` (Eo E1 . . .En) : Tr ! (maxeff Fo F1 . . .Fn Fp)

[app]

A ` E1 : bool ! F1 A ` E2 : T ! F2 A ` E3 : T ! F3
A ` (if E1 E2 E3) : T ! (maxeff F1 F2 F3)

[if]

∀ni=1 . A ` Ei : Ti ! pure

A[I1:Gen (T1, A), . . . In:Gen (Tn, A)] ` Eb : Tb ! Fb
A ` (let ((I1 E1) ... (In En)) Eb) : Tb ! Fb

[pure-let]

∀ni=1 . A ` Ei : Ti ! Fi
A[I1:T1, . . . In:Tn] ` Eb : Tb ! Fb

A ` (let ((I1 E1) ... (In En)) Eb) : Tb ! Fb

[impure-let]

A ` E : T ! F ′ F ′ v F
A ` E : T ! F

[does]

Astandard ` O : (-> (T1 ... Tn) F T) ! pure

∀ni=1 . A ` Ei : Ti ! Fi
A ` (primop O E1 ... En) : T ! (maxeff F1 ... Fn F)

[primop]

∀ni=1 . A[I1:T1, . . . In:Tn] ` Ei : Ti ! pure

A[I1:Gen (T1, A), . . . In:Gen (Tn, A)] : Eb : Tb ! Fb
A ` (letrec ((I1 E1) . . . (In En)) Eb) : Tb ! Fb

[letrec]

Gen(T, A) = (generic (I1 . . . In) T),where {Ii} = FV(T)− FDV(A)

Figure 16.2: FL/R Type and Effect Rules

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

662 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

The general rule for effect erasure is

A ` E : T ! F
F ′ = F − {F1 . . .Fn}

where for all Rj ∈ FV(Fi), Rj /∈ FV(T) [Export restriction]
and for all Vi ∈ FreeIds[[E]], Rj /∈ FV(A[Vi]) [Import Restriction]

A ` E : T ! F ′

The effect erasure rule will detect that certain expressions, while internally im-
pure, are in fact externally pure, and thus are referentially transparent. Thus it
permits impure expressions to be included in functional programs. Thus even
in functional programs selected program expressions can take advantage of local
side effects for efficiency without losing their referential transparency. It also
allows effects that denote control transfers (as from cwcc) to be masked, indi-
cating that an expression may perform internal control transfers that are not
observable outside of the expression. (See Section 16.3.3 for more on control
effects.)

16.3.2 Effects Describe the Actions of Applets

One application of effects is to provide applet security by labeling trusted prim-
itive operations with latent effects that describe their actions. For example, all
procedures that write on the executing computer’s disk could carry a write-disk
latent effect. Other latent effects could be assigned to display and networking
procedures. These effects create a verifiable, succinct summary of the actions of
an imported applet. The effects of an applet could be presented to a security
checker — such as a user dialog box — that would accept or reject applets on
the basis of their effects. In such a system, the vocabulary of effects is defined by
the client machine and its effect system, and not by the imported applet. Thus
the client security system is able to verify the potential actions of an applet in
client defined terms.

An essential part of using types and effects for mobile code security is the
ability of the recepient of code to rapidly verify the code’s purported type and
effect. This is because the type and effect of an applet effectively document its
output and observable behavior, and the well-typedness of an applet guarantees
that the applet will not perform illegal run-time operations. In a proof carrying
code framework, a producer of code provides a series of assetions about code
that can be rapidly verified by a code consumer. In proof carrying code, these
assertions document saftey properties of the code because the underlying lan-
guage (e.g. assembly language) may be inherently unsafe. In our framework we
too can provide assertions with exported code. When an applet is provided to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.3. USING EFFECTS TO ANALYZE PROGRAM BEHAVIOR 663

a consumer we can include a parse tree of the applet with explicit types and
effects attached to each expression. With such assertions for every expression it
is a simple matter to run our type and effect rules in linear time over the code
to verify the purported type and effect of the provided applet.

16.3.3 Effects Describe Control Transfers

Effects can be used to analyze non-local control transfers such as the behavior
produced by call-with-current-continuation (cwcc). cwcc is a procedure that
creates a local control point, continues execution, but permits the executed
code to invoke the created control point and exit from the body of the cwcc.
For example, consider the following FL/R example:

(lambda (x y)

(+ 1 (cwcc (lambda (exit)

(if (= y 0) (exit 0) x)))))

In this example, if y is 0 the outer lambda will return 1, and if y is not 0 the
outer lambda will return x+1.

cwcc can be understood by consdering the procedure P that cwcc takes as its
only input. P receives as its single parameter a continuation procedure C that,
when called with value V, will cause the computation to return from cwcc with
V as its value (see Section 9.4 for more). If C is never called, the value returned
by P is returned by cwcc. Whew! Now read that one more time following along
with the example above.

The type schema of cwcc is rather complicated:

(generic (t r t2 f)

(-> ((-> ((-> (t) (goto r) t2)) f t))

(maxeff f (comefrom r))

t))

This type schema shows that cwcc takes a procedure P with type

(-> ((-> (t) (goto r) t2)) f t)

that has a latent effect f and returns a value of type t. Procedure P will receive
the current continuation, C, as an argument. C has type (-> (t) (goto r) t2).
cwcc will return with a value when the value is either provided as an input to
C or is the return value from P. Since either of these choices will cause cwcc to
return with the provided value, both of these options must insist upon the same
type for the value as can be seen in the above type schema.

cwcc creates a comefrom effect to indicate that control may be transfered

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

664 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

back to the return point of cwcc. If the continuation C is called after cwcc

returns, the cwcc will return again! Thus the continuation procedure C has a
latent goto effect that is specific to the continuation’s region. Other effects of P
(represented by the variable f) are assigned to cwcc. (goto r) will only show
up in f if P actually invokes C. The type t2 is generic to allow C to be called
in any context because C never returns.

Returning to our example

(lambda (x y)

(+ 1 (cwcc (lambda (exit)

(if (= y 0) (exit 0) x)))))

the expression (exit 0) will have a (goto ?r-4) effect (where ?r-4 is a new re-
gion), and the call to cwcc will have the effect (comefrom ?r-4). The comefrom
effect is used because cwcc has established the exit control point that permits
control to materialize at a later time at the return from the cwcc. The effect
name comefrom is a play on the name goto. Finally, in this example, effect
masking can be used to drop the (goto ?r-4) and (comefrom ?r-4) from the
cwcc expression and thus the latent effect of the lambda.

As we have just seen in our small example, effect masking works for all effects
including the control effects comefrom and goto. When a control effect in region
R is masked from expression E, it means that any context for expression E will
not be subject to unexpected control transfers with respect to the continuation
in R. Effect masking of control effects is powerful because it allows module
implementors to use control transfers internally, while allowing clients of the
modules to insist that these internal control transfers do not alter the clients’
control flow. A client can guarantee this invariant by ensuring that it does not
call module procedures with control effects.

16.3.4 Effects Can Be Used to Deallocate Storage

In implementations of FL/R class languages, a cell is typically reclaimed by a
garbage collector (see Chapter ??) because it is difficult to statically determine
when a cell can no longer be reached. With regions, it is possible to do limited
forms of static allocation and deallocation of memory. Assuming we are consid-
ering deallocating a region R that occurs in the type of an expression, the rule

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 665

for storage deallocation is

A ` E : T ! F
R /∈ FV(F)
R /∈ FV(T)

for all Ri (comefrom Ri) /∈ F
for all Ii ∈ FreeIds[[E]], R /∈ FV(A[Ii]) , for all Ri (comefrom Ri), /∈ A[Ii]

Deallocate all storage allocated in R after E

We rely upon our effect system to make this rule sound. Consider the fol-
lowing expression:

(let ((my-cell (cell 47))

(your-cell (cell 48)))

(lambda () (^ my-cell))).

We cannot deallocate my-cell after this expression as the latent effect of the pro-
cedure returned will contain the region for my-cell. This latent effect prevents
us from deallocating storage that can be accessed by a procedure. However, we
are free to deallocate your-cell after this expression returns because it meets
the test of our deallocation rule above and thus will no longer be accessible.

Effects can also be used to manage the deallocation of lambda storage by
associating a region with every procedure type. We leave the details as an
exercise for the reader. Note that there are no allocation effects for lambda

because FL/R does not provide comparison operators on procedures. Thus it
is not possible in FL/R to distinguish procedure instances, and thus procedure
allocation is not an obervable effect.

16.4 Reconstructing Types and Effects

Our treatment of type reconstruction in Chapter ?? introduced type schemas to
permit an identifier to have different types in different contexts. For example, the
identity function (lambda (x) x) can be used on any type of input. When it is
let bound to an identifier, it has the type schema (generic (t) (-> (t) t)).
The job of a type schema is to describe all of the possible types of an identifier
by identifying type variables that can be generalized.

Effect and region reconstruction requires us to further elaborate a type
schema with effect and region variables. These type schemas also carry along
a set of constraints on the effects they describe. We call a type schema that
includes a constraint set an algebraic type schema [JG91]. A constraint set
(C) is a set of assertions (A) between effects

C ::= (A*)
A ::= (>= F1 F2)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

666 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

where (>= F1 F2) means that effect F1 contains all of the effects of effect F2 .
The general form of an algebraic type schema is:

TS ::= (generic (I*) T C)

For example, the algebraic type schema for a procedure that implements the
cell assignment operation (:=) is:

(generic (t e r)

(-> ((cellof t r)) e unit) ; type

((>= e (write r))) ; effect constraints

There are three parts to this algebraic type schema. The variables

(t e r)

describe the type, effect, and region variables that can be generalized in the type
schema. The procedure type

(-> ((cellof t r)) e unit)

describes the cell assignment operation and notes that its application will have
effect e. The constraint

((>= e (write r)))

describes the constraints upon the effect variable e. In this case, the assignment
operation can have any effect as long as it is larger than (write r).

An integer cell incrementing procedure would have the following algebraic
type schema:

(generic (e r)

(-> ((cellof int r)) e unit) ; type

((>= e (read r)) (>= e (write r)))) ; effect constraints

The constraint set in the above type schema constrains the latent effect of the
increment procedure to include read and write effects for the region of the cell
being incremented.

Type schemas that include effects and constraints are central to Algorithm
Z, our algorithm for type and effect reconstruction (Figure ??). Algorithm Z is
similar to Algorithm R from Chapter ??, except that it simultaneously computes
the type and effect of an expression. The unification algorithm U is inherited
unchanged from Algorithm R. A key intuitive insight into Algorithm Z is that
constraints are used to keep track of the effects that expressions must have,
and the constraints on an expression are solved after the type and effect of the
expression is computed. Thus types and effects returned by Z can include effect
variables that are subject to effect constraints returned by Z.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 667

The type and effect reconstruction algorithm Z takes as input an expression
E, a type environment AC , and a starting substitution S. Algorithm Z outputs
the type T of the expression, the effect F of the expression, the final substitution
S ′, and the constraint set C on effect variables in T, F, and S ′.

(Z[[E]] AC S) = 〈T,F,S ′,C〉

Note that in the type environment AC type schemas include effect constraints
as descrbed above.

An expression E is well typed if Z does not fail and if C is solvable. A
constraint set C is solvable if there is a concrete assignment of effects M to the
effect variables in C that satisfies all of the constraints in C. The substitution
of concrete effects to effect variables that satisfies C is called a model. We write
that substitution M is a model of C as M |= C. In our case, the [does] rule
allows us to increase the effect of any expression and thus we will always be able
to find a model for C.

Algorithm Z in Figures 16.4–16.5 is defined such that its results and a cor-
responding model M result in a provable type and effect

(M (S ′AC)) ` E : (M (S ′ T)) ! (M (S ′ F))

(S X) or (M X) means the result of respectively applying the substitution S
or M to X, where X can be a type, effect, or a type environment. In the case of
a type environment the substitution is applied to all of the identifiers bound in
the environment.

An integral part of Algorithm Z is the Zgen algorithm for creating algebraic
type schemas. The Zgen algorithm is identical to the Rgen algorithm from
our type reconstruction algorithm R, with the key addition of detecting generic
effect and region variables and accounting for them by carrying along a copy of a
constraint set that can later be instantiated. When a type schema is instantiated,
the constraint set carried in the type schema is updated to replace the generic
effect and region variables and is returned from Z.

Zgen(T, AC, S, C) = (generic (I1...In) T C)
{I1...In} = FV((S T)) + FV((S C)) - FDV((S AC))

In our definition of Zgen , we have used FV to denote a function that returns the
free type, effect or region variables in a type or constraint expression, and FDV
to denote a function that returns all of the free type, effect, or region variables
in a type environment .

An example helps to clarify the role of constraints kept in type schemas.
Consider the type schema of the integer cell incrementing procedure plus-one

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

668 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

(generic (e r)

(-> ((cellof int r)) e unit)

((>= e (read r)) (>= e (write r))))

and assume that c has type

c: (cellof int ?r-5)

Then

(plus-one c) : unit ! ?e-1

The constraints created by (plus-one c) will be

((>= ?e-1 (read ?r-5)) (>= ?e1 (write ?r-5)))

and thus an application of plus-one will have read and write effects. Note
that the effect of the plus-one procedure is a variable. Our algorithm for
creating procedure types always uses a unification variable to represent the effect
of a procedure in a procedure type. The effects of the procedure’s body are
placed into the constraint set to bound the newly introduced variable. The
advantage of this approach is that two procedure types always have compatible
effect components because they can be unified together. The consequence of
unifying the latent effects of two procedures is that both of the procedure bodies
will have their effect bounds combined.

An expression E is well typed if Z does not fail and if the resulting con-
straint set C is solvable. A minimal solution for a constraint set C that assigns
concrete effects to effect variables can be found using Algorithm Solve shown in
Figure 16.3. Solve is used to solve the constraint set C after the final substitution
produced by Z is applied to the constraints. Solve will always succeed because
of the [does] rule, and thus every expression that is well typed without effects
will have both a type and a conservative effect in our type and effect system.
Another way to see this is that if two types contain different effects that must
be made equal, the [does] rule allows us to choose their least upper bound as a
common effect. This is precisely what Algorithm Solve does.

¤ Exercise 16.1 Complete Algorithm Z to handle impure let. ¢

¤ Exercise 16.2 Imagine that lambda is extended in FL/R to create a procedure in a
region. Thus every procedure type will have a region that identifies where the procedure
is located.

a. Give a revised type grammar for FL/R.

b. Give a revised typing rule for lambda.

c. Give the revised portion of Algorithm Z for lambda.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 669

Set all effect variables Ij := pure;
Changed := true;
While Changed
Changed := false;
For every constraint Ci
; Constraint Ci is of the form (>= Ij Ej) on variable Ij with effect Ej
; Ej is evaluated with respect to current effect variable assignments
If Ij 6= (maxeff Ej Ij) then begin

Changed := true;
Ij := (maxeff Ej Ij);
End If;

End For;
End While;

Figure 16.3: Algorithm Solve.

d. Procedures can be stack allocated when they are not returned out of the context
where they are created or stored in a cell. Give a rule using the regions in
procedure types that identifes procedure regions that can be stack allocated. ¢

¤ Exercise 16.3 Costs
Sam Antics has a new idea for a type system that is intended to help programmers

estimate the running time of their programs. His idea is to develop a set of static rules
that will assign every expression a cost as well as a type. The cost of an expression is
a conservative estimate of how long the expression will take to evaluate.

Sam has developed a new language, called Discount, that uses his cost model. Dis-
count is a call-by-value, statically typed functional language with type reconstruction.
Discount is based on FL/R, and inherits its types, with one major difference: a function
type in Discount includes the latent cost of the function, that is, the cost incurred when
the function is called on some arguments.

For example, the Discount type (-> (int int) 4 int) is the type of a function
that takes two ints as arguments, returns an int as its result, and has cost at most 4
every time it is called.

The grammar of Discount is shown in Figure 16.1 except that procedure types are
altered to include latent costs instead of latent effects:

C ::= loop | I | (sum C*) | (max C*) | 0 | 1 | 2 | . . .

T ::= int | bool | I | (-> (T*) C Tbody)

Sam has formalized his system by defining type/cost rules for Discount. The rules allow
judgments of the form

A ` E : T $ C,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

670 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

(Z[[#u]] A S) = 〈unit, pure,S, ()〉

(Z[[I]] A[. . ., I :T, . . .] S) = 〈T, pure,S, ()〉
(Z[[I]] A[. . ., I : (generic (I1..In) T C), . . .] S) =

〈[?Di/Ii]T, pure,S, [?Di/Ii]C〉
All ?Di are fresh and represet type, effect, or region variables

(Z[[I]] A S) = fail, where I unbound in A

(Z[[(if Etest Econ Ealt)]] A S) =
let 〈Ttest ,Ftest ,Stest ,Ctest 〉 be (Z[[Etest]] A S) in
let Stest

′ be U(Ttest , bool,Stest) in
let 〈Tcon ,Fcon ,Scon ,Ccon 〉 be (Z[[Econ]] A Stest

′) in
let 〈Talt ,Falt ,Salt ,Calt 〉 be (Z[[Ealt]] A Scon) in
let Salt

′ be
U(Tcon ,Talt ,Salt) in

〈Talt , (maxeff Ftest Fcon Falt),Salt
′,Ctest+Ccon+Calt 〉

(Z[[(lambda (I1 . . . In) E)]] A S) =
let 〈T,F,S,C〉 be (Z[[E]] A[I1:?v1 . . . In:?vn] S) in
〈(-> (?v1 . . . ?vn) ?en T), pure,S,C+((>= ?e F))〉

(Z[[(Erator E1 ... En)]] A S) =
let 〈Trator ,Frator ,Srator ,Crator 〉 be (Z[[Erator]] A S) in
let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A Srator) in

...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A Sn−1 Cn−1) in
let Sfinal be U(Trator , (− > (T1 . . . Tn) ?e ?t)) in
〈?t, (maxeff Frator F1 . . .Fn ?e),Sfinal ,Crator+C1+. . .+Cn〉

(Z[[(let ((I1 E1)..(In En)) E)]] A S) = ; Pure LET

let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A S) in
...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A Sn−l) in
let 〈T,F,S,C〉 be

(Z[[E]]
A[I1 : Zgen (T1, A, Sn, Cn), . . ., In : Zgen (Tn, A, Sn, Cn)]
Sn) in

〈T, (maxeff F F1 . . .Fn ,S,C+C1+. . .+Cn 〉

Figure 16.4: Algorithm Z reconstructs Types, Regions, and Effects, Part I

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

16.4. RECONSTRUCTING TYPES AND EFFECTS 671

(Z[[(letrec ((I1 E1) . . . (In En)) E)]] A S) =
let A1 be A[I1 : ?t1,. . .,An : ?tn] in
let 〈T1 ,F1 ,S1 ,C1 〉 be (Z[[E1]] A1 S) in

...

let 〈Tn ,Fn ,Sn ,Cn 〉 be (Z[[En]] A1 Sn−1 Cn−1) in
let Sb be U((?t1 . . .?tn), (T1 . . . Tn),Sn) in
let 〈T,F,S,C〉 be
(Z[[E]]
A[I1 : Zgen (T1, A, Sn, Cn), . . ., In : Zgen (Tn, A, Sn, Cn)]
Sb) in

〈T, (maxeff F F1 . . .Fn ,S,C+C1+. . .+Cn 〉

Figure 16.5: Algorithm Z reconstructs Types, Regions, and Effects, Part II

which is pronounced, “in the type environment A, expression E has type T and cost
C.”

For example, here are Sam’s type/cost rules for literals and(non-generic) identifiers:

A ` U : int $ 1

A ` B : bool $ 1

A[I : T] ` I : T $ 1

That is, Sam assigns both literals and identifiers a cost of 1. In addition:

• The cost of a lambda expression is 2.
• The cost of an if expression is 1 plus the cost of the predicate expression plus
the maximum of the costs of the consequent and alternate.

• The cost of an N argument application is the sum of the cost of the operator, the
cost of each argument, the latent cost of the operator, and N .

• The cost of an N argument primop application is the sum of the cost of each
argument, the latent cost of the primop, and N . The latent cost of the primop
is determined by a signature Σ, a function from primop names to types. For
example,

Σ(+) = (-> (int int) 1 int).

Here are some example judgments that hold in Sam’s system:

A ` (primop + 2 1) : int $ 5

A ` (primop + (primop + 1 2) 4) : int $ 9

A ` (primop + 2 ((lambda (y) (primop + y 1)) 3)) : int $ 13

Loop is the cost assigned to expressions that may diverge. For example, the expression

(letrec ((my-loop (lambda () (my-loop))))

(my-loop))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

672 CHAPTER 16. EFFECTS DESCRIBE PROGRAM BEHAVIOR

is assigned cost loop in Discount. Because it is undecidable whether an arbitrary
expression will diverge, we cannot have a decidable type/cost system in which exactly
the diverging expressions have cost loop. We will settle for a system that makes a
conservative approximation: every program that diverges will be assigned cost loop,
but some programs that do not diverge will also be assigned loop.

Because Discount has non-numeric costs, like loop and cost identifiers (which we
won’t discuss), it is not so simple to define what we mean by statements like “the
cost is the sum of the costs of the arguments. . . .” That is the purpose of the costs
(sum C1 C2) and (max C1 C2). Part of Sam’s system ensures that sum and max

satisfy sensible cost equivalent axioms, such as the following:

(sum U1 U2) = U1 +U2

(sum loop U) = loop

(sum U loop) = loop

(sum loop loop) = loop

(max U1 U2) = the max of U1 and U2

(max loop U) = loop

(max U loop) = loop

(max loop loop) = loop

You do not have to understand the details of how cost equivalences are proved in order
to solve this problem.

a. Give a type/cost rule for lambda.

b. Give a type/cost rule for application.

c. Give a type/cost rule for if.

¢

Reading

The first paper on effect systems outlined the need for a new kind of static anal-
ysis [LG88], and this early effect system was later extended to include regions in
the FX-89 programming language [?]. Region and and effect inference were de-
veloped next [JG91]. A wide variety of effect systems have been developed, from
systems for cost accounting [DJG92, RG94], to control effects [JG89], to region
based memory management [?]. The FX-91 programming language [GJSO92]
included all of these features.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Chapter 17

Compilation

Bless thee, Bottom! bless thee! thou art translated.

— A Midsummer-Night’s Dream, II, i, 124, William Shakespeare

17.1 Why do we study compilation?

Compilation is the process of translating a high-level program into low-level
machine instructions that can be directly executed by a computer. Our goal
in this chapter is to use compilation to further our understanding of advanced
programming language features, including the practical implications of language
design choices. To be a good designer or user of programming languages, one
must know not only how a computer carries out the instructions of a program
(including how data are represented) but also the techniques by which a high-
level program is converted into something that runs on an actual computer. In
this chapter, we will show the relationship between the semantic tools developed
earlier in the book and the practice of translating high-level language features
to executable code.

Our approach to compilation is rather different than the approach taken in
most compiler texts. We assume that the input program is syntactically cor-
rect and already parsed, thus ignoring issues of lexical analysis and parsing that
are central to real compilers. We also assume that type and effect checking
are performed by the reconstruction techniques we have already studied. Our
focus will be a series of source-to-source program transformations that imple-
ment complex high-level naming, state, and control features by making them
explicit in an FL-like intermediate compilation language. In this approach, tra-
ditional compilation notions like symbol tables, activation records, stacks, and

673

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

674 CHAPTER 17. COMPILATION

code linearization can be understood from the perspective of a simple uniform
framework that does not require special-purpose compilation machinery. The
result of compilation will be a program in a restricted subset of the interme-
diate language that is similar in structure to low-level machine code. We thus
avoid details of code generation that are critical in a real compiler. Throughout
the compilation process, efficiency, though important, will take a back seat to
clarity, modularity, expressiveness, and demonstrable correctness.

Although not popular in compiler texbooks, the notion of compilation by
source-to-source transformation has a rich history. Beginning with Steele’s Rab-
bit compiler (1978), there has been a long line of research compilers based on
this approach. (See the reading section at the end of this chapter for more
details.) In homage to Rabbit, we will call our compiler Tortoise.

We study compilation for the following reasons:

• We can review many of the language features presented earlier in this
book in a new light. By showing how they can be transformed into low-
level machine code, we arrive at a more concrete understanding of these
features.

• We will see how type systems, effect systems, and formal semantics can be
applied to the job of compiling a high-level programming language down
to a low-level machine architecture.

• We present some simple ways to implement language features by transla-
tion. These techniques can be useful in everyday programming, especially
if your programming language doesn’t support the features that you need.

• We will see how complex translations can be composed out of many sim-
pler passes. Although in practice these passes might be merged, we will
discuss them separately for conceptual clarity. Some of these passes have
already been mentioned in previous chapters and exercises (e.g., desugar-
ing, assignment conversion, closure conversion, CPS conversion). Here, we
study these passes in more depth, introduce some new ones, and show how
they fit together to make a compiler.

• We will see that dialects of FL can be powerful intermediate languages
for compilation. Many low-level machine details find a surprisingly conve-
nient expression in FL-like languages. Some advantages of structuring our
treatment of compilation as a series of source-to-source transformations on
one such language are as follows:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 675

– There is no need to describe a host of disparate intermediate lan-
guages.

– A single intermediate language encourages modularity of translation
phases and experimentation with the ordering of phases.

– The result of every transform phase is executable source code. This
makes it easy to read and test the transformation results using a
single existing interpreter or compiler for the intermediate language.

• We will see that the inefficiencies that crop up in the compiler are a good
motivation for studying static semantics. These inefficiencies are solved
by a combination of two methods:

– Developing smarter translation techniques that take advantage of in-
formation known at compile time.

– Restricting source languages to make them more amenable to static
analysis techniques.

For example, we’ll see that dynamically typed languages imply a run-
time overhead that can be reduced by clever techniques or eliminated by
restricting the language to be statically typable.

These overall goals will be explored in the rest of this chapter. We begin
with an overview of the transformation-based architecture of Tortoise and the
languages used in this architecture (Section 17.2). We then discuss the details
of each transformation in turn (Sections 17.3–17.12). We conclude by describing
the run-time environment for garbage collection (Section 17.13).

17.2 Tortoise Architecture and Languages

17.2.1 Overview of Tortoise

The Tortoise compiler is organized into ten transformations that incremen-
tally massage a source language program into code resembling register machine
code (Figure 17.1). The input and output of each transformation are programs
written either in a dialect of FL/R named FL/RTortoise or an FL-like interme-
diate language named Silk. In Figure 17.1, one of the Silk dialects have been
given a special name: Silktgt is a subset of Silk that corresponds to low-level
machine code. We present FL/RTortoise and Silk later in this section. The
Silktgt dialect is described in Section 17.12.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

676 CHAPTER 17. COMPILATION

FL/RTortoisew
Ä

Desugaring
w
Ä

Type Reconstruction
w
Ä

Globalization
w
Ä

FL/RTortoisew
Ä

Translation
w
Ä

Silk
w
Ä

Assignment Conversion
w
Ä

Renaming
w
Ä

CPS Conversion
w
Ä

Closure Conversion
w
Ä

Lambda Lifting
w
Ä

Data Conversion
w
Ä

Silktgt

Figure 17.1: Organization of the Tortoise compiler. After desugaring, type
reconstruction, and globalization, a FL/RTortoise source program is translated
into the Silk intermediate language, and the Silk program is gradually trans-
formed into a form that resembles register machine code.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 677

Each compiler transformation expects its input program to satisfy certain
pre-conditions and produces output code that satisfies certain post-conditions.
These conditions will be stated explicitly in the formal specification of each trans-
formation. They will help us understand the purpose of each transformation,
and why the compiler is sound. A compiler is sound when it produces low-level
code that faithfully implements the formal semantics of the compiler’s source
language. We will not formally prove the soundness of any of the transforma-
tions because such such proofs can be very complex. Indeed, soundness proofs
for some of these transformations have been the basis for Ph.D. dissertations!
However, we will informally argue that the transformations are sound.

Tortoise implements each transform as a separate pass for clarity of pre-
sentation and to allow for experimentation. Although we will apply the trans-
formations in a particular order in this chapter, other orders are possible. Our
descriptions of the transformations will explore some alternative implementa-
tions and point out how different design choices affect the efficiency and seman-
tics of the resulting code. We generally opt for simplicity over efficiency in our
presentation.

17.2.2 The Compiler Source Language: FL/RTortoise

The source language of the Tortoise compiler is a slight variant of the FL/R
language presented in Chapter 14. Recall that FL/R is a stateful, call-by-value,
statically scoped, function-oriented, and statically typed language with type
reconstruction that supports mutable cells, pairs, and homogeneous immutable
lists. The syntax of Tortoise language is presented in Figure 17.2. It differs
from FL/R in three ways:

• It replaces FL/R’s general letrec construct with a more specialized funrec

construct, in which recursively named entities must be manifest abstrac-
tions rather than arbitrary expressions. As noted earlier (see Section 7.1),
this is a restriction adopted in real languages (such as SML) to avoid thorny
issues involving call-by-value recursion. In the context of compilation, we
shall see that this restriction simplifies certain transformations.

• Like the FLAVAR! language studied in Section 8.3, it includes mutable
variables (changed via set!) in addition to mutable cells. These will allow
us to show how mutable variables can be automatically converted into
mutable cells in the assignment conversion transformation.

• It treats begin as a sugar form rather than a kernel form, and uses two
new sugar forms: a let* construct that facilitates the expression of nested

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

678 CHAPTER 17. COMPILATION

lets, and a recur form for declaring recursive functions that are immedi-
ately called. The other syntactic sugar forms (scand, scor, and list) are
inherted from FL.

Figure 17.3 presents a contrived but compact FL/RTortoise program that
illustrates many features of the language, such as numbers, booleans, lists, locally
defined recursive functions, higher-order functions, tail and non-tail procedure
calls, and side effects. We will use it as a running example throughout the
rest of this chapter. The revmap procedure takes a procedure f and a list lst
and returns a new list that is the reversal of the list obtained by applying f

to each element of lst. The accumulation of the new list ans is performed
by a local tail recursive loop procedure that is defined using the recur sugar,
which abbreviates the declaration and invocation of a recursive procedure. The
loop procedure performs an iteration in a single state variable xs denoting the
unprocessed sublist of lst. Although ans could easily be made to be a second
argument to loop, here it is defined externally to loop and updated via set! to
illustrate side effects. The example program takes two integer arguments, a and
b, and returns a list of the two booleans ((7 · a) > b) and (a > b). For example,
on the inputs 6 and 17, the program returns the list [true , false].

Note that all primitive names (such as *, >, and cons) may be used as free
identifiers in a FL/RTortoise program, where they denote global procedures
performing the associated primitive. Thus (primop * E1 E2) may be written
as (* E1 E2) in almost any context. The “almost any” qualifier is required
because these names can be assigned and locally rebound like any other names.
For example, the program

(flr (x y)

(let ((- +))

(begin (set! / *) (- (/ x x) (/ y y)))))

calculates the sum of the squares of x and y.

17.2.3 The Compiler Intermediate Language: Silk

For the intermediate language of our transformation-based compiler, we use
language that we call Silk = Simple Intermediate Language Kernel. Like
FL/RTortoise, Silk is a stateful, call-by-value, statically scoped, function-oriented
language, and it is also a statically typed language with implicit types. How-
ever, Silk has a more expressive type system than FL/RTortoise and, unlike
FL/RTortoise, does not support type reconstruction.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 679

Kernel Grammar

P ∈ ProgramFL/R

E ∈ ExpFL/R
AB ∈ AbstractionFL/R
L ∈ LitFL/R

I ∈ IdentifierFL/R = usual identifiers
B ∈ BoollitFL/R = {#t, #f}
N ∈ IntlitFL/R = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ PrimopFL/R

P ::= (flr (Ifml*) Ebody)
E ::= L | I | AB | (Erator Erand*) | (primop Oop Earg*)

| (if Etest Ethen Eelse) | (set! Ivar Erhs) | (error I)
| (let ((Iname Edefn)*) Ebody) | (funrec ((Iname ABdefn)*) Ebody)

AB ::= (lambda (Ifml*) Ebody)
L ::= #u | B | N

OFL/R ::= + | - | * | / | % [Arithmetic ops]
| <= | < | = | != | > | >= [Relational ops]
| not | band | bor [Logical ops]
| cell | ^ | := [Mutable cell ops]
| pair | fst | snd [Pair ops]
| cons | car | cdr | null | null? [List ops]

Syntactic Sugar

(begin) −desugar−−−−→ #u

(begin E) −desugar−−−−→ E

(begin E1 Erest*) −desugar−−−−→ (let ((I E1)) (begin Erest*)), where I is fresh

(let* () Ebody) −desugar−−−−→ Ebody

(let* ((I1 E1) IE *) Ebody) −desugar−−−−→ (let ((I1 E1)) (let* (IE *) Ebody))
where IE ranges over bindings of the form (I E).

(recur Ifcn ((I1 E1) . . . (In En)) Ebody)

−desugar−−−−→ (funrec ((Ifcn (lambda (I1 . . .In) Ebody)))
(Ifcn E1 . . . En))

(scand) −desugar−−−−→ #t

(scand E1 Erest*) −desugar−−−−→ (if E1 (scand Erest*) #f)

(scor) −desugar−−−−→ #f

(scor E1 Erest*) −desugar−−−−→ (if E1 #t (scor Erest*))

(list) −desugar−−−−→ (primop null)

(list E1 Erest*) −desugar−−−−→ (primop cons E1 (list Erest*))

Standard Identifiers

Istd ::= O

Figure 17.2: Syntax for FL/RTortoise, the source language of the Tortoise
compiler.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

680 CHAPTER 17. COMPILATION

(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (null)))

(recur loop ((xs lst))

(if (null? xs)

ans

(begin

(set! ans (cons (f (car xs)) ans))

(loop (cdr xs)))))))))

(revmap (lambda (x) (> x b))

(list a (* a 7)))))

Figure 17.3: Running example.

17.2.3.1 The Syntax of Silk

The syntax of Silk is specified in Figure 17.4. Silk is similar to many of
the stateful variants of FL that we have studied, especially FLAVAR!. Some
notable features of Silk are:

• Multi-argument abstractions and applications are hardwired into the ker-
nel rather than being treated as syntactic sugar. As in FL/RTortoise, the
abstraction keyword is lambda. Unlike in FL/RTortoise, Silk applications
have an explicit call keyword.

• Multi-binding let expressions are considered kernel expressions rather
than sugar for applications of manifest abstractions.

• It has mutable variables (changed via set!) and mutable tuples (which
are created via mprod and whose component slots are accessed via mget

and changed via mset!). We treat mget and mset! as “indexed primi-
tives” (mget Sindex) and (mset! Sindex) in which the primitive operator
includes the index Sindex of the manipulated component slot. If we wrote
(primop mget Eindex Emp), this would imply that the index could be cal-
culated by an arbitrary expression Eindex when in fact it must be a positive
integer literal Sindex . So we instead write (primop (mget Sindex) Emp).
Treating mget and mset! as primitives rather than as special constructs
simplifies the definition of several transformations.

• Other data include integers, booleans, and immutable lists. Unlike FL/RTortoise,
Silk does not include cells and pairs; these are modeled via mutable tuples.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 681

Kernel Grammar

P ∈ ProgramSilk

E ∈ ExpSilk
BV ∈ BindingValueSilk
DV ∈ DataValueSilk
AB ∈ AbstractionSilk
L ∈ LitSilk

I ∈ Identifier = usual identifiers
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
S ∈ Poslit = {1, 2, 3, . . .}
O ∈ PrimopSilk

P ::= (silk (Ifml*) Ebody)
E ::= L | I | AB | (if Etest Ethen Eelse) | (set! Ivar Erhs)

| (call Erator Erand*) | (primop Oop Earg*)
| (let ((Iname Edefn)*) Ebody) | (cycrec ((Iname BVdefn)*) Ebody)
| | (error I)

AB ::= (lambda (Ifml*) Ebody)
BV ::= L | AB | (primop mprod DV*)
DV ::= L |I
L ::= #u | B | N

O ::= + | - | * | / | % [Arithmetic ops]
| <= | < | = | != | > | >= [Relational ops]
| not | band | bor [Logical ops]
| mprod | (mget S) | (mset! S) [Mutable tuples]
| cons | car | cdr | null | null? [List ops]
| ... add data conversion bit ops here ...

Syntactic Sugar

(@mget S Emp) −desugar−−−−→ (primop (mget S) Emp)

(@mset! S Emp Enew) −desugar−−−−→ (primop (mset! S) Emp Enew)

(@O E1 . . . En) −desugar−−−−→ (primop O E1 . . . En), where O 6∈{mget, mset!}
(let* () Ebody) −desugar−−−−→ Ebody

(let* ((I1 E1) IE *) Ebody) −desugar−−−−→ (let ((I1 E1)) (let* (IE *) Ebody))
where IE ranges over bindings of the form (I E).

Figure 17.4: Syntax for Silk, the Tortoise compiler intermediate language.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

682 CHAPTER 17. COMPILATION

• Unlike FL/RTortoise, Silk does not have any globally bound standard
identifiers for procedures like +, <, and cons. This means that all well-
typed Silk programs are closed (i.e., have no free variables).

• Recursion is handled via a cycrec form. Syntactically, cycrec is similar to
FL’s letrec form, except that the definitions appearing in a binding are
restricted to be simple syntactic values in the BindingValue domain: liter-
als, abstractions, and mutable tuple creations. The components in a mu-
table tuple creations are required to be syntactic values in the DataValue
domain: either literals or identifiers. Both BindingValue and DataValue
are restricted subsets of Exp. As we shall see in Section 17.2.3.2, these
syntactic restrictions allow cycrec to specify cyclic data structures and
avoid some thorny semantic issues in the more general letrec construct.
In contrast, FL/RTortoise’s funrec can only specify mutually recursive
procedures, not cyclic data structures.

To improve the readability of Silk programs, we will use the syntactic sugar
specified in Figure 17.4. The @ notation is a more concise way of writing primitive
applications. E.g., (@+ 1 2) abbreviates (primop + 1 2) and (@mget 1 t)

abbreviates (primop (mget 1) t). As in FL/RTortoise, let* abbreviates a
sequence of nested single-binding let expressions. Throughout the rest of this
chapter, we will “resugar” expressions using these abbreviations in all code ex-
amples to make them more readable.

The readability of Silk programs is further enhanced if we assume that
the syntactic simplifications in Figure 17.5 are performed when Silk ASTs are
constructed. These simplifications automatically remove some of the “silly” in-
efficiencies that can be introduced by transformations. In transformation-based
compilers, such simplifications are typically performed via a separate simplifying
transformation, which may be called several times in the compilation process.
However, building the simplifications into the AST constructors is an easy way to
guarantee that the inefficient forms are never constructed in the first place. The
conciseness and readability of the Silk examples in this chapter is due in large
part to these simplifications. Putting all the simplifications in one place means
that individual transformations do not need to implement any simplifications,
so this also simplifies the specification of transformations.

The [empty-let] and [empty-cycrec] rules remove trival instances of let and
cycrec. The [implicit-let] rule treats an application of a manifest lambda as
a let expression. The [eta-lambda] rule performs eta reduction on an ab-
straction. The requirement that Erator be a variable or abstraction is a simple
syntactic constraint guaranteeing that Erator is pure. If Erator is impure, the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 683

(let () Ebody)−simp−−−→Ebody [empty-let]

(cycrec () Ebody)−simp−−−→Ebody [empty-cycrec]

(call (lambda (I1 . . . In) Ebody) E1 . . . En)

−simp−−−→(let ((I1 E1) . . . (In En)) Ebody)
[implicit-let]

(lambda (I1 . . . In) (call Erator I1 . . . In))−simp−−−→Erator ,
where • Erator is a variable or abstraction;

• FreeIds[[Erator]] ∩{I1 , . . . , In} = {}.
[eta-lambda]

(let ((I I ′)) Ebody)−simp−−−→ [I ′/I]Ebody ,
where there are no assignments to I or I ′ in the program.

[copy-prop]

(cycrec ((I1 BV1) . . . (Im BVm))

(cycrec ((I1
′ BV1

′) . . . (In
′ BVn

′))

Ebody))

−simp−−−→(cycrec ((I1 BV1) . . . (Im BVm)
(I1

′ BV1
′) . . . (In

′ BVn
′))

Ebody)

,

where ({I1 , . . . , Im} ∪mi=1FreeIds[[BVi]]) ∩{I1 ′, . . . , In ′} = {}

[combine-cycrecs]

Figure 17.5: Simplifications performed when constructing Silk ASTs.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

684 CHAPTER 17. COMPILATION

simplification is unsound because it could change the order of side effects in
(and thus the meaning of) the program. For example, it is safe to simplify
(lambda (a b) (call f a b)) to f, but is it is not safe to simplify

(lambda (a b) (call (begin (set! c (@+ c 1)) f) a b))

to

(begin (set! c (@+ c 1)) f)

Of course, an lambda cannot be eliminated by [eta-lambda] if Erator mentions
one of its formal parameters, as in

(lambda (a) (call (lambda (b) (@+ a b)) a)).

The [copy-prop] rule performs a copy propagation simplification that is an
important optimization in traditional compilers. This simplification removes a
let that simply introduces one variable to rename the value of another. Recall
that [I ′/I]E denotes the capture-free substitution of I ′ for I in E, renaming
bound variables as necessary to prevent variable capture. In the presence of
assignments involving I or I ′, the simplification can be unsound (see Exercise
17.1), so these are outlawed. The [combine-cycrec] rule combines nested cycrec

expressions into a single cycrec in cases where no variable capture would occur.

The [empty-let], [empty-cycrec], and [implicit-let] simplifications are easy to
perform in any context. The [eta-lambda] and [combine-cycrec] rules require
information about the free identifiers of subexpressions. These can be efficiently
performed in practice if each AST node is annotated with its free identifiers. The
[copy-prop] rule requires global information about assignments. For simplicity,
we assume the Tortoise compiler does not perform [copy-prop] simplifications
until after the assignment conversion stage, when it is guaranteed that there are
no assignments in the entire program.

¤ Exercise 17.1 Consider the following Silk program skeleton:

(silk (a)

(let ((f Efun))
(let ((b a)) Ebody)))

For each of the following scenarios, develop an example in which applying the [copy-
prop] simplification rule to (let ((a b)) Ebody) is unsound:

a. Ebody contains an assignment to a (but not b).

b. Ebody contains an assignment to b (but not a).

c. Ebody contains no assignments to a or b, but Efun contains an assignment to a. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 685

17.2.3.2 The Dynamic Semantics of Silk

Silk is a statically scoped, call-by-value language. Since Silk is a stateful
language, the order of expression evaluation matters: the subexpressions of a
call, arguments of a primop, and definition expressions of a let are evaluated
in left-to-right.

We have studied the semantics for all Silk constructs previously except for
cycrec. Intuitively, the cycrec form is used to specify recursive functions and
cyclic data structures. For example, Figure 17.6 depicts the cyclic structure
denoted by a sample cycrec expression. As we shall see, the cyclic data aspect
of cycrec comes into play during the closure conversion transformation, where
abstractions are transformed into tuples.

(cycrec ((a 17)

(b (lambda (x) (@mprod x d)))

(c (@mprod d))

(d (@mprod a b c d)))

d)

d: 17 • • •

b: (lambda (x) (@mprod x •)) c: •

Figure 17.6: A sample cycrec expression and the cyclic structure it denotes.

Informally, (cycrec ((I1 BV1) . . . (In BVn)) Ebody) is evaluated in three
stages:

1. First, all the binding value expressions BV1 , . . ., BVn are evaluated. Lit-
erals and abstractions are evaluated normally; as in a letrec, the cycrec-
bound variables are in scope within any abstractions. However, mutable
tuple creations must be handled specially since their components may ref-
erence binding values that have not been determined yet. So only a “skele-
ton” for each mutable tuple is created. Such a skeleton has the number of
slots specified by the creation form, but each slot is initially empty (i.e., is
an unassigned location). For example, in Figure 17.6, the first stage binds
c to a mutable tuple skeleton with one slot and d to a skeleton with four
slots.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

686 CHAPTER 17. COMPILATION

2. Next, the slots of each mutable tuple skeleton are filled in. Recall that mu-
table tuple binding values have the form (@mprod DV1 . . . DVk). Each
data value DVi is evaluated and is stored in the ith slot of the mutable
tuple. Some data values may include references to variables declared by
the cycrec being processed, but that’s OK since these denote values al-
ready determined during the first stage. For the cycrec in Figure 17.6,
the second stage fills in the single slot of the skeleton in c with a reference
to the d skeleton, and fills in the four slots of d with (1) the number 17,
(2) the procedure named by b, (3) the skeleton named by c, and (4) the
skeleton named by d. At the end of the second stage, all binding values
have been completely fleshed out.

3. Finally, the body expression Ebody is evaluated in a scope where the cycrec-
bound variables denote the values determined in the second stage.

These three stages are formalized in the denotational semantics for cycrec
presented in Figure 17.7. In the E clause for cycrec, the first stage is modeled
by the creation of the triple 〈efix , sfix , 〈in1fix , . . . , innfix 〉〉, where:

• efix is the initial environment e extended with bindings of the cycrec-
bound variables I1 , . . ., In to locations holding the binding values for
BV1 , . . ., BVn . In the BV clause for mprod, the returned binding value
is a mutable tuple skeleton, since the locations returned by fresh-locs are
initially not filled in.

• sfix is an extension to the initial store s in which locations for the skeletons
and environment bindings have been allocated.

• 〈in1fix , . . . ,innfix 〉 is a tuple of initializer functions associated with each
binding value. For mutable tuple creations, these describe how a skeleton
should be filled in during the second stage. For literals and abstractions,
the associated initializer does nothing.

It is necessary to calculate this triple in the context of a fixed point computation
so that abstractions appearing in a binding value are evaluated relative to the
fixed point environment efix containing bindings for each of the cycrec-bound
variables.

The second stage of evaluation is modeled by the expression
(
init [in1fix , . . . , innfix] efix sfix

)
,

which fills in each of the mutable tuple skeletons by invoking the binding value
initializers on the extended environment and current store. The third stage of

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 687

c ∈ Computation = Store → (Expressible × Store)
δ ∈ Denotable = Location
σ ∈ Storable = Value

mt ∈ MProd = Location*
p ∈ Procedure = Denotable* → Computation
v ∈ Value = Procedure + MProd + . . .
in ∈ Initializer = Environment → Store → Store
vi ∈ VI = Value × Initializer

extend* : Identifier*→ Denotable*→ Environment → Environment
extend* []Identifier []Denotable e = e
extend* (I1 . Irest*) (δ1 . δrest*) e = extend* Irest* δrest* ([δ : e]I)

assign* : Location*→ Storable*→ Store → Store
assign* []Location []Storable s = s
assign* (l1 . lrest*) (σ1 . σrest*) s = assign* lrest* σrest* (assign l σ s)

init : Initializer*→ Environment → Store → Store
init []Initializer e s = s
init (in1 . inrest*) e s = init inrest* e (in e s)

BV : BindingValue→ Environment → Store → (Value × Store × Initializer)
BV[[L]] e s = 〈L[[L]], s, λe ′s ′ . s ′〉
BV[[(lambda (I*) Ebody)]] e s =
〈(Procedure 7→ Value (λδ* . E [[Ebody]](extend* I* δ* e))), s, λe ′s ′ . s ′〉

BV[[(primop mprod DV1 . . . DVn)]] e s =
let 〈l*, s ′〉 be (fresh-locs n s)
in 〈(MProd 7→ Value l*), s ′,

λe ′ . with-values (E*[[[DV1 , . . . ,DVn]]] e ′) (assign* l*) 〉

BV* : BindingValue*→ Environment → Store → ((Value × Initializer) *× Store)
BV* []BindingValue e s = s
BV* (BV1 . BVrest*) e s =
let 〈v1 , s1 , in1 〉 be BV BV1 e s
in let 〈vi rest , sn 〉 be BV* BVrest e s1 in 〈〈v1 , in1 〉 . vi rest , sn〉

E [[(cycrec ((I1 BV1) . . .(In BVn)) Ebody)]] =
λes . let 〈efix , sfix , 〈in1fix , . . . , innfix 〉〉 be

fixEnvironment×Store×(Initializer n)
(λ〈efix , sfix , 〈in1fix , . . . , innfix 〉〉 .
let 〈[〈v1 , in1 〉, . . . , 〈vn , inn 〉], s ′〉 be (BV* [BV1 , . . . ,BVn] efix s)
in let 〈[l1 , . . . , ln], s ′ ′〉 be (fresh-locs n s ′)

in 〈[I1 : l1]. . .[In : ln]e,
assign* [l1 , . . . , ln] [v1 , . . . , vn] s

′ ′,
〈in1 ,. . .,inn〉〉

in E [[Ebody]] efix
(
init [in1fix , . . . , innfix] efix sfix

)

Figure 17.7: Denotational semantics of cycrec.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

688 CHAPTER 17. COMPILATION

evaluation is modeled by evaluating Ebody relative to the extended environment
and the store resulting from the second stage.

Syntactically, cycrec is just a restricted form of letrec, but semantically
it is subtly different. In cases where the binding values are restricted to literals
and abstractions, the two forms have the same behavior. But their behavior
can differ when binding values include mutable tuples. The cycrec form allows
the creation of mutually recursive mutable tuples that cannot be expressed via
letrec. For instance, if we replace the cycrec by letrec in Figure 17.6, the ex-
ample would denote an error (or bottom, depending on which letrec semantics
is used). There is an unresolvable cyclic dependency between the letrec-bound
name c (whose definition expression requires the value of d) and the letrec-
bound name d (whose definition expression requires the value of c), as well as
a cyclic dependency of d on itself. Note that b is not problematic because the
abstraction can be evaluated without immediately requiring the value of the d

referenced in its body.

The syntactic restrictions of cycrec circumvent some of the thorny seman-
tic issues in letrec. By construction, BindingValue expressions do not have
any side effects (other than allocating mutable tuple skeletons), so issues in-
volving the side effects in letrec bindings (see Section ??) are avoided. Fur-
thermore, the restrictions guarantee that every cycrec-bound variable denotes a
non-bottom value node in a collection of potentially cyclic abstraction and muta-
ble tuple nodes. They prohibit nonsensical examples like (cycrec ((a a)) a),
in which there is no non-trivial value denote by a.

¤ Exercise 17.2 Consider a new form (mskel N) that creates a mutable tuple

skeleton with N unassigned slots. Show that in Silk+{mskel}, cycrec can be defined
as syntactic sugar involving mskel and mset!. It may be helpful to define some auxiliary

functions on BindingValue forms that you use in your desugaring. ¢

17.2.3.3 The Static Semantics of Silk

Silk is an implicitly typed language using the types in Figure 17.8 and type
rules in Figure 17.9. Silk types differ from the FL/RTortoise types as follows:

• they include mutable product types (mprodof) in place of cell types (cellof)
and pair types (pairof). The mprodof syntax allows an optional ... at
the end, which stands for an unknown number of additional slots of un-
known type. The [mprod-v] subtyping rule allows any number of mprod
component types to be “forgotten”. It turns out that this will be important
for the closure conversion stage.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 689

Types

T ∈ Type
ν ∈ Nonce-Type
T ::= unit | int | bool | char | I | ν

| (listof T) | (mprodof T* [...])
| (-> (Targ*) Tbody) | (tletrec ((Iname Tdefn)*) Tbody)
| (forall (I*) T) | (exists (I*) T)

Subtyping

(mprodof T1 . . . Tn) v (mprodof T1 . . . Tk ...), where n ≥ k [mprod-v]

Other subtyping rules are as usual.

Figure 17.8: Silk types.

• they include universal types (forall, Section 13.2) and existential types
(exists, Section 15.2).

• they include nonce types (Section 15.3), which are used here to handle
elimination of existential types.

• they include recursives types (tletrec). These are useful for giving types
to the cyclic data structures provided by cycrec. For instance, the cycrec
expression in Figure 17.6 can be given the type

(tletrec ((p (mprodof int

(forall (t) (-> (t) (mprodof t p)))

(mprodof p)

p)))

p)

Figure 17.9 presents type rules for implicitly typed constructs that are analogs
to many of the rules for the corresponding explicitly typed constructs we have
studied earlier. The most interesting rules are for introduction and elimination
of universal and existential types, which are much simpler without type annota-
tion syntax like plambda and pcall (for universals) and pack and unpack (for
existentials). In the implicitly typed setting, the duality between universal and
existential types is much clearer. In particular, note the similarity between the
[∀-elim] rule and the [∃-intro] rule.

A a value with universal type can be introduced anywhere and then later be
implicitly projected at various types. For example, in

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

690 CHAPTER 17. COMPILATION

` #u : unit [unit] ` N : int [int] ` B : bool [bool] ` H : char [char]

` (error I) : T [error] A ` I : A(I), where I∈dom(A) [var]

A ` Erhs : A(I)
A ` (set! I Erhs) : unit

, where I∈dom(A) [assign]

A ` Etest : bool ; A ` Econ : T ; A ` Ealt : T
A ` (if Etest Econ Ealt) : T

[if]

A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody
A ` (lambda (I1 . . . In) Ebody) : (-> (T1 . . . Tn) Tbody)

[->-intro]

A ` Erator : (-> (T1 . . . Tn) Tresult) ; ∀ni=1 . A ` Ei : Ti
A ` (call Erator E1 . . . En) : Tresult

[->-elim]

∀ni=1 . A ` Ei : Ti ; A[I1 :T1, . . ., In :Tn] ` Ebody : Tbody
A ` (let ((I1 E1) . . . (In En)) Ebody) : Tbody

[let]

∀ni=1 . A ′ ` BVi : Ti ; A ′ ` Ebody : Tbody
A ` (cycrec ((I1 BV1) . . . (In BVn)) Ebody) : Tbody

[cycrec]

where A ′=A[I1 :T1, . . ., In :Tn]

Astd ` Oname : (-> (T1 . . . Tn) Tresult) ; ∀ni=1 . A ` Ei : Ti
A ` (primop Oname E1 . . . En) : Tresult

[primop]

A ` E : T
A ` E : (forall (I1 . . . In) T)

[∀-intro]

where E is pure [purity restriction]
{I1 , . . . , Ik} ∩ {(FTV A(I)) | I ∈ FreeIds[[E]]} = {} [import restriction]

A ` E : (forall (I1 . . . In) T)
A ` E : ([Ti/Ii]ni=1) T

[∀-elim]

A ` E : ([Ti/Ii]ni=1) T
A ` E : (exists (I1 . . . In) T)

[∃-intro]

where {I1 , . . . , Ik} ∩ {(FTV A(I)) | I ∈ FreeIds[[E]]} = {} [import restriction]

A ` E : (exists (I1 . . . In) T)
A ` E : ([νi/Ii]ni=1) T

, where ν1 , . . ., νn are fresh nonce types. [∃-elim]

A ` E : T
A ` E : T ′ , where T v T ′ [subtype]

{I1 : int,. . .,In : int} ` Ebody : T
` (silk (I1 . . . In) Ebody) : T

[prog]

Figure 17.9: Silk type rules.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 691

(let ((id (lambda (x) x)))

(call (call id id) 3)),

(lambda (x) x) can be given the type (forall (t) (-> (t) t)), and this
type can be implicitly projected on (-> (int) int) for the first occurrence of
id and projected on int for the second occurrence of id.

In Silk, existential types are particularly useful for describing structures
that combine procedures with explicit environment components. As we shall
see in Section 17.10, such structures are called closures. Consider the following
expression Eclo1 :

(lambda (b)

(let ((c1 (@mprod (lambda (env1)

(+ (@mget 1 env1) (@mget 2 env1))))

(@mprod 4 5))

(c2 (@mprod (lambda (env2)

(if env2 1 0))

b)))

(let ((c (if b c1 c2)))

(call (@mget 1 c) (@mget 2 c))))).

The variables c1 and c2 name tuples whose first component is a procedure that
expects the second component of the tuple (its “environment”) as an argument.
The expression Eclo1 applies the first component of one of these tuples to the
second component of the same tuple. Even though the two environments have
very different types (the first is a pair of integers; the second is a boolean), Eclo1

is intuitively a well-typed expression that denotes an integer. This can be shown
formally by giving both c1 and c2 the following existential type:

Tclo1 = (exists (envty) (mprodof (-> (envty) int) envty))

This type captures the essential similarity between the tuples (both are tuples
in which invoking the first component on the second yields an integer) while
hiding the inessential details (the types of the two environments are different).

The nonce types that are introduced in the [∃-elim] rule serve the role of
the user-specified abstract type name Ity in the explicitly typed expression form
(unpackexist Epkg Ity Iimpl Ebody). No export restriction is necessary here be-
cause the freshness condition in [∃-elim] guarantees that the nonces introduced
at different elimination nodes in a type derivation tree will be distinct. This
makes it impossible for a nonce introduced by one existential elimination to
masquerade as a nonce from another elimination. The subexpression

(let ((c (if b c1 c2)))

(call (@mget 1 c) (@mget 2 c)))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

692 CHAPTER 17. COMPILATION

of Eclo1 is well-typed if c has type Tclo1 and the existential is eliminated to
yield (mprodof (-> (ν1) int) ν1) before the call is type-checked. Note that
rewriting the subexpression to

(call (@mget 1 (if b c1 c2)) (@mget 2 (if b c1 c2)))

yields an expression that is not well-typed, since the existential type Tclo1 would
have to be eliminated independently at each if expression, and the nonce types
introduced for these two eliminations would necessarily be incompatible.

The exists type is not powerful enough to describe certain types of closure
representations that will be introduced in the Tortoise compiler. Consider the
following expression Eclo2 , which is a slight variation on Eclo1 :

(lambda (b)

(let ((c3 (@mprod (lambda (clo3)

(+ (@mget 2 clo3) (@mget 3 clo3))))

4

5)

(c4 (@mprod (lambda (clo4)

(if (@mget 2 clo4) 1 0))

b)))

(let ((c (if b c3 c4)))

(call (@mget 1 c) c)))).

In this expression, the procedure in the first component of each tuple takes the
whole tuple as its argument. Again, we expect Eclo2 to be well-typed with type
int, but it is challenging to develop a single existential type that abstracts over
the differences between c3 and c4. Such a type should presumably look like

(tletrec ((cloty (mprodof (-> (cloty) int) <???>))) cloty),

but how can can we flesh out the <???>?. In c3, <???> stands for two integer
slots in a mprodof type, while in in c4 it stands for a single boolean slot.

To handle this situation, Silk includes mutable product types of the form
(mprodof T1 . . . Tn ...). The first set of ellipses, written “. . .”, is a met-
alanguage abbreviation for all the types between T1 and Tn . But the set of
second ellipses, written “...”, is an explicit notation in the Silk type syntax
that stands for a type variable that is existentially quantified over an unknown
number of unknown types. The subtyping rule [mprod-v] allows any number of
component types at the end of an mprodof to be replaced by the ellipses. Types
of this form can be introduced into a type derivation via the [subtype] rule. For
example, since c3 has the type

(tletrec ((cloty (mprodof (-> (cloty) int) int int))) cloty),

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 693

it also has the following type via [subtype] rule:

(tletrec ((cloty (mprodof (-> (cloty) int) ...))) cloty).

Since c4 can also be given this type, c can also be given this type, and Eclo2 can
be shown to be well-typed with type int.

The fact that existential types may be introduced anywhere means that a
given Silk expression may have many possible types. For example, (@mprod 1 #t)

can be given all the following types:

(mprodof int bool)

(exists (t) (mprodof t bool))

(exists (t) (mprodof int t))

(exists (t1 t2) (mprodof t1 t2))

(exists (t) t)

Similar comments hold for universal types. For example, all of the following
types can be assigned to (@mprod (lambda (x) x) (lambda (y) 3))):

(mprodof (-> (bool) bool) (-> (int) int))

(mprodof (-> (int) int) (-> (bool) int))

(mprodof (forall (t) (-> (t) t)) (-> (char) int))

(mprodof (-> (char) char) (forall (t) (-> (t) int)))

(mprodof (forall (s) (-> (s) s)) (forall (t) (-> (t) int)))

(forall (t) (mprodof (-> (t) t) (-> (t) int)))

(forall (s t) (mprodof (-> (s) s) (-> (t) int)))

Indeed, for implicit type systems with full universal and/or existential types,
there is not even a notion of “most general” type, so that type reconstruction
in such systems is impossible in general [Wel99]. So Silk, unlike FL/RTortoise,
is not a type reconstructable language.

What’s the point of considering Silk to be an implicitly typed language if
the types cannot be automatically reconstructed?

• The types of the restricted set of Silk programs manipulated by the com-
piler can be automatically determined. Although reconstruction on ar-
bitrary Silk programs is not possible, when a FL/RTortoise program P
(which is reconstructable) is initially translated to a Silk program P ′,
it is possible to automatically transform the type derivation for P into a
type derivation for P ′. So the initial Silk program P ′ is guaranteed to
be well-typed. Furthermore, for each of the Silk transformations, it is
possible to transform a type derivation of the the input program into a
type derivation for the output program. So each transform preserves well-
typedness as well as runtime behavior. Note that this approach requires
explicitly passing program type derivations through each transform along

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

694 CHAPTER 17. COMPILATION

with the program.

• The fact that programs are well-typed in each Tortoise transformation
implies important invariants that can be used by the compiler. For exam-
ple, all well-typed Silk programs are closed, so a transform never needs
to handle the case of a global free variable. When the compiler processes
the Silk expression (if E1 0 (@+ E2 E3)), there is no question that
E1 denotes a boolean value and E2 and E3 denote integers. There is no
need to handle cases where these expressions might have other types. The
compiler uses the fact that each Silk program is implicitly well-typed to
avoid generating code for certain run time error checks (see Section 17.12).

Many modern research compilers use so-called typed intermediate lan-
guages (TILs) that carry explicit type information (possibly including effect,
flow, and other analyses information) through all stages of the compiler. In these
systems, program transformations transform the types as well as the terms in
the programs. In addition to the benefits sketched above, the explicit type infor-
mation carried by a TIL can be inspected to guide compilation (e.g., determining
clever representations for certain types) and can be used to implement run-time
operations (such as tag-free garbage collection and checking safety properties of
dynamically linked code). It also serves as an important tool for debugging a
compiler implementation: if the output of a transformation doesn’t type check,
the transformation has a bug!

Unfortunately, TILs tend to be very complex. Transforming types in sync
with terms can be challenging, and the types in the transformed programs can
quickly become so large that they are nearly impossible to read. In the interests
of pedagogical simplicity, our Silk intermediate language does not have explicit
types, and we only describe how to transform terms and not types. Nevertheless,
we maintain the TIL “spirit” by (1) having Silk be an implicitly typed language
and (2) imagining that program type derivations are magically transformed by
each compiler stage. For more information on TILs, see the reading section.

17.2.4 Purely Structural Transformations

Most of the FL/RTortoise and Silk program transformations that we shall
study can be described by functions that traverse the abstract syntax tree of
the program and transform some of the tree nodes but leave most of the tree
nodes unchanged. We will say that a transformation is purely structural for
a given kind of tree node if the result of applying it to that node results in the
same kind of node whose children are transformed versions of the chidren of the
original node.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.2. TORTOISE ARCHITECTURE AND LANGUAGES 695

We formalize this notion for Silk transformations via the mapsubSilk func-
tion defined in Figure 17.10. This function returns a copy of the given Silk
expression whose immediate subexpressions have been transformed by a given
transformation tf . A Silk transformation is purely structural for a given kind
of node if its action on that node can be written as an application of mapsubSilk .

tf ∈ TransformSilk = ExpSilk → ExpSilk

mapsubSilk : ExpSilk → TransformSilk → ExpSilk

mapsubSilk [[L]] tf = L

mapsubSilk [[I]] tf = I

mapsubSilk [[(error Imsg)]] tf = (error Imsg)

mapsubSilk [[(set! Ivar Erhs)]] tf = (set! Ivar (tf Erhs))

mapsubSilk [[(if Etest Ethen Eelse)]] tf = (if (tf Etest) (tf Ethen) (tf Eelse))

mapsubSilk [[(lambda (I1 . . . In) Ebody)]] tf = (lambda (I1 . . . In) (tf Ebody))

mapsubSilk [[(call Erator E1 . . . En)]] tf = (call (tf Erator) (tf E1) . . . (tf En))

mapsubSilk [[(let ((I1 E1) . . . (In En)) Ebody)]] tf
= (let ((I1 (tf E1)) . . . (In (tf En))) (tf Ebody))

mapsubSilk [[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] tf
= (cycrec ((I1 (tf BV1)) . . . (In (tf BVn))) (tf Ebody))

mapsubSilk [[(primop O E1 . . . En)]] tf = (primop O (tf E1) . . . (tf En))

Figure 17.10: The mapsubSilk function simplifies the specification of purely
structural transformations.

In the cycrec clause for mapsubSilk , we take the liberty of applying the
transformation tf directly to the binding values BV1 . . . BVn . Since binding
values are a restricted subset of expressions, it is sensible for the input of tf to
be a binding value, though technically there should be some sort of inclusion
function that converts the binding value to an expression. We will omit such in-
clusion functions for elements of the Abstraction, BindingValue, and DataValue
domains throughout our study of transformations in the Tortoise compiler.
More worrisome in the cycrec case is the output of (tf BVi). If the result is
not in the BindingValue domain, then the cycrec form is not syntactically well-
formed. So whenever mapsubSilk is applied to cycrec forms, we must argue that
tf maps elements of BindingValue to elements of BindingValue.

As an example of mapsubSilk , consider a transformation IT that rewrites

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

696 CHAPTER 17. COMPILATION

every occurrence of (if (primop not E1) E2 E3) to (if E1 E3 E2). Since
Silk expressions are implicitly well-typed, this is a safe transformation. The
fact that IT is purely structural on almost every kind of node is expressed via
a single invocation of mapsubSilk in the following definition:

IT : ExpSilk → ExpSilk

IT [[(if (primop not E1) E2 E3)]] = (if (IT [[E1]]) (IT [[E3]]) (IT [[E2]]))
IT [[E]] = mapsubSilk [[E]] IT , for all other expressions E.

It is not hard to show that IT transforms every binding value to a binding value,
so mapsubSilk is sensible for cycrec.

The mapsubSilk function only works for transforming one Silk expression
to another. It is straightforward to define a similar mapsubFL/R function that
transforms one FL/RTortoise expression to another; we will use this in the
globalization transform.

When manipulating expressions, it is sometimes helpful to extract from
an expression a collection of its immediate subexpressions. Figure 17.11 de-
fines a subexpsFL/R function that returns a sequence of all children expressions
of a given FL/RTortoise expression. It is straightforward to define a similar
subexpsSilk function for Silk expressions.

subexpsFL/R : ExpFL/R →
(

ExpFL/R*
)

subexpsFL/R[[L]] = []

subexpsFL/R[[I]] = []

subexpsFL/R[[(error Imsg)]] = []

subexpsFL/R[[(set! Ivar Erhs)]] = [Erhs]

subexpsFL/R[[(if Etest Ethen Eelse)]] = [Etest ,Ethen ,Eelse]

subexpsFL/R[[(lambda (I1 . . . In) Ebody)]] = [Ebody]

subexpsFL/R[[(Erator E1 . . . En)]] = [Erator ,E1 , . . . ,En]

subexpsFL/R[[(primop O E1 . . . En)]] = [E1 , . . . ,En]

subexpsFL/R[[(let ((I1 E1) . . . (In En)) Ebody)]]
= [E1 , . . . ,En ,Ebody]

subexpsFL/R[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]]
= [BV1 , . . . ,BVn ,Ebody]

Figure 17.11: The subexpsFL/R function returns a sequence of all immediate
subexpressions of a given FL/RTortoise expression.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.3. TRANSFORM 1: DESUGARING 697

17.3 Transform 1: Desugaring

The first pass of the Tortoise compiler performs desugaring, converting the
convenient syntax of FL/RTortoise into a simpler kernel subset of the lan-
guage. The advantage of having the first transformation desugar the program is
that subsequent analyses and transforms are simpler to write and prove correct
because there are fewer syntactic forms to consider. Additionally, subsequent
transforms also do not require modification if the language is extended or altered
through the introduction of new syntactic shorthands.

We will provide preconditions and postconditions for each of the Tortoise
transformations. In the case of desugaring, these are:

Preconditions: The input to the desugaring transform must be a syntac-
tically correct FL/RTortoise program in which sugar forms may occur.

Postconditions: The output of the desugaring transform is a syntacti-
cally correct FL/RTortoise program in which there are no sugar forms.

Of course, another postcondition we expect is that the output program should
have the same behavior as the input program! This is a fundamental property
of each pass that we will not explicitly state in every postcondition.

The desugaring process for FL/RTortoise is similar to one described for FL
in Figures 6.3 and 6.4, so we will not repeat the details of the transformation
process here. However, since the actual syntactic abbreviations supported by
FL and FL/RTortoise are rather different, we highlight the differences:

• In FL, multi-argument procedures and procedure calls are implicitly cur-
ried and desugar into abstractions and applications of single-argument pro-
cedures. But in FL/RTortoise, multi-argument procedures and procedure
calls are supported by the kernel language and are not curried.

• In FL, let is sugar for application of a manifest lambda, but it is consid-
ered a kernel form in FL/RTortoise.

• In FL, the multi-recursion letrec construct desugars into the single-
recursion rec. In FL/RTortoise, the multi-recursion funrec is a kernel
form.

• In FL, the desugaring of programs translates define forms into letrec

bindings and wraps user expressions in global bindings that declare mean-
ings for standard identifiers like + and cons. In FL/RTortoise, the define
syntax is not supported, and standard identifiers are handled by the glob-
alization transform discussed in Section 17.5.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

698 CHAPTER 17. COMPILATION

• The scand, scor, and list forms are handled in FL/RTortoise just as in
FL. The begin, let*, and recur forms were not supported by FL proper,
but were considered for various extensions to FL. Other sugared forms
supported by FL (such as cond) are not included in FL/RTortoise but
could easily be added.

Figure 17.12 shows the result of desugaring the reverse mapping example
introduced in Figure 17.3. The the (recur loop . . .) desugars into a funrec,
the begin desugars into a let that binds the fresh variable ignore.0, an the
list desugars into a null-terminated nested sequences of conses.

(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (call null)))

(funrec

((loop

(lambda (xs)

(if (call null? xs)

ans

(let ((ignore.0

(set! ans

(call cons

(call f (call car xs))

ans))))

(call loop (call cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (call > x b))

(primop cons a

(primop cons (call * a 7)

(primop null))))))

Figure 17.12: Running example after desugaring.

17.4 Transform 2: Type Reconstruction

The second stage of the Tortoise compiler is type reconstruction. Only well-
typed FL/RTortoise (and Silk) programs are allowed to proceed through the
rest of the compiler. Because type reconstruction for FL/RTortoise is so similar
to that for FL/R (Chapter 14), we do not repeat the details here.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.5. TRANSFORM 3: GLOBALIZATION 699

Preconditions: The input to type reconstruction is a syntactically correct
kernel FL/RTortoise program.

Postconditions: The output of type reconstruction is a valid kernel pro-
gram. We will use the term valid to describe a program fragment that
is both syntactically correct and well-typed.

As discusssed in Section 17.2.3.3, although neither FL/RTortoise nor Silk
has explicit types, this does not mean that the type information generated by
the type reconstruction phase is thrown away. We can imagine that this type
information is passed through the compiler stages via a separate channel, where
it is appropriately transformed by each pass. In an actual implementation,
this type information might be stored in abstract syntax tree nodes for Silk
expressions, in tables symbol tables mapping variable names to their types, or
in explicit type derivation trees.

It is worth noting that other analysis information, such as effect information
(Chapter ??) and flow information [NNH98, DWM+01], could be computed at
this stage and passed along to other compiler stages.

17.5 Transform 3: Globalization

In general, a program unit being compiled may contain free identifiers that
reference externally defined values in standard libraries or other program units.
Such free identifiers must somehow be resolved via a name resolution process
before they are referenced during program execution. Depending on the nature
of the free identifiers, name resolution can take place during compilation, during
a linking phase that typically takes places after compilation but before execution
(see Section 15.5.1), or during the execution of the program unit. In cases where
name resolution takes place after compilation, the compiler may still require
some information about the free identifiers, such as their types, even though
their values may be unknown.

In the Tortoise compiler, we consider a very simple form of compile-time
linking that resolves references to standard identifiers like +, <, and cons. We will
call this linking stage globalization because it resolves the meanings of global
variables defined in the language. Globalization has the following specification:

Preconditions: The input to globalization is a valid kernel FL/RTortoise

program.

Postconditions: The output of globalization is a valid kernel FL/RTortoise

program that is closed — i.e., it contains no free identifiers.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

700 CHAPTER 17. COMPILATION

Removing free identifiers from a program at an early stage simplifies later trans-
formations.

A simple approach to globalization in FL/RTortoise is to wrap the body of
the program in a let that associates each standard identifier used in the program
with an appropriate abstraction (Figure 17.13). This wrapping strategy was
the approach taken in the desugaring of FL programs in Section 6.2.2.2. In the
wrapping strategy, the program

(flr (x y) (+ (* x x) (* y y)))

would be transformed by globalization into

(silk (x y)

(let ((+ (lambda (v.0 v.1) (primop + v.0 v.1)))

(* (lambda (v.2 v.3) (primop * v.2 v.3))))

(+ (* x x) (* y y))))

GW : ProgramFL/R → ProgramFL/R

GW [[(flr (I1 . . . In) Ebody)]] = (flr (I1 . . . In) (wrap[[Ebody]] (FreeIds [[Ebody]])))

wrap : ExpFL/R → P(Identifier)→ ExpFL/R

wrap[[E]] {O1 , . . . ,On} = (let ((O1 ABS[[O1]]) . . . (O1 ABS[[On]])) E)

ABS : PrimopFL/R → Abstraction

ABS[[O]] = (lambda (I1 . . . In) (primop O I1 . . . In))
where I1 , . . ., In are fresh and (typeof [[O]] AstdF L/R

) = (-> (T1 . . . Tn) Tres).

Figure 17.13: The wrapping approach to globalization.

Constructing an abstraction for a primitive operator (via ABS) requires
knowing the number of arguments it takes. In FL/RTortoise, this can be de-
termined from the type of the standard identifier naming the global procedure
associated with the operator. Note that the program P given to GW is required
to be well-typed, so all the elements of FreeIds[[P]] must be standard identifiers
— i.e., names of FL/RTortoise primitives. This illustrates how type-checking a
program early in compilation can simplify later stages by eliminating trouble-
some special cases (in this case, handling unbound identifiers).

A drawback of the wrapping strategy is that global procedures are invoked
via the generic procedure calling mechanism rather than the mechanism for in-
voking primitive operators (primop). We will see in later stages of the compiler
that the latter is handled far more efficiently than the former. This suggests

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.5. TRANSFORM 3: GLOBALIZATION 701

an alternative approach in which calls to global procedures are transformed into
primitive applications. Replacing a procedure call by a suitably instantiated ver-
sion of its body is known as inlining, so we shall call this the inlining strategy
for globalization. Using the inlining strategy, the sum-of-squares program would
be transformed into:

(flr (x y) (primop + (primop * x x) (primop * y y)))

There are three situations that need to be carefully handled in the inlining
strategy for globalization:

1. A reference to a global procedure can only be converted to an instance of
primop if it occurs in the rator position of a procedure application. Refer-
ences in other positions must either be handled by wrapping or by convert-
ing them to abstractions. Consider the expression (cons + (cons * (null))),
which makes a list of two functions. The occurrences of cons and null

can be transformed into primops, but the + and * cannot be. They can,
however, be turned into abstractions containing primops:

(primop cons (lambda (v.0 v.1) (primop + v.0 v.1))

(primop cons (lambda (v.2 v.3) (primop * v.2 v.3))

(primop null)))

Alternatively, we can “lift” the abstractions for + and * to the top of the
enclosing program and name them, as in the wrapping approach.

2. In languages like FL/RTortoise, where local identifiers may have the same
name as global standard identifiers for primitive operators, care must be
taken to distinguish references to global and local identifiers.1 For ex-
ample, in the program (flr (x) (let ((+ *)) (- (+ 2 x) 3))), the
invocation of + in (+ 2 x) cannot be inlined, but the invocation of - can
be:

(flr (x)

(let ((+ (lambda (v.0 v.1) (primop * v.0 v.1))))

(primop - (+ 2 x) 3)))

3. In FL/RTortoise, the values associated with global primitive identifier
names can be modified by set!. For example, consider

1Many programming languages avoid this and related problems by treating primitive oper-
ator names as reserved keywords that may not be used as identifiers in declarations or assign-
ments. This allows compiler writers to inline all primitives.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

702 CHAPTER 17. COMPILATION

(flr (x y)

(* (+ x (let ((ignore (set! + -))) y))

(+ x y))),

in which the first occurrence of + denotes addition and the second occur-
rence denotes subtraction. It would clearly be incorrect to replace the
second occurrence by an inlined addition primitive. Correctly inlining ad-
dition for the first occurrence and subtraction for the second occurrence is
possible in this case, but can only be justified by a sophisticated side effect
analysis. A simple conservative way to address this problem in the inlining
strategy is to use wrapping rather than inlining for any global name that
is mutated somewhere in the program. For the above example, this yields:

(flr (x y)

(let ((+ (lambda (v.2 v.3) (primop + v.2 v.3))))

(primop * (+ x (let ((ignore

(set! + (lambda (v.0 v.1)

(primop - v.0 v.1)))))

y))

(+ x y)))).

All of the above issues are handled by the definition of the inlining approach
to globalization in Figure 17.14. The GIprog function uses MutIdsprog (Fig-
ure 17.15) to determine the primitive names that are targets of assignment in
the program, and wraps the program body in abstractions for these. All other
free names are primitives that may be inlined in call positions or expanded to
abstractions (via ABS) in other positions. The identifier set argument to GI exp
keeps track of the free global names that have not been locally redeclared.

Figure 17.16 shows the running example after the globalization stage (using
the inlining strategy) . In this case, all references to free identifiers have been
converted to primitive applications.

¤ Exercise 17.3 What is the result of globalizing the following program using (1)
the wrapping strategy and (2) the inlining strategy?

(flr (* /)

(+ (let ((+ *)) (- + 1))

(let ((* -)) (* / 2)))) ¢

¤ Exercise 17.4 In FL/RTortoise, all standard identifiers name primitive procedures.

This fact simplifies the globalization transform. Describe how to extend globalization

(both the wrapping and inlining strategies) to handle standard identifiers that are (1)

literal values (e.g., zero standing for 0 and true standing for #t) and (2) procedures

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.5. TRANSFORM 3: GLOBALIZATION 703

GIprog : ProgramFL/R → ProgramFL/R

GIprog [[P]] = (flr (I1 . . . In) (wrap[[GIexp[[Ebody]] IS immuts]] ISmuts))
where P = (flr (I1 . . . In) Ebody), ISmuts = MutIdsprog [[P]],
IS immuts = (FreeIds[[P]]) − ISmuts , wrap is defined in Figure 17.14,
and MutIdsprog is defined in Figure 17.15.

GIexp : ExpFL/R → IdSet→ ExpFL/R

GIexp [[(Irator E1 . . . En)]] IS
= if Irator ∈ IS then (primop Irator (GIexp [[E1]] IS) . . . (GIexp [[En]] IS))

else (Irator (GIexp [[E1]] IS) . . . (GIexp [[En]] IS)) fi

GIexp [[I]] IS = if I ∈ IS then ABS[[I]] else I fi

GIexp [[(lambda (I1 . . . In) Ebody)]] IS
= (lambda (I1 . . . In) (GIexp [[Ebody]] (IS − {I1 , . . . , In})))

GIexp [[(let ((I1 E1) . . . (In En)) Ebody)]] IS
= (let ((I1 (GIexp [[E1]] IS)) . . . (In (GIexp [[En]] IS)))

(GIexp [[Ebody]] (IS − {I1 , . . . , In})))
GIexp [[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]] IS
= (funrec ((I1 (GIexp [[AB1]] IS

′)) . . . (In (GIexp [[ABn]] IS
′)))

(GIexp [[Ebody]] IS ′))
where IS ′ = IS − {I1 , . . . , In}

GIexp [[E]] IS = mapsubFL/R[[E]] (λEsub . GIexp [[Esub]] IS)

Figure 17.14: The inlining approach to globalization.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

704 CHAPTER 17. COMPILATION

IS ∈ IdSet = P(Identifier)
MutIdsprog : ProgramFL/R → IdSet

MutIdsprog [[(flr (I1 . . . In) Ebody)]] = (MutIds[[Ebody]]) − {I1 , . . . , In}

MutIds : ExpFL/R → IdSet

MutIds[[(set! I E)]] = {I} ∪ MutIds[[E]]

MutIds[[(lambda (I1 . . . In) Ebody)]] = (MutIds[[Ebody]]) − {I1 , . . . , In}
MutIds[[(let ((I1 E1) . . . (In En)) Ebody)]]
= (∪ni=1MutIds[[Ei]]) ∪ MutIds[[Ebody]] − {I1 , . . . , In}

MutIds[[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]]
= (∪ni=1MutIds[[AB i]] ∪MutIds[[Ebody]]) − {I1 , . . . , In}

MutIds[[E]] = let [E1 , . . . ,En] be subexpsFL/R[[E]] in ∪ni=1MutIds[[Ei]], otherwise.

Figure 17.15: Calculating the mutated free identifiers of a program.

(flr (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (primop null)))

(funrec

((loop

(lambda (xs)

(if (primop null? xs)

ans

(let ((ignore.0

(set! ans (primop cons

(call f (primop car xs))

ans))))

(call loop (primop cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (primop > x b))

(primop cons a

(primop cons (primop * a 7)

(primop null))))))

Figure 17.16: Running example after globalization.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.6. TRANSFORM 4: TRANSLATION 705

more complex than primitive applications (e.g., sqr standing for a squaring procedure

and fact standing for a factorial procedure). ¢

17.6 Transform 4: Translation

In this transformation, a kernel FL/RTortoise program is translated into the
Silk intermediate language. All subsequent transformations are performed on
Silk programs.

The translation is performed by the T prog and T exp functions presented in
Figure 17.17. Because the source and target languages are so similar, the trans-
lation has the flavor of a transformation that is purely structural except that
(1) T prog changes the program keyword from flr to silk; (2) T exp converts
every funrec to a cycrec; and (3) T exp translates FL/RTortoise cell and im-
mutable pair operations to Silk mutable product operations. We do not give
the details of the other cases because they are straightforward. Note that we
cannot use the mapsubFL/R or mapsubSilk functions from Section ?? to formally
specify these cases because each of these transforms an expression in a language
(FL/RTortoise or Silk) to another expression in the same language. But T exp

translates a FL/RTortoise expression to a Silk expression.

The precondition for T prog requires a closed FL/RTortoise program. This
simplifies the transformation by making it unnecessary to translate global free
identifiers like + and cons. We assume that such free identifiers have already
been eliminated by performing globalization. The postcondition does not explic-
itly mention a closed program because all valid Silk programs are necessarily
closed.

Figure 17.18 shows our running example after the translation stage. In this
and subsequent code presentations, we shall “resugar” a nested sequence of let
expressions into a let* expression and use the @ abbreviation for primops to
improve the legibility of the code.

It is intuitively clear that T prog preserves typability. That is, the output of
this translation is well-typed in Silk if the input is well-typed in FL/RTortoise.
This can be formally proved by showing how a FL/RTortoise type derivation
for the original program can be transformed into a Silk type derivation for the
translated program. Although types can be reconstructed for the FL/RTortoise

input program to T prog, we make no claims about the type reconstructability of
the output Silk program. The programs resulting from T prog and some of the
subsequent transformations may be restricted enough to support some form of
type reconstruction. But in general, the type system of Silk is too expressive
to support type reconstruction.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

706 CHAPTER 17. COMPILATION

T prog : ProgramFL/RTortoise
→ ProgramSilk

Preconditions: The input to T prog is a valid closed kernel FL/RTortoise pro-
gram.

Postconditions: The output of T prog is a valid kernel Silk program.

T prog[[(flr (I1 . . . In) Ebody)]] = (silk (I1 . . . In) (T exp[[Ebody]]))

T exp : ExpFL/RTortoise
→ ExpSilk

T exp[[(funrec ((I1 AB1) . . . (In ABn)) Ebody)]]
= (cycrec ((I1 T exp[[AB1]]) . . . (In T exp[[ABn]])) (T exp[[Ebody]]))

T exp[[(primop cell E1)]] = (primop mprod E1)

T exp[[(primop ^ Ecell)]] = (primop (mget 1) Ecell)

T exp[[(primop := Ecell Enew)]] = (primop (mset! 1) Ecell Enew)

T exp[[(primop pair E1 E2)]] = (primop mprod E1 E2)

T exp[[(primop fst Epair)]] = (primop (mget 1) Epair)

T exp[[(primop snd Epair)]] = (primop (mget 2) Epair)

All other cases of T exp are purely structural.

Figure 17.17: Transformation translating FL/RTortoise into Silk.

(silk (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (@null)))

(cycrec

((loop

(lambda (xs)

(if (@null? xs)

ans

(let ((ignore.0

(set! ans (@cons (call f (@car xs)) ans))))

(call loop (@cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (@> x b))

(@cons a (@cons (@* a 7) (@null))))))

Figure 17.18: Running example after translation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.6. TRANSFORM 4: TRANSLATION 707

What about meaning preservation? As argued in Section 17.2.3.2, funrec
and cycrec have the same meaning in the case where bindings are abstrac-
tions, so the funrec to cycrec conversion preserves meaning. The cell and pair
translations provide alternative implementations of the cell and pair abstract
datatypes, so intuitively these preserve meaning as well. But not every aspect
of FL/RTortoise meaning is preserved. For example, the program in Figure 17.18
returns a mutable product, whereas the original program returned a pair value.
Any formal notion of meaning preservation for this translation would have to
account for the type translation as well as the expression translation.

¤ Exercise 17.5 In the Tortoise compiler, it would be possible to perform trans-
lation before globalization rather than after. In this case, assume that (1) globaliza-
tion is suitably modified to work on Silk programs rather than FL/RTortoise pro-
grams and (2) Silk programs are extended to support the same standard identifiers as
FL/RTortoise (but in some cases — which ones? — these must have different types
than in FL/RTortoise.) Describe the advantages and disadvantages of switching the
order of these transforms. As a concrete example, consider the following program:

(flr (x)

(let ((c (cell x)))

(pair (^ c) (+ x 1)))). ¢

¤ Exercise 17.6 Consider the language Silksum that is just like Silk except:

• it does not have the boolean literals #t and #f;

• it has no if expressions;
• it does not have the list operators cons, car, cdr, null, or null?;
• it supports oneofs (see Section 10.2 and Section ??) via the following syntax:

E ::= ...

| (one Itag E) [Oneof Intro]
| (tagcase Edisc Ival (Itag Ebody)* [(else Eelse)]) [Oneof Elim]

Show how to translate FL/RTortoise boolean literals, if expressions, and list operations

into Silksum . ¢

¤ Exercise 17.7
Suppose that FL/RTortoise’s funrec construct were replaced by a letrec construct

with arbitrary expressions for bindings.

a. Show how to translate letrec into Silk. Your translation should be similar to
the letrec desugaring presented in Section 8.3, except that it needs to preserve
typability as well as meaning. Hint: Use empty and non-empty lists to distinguish
unassigned and assigned variables.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

708 CHAPTER 17. COMPILATION

b. letrec can also be translated into a target language supporting oneofs, such as
Silksum (see the previous exercise). Give a translation of letrec into Silksum .

c. Since funrec is a restricted form of letrec, the above parts show that it is
possible to translate FL/RTortoise into a dialect of Silk that does not contain
cycrec. What are the advantages and disadvantages of using cycrec in the
translation of funrec? (You may wish to study the remaining stages of the
compiler before answering this question.) ¢

17.7 Transform 5: Assignment Conversion

Assignment conversion removes all mutable variables from a program by
converting mutable variables to mutable cells. We will say that the resulting
program is assignment-free.

Assignment conversion makes all mutable storage explicit and simplifies later
passes by making all variable bindings immutable. After assignment conversion,
all variables effectively denote values rather than implicit cells containing values.
A variable may be bound to an explicit cell value whose contents varies with
time, but the explicit cell value bound to the variable cannot change. As we will
see later in the closure conversion stage (Section 17.10), assignment conversion
is important because it allows environments to be treated as immutable data
structures that can be freely shared and copied without concerns about side
effects.

A straightforward approach to assignment conversion is to make an explicit
cell for every variable in a given program. For example, the factorial program

(silk (x)

(let ((ans 1))

(cycrec ((loop (lambda (n)

(if (@= n 0)

ans

(let ((ignore.0 (set! ans (@* n ans))))

(call loop (@- n 1)))))))

(call loop x))))

can be assignment converted to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.7. TRANSFORM 5: ASSIGNMENT CONVERSION 709

(silk (x)

(let ((x (@mprod x)))

(let ((ans (@mprod 1)))

(cycrec ((loop

(@mprod

(lambda (n)

(let ((n (@mprod n)))

(if (@= (@mget 1 n) 0)

(@mget 1 ans)

(let ((ignore.0

(@mprod

(@mset! 1 ans

(@* (@mget 1 n)

(@mget 1 ans))))))

(call (@mget 1 loop)

(@- (@mget 1 n) 1)))))))))

(call (@mget 1 loop) (@mget 1 x)))))).

In the converted program, each of the variables in the original program (x, ans,
loop, n, and ignore.0) is bound to an explicit cell (i.e., a one-slot mutable
product). Each variable reference I in the original program is converted to a cell
reference (@mget 1 I), and each variable assignment (set! I E) in the original
program is converted to an cell assignment of the form (@mset! 1 I E ′) (where
E ′ is the converted E).

The code generated by the näıve approach to assignment conversion can con-
tain many unnecessary cell allocations, references, and assignments. A cleverer
strategy is to make explicit cells only for those variables that are mutated in the
program. Determining exactly which variables are mutated when a program ex-
ecutes is generally undecidable. We employ a simple conservative syntax-based
approximation that defines a variable to be mutable if it is set! within its scope.
In the factorial example, the alternative strategy yields the following program,
in which only the ans variable is converted to a cell:

(silk (x)

(let ((ans (@mprod 1)))

(cycrec ((loop (lambda (n)

(if (@= n 0)

(@mget 1 ans)

(let ((ignore.0

(@mset! 1 ans (@* n (@mget 1 ans)))))

(call loop (@- n 1)))))))

(call loop x))))

The improved approach to assignment conversion is formalized in Figure 17.19.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

710 CHAPTER 17. COMPILATION

The ACprog function wraps the tranformed body of a Silk program in a let that
binds each mutable program parameter to a cell. The free identifiers syntacti-
cally assigned within an expression is determined by the MutIds function, which
is a Silk version of the FL/RTortoise function defined in Figure 17.15.

Expressions are transformed by the ACexp function, whose second argument
is the set of in-scope identifiers naming variables that have been transformed
to cells. Such identifiers are transformed to cell references and assignments,
respectively, when processing variable references and variable assignments.

The only other non-trivial cases for ACexp are the binding forms lambda,
let, and cycrec. All of these cases use partition to partition the identifiers
declared by the forms into two identifier sets: the mutable identifiers IS m that
are assigned somewhere in the given expressions, and the immutable identifiers
IS i that are nowhere assigned. In each of these cases, any subexpression in the
scope of the declared identifiers is processed by ACexp with an identifier set that
includes ISm but excludes IS i . The exclusion is necessary to prevent converting
local immutable variables having the same name as external mutable variables.
For example,

(silk (x) (@mprod (set! x (@* x 2)) (lambda (x) x)))

is converted to

(silk (x)

(let ((x (@mprod x)))

(@mprod (@mset! 1 x (@* (@mget 1 x) 2))

(lambda (x) x))))

Even though the program parameter x is converted to a cell, the x in the ab-
straction body is not.

Abstractions are processed like programs in that the transformed abstrac-
tion body is wrapped in a let binding each mutable identifier to a cell. This
preserves the call-by-value-sharing semantics of Silk since an assignment to the
formal parameter of an abstraction modifies the contents of a local cell initially
containing a copy of the parameter value.

In processing let and cycrec, maybe-cell is used to wrap the binding expres-
sions for mutable identifiers in a cell. These two forms are processed similarly
except for scoping differences in their declared names.

In the precondition for ACprog in Figure 17.19, there is a subtle restriction
involving cycrec that is a consequence of its syntax. Recall that cycrec ex-
pressions have the form (cycrec ((I BV)*) Ebody), where a binding value BV
is either a literal, abstraction, or mutable product of the form (@mprod DV*),

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.7. TRANSFORM 5: ASSIGNMENT CONVERSION 711

ACprog : ProgramSilk → ProgramSilk

Preconditions: The input to ACprog is a valid, closed, kernel Silk program in
which no unguarded variable appearing in a cycrec binding is assigned to.

Postconditions: The output of ACprog is a valid, closed, assignment-free, ker-
nel Silk program.

ACprog [[(silk (I1 . . . In) Ebody)]]
= (silk (I1 . . . In) (wrap-cells ISmuts (ACexp [[Ebody]] ISmuts)))
where ISmuts = MutIds[[Ebody]] and MutIds is a version of the function
defined in Figure 17.15 adapted to Silk.

ACexp : ExpSilk → IdSet→ ExpSilk

ACexp [[I]] IS = if I ∈ IS then (@mget 1 I) else I fi

ACexp [[(set! I E)]] IS = (@mset! 1 I (ACexp [[E]] IS))
ACexp [[(lambda (I1 . . . In) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [Ebody])

in (lambda (I1 . . . In)
(wrap-cells ISm (ACexp [[Ebody]] ((IS ∪ ISm)− IS i))))

ACexp [[(let ((I1 E1) . . . (In En)) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [Ebody])

in (let ((I1 (maybe-cell I1 ISm (ACexp [[E1]] IS)))
. . . (In (maybe-cell In ISm (ACexp[[En]] IS))))

(ACexp [[Ebody]] ((IS ∪ ISm)− IS i)))

ACexp [[(cycrec ((I1 E1) . . . (In En)) Ebody)]] IS
= let 〈ISm , IS i 〉 be (partition {I1 , . . . , In} [E1 , . . . ,En ,Ebody])

in (cycrec ((I1 (maybe-cell I1 ISm (ACexp [[E1]] IS ′)))
. . . (In (maybe-cell In ISm (ACexp [[En]] IS ′))))

(ACexp [[Ebody]] IS ′))
where IS ′= ((IS ∪ ISm)− IS i).

ACexp [[E]] IS = mapsubSilk [[E]] (λEsub .ACexp [[Esub]] IS), otherwise.

wrap-cells : IdSet→ ExpSilk → ExpSilk
wrap-cells {I1 . . . In} E = (let ((I1 (@mprod I1)) . . . (In (@mprod In))) E)

partition : IdSet→ ExpSilk*→ (IdSet× IdSet)
partition IS [E1 . . .En] = let ISM be ∪ki=1(MutIds[[Ei]]) in 〈IS ∪ ISM , IS − ISM 〉

maybe-cell : Identifier→ IdSet→ Exp

maybe-cell I IS E = if I ∈ IS then (@mprod E) else E fi

Figure 17.19: An assignment conversion transformation that converts only those
variables that are syntactically assigned in the program.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

712 CHAPTER 17. COMPILATION

and a data value DV is either a binding value or an identifier. We will say that
any variable reference I appearing in a DV position is unguarded. All other
variable references occurring in a cycrec binding E are necessarily contained
within an abstraction in E; we say that these other references are guarded (by
the abstraction). For example, in

(cycrec ((a (@mprod x (lambda (f) (f b))))

(b (@mprod a (lambda (g) (g x)))))

(@mprod a b))

the first binding expression contains an unguarded x and a guarded b, while the
second binding expression contains an unguarded a and a guarded x.

Assignment conversion cannot handle a program in which an unguarded vari-
able reference I in a cycrec binding needs to be converted to a cell reference
(@mget 1 I) because the grammar for DV does not allow an mget form. For
example, in the above cycrec, it would be possible to convert b to a cell, but
not a or x. So the precondition for assignment conversion prohibits any pro-
gram containing an assignment to a variable that appears unguarded in a cycrec
binding. In the Tortoise compiler, it turns out that any program reaching
the assignment conversion stage will necessarily satisfy this precondition (see
Exercise 17.10).

Figure 17.20 shows our running example after the assignment conversion
stage. The only variable assigned in the input program is ans, and this is con-
verted to a cell. There are several spots where the wrap-cells function introduces
empty let wrappers of the form (let () . . .), but these are removed by the
[empty-let] simplification in Figure 17.5.

Intuitively, consistently converting a mutable variable along with its refer-
ences and assignments into explicit cell operations should not change the observ-
able behavior of a program. So we expect that assignment conversion should
preserve both the type safety and the meaning of a program. However, for-
mally proving such intuitions can be rather challenging. See [WS97] for a proof
that a version of assignment conversion for Scheme is a meaning-preserving
transformation.

¤ Exercise 17.8 Show the result of assignment converting the following programs
using ACprog :

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.7. TRANSFORM 5: ASSIGNMENT CONVERSION 713

(silk (a b)

(let ((revmap

(lambda (f lst)

(let ((ans (@mprod (@null)))) ; converted to a cell

(cycrec

((loop

(lambda (xs)

(if (@null? xs)

(@mget 1 ans)

(let ((ignore.0

(@mset! 1 ans

(@cons (call f (@car xs))

(@mget 1 ans)))))

(call loop (@cdr xs)))))))

(call loop lst))))))

(call revmap

(lambda (x) (@> x b))

(@cons a (@cons (@* a 7) (@null))))))

Figure 17.20: Running example after assignment conversion.

(silk (a b c)

(@mprod (set! a (@+ a 1))

(lambda (a d)

(let ((ignore.0 (set! c (@* a b))))

(set! d (@+ c d))))))

(silk (x)

(cycrec ((f (lambda (y) (@mprod y (call g (@- y 1)))))

(g (lambda (z)

(let ((ignore.0 (set! g (lambda (w) w))))

(call f z)))))

(call f x))) ¢

¤ Exercise 17.9 Can assignment conversion be performed before globalization? Ex-

plain. (Assume that ACprog and ACexp are suitably modified to work on FL/RTortoise

programs rather than Silk programs.) ¢

¤ Exercise 17.10 Argue that any Silk program that is the result of applying the

first four stages of the Tortoise compiler (desugaring, type-checking, globalization,

and translation) automatically satisfies all the preconditions for ACprog . ¢

¤ Exercise 17.11 A straightforward implementation of the ACprog and ACexp func-

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

714 CHAPTER 17. COMPILATION

tions in Figure 17.19 is inefficient because (1) it traverses the AST of every declaration

node at least twice: once to determine the free mutable identifiers, and once to transform

the node; and (2) it may recalculate the free mutable identifiers for the same expression

many times. Describe how to modify the assignment conversion algorithm so that it

works in a single traversal over the program AST and calculates the free mutable iden-

tifiers only once at every node. Note: you may need to modify the information stored

in the nodes of a Silk AST. ¢

17.8 Transform 6: Renaming

A program fragment is uniquely named if no two logically distinct variables
appearing in the fragment have the same name. For example, the following two
expressions have the same structure and meaning, but the second is uniquely
named while the first is not:

((lambda (x) (x w)) (lambda (x) (let ((x (* x 2))) (+ x 1))))

((lambda (x) (x w)) (lambda (y) (let ((z (* y 2))) (+ z 1))))

Several of the subsequent program transformations we will study require that
programs are uniquely named to avoid problems with variable capture or other-
wise simplify the transformation. Here we describe a renaming transformation
whose output program is a uniquely named version of the input program. We
will argue that subsequent transformations preserve the unique naming prop-
erty. This means that the property will hold for all those transformations that
require it of input programs.

The renaming transformation is presented in Figure 17.21. In this transfor-
mation, every bound identifier in the program is replaced by a fresh identifier.
Fresh names are introduced in all declaration forms: the silk program form and
the lambda, let, and cycrec expression forms. Renaming environments in the
domain RenEnv are used to associate these fresh names with the original names
and communicate the renamings to the variable reference and assignment forms.
Renaming is a purely structural transformation for all other nodes.

As in many other transformations, we gloss over the mechanism for generat-
ing fresh identifiers. This mechanism can be formally specified and implemented
by threading some sort of name generation state through the transformation.
For example, this state could be a natural number that is initially 0 and is
incremented every time a fresh name is generated. The fresh name can com-
bine the original name and the number in some fashion. In our examples, we
assume that renamed identifiers have the form prefix.number, where prefix is

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.8. TRANSFORM 6: RENAMING 715

Renaming Environments

re ∈ RenEnv = Identifier → Identifier

rbind : Identifier→ Identifier→ RenEnv → RenEnv
= λIold Inew re . λIkey . if (same-identifier? Ikey Iold) then Inew else (re Ikey)

rbind Iold Inew re will be abbreviated [Iold :Inew]re ; this notation associates
to the right. I.e., [I1 :I1

′][I2 :I2
′]re = [I1 :I1

′]([I2 : I2
′]re)

Renaming Transformation

Rprog : ProgramSilk → ProgramSilk

Preconditions: The input to Rprog is a valid kernel Silk program.

Postconditions: The output of Rprog is a valid and uniquely named kernel
Silk program.

Other properties: If the input program is assignment-free, so is the output
program.

Rprog[[(silk (I1 . . . In) Ebody)]]
= (silk (I1

′ . . . In
′) (Rexp[[Ebody]] ([I1 : I1

′] . . . [In : In
′] (λI . I)))),

where I1
′ . . . In

′ are fresh.

Rexp : ExpSilk → RenEnv → ExpSilk

Rexp[[I]] re = (re I)

Rexp[[(set! I E)]] re = (set! (re I) (Rexp[[E]] re))

Rexp[[(lambda (I1 . . . In) Ebody)]] re
= (lambda (I1

′ . . . In
′) (Rexp[[Ebody]] ([I1 : I1

′] . . . [In : In
′]re))),

where I1
′ . . . In

′ are fresh.

Rexp[[(let ((I1 E1) . . . (In En)) Ebody)]] re
= (let ((I1

′ (Rexp[[E1]] re)) . . . (In
′ (Rexp[[En]] re)))

(Rexp[[Ebody]] ([I1 : I1
′] . . . [In : In

′]re))),
where I1

′ . . . In
′ are fresh.

Rexp[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] re
= (cycrec ((I1

′ (Rexp[[E1]] re
′)) . . . (In

′ (Rexp[[En]] re
′))) (Rexp[[Ebody]] re

′)),
where I1

′ . . . In
′ are fresh and re ′ = ([I1 : I1

′] . . . [In : In
′]re)

Rexp[[E]] re = mapsubSilk [[E]] (λEsub .Rexp[[Esub]] re), otherwise.

Figure 17.21: Renaming transformation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

716 CHAPTER 17. COMPILATION

the original identifier, number is the current name generator state value, and
. is a special character that may appear in compiler-generated names but not
user-specified names.2Later compiler stages may rename generated names from
previous stages; in this case we assume that only the prefix of the old generated
name is used as the prefix for the new generated name. For example, x can be
renamed to x.17, and x.17 can be renamed to x.42 (not x.17.42). Figure 17.22
shows our running example after the renaming stage.

(silk (a.1 b.2)

(let ((revmap.3

(lambda (f.5 lst.6)

(let ((ans.7 (@mprod (@null))))

(cycrec

((loop.8

(lambda (xs.9)

(if (@null? xs.9)

(@mget 1 ans.7)

(let ((ignore.10

(@mset! 1 ans.7

(@cons (call f.5 (@car xs.9))

(@mget 1 ans.7)))))

(call loop.8 (@cdr xs.9)))))))

(call loop.8 lst.6))))))

(call revmap.3

(lambda (x.4) (@> x.4 b.2))

(@cons a.1 (@cons (@* a.1 7) (@null))))))

Figure 17.22: Running example after renaming.

¤ Exercise 17.12 What changes need to be made to Rexp to handle the Silksum
language (see Exercise 17.6)? ¢

¤ Exercise 17.13
The multiple bindings (I1 E1) . . . (In En) of the let form are so-called parallel

bindings in which the expressions E1 . . . En cannot refer to any of the internal variables
I1 . . . In – i.e., the ones declared in the bindings. Any occurrences of I1 . . . In in E1
. . . En must refer to externally declared variables that happen to have the same names
as the internal ones. In contrast, the bindings of the let* form (which desugars into
nested single-binding let forms) are sequential bindings in which references to I1 . . .
Ii−1 within Ei refer to the internal variables, but references to Ii . . . In refer to external
variables. For example:

2prefix is not really necessary, since number itself is unique. But maintaining the original
names helps human readers track variables through the compiler transformations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.8. TRANSFORM 6: RENAMING 717

;; Illustrates parallel bindings

(let ((a 1) (b 2))

(let ((a (+ b 1)) ; Reference to external b

(b (* a 2))) ; Reference to external a

(+ a b)))

;; Illustrates sequential bindings

(let ((a 1) (b 2))

(let* ((a (+ b 1)) ; Reference to external b

(b (* a 2))) ; Reference to internal a

(+ a b)))

After the renaming stage, only single-binding let forms are necessary, since there
can never be any confusion between internal and external names. For instance, after
renaming, the above examples can be expressed as:

;; Illustrates parallel bindings

(let* ((a.0 1) (b.1 2))

(let* ((a.2 (+ b.1 1)) ; Reference to external b

(b.3 (* a.0 2))) ; Reference to external a

(+ a.2 b.3)))

;; Illustrates sequential bindings

(let* ((a.0 1) (b.1 2))

(let* ((a.2 (+ b.1 1)) ; Reference to external b

(b.3 (* a.2 2))) ; Reference to internal a

(+ a.2 b.3)))

We will say that an expression E is in single binding form if all let expressions
occurring within E have single bindings.

a. Modify Rexp so that the resulting expression is in single binding form.

b. Rather than modifying Rexp, an alternative way to guarantee single binding form
after renaming is to add an extra simplification rule [singlify] to those presented
in Figure 17.5. Define [singlify].

c. A disadvantage of the [singlify] rule is it makes simplification ambiguous. Show
this by giving a simple Silk expression that has two different simplifications
depending on whether the [eta-let] or [singlify] rule is applied first. ¢

¤ Exercise 17.14 This exercise explores ways to formalize the generation of fresh
names in the renaming transformation. Assume that rename is a function that renames
variables according to the conventions described above. E.g., (rename x 17) = x.17

and (rename x.17 42) = x.42.

a. Suppose that the signature of Rexp is changed to accept and return a natural
number that represents the state of the fresh name generator:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

718 CHAPTER 17. COMPILATION

Rexp : ExpSilk → RenEnv → Nat → (ExpSilk ×Nat)

Give modified definitions of Rprog and Rexp in which rename is used to generate
all fresh names uniquely. Define any auxiliary functions you find helpful

b. An alternative way to thread the name generation state through the renaming
transformation is to use continuations. Suppose that the signature of Rexp is
changed as follows:

Rexp : ExpSilk → RenEnv → RenameCont → Nat → Exp

RenameCont is a renaming continuation defined as follows:

rc ∈ RenameCont = Exp → Nat → Exp

Give modified definitions of Rprog and Rexp in which rename is used to generate
all fresh names uniquely. Define any auxiliary functions you find helpful.

c. The mapsub function cannot be used in the above two parts because it does
not thread the name generation state through the processing of subexpressions.
Develop modified versions of mapsub that would handle the purely structural
cases in the above parts. ¢

17.9 Transform 7: CPS Conversion

In Chapter 9, we saw that continuations are a powerful mathematical tool for
modeling sophisticated control features like non-local exits, unrestricted jumps,
exceptions, backtracking, coroutines, and threads. Section 9.2 showed how such
features can be simulated in any language supporting first-class procedures. The
key idea in these simulations is to represent a possible future of the current
computation as an explicit procedure, called a continuation. The continua-
tion takes as its single parameter the value of the current computation. When
invoked, the continuation proceeds with the rest of the computation. In these
simulations, procedures no longer return to their caller when invoked. Rather,
they are transformed so that they take one or more explicit continuations as ar-
guments and invoke one of these continuations on their result instead of returning
the result. A program in which every procedure invokes an explicit continuation
parameter in place of returning is said to be written in continuation-passing
style (CPS).

As an example of CPS, consider the Silk expression Esos in Figure 17.23.
It defines a squaring procedure sqr and a sum-of-squares procedure sos and
applies the latter to 3 and 4. Ecps

sos is the result of transforming Esos into CPS
form. In Ecps

sos , each of the two procedures sqr and sos has been extended
with a continuation parameter, which by our convention will come last in the

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 719

Esos = (let* ((sqr (lambda (x) (@* x x)))

(sos (lambda (a b) (@+ (call sqr a) (call sqr b)))))

(call sos 3 4))

Ecpssos = (let* ((sqrcps (lambda (x ksqr) (call ksqr (@* x x))))

(soscps (lambda (a b ksos)

(call sqrcps a

(lambda (asqr)

(call sqrcps b

(lambda (bsqr)

(call ksos (@+ asqr bsqr)))))))))

(call soscps 3 4 klet*))

Figure 17.23: Ecps
sos is a CPS version of Esos .

parameter list and begin with the letter k. The sqrcps procedure invokes its
continuation ksqr on the square of its input. The soscps procedure first calls
sqrcps on a with a continuation that names the result asqr. This continuation
then calls sqrcps on b with a second continuation that names the second result
bsqr. Finally, sqrcps invokes its continuation ksos on the sum of these two
results. The initial call (sos 3 4) must also be converted. We assume that
klet* names a continuation that proceeds with the rest of the computation
given the value of the let* expresssion.

The process of transforming a program into CPS form is called CPS con-
version. Here we shall study CPS conversion as a stage in the Tortoise com-
piler. Whereas globalization makes explicit the meaning of standard identifiers
and assignment conversion makes explicit the implicit cells of mutable variables,
CPS conversion makes explicit all control flow in a program. Performing CPS
conversion as a compiler stage has several benefits:

• Procedure-calling mechanism: Continuations are an explicit representation
of the procedure call stacks used in traditional compilers to implement
the call/return mechanism of procedures. In CPS-converted code, a con-
tinuation (such as (lambda (asqr) . . .) above) corresponds to a pair of
(1) a call stack frame that saves variables needed after the call (i.e., the
free variables of the continuation, which are b and ksos in the case of
(lambda (asqr) . . .)) and (2) a return address (i.e., a specification of the
code to be executed after the call). Since no CPS procedure returns, every
procedure call in a CPS-converted program can be viewed as an assembly
code jump that passes arguments. In particular, invoking a continuation
corresponds in assembly code to jumping to a return address with a return

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

720 CHAPTER 17. COMPILATION

value in a distinguished return register.

• Code linearization: CPS conversion makes explicit the order in which
subexpressions are evaluated, yielding code that linearizes basic compu-
tation steps in a way similar to assembly code. For example, the body of
soscps clarifies that the square of a is calculated before the square of b.

• Sophisticated control features: Representing control explicitly in the form
of continuations facilitates the implementation of advanced control fea-
tures (such as non-local exits, exceptions, and backtracking) that can be
challenging to implement in traditional stack-based approaches.

• Uniformity : Representing control features via procedures keeps intermedi-
ate program representations simple and flexible. Moreover, any optimiza-
tions that improve procedures will work on continuations as well. But this
uniformity also has a drawback: because of its liberal use of procedures,
the efficiency of procedure calls in CPS code are of the utmost importance,
making certain optimizations almost mandatory.

The Tortoise CPS transform is presented in four stages. The structure of
CPS code is formalized in Section 17.9.1. A straightforward approach to CPS
conversion that is easy to understand but leads to intolerable ineffeciences in
the converted code is described in Section 17.9.2. Section 17.9.3 presents a more
complicated but considerably more efficient CPS transformation that is used
in Tortoise. Finally, we consider the CPS conversion of additional control
constructs in Section 17.9.4.

17.9.1 The Structure of CPS Code

All procedure applications can be classified according to their relationship to the
innermost enclosing procedure declaration (or program). A procedure applica-
tion is a tail call if its implicit continuation is the same as that of its enclosing
procedure. In other words, no computational work must be done between the
termination of the inner tail call and the termination of its enclosing proce-
dure; these two events can be viewed as happening simultaneously. All other
procedure applications are non-tail calls. These are characterized by pending
computations that must take place between the termination of the non-tail call
and the termination of a call to its enclosing procedure. The notion of a tail
call is important in CPS conversion because every procedure call in CPS code
must be a tail call. Otherwise, it would have to return to perform a pending
computation.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 721

AB1 = (lambda (f g x) (call g (call f x) (call f (@+ x 1))))

AB2 = (lambda (p q r s y)

(let ((a (call p (call q y))))

(call r a (call s a))))

AB3 = (lambda (filter pred base zs)

(if (@null? zs)

(call base zs)

(if (pred (@car zs))

(@cons (@car zs) (call filter pred base (@cdr zs)))

(call filter pred base (@cdr zs)))))

Figure 17.24: Sample abstractions for understanding tail vs. non-tail calls.

As concrete examples of tail vs. non-tail calls, consider the Silk abstractions
in Figure 17.24.

• In AB1 , the call to g is a tail call because a call to AB 1 returns a value v
when g returns v. But both calls to f are non-tail calls because the results
of these calls must be processed by g before AB 1 returns.

• In AB2 , only the call to r is a tail call. The results of the calls to p, q,
and s must be further processed before AB 2 returns.

• In AB3 , there are two tail calls: the call to base, and the second call to
filter. The result of the first call to filter must be processed by @cons

before AB3 returns, so this is a non-tail call. The result of pred must be
checked by the if, so this is a non-tail call as well. In this example, we see
that (1) a procedure body may have multiple tail calls and (2) the same
procedure can be invoked in both tail calls and non-tail calls within the
same expression.

Tail and non-tail calls can be characterized syntactically. The Silk contexts
in which tail calls can appear is defined by TC in the following grammar:

TC ∈ TailContext

TC ::= 2 [Hole]
| (if Etest TC E) [Left Branch]
| (if Etest E TC) [Right Branch]
| (let ((I E)*) TC) [Let Body]
| (cycrec ((I BV)*) TC) [Cycrec Body]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

722 CHAPTER 17. COMPILATION

Pcps ∈ Programcps

Ecps ∈ Expcps
Vcps ∈ ValueExpcps

AB cps ∈ Abstractioncps
LE cps ∈ LetableExpcps
BVcps ∈ BindingValuecps
DVcps ∈ DataValuecps

L ∈ Lit
I ∈ Identifier = usual identifiers
B ∈ Boollit = {#t, #f}
N ∈ Intlit = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primop = as in full Silk.

Pcps ::= (silk (Ifml*) Ecps)
Ecps ::= (call Vcps Vcps*) | (if Vcps Ecps Ecps) | (error I)

| (let ((I LE cps)) Ecps) | (cycrec ((I BVcps)*) Ecps)
Vcps ::= L | I

AB cps ::= (lambda (I*) Ecps)

LE cps ::= Vcps | AB cps | (primop Oop Vcps*) | (set! I V)
BVcps ::= L | AB cps | (primop mprod Vcps*)
DVcps ::= V |AB

L ::= #u | B | N

Figure 17.25: Grammar for Silkcps , the subset of Silk in CPS form. The result
of CPS conversion is a Silkcps program. If the input to CPS is assignment-free,
so is the output.

In Silk, a call expression Ecall is a tail call if and only if the body expression
of the innermost abstraction or program enclosing Ecall is the result TC {Ecall}
of filling some context TC with Ecall . Any call that does not appear in one of
these contexts is a non-tail call.

With the notion of tail call in hand, we are ready to study the structure of
CPS code, which is defined by the grammar for Silkcps , a restricted dialect of
Silk presented in Figure 17.25. Observe the following properties of the Silkcps

grammar:

• The definition of Ecps in Silkcps only allows call expressions to appear
precisely in the tail contexts TC studied above. So every call in a Silkcps

program is guaranteed to be a tail call. In such a program, the implicit
continuation of a every call must be exactly the same, so there is never a
nontrivial computation (other than the initial continuation of the program
invocation) for any call to return to. This is the sense in which calls in a
CPS program never return. It also explains why calls in a CPS program
can be viewed as assembly-language jumps (that happen to additionally
pass arguments).

• Subexpressions of a call and primop must be literals or variables, so one

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 723

application may not be nested within another. The test subexpression of
an if must also be a literal or variable. The definition subexpression of
a let can only be one of a restricted number of simple “letable expres-
sions” that does not include calls, ifs, cycrecs, or other lets. These
restrictions impose the straight-line nature of assembly code on the bod-
ies of Silk abstractions and programs, which must be derived from Ecps .
The only violation of the straight-line property is the if expression, which
has one Ecps subexpression for each branch. This branching code would
need to be linearized elsewhere in order to generate assembly language (see
Exercise 17.18).

• The order of evaluation for primitive applications is explicitly represented
via a sequence of nested single-binding let expressions that introduce
names for the intermediate results returned by these constructs. For ex-
ample, CPS converting the expression

(@+ (@- 0 (@* b b)) (@* 4 (@* a c)))

in the context of an initial continuation ktop.0 yields:3

(let* ((t.3 (@* b b))

(t.2 (@- 0 t.3))

(t.5 (@* a c))

(t.4 (@* 4 t.5))

(t.1 (@+ t.2 t.4)))

(call ktop.0 t.1))).

The let-bound names represent abstract registers in assembly code. Map-
ping these abstract registers to the actual registers of a real machine (a
process known as register allocation) must be performed by a later com-
pilation stage.

• Every execution path through an abstraction or program body must end in
either a call or an error. Since procedures never return, the last action
in a procedure body must be calling another procedure or signaling an
error. Moreover, calls and errors can only appear as the final expression
executed in such bodies. Modulo the branching allowed by if, program
and abstraction bodies in Silkcps are similar in structure to basic blocks
in traditional compiler technology. A basic block is a sequence of state-
ments such that the only control tranfers into the block are at the very
beginning and the only control transfers out of the block are at the very

3The particular let-bound names used is irrelevant. Here and below, we show the results of
CPS conversion using our implementation of the transformation in described in Section 17.9.3.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

724 CHAPTER 17. COMPILATION

end.

• Note that Silkcps includes set! expressions. In the Tortoise compiler,
both the input and output of CPS conversion will be assignment-free, but
in general CPS code may have assignments. Including assignments in
Silkcps allows us to experiment with moving assignment conversion after
CPS conversion (see Exercise 17.24).

• In classical CPS conversion, abstractions are usually included in the value
expressions ValueExpcps . However, we require that they be named in a
let or cycrec binding so that certain properties of the Silkcps structure
are preserved by later Tortoise transformations. In particular, the subse-
quent closure conversion stage will transform abstractions into applications
of the mprod primitive. Such applications cannot appear in the context of
CPS values Vcps , but can appear in “letable expressions” LE cps .

The fact that ValueExpcps does not include abstractions or primitive appli-
cations means that Ecps

sos in Figure 17.23 is not a legal Silkcps expression. A
Silkcps version of the Esos expression is presented in Figure 17.26. Note that
let-bound names must be introduced to name abstractions (the continuations
k1 and k2) and the results of primitive applications (t1 and t2). Note that some
calls (to sqrsilkcps and sossilkcps) are to transformed versions of procedures in
the original program. These correspond to the jump-to-subroutine idiom in as-
sembly code. The other calls (to ksqr and ksos) are to continuation procedures
introduced by CPS conversion. These model the return-from-subroutine idiom
in assembly code.

(let* ((sqrsilkcps (lambda (x ksqr)

(let ((t1 (@* x x)))

(call ksqr t1))))

(sossilkcps (lambda (a b ksos)

(let ((k1 (lambda (asqr)

(let ((k2 (lambda (bsqr)

(let ((t2 (@+ asqr bsqr)))

(call ksos t2)))))

(call sqrsilkcps b k2)))))

(call sqrsilkcps a k1)))))

(call sossilkcps 3 4 klet*))

Figure 17.26: A CPS version of Esos expressed in Silkcps .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 725

17.9.2 A Simple CPS Transform

CPS conversion is a meaning-preserving transformation that converts every pro-
cedure call in program into a tail call. In the Tortoise compiler, CPS conver-
sion has the following specification:

Preconditions: The input to CPS conversion is valid, uniquely named
Silk program.

Postconditions: The output of CPS conversion is a valid, uniquely named
Silkcps program.

Other properties: If the input program is assignment-free, so is the
output program.

In this section, we present the first of two CPS transformations that we
will study. The first transformation, which we call SCPS (for Simple CPS
conversion) is easier to explain, but generates code that is much less efficient
than that produced by the second transformation.

The SCPS transformation is defined in Figures 17.27 and 17.28. The heart
of the transformation is SCPS exp , which transforms expressions into CPS form.
SCPSexp transforms any given expression E to an abstraction (lambda (Ik) E ′)

that expects as its argument Ik an explicit continuation for E and eventually
calls this continuation on the value of E in E ′. This explicit continuation is im-
mediately invoked to “return” the values of literals, identifiers, and abstractions.
Each abstraction is transformed to take as a new additional final parameter a
continuation Ikcall that is passed as the explicit continuation to its transformed
body. Because the grammar of Silkcps does not allow abstractions to appear
directly as call arguments, it is also necessary to name the transformed ab-
straction in a let via a fresh identifier Iabs .

In the transformation of a call expression (call E0 E1 . . . En), explicit
continuations are used to specify that the rator E0 and rands E1 . . . En are
evaluated in left to right order before the invocation takes place. The fresh
variables I0 . . . In are introduced to name the values of each subexpression. Since
every procedure has been transformed to expect an explicit continuation as its
final argument, the transformed callmust supply its continuation Ik as the final
rand. The let transformation is similar, except that the let-bound names are
used in place of fresh names for naming the values of the definition expressions.
The unique naming requirement on input programs to SCPS guarantees that no
variable capture can take place in the let transformation (see Exercise 17.17).

The transformation of primop expressions is similar to that for call and let.
The syntactic constraints of Silkcps require that a fresh variable (here named

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

726 CHAPTER 17. COMPILATION

SCPSprog : ProgramSilk → Programcps

SCPSprog [[(silk (I1 . . . In) Ebody)]] =
(silk (I1 . . . In Iktop) ; Iktop fresh

(let ((Ibody (SCPSexp [[Ebody]]))) ; Ibody fresh

(call Ibody Iktop)))

SCPSexp : ExpSilk → Expcps

SCPSexp [[L]] = (lambda (Ik) (call Ik L)) ; Ik fresh

SCPSexp [[I]] = (lambda (Ik) (call Ik I)) ; Ik fresh

SCPSexp [[(lambda (I1 . . . In) Ebody)]] =
(lambda (Ik) ; Ik fresh

(let ((Iabs ; Iabs fresh

(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(call (SCPSexp [[Ebody]]) Ikcall))))
(call Ik Iabs)))

SCPSexp [[(call E0 . . . En)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E0]])
(lambda (I0) ; I0 fresh

...

(call (SCPSexp [[En]])
(lambda (In) ; In fresh

(call I0 . . . In Ik))) . . .)))

SCPSexp [[(let ((I1 E1) . . . (In En)) Ebody)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E1]])
(lambda (I1)

...

(call (SCPSexp [[En]])
(lambda (In)
(call (SCPSexp [[Ebody]]) Ik))))))

Figure 17.27: A simple CPS transform, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 727

SCPSexp [[(primop O E1 . . . En)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[E1]])
(lambda (I1) ; I1 fresh

...

(call (SCPSexp [[En]])
(lambda (In) ; In fresh

(let ((Ians (primop O I1 . . . In))) ; Ians fresh

(call Ik Ians)))) . . .)))

SCPSexp [[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] =
(lambda (Ik) ; Ik fresh

(cycrec ((I1 (SCPSbv [[BV1]]))
...

(In (SCPSbv [[BVn]])))
(call (SCPSexp [[Ebody]]) Ik)))

SCPSexp [[(set! Ilhs Erhs)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[Erhs]])
(lambda (Irhs) ; Irhs fresh

(let ((Ians (set! Ilhs Irhs))) ; Ians fresh

(call Ik Ians)))))

SCPSexp [[(if Etest Ethen Eelse)]] =
(lambda (Ik) ; Ik fresh

(call (SCPSexp [[Etest]])
(lambda (Itest) ; Itest fresh

(if Itest
(call (SCPSexp [[Ethen]]) Ik)
(call (SCPSexp [[Eelse]]) Ik)))))

SCPSexp [[(error Imsg)]] = (lambda (Ik) (error Imsg)) ; Ik fresh

SCPSbv : BindingValueSilk → BindingValuecps

SCPSbv [[L]] =L

SCPSbv [[(@mprod DV1 . . . DVn)]] = (@mprod SCPSdv [[DV1]] . . . SCPSdv [[DVn]])

SCPSbv [[(lambda (I1 . . . In) Ebody)]]
(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(call (SCPSexp [[Ebody]]) Ikcall))

SCPSdv : DataValueSilk → DataValuecps

SCPSdv [[V]] =V

SCPSdv [[AB]] =SCPSbv [[AB]]

Figure 17.28: A simple CPS transform, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

728 CHAPTER 17. COMPILATION

Ians) be introduced to name the results of these expressions before passing them
to the continuation. A similar let binding is needed in the set! transformation.
The transformation of cycrec uses SCPS bv to transform binding value expres-
sions. This function acts as the identity on literals and mutable tuple creation
forms, but transforms abstractions to take an extra continuation parameter.

In a transformed if expression, a fresh name Itest names the result of the
test expression and the same continuation Ik is supplied to both transformed
branches. This is the only place in SCPS where the explicit continuation Ik
is referenced more than once in the transformed expression. The transformed
error construct is the only place where the continuation is never referenced.
All other constructs use Ik in a linear fashion — i.e., they reference it exactly
once. This makes intuitive sense for regular control flow, which has only one
possible “path” out of every expression other than if and error. Even in the
if case, only one branch can be taken in a dynamic execution even though the
the continuation is mentioned twice. Later we will study how CPS conversion
exposes the non-linear nature of some sophisticated control features.

Silk programs are converted to CPS form by SCPSprog , which adds an addi-
tional parameter Iktop that is an explicit top-level continuation for the program.
It is assumed that the mechanism for program invocation will supply an appro-
priate procedure for this argument. For example, an operating system might
construct a top-level continuation that displays the result of the program on the
standard output stream or in a window within a graphical user interface.

The clauses for SCPSexp contain numerous instances of the pattern

(call (SCPSexp [[E1]]) E2),
where E2 is an abstraction or variable reference. But SCPS exp is guaranteed
to return a lambda expression, and the Silkcps grammar does not allow any
subexpression of a call to be a lambda. Doesn’t this yield an illegal Silkcps

expression? The result of SCPSexp would be illegal if were not for the [implicit-
let] simplification, which transforms every call of the form

(call (lambda (Ik) E1
′) E2)

into to the expression

(let ((Ik E2)) E1
′).

Since the grammar for letable expressions LE permits definition expressions
that are variables and abstractions, the result of SCPS exp is guaranteed to be
a legal Silkcps expression. Note that when E2 is a variable the [copy-prop]
simplification will also be performed. This simplification is always valid in the
CPS stage of the Tortoise compiler, because the input and output of CPS

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 729

conversion are guaranteed to be assignment-free.

As a simple example of SCPS , consider the CPS conversion of the incre-
menting program Pinc = (silk (a) (@+ a 1)). Before any simplifications are
performed, SCPSprog [[Pinc]] yields

(silk (a ktop.0)

(call (lambda (k.2)

(call (lambda (k.6)

(call k.6 a))

(lambda (v.3)

(call (lambda (k.5)

(call k.5 1))

(lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call k.2 ans.1)))))))

ktop.0)).

Four applications of [implicit-let] simplify this code to

(silk (a ktop.0)

(let ((k.2 ktop.0))

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call k.2 ans.1)))))

(call k.5 1)))))

(call k.6 a)))).

A single [copy-prop] simplification replaces k.2 by k.top to yield the final result
Pinc

′:

(silk (a ktop.0)

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1)))))

(call k.5 1)))))

(call k.6 a))).

You should verify that Pinc
′ is a legal Silkcps program. The convoluted

nature of Pinc
′ makes it a bit tricky to read. Here is one way to “pronounce”

this program:

The program is given an input a and top-level continuation ktop.0.
First evaluate a and pass its value to continuation k.6, which gives
it the name v.3. Then evaluate 1 and pass it to continuation k.5,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

730 CHAPTER 17. COMPILATION

which gives it the name v.4. Next, calculate the sum of v.3 and v.4

and name the result ans.1. Finally, return this answer as the result
of the program by invoking ktop.0 on ans.1.

This seems like an awful lot of work to increment a number! Even though the
[implicit-let] and [copy-prop] rules have simplified the program, it could still be
simpler. In particular, the continuations k.5 and k.6 merely rename the values
of a and 1 to v.3 and v.4, which is unnecessary.

In larger programs, the extent of these undesirable inefficiencies becomes
more apparent. For example, Figure 17.29 shows the result of using SCPS to
transform a numerical program Pquad with several nested subexpressions. Try
to “pronounce” the transformed program as illustrated above. Along the way
you will notice numerous unnecessary continuations and renamings. The result
of performing SCPS on our running revmap example is so large that it would
require several pages to display. The revmap program has an abstract syntax
tree with 46 nodes; transforming it with SCPSprog yields a result with 230 nodes.
And this is after simplification — the unsimplified transformed program has 317
nodes!

Can anything be done to automatically eliminate the inefficiences introduced
by SCPS? Yes. It is possible to define additional simplification rules that
will make the CPS converted code much more reasonable. For example, in
(let ((I Edefn)) Ebody), if Edefn is a literal or abstraction, it is possible to
replace the let by the substitution of Edefn for I in Ebody . This simplification
is traditionally called constant propagation and (when followed by [implicit-
let]) is called inlining for abstractions. For example, two applications of inlining
on Pinc

′ yield

(silk (a ktop.0)

(let ((v.3 a))

(let ((v.4 1))

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1))))),

and then copy propagation and constant propagation simplify the program to

(silk (a ktop.0)

(let ((ans.1 (@+ a 1)))

(call ktop.0 ans.1))).

Performing these additional simplifications on Pquad
′ gives the following much

improved CPS code:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 731

Pquad = (silk (a b c) (@+ (@- 0 (@* b b)) (@* 4 (@* a c))))

SCPSprog [[Pquad]] = Pquad
′, where Pquad

′ =

(silk (a b c ktop.0)

(let* ((k.17

(lambda (v.3)

(let* ((k.6

(lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1))))

(k.15

(lambda (v.7)

(let* ((k.10 (lambda (v.8)

(let ((ans.5 (@* v.7 v.8)))

(call k.6 ans.5))))

(k.14

(lambda (v.11)

(let ((k.13

(lambda (v.12)

(let ((ans.9 (@* v.11 v.12)))

(call k.10 ans.9)))))

(call k.13 c)))))

(call k.14 a)))))

(call k.15 4))))

(k.26

(lambda (v.18)

(let* ((k.21 (lambda (v.19)

(let ((ans.16 (@- v.18 v.19)))

(call k.17 ans.16))))

(k.25 (lambda (v.22)

(let ((k.24 (lambda (v.23)

(let ((ans.20 (@* v.22 v.23)))

(call k.21 ans.20)))))

(call k.24 b)))))

(call k.25 b)))))

(call k.26 0)))

Figure 17.29: Simple CPS conversion of a numeric program.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

732 CHAPTER 17. COMPILATION

(silk (a b c ktop.0)

(let* ((ans.20 (@* b b))

(ans.16 (@- 0 ans.20))

(ans.9 (@* a c))

(ans.5 (@* 4 ans.9))

(ans.1 (@* ans.16 ans.5)))

(call ktop.0 ans.1))).

These examples underscore the inefficiency of the code generated by SCPS.
Why don’t we just modify Silk to include the constant propagation and

inlining simplifications? Constant propagation is not problematic, but inlining
is a delicate transformation. In Silkcps , it is only legal to copy an abstraction
to certain positions (such as the rator of a call, where it can be removed via
[implicit-let]). When a named abstraction is used more than once in the body
of a let, copying the abstraction multiple times makes the program bigger.
Unrestricted inlining can lead to code bloat, a dramatic increase in the size
of a program. In the presence of recursive procedures, special care must often
be taken to avoid infinitely unwinding a recursive definition via inlining. Since
we intend that Silk simplifications should be straightforward to implement,
we prefer not to include inlining as a simplification. Inlining issues are further
explored in Exercise 17.19.

Does that mean we are stuck with an inefficient CPS transformation? No.
In the next section, we study a cleverer approach to CPS conversion that avoids
generating unnecessary code in the first place.

¤ Exercise 17.15 Consider the Silk program

P = (silk (x y) (@* (@+ x y) (@- x y))).

a. Show the result P1 generated by SCPSprog [[P]] without performing any simplifi-
cations.

b. Show the result P2 of simplifying P1 using the standard Silk simplifications
(including [implicit-let] and [copy-prop]).

c. Show the result P3 of further simplifying P2 using inlining in addition to the
standard Silk simplifications. ¢

¤ Exercise 17.16

a. Suppose that (begin E*), (scand E*), and (scor E*) were not syntactic sugar
but a kernel Silk constructs. Give the SCPSexp clauses for begin, scand, and
scor.

b. Suppose that Silk were extended with FL’s cond construct (as a kernel form,
not sugar). Give the SCPSexp clause for cond. ¢

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 733

¤ Exercise 17.17

a. Give a concrete example of how variable capture can take place in the let clause
of SCPSexp if the initial program is not uniquely named.

b. Modify the let clause of SCPSexp so that it works properly even if the initial
program is not uniquely named ¢

¤ Exercise 17.18 Control branches in linear assembly language code are usually
provided via branch instructions that perform a control jump if a certain condition
holds but “drop through” to the next instruction if the condition does not hold. We
can model branch instructions in Silkcps by restricting if expressions to have the form

(if Vcps (call Vcps Vcps*) Ecps).

Modify the SCPSexp clause for if so that all transformed ifs have this restricted

form. ¢

¤ Exercise 17.19 Consider the following [copy-abs] simplification rule:

(let ((I AB)) Ebody)−simp−−−→ [AB /I]Ebody [copy-abs]

Together, [copy-abs] and the standard Silk [implicit-let] and [copy-prop] rules imple-
ment a form of procedure inlining. For example

(let ((inc (lambda (x) (@+ x 1))))

(@* (call inc a) (call inc b)))

can be simplified via [copy-abs] to

(@* (call (lambda (x) (@+ x 1)) a)

(call (lambda (x) (@+ x 1)) b)).

Two applications of [implicit-let] give

(@* (let ((x a)) (@+ x 1))

(let ((x b)) (@+ x 1))),

and two applications of [copy-prop] yield the inlined code

(@* (@+ a 1) (@+ b 1)).

In this exercise, we explore some issues with inlining.

a. Use inlining to remove all calls to sqr in the following Silk expression. How
many multiplications does the resulting expression contain?

(let ((sqr (lambda (x) (@* x x))))

(call sqr (call sqr (call sqr a))))

b. Use inlining to remove all calls to sqr, quad, and oct in the following Silk
expression. How many multiplications does the resulting expression contain?

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

734 CHAPTER 17. COMPILATION

(let* ((sqr (lambda (x) (@* x x)))

(quad (lambda (y) (@* (call sqr y) (call sqr y))))

(oct (lambda (z) (@* (call quad z) (call quad z)))))

(@* (call oct a) (call oct b)))

c. What happens if inlining is used to simplify the following Silk expression?

(let ((f (lambda (g) (call g g))))

(call f f))

(For the purposes of this part, ignore the Silk type system.)

d. Using only standard Silk simplifications, the result of SCPSprog is guaranteed to
be uniquely named if the input is uniquely named. This property does not hold
in the presence of inlining. Write an example program Pnun such that the result
of simplifying SCPSprog [[Pnun]] via inlining is not uniquely named. Hint: Where
can duplication occur in a CPS converted program?

e. Inlining multiple copies of an abstraction can lead to code bloat. Develop an
example Silk Pbloat where performing inlining on the result of SCPSprog [[Pbloat]]
yields a larger transformed program rather than a smaller one. Hint: Where can
duplication occur in a CPS converted program? ¢

17.9.3 A More Efficient CPS Transform

Reconsider the output of SCPS on the incrementing program (silk (a) (@+ a 1)):

(silk (a ktop.0)

(let ((k.6 (lambda (v.3)

(let ((k.5 (lambda (v.4)

(let ((ans.1 (@+ v.3 v.4)))

(call ktop.0 ans.1)))))

(call k.5 1)))))

(call k.6 a)).

In the above code, we have used gray to highlight the inefficient portions of the
code that we wish to eliminate. These are exactly the portions we were able
to eliminate via extra simplifications like inlining and constant propagation in
the previous section. Our goal in developing a more efficient CPS transform
is to perform these simplifications as part of CPS conversion itself rather than
waiting to do them later. Instead of sweeping away unsightly gray code as an
afterthought, we want to simply avoid generating it in the first place!

The key insight is that we can avoid generating the gray code if we somehow
make it part of metalanguage that specifies the CPS conversion algorithm. Sup-
pose we change the gray Silk lets, lambdas, and calls to metalanguage lets,
procs and applications. Then our example would become:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 735

(silk (a ktop.0)

let k6 be (λV3 .
let k5 be (λV4 .

(let ((ans.1 (@+ V3 V4)))

(call ktop.0 ans.1)))
in (k5 1))

in (k6 a))

To enhance readability, we will keep the metalanguage notation in gray and
the Silk code in black teletype font. Note that k5 and k6 name metalanguage
functions whose parameters (V3 and V4) must be pieces of Silk syntax — in
particular, Silk value expressions. Indeed, k5 is applied to the Silk literal
1 and k6 is applied to the Silk literal a. The result of evaluating the gray
metalanguage expressions in our example yields

(silk (a ktop.0)

(let ((ans.1 (@+ a 1)))

(call ktop.0 ans.1))),

which is exactly the simplified result we want!

What we have done is taken computation that would have been performed
when executing the code generated by CPS conversion and moved it so that it is
performed when the code is generated. The output of CPS conversion can now
be viewed as code that is executed in two stages: the gray code is the code that
can be executed immediately, while the black code is the residual code that
can only be executed later. This notion of staged computation is a key idea
in an approach to optimization known as partial evaluation. By expressing
the gray code in the metalanguage, it gets executed “for free” as part of the
CPS translation itself.

Our improved approach to CPS conversion will make heavy use of gray ab-
stractions of the form (λV) that map Silkcps value expressions (i.e., literals
and variable references) to other Silkcps expressions. Because these abstrac-
tions play the role of continuations at the metalanguage level, we call them
meta-continuations. In the above example, k5 and k6 are examples of meta-
continuations.

A meta-continuation can be viewed as a metalanguage representation of a
special kind of context: a Silkcps expression with named holes that can be filled
only with Silkcps value expresssions. Such contexts may contain more than one
hole, but a hole with a given name can appear only once. For example, here
are meta-continuations that arise in the CPS conversion of the incrementing
example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

736 CHAPTER 17. COMPILATION

Context Notation Metalanguage Notation
(call ktop.0 21) λV1 . (call ktop.0 V1)

(let ((ans.1 (@+ 23 24)))

(call ktop.0 ans.1))

λV4 . (let ((ans.1 (@+ V3 V4)))

(call ktop.0 ans.1))

(let ((ans.1 (@+ 23 1)))

(call ktop.0 ans.1))

λV3 . (let ((ans.1 (@+ V3 1)))

(call ktop.0 ans.1))

Figures 17.30 and 17.31 present an efficient version of CPS conversion that
is based on the notions of staged computation and meta-continuations. The
metavariable m ranges over meta-continuations in the domain MetaCont, which
consists of functions that map Silkcps value expressions to Silkcps expressions.
The mc→exp and exp→mc functions perform conversions between compile-time
meta-continuations and Silkcps expressions denoting run-time continuations.

The CPS conversion clauses in Figures 17.30 and 17.31 are similar to the
ones in Figures 17.27 and 17.28. Indeed, the former are obtained from the latter
by:

• transforming every continuation-accepting Silkcps abstraction of the form
(lambda (Ik) . . .) into a metalanguage abstraction of the form (λm);

• transforming every Silkcps continuation of the form (lambda (I) . . .)
into a meta-continuation of the form (λV);

• transforming every Silkcps application (call Ek V) in which Ek is a
continuation (either an abstraction or a variable) to a meta-application
of the form (m V), where m is the meta-continuation that corresponds to
Ek .

• using the mc→exp and exp→mc functions where necessry to ensure that
all the types work out.

The key benefit of the meta-continuation approach to CPS conversion is that
many reductions that would be left as residual run-time code in the simple ap-
proach are guaranteed to be performed at compile-time in the metalanguage.
We illustrate this in Figure 17.32 by showing the CPS conversion of the expres-
sion (call f (@* x (if (call g y) 2 3))) relative to an initial continuation
named k. In the figure, each meta-application of the form

((λm . E{(m Vactual)}) (λVformal . E))

(where E is a Silkcps expression context with one hole) is reduced to

E{[Vactual/Vformal]E}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 737

Ecps ∈ Expcps
Vcps ∈ ValueExpcps

m ∈ MetaCont = ValueExpcps → Expcps

mc→exp : MetaCont → Expcps =(λm . (lambda (Itemp) (m Itemp)))
exp→mc : Expcps → MetaCont =(λEcps . (λVcps . (call Ecps Vcps)))

MCPSprog : ProgramSilk → Programcps

MCPSprog [[(silk (I1 . . . In) Ebody)]] =
(silk (I1 . . . In Iktop) ; Iktop fresh

(MCPSexp [[Ebody]] (exp→mc Iktop)))

MCPSexp : ExpSilk → MetaCont → Expcps

MCPSexp [[L]] = (λm . (m I))

MCPSexp [[I]] = (λm . (m L))

MCPSexp [[(lambda (I1 . . . In) Ebody)]] =
(λm . (let ((Iabs ; Iabs fresh

(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[Ebody]] (exp→mc Ikcall)))))
(m Iabs)))

MCPSexp [[(call E0 . . . En)]] =
(λm . (MCPSexp [[E0]]

(λV0 .
...

(MCPSexp [[En]]
(λVn . (call V0 . . . Vn (mc→exp m)))) . . .)))

MCPSexp [[(let ((I1 E1) . . . (In En)) Ebody)]] =
(λm . (MCPSexp [[E1]]

(λV1 .
...

(MCPSexp [[En]]
(λVn . (let ((I1 V1) . . . (In Vn))

(MCPSexp [[Ebody]] m)))) . . .)))

Figure 17.30: An efficient CPS transform based on meta-continuations, part 1.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

738 CHAPTER 17. COMPILATION

MCPSexp[[(primop O E1 . . . En)]] =
(λm . (MCPSexp [[E1]]

(λV1 .
...

(MCPSexp [[En]]
(λVn . (let ((Ians (primop O V1 . . . Vn))) ; Ians fresh

(m Ians))) . . .)))

MCPSexp[[(cycrec ((I1 BV1) . . . (In BVn)) Ebody)]] =
(λm . (cycrec ((I1 (MCPSbv [[BV1]]))

...

(In (MCPSbv [[BVn]])))
(MCPSexp [[Ebody]] m))

MCPSexp[[(set! Ilhs Erhs)]] =
(λm . (MCPSexp[[Erhs]]

(λVrhs . (let ((Ians (set! Ilhs Vrhs))) ; Ians fresh

(m Ians)))))

MCPSexp[[(if Etest Ethen Eelse)]] =
(λm . (MCPSexp[[Etest]]

(λVtest . (let ((Ikif (mc→exp m)))
(if Vtest

(MCPSexp [[Ethen]] (exp→mc Ikif))
(MCPSexp [[Eelse]] (exp→mc Ikif))))))

MCPSexp[[(error Imsg)]] = (λm . (error Imsg))

SCPSbv : BindingValueSilk → BindingValuecps

MCPSbv [[L]] =L

MCPSbv [[(@mprod V1 . . . Vn)]] = (@mprod V1 . . . Vn) ; unchanged

MCPSbv [[(lambda (I1 . . . In) Ebody)]] =
(lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[E]] (exp→mc Ikcall)))

MCPSdv : DataValueSilk → DataValuecps

MCPSdv [[V]] =V

MCPSdv [[AB]] =SCPSbv [[AB]]

Figure 17.31: An efficient CPS transform based on meta-continuations, part 2.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 739

and each meta-application of the form (MCPSexp [[Vactual]] (λVformal . E)) is re-
duced to [Vactual/Vformal]E. Each of these reductions removes a potential run-
time application that might remain after simple CPS conversion.

The example illustrates how MCPS effectively turns the input expression
“inside out”. In the input expression, the call to f is the outermost call, and
(call g y) is the innermost call. But in the CPS-converted result, the call to g

is the outermost call and the call to f is nested deep inside. This reorganization
is necessary to make explicit the order in which operations are performed:

1. g is applied to y;

2. the result of the g application (call it t.4) is tested by if;

3. the test determines which of 2 or 3 (call it t.3) is mulitplied by x;

4. f is invoked on the result of the multiplication (call it ans.1);

5. the result of the f application is supplied to the continuation k.

Variables such as ans.1, t.3, and t.4 can be viewed as denoting temporary
registers.

Note that (mc→exp (exp→mc k)) is simplified to k in our example. To see
why, observe that

(mc→exp (exp→mc k))
= ((λm . (lambda (Itemp) (m Itemp))) (λV . (call k V)))
= (lambda (Itemp) ((λV . (call k V)) Itemp))
= (lambda (Itemp) (call k Itemp)).

The final expression is simplified to k by the [eta-lambda] rule. This eta-
reduction eliminates a call in cases where the CPS transform would have gen-
erated a continuation that simply passed its argument along to another contin-
uation with no additional processing. This simplification is sometimes called
the tail call optimization because it guarantees that tail calls in the source
program require no additional control storage in the compiled program; they can
be viewed as assembly code jumps that pass arguments. Languages are said to
be properly tail recursive if implementations are required to compile source
tail calls into jumps. Our Silk mini-language is properly tail recursive, as is the
real language Scheme. Such languages can leave out iteration constructs (like
while and for loops) and still have programs with iterative behavior.

Observe that in each clause ofMCPS , the meta-continuation m is referenced
at most once. This guarantees that each meta-application makes the metalan-
guage expression smaller. Thus there is no specter of duplication-induced code
bloat that haunts more general inlining optimizations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

740 CHAPTER 17. COMPILATION

(MCPSexp [[(call f (@* x (if (call g y) 2 3)))]] (exp→mc k))

= ((λm . (MCPSexp[[f]] (λV1 . (MCPSexp [[(@* x (if (call g y) 2 3))]]
(λV2 . (call V1 V2 (mc→exp m)))))))

(exp→mc k))

= (MCPSexp [[f]] (λV1 . (MCPSexp [[(@* x (if (call g y) 2 3))]]
(λV2 . (call V1 V2 (mc→exp (exp→mc k)))))))

= (MCPSexp [[(@* x (if (call g y) 2 3))]] (λV2 . (call f V2 k)))

= ((λm . (MCPSexp[[x]]
(λV3 . (MCPSexp [[(if (call g y) 2 3)]]

(λV4 . (let ((ans.1 (@* V3 V4))) (m ans.1)))))))
(λV2 . (call f V2 k)))

= (MCPSexp [[x]]
(λV3 . (MCPSexp [[(if (call g y) 2 3)]]

(λV4 . (let ((ans.1 (@* V3 V4))) (call f ans.1 k))))))

= (MCPSexp [[(if (call g y) 2 3)]]
(λV4 . (let ((ans.1 (@* x V4))) (call f ans.1 k))))

= ((λm . (MCPSexp[[(call g y)]]
(λV5 . (let ((kif.2 (mc→exp m)))

(if V5

(MCPSexp [[2]] (exp→mc kif.2))
(MCPSexp [[3]] (exp→mc kif.2)))))))

(λV4 . (let ((ans.1 (@* x V4))) (call f ans.1 k))))

= (MCPSexp [[(call g y)]]
(λV5 . (let ((kif.2 (lambda (t.3) (let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if V5

(MCPSexp [[2]] (λV6 . (call kif.2 V6)))
(MCPSexp [[3]] (λV7 . (call kif.2 V7)))))))

= ((λm . (MCPSexp [[g]] (λV8 .)(MCPSexp [[y]] (λV9 . (call V8 V9 (mc→exp m))))))
(λV5 . (let ((kif.2 (lambda (t.3) (let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if V5 (call kif.2 2) (call kif.2 3)))))

= (call g y (lambda (t.4)

(let ((kif.2 (lambda (t.3)

(let ((ans.1 (@* x t.3)))

(call f ans.1 k)))))

(if t.4 (call kif.2 2) (call kif.2 3)))))

Figure 17.32: An example of CPS conversion using meta-continuations.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 741

Converting the meta-continuation to a Silkcps abstraction named Ikif in the
if clause is essential for ensuring this guarantee. It is important to note that the
Ikif abstraction does not destroy proper tail recursion. Consider the expression

(if (f x) (g y) (h z)).

The call to f is not a tail call, but the calls to g and h are tail calls. Without
simplifications, the result of CPS converting this expression relative to an initial
continuation k is

(call f x (lambda (t.3)

(let ((kif.1 (lambda (t.2) (call k t.2))))

(if t.3 (call g y kif.1) (call h z kif.1))))).

Fortunately, the standard simplifications implement proper tail recursion in this
case. The [eta-lambda] simplification yields

(call f x (lambda (t.3)

(let ((kif.1 k))

(if t.3 (call g y kif.1) (call h z kif.1)))))

and the [copy-prop] simplification yields

(call f x (lambda (t.3) (if t.3 (call g y k) (call h z k)))).

Figure 17.33 shows the result of using MCPS to CPS convert our running
revmap example. Observe that the output of CPS conversion looks quite a bit
closer to assembly language code than the input. You should study the code
to convince yourself that this program has the same behavior as the original
program. CPS conversion has introduced only one non-trivial continuation ab-
straction: k.38 names the continuation of the call to f in the body of the loop.
Each input abstraction has been extended with a final argument naming its con-
tinuation: abs.12 (this is just a renamed version of revmap) takes continuation
argument k.22; the loop takes continuation argument k.27; and the greater-
than-b procedure takes continuation k.20. Note that the loop.8 procedure is
invoked tail recursively within its body, so it requires only constant control space
and is thus a true iteration construct like loops in traditional languages.

It is worth noting that the conciseness of the code in Figure 17.33 is a combi-
nation of the simplifications performed by reducing meta-applications at compile
time and the standard Silkcps simplifications. To underscore the importance of
the latter, Figure 17.34 shows the result of MCPS before any Silkcps simplifi-
cations are performed.

¤ Exercise 17.20 UseMCPSexp to CPS convert the following expressions relative to
an initial meta-continuation (exp→mc k).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

742 CHAPTER 17. COMPILATION

(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(lambda (f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24)))

(cycrec

((loop.8

(lambda (xs.9 k.27)

(let ((t.29 (@null? xs.9)))

(if t.29

(let ((t.39 (@mget 1 t.23)))

(call k.27 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (lambda (t.33)

(let* ((t.34 (@mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (@mset! 1 t.23 t.31))

(t.35 (@cdr xs.9)))

(call loop.8 t.35 k.27)))))

(call f.5 t.32 k.38)))))))

(call loop.8 lst.6 k.22)))))

(abs.13

(lambda (x.4 k.20)

(let ((t.21 (@> x.4 b.2)))

(call k.20 t.21))))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15)))

(call abs.12 abs.13 t.14 ktop.11)))

Figure 17.33: Running example after CPS conversion (with simplifications).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 743

(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(lambda (f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24))

(ans.7 t.23))

(cycrec

((loop.8

(lambda (xs.9 k.27)

(let* ((kif.29 (lambda (t.28) (call k.27 t.28)))

(t.30 (@null? xs.9)))

(if t.30

(let ((t.40 (@mget 1 ans.7)))

(call kif.29 t.40))

(let* ((t.33 (@car xs.9))

(k.39

(lambda (t.34)

(let* ((t.35 (@mget 1 ans.7))

(t.32 (@cons t.34 t.35))

(t.31 (@mset! 1 ans.7 t.32))

(ignore.10 t.31)

(t.36 (@cdr xs.9))

(k.38

(lambda (t.37)

(call kif.29 t.37))))

(call loop.8 t.36 k.38)))))

(call f.5 t.33 k.39)))))))

(let ((k.26 (lambda (t.25) (call k.22 t.25))))

(call loop.8 lst.6 k.26))))))

(revmap.3 abs.12)

(abs.13

(lambda (x.4 k.20)

(let ((t.21 (@> x.4 b.2)))

(call k.20 t.21))))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15))

(k.19 (lambda (t.18) (call ktop.11 t.18))))

(call revmap.3 abs.13 t.14 k.19)))

Figure 17.34: Running example after CPS conversion (without simplifications).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

744 CHAPTER 17. COMPILATION

a. (lambda (f) (+ 1 (call f 2)))

b. (lambda (g x) (+ 1 (g x)))

c. (lambda (f g h y) (call f (call g x) (call h y)))

d. (lambda (f) (@* (if (f 1) 2 3) (if (f 4) 5 6))) ¢

¤ Exercise 17.21 UseMCPSprog to CPS convert the following programs:
a. The program Pquad from Figure 17.29.

b. (silk (x)

(cycrec ((fact (lambda (n)

(if (@= n 0)

1

(@* n (call fact (@- n 1)))))))

(call fact x)))

c. (silk (x)

(cycrec ((fib (lambda (n)

(if (@<= n 1)

n

(@+ (call fib (@- n 1))

(call fib (@- n 2)))))))

(fib x))) ¢

¤ Exercise 17.22 Do Exercise 17.16, giving MCPSexp clauses instead of SCPSexp
clauses. ¢

¤ Exercise 17.23 The unique naming prerequisite on programs is essential for the cor-
rectness ofMCPSprog [[.]] To demonstrate this, show that the output ofMCPSprog [[Pmnun]]
has a different behavior from Pmnun , where Pmnun is:

(silk (a b)

(@+ (let ((a (@* b b)))

a)

a))

¢

¤ Exercise 17.24

a. Show the result of usingMCPSexp [[]] to convert the following program Pset!:

(silk (a b)

(let ((ignore.0 (set! a (set! b (@+ a b)))))

(@mprod a b))).

b. In the Tortoise compiler, assignment conversion is performed before CPS con-
version. Show the result ofMCPSprog [[ACprog [[Pset!]]]].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 745

c. It is possible to perform assignment conversion after closure conversion. Show
the result of ACprog [[MCPSprog [[Pset!]]]]. Is the result in CPS form?

d. Describe how to modify assignment conversion to guarantee that if its input is in
CPS form then its output is in CPS form. ¢

¤ Exercise 17.25 Bud Lojack thinks he can improve MCPS by extending meta-
continuations to take letable expressions rather than just value expressions:

m ∈ MetaCont = LetableExpcps → Expcps

Recall (from Figure 17.25) that letable expressions include abstractions, primitive ap-
plications, and assignment expressions in addition to value expressions. Bud reasons
that if meta-continuations are changed in this way, then he can call them directly on
abstractions, primitive applications, and assignment expressions. Of course, it will also
be necessary to wrap all letable expressions in lets, but Bud figures that Silk’s syn-
tactic simplifications will remove most unnecessary let bindings. Bud changes several
MCPSexp clauses as shown in Figure 17.35.
a. Show the result of using Bud’s clauses to CPS convert the following expression
relative to an initial continuation k:

(call f (lambda (a b) (@+ (@* a a) (@* b b))))

b. Bud proudly shows his new clauses to Abby Stracksen. Abby says “Your approach
is interesting, but it has a major bug: it can change the meaning of programs
by reordering side effects!” Show that Abby is right by giving simple programs
involving mprod and set! in which Bud’s CPS converter changes the meaning of
the program. ¢

17.9.4 CPS Converting Control Constructs

[This section still needs text!]

¤ Exercise 17.26 The CPS transformation can be used to implement seemingly
complex control structures in a simple way. This problem examines the implementation
of a simplified form of dynamically scoped exceptions with termination semantics (as
presented in Section 9.5). Suppose we extend the kernel with two new constructs, catch
and throw, as follows:

E ::= . . . | (catch E1 E2) | (throw E)

In this simplified form, we have only one possible exception; therefore, we don’t need
exception identifiers. Here is the informal semantics of the new constructs:

• (catch E1 E2) evaluates E1 to a procedure and installs it as the dynamic ex-
ception handler active during the evaluation of E2 . It is an error if E1 does not
evaluate to a procedure.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

746 CHAPTER 17. COMPILATION

m ∈ MetaCont = LetableExpcps → Expcps

mc→exp : MetaCont → Expcps =(λm . (lambda (Itemp) (m Itemp)))
exp→mc : Expcps → MetaCont

=(λEcps . (λLE cps . (let ((Irand LE cps)) (call Ecps Irand))))

MCPSexp[[(lambda (I1 . . . In) Ebody)]] =
(λm . (m (lambda (I1 . . . In Ikcall) ; Ikcall fresh

(MCPSexp [[E]] (exp→mc Ikcall)))))

MCPSexp[[(call E0 . . . En)]] =
(λm . (MCPSexp [[E1]]

(λLE 1 .
...

(MCPSexp [[En]]
(λLEn . (let* ((I1 LE1) . . . (In LEn)) ; I1 . . . In fresh

(call I1 . . . In (mc→exp m))))) . . .)))

MCPSexp[[(let ((I1 E1) . . . (In En)) Ebody)]] =
(λm . (MCPSexp [[E1]]

(λLE 1 .
...

(MCPSexp [[En]]
(λLEn . (let ((I1 LE1) . . . (In LEn))

(MCPSexp [[Ebody]] m)))) . . .)))
MCPSexp[[(primop O E1 . . . En)]] =
(λm . (MCPSexp [[E1]]

(λLE 1 .
...

(MCPSexp [[En]]
(λLEn . (let* ((I1 LE1) . . . (In LEn)) ; I1 . . . In fresh

(m (primop O I1 . . . In)))) . . .)))

MCPSexp[[(set! Ilhs Erhs)]] =
(λm . (MCPSexp[[Erhs]]

(λLE rhs . (let ((Irhs LE rhs)) ; Irhs fresh

(m (set! Ilhs Irhs))))))

MCPSexp[[(if Etest Ethen Eelse)]] =
(λm . (MCPSexp[[Etest]]

(λLE test . (let ((Ikif (mc→exp m))
(Itest LE test)) ; Itest fresh

(if Itest
(MCPSexp [[Ethen]] (exp→mc Ikif))
(MCPSexp [[Eelse]] (exp→mc Ikif))))))

Figure 17.35: Bud’s alternative form of CPS conversion. Clauses not shown are
unchanged.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.9. TRANSFORM 7: CPS CONVERSION 747

• (throw E) evaluates E and passes the resulting value, along with control, to the
currently active exception handler.

Here is a short example:

(catch (lambda (x) #f)

(let ((f (lambda (x) (throw 5))))

(catch (lambda(x) (+ 1 x))

(f #f)))) −−−eval→ 6

The standard SCPS conversion rules can be modified to translate every expression into
a procedure taking two continuations: a normal continuation and an exception con-
tinuation. The SCPS conversion rules for top level expressions, identifiers and literals
are:

CPS[[E]] = (program (define *top* (lambda (v) v))

(define *except* (lambda (v)

"throw without catch"))

(SCPS [[E]] *top* *except*))
SCPS[[I]] = (lambda (kn ke) (kn I))
SCPS[[L]] = (lambda (kn ke) (kn L))

a. Give the conversion rules for (lambda (I1...In) E) and (call E1...En).

b. Give the SCPS conversion rules for (throw E) and (catch E1 E2).

¢

¤ Exercise 17.27 Louis Reasoner wants you to modify the CPS transformation to
add a little bit of profiling information. Specifically, the modified CPS transformation
should produce code that keeps a count of user procedure (not continuation) calls. Users
will be able to access this information with the new construct (call-count) which was
added to the grammar of kernel expressions:

E ::= . . . | (call-count)

Here are some examples:

(begin (call (lambda (x) x) #u)

(call-count)) −−−eval→ 1

(begin (call (lambda (x)

(call (lambda (y) y) x))

#u)

(call-count)) −−−eval→ 2

In the modified CPS transformation, all procedures (including continuations) should
take as an extra argument the number of user procedure calls so far. For example,
here’s the new SCPS rule for identifiers:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

748 CHAPTER 17. COMPILATION

SCPS[[I]] = (lambda (k n) (call k I n))

Give the revised SCPS conversion rules for (lambda (I) E), (call Ep Ea), and

(call-count). ¢

17.10 Transform 8: Closure Conversion

In languages with nested procedure/object declarations, code can refer to vari-
ables declared outside the innermost procedure/object declaration. As we have
seen in Chapters 6–7, the meaning of such non-local references is often explained
in terms environments. Traditional interpreters and compilers have a good deal
of special-purpose machinery to manage environments.

The Tortoise compiler avoids such machinery by a transformation that
makes all environments explicit in the intermediate language. Each procedure
is transformed into an abstract pair of code and environment, where the code
explicitly accesses the environment to retrieve values formerly referenced by free
variables. The resulting abstract pair is known as a closure because its code
component is closed — i.e., it contains no free variables. The process of trans-
forming all procedures into closures is traditionally called closure conversion.
Because it makes all environments explicit, environment conversion is an-
other good name for this transformation.

Closure conversion transforms a program that may contain higher-order pro-
cedures into one that contains only first-order procedures. It is useful not only
as a transformation pass in a compiler but also as a technique that program-
mers can apply manually to simulate higher-order procedures in a language that
supports only first-order procedures, such as C, Pascal, and Ada.

There are numerous approaches to closure conversion that differ in terms of
how environments and closures are represented. We shall first focus on one class
of representations — so-called flat closures — and then briefly discuss some of
the other options.

17.10.1 Flat Closures

We introduce closure conversion in the context of the following example:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 749

(let ((linear

(lambda (a b)

(lambda (x)

(@+ (@* a x) b)))))

(let ((f (call linear 4 5))

(g (call linear 6 7)))

(@+ (call f 8) (call g 9)))).

Given a and b, the linear procedure returns a procedural representation of a
line with slope a and y-intercept b. The f and g procedures two such lines, each
of which is associated with the abstraction (lambda (x) . . .), which has free
variables a and b. In the case of f, these variables have the bindings 4 and 5,
respectively, while for g they have the bindings 6 and 7.

We begin by considering how to closure convert this example by hand, and
then will develop a transformation that performs the conversion automatically.
One way to represent f and g as closed procedures is shown below:

(let ((fgcode
(lambda (env x)

(let* ((a (@mget 1 env))

(b (@mget 2 env)))

(@+ (@* a x) b))))

(fenv (@mprod 4 5))

(genv (@mprod 6 7)))

(let ((fclopair (@mprod fgcode fenv))

(gclopair (@mprod fgcode genv)))

(@+ (call (@mget 1 fclopair) (@mget 2 fclopair) 8)

(call (@mget 1 gclopair) (@mget 2 gclopair) 9))))

In this approach, the two procedures share the same code component, fgcode ,
which takes an explicit environment argument env in addition to the normal ar-
gument x. The argument is assumed to be a tuple whose two components are the
values of the former free variables a and b. These values are extracted from the
environment and given their former names in a wrapper around the body expres-
sion (@+ (@* a x) b). Note that fgcode has no free variables and so is a closed
procedure. The environments fenv and genv are tuples holding the free variable
values. The closures fclopair and gclopair are formed by making explicit code/env
pairs that pair the shared code component with the individual environment. To
handle the change in procedure representation, each call of the form (call f E)
must be transformed to (call (@mget 1 fclopair) (@mget 2 fclopair) E) (and
similarly for g) in order to pass the environment component as the first argument
to the code component.

It’s worth emphasizing at this point that closure conversion is basically an

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

750 CHAPTER 17. COMPILATION

exercise in abstract data type implementation. The abstract data type being
considered is the procedure, which is manipulated by an interface with two oper-
ations: lambda, which creates procedures, and call, which applies procedures.
The goal of closure conversion is to find a different implementation of this in-
terface that has the same behavior but in which the procedure creation form
has no free variables. As in traditional data structure problems, we’re keen on
designing implementations that not only have the correct implementation, but
are as efficient as possible.

For example, a more efficient approach to using explicit code/env pairs is to
collect the code and free variable values into a single tuple, as shown below.

(let ((fgcode
′

(lambda (clo x)

(let* ((a (@mget 2 clo))

(b (@mget 3 clo)))

(@+ (@* a x) b)))))

(let ((fclo (@mprod fgcode
′ 4 5))

(gclo (@mprod fgcode
′ 6 7)))

(@+ (call (@mget 1 fclo) fclo 8)

(call (@mget 1 gclo) gclo 9))))

This approach, which is known as closure passing style, avoids creating a
separate environment tuple every time a closure is created, and avoids extracting
this tuple from the code/environment pair every time the closure is invoked.

If we systematically use closure passing style to transform every abstraction
and application site in the original linear example, we get the result show in
Figure 17.36. The inner lambda has been transformed into a tuple that combines
fgcode with the value of the free variables a and b from the outer lambda. For
consistency, the outer lambda, has also been transformed; its tuple has only a
code component since the original lambda has no free variables.

Before we study the formal closure conversion transformation, we consider
one more example (Figure 17.37), which involves nesting of open procedures and
unreferenced variables. In the unconverted clotest, the outermost abstraction,
(lambda (c d) . . .), is closed; the middle abstraction, (lambda (r s t) . . .),
has c as its only free variable (d is never used); and the innermost abstraction,
(lambda (y) . . .), has {c, r, t} as its free variables (d and s are never used).
In the converted clotest, each abstraction has been transformed into a tuple
that combines a closed code component with all the free variables of the original
abstraction. The resulting tuples are call flat closures because all the environ-
ment information has been condensed into a single tuple that does not reflect
any of the original nesting structure. Note that unreferenced variables from an
enclosing scope are ignored. For example, the innermost body does not reference

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 751

(let ((linear

(@mprod ;; this product has only a code component

(lambda (clo1 a b) ;; clo1 unused

(@mprod ;; this product has code + vars a,b

(lambda (clo2 x)

(let* ((a (@mget 2 clo2))

(b (@mget 3 clo2)))

(@+ (@* a x) b)))

a b)) ;; free vars of clo2

))) ;; clo1 has no free vars

(let ((f (call (@mget 1 linear) linear 4 5))

(g (call (@mget 1 linear) linear 6 7)))

(@+ (call (@mget 1 f) f 8)

(call (@mget 1 g) g 9))))

Figure 17.36: Result of closure converting the linear example.

d and s, so these variables are not extracted from clo3 and are not included in
the innermost tuple.

A formal specification of the flat closure conversion transformation is pre-
sented in Figure 17.38. The transformation is specified via the CL function on
Silk expressions. The only non-trivial clauses for CL are lambda and call. CL
converts a lambda to a tuple containing a closed code component and all the
free variables of the abstraction. The code component is derived from the origi-
nal lambda by adding a closure argument and extracting the free variables from
this argument in a wrapper around the body. The order of the free variables is
irrelevant as long as it is consistent between the tuple creation and projection
forms.

A call is converted to another call that applies the code component of the
converted rator closure to the closure and the converted operands. A difference
from the examples studied above is that CL introduces a let* to name the
closure and its code component.4 This guarantees that any input in CPS form
will be translated to an output in CPS form. However, the unique naming
property is not preserved by CL. The names Ifvi declared in the body of the
closed abstraction stand for variables that are logically distinct from variables
with the same names in the closure tuple.

In order to work properly, CL requires that the input expression contain
no occurrences of set!. This is because the copying of free variable values by

4In the call clause, the binding of Iclo to Erator is only necessary if Erator is not already an
identifier. We will omit Iclo in examples unless it is necessary.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

752 CHAPTER 17. COMPILATION

Unconverted expression

(let ((clotest

(lambda (c d)

(lambda (r s t)

(lambda (y)

(@+ (@/ (* r y) t) (@- r c)))))))

(let ((p (call clotest 4 5)))

(let ((q1 (call p 6 7 8))

(q2 (call p 9 10 11)))

(+ (call q1 12) (call q2 13))))).

Converted expression

(let ((clotest

(@mprod ;; this product has only a code component

(lambda (clo1 c d) ;; clo1 is unused

(@mprod ;; this product has code + var c

(lambda (clo2 r s t)

(let* ((c (@mget 2 clo2)))

(@mprod ;; this product has code + vars c,r,t

(lambda (clo3 y)

(let* ((c (@mget 2 clo3))

(r (@mget 3 clo3))

(t (@mget 4 clo3)))

(@+ (@/ (* r y) t) (@- r c))))

c r t))) ;; free vars of clo3 = c,r,t

c)) ;; free vars of clo2 = c

))) ;; clo1 has no free vars

(let ((p (call (@mget 1 clotest) clotest 4 5)))

(let ((q1 (call (@mget 1 p) p 6 7 8))

(q2 (call (@mget 1 p) p 9 10 11)))

(+ (call (@mget 1 q1) q1 12) (call (@mget 1 q2) q2 13))))).

Figure 17.37: Flat closure conversion on an example with nested open proce-
dures.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 753

CL : Exp→ Exp

Preconditions: The input expression is assignment-free.

Postconditions:

• All lambdas in the output expression are closed.

• The output expression is assignment-free.

Other properties:

• If the input expression is in CPS form, so is the output expression.

CL[[(lambda (I1 ... In) Ebody)]]
= let {Ifv1 , . . . , Ifvk } be FreeIds[[(lambda (I1 ... In) Ebody)]]

in (@mprod (lambda (Iclo I1 ... In) ; Iclo fresh

(let* ((Ifv1 (mget 2 Iclo))
...

(Ifvk (mget k+1 Iclo)))
CL[[Ebody]]))

Ifv1 . . . Ifvk)

CL[[(call Erator E1 . . . En)]]
= (let* ((Iclo CL[[Erator]]) ; Iclo fresh

(Icode (mget 1 Iclo))) ; Icode fresh

(call Icode Iclo CL[[E1]] . . . CL[[En]]))
All other clauses of CL are purely structural.

Figure 17.38: The flat closure conversion transformation CL of Tortoise.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

754 CHAPTER 17. COMPILATION

CL in the lambda clause does not preserve the semantics of mutable variables.
Consider the following example of a nullary function that increments a counter
every time it is called:

(let ((count 0))

(lambda ()

(let* ((new-count (+ count 1))

(ignore (set! count new-count)))

new-count)))

Closure converting this example yields:

(let ((count 0))

(@mprod

(lambda (clo)

(let* ((count (@mget clo 2)))

(let* ((new-count (+ count 1))

(ignore (set! count new-count)))

new-count)))

count))

The set! in the tranformed code changes the local variable count within the
lambda, which is always initially bound to the value 0. So the closure converted
procedure always returns 1, which is not the correct behavior. Performing as-
signment conversion before closure conversion fixes this problem, since count

will then name a sharable mutable cell rather than a number.

Figure 17.39 shows the running revmap example after closure conversion.
In addition to transforming procedures present in the original code (.clo565 is
revmap, .clo55 is loop, .clo45 is the greater-than-b procedure), closure conver-
sion also tranforms the continuation procedures introduced by CPS conversion
(.clo54 is the continuation for the f call). The free variables in converted con-
tinuations are those values that would typically be saved on the stack across
the subroutine call associated with the continuation. For example, continuation
closure .clo54 includes the values needed by the loop after a call to f: the loop
state variable xs.9, the looping procedure loop.8, the end-of-loop continuation
k.27, and the mutable cell t.23 resulting from the assignment conversion of
ans. Note that the closure named loop.8 contains loop.8 in its environment.
The recursive scope of cycrec guarantees that the the looping procedure has
been transformed into a looping (i.e., cyclic) data structure.

5By convention, we will refer to a closure tuple by the name of the first argument of its code
component.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 755

(silk (a.1 b.2 ktop.11)

(let* ((abs.12

(@mprod ; MPROD1

(lambda (clo.56 f.5 lst.6 k.22)

(let* ((t.24 (@null)) (t.23 (@mprod t.24))) ; MPROD2

(cycrec

((loop.8

(@mprod ; MPROD3

(lambda (clo.55 xs.9 k.27)

(let* ((t.23 (mget 2 clo.55)) (loop.8 (mget 3 clo.55))

(f.5 (mget 4 clo.55)) (t.29 (@null? xs.9)))

(if t.29

(let* ((t.39 (mget 1 t.23)) (rator.49 k.27)

(code.48 (mget 1 rator.49)))

(call code.48 rator.49 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (@mprod ; MPROD4

(lambda (clo.54 t.33)

(let* ((t.23 (mget 2 clo.54))

(xs.9 (mget 3 clo.54))

(loop.8 (mget 4 clo.54))

(k.27 (mget 5 clo.54))

(t.34 (mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (mset! 1 t.23 t.31))

(t.35 (@cdr xs.9))

(rator.53 loop.8)

(code.52 (mget 1 rator.53)))

(call code.52 rator.53 t.35 k.27)))

t.23 xs.9 loop.8 k.27)) ; end MPROD4

(rator.51 f.5)

(code.50 (mget 1 rator.51)))

(call code.50 rator.51 t.32 k.38)))))

t.23 loop.8 f.5))) ; end MPROD3

(let* ((rator.47 loop.8) (code.46 (mget 1 rator.47)))

(call code.46 rator.47 lst.6 k.22))))))) ; end MPROD1

(abs.13 (@mprod ; MPROD5

(lambda (clo.45 x.4 k.20)

(let* ((b.2 (mget 2 clo.45)) (t.21 (@> x.4 b.2))

(rator.44 k.20) (code.43 (mget 1 rator.44)))

(call code.43 rator.44 t.21)))

b.2)) ; end MPROD5

(t.16 (@* a.1 7)) (t.17 (@null))

(t.15 (@cons t.16 t.17)) (t.14 (@cons a.1 t.15))

(rator.42 abs.12) (code.41 (mget 1 rator.42)))

(call code.41 rator.42 abs.13 t.14 ktop.11)))

Figure 17.39: Running example after closure conversion.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

756 CHAPTER 17. COMPILATION

17.10.2 Variations on Flat Closure Conversion

Now we consider several variations on flat closure conversion. We begin with
an optimization to CL. Why does CL transform an already closed lambda into
a closure tuple? This strategy simplifies the transformation by enabling all
call sites to be transformed uniformly to “expect” such a tuple. But it is also
possible to use non-uniform transformations on abstractions and call sites as
long as the correct behavior is maintained. Given accurate flow information
that indicates which procedures flow to which call sites, we can do a better job
via so-called selective closure conversion. In this approach, originally closed
procedures that flow only to call sites where only originally closed procedures are
called are left unchanged by the closure conversion process, as are their call sites.
This avoids unnecessary tuple creations and projections. The result of selective
closure conversion for the linear example is presented in Figure 17.40. The
kind of flow analysis necessary to enable selective closure conversion is beyond
the scope of this text; see the reading section at the end of this chapter for more
information.

(let ((linear

(lambda (a b) ;; this closed lambda is not transformed

(@mprod ;; this product has three components

(lambda (clo2 x)

(let* ((a (@mget 2 clo2))

(b (@mget 3 clo2)))

(@+ (@* a x) b)))

a b)))) ;; free vars of clo2

(let ((f (call linear 4 5)) ;; this call site is not transformed

(g (call linear 6 7))) ;; this call site is not transformed

(@+ (call (@mget 1 f) f 8)

(call (@mget 1 g) g 9))))

Figure 17.40: Result of selective closure conversion in the linear example.

In selective closure conversion, a closed procedure pclosed cannot be optimized
when it is called at the same call site s as an open procedure popen in the original
program. The call site must be transformed to expect for its rator a closure
tuple for popen, and so pclosed must also be represented as a closure tuple since
it flows to rator position of s. This representation constraint can similarly force
other closed procedures that share call sites with pclosed to be converted, leading
to a contagious phenomenon called representation pollution. For example,
although f is closed in the following example, because it flows to the same call
site as open procedure g, selective closure conversion must still convert f to a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 757

closure tuple:

(lambda (b c)

(let ((f (lambda (x) (+ x 1)))

(g (let ((a (if b 4 5)))

(lambda (y) (+ (* a y) c)))))

(+ (call f 2)

(call (if b f g) 3))))

Representation pollution can sometimes be avoided by duplicating a closed pro-
cedure, and using different representations for the two copies. For instance, if
we split f in the above example into two copies, then the copy that flows to the
call site (call f 2) need not be converted to a tuple.

It is always possible to handle heterogeneous procedure representations by af-
fixing tags to procedures that indicate their representation and then dispatching
on these tags at every call site where different representations are known to flow
together. For example, using the oneof notation introduced in Section 10.2.2,
we can use code to tag a closed procedure and closure to tag a closure tuple,
as in the following conversion of the above example:

(lambda (b c)

(let ((f1 (lambda (x) (+ x 1)))

(f2 (one code (lambda (x) (+ x 1))))

(g (let ((a (if b 4 5)))

(one closure

(@mprod (lambda (clo y)

(let ((a (@mget 2 clo))

(c (@mget 3 clo)))

(+ (* a y) c)))

a c)))))

(+ (call f1 2)

(call-generic (if b f2 g) 3)))),

where (call-generic Erator E1 . . . En) desugars to

(let ((I1 E1) . . . (In En)) ; I1 . . . In are fresh

(tagcase Erator Irator
(code (call Irator I1 . . . In))

(closure (call (@mget 1 Irator) Irator I1 . . . In))).

Note that (call f1 2) is a regular call to an unconverted closed procedure.
This tagging strategy is not necessarily a good idea. Analyzing and converting
programs to handle tags is complex, and the overhead of tag manipulation can
offset the gains made by reducing representation pollution.

In an extreme version of the tagging strategy, all procedures that flow to

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

758 CHAPTER 17. COMPILATION

a given call site are viewed as members of a sum-of-products datatype. Each
element in this datatype is a tagged environment tuple, where the tag indicates
which abstraction created the procedure and the environment tuple holds the
free variable values of the procedure. A procedure call can then be converted to
a dispatch on the environment tag that calls a associated closed procedure. For
example:

(lambda (b c)

(let ((fcode (lambda (x) (+ x 1)))

(fenv (one abs1 (@mprod)))

(gcode (lambda (y a c) (+ (* a y) c)))

(genv (let ((a (if b 4 5))) (one abs2 (@mprod a c)))))

(+ (call fcode 2)

(call-env1 (if Etest fenv genv) 3))),

where (call-env1 Eenv Erand) is an abbreviation for

(let ((Irand E1))
(tagcase Eenv Irator

(abs1 (call fenv Irand))

(abs2 (call genv Irand (@mget 1 env) (@mget 2 env))))).

The procedure call overhead in the dispatch can often be reduced by an inlining
process that replaces some calls by appropriately rewritten copies of their bodies.
E.g., call-env1 could be rewritten to:

(let ((Irand E1))
(tagcase Eenv Ienv

(abs1 (+ Irand 1))

(abs2 (+ (* (@mget 1 Ienv) Irand) (@mget 2 Ienv))))).

The environment tagging strategy is known as defunctionalization because
it removes all higher-order functions from a program. Defunctionalization is an
important closure conversion technique for languages (such as Ada and Pascal)
in which function pointers cannot be stored in data structures — a feature
required in all the previous techniques. Some drawbacks of defunctionalization
are that it requires the whole program (it cannot be performed on individual
modules) and application functions like call-env1might need to dispatch on all
abstractions in the entire program. In practice, type and flow information can
be used to significantly narrow the set of abstractions that need to be considered
at a given call site.

A closure need not carry with it the value of a free variable if that variable
is available in all contexts where the closure is invoked. This observation is
the key idea in so-called lightweight closure conversion, which can decrease
the number of free variables by adding extra arguments to procedures if those

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 759

arguments are always dynamically available at all call sites for the procedures.
In our example, the lightweight optimization is realized by rewriting the original
example as follows before performing other closure conversion techniques:

(lambda (b c)

(let ((f (lambda (x c) (+ x 1))) ; 3. By 2, need param c here.

(g (let ((a (if b 4 5)))

(lambda (y c) (+ (* a y) c))))) ; 1. Add c as param.

(+ (call f 2 c) ; 4. By 3, must add c as an arg here, too.

(call (if b f g) 3 c)))) ; 2. By 1, need arg c here.

Since g’s free variable c is available at the one site where g is called, we should
be able to pass it as an argument at the site rather than storing it in the closure
for g. But representation constraints also force us to add c as an argument to f,
since f shares a call site with g. If f were called in some context outside the scope
of c, this fact would invalidate the proposed optimization. This example only
hints at the sophistication in analysis that is necessary to perform lightweight
closure conversion in practice.

17.10.3 Linked Approaches

Thus far we have assumed that all free variables values of a procedure are stored
in a single flat environment or closure. This strategy minimizes the information
carried in a particular closure. However, it is often the case that a free variable is
referenced by several closures. Setting aside a slot for (a pointer to) the value of
this variable in several closures/environments increases the space requirements
of the program. For example, in the flat clotest example of Figure 17.37,
closures p, q1, and q2 all contain a slot for the value of free variable c.

An alternative approach is to structure closures to enhance sharing and re-
duce copying. In a code/env model, a high degree of sharing is achieved when
every call site bundles the environment of the called procedure (a.k.a., the par-
ent environment) together with the argument values to create the environment
for the body of the called procedure. In this approach, each closed abstraction
takes a single argument, its environment, and all variables are accessed through
this environment. This is called the linked environment approach because
environments are linked together in chains.

Figure 17.41 shows this approach for the clotest example. Note that
the first slot of environments env1, env2, and env3 contains (a pointer to)
its parent environment. Variables declared by the closest enclosing lambda

are accessed directly from the environment, but variables declared in outer
lambdas require one or more indirections through parent environments. For
instance, in the body of the innermost lambda, variable r, which is the first

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

760 CHAPTER 17. COMPILATION

argument one environment back, is accessed via (@mget 2 (@mget 1 env3)),
while variable y, which is the first argument two environments back, is accessed
via (@mget 2 (@mget 1 (@mget 1 env3))). In general, each variable has a
lexical address 〈back , over 〉, where back indicates how many environments
back the variable is located and over indicates its argument position in the the
resulting environment. A variable with lexical address 〈b, o〉 is translated to
(@mget o (@mgetb 1 env)), where env is the current lexical environment and
(@mgetb 1 e) stands for the b-fold composition of the first projection starting
with e. Traditional compilers often use such lexical addresses to locate variables
on a stack, where so-called static links are used to model chains of parent
environments.

(let ((env0 (@mprod)))

(let ((clotest

(@mprod

(lambda (env1) ; env1 = <env0,c,d>

(@mprod

(lambda (env2) ; env2 = <env1,r,s,t>

(@mprod

(lambda (env3) ; env3 = <env2,y>

(+ (/ (* (@mget 2 (@mget 1 env3)) ; r

(@mget 2 env3)) ; y

(@mget 4 (@mget 1 env3))) ; t

(- (@mget 2 (@mget 1 env3)) ; r

(@mget 2 (@mget 1 (@mget 1 env3))))))) ; c

env2))

env1))

env0)))

(let ((p (call (@mget 1 clotest) (@mprod (@mget 2 clotest) 4 5))))

(let ((q1 (call (@mget 1 p) (@mprod (@mget 2 p) 6 7 8)))

(q2 (call (@mget 1 pP (@mprod (@mget 2 p) 9 10 11)))))

(+ (call (@mget 1 q1) (@mprod (@mget 2 q1) 12))

(call (@mget 1 q2) (@mprod (@mget 2 q2) 13)))))))

Figure 17.41: A version of the clotest example with linked environments.

Figure 17.42 depicts the shared environment structure in the clotest exam-
ple with linked environments. Note how the environment of p is shared as the
parent environment of q1’s environment and q2’s environment. In contrast with
the flat environment case, p, q1, and q2 all share the same slot holding c, so
less slot space is needed for c. Another advantage of sharing is that the linked
environment approach to closure conversion can support set! directly without

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.10. TRANSFORM 8: CLOSURE CONVERSION 761

clotest: •

(lambda (env1)

. . .)

p:
4 5
x y

(lambda (env2)

. . .)
q1:

6 7 8
r s t

q2:
9 10 11
r s t

(lambda (env3)

. . .) 12
y

(lambda (env3)

. . .) 12
y

Figure 17.42: Figure depicting the links in the linked clotest example. (This
figure needs lots of reformatting work!

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

762 CHAPTER 17. COMPILATION

the need for assignment conversion (see Exercise ??).
However, there are several downsides to linked environments. First, variable

access is slower than for flat closures due to the indirections through parent
environment links. Second, environment slots hold values (such as d and s) that
are never referenced, so space is wasted on these slots. A final subtle point is
that shared slots can hold onto values longer than they are actually needed by
a program, leading to space leaks. Some of these points and some alternative
linked strategies are explored in the exercises.

¤ Exercise 17.28

a. CL is not idempotent. Explain why. Can any closure conversion transformation
be idempotent?

b. In the lambda clause for CL, suppose FreeIds[[(lambda (I1 ... In) Ebody)]] is
replaced by the set of all variables in scope at that point. Is this a meaning-
preserving change? What are the advantages and disadvantages of of such a
change?

c. In a Silk-based compiler, CL must be necessarily be performed after an assign-
ment conversion pass. Could we perform it before a renaming pass? A globaliza-
tion pass? A CPS-conversion pass? Explain. ¢

¤ Exercise 17.29 In the lambda clause, the CL function uses a wrapping strategy
to wraps the body of the original lambda in a let* that extracts and names each free
variable value in the closure. An alternative substitution strategy is to replace each
free reference in the original lambda by a closure access. E.g, here is a modified version
of fgcode

′ that uses the substitution strategy:

(lambda (clo x) (@+ (@* (@mget 2 env) x) (@mget 3 env)))

Neither strategy is the best in all situations. Describe situations in which the wrapping

strategy is superior and in which the substitution strategy is superior. State all the

assumptions of your argument. ¢

¤ Exercise 17.30 Consider the following Silk abstraction Eabs :

(lambda (b)

(let ((f (lambda (x) (@+ x 1)))

(g (lambda (y) (@* y 2)))

(h (lambda (a) (lambda (z) (@/ z a))))

(p (lambda (r) (call r 3))))

(@+ (call (if b f g) 4)

(@* (call p (call h 5)) (call p (call h 6))))))

a. Show the result of applying flat closure conversion to Eabs .

b. The transformation can be improved if we use selective closure conversion instead.
Show the result of selective closure conversion on Eabs .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.11. TRANSFORM 9: LIFTING 763

c. Suppose we replace (call h 6) by g in Eabs to give Eabs
′. Then selective closure

conversion on Eabs
′ does not yield an improvement over regular closure conversion

on Eabs
′. Explain why.

d. Describe a simple meaning-preserving change to Eabs
′ after which selective closure

conversion will be an improvement over regular closure conversion. ¢

¤ Exercise 17.31 Consider the following Silk program

(silk (n)

(let* ((p (lambda (w)

(if (@= 0 x)

(lambda (x) x)

(if (@= 0 (@% n 2))

(let ((p1 (p (@/ w 2))))

(lambda (y) (@* 2 (call p1 y))))

(let ((p2 (p (@- w 1))))

(lambda (z) (@+ 1 (call p2 z)))))))))

(let ((q (call p n)))

(+ (call q 1) (call q n)))))

Using closure conversion techniques presented in this section, translate this program

into C, Pascal, and Java. The program has the property that equality and remainder

primops are performed only when p is called, not when q is called. Your translated

programs should also have this property. ¢

17.11 Transform 9: Lifting

Programmers nest procedures when an inner procedure needs to use variables
that are defined in an outer procedure. The free variables in such an inner
procedure are bound by the outer procedure. We have seen that closure con-
version eliminates free varaibles in every procedure. However, because it leaves
abstractions in place, it does not eliminate procedure nesting.

A procedure is said to be at top-level when it is defined at the outermost
scope of a program. Lifting (also called lambda lifting) is the process of
eliminating nested procedures by making all procedures top-level. Of course, all
procedures must be closed before lifting is performed. The process of bringing
all procedures to top level would necessarily remove the fundamental connection
between free variable references and their associated declarations.

Compiling a procedure with nested internal procedures requires placing branch
instructions around the code for the internal procedures. We eliminate such
branches by insisting that all procedures be lifted after they are closed. Once

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

764 CHAPTER 17. COMPILATION

Plft ∈ Programlft

Elft ∈ Explft
BVlft ∈ BindingValuelft
LE lft ∈ LetableExplft
Vlft ∈ ValueExplft

L ∈ Lit
I ∈ Identifierlft = usual identifiers
B ∈ Boollitlft = {#t, #f}
N ∈ Intlitlft = {. . . , -2, -1, 0, 1, 2, . . .}
O ∈ Primoplft = as in full Silk.

Plft ::= (silk (Ifml*) (cycrec ((I (lambda (I*) E lft))*) Elft))
Elft ::= (call Vlft Vlft*) | (if Vlft Elft Elft) | (error I)

| (let ((I LE lft)) Elft) | (cycrec ((I BVlft)*) Elft)
Vlft ::= L | I

LE lft ::= Vlft | (primop Oop Vlft*)
BVlft ::= L | (primop mprod Vlft*)

L ::= #u | B | H | N

Figure 17.43: Grammar for Silklft , the target language of the Tortoise com-
piler.

all of the procedures in a program are at top-level, each can be compiled into
straight-line code. Avoiding unnecessary unconditional branches is especially
important for processors that have instruction caches, instruction prefetching, or
pipelined architectures. Lifting is also an important transform when compiling to
certain, less common, architectures, like combinator reduction machines[Hug82].

The result of the lifting phase is a program in Silklft , a restricted form
of Silkcps presented in Figure 17.43. The key difference between Silklft and
Silkcps is that Silklft abstractions may only occur in a top-level cycrec in
the program body. Each such abstraction may be viewed as an assembly code
subroutine.

We now specify the lifting conversion transformation LCprog :

Preconditions: The input to LCprog is a program in which every abstrac-
tion is closed.

Postconditions: The output of LCprog is a program in which every ab-
straction is in the top-level cycrec of a program, as specfied in the
Silklft grammar in Figure 17.43.

Here is the algorithm employed by LCprog :

1. Associate with each lambda abstraction a new name. This name must
be unique in the sense that it is distinct from every variable name in the
program and the name chosen for every other abstraction.

2. Replace each abstraction by a reference to its unique name.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.12. TRANSFORM 10: DATA CONVERSION 765

3. Replace the body Ebody of the program with a cycrec of the form

(cycrec ((Ilam1 AB1
′)

...

(Ilamn ABn
′))

Ebody
′),

where

• AB1
′ . . .ABn

′ are the transformed versions of all the abstractions in
the original program;

• Ilam1 . . .Ilamn are the unique names associated with the original ab-
stractions; and

• Ebody
′ is the transformed body of the program.

For example, Figure 17.44 shows our running example after lambda lifting.
Note that replacing each abstraction with its unique variable name can introduce
free variables into otherwise closed abstractions. For instance the body of the
abstraction named lam.58 contains a reference to lam.59 and the body of the
abstraction named lam.59 contains a reference to lam.60. So the abstractions
are no longer closed after lifting! All free variables thus introduced are declared
in the top-level cycrec and are effectively treated as global names. In the anal-
ogy with assembly code, these names correspond to assembly code labels that
name the first instruction in the subroutine corresponding to the abstraction.

17.12 Transform 10: Data Conversion

[This section is still under construction. Stay tuned!]

17.13 Garbage Collection

[This section is also still under construction. Stay tuned!]x

Reading

The literature on traditional compiler technology is vast. A classic text is the
“Dragon book” [ASU86]. More modern treatments are provide by Cooper and

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

766 CHAPTER 17. COMPILATION

(silk (a.1 b.2 ktop.11)

(cycrec

((lam.57 (lambda (clo.45 x.4 k.20)

(let* ((b.2 (mget 2 clo.45))

(t.21 (@> x.4 b.2))

(code.43 (mget 1 k.20)))

(call code.43 k.20 t.21))))

(lam.58 (lambda (clo.56 f.5 lst.6 k.22)

(let* ((t.24 (@null))

(t.23 (@mprod t.24)))

(cycrec ((loop.8 (@mprod lam.59 t.23 loop.8 f.5)))

(let ((code.46 (mget 1 loop.8)))

(call code.46 loop.8 lst.6 k.22))))))

(lam.59 (lambda (clo.55 xs.9 k.27)

(let* ((t.23 (mget 2 clo.55))

(loop.8 (mget 3 clo.55))

(f.5 (mget 4 clo.55))

(t.29 (@null? xs.9)))

(if t.29

(let* ((t.39 (mget 1 t.23))

(code.48 (mget 1 k.27)))

(call code.48 k.27 t.39))

(let* ((t.32 (@car xs.9))

(k.38 (@mprod lam.60 t.23 xs.9 loop.8 k.27))

(code.50 (mget 1 f.5)))

(call code.50 f.5 t.32 k.38))))))

(lam.60 (lambda (clo.54 t.33)

(let* ((t.23 (mget 2 clo.54))

(xs.9 (mget 3 clo.54))

(loop.8 (mget 4 clo.54))

(k.27 (mget 5 clo.54))

(t.34 (mget 1 t.23))

(t.31 (@cons t.33 t.34))

(t.30 (mset! 1 t.23 t.31))

(t.35 (@cdr xs.9))

(code.52 (mget 1 loop.8)))

(call code.52 loop.8 t.35 k.27)))))

(let* ((abs.12 (@mprod lam.58))

(abs.13 (@mprod lam.57 b.2))

(t.16 (@* a.1 7))

(t.17 (@null))

(t.15 (@cons t.16 t.17))

(t.14 (@cons a.1 t.15))

(code.41 (mget 1 abs.12)))

(call code.41 abs.12 abs.13 t.14 ktop.11))))

Figure 17.44: Running example after lambda lifting.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

17.13. GARBAGE COLLECTION 767

Torczon [CT03] and by Appel’s textbooks [App98b, App98a, AP02]. Compre-
hensive coverage of advanced compilation topics, especially optimizations, can
be found in Muchnick’s text [Muc97]. Inlining is a particularly important but
subtle optimization [?, ?, ?, ?]. Issues in functional language compilation are
considered by Peyton Jones in [Pey87].

The notion of compiling programs via transformations on a lambda-calculus
based intermediate language was pioneered in the Scheme community through
a series of Scheme compilers that started with Steele’s Rabbit [Ste78], and was
followed many others [Roz84, KKR+86, ?, ?, ?]. Kelsey [Kel89, KH89] demon-
strated that the transformational technique was viable for languages other than
Scheme.

The next major innovation along these lines was developing transformation-
oriented compilers based on explicitly typed intermediate languages (e.g.
[Mor95, TMC+96, Jon96, JM97, Sha97, BKR99, TO98, MWCG99, FKR+00,
CJW00, DWM+01]. The type information guides program analyses and trans-
formations, supports run-time operations such as garbage collection, and is an
important debugging aid in the compiler development process. In [TMC+96],
Tarditi and others explored how to express classical optimizations within a typed
intermediate langauge framework. In some compilers (e.g. [MWCG99]) type in-
formation is carried all the way through to a typed assembly language, where
types can be used to verify certain safety properties of the code. The notion that
untrusted low-level code should carry information that allows safety properties
to be verified is the main idea in proof-carrying code[NL98, AF00].

Early transformation-based compilers typically included a stage converting
the program to CPS form. The view that procedure calls can be viewed as
jumps that pass arguments was first championed by Steele in [Ste77]. He ob-
served that a stack discipline in compilation is not implied by the procedure call
mechanism but rather by the evaluation of nested subexpressions. The Tor-
toise MCPS transform is based on a study of CPS conversion by Danvy and
Filinski [DF92]. They distinguish so-called static continuations (what we call
“meta-continuations”) from dynamic continuations and used these notions
to derive an efficient form of CPS conversion from the simple-but-inefficient def-
inition. Appel studied the use of continuations for compiler optimizations in
[App92]. In [FSDF93], Flanagan et al. argued that explicit CPS form was not
necessary for such optimizations. They showed that transformations performed
on CPS code could be expressed directly in a non-CPS form they called A-
normal form. Although modern tranformation-based compilers tend to use
something like A-normal form, we adopted CPS form in the Tortoise compiler
because it is an important illustration of the theme of making implicit structures
explicit.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

768 CHAPTER 17. COMPILATION

Closure conversion is an important stage in a transformation-based com-
piler. Johnsson’s lambda lifting transformation [Joh85] lifts abstractions to top
level after they have been extended with initial parameters for free variables.
It uses curried functions that are partially applied to these initial parameters
to represent closures. The Tortoise lifting stage also lifts closed abstractions
to top level, but uses a different representation for closures: the closure-passing
style invented by Appel and Jim in [AJ88]. Defunctionalization (a notion due
to Reynolds [?]) was used by Cejtin et al. as the basis for closure conversion in
an efficient ML compiler [CJW00]. Selective and lightweight closure conversion
were studied by Steckler and Wand [SW97]. The notion of representation pol-
lution was studied by Dimock et al. [DWM+01] in the context of developing a
compiler that chooses the representation of a closure depending on how it is used
in a program. Sophisticated closure conversion systems rely on flow analysis
information to determine how procedures are in a program. Nielson, Nielson,
and Hankin in [NNH98] provide a good introduction to data flow analysis, con-
trol flow analysis, and other program analyses.

For more information on data layout and runtime systems, see Appel’s de-
scription of ML runtime data structures and support [App90]. For a survey of
garbage collection algorithms, see [Wil92]. For a replication-based strategy for
garbage collection, see [NOPH92, NO93, NOG93]. [Ape89] shows how static
typing can eliminate the need for almost all tag bits in a garbage collected lan-
guage.

[BCT94] contains a good summary of work on register allocation and spilling.
The classic approach to register allocation and spilling involves graph coloring
algorithms [CAC+81, Cha82]. See [BWD95] for one approach to managing reg-
isters across procedure calls.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Appendix A

A Metalanguage

Man acts as though he were the shaper and master of language, while
in fact language remains the master of man.

— “Building Dwelling Thinking,” Poetry, Language, Thought
(1971), Martin Heidegger

This book explores many aspects of programming languages, including their
form and their meaning. But we need some language in which to carry out
these discussions. A language used for describing other languages is called a
metalanguage. This appendix introduces the metalanguage used in the body
of the text.

The most obvious choice for a metalanguage is a natural language, such as
English, that we use in our everyday lives. When it comes to talking about pro-
gramming languages, natural language is certainly useful for describing features,
explaining concepts at a high level, expressing intuitions, and conveying the big
picture. But natural language is too bulky and imprecise to adequately treat
the details and subtleties that characterize programming languages. For these
we require the precision and conciseness of a mathematical language.

We present our metalanguage as follows. We begin by reviewing the ba-
sic mathematics upon which the metalanguage is founded. Next, we explore
two concepts at the core of the metalanguage: functions and domains. We
conclude with a summary of the metalanguage notation.

A.1 The Basics

The metalanguage we will use is based on set theory. Since set theory serves
as the foundation for much of popular mathematics, you are probably already

769

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

770 APPENDIX A. A METALANGUAGE

familiar with many of the basics described in this section. However, since some
of our notation is nonstandard, we recommend that you at least skim this section
in order to familiarize yourself with our conventions.

A.1.1 Sets

A set is an unordered collection of elements. Sets with a finite number of
elements are written by enclosing the written representations of the elements
within braces and separating them by commas. So {2, 3, 5} denotes the set of
the first three primes. Order and duplication don’t matter within set notation,
so {3, 5, 2} and {3, 2, 5, 5, 2, 2} also denote the set of the first three primes.
A set containing one element, such as {19}, is called a singleton. The set
containing no elements is called the empty set and is written {}.

We will assume the existence of certain sets:

Unit = {unit} ;The standard singleton
Bool = {true, false} ;Truth values
Int = {. . . , − 2, − 1, 0, 1, 2, . . .} ;Integers
Pos = {1, 2, 3, . . .} ;Positive integers
Neg = {−1, − 2, − 3, . . .} ;Negative integers
Nat = {0, 1, 2, . . .} ;Natural numbers
Rat = {0, 1, − 1, 1

2 , − 1
2 ,

1
3 , − 1

3 ,
2
3 , − 2

3 , . . .} ;Rationals
String = {“”, “a”, “b”,. . . , “foo”,. . . , “a string”,. . . } ;All text strings

(The text in slanted font following the semi-colon is just a comment and is not
a part of the definition. We use this commenting convention throughout the
book.) Unit (the canonical singleton set) and Bool (the set of boolean truth
values) are finite sets, but the other examples are infinite. Since it is impossible
to write down all elements of an infinite set, we use ellipses (“. . .”) to stand for
the missing elements, and depend on the reader’s intuition to fill them out. Note
that our definition of Nat includes 0.

We consider numbers, truth values, and the unit value to be primitive
elements that cannot be broken down into subparts. Set elements are not con-
strained to be primitive; sets can contain any structure, including other sets.
For example,

{Int , Nat , {2, 3, {4, 5}, 6}}

is a set with three elements: the set of integers, the set of natural numbers, and
a set of four elements (one of which is itself a set of two numbers). Here the
names Int and Nat are used as synonyms for the set structure they denote.

Membership is specified by the symbol ∈ (pronounced “element of” or “in”).
The notation e ∈ S asserts that e is an element of the set S, while e 6∈ S asserts

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.1. THE BASICS 771

that e is not an element of S. (In general, a slash through a symbol indicates
the negation of the property denoted by that symbol.) For example,

0 ∈ Nat

0 6∈ Neg

Int ∈ {Int , Nat , {2, 3, {4, 5}, 6}}
Neg 6∈ {Int , Nat , {2, 3, {4, 5}, 6}}
2 6∈ {Int , Nat , {2, 3, {4, 5}, 6}}

In the last example, 2 is not an element of the given set even though it is an
element of one of that set’s elements.

Two sets A and B are equal (written A = B) if they contain the same
elements, i.e., if every element of one is an element of the other. A set A is a
subset of a set B (written A ⊆ B) if every element of A is also an element of
B. Every set is a subset of itself, and the empty set is trivially a subset of every
set. E.g.,

{} ⊆ {1, 2, 3} ⊆ Pos ⊆ Nat ⊆ Int ⊆ Rat

Nat ⊆ Nat

Nat 6⊆ Pos

Note that A = B if and only if A ⊆ B and B ⊆ A. A is said to be a proper
subset of B (written A ⊂ B) if A ⊆ B and A 6= B.

Sets are often specified by describing a defining property of their elements.
The set builder notation {x |Px} (pronounced “the set of all x such that Px”)
designates the set of all elements x such that the property Px is true of x. For
example, Nat could be defined as {n | n ∈ Int and n ≥ 0}. The sets described
by set builder notation are not always well-defined. For example, {s | s 6∈ s},
(the set of all sets that are not elements of themselves) is a famous nonsensical
description known as Russell’s paradox.

Some common binary operations on sets are defined below using set builder
notation:

A ∪B = {x | x ∈ A or x ∈ B} ; union
A ∩B = {x | x ∈ A and x ∈ B} ; intersection
A−B = {x | x ∈ A and x 6∈ B} ; difference

The notions of union and intersection can be extended to (potentially infinite)
collections of sets. If A is a set of sets, then

⋃
A denotes the union of all of the

component sets of A. That is,

⋃

A = {x | there exists an a ∈ A such that x ∈ a}

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

772 APPENDIX A. A METALANGUAGE

If Ai is a family of sets indexed by elements i of some given index set I, then

⋃

i∈I

Ai =
⋃

{Ai | i ∈ I }

denotes the union of all the sets Ai as i ranges over I. Intersections of collections
of sets are defined in a similar fashion.

Two sets B and C are said to be disjoint if and only if B ∩ C = {}. A set
of sets A = {Ai | i ∈ I } is said to be pairwise disjoint if and only if Ai and
Aj are disjoint for any distinct i and j in I. A is said to partition (or be a
partition of) a set S if and only if S =

⋃

i∈I Ai and A is pairwise disjoint.

The cardinality of a set A (written |A|) is the number of elements in A.
The cardinality of an infinite set is said to be infinite. Thus |Int | is infinite, but

|{Int , Nat , {2, 3, {4, 5}, 6}}| = 3

Still, there are distinctions between infinities. Informally, two sets are said to
be in a one-to-one correspondence if it is possible to pair every element of
one set with a unique and distinct element in the other set without having any
elements left over. Any set that is either finite or in a one-to-one correspondence
with Int is said to be countable. For instance, the set Even of even integers
is countable because every element 2n in Even can be paired with n in Int.
Similarly, Nat is obviously countable, and a little thought shows that Rat is
countable as well. Informally, all countably infinite sets “have the same size.”
On the other hand, any infinite set that is not in a one-to-one correspondence
with Int is said to be uncountable. Cantor’s celebrated diagonalization proof
shows that the real numbers are uncountable.1 Informally, the size of the reals
is a much “bigger” infinity than the size of the integers.

The powerset of a set A (written P(A)) is the set of all subsets of A. For
example,

P({1, 2, 3}) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The cardinality of the powerset of a finite set is given by:

|P(A)| = 2|A|

In the above example, the powerset has size 23 = 8. The set of all subsets of the
integers, P(Int), is an uncountable set.

1A description of Cantor’s method can be found in many books on mathematical analysis
and computability. We particularly recommend [Hof80].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.1. THE BASICS 773

A.1.2 Tuples

A tuple is an ordered collection of elements. A tuple of length n, called an
n-tuple, can be envisioned as a structure with n slots arranged in a row, each
of which is filled by an element. Tuples with a finite length are written by
writing the slot values down in order, separated by commas, and enclosing the
result in angle brackets. Thus 〈2, 3, 5〉 is a tuple of the first three primes.
Length and order of elements in a tuple matter, so 〈2, 3, 5〉, 〈3, 2, 5〉, and
〈3, 2, 5, 5, 2, 2〉 denote three distinct tuples. Tuples of size 2 through 5 are
called, respectively, pairs, triples, quadruples, and quintuples. The 0-tuple,
〈〉, and 1-tuples also exist.

The element of the ith slot of a tuple t can be obtained by projection,
written t ↓ i. For example, if s is the triple 〈2, 3, 5〉, then s ↓ 1 = 2,
s ↓ 2 = 3, and s ↓ 3 = 5. If t is an n-tuple, then t ↓ i is only well-defined
when 1 ≤ i ≤ n. Two tuples s and t are equal if they have the same length n
and s ↓ i = t ↓ i for all 1 ≤ i ≤ n.

As with sets, tuples may contain other tuples; e.g. 〈〈2, 3, 5, 7〉, 11, 〈13, 17〉〉
is a tuple of three elements: a quadruple, an integer, and a pair. Moreover, tu-
ples may contain sets and sets may contain tuples. For instance, the following
is a well-defined mathematical structure:

〈〈2, 3, 5〉, Int , {{2, 3, 5}, 〈7, 11〉}〉

If A and B are sets, then their Cartesian product (written A×B) is the
set of all pairs whose first slot holds an element from A and whose second slot
holds an element from B. This can be expressed using set builder notation as:

A×B = {〈a, b〉 | a ∈ A and b ∈ B}

For example,

{2, 3, 5} × {7, 11} = {〈2, 7〉, 〈2, 11〉, 〈3, 7〉, 〈3, 11〉, 〈5, 7〉, 〈5, 11〉}
Nat × Bool = {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . , 〈0, true〉, 〈1, true〉, 〈2, true〉, . . .}

If A and B are finite, then |A×B| = |A| · |B|.
The product notion extends to families of sets. If A1, . . . , An is a family

of sets, then their product (written A1×A2× . . . ×An or
∏n
i=1Ai) is the set of

all n tuples 〈a1, a2, . . ., an〉 such that ai ∈ Ai. The notation An (=
∏n
i=1 A)

stands for the n-fold product of the set A.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

774 APPENDIX A. A METALANGUAGE

A.1.3 Relations

A binary relation on A is a subset of A × A.2 For example, the less-than
relation, <Nat , on natural numbers is the subset of Nat × Nat consisting of all
pairs of numbers 〈n,m〉 such that n is less than m:

< = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, . . . , 〈1, 2〉, 〈1, 3〉, . . . , 〈2, 3〉, . . .}

For a binary relation R on A, the notation a1 R a2 is shorthand for 〈a1, a2〉 ∈
R. Similarly, the notation a1 6R a2 means that 〈a1, a2〉 6∈ R. Thus, the assertion
1 < 2 is really just another way of saying 〈1, 2〉 ∈<, and 3 6< 2 is another way of
saying 〈3, 2〉 6∈<.

Binary relations are often classified by certain properties. Let R be a binary
relation on a set A. Then:

• R is reflexive if, for all a ∈ A, a R a.

• R is symmetric if, for all a1, a2 ∈ A, a1 R a2 implies a2 R a1.

• R is transitive if, for all a1, a2, a3 ∈ A, a1 R a2 and a2 R a3 imply a1 R a3.

• R is anti-symmetric if, for all a1, a2 ∈ A, a1 R a2 and a2 R a1 im-
plies a1 = a2. (This assumes the existence of a reflexive, symmetric, and
transitive equality relation = on A.)

For example, the < relation on integers is anti-symmetric and transitive, the “is
a divisor of” relation on natural numbers is reflexive and transitive, and the =
relation on integers is reflexive, symmetric, and transitive.

A binary relation that is reflexive, symmetric and transitive is called an
equivalence relation. An equivalence relation R on A uniquely partitions
the elements of A into disjoint equivalence classes Ai whose union is A and
that satisfy the following: a1 R a2 if and only if a1 and a2 are elements of
the same Ai. For example, let =mod3 be the “has the same remainder modulo
3” relation on natural numbers. Then it’s easy to show that =mod3 satisfies
the criteria for an equivalence relation. It partitions Nat into three equivalence
classes:

Nat0 = {0, 3, 6, 9, . . .}
Nat1 = {1, 4, 7, 10, . . .}
Nat2 = {2, 5, 8, 11, . . .}

2The notion of a relation can be generalized to arbitrary products, but binary relations are
sufficient for our purposes.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 775

The quotient of a set A by an equivalence relation R (written A/R) is the set
of equivalence classes into which R partitions A. Thus,

(Nat / =mod3) = {Nat0 , Nat1 , Nat2}

There are a number of operations on binary relations that produce new
relations. The n-fold composition of a binary relation R, written Rn, is the
unique relation such that aleft R

n aright if and only if there exist ai, 1 ≤ i ≤ n+1,
such that a1 = aleft , an+1 = aright , and for each i, ai R ai+1. The closure of a
binary relation R on A over a specified property P is the smallest relation RP

such that R ⊆ RP and RP satisfies the property P . The most important kind
of closure we will consider is the transitive closure of a relation R, written
R*: aleft R* aright if and only if aleft R

n aright for some natural number n. For
example, the transitive closure of the “is one less than” relation on integers is
the “is less than” relation on integers.

A.2 Functions

Functions are a crucial component of our metalanguage. We will devote a fair
amount of care to explaining what they are and developing notations to express
them.

A.2.1 Definition

Informally, a function is a mapping from an argument to a result. More formally,
a function f is a triple of three components:3

1. The source S of the function (written src(f)) — the set from which the
argument is taken.

2. The target T of the function (written tgt(f)) — the set from which the
result is taken.

3. The graph of a function (written gph(f)) — a subset G of S × T such
that each s ∈ S appears as the first component in no more than one pair
〈s, t〉 ∈ G.

3What we call source and target are commonly called domain and codomain, respectively.
We use different names so as not to cause confusion with the meaning of the term domain

introduced in Section A.3.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

776 APPENDIX A. A METALANGUAGE

For example, the increment function incInt on the integers can be defined as

incInt = 〈Int , Int , Ginc〉

where Ginc is the set of all pairs 〈i, i + 1〉 such that i ∈Int. That is,

Ginc = {. . . , 〈−3,−2〉, 〈−2,−1〉, 〈−1, 0〉, 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}

Note that src(incInt) = Int, tgt(incInt) = Int, and gph(incInt) =Ginc .

The type4 of a function specifies its source and target. The type of a function
with source S and target T is written S → T . For example, the type of incInt is
Int → Int. The notation f : S → T means that f has type S → T .

Two functions are equal if they are equal as triples — i.e., if their sources,
targets, and graphs are respectively equal. In particular, it is not sufficient for
their graphs to be equal — they must have the same type as well. For example,
consider the following two functions

abs1 = 〈Int , Int , Gabs〉
abs2 = 〈Int ,Nat , Gabs〉

where Gabs is the set of all pairs 〈i, iabs 〉 such that i is an integer and iabs is the
absolute value of i. Then even though abs1 and abs2 have the same graph, they
are not equal as functions because the type of abs1 , Int → Int, is different from
the type of abs2 , Int → Nat.

Many programming languages use the term “function” to refer to a kind of
subroutine. To avoid confusion, we will use the term procedure for a program-
ming language subroutine, and will reserve the term function for the mathe-
matical notion. We wish to carefully distinguish them because they differ in
some important respects:

• We often think of procedures as methods, or sometimes even agents, for
computing an output from an input. A function doesn’t use any method or
perform any computation; it doesn’t do anything. It simply is a structure
that contains the source, the target, and all input/output pairs.

• We typically view procedures as taking multiple arguments or returning
multiple results. But a function always has exactly one argument and
exactly one result. However, we will see shortly how these procedural
notions can be simulated with functions.

4The type of a function is sometimes called its signature.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 777

• In addition to returning a value, procedures often have a side-effect —
e.g., changing the state of the memory or the status of a screen. There
is no equivalent notion of side-effect for a function. However, we will see
in Chapter 8 how to use functions to model side-effects in a programming
language.

• When viewed in terms of their input/output behavior, procedures can only
specify a subset of functions known as the computable functions. The
most famous example of a non-computable function is the halting function,
which maps the text of a program to a boolean that indicates whether or
not the program will halt when executed.

The above points do not necessarily apply to the procedural entities in all lan-
guages. In particular, the subroutines in so-called functional programming
languages are very close in spirit to mathematical functions.

A.2.2 Application

The primary operation involving a function is the application of the function
to an argument, an element in its source. The function is called the operator
of the application, while the argument is called the operand of the application.
The result of applying an operator f to an operand s is the unique element t in
the target of f such that 〈s, t〉 is in the graph of f . If there is no pair 〈s, t〉 in
the graph of f , then the application of f to s is said to be undefined.

A total function is one for which application is defined for all elements of
its source. If there are source elements for which the function is undefined, the
function is said to be partial. Most familiar numerical functions are total, but
some are partial. The reciprocal function on rationals is partial because it is not
defined at 0. And a square root function defined as

sqrt = 〈Int , Int , {〈i2, i〉 | i ∈ Int}〉

is partial because it is defined only at perfect squares. For any function f , we use
the notation dom(f) to stand for the the source elements at which f is defined.
That is,

dom(f) = {s | 〈s, t〉 ∈ gph(f)}.

For example, dom(sqrt) is the set of perfect squares. A function f is total if
dom(f) = src(f) and otherwise is partial. We will use the type notation S → T
to designate the class of total functions and the special notation S ⇀ T to
designate the class of partial functions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

778 APPENDIX A. A METALANGUAGE

It is always possible to turn a partial function into a total function by adding
a distinguished element to the target that represents “undefined” and altering
the graph to map all previously unmapped members of the source to this “un-
defined” value. By convention, this element is called bottom and is written ⊥.
Using this element, we can define a total reciprocal function whose type is Rat
→ (Rat∪{⊥}) and whose graph is:

{〈0,⊥〉} ∪ {〈q, 1/q〉 | q ∈ Rat , q 6= 0}

Bottom plays a crucial role in the explanation of fixed points in Chapter 5.

We use the juxtaposition f s to denote the application of a function f to an
element s.5 For instance, the increment of 3 is written incInt 3. Parentheses are
used to structure nested applications. Thus,

incInt (incInt 3)

expresses the increment of the increment of 3. In the metalanguage, parentheses
that don’t affect the application structure can always be added without changing
the meaning of an expression.6 The following is equivalent to the above:

((incInt) (incInt (3)))

By default, function application associates to the left, so that the expression
a b c d parses as (((a b) c) d).

The type of an application is the type of the target of the operator of the
application. For example, if sqr : Int → Nat , then (sqr − 3) : Nat (pronounced
“(sqr − 3) has type Nat”). An application is well-typed only when the type
of the operand is the same as the source of the operator type. (The type of a
number like 3 depends on context: it can be considered a natural, an integer, a
rational, etc.) For example, if f is a function with type Nat → Int, then the ap-
plication (f − 3) is not well-typed because −3 6∈Nat. However, the application
(f (sqr − 3)) is well-typed. In our metalanguage, an application is only legal
if it is well-typed.

5The reader may find it strange that we depart from the more traditional notation for appli-
cation, which is written f(s) for single arguments, and f(s1, s2, . . . , sn) for multiple arguments.
The reason is that in the traditional notation, f is usually restricted to be a function name,
whereas we will want to allow the function position of an application to be any metalanguage
expression that stands for a function. Application by juxtaposition is a superior notation for
handling this more general case because it visually distinguishes less between the function
position and the argument position.

6This contrasts with s-expression grammars, as in Lisp-like programming languages, in
which no parentheses are optional.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 779

A.2.3 More Function Terminology

For any set A, there is an identity function idA that maps every element of A
to itself:

idA = 〈A,A, {〈a, a〉 | a ∈ A}〉
For each element a of a set A, there is a constant function consta that maps

every element of A to a:

consta = 〈A,A, {〈a ′, a〉 | a ′ ∈ A}〉

For any set B such that B ⊆ A, there is an inclusion function B↪→A that
maps every element of B to the same element in the larger set:

B ↪→ A = 〈B,A, {〈b, b〉 | b ∈ B}〉

Inclusion functions are handy for making a metalanguage expression the “right
type.” For example, if sqr has type Int → Nat, then the expression

(sqr (sqr − 3))

is not well-typed, but the expression

(sqr (Nat ↪→ Int (sqr − 3)))

is well-typed.
If f : A→ B and g : B → C, then the composition of g and f , written g ◦

f , is a function of type A → C defined as follows:

(g ◦ f) a = (g (f a)) , for all a ∈ A

The composition function7 is associative, so that

f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h)

If f : A→ A then the n-fold composition of f , written f n, is

f ◦ f ◦ . . . ◦ f
︸ ︷︷ ︸

n times

f0 is defined to be the identity function on A. Because of the associativity of
composition, fn ◦ fm = fn+m.

7There is not a single composition function, but really a family of composition functions
indexed by the types of their operands.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

780 APPENDIX A. A METALANGUAGE

The image of a function is that subset of the target that the function actually
maps to. That is, for f : S → T , the image of f is

{t | there exists an s such that (f s) = t}

A function is injective when no two elements of the source map to the
same target element, i.e., when (f d1) = (f d2) implies d1 = d2. A function is
surjective when every element in the target is the result of some application,
i.e., when the image is equal to the target. A function is bijective if it is both
injective and surjective. Two sets A and B are said to be in a one-to-one
correspondence if there exists a bijective function with type A → B.

A.2.4 Higher-Order Functions

The sources and targets of functions are not limited to familiar sets like numbers,
but may be sets of sets, sets of tuples, or even sets of functions. Functions
whose sources or targets themselves include functions are called higher-order
functions.

As a natural example of a function that returns a function, consider a func-
tion make-expt that, given a power, returns a function that raises numbers to
that power. The type of make-expt is

Nat → (Nat → Nat)

That is, the source of make-expt is Nat, and the target of make-expt is the
set of all functions with type Nat → Nat. The graph of make-expt is:

{〈0, 〈Nat ,Nat , {〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉, 〈4, 1〉, . . .}〉〉,
〈1, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, . . .}〉〉,
〈2, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, . . .}〉〉,
〈3, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 8〉, 〈3, 27〉, 〈4, 64〉, . . .}〉〉,
. . . }

That is, (make-expt 0) denotes a function that maps every number to 1, (make-expt 1)
denotes the identity function on natural numbers, (make-expt 2) denotes the
squaring function, (make-expt 3) denotes the cubing function, and so on.

As an example of a function that takes functions as arguments, consider
the function apply-to-five that takes a function between natural numbers and
returns the value of this function applied to 5. The type of apply-to-five is

(Nat → Nat)→ Nat

and its graph is

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 781

{〈idNat , 5〉, 〈incNat , 6〉, 〈decNat , 4〉, 〈squareNat , 25〉, 〈cubeNat , 125〉,
. . . , 〈〈Nat ,Nat , {. . . , 〈5, n〉, . . .}〉, n〉, . . . }

where incNat , decNat , squareNat , and cubeNat denote, respectively, the increment-
ing function, decrementing function, squaring function, and cubing function on
natural numbers.

We make extensive use of higher order functions throughout this book.

A.2.5 Multiple Arguments and Results

We noted before that every mathematical function has a single argument and
a single result. Yet, as programmers, we are used to thinking that many fa-
miliar procedures, like addition and multiplication, have multiple arguments.
Sometimes we think of procedures as returning multiple results; for instance, a
division procedure can profitably be viewed as returning both a quotient and a
remainder. How can we translate these programming language notions into the
world of mathematical functions?

A.2.5.1 Multiple Arguments

There are two common approaches for handling multiple arguments:

1. The multiple arguments can be boxed up into a single argument tuple.
For instance, under this approach, the binary addition function +Nat on
natural numbers would have type

(Nat ×Nat)→ Nat

and would have the following graph:

{〈〈0, 0〉, 0〉, 〈〈0, 1〉, 1〉, 〈〈0, 2〉, 2〉, 〈〈0, 3〉, 3〉, . . . ,
〈〈1, 0〉, 1〉, 〈〈1, 1〉, 2〉, 〈〈1, 2〉, 3〉, 〈〈1, 3〉, 4〉, . . . ,
〈〈2, 0〉, 2〉, 〈〈2, 1〉, 3〉, 〈〈2, 2〉, 4〉, 〈〈2, 3〉, 5〉, . . . ,
. . . }

Then an application of the addition function to 3 and 5, say, would be
written as (+Nat 〈3, 5〉).

2. A function of multiple arguments can be represented as a higher-order
function that takes the first argument and returns a function that takes
the rest of the arguments. This approach is named currying, after its
inventor, Haskell Curry. Under this approach, the binary addition function
+Nat on natural numbers would have type

Nat → (Nat → Nat)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

782 APPENDIX A. A METALANGUAGE

and would have the following graph:

〈〈0, 〈Nat ,Nat , {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}〉〉,
〈1, 〈Nat ,Nat , {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, . . .}〉〉,
〈2, 〈Nat ,Nat , {〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 5〉, . . .}〉〉,
. . . 〉

When +Nat is applied to n, the resulting value is the increment-by-n func-
tion. So, given 0, it returns the identity function on natural numbers;
given 1, it returns the increment-by-one function; given 2, it returns the
increment-by-two function; and so on. With currying, the application of
+Nat to 3 and 5 is written as ((+Nat 3) 5) or as (+Nat 3 5), (relying on
the left-associativity of application).

In the currying approach, functions like +Nat or make-expt can be viewed
differently according to the context in which they are used. Sometimes, we
may like to think of them as functions that “take two arguments.” Other
times, it is helpful to view them as functions that take a single argument
and return a function. Of course, they are exactly the same function in
both cases; the only difference is the glasses through which we’re viewing
them.

Throughout this book, we will use the second approach, currying, as our
standard method of handling multiple arguments. We will assume that stan-
dard binary numerical function and predicate names, such as +, −, ×, /, <, =,
>, denote curried functions with type N → (N → N) or N → (N → Bool),
where N is a numerical set like the naturals, integers, or rationals. When disam-
biguation is necessary, the name of the function or predicate will be subscripted
with an indication of what numerical source is intended. So, +Nat is addition on
the naturals, while +Int is addition on the integers, etc. For example, (×Int 2)
denotes a doubling function on integers.

Since infix notation for standard binary functions is so much more familiar
than the curried prefix form, we will typically use infix notation when both
arguments are present. Thus, the expression (3+Int 4) is synonymous with
(+Int 3 4).

We will also assume the existence of a curried three-argument conditional
function ifS with type

Bool → (S → (S → S))

that returns the second argument if the first argument is true, and returns the
third argument if the first argument is false. E.g.,

(ifNat (1=Nat 1) 3 4) = 3
(ifNat (1=Nat 2) 3 4) = 4

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 783

A.2.5.2 Multiple Results

The handling of multiple return values parallels the handling of multiple argu-
ments. Again, there are two common approaches:

1. Return a tuple of the results. Under this approach, a quotient-and-remainder
function quot&rem on natural numbers would have type

Nat → (Nat → (Nat ×Nat)).

Some sample applications using this approach:

(quot&rem 14 4) = 〈3, 2〉
(quot&rem 21 5) = 〈4, 1〉

2. Suppose the goal is to define a function f of k arguments that “returns”
n results. Instead define a function f ′ that accepts the k arguments that
f would, but in addition also takes a special extra argument called a
receiver. The value returned by f ′ is the result of applying the receiver
to the n values we want f to return. The receiver indicates how the n
returned values can be combined into a single value. For example:

(quot&rem 14 4 −Int) = (3−Int 2) = 1
(quot&rem 14 4 ×Int) = (3×Int 2) = 6 l

In these examples the type of quot&rem is

Int → (Int → ((Int → (Int → Int))→ Int))

In general, the notation

(f ′ a1 . . . ak r)

can be pronounced “Apply r to the n results of the application of f to
a1 . . . ak.” Note how this pronunciation mentions the f upon which f ′ is
based.

We will use both of these approaches for returning multiple values. The
second approach probably seems mighty obscure and bizarre at first reading,
but it will prove to be a surprisingly useful technique in many situations. In
fact, it is just a special case of a more general technique called continuation-
passing style that is studied in Chapters 9 and 17.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

784 APPENDIX A. A METALANGUAGE

A.2.6 Lambda Notation

Up to this point, the only notation we’ve had to express new functions is a com-
bination of tuple notation and set builder notation. For example, the squaring
function on natural numbers can be expressed by the notation:

square = 〈Nat ,Nat , {〈n,n2〉 | n ∈ Nat}〉

This notation is cumbersome for all but the simplest of functions.
For our metalanguage, we will instead adopt lambda notation as a more

compact and direct notation for expressing functions. The lambda notation
version of the above square function is:

square : Nat → Nat = λn . (n ×Nat n)

Here, the source and target of the function are encoded in the type that is
attached to the function name. The Greek lambda symbol, λ, introduces an
abstraction that specifies the graph of the function, i.e., how the function
maps its argument to a result. An abstraction has the form

λ formal . body

where formal is a formal parameter variable that ranges over the source of the
function, and body is a metalanguage expression, possibly referring to the formal
parameter, that specifies a result in the target of the function. The abstraction
λ formal . body is pronounced “A function that maps formal to body.”

For a function with type A → B, an abstraction defines the graph of the
function to be the following subset of A×B:

{〈formal, body〉 | formal ∈ A and body is defined}

Thus, the abstraction λn . (n ×Nat n) specifies the graph:

{〈n, (n ×Nat n)〉}

The condition that body be defined (i.e., is not undefined) handles the fact that
the function defined by the abstraction may be partial. For example, consider a
reciprocal function defined as:

recip : Rat → Rat = λq . (1 /Rat q)

The graph of recip defined by the abstraction contains no pair of the form 〈0, i0 〉
because (1 /Rat 0) is undefined.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 785

An important advantage of lambda notation is that it facilitates the ex-
pression of higher-order procedures. For example, suppose that expt is a binary
exponentiation function on natural numbers. Then the make-expt function from
Section A.2.4 can be expressed succinctly as:

make-expt : Nat → (Nat → Nat) = λn1 . (λn2 . (expt n2 n1))

The abstraction λn1 can be read as “The function that maps n1 to an
exponentiating function that raises its argument to the n1 power.” Similarly,
the apply-to-five function can be concisely written as:

apply-to-five : (Nat → Nat)→ Nat = λf . (f 5)

By the type of apply-to-five, the argument f is constrained to range over func-
tions with the type Nat → Nat. The lambda notation says that such a function
f should map to the result of applying f to 5.

Like applications, all abstractions in our metalanguage must be well-typed.
An abstraction is well-typed if there is a unique way to assign a type to its formal
parameter such that its body expression is well-typed. If the type of body is T
when the formal parameter is assumed to have type S, then the abstraction has
type S → T .

The type of an abstraction is often explicitly specified, as in the above def-
initions of square, make-expt, and apply-to-five. If the type of an abstraction
has been explicitly specified to be S → T , then the type of the formal parameter
must be S. For example, in the definition

square : Nat → Nat = λn . (n ×Nat n)

the formal parameter n has type Nat within the body expression (n ×Nat n).
This body expression has type Nat and so is well-typed. On the other hand, the
definition

dec : Nat → Nat = λn . (−1 +Nat n)

is not well-typed because in the body of the abstraction +Nat is applied to an
argument, −1, that is not of type Nat.

The type of a formal parameter can always be extracted from a type explic-
itly specified for an abstraction. However, even when the type of the abstraction
is not supplied, it is often possible to determine the type of a formal parame-
ter based on constraints implied by the body expression. For example, in the
abstraction

λx . (1 +Int x)

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

786 APPENDIX A. A METALANGUAGE

the formal parameter x must be of type Int because the application involving
+Int is only legal when both arguments are elements of type Int. However,
sometimes there aren’t enough constraints to unambiguously reconstruct the
types of formal parameters. For example, in

λf . (f 5)

the type of the formal parameter f must be of the form N → T , where N is a
numeric type; but there are many choices for N , and T is totally unconstrained.
This is a case where an explicit type must be given to the abstraction.

An abstraction of type S → T can appear anywhere that an expression of
type S → T is allowed. For example, an application of the squaring function to
the result of adding 2 and 3 is written:

((λn . (n ×Nat n)) (2 +Nat 3))

Such an application can be simplified by any manipulation that maintains the
meaning of the expression. For instance:

((λn . (n ×Nat n)) (2+Nat 3))
= ((λn . (n ×Nat n)) 5)
= (5×Nat 5)
= 25

In the next to last step above, the number 5 was substituted for the formal
n in the body expression (n ×Nat n). This step is justified by the meaning of
application in conjunction with the function graph specified by the abstraction.
As another sample application, consider:

(make-expt 3)
= ((λn1 . (λn2 . (expt n2 n1))) 3)
=λn2 . (expt n2 3)

In this case, the result of the application is a cubing function.

Often the same abstraction can be used to define many different functions.
For example, the expression λa.a can be used to define the graph of any identity
or inclusion function. Because the variable a ranges over the source, though, the
resulting graphs are different for each source. A family of functions defined by
the same abstraction is said to be a polymorphic function. We will often
parameterize such functions over a type or types to take advantage of their
common structure. Thus, we can define the polymorphic identity function as

identityA : A→ A = λa . a

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 787

where the subscript A means that identityA defines a family of functions indexed
by the type A. We specify a particular member of the family by fixing the
subscript to be a known type. So identityInt is the identity function on integers,
and identityBool is the identity function on booleans.

There are several conventions that are used to make lambda notation more
compact:

• It is common to abbreviate nested abstractions by collecting all the formal
parameters and putting them between a single λ and dot. Thus,

λa1 . λa2 λan . body

can also be written as
λa1a2 . . . an . body

This abbreviation promotes the view that curried functions accept “mul-
tiple arguments”: λa1a2 . . . an . body can be considered a specification for
a function that “takes n arguments.”

• Formal parameter names are almost always single characters, perhaps an-
notated with a subscript or prime. This means that whitespace separating
such names can be removed without resulting in any ambiguity. In com-
bination with the left-associativity of application, these conventions allow
λa b c . ((b c) a) to be written as λabc . bca.

• Nested abstractions are potentially ambiguous since it’s not always appar-
ent where the body of each abstraction ends. For example, the abstraction
λx . λy . yx could be parsed either as λx . λy . (yx) or as λx . (λy . y)x. The
following disambiguating convention is used in such cases: the body of an
abstraction is assumed to extend as far right as explicit parentheses allow.
By this convention, λx . λy . yx means λx . (λy . (yx)).

A.2.7 Recursion

Using lambda notation, it is possible to write recursive function specifications:
functions that are directly or indirectly defined in terms of themselves. For
example, the factorial function fact on natural numbers can be defined as:

fact : Nat → Nat = λn . (ifNat (n =Nat 0) 1 (n ×Nat (fact (n −Nat 1))))

We can argue that fact is defined on all natural numbers based on the principle
of mathematical induction. That is, for the base case of an argument equal to
0, the definition clearly specifies the value of fact to be 1. For the inductive

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

788 APPENDIX A. A METALANGUAGE

case, assume that fact is defined for the argument m. Then, according to the
definition, the value of (fact (m+ 1)) is ((m+ 1) ×Nat (fact m)). But by the
assumption that (fact m) is defined, this expression has a clear meaning. So
(fact (m+ 1)) is also defined. By induction, fact is defined on every element of
Nat, so the above definition determines a unique total function.

There are many recursive definitions for which the above kind of inductive
argument fails. Consider the definition of the strange function given below:

strange : Nat → Nat = λn . (ifNat (even?Nat n) 0 (strange (n +Nat 2)))

(Assume that even?Nat is a predicate that tests whether its argument is even.)
Clearly the function strange maps every even number to 0. But what does it
map odd numbers to? Induction does not help us because the argument never
gets smaller. If we think in terms of function graphs, then we see that for any
natural number c, the above definition is consistent with a graph of the form

{〈2n, 0〉 | n ∈ Nat} ∪ {〈2n+ 1, c〉 | n ∈ Nat}

So the specification for strange is ambiguous; it designates any of an infinite
number of function graphs!

The strange example illustrates that recursive definitions need to be handled
with extreme care. For now, we will assume that the only case in which a
recursive definition has a well-defined meaning is one for which it is possible to
construct an inductive argument of the sort used for fact. Chapter 5 presents a
technique for determining the meaning of a broad class of recursive definitions
that includes functions like strange.

A.2.8 Lambda Notation is not Lisp!

Those familiar with a dialect of the Lisp programming language may notice a
variety of similarities between lambda notation and Lisp. (Those unfamiliar
with Lisp may safely skip this section.) Although Lisp is in many ways related
to our metalanguage, we emphasize that there are some crucial differences:

• Our metalanguage requires all expressions to be well-typed. In particu-
lar, source and target types must be provided for every abstraction. Most
dialects of Lisp, on the other hand, have no notion of a well-typed expres-
sion, and they provide no mechanism for specifying argument and result
types for procedures.8

8The FX language [GJSO92] is a notable exception.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.2. FUNCTIONS 789

• Most Lisp-like languages support procedures that handle multiple argu-
ments. Because abstractions specify mathematical functions, they always
take a single argument. However, the notion of multiple arguments can be
simulated by currying or tupling.

• Every parenthesis in a Lisp expression is required, but parentheses are only
strictly necessary in our lambda notation to override the default way in
which an expression is parsed. Of course, extra parentheses may be added
to clarify a metalanguage expression.

• Lisp dialects are characterized by evaluation strategies that determine de-
tails like which subexpressions of a conditional are evaluated and when
argument expressions are evaluated relative to the evaluation of a proce-
dure body. Our metalanguage, on the other hand, is not associated with
any notion of a dynamic evaluation strategy. Rather, it is just a notation
to describe the graph of a function, i.e., a set of argument/result pairs.
Any reasoning about an abstraction is based on the structure of the graph
it denotes.

For example, compare the metalanguage abstraction

λa . (ifNat (even?Nat a) (a +Nat 1) (a ×Nat 2))

with the similar Lisp expression

(lambda (a) (if (even? a) (+ a 1) (* a 2)))

In the case of Lisp, only one branch of the conditional is evaluated for any
given argument a; if a is even, then (+ a 1) is evaluated, and if it’s odd,
(* a 2) is evaluated. In the case of the metalanguage, the value of the
function for any argument a is the result of applying the if function to the
three arguments (even?Nat a), (a+Nat 1), and (a×Nat 2). Here there is no
notion of evaluation, no notion that some event does or does not happen,
and no notion of time. The expression simply designates the mathematical
function:

〈Nat ,Nat , {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 6〉, 〈4, 5〉, 〈5, 10〉, . . .}〉

In fact, a metalanguage abstraction can be viewed as simply a structured
name for a particular function.

Although there are many differences between Lisp and lambda notation,
the two obviously share some important similarities. Some functional pro-
gramming languages have features that are even more closely patterned after

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

790 APPENDIX A. A METALANGUAGE

lambda notation. (The FL language presented in Chapter 6 is an example.)
However, our purpose for introducing lambda notation here is to have a conve-
nient notation for expressing mathematical functions, not for writing programs.
The relationship between mathematical functions and programs is the essence
of semantics, which is studied in the main text of the book.

A.3 Domains

A.3.1 Motivation

Sets and set-theoretic functions have too simple a structure to model some im-
portant aspects of the semantics of programming languages. Yet, we would like
to proceed with the simplifying assumption that sets are adequate for our pur-
poses until the need for more structure arises. And when we do augment sets
with more structure (see Chapter 5), we would prefer not to throw away all of
the concepts and notations developed up to that point and start from scratch.

To protect against such a disaster, we will use the same technique that good
programmers use to guarantee that their code can be easily modified: abstrac-
tion.9 The essence of abstraction is constructing an abstraction barrier or
interface that clearly separates behavior from implementation. In program-
ming, an interface usually consists of a collection of procedures that manipulate
elements of an abstract data type. The data type is abstract in the sense that
it can only be manipulated by the procedures in the interface; its internal rep-
resentation details are hidden. The power of abstraction is that changes to
the representation of a data type are limited to the implementation side of the
barrier; as long as the interface specification is maintained, no client of the
abstraction needs to be modified.

We introduce an abstract structure called a domain that will serve as our
basic entity for modeling programming languages. Domains are set-like struc-
tures that have constituent elements, but may have other structure as well.
The interface to domains is specified by a collection of domain constructors
introduced below. In our initial näıve implementation, domains are sets. In
Chapter 5, however, we will change this implementation by extending the sets
with additional structure.

Together, domains and domain constructors define a simple domain lan-
guage. The language comes equipped with a collection of fundamental building
blocks called primitive domains. These cannot be decomposed into simpler

9Note that this use of the term “abstraction” is different from that used in the previous
section, where it meant a metalanguage expression that begins with a proc.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 791

domains. Domain constructors build more complex domains from simpler ones.
The resulting compound domains can be decomposed into the parts out of
which they were made.

In the näıve implementation of domains, primitive domains are sets whose
elements have no structure. That is, the elements of primitive domains may be
items like numbers, truth values, or the unit value; but they may not be tuples,
sets, or functions. Examples of primitive domains include Unit, Bool, Int, Nat,
and Rat.

Compound domains are built by four domain constructors: × , + , *, and
→ . We shall study these in turn.

A.3.2 Product Domains

The product of two domains, written D1 × D2, is the domain version of a Carte-
sian product. Elements of a compound domain are created by an appropriate
constructor function. In the case of products, the constructor tuple creates
elements of the product domain, which are called tuples. We will extend the
type notation d :D to indicate that d is an element of the domain D. If d1 :D1

and d2 :D2 then
(
tupleD1 ,D2

d1 d2

)
: D1 ×D2

The subscripts on tuple emphasize that it is really a family of functions indexed
by the component domains. For example, tupleNat ,Bool and tupleInt ,Int both
serve to pair elements, but the fact that they have different sources, targets, and
graphs makes them different functions.

We will abbreviate
(
tupleD1 ,D2

d1 d2

)
as 〈d1, d2〉D1 ,D2

, and will drop the
subscripts when they are clear from context. For example, the product of Nat
and Bool technically is

Nat × Bool=
{
(
tupleNat,Bool 0 false

)
,
(
tupleNat ,Bool 1 false

)
,
(
tupleNat ,Bool 2 false

)
, . . .,

(
tupleNat,Bool 0 true

)
,
(
tupleNat ,Bool 1 true

)
,
(
tupleNat ,Bool 2 true

)
, . . . }

but we will usually write it as

Nat × Bool= {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . ,
〈0, true〉, 〈1, true〉, 〈2, true〉, . . . }

Domains of n-tuples (known as n-ary products) are written

n∏

i=1

Di = D1 ×D2 × · · · ×Dn = {〈d1, d2, . . . , dn〉D1 ,D2 ,...,Dn | di : Di}

The notation Dn stands for the product of n copies of D.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

792 APPENDIX A. A METALANGUAGE

Every product domain
∏n
i=1Di comes equipped with n projection func-

tions
Proj iD1 ,...,Dn

: (D1 × . . . ×Dn)→ Di

to extract the ith element from an n-tuple:

Proj iD1 ,...,Dn
〈d1, . . . , dn〉D1 ,...,Dn = di, 1 ≤ i ≤ n

For example,

Proj 1Nat ,Bool 〈19, true〉 = 19

Proj 2Nat ,Bool 〈19, true〉 = true

Again, the subscripts indicate that for each i, Proj i is a family of functions
indexed by the component domains of the tuple being operated on. They will
be omitted when they are clear from context.

Notice that we have overloaded the notation 〈. . .〉, which may now denote
either a set-theoretic tuple or a domain-theoretic one. We have done this because
in the simple implementation of domains as sets, product domains simply are
set-theoretic Cartesian products, and set-theoretic tuples are tuples. However,
thinking in terms of a concrete implementation for domains can be somewhat
dangerous. Product domains are really defined only by the behavior of tuple
and Proj i, which must satisfy the following two properties:

1. Proj iD1 ,...,Dn

(
tupleD1 ,...,Dn

d1 . . . dn
)
= di, 1 ≤ i ≤ n

2. tupleD1 ,...,Dn

(
Proj 1D1 ,...,Dn

d
)
. . .

(
ProjnD1 ,...,Dn

d
)
= d,

d :
∏n

i=1Di

Any implementation of tuple and Proj i that satisfies these two properties is
a valid implementation of products for domains. For example, it’s perfectly
legitimate to define tupleNat ,Bool by

tupleNat ,Bool n b = 〈b,n〉,

where the order of elements in the concrete (set-theoretic) representation is
reversed, as long as Proj iNat ,Bool is defined consistently:

Proj 1Nat ,Bool 〈b,n〉 = n

Proj 2Nat ,Bool 〈b,n〉 = b

From here on, and in the body of the text, the 〈. . .〉 notation will by default
denote domain-theoretic tuples rather than set-theoretic tuples.

Since writing out compound domains in full can be cumbersome, it is com-
mon to introduce synonyms for them via a domain definition of the form

name = compound-domain

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 793

For example, the domain definitions

Vector = Int × Int
Circle = Vector × Int × Bool

introduces the name Vector as a synonym for a domain of pairs of integers
and the name Circle as a synonym for a domain of triples whose components
represent the state of a graphical circle object: the position of its center (a
pair of integers), its radius (an integer), and a flag indicated whether or not
it is filled (a boolean). Domain definitions are often used merely to introduce
more mnemonic names for domains. The following set of domain definitions is
equivalent to the set above:

Vector = X-coord × Y-coord
X-coord = Int
Y-coord = Int
Circle = Position × Radius × Filled?
Position = Vector
Radius = Int
Filled? = Bool

Domain equality is purely structural and has nothing to do with names. Thus,
the assertion Position = (Int × Int) is true because both descriptions designate
the domain of pairs of integers.10

A.3.3 Sum Domains

Sum domains are analogous to variant records and unions in programming lan-
guages. The sum of two domains, written D1 + D2, is a domain that is the
disjoint union of the two domains. A disjoint union differs from the usual set
union in that each element of the union is effectively “tagged” to indicate which
component set it comes from. An element of a sum domain, which we will call
a oneof, is built by an injection function

Inj iD1 ,D2
: Di → (D1 +D2)

Here, i, which can be either 1 or 2, indicates which component domain the
element is from.

10It may seem confusing that the equality symbol, = , is used both to test domains for
equality and to define new domain names. But this confusion is standard in mathematics. In
the first case, it is assumed that the meaning of all names is known, and = asserts that the
left and right hand sides are equal. In the second case, it is assumed that the meaning of the
left hand names are unknown, and the equations are solved to make the = assertions true.
In the examples above, the equations are trivial to solve, but domain equations with recursion
can be difficult to solve (see Chapter 5).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

794 APPENDIX A. A METALANGUAGE

A sum domain contains all oneofs that can be constructed from its component
domains. For example,

Nat + Int = {
(
Inj 1Nat ,Int 0

)
,
(
Inj 1Nat ,Int 1

)
,
(
Inj 1Nat,Int 2

)
, . . . ,

(
Inj 2Nat ,Int −2

)
,
(
Inj 2Nat ,Int −1

)
,
(
Inj 2Nat ,Int 0

)
,
(
Inj 2Nat,Int 1

)
, . . .}

If the familiar set-theoretic union were performed on the domains Nat and Int,
it would be impossible to determine the source domain for any n ≥ 0 in the
union.

The notion of sum naturally extends to n-ary sums, which are constructed
by the notation:

n∑

i=1

Di = D1 +D2 + . . . +Dn = {
(
Inj iD1 ,...,Dn

di
)
| di : Di}

When S = D1 + . . . + Dn and all the domain names Di are distinct, we
write Di 7→ S as a synonym for Inj iD1 ,...,Dn . For example, since the Bool domain
contains only two elements, we can represent it as the sum of two Unit domains:

Bool = True + False
True = Unit
False = Unit

Then the value true would be a synonym for (True 7→ Bool unit) and the value
false would be a synonym for (False 7→ Bool unit). If Bool were instead described
as the sum Unit + Unit, the mnemonic injection functions could not be used
because the name Unit 7→ Bool would be ambiguous.11

Elements of a sum domain are detagged by a matching S ,D construct that
maps an element of the domain S into an element of the domainD. Amatching S ,D

construct has one clause for each possible summand domain in S. If S =
∑n

i=1Di and s :S, then the form of this construct is:

matching S ,D s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. (Dn 7→ S In) [] En
endmatching

where each Ei is a metalanguage expression of typeD. The subscripts onmatching
will be omitted when they are clear from context.

11Note that the alternative injection notation is one place where the name, not the structure
of a domain, matters. So even though True =Unit, the injection function True 7→ Bool is not

the same as the Unit 7→ Bool.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 795

In this notation, s is called the discriminant, and lines of the form

. (Di 7→ S Ii)[] Ei

are called clauses. The part of the clause between the . and the [] is called the
head of the clause, and the part of the clause after the [] is called the body
of the clause. This notation is pronounced “If the discriminant is the oneof
(
Inj iD1 ,...,Dn

di
)
, then the value of the matching S ,D expression is the value of

Ei in a context where the identifier Ii stands for di.”
The head of a clause is treated as a pattern that can potentially be matched

by the discriminant. That is, if the discriminant could have been injected into
the sum domain by the expression (Di 7→ S Ii), then in this expression Ii must
denote a value from Di. When such a match is successful, the body is evaluated
assuming Ii has this value.

For example, the value of

matching
(
Inj 1Nat ,Int 3

)

. ((Nat 7→ Nat + Int) Inat) [] (Nat ↪→ Int (Inat +Nat 1))

. ((Int 7→ Nat + Int) Iint) [] (Iint ×Int Iint)
endmatching

is 4, because the element
(
Inj 1Nat ,Int 3

)
matches the head of the first clause,

and when Inat is 3, the value of (Inat +Nat 1) is 4. Similarly, the value of

matching
(
Inj 2Nat ,Int 3

)

. ((Nat 7→ Nat + Int) Inat) [] (Nat ↪→ Int (Inat +Nat 1))

. ((Int 7→ Nat + Int) Iint) [] (Iint ×Int Iint)
endmatching

is 9. Note that the inclusion function Nat ↪→Int is necessary to guarantee that
body expression of the first clause has type Int.

Since a matching construct has one clause for each summand, there is
exactly one clause that matches the discriminant. However, for convenience, the
distinguished clause head . elsemay be used as a catch-all to handle all tags
unmatched by previous clauses.

When the expression Etest denotes a boolean truth value, the notation

if D Etest then Etrue else Efalse fi

is an abbreviation for the case expression

matching Bool,D Etest
. (True 7→ Bool Iignore) [] Etrue
. (False 7→ Bool Iignore) [] Efalse
endmatching .

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

796 APPENDIX A. A METALANGUAGE

This abbreviation treats the Bool domain as the sum of two Unit domains
(see page 794). The if is subscripted with the domain D of the result, but we
will omit it when it is clear from context. Here, the identifier Iignore should be
an identifier that does not appear in either Etrue or Efalse .

12

Like products, the sums are abstractions defined only by the behavior of
injection functions and the matching construct. In particular, these must
satisfy the following two properties:

1.

matching (Di 7→ S di)
. (D1 7→ S I1) [] I1
...

. (Dn 7→ S In) [] In
endmatching

= di, 1 ≤ i ≤ n

2.

matching d
. (D1 7→ S I1) [] (D1 7→ S I1)
...

. (Dn 7→ S In) [] (Dn 7→ S In)
endmatching

= d, 1 ≤ i ≤ n

Any implementation of sums in which the injection functions and matching
satisfy these two properties is a legal implementation of sums.

A.3.4 Sequence Domains

Sequence domains model finite sequences of elements all taken from the same
domain. They are built by the * domain constructor; a sequence domain whose
sequences contain elements from domain D is written D*. An element of a
sequence domain is simply called a sequence. A sequence is characterized by
its length n and its ordered elements, which are indexed from 1 to n.

A length-n sequence over the domain D is constructed by the function

sequencen,D : D
n → D*.

Thus sequence3 ,Int 〈−5, 7,−3〉 is a sequence of length three with −5 at index 1,
7 at index 2, and −3 at index 3. We will abbreviate

(
sequencen,D d1 . . . dn

)
. as

[d1, . . . , dn]D . So the sample sequence above could also be written [−5, 7,−3]Int ,
and the empty sequence of integers would be written []Int .

13 As elsewhere, we
will omit the subscripts when they can be inferred from context.

12This restriction prevents the variable capture problems discussed in Section 6.3.
13The empty sequence is created using a 0-tuple.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 797

Every sequence domain D* is equipped with the following constructor, pred-
icate, and selectors:

• consD : D → (D*→ D*)
If d :D and s is a length-n sequence over D*, then (consD d s) is a length-
n+1 sequence whose first element is d and whose ith element is the i−1th
element of s, 2 ≤ i ≤ n+ 1.

• empty?D : D*→ Bool
(
empty?D s

)
is true if s = []D and false otherwise.

• headD : D*→ D
If s :D* is nonempty, (headD s) is the first element of s. Defining the head
of an empty sequence is somewhat problematic. One approach is to treat
(headD []D) as undefined, in which case head is only a partial function.
An alternative approach that treats head as a total function is to define
(headD []D) as a particular element of D.

• tailD : D*→ D*
If s :D* is nonempty, (tailD s) is the subsequence of the sequence s that
consists of all elements but the first element. If s is empty, (tailD s) is
defined as []D .

Other useful functions can be defined in terms of the above functions:

lengthD : D*→ Nat
=λd* . if

(
empty?D d*

)
then 0 else

(
1+Nat

(
lengthD (tailD d*)

))
fi

nthD : Pos → D*→ D
=λpd* . if (p =Pos 1) then (headD d*) else (nthD (p −Pos 1) (tailD d*)) fi

appendD : D*→ D*→ D*
=λd1*d2* . if

(
empty?D d1*

)
then d2*

else
(
consD (headD d1*)

(
appendD (tailD d1*) d2*

))
fi

mapD1 ,D2
: (D1 → D2) → D1*→ D2*

=λf d* . if
(
empty?D1

d*
)
then []D2

else
(
consD2

(f (headD1
d*))

(
mapD1 ,D2

f (tailD1
d*)
))

fi

lengthD returns the length of a sequence. nthD returns the element of the given
sequence at the given index. appendD concatenates a length-m sequence and a
length-n sequence to form a length-m+n sequence. Give a (D1 → D2) function f
and a length-n sequence of D1 elements [d1, . . . , dn] mapD1 ,D2

returns a length-n
sequence of D2 elements [(f d1) , . . . , (f dn)]

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

798 APPENDIX A. A METALANGUAGE

In the above definitions, we use the convention that if d is a variable ranging
over the domainD, d* is a variable ranging over the domainD*. All of the above
function definitions exhibit a simple form of recursion in which the size of the
first argument is reduced at every recursive call; by the principle of mathematical
induction, all of the functions are therefore well-defined.

The cons and append functions are common enough to warrant some con-
venient abbreviations:

• d . d* is an abbreviation of (cons d d*). The dot (“.”) is an infix binary
function that naturally associates to the right. Thus, d1 . d2 . d* is parsed
as d1 . (d2 . d*).

• d1* @ d2* is an abbreviation of (append d1* d2*). The at sign, @, is an
associative infix binary operator.

As with products and sums, sequences are defined purely in terms of their
abstract behavior. A legal implementation of sequence domains is one which
satisfies the following properties for all domains D, all d :D and d* :D*

1.
(
empty?D []D

)
= true

2.
(
empty?D (d . d*)

)
= false

3. (headD (d . d*)) = d

4. (headD []D) = demptyHead, where demptyHead is a particular element of D chosen
for this purpose.

5. (tailD (d . d*)) = d*

6. (tailD []D) = []D

7. (consD (headD d*) (tailD d*)) = d*

A.3.5 Function Domains

The final constructor we will consider is the binary infix function domain con-
structor, → . In the näıve implementation of domains as sets, D1 → D2 is the
domain of all total functions with D1 as their source and D2 as their target. El-
ements of a function domain are called functions. As with tuples, there is the
possibility for confusion between set-theoretic functions and domain-theoretic
functions. These are the same in the näıve implementation, but differ when
we change the implementation of domains. In the body of the text, “function”
means domain-theoretic function; we explicitly refer to “set-theoretic functions”
when necessary. The same holds for arrow notation, which refers to the function
domain constructor unless otherwise specified.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 799

The arrow notation meshes nicely with the use of arrows already familiar
from set-theoretic function types. Thus, the notation f : Int → Bool can now be
interpreted as “f is an element of the function domain Int → Bool .” Elements of
this domain are predicates on the integers, such as functions for testing whether
an integer is even or odd, or for testing whether an integer is positive or negative.
Similarly, the domain Int → (Int → Int) is the domain of partial functions on
two (curried) integer arguments that return an integer. The (curried) binary
integer addition, multiplication, etc., functions are all elements of this domain.

The → constructor is right-associative:

D1 → D2 → · · · → Dn−1 → Dn means (D1 → (D2 → · · · (Dn−1 → Dn) · · ·))

The right-associativity of → interacts nicely with the left associativity of ap-
plication in lambda notation. That is, if a :A, b :B, and f : (A → B → C), then
(fa) :B → C, so that (f a b) :C =((f a) b) :C, just as we’d like.

We write particular elements of a function domain using lambda notation.
Thus

(λn . (n ×Nat n)) : Nat → Nat

is the squaring function on natural numbers, and

(λi . (i >Int 0)) : Int → Bool

is a predicate for testing whether an integer is positive.

As before, we require all abstractions to be well-typed. We can always specify
the type of an abstraction by giving it an explicit type. So

λx . x : Int → Int

specifies the identity function on integers, while

λx . x : Bool → Bool

specifies the identity function on booleans.

However, to enhance the readability of abstractions, we will use a convention
in which each domain of interest has associated with it a domain variable that
ranges over elements of the domain. For example, consider the following domain
definitions:

b ∈ Bool
n ∈ Nat
p ∈ Nat-Pred = Nat → Bool

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

800 APPENDIX A. A METALANGUAGE

The domain variable b ranges over the Bool domain, the domain variable n
ranges over the Nat domain, and the domain variable p ranges over the function
domain Nat → Bool.

Domain variables, possibly in subscripted or primed form, are used in meta-
language expressions to indicate that they denote only entities from their asso-
ciated domain. Thus (λb . b) and (λb1 . b1) unambiguously denote the identity
function in the domain Bool → Bool, (λn . n) and (λn ′ . n ′) both denote the
identity function in the domain Nat → Nat, and (λp . p) denotes the identity
function in the domain

Nat − Pred → Nat − Pred = (Nat → Bool)→ (Nat → Bool) .

As another example, the expression (λn . λp . pn) is an element of the function
domain

Nat → Nat − Pred → Bool = Nat → (Nat → Bool)→ Bool .

In practice, we will use both explicit and implicit typing of domain elements.
When we define a value named v from a domain D, we will first write a type
of the form v : D that specifies that v names an element from D. Then we will
give a definition for the name that uses domain variables where appropriate. So
an integer identity function is written

integer-identity : Int → Int = λi . i

and the notation for an identity parameterized over a domain D is:

identityD : D → D = λd . d

In fact, we have already used this notation to describe the operations on a
sequence domain in Section A.3.4.

Our description of function domains in this section has a different flavor than
the description of product, sum, and sequence domains. With the other domains,
elements of the compound domain were abstractly defined by assembly functions
that had to satisfy certain properties with respect to disassembly functions.
But with function domains, we concretely specify the elements as set-theoretic
functions designated by lambda notation. Is there a more abstract approach to
defining function domains? Yes, but it is rather abstract and not important to
our current line of development. See Exercise A.3.

¤ Exercise A.1 It is natural to represent a oneof in
∑n

i=1Di as a set-theoretic pair
containing the tag i and an element di of Di:

(
Inj iD1 ,...,Dn

di
)
= 〈i, di〉

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.3. DOMAINS 801

Assuming that oneofs are represented as pairs, use lambda notation to construct a
set-theoretic function of a oneof argument s ∈ D1 +D2 that has the same meaning as
the following matching expression:

matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
endmatching

(Use the three argument ifT function on page 782 rather than the if abbreviation on

page 795, which itself is implemented in terms of a matching expression. Assume E1
and E2 are of type T .) ¢

¤ Exercise A.2 Suppose that A, B, C, and D are any domains. Extend the notation
× so that it defines a binary infix operator on functions with the following signature:

((A→ B) × (C → D))→ ((A× C)→ (B ×D))

If f :A → B, g :C → D, a :A, and c :C, then f × g : (A× C) → (B ×D) is defined
by:

〈f, g〉〈a, c〉 = 〈(f a) , (g c)〉f × g = 〈f ◦ Proj 1, g ◦ Proj 2〉
Suppose that h : (A× C)→ (B ×D) is a set-theoretic function. Show that

h = (Proj 1 h) × (Proj 2 h) ¢

¤ Exercise A.3 This exercise explores some further properties of function domains.
Consider the following two functions:

• applyA,B : ((A→ B) ×A)→ B If f :A→ B and a :A, then
(
applyA,B 〈f, a〉

)
denotes the result of applying f to a.

• curryA,B ,C : ((A×B)→ C)→ (A→ (B → C)) If f : (A×B)→ C, then
(
curryA,B ,C f

)
denotes a curried version of f — i.e., it denotes a function g such

that (g a b) = (f 〈a, b〉) for all a∈A and b∈B.

a. Use lambda notation to define set-theoretic versions of apply and curry.

b. Using your definitions from above, show that if f : (A×B)→ C, then

f = applyB ,C ◦
((
curryA,B ,C f

)
× idB

)

The meaning of × on functions is defined in Exercise A.2. Recall that idD is the
identity function on domain D.

c. Using your definitions from above, show that if g :A→ (B → C), then

g =
(
curryA,B ,C

(
applyB ,C ◦ (g × idB)

))

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

802 APPENDIX A. A METALANGUAGE

It turns out that any domain implementation with an apply and a curry function that

satisfy the above properties is a legal implementation of a function domain. This is the

abstract view of function domains alluded to above. ¢

A.4 Metalanguage Summary

So far we’ve introduced many pieces of the metalanguage. The goal of this
section is to put all of the pieces together. We’ll summarize the metalanguage
notation introduced so far, and introduce a few more handy notations.

In the study of programming languages, it is often useful to break up the
description of a language into two parts: the core of the language, called the ker-
nel, and various extensions that can be expressed in terms of the core, called the
syntactic sugar. We shall use this approach to summarize the metalanguage.
(See Section 6.2 for an example of using this approach to specify a programming
language.)

A.4.1 The Metalanguage Kernel

The entities manipulated by the metalanguage are domains and their elements.
Domains are either primitive, in which case they can be viewed as sets of un-
structured elements, or compound, in which case they are built out of component
domains. Domains are denoted by domain expressions. Domain expressions
are either domain names (such as Bool, Nat, etc.) or are the application of the
domain operators × , + , *, and → to other domain expressions. New names
can be given to domains via domain definitions. Domain definitions can also
introduce domain variables that range over elements of the domains.

Domain elements are denoted by element expressions. The kernel element
expressions are summarized in Figure A.1.

Constants are names for primitive domain elements and functions; these
include numbers, booleans, and functions. We will assume that the domain
of every constant is evident from context. Variables are names introduced as
formal parameters in abstractions or as the defined name of a definition. Every
variable ranges over a particular domain. If a variable is the domain variable
introduced by some domain definition, it is assumed to range over the specified
domain; otherwise, the type of the variable should be explicitly provided to
indicate what domain it ranges over.

Applications are compound expressions in which an operator is applied to an
operand. The operator expression must denote an element of a function domain
S → T , and the operand expression must denote an element of the domain S;

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 803

• constants: e.g., 0, true, +Nat , tupleNat ,Bool , Proj iNat,Bool

• variables: e.g., a, b ′, c2 , fact

• applications: e.g, (fact 5), ((+Nat 2) 3), ((λa . a) 1)

• abstractions: e.g., (λa . a), (λb . 1), (λa . λb . λc . (ca)b)

• case analysis: matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. (Dn 7→ S In) [] En
endmatching

or matching s
. (D1 7→ S I1) [] E1
. (D2 7→ S I2) [] E2
. . .

. else [] Eelse
endmatching

Figure A.1: The kernel element expressions.

in this case, the application denotes an element of type T . Applications with
multiple operands are usually expressed by currying. Elements of primitive
domains are often the operands to functions (such as arithmetic and logical
functions) associated with the domain. Elements of product, sum, and sequence
domains can be built by the application of constructor functions (tupleD1 ,...,Dn ,
Di 7→ S, or sequencen,D , respectively) to the appropriate arguments. Compound
domains are equipped with many other useful functions that operate on elements
of the domain.

Abstractions are compound expressions that denote the elements of function
domains. Structurally, an abstraction consists of a formal parameter variable
and a body element expression. An abstraction (λI . Ebody) specifies the func-
tion graph containing all pairs 〈I, t〉 where I ranges over the source domain of
the function and t is the target domain element that is the value of the body
expression Ebody for the given I. The type of the abstraction should either be
given explicitly or should be inferable from the structure of the parts of the
abstraction.

While the parts of products and sequences are extracted by function appli-
cation, elements of a sum domain are disassembled by thematching construct.
A matching construct consists of a discriminant and a set of clauses, each of
which has a pattern and a body. There must be one clause to handle each
summand in the domain of the discriminant. All body expressions must denote
elements of the same domain so that the domain of the value denoted by the
matching expression is clear.

The element expressions in Figure A.1 are often used in conjunction with

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

804 APPENDIX A. A METALANGUAGE

definitions to specify a domain element. A definition has the form

name : type = expression

where name is the name of the element being defined, type is a domain ex-
pression that denotes the domain to which the defined element belongs, and
expression is a metalanguage expression that specifies the element. Definitions
may only be recursive in the case where it can be shown that they define a
unique element in the domain specified by the type. One way to do this is to use
induction; another way is to use the iterative fixed point technique developed in
Chapter 5.

A.4.2 The Metalanguage Sugar

It is possible to write all element expressions using the kernel element expressions,
but it is not always convenient to do so. We have introduced various notational
conventions to make the metalanguage more readable and concise. We review
those notations here, and introduce a few more.

Figure A.2 summarizes the syntactic sugar for element expressions. Ap-
plications and abstractions are simplified by various conventions. The default
left-associativity of application simplifies the expression of multi-argument appli-
cations; thus, (expt 2 5) is an abbreviation for ((expt 2) 5). This default can
be overridden by explicit parenthesization. Applications of familiar functions
like +Nat are often written in infix style to enhance readability. For example,
(2 +Nat 3) is an abbreviation for ((+Nat 2) 3). The formal parameters of nested
abstractions are often coalesced into a single abstraction. For instance, λabc . ca
is shorthand for λa . λb . λc . ca.

The construction of elements in product, sum, and sequence domains is aided
by special notation. Thus,

〈1, true〉 is shorthand for
(
tupleNat ,Bool 1 true

)

((Nat 7→ Nat + Int) 3) is shorthand for
(
Inj 1Nat ,Int 3

)

[5, 3, 2, 7] is shorthand for sequence4 ,Nat 〈5, 3, 2, 7〉

(We have assumed in all these examples that the numbers are elements of Nat
rather than of some other numerical domain.) The notations d .d* and d1*@d2*
are abbreviations for cons and append respectively, so that the following nota-
tions all denote the same sequence of natural numbers:

[5, 3, 2, 7] = 5 . [3, 2, 7] = [5, 3] @ [2, 7]

The if conditional expression

if Ebool then Eif−true else Eif−false fi

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 805

• applications: e.g., (expt 2 5), (2 +Nat 3)

• abstractions: e.g., (λabc . ca)

• tuples: e.g., 〈1, true〉
• oneofs: e.g., ((Nat 7→ Nat + Int) 3)

• sequences: e.g., [5, 3, 2, 7], 5 . [3, 2, 7], [5, 3] @ [2, 7]

• if: if Ebool then Eif−true else Eif−false fi

• let: let I1 be E1 and
I2 be E2 and
...
In be En
in Ebody

• matching: matching Edisc
. p1 [] E1
. p2 [] E2
...
. pn [] En
endmatching

or matching Edisc
. p1 [] E1
. p2 [] E2
...
. else [] En
endmatching

Figure A.2: Sugar for element expressions.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

806 APPENDIX A. A METALANGUAGE

is an abbreviation for the following case analysis:

matching Ebool
. (True 7→ Bool Iignore) [] Eif−true
. (False 7→ Bool Iignore) [] Eif−false
endmatching

where Ebool is an expression that denotes an element of the domain Bool and
Eif−true and Eif−false denote elements from the same domain. The variable
Iignore can be any variable that does not appear in Eif−true or Eif−false . This
notation assumes that the Bool domain is represented as a sum of two Unit
domains.

The let expression is new:

let I1 be E1 and
I2 be E2 and
...
In be En
in Ebody

is pronounced “Let I1 be the value of E1 and I2 be the value of E2 . . . and In
be the value of En in the expression Ebody .” The let expression is used to name
intermediate results that can then be referenced by name in the body expression.
The value of a let expression is the value of its body in a context where the
specified bindings are in effect. The let expression is just a more readable form
of an application of a manifest abstraction:

((λI1 I2 . . . In . Ebody) E1 E2 . . . En)

The matching expression is extended to simplify the extraction of tuple
and sequence components:

matching Edisc
. p1 [] E1
. p2 [] E2
...
. pn [] En
endmatching

As before, a matching expression consists of a discriminant and a number
of clauses. The two parts of a matching clause are called the pattern and
the body. A pattern is composed out of constants, variables, and tuple and
sequence constructors; for example, the following are typical patterns:

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 807

〈n, 1〉,
〈〈w, x〉, y, z〉,
[i1 ,−3, i2],
n . n*,

A pattern is said to match a value v if it is possible to assign values to the
variables such that the pattern would denote v if it were interpreted as an
element expression with the assignments in effect. Thus, the pattern 〈n, 1〉
matches the value 〈2, 1〉 with n =2, but it does not match the values 〈3, 4〉 or
〈2, 1, 3〉. Similarly, n . n* matches [3, 7, 4] with n = 3 and n*= [7, 4], but it does
not match [].

The value of the matching expression is determined by the first clause
(reading top down) whose pattern matches the discriminant. In this case, the
value of the matching expression is the value of the clause body in a context
where all the variables introduced by the pattern are assumed to denote the
value determined by the match. For example, consider the following expression,
where d :Nat × Nat:

matching d
. 〈n, 1〉 [] (n −Nat 1)
. 〈n, 2〉 [] (n ×Nat n)
. 〈n1 ,n2 〉 [] (n1 +Nat n2)
endmatching

If the second component of d is 1, then the value of the matching expression is
one less than the first component; if the second component is 2, then the value
of the matching expression is the square of the first component; otherwise, the
value of the matching expression is the sum of the two components. As before,
the last clause of the matching expression can have an . else pattern that
handles any discriminant that did not successfully match the preceding patterns.
A matching expression is ill-formed if no pattern matches the discriminant.

A matching expression can always be rewritten in terms of conditional
expressions and explicit component extraction functions. Thus, the matching
clause above is equivalent to:

if
(
Proj 2Nat ,Nat d

)
=Nat 1

then
(
Proj 1Nat ,Nat d

)
−Nat 1

else if
(
Proj 2Nat ,Nat d

)
=Nat 2

then
(
Proj 1Nat ,Nat d

)
×Nat

(
Proj 1Nat ,Nat d

)

else
(
Proj 1Nat ,Nat d

)
+Nat

(
Proj 2Nat ,Nat d

)

fi
fi

In this case, the matching expression is more concise and more readable than
the desugared form.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

808 APPENDIX A. A METALANGUAGE

In fact, the pattern matching approach is such a powerful notational tool that
we shall extend many of our other notations to use implicit pattern matching.
For example, we shall allow formal parameters to an abstraction to be patterns
rather than just variables. Thus, the abstraction

λ〈n1 ,n2 〉 . (n1 +Nat n2)

specifies a function with type (Nat ×Nat) → Nat that is shorthand for

λd . matching d
. 〈n1 ,n2 〉 [] (n1 +Nat n2)
endmatching

where d is assumed to range over Nat × Nat. Similarly, we will allow the variable
positions of let expressions to be filled by general pattern expressions.

The great flexibility of patterns in matching are also useful in defining
functions. Throughout the book, we will often avoid a very long (even multi-
page) matching construct by using patterns to define a function by cases. For
example, we could write a function that maps sequences of identifiers to the
length of the sequence:

length-example : Identifier*→ Nat
length-example [] = 0
length-example (Ifist . Irest*) = 1 + (length-example Irest*)

which is equivalent to:

length-example : Identifier*→ Nat
=λI* . matching I*

. [] [] 0

. Ifist . Irest* [] 1 + (length-example Irest*)
endmatching

This notation is especially helpful when we define functions that operate
over programs, where each clause defines the function for a particular type of
program expression.

Reading

The concept of domains introduced in this appendix is refined in Chapter 5. See
the references there for reading on domain theory.

Defining products, sums, and functions in an abstract way is at the heart of
category theory. [Pie91] and [BW90] are accessible introductions to category
theory aimed at computer scientists.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

A.4. METALANGUAGE SUMMARY 809

For coverage of computability issues, we recommend [HU79], [Min67], and
[Hof80].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

810 APPENDIX A. A METALANGUAGE

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Bibliography

[AF00] Andrew W. Appel and Amy Felty. A semantic model of types and
machine instructions for proof-carrying code. In 27th Symposium on
the Principles of Programming Languages (POPL), pages 243–253,
Boston, January 2000.

[AJ88] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-
passing style. Technical Report CS-TR-183-88, Princeton Univer-
sity Department of Computer Science, July (revised September)
1988.

[AM87] Andrew W. Appel and David B. MacQueen. Proceedings of the
Converence on Functional Programming and Computer Architec-
ture, volume 274 of Lecture Notes in Computer Science. Springer-
Verlag, Portland, September 1987.

[AN89] Arvind and Rishiyur S. Nikhil. A dataflow approach to general-
purpose parallel computing. Computation Structure Group Memo
302, MIT Laboratory for Computer Science, July 1989.

[ANP89] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures:
Data structures for parallel computing. ACM Transactions on Pro-
gramming Languages and Systems, pages 598–632, October 1989.

[AP02] Andrew Appel and Jens Palsberg. Modern Compiler Implementa-
tion In Java. Cambridge University Press, second edition, 2002.

[Ape89] AndrewW. Apel. Runtime tags aren’t necessary. Lisp and Symbolic
Computation, 2:153–162, 1989.

[App90] Andrew W. Appel. A runtime system. Lisp and Symbolic Compu-
tation, 3:343–380, 1990.

811

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

812 BIBLIOGRAPHY

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[App98a] Andrew Appel. Modern Compiler Implementation In C. Cambridge
University Press, 1998.

[App98b] Andrew Appel. Modern Compiler Implementation In ML. Cam-
bridge University Press, 1998.

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure
and Interpretation of Computer Programs. MIT Press and McGraw-
Hill, second edition, 1996.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 1986.

[Bac78] John Backus. Can programming be liberated from the von Neuman
style? A functional style and its algebra of programs. Communica-
tions of the ACM, 21(8):245–264, August 1978.

[Bar92a] H[enrik] P[ieter] Barendregt. Lambda calculi with types. In
S[amson] Abramsky, Dov M. Gabbay, and T[homas] S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, chap-
ter 2, pages 117–309. Oxford University Press, 1992.

[Bar92b] Paul S. Barth. Atomic data structures for parallel computing. Tech-
nical Report MIT/LCS/TR-532, MIT Laboratory for Computer
Science, March 1992.

[BCT94] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph
coloring register allocation. ACM Transactions on Programming
Languages and Systems, 16(3):428–455, May 1994.

[BDD80] H. Boehm, A. Demers, and J. Donahue. An informal description
of russell. Technical Report TR80-430, Cornell University, Depart-
ment of Computer Science, 1980.

[Bir89] Andrew Birrel. An introduction to programming with threads. SRC
Report 35, Digital Equipment Corporation, January 1989.

[BKR99] Nick Benton, Andrew Kennedy, and George Russell. Compil-
ing Standard ML to Java bytecodes. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming
(ICFP ’98), volume 34(1), pages 129–140, 1999.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 813

[BL84] R. Burstall and B. W. Lampson. A Kernel Language for Abstract
Data Types and Modules, volume 173 of Lecture Notes in Computer
Science. Springer-Verlag, 1984.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT
Press, 1990.

[Ble92] Guy E. Blelloch. NESL: A nested data-parallel language. Techni-
cal Report CMU-CS-92-103, Carnegie-Mellon University Computer
Science Department, January 1992.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Bri77] P. Brinch Hansen. The Architecture of Concurrent Programs.
Prentice-Hall, Englewood Cliffs, NJ, 1977.

[BW90] Michael Barr and Charles Wells. Category Theory for Computer
Scientists. Prentice-Hall, 1990.

[BWD95] Robert G. Burger, Oscar Waddell, and R. Kent Dybvig. Register
allocation using lazy saves, eager restores, and greedy shuffling. In
Conference on Programming Language Design and Implementation.
ACM SIGPLAN, June 1995.

[BWW+89] J. Backus, J. H. Williams, E. L. Wimmers, P. Lucas, and A. Aiken.
FL language manual, parts 1 and 2. Technical Report RJ 7100
(67163), IBM Research, 1989.

[BWW90] J. Backus, J. H. Williams, and E. L. Wimmers. An introduction to
the programming language FL. In D. A. Turner, editor, Research
Topics in Functional Programming. Addison-Wesley, Reading, MA,
1990.

[CAC+81] G. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein. Register allocation via coloring.
Computer Languages, 6(1):47–57, January 1981.

[Car89] Luca Cardelli. Typeful programming. In IFIP Advanced Seminar
on Formal Description of Programming Concepts, 1989.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Commu-
nications of the ACM, 32(4):444–458, 1989.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

814 BIBLIOGRAPHY

[Cha82] G. J. Chaitin. Register allocation and spilling via coloring. SIG-
PLAN Notices, 17(6):98–105, June 1982. Proceedings of the ACM
SIGPLAN Symposium on Compiler Construction.

[CHD01] K. Crary, R. Harper, and D. Dreyer. A type system for higher-order
modules, 2001.

[CHP99] Karl Crary, Robert Robert Harper, and Sidd Puri. What is a re-
cursive module? In Programming Language Design and Implemen-
tation (PLDI), June 1999.

[CJW00] Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-
directed closure conversion for typed languages. In 9th European
Symposium on Programming, pages 56–71, Berlin, Germany, March
2000.

[Cli82] William Clinger. Nondeterministic call by need is neither lazy nor
by name. In Proceedings of the ACM Symposium on Lisp and Func-
tional Programming, pages 226–234, Pittsburgh, PA, 1982.

[CM90] Eric Cooper and J. Gregory Morrisett. Adding threads to Standard
ML. Technical Report CMU-CS-90-186, Carnegie Mellon University
Computer Science Department, December 1990.

[Con63] Melvin E. Conway. Design of a separable transition-diagram com-
piler. Communications of the ACM, 6(7):396–408, 1963.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics, pages 193–242.
MIT Press/Elsevier, 1990.

[CT03] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Mor-
gan Kaufmann, 2003.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Computing Surveys, 17(4):471–
522, 1985.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control: A study
of the CPS transformation. Mathematical Structures in Computer
Science, 2:361–391, 1992.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 815

[DF96] Paolo Di Blasio and Kathleen Fisher. A calculus for concurrent ob-
jects. In Seventh International Conference on Concurrency Theory
(CONCUR96), volume 637 of Lecture Notes in Computer Science,
pages 655–670, Pisa, August 1996.

[Dij68] E. W. Dijkstra. Co-operating sequential processes. In F. Genuys,
editor, Programming Languages (NATO Advanced Study Institute),
pages 43–112. London: Academic Press, 1968.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and Semantics, pages 243–320.
MIT Press/Elsevier, 1990.

[DJG92] V. Dornic, P. Jouvelot, and D. Gifford. Polymorphic time systems
for estimating program complexity. ACM Letters on Programming
Languages and Systems, 1:33–45, 1992.

[DWM+01] Allyn Dimock, Ian Westmacott, Robert Muller, Franklyn Turbak,
and J. B. Wells. Functioning without closure: Type-safe cus-
tomized function representations for Standard ML. In 6th In-
ternational Conference on Functional Programming, pages 14–25,
Firenze, Italy, September 2001. ACM.

[FF86] Matthias Felleisen and Daniel Friedman. Control operators, the
SECD-machine, and the λ-calculus. In M. Wirsing, editor, Formal
Description of Programming Concepts — III, pages 193–219. North-
Holland, 1986.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syn-
tactic theories of sequential control and state. Theoretical Computer
Science, 102:235–271, 1992.

[FKR+00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steens-
gaard, and David Tarditi. Marmot: an optimizing compiler for
Java. Software – Practice and Experience, 30(3):199–232, 2000.

[For91] Alessandro Forin. Futures. In Peter Lee, editor, Topics in Advanced
Language Implementation, pages 219–241. MIT Press, 1991.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In Program-
ming Language Design and Implementation, pages 238–247. ACM,
1993. (SIGPLAN Notices, Volume 28, Number 6, June 1993).

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

816 BIBLIOGRAPHY

[FWH01] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes.
Essentials of Programming Languages. MIT Press, second edition,
2001.

[GJ90] David Gelernter and Suresh Jagannathan. Programming Linguis-
tics. MIT Press, 1990.

[GJSO92] David Gifford, Pierre Jouvelot, Mark A. Sheldon, and James
O’Toole. Report on the FX-91 programming language. Technical
Report MIT/LCS/TR-531, MIT Laboratory for Computer Science,
February 1992.

[GM94] Carl A. Gunter and John C. Mitchell, editors. Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language
Design. MIT Press, 1994.

[Gor79] Michael J. C. Gordon. The Denotational Description of Program-
ming Languages. Springer-Verlag, 1979.

[GS90] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Semantics, pages 633–674. MIT Press/Elsevier,
1990.

[Gun92] Carl A. Gunter. Semantics of Programming Languages: Structures
and Techniques. MIT Press, 1992.

[Hal85] Robert Halstead. Multilisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and
Systems, pages 501–528, October 1985.

[Har86] Robert Harper. Modules and persistence in standard ml. Technical
Report ECS-LFCS-86-11, University of Edinburgh, Laboratory for
Foundations of Computer Science, September 1986.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing mes-
sages. Artificial Intelligence, pages 323–364, 1977.

[HH86] James G. Hook and Douglas J. Howe. Impredicative strong existen-
tial equivalent to type:type. Technical Report TR 86-760, Depart-
ment of Computer Science, Cornell University, Ithaca, New York,
June 1986.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 817

[HJW+92] Paul Hudak, Simon Petyon Jones, Philip Wadler, et al. Report on
the programming language Haskell, version 1.2. ACM SIGPLAN
Notices, 27(5), May 1992.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-
order modules and the phase distinction. In Converence Record
of the Seventeenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 341–354, San Francisco, CA, January
1990.

[Hoa74] C.A.R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10):549–557, October 1974.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hof80] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden
Braid. Vintage Books, 1980.

[Hor95] Ellis Horowitz. Programming Languages: A Grand Tour. W H
Freeman & Co., third edition, 1995.

[HS86] W. Daniel Hillis and Guy L. Steele Jr. Data parallel algorithms.
Communications of the ACM, 29(12), 1986.

[HU79] John E. Hopcroft and Jeffrey Ullman. Introduction to Automata
Theory, Languages, and Computation. Adison-Wesley, 1979.

[Hue90] Gerard Huet, editor. Logical Foundations of Functional Program-
ming. Addison-Wesley, 1990.

[Hug82] R. J. M. Hughes. Super-combinators: A new implementation tech-
nique for applicative languages. In Symposium on Lisp and Func-
tional Programming, pages 1–10, August 1982.

[JG89] P. Jouvelot and D. Gifford. Reasoning about continuations with
control effects. In Conference on Programming Language Design
and Implementation (PLDI), pages 218–226, 1989.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of
types and effects. In Proceedings of the ACM Symposium on the
Principles of Programming Languages. ACM, 1991.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

818 BIBLIOGRAPHY

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pat-
tern matching and subtypes. In Procedings of the ACM Conference
on Lisp and Functional Programming, pages 198–211, Snowbird,
Utah, July 1988. ACM.

[JM97] Simon Peyton Jones and Erik Meijer. Henk: A typed intermediate
language. In 1997 ACM SIGPLAN Workshop on Types in Compi-
lation, Amsterdam, The Netherlands, June 1997. Boston College
Computer Science Department Technical Report BCCS-97-03.

[Joh75] S. C. Johnson. Yacc — yet another compiler compiler. Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, N.J.,
1975.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to re-
cursive equations. In Functional Programming Languages and Com-
puter Architecture, volume 201 of Lecture Notes in Computer Sci-
ence, pages 190–203, September 1985.

[Jon96] Simon Peyton Jones. Compiling Haskell by program transforma-
tion: A report from the trenches. In Proceedings of the European
Symposium on Programming. Springer, 1996.

[JW93] Simon Peyton Jones and Philip Wadler. Imperative functional pro-
gramming. In Proceedings of the 20th Symposium on Principles of
Programming Languages. ACM, 1993.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of STACS ’87, 4th
Annual Symposium on Theoretical Aspects of Computer Science,
volume 247 of Lecture Notes in Computer Science, pages 22–39.
Springer-Verlag, 1987.

[Kam90] Samuel Kamin. Programming Languages: An Interpreter-Based Ap-
proach. Addison-Wesley, 1990.

[Kel89] Richard Kelsey. Compilation by Program Transformation. PhD
thesis, Yale University, 1989.

[KH89] Richard Kelsey and Paul Hudak. Realistic compilation by program
transformation. In Principles of Programming Languages, pages
281–292. ACM, 1989.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 819

[KKR+86] David Kranz, Richard Kelsey, Jonathan A. Rees, Paul Hudak,
James Philbin, and Norman I. Adams. Orbit: an optimizing com-
piler for Scheme. In Proceedings of the SIGPLAN ’86 Symposium
on Compiler Construction, pages 219–233. ACM, June 1986.

[L+79] Barbara Liskov et al. CLU reference manual. Technical Report
MIT/LCS/TR-225, MIT Laboratory for Computer Science, Octo-
ber 1979.

[Lan64] P. J. Landin. The mechanical evaluation of expressions. The Com-
puter Journal, pages 308–320, January 1964.

[Lea99] Douglas Lea. Concurrent Programming in Java: Design Principles
and Patterns, Second Edition. Addison-Wesley, Boston, 1999.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-
order modules. In 22nd Symposium on Principles of Programming
Languages. ACM, 1995.

[Les75] M. E. Lesk. Lex — a lexical analyzer generator. Computing Science
Technical Report 39, Bell Laboratories, Murray Hill, N.J., 1975.

[LG88] John M. Lucassen and David K. Gifford. Polymorphic effect sys-
tems. In Proceedings of the ACM Symposium on the Principles of
Programming Languages, pages 47–57, 1988.

[Mac84] David MacQueen. Modules for standard ML. In Proceedings ACM
Symposium on Lisp and Functional Programming, 1984.

[Mac86] D. B. MacQueen. Using dependent types to express modular struc-
ture. In Symposium on Principles of Programming Languages.
ACM, 1986.

[Mac88] David MacQueen. An implementation of standard ml modules. Part
of the SMLNJ Distribution, March 1988.

[Mac99] Bruce J. MacLennan. Principles of Programming Languages: De-
sign, Evaluation, and Implementation. Oxford University Press,
third edition, 1999.

[McC60] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Communications of the ACM,
3(4):184–195, 1960.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

820 BIBLIOGRAPHY

[McC62] John McCarthy. Towards a mathematical science of computation.
In Information Processing, pages 21–28, Amsterdam, 1962. North
Holland.

[McC67] John McCarthy. A basis for a mathematical theory of computation.
In P. Braffort and D. Hirschberg, editors, Computer Programming
and Formal Systems. North-Holland, Amsterdam, 1967.

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, pages 348–375, 1978.

[Mil87] James S. Miller. MultiScheme: A parallel processing system based
on MIT Scheme. Technical Report MIT/LCS/TR-402, MIT Labo-
ratory for Computer Science, September 1987.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall,
1989.

[Min67] Marvin Minsky. Finite and Infinite Machines. Prentice-Hall, 1967.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT
Press, Cambridge, Massachusetts, 1996.

[Mit03] John C. Mitchell. Concepts in Programming Languages. Cambridge
University Press, 2003.

[ML86] Michael Marcotty and Henry Ledgard. The World of Programming
Languages. Springer-Verlag, 1986.

[MMS78] James G. Mitchell, William Maybury, and Richard Sweet. Mesa
language manual (version 4.0). System development division, Xerox
Palo Alto Research Center, May 1978.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon
University, 1995.

[Mos90] Peter Mosses. Denotational semantics. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, pages 575–631. MIT Press/Elsevier, 1990.

[MP84] John C. Mitchell and Gordon D. Plotkin. Abstract types have exis-
tential type. In Principles of Programming Languages, pages 37–51.
ACM, 1984.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 821

[MT91] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT
Press, Cambridge, MA, 1991.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, Cambridge,
MA, 1997.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[MWCG99] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

[NL98] George C. Necula and Peter Lee. The design and implementation
of a certifying compiler. In Programming Language Design and
Implementation (PLDI’98), pages 333–344, Montreal, June 1998.
ACM.

[NNH98] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Princi-
ples of Program Analysis. Springer, 1998.

[NO93] Scott M. Nettles and James W. O’Toole. Real-time replication
garbage collection. In SIGPLAN Symposium on Programming Lan-
guage Design and Implementation. ACM, June 1993.

[NOG93] Scott Nettles, James O’Toole, and David Gifford. Concur-
rent garbage collection of persistent heaps. Technical Report
MIT/LCS/TR-569, MIT Laboratory for Computer Science, June
1993.

[NOPH92] Scott M. Nettles, James W. O’Toole, David Pierce, and Nicholas
Haines. Replication-based incremental copying collection. In Pro-
ceedings of the SIGPLAN International Workshop on Memory
Management, pages 357–364. ACM, Springer-Verlag, September
1992.

[occ95] occam 2.1 reference manual. SGS-Thomson Microeclectronics Lim-
ited, May 1995.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

822 BIBLIOGRAPHY

[OG89] James William O’Toole, Jr. and David K. Gifford. Type reconstruc-
tion with first-class polymorphic values. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 207–217, Portland, Oregon, June 1989. ACM.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice-Hall, 1987.

[Pie91] Benjamin C. Pierce. Basic Category Theory for Computer Scien-
tists. MIT Press, 1991.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT
Press, Cambridge, Massachusetts, 2002.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda
calculus. Theoretical Computer Science, 1:125–159, 1975.

[Plo81] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Aarhus University Computer
Science Department, September 1981.

[Plu02] Mike Plusch. Water: Simplified Web Services and XML Program-
ming. John Wiley & Sons, Hoboken, NJ, December 2002. ISBN:
0764525360.

[Rey74] J. C. Reynolds. Towards a theory of type structure. In Proceed-
ings, Colloque sur la Programmation, volume 19 of Lecture Notes
in Computer Science, pages 408–425. Springer-Verlag, 1974.

[Rey93] John C. Reynolds. The discoveries of continuations. Lisp and Sym-
bolic Computation: An International Journal, 6:233–247, 1993. A
history of continuations.

[Rey98] John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, 1998.

[RG94] Brian Reistad and David K. Gifford. Static dependent costs for
estimating execution time. In 1994 ACM Conference on Lisp and
Functional Programming, pages 65–78. ACM, June 1994.

[Roz84] Guillermo J. Rozas. Liar, an Algol-like compiler for Scheme. Mas-
ter’s thesis, EECS Department, MIT, January 1984.

[Sab88] Gary W. Sabot. The Paralation Model. MIT Press, 1988.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 823

[Sch86a] David Schmidt. Denotational Semantics: A Methodology for Lan-
guage Development. Allyn and Bacon, 1986.

[Sch86b] David A. Schmidt. Denotational Semantics: A Methodology for
Language Development. Allyn and Bacon, Newton, MA, 1986.

[Sch94] David Schmidt. The Structure of Typed Programming Languages.
MIT Press, 1994.

[Sco77] Dana S. Scott. Logic and programming languages. Communica-
tions of the ACM, 20(9):634–641, September 1977. Turing Award
Lecture.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Proceedings of the 1992 ACM Con-
ference on Lisp and Functional Prgramming, pages 288–298. ACM,
1992.

[SF93] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp and Symbolic Computation, 6(3–
4):289–360, 1993.

[SG90] Mark A. Sheldon and David K. Gifford. Static dependent types for
first class modules. In Symposium on Lisp and Functional Program-
ming. ACM, 1990.

[Sha97] Zhong Shao. An overview of the FLINT/ML compiler. In Proc. 1997
ACM SIGPLAN Workshop on Types in Compilation (TIC’97), Am-
sterdam, The Netherlands, 1997.

[SS76] Guy L. Steele Jr. and Gerald Jay Sussman. LAMBDA: The Ulti-
mate Imperative. Technical Report AIM-353, MIT Artificial Intel-
ligence Laboratory, March 1976.

[Ste77] Guy L. Steele Jr. Debunking the “expensive procedure call”
myth, or procedure call implementations considered harmful, or
LAMBDA, the Ultimate Goto. Technical Report AIM-443, MIT
Artificial Intelligence Laboratory, October 1977.

[Ste78] Guy Lewis Steele Jr. Rabbit: a compiler for Scheme. MIT AI Memo
474, Massachusetts Institute of Technology, Cambridge, Mass., May
1978.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

824 BIBLIOGRAPHY

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, 1977.

[Sto85] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, 1985.

[SW74] C. Strachey and C. Wadsworth. Continuations: A mathematical
semantics which can deal with full jumps. Monograph PRG-11,
Oxford University Computing Laboratory, Programming Research
Group, Oxford, UK, 1974.

[SW97] Paul Steckler and Mitchell Wand. Lightweight closure conver-
sion. ACM Transactions on Programming Languages and Systems,
19(1):48–86, January 1997.

[SW00] Christopher Strachey and Christopher P. Wadsworth. Continua-
tions: A mathematical semantics which can deal with full jumps.
Higher-Order and Symbolic Computation, 13(1–2):135–152, 2000.

[Ten76] R. D. Tennent. The denotational semantics of programming lan-
guages. Communications of the ACM, 19(8), August 1976.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. In Programming
Language Design and Implementation. ACM, 1996.

[TO98] Andrew P. Tolmach and Dino Oliva. From ML to Ada: Strongly-
typed language interoperability via source translation. Journal of
Functional Programming, 8(4):367–412, 1998.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with
data abstraction. In Muchnik Steve, editor, Proceedings of the 14th
Symposium on Principles of Programming Languages, Munich, Ger-
many, January 1987. ACM. Revised March 1987.

[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuring
and E Meijer, editors, Advanced Functional Programming, volume
925 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[Wel99] J. B. Wells. Typability and type checking in System F are equivalent
and undecidable. Annals of Pure and Applied Logic, 98(1–3):111–
156, 1999. Supersedes [?].

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

BIBLIOGRAPHY 825

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In
International Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, St. Malo, France, September
1992.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages:
An Introduction. MIT Press, 1993.

[WS97] Mitchell Wand and Gregory T. Sullivan. Denotational semantics
using an operationally-based term model. In 24th Symposium on
the Principles of Programming Languages (POPL), pages 386–399,
1997.

[You81] Richard M. Young. The machine inside the machine: Users’ mod-
els of pocket calculators. International Journal of Man-Machine
Studies, 15:51–85, 1981.

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

Index

−, 771
=

on domains, 792

on functions, 776
on sets, 771

on tuples, 773
∀, 563, 586
*, 217
cell, 335, 337

failed, 376
+, 217

denotational semantics, 254
operational semantics, 243

-, 217
/, 217

denotational semantics, 254
operational semantics, 243

:, 33, 34, 655
:=, 329, 655, 658, 666
<, 217

<=, 217
=

on types, 539
=, 217

>, 217
>=, 217

%, 217
→ , 777

7→, 794
let , 806

⇀, 777
>, 167

@ as infix append, 798

!, 655

⊥, 144, 164, 167, 778

. as infix cons, 798

→ , 798

× , 773, 791–793

*, 796

∈, 770
∩, 771
6∈, 770
PostFix2, 52

PostText, 98
[], 796

{}, 770
⊆, 771
⊂, 771
v, 551
| , 771
↓ , 773
∪, 771
^, 329

^, 655, 658, 659

A-normal form, 767

Abort, 352

abort!, 352, 353

Abstract data type, see Type

Abstract interpretation, 527

Abstract machine, 39
Abstract syntax, 18–20

Abstract syntax tree (AST), 18, 109

Abstraction, 790, 803

826

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 827

barrier, 790
data, see Data abstraction
lambda, 784

Abstraction barrier, 599
Abstraction violation, 601
acquire!, 505

operational semantics, 507
Action, 324
Actor, 415
Ada, 196, 314, 517, 748, 758
add-first, 378
Adequacy of denotational semantics,

149, 151
after, 324
Agenda, 495
Algebra

semantic, 109
syntactic, 109

Algebraic type schema, 665–668
Algol 60, 259
Alias, 363
Aliasing, 654

allocating, 345, 387, 431
allocatingComp, 431
allocatingComps, 431
allocatingCopies, 440
allocatingVals, 439
Alpha-equivalence, 232
Alpha-rename, 566, 629, 634
Alternate, 18
alts, 218
and, 204

desugaring in FL, 209
and?, 217

operational semantics, 243
Answer domain, 382
Answer domain, 109
Answer of operational semantics, 40
Anti-monotonic subtype, 554
Anti-symmetric, 166, 774

API, 599
APL, 284, 517

Appel, Andrew, 767, 768
append, 797–798

Applet, 400

applet, 400, 401
Application, 198, 204, 306, 802

desugaring in FL, 209
desugaring in HOOPLA, 307

of a function, 777
type of, 778

Application programming interface
(API), 599

Applicative order reduction, 262

arg-index, 219, 221

arg?, 219, 221
arithop, 34

arithop-op, 219, 221
arithop-rand1, 219, 221

arithop-rand2, 219, 221
arithop?, 219, 221

Array, 418, 422

assign, 342
Assignment conversion, 356

Association list, 418, 428
Associative, 658

AST (abstract syntax tree), 18

Atomic, 504
Axiom, 46–50

axiom, 46

Backtracking, 355, 367, 368

Basic, 270, 518

begin, 306, 316, 327, 328, 337, 338,
341

denotational semantics, 316, 347

standard, 381
operational semantics, 316, 336

begin-transaction!, 352
Behavior, 43–44

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

828 INDEX

Observational equivalence and,
83

of a concurrent program, 491

Behavior of a concurrent program,
498

Behavioral equivalence, 83

Berra, Yogi, 489

Bi-simulation, 511

Big-step operational semantics

evaluation relation, 68

evaluation tree, 68

Big-step operational semantics (SOS),
66

Bijective function, 780

Binary relation, 774

bind, 250

bind-exit, 399

Binding, 249

Binding construct, 116, 138

Binding occurrence, 226, 319

binding-make, 225

binding-name, 225

binding-value, 225

Birrel, Andrew, 510

Block structure, 283, 298

Blocked thread, 493, 507

Bool, 770

bool->int, 465, 468–471

bool=?, 217

boolean?, 217

BOS (big-step operational semantics),
66

Bottom (⊥), 164, 167, 778

Bound identifier, 226

definition of, 228

Bounded buffer, 508

break, 367, 388

Brinch-Hansen, P., 510

Bronte, Charlotte, 599

C, 315

C, 196, 197, 201, 203, 259, 296, 314,
315, 327, 356, 367, 420, 424,
427, 436, 440, 454, 456, 520,
523, 524, 556, 562, 637, 748,
763

C++, 314, 420, 436, 453

C#, 314

Caffeine, 393

call, 198, 276

denotational semantics, 253, 358,
440

CBD, 276

CBL, 360

CBN, 268, 359

CBR, 360

CBV, 268, 359

dynamic scoping, 282

standard, 381

static scoping, 282

free and bound identifiers, 228

operational semantics, 241, 339

CBN, 260

CBV, 260

substitution in, 236

Call-by-denotation (CBD), 275–278

Call-by-eager (CBE), 502

Call-by-lazy (CBL), see Call-by-need

Call-by-name (CBN), 259, 277–279,
361

denotational semantics of, 267–
269

operational semantics of, 259–266

Call-by-need (CBL), 361

compared to Call-by-eager, 502

call-by-need (CBL), 502

Call-by-reference (CBR), 362

Call-by-value (CBV), 259, 277–279,
359

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 829

and recursive definitions, 272–
274, 279

denotational semantics of, 267–
269

operational semantics of, 259–266
Call-by-value-copy (CBVC), 438
Call-by-value-sharing (CBVS), 438
call-with-current-continuation,

399, 401, 662, 663
call/cc, see call-with-current-continuation
Cantor, 772
Capture, 258

of a variable, 233, 566
external, 234
in call-by-denotation, 276
internal, 233

capturing-cont, 387
car, 216, 217
Cardelli, Luca, 550
Cardinality, 772
Carrier, 628
Cartesian product (×), 773, 791
catch, 367, 399, 402
CBD, see Call-by-denotation
CBE, see Call-by-eager

CBL, see Call-by-need
CBN, see Call-by-name
CBV, see Call-by-value
CBVC, see Call-by-value-copy
CBVS, see Call-by-value-sharing
CCS, 510
cdr, 216, 217
cell, 327, 328, 335, 655

denotational semantics, 347
standard, 381

operational semantics, 336
cell-ref, 327–329, 335, 337

denotational semantics, 347
standard, 382

operational semantics, 336

cell-set!, 327–329, 335, 357
denotational semantics, 347
standard, 382

operational semantics, 336
cell=?, 327, 328

denotational semantics, 347
operational semantics, 336

cell?, 327, 328
denotational semantics, 347
operational semantics, 336

Channel, 507–510
channel, 507
channel

operational semantics, 510
channel?, 508
check-boolean, 344, 386
check-location, 344, 386
check-procedure, 344, 386
check-quota, 394
choose, 494
choose, 490, 494

Church, 212
Church list, 212
Class, 302
class, 306, 311

desugaring in HOOPLA, 307
Clause, 795
Closed expression, 226
Closed procedure, see Closure
Closure

of a relation, 775
reflexive transitive, 188
transitive, 775

Closure conversion, 748
closure passing style, 750
code/env pairs, 749
defunctionalization, 758
lightweight, 758
selective, 756

Closure passing style, 750

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

830 INDEX

Closures, 748
flat, 748–754

CLU, 367, 402, 423, 424, 436, 438,
638, 648, 651

Coalesced sum, 178
cobegin, 501
Cobol, 314
Code bloat, 732
Code component of a configuration,

39
Code/env pairs, 749
Coercion

implicit, 555
colet, 501
combine-env, 299
comefrom, 663
Command, 382

in PostFix, 6
Comment, 770
Commingling, unholy, 629

Commit, 352
commit!, 352
commof, 597
Common Lisp, 196, 294, 315, 367,

399, 402, 464
Communicating sequential processes

(CSP), 510
Communication, 503
Commutative, 658
Compilation, 305, 673
Compile time, 513, 637
Complete partial order (CPO), 174
Component value, 270
Composition

of functions (◦), 779
of Relations, 775

Compound domain, 791
Compound expression, 18
Compound phrase, 25
Compound sytanctic domain, 23

Computable function, 777
Computation domain

in imperative languages, 343–346
conceal, 297, 298, 428

denotational semantics, 300
Concrete grammar, 21
Concrete syntax, 20–21
Concrete syntax tree (CST), 21
Concurrency, 489–511

channel, 507–510
lock, 505–507
operational semantics, 495–498

Concurrent, 490, 491
Concurrent Objects, 511
cond, 204

desugaring in FL, 209
Configuration

code component, 39
irreducible, 42
reducible, 42
state components, 39

Configuration in SOS, 39
Confluence, 75

one-step, 75
Connection machine, 511
cons, 216, 217
cons, 797–798
cons-stream, 434
Consequent, 18
Constant, 802

declaration, 357
Constant function, 779
Constraint

type, 584
Constraint set, 665
Constructor, 473

deconstructor for, 458
value, 458

Constructor function, 803
consume, 391, 392

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 831

Consumer, 378, 390–392
consumer, 392
Consumer/producer coroutines, 378
Contagious, 52
Content of a mutable cell, 327
Context, 64

PostFix command sequence, 84
PostFix evaluation, 66
PostFix program, 84
control, 366
evaluation, 64
hole, 64
naming, 365
observational equivalence and, 83
state, 365

Context domain, 109, 122
Continuation, 367, 378, 414, 458, 474,

475, 480
CPS conversion, 718–748
domain, 382
effects of, 662, 663
first-class, 398

multiple-value return, 369–371
normal, 367
procedural, 368–378
receiver, 369

Continuation passing style, 379, 415
Continuation passing style (CPS), 117
continue, 367, 388
Continuous function, 178
Contract, 599
Control context, 366
Control point, 395
Conway, Melvin, 415, 510
Coroutine, 367, 378, 415, 510

producer/consumer, 378
coroutine, 389, 390
count-from, 378
Countable, 772
CPO, see Complete partial order

CPS conversion, 718–748
CSP, 510

CST (concrete syntax tree), 21
cummings, e e, 17

Curried functions, 201, 781, 787
Curried procedures, 635

Curry, 598
Curry, Haskell, 781

Currying, 205

cwcc, see call-with-current-continuation

DAG, see Directed acyclic graph
Data Abstr action

secure, 602

Data abstraction, 599
abstraction barrier, 599

API, 599
client, 599

contract, 599
implementor, 599

interface, 599
invariant, 602

violation, 601
Data declarations, 456–464

Data dependency, 321

Data type, see Type
Deadlock, 494, 496, 506

decon, 486
Deconstructor, 458, 464

deepCopying, 440
default-handlers, 405

define, 204, 255, 257, 306, 461, 640
define-constructor, 485, 486

define-data, 456, 461

desugaring, 461
define-datatype, 640

define-desc, 569, 573
defstruct in Common Lisp, 464

Defunctionalization, 758
delay, 434

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

832 INDEX

den-to-comp, 252
Denotable value, 249, 258, 270
Denotational adequacy, 149, 151
Denotational semantics, 13, 109

direc, 379
for FL, 248–255
not to be interpreted operationally,

274–275
standard, 379

Denotational soundness, 145
Denote, 109
Dependent package, 629
Dependent procedure, 631
Dependent type, 629

static, 634
depth*sum1 , 369
depth*sum2 , 370
depth*sum3 , 370
Dequeue, 507
Dereferencing a variable, 358
Derivation, 57

derivative, 289
Description

equivalence, 574
Destroying a thread, 501
Desugaring, 195, 205
Determinism, 72
Deterministic, 489
Deterministic transition relation, 42,

43, 50
Diagonalization, 772
Diamond property, see Confluence
dict-adjoin-binding, 225
dict-bind, 225
dict-empty, 225
dict-empty?, 225
dict-first-binding, 225
dict-lookup, 225
dict-rest-bindings, 225
Difference

of environments, 428
Difference of sets (−), 771
Dijkstra, E. W., 510
Direct semantics, 366, 379
Directed acyclic graph (DAG), 230
Discrete partial order, 167
Discriminant, 443, 465, 795
Discriminated union, see Sum
Disjoint sets, 772
Disjoint union, 793
dlambda, 572
do-while, 385
Domain, 769, 790–802

answer, 109
compound, 791
constructor, 790
context, 109, 122
definition, 792, 802
equality, 793
expression, 802
function, 798–802

lifted, 167
of denotable values, 249
primitive, 790, 802
product, 418
product (×), 791–793
reflexive, 192
sequence, 796–798
sum, 442, 793–796
syntactic, 23
tuple, 791
variable, 799

Dorough, Bob, 417
Dragging tail, 265
dselect, 640
Dual, 553, 653
dylambda, 295
Dylan, 367, 399
dylet, 295
DYNALEX, 295

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 833

Dynamic environment, 289
Dynamic property, 513

Dynamic scope, 282

Dynamic scoping, 281–293
Dynamic semantics, 513

Dynamic type, 517, see Type

dyref, 295

Eager evaluation, 502–503

ecase, 446

Effect, 258, 315, 349–350, 653–668
comefrom, 663

goto, 664

control, 663–664
erasure, see Effect, masking

init, 655

latent, 654
masking, 660–662, 664

polymorphic, 656

reconstruction, 665–668
region, 654

store, 655
system, 653–668

Effect system, 653

Either, 446
EL, 18–31, 55, 56, 60, 66, 72, 73, 76,

82, 90–92, 107, 110, 120–122,
124, 128, 135, 139–141, 143,
145, 149–151, 196, 199, 219,
221, 461

deterministic behavior, 73–76
elect, 393

Element expression, 802

Element of, 770
ELM, 60, 66, 67, 69, 70, 76, 92, 118–

122, 124, 149, 219, 221, 450,
452–455, 460, 467, 468

elm-eval, 219, 221, 467
ELMM, 56–60, 64–66, 68–70, 73–

76, 91, 111–119, 122, 123,

149, 151

else, 447

Emerson, Ralph Waldo, 195

Empty set, 770

empty-env, 250

empty-store, 342

empty-tenv, 450

empty?, 797–798

Energy, 77–78

Enqueue, 507

ensure-assigned, 380

ensure-bound, 380

Environment, 248, 249, 748

as a model for product data, 418

call-time, 285

diagram, 285

dynamic, 285, 289

lexical, 289

type, 528–529, 591, 592

value, 528

Environment conversion, see Closure
conversion

equal?, 216, 217

Equality

on domains, 793

on functions, 776

on sets, 771

Equational proof, 113

Equational reasoning, 111

Equi-recursive type equality, 548

Equivalence

of descriptions, 574

Equivalence class, 774

Equivalence relation, 232, 539, 774

Eratosthenes

sieve of, 433

Erlang, 197

err-to-comp, 252, 344, 386, 405

Error, 44–45, 51–52

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

834 INDEX

error, 198, 247, 255, 344, 384, 561,
566

denotational semantics, 253
standard, 381

error-comp, 252, 344
error-cont, 380
Escape procedure, 399
Eta rule, 247
Evaluation context, 64
Evaluation relation, 68
Evaluation tree of a big-step opera-

tional semantics, 68
except when, 402
Exception, 367, 399, 402–414

handle, 402
handling, 402
raise, 402
resumption semantics, 402
signal, 402
termination semantics, 402

exec, 33, 34
Existential package, 609
Existential type, 608–619

export restriction, 613, 616
import restriction, 612, 616

Expansive, 649
Explicit type, see Type
Export restriction, 613, 616
Exported names, 281
Exports, 637
expr-to-comp, 344, 386
Expression, 382

Impure, 657
language, 383
Pure, 657

Expressive, 378
Expressive power, 515, 516, 562
Expressive type system, 519
extend-env, 250
extend-env*, 299

extend-handlers, 405
extend-tenv, 450

extend-tenv*, 450

extending-handlers, 405
Extensionality, 113

External variable capture, 234

extract-value, 273, 347, 385

fail, 223
failed?, 223

Failure, 376

Failure continuation, 458, 474, 475
Failure thunk, 469

false, 216, 217

FDV, 667
Felleisen, Matthias, 104

fetch, 342

fetching, 345, 387, 431
FF, 53–54

Fibonacci number, 94

Final configuration of an operational
semantics, 40, 42

finally, 409

First-class procedure, 197

First-class procedures, 122
first-fresh, 342

First-In/First-Out (FIFO), 507

Fixed point, 159, 182, 272, 343
iterative technique for finding, 160–

165

least, 164

theorem of least, 182
FL, 383

FL, 195–255, 257, 259, 261, 262, 265–
267, 270, 276–279, 281, 283,
285, 290–293, 295, 297, 302,
305, 307, 309–311, 314–317,
319–321, 326–328, 338, 341,
349, 356, 359, 361, 367–369,
374, 378, 384, 396, 400, 419,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 835

423–426, 428, 431, 443, 446,
456, 459, 463–465, 467, 468,
470, 475, 485, 486, 503, 513,
515, 519–523, 525, 533, 536,
538, 543, 545, 546, 561, 586,
589, 600, 603, 669, 673–675,
678, 680, 682, 697, 698, 700,
732, 790, 832, 841

denotational semantics, 248–255
of Backus, 196

fl

desugaring in FL, 210
FL*, 533–535
FL/R, 586–590, 592–594, 596, 597,

608, 626, 627, 635, 638, 640,
655, 657–661, 663–665, 668,
675–680, 682, 688, 693, 694,
696–702, 705–708, 710, 713

FL/RM, 638, 640–642, 644, 647, 649

FL/X, 519–527, 529–545, 547, 548,
550–552, 554, 558, 559, 562,
567, 569, 583, 586, 589, 607,
608

FL/XS, 552–561, 563

FL/XSP, 563–567, 569, 573, 577,
580, 608, 610, 618, 620, 621,
623, 625, 627, 630

FL/XSPD, 569, 571–577
FL/XSPDK, 576–581
FLAT, 292
Flat closures, 748–754

FLK, 197–199, 201–205, 208–213, 215,
216, 224, 226–230, 232, 234,
237, 239–255, 257, 258, 262,
265, 266, 268, 269, 272, 275,
278, 279, 281, 284, 285, 291,
293, 295, 317, 327, 335, 338–
341, 346–348, 351, 356, 382,
394, 413, 497

informal semantics, 199–204

syntax, 197–199
Flow analysis, 768
FLUID, 290–292
for, 366, 385
forall, 563
force, 434
fork, 496, 501
fork, 490
fork, 493, 494, 501, 502

operational semantics, 497
Formal parameter, 224, 784
Forth, 5
Fortran, 362
Fortran, 250, 270, 314, 356, 362,

436, 520, 835, 843
FP, 196
Frank, Michael, 93
Free identifier, 226, 319, 566, 592

definition of, 228
Fresh identifier, 237
fresh-loc, 342

Friedma, Dan, 104
Frost, Robert, 365
fst, 217
Full abstraction, 150
Full language, 195
Function, 769

application, 777
bijective, 780
composition (◦), 779
computable, 777
constant, 779
curried, 781, 787
different from procedure, 776–

777
equal (=), 776
graph, 775
higher-order, 780–781
identity, 779, 786
image of, 780

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

836 INDEX

inclusion, 779
injective, 780

lambda notation, 784–790
one-to-one, 780

operand, 777

operator, 777
partial, 777

polymorphic, 786
recursive, 787–788

set theoretic, 775–790

signature, 776
simulating multiple arguments,

781

simulating multiple return val-
ues, 783

surjective, 780

total, 274, 777
type, 776

Function domain, 798–802

Function-oriented language, 196
Functional programming language, 196,

777, 789

Functions
elements of function domain, 798

higher order, 748

nested, 748
Future, 502

future, 502
FV, 667

FX, 788

FX, x, 197, 518, 591, 598, 648, 788,
836, 843

Garbage collection, 364, 765–768
reading, 768

replication-based, 768

gaussian-elimination, 296
Generating function, 159

generic, 589, 665
get-arg, 221, 467

get-handler, 405
getting-handler, 405

Gifford, David, 652
Girard, 581

Global scoping, 292

go, 597
goto, 367, 399

goto, 664
Grammar

s-expression, 109

Graph coloring, 768
Graph of a function, 775

Graph rewriting system, 105
Greatest lower bound (glb), 167

Halting function, 190, 777

Halting problem, 41, 190, 514, 777
Halting theorem, 41

Hamming numbers, 434

handle, 558
handle, 402, 407–409, 411, 413, 414

Handle an exception, 402
Handler procedure, 403

Haskell, 122, 123, 197, 201, 259,
315, 319, 326, 423, 424, 428,
453, 463, 464, 480, 482, 517–
519, 522, 591, 598

Hasse diagram, 166

Hawes, Bess, 365
head, 434

head, 797–798

Heap, 364
Heidegger, Martin, 769

Heterogeneous lists, see List
Hewlett Packard, 5

Hiding names, 281

Hierarchical scope, 281–293, 296
Higher-order function, 780–781

Higher-order functions, 748
Hindley, 589, 598

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 837

Hindley-Milner type reconstruction,
589

Hoare, C. A. R., 510

Hole in the scope of a variable, 229,
284

Homogeneous lists, see List

Homomorphism, 110
HTML, 454

I-structure, 510

Id
I-structure, 510

Id, 502, 510, 511, 837, 843
Idempotent, 213

Identifier, 224, 281
binding occurrence, 226, 319

bound, 226

denotational semantics, 253, 358
CBD, 276

CBL, 360
CBN, 359

CBR, 360

CBV, 359
standard, 381

free, 226, 319
fresh, 237

occurrence of, 226
Identity function, 779, 786

Identity of an object, 313

Idiom, 378
if as sugar for matching , 795

if, 198, 306
denotational semantics, 253

standard, 381
desugaring in HOOPLA, 307

free and bound identifiers, 228

operational semantics, 241, 339
substitution in, 236

if, 782
Ill-typed, 530

Image
of a function, 780

impeach, 393
Imperative programming paradigm,

326, 329
Implicit projection, 564
Implicit type, see Type
Import restriction, 612, 616
Imported names, 280
Imports, 637
Impure, 657
Inclusion function, 779
Incomparable elements in a a partial

order, 166
Induction, 787

structural, 81, 227
Inference of types, see Type, recon-

struction
Inheritance hierarchy, 302
init, 655
Initial configuration of an operational

semantics, 39
inj, 443, 446

denotational semantics, 445

operational semantics, 445
Injection function, 793
Injective function, 780
inleft, 446
Inlining, 701, 730
Input function of an operational se-

mantics, 39, 43
inright, 446
install-cont, 387
Int, 770
int-tree, 572
integer?, 217

denotational semantics, 254
operational semantics, 243

Interface, 280, 599, 637, 790
Interference, 349

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

838 INDEX

Interleaving, 491, 504–506
Internal variable capture, 233
Intersection

of environments, 428
Intersection (∩), 771
ints-from, 433
Invariant

representation, see Data abstrac-
tion, invariant

Inverse limit construction, 192
Irreducible configuration, 42
Iso-recursive type equality, 547
Iteration, 320, 330
Iterative fixed point technique, 160–

165

Java, 196, 197, 201, 203, 314, 367,
424, 427, 436, 438, 453, 517,
518, 523, 533, 555, 763

JCSP, 367, 415
join, 496, 501
join, 490
join, 493, 494, 501, 502

operational semantics, 497
jump, 395, 396, 398–401, 407

denotational semantics, 397

Kahn, Gilles, 105
kernel, 802
Kernel of a programming language,

195
Kind, 577
Kinds, 576–581
Kingston Trio, 365
knull, 485
kons, 485

L-value, 358, 363
label, 395, 396, 398–401, 407

denotational semantics, 397
lambda, 204, 281, 306, 311

desugaring in FL, 209
desugaring in HOOPLA, 307

Lambda abstraction, 784
Lambda calculus, 262
Lambda lifting, 763
Lambda notation, 784–790

recursion, 787–788
Landin, Peter, 104
Language

mostly functional, 315
purely functional, 315

Latent effect, 654
Lazy

product, 430
lazy, 266, 434
Lazy evaluation, 265, see Call-by-

need, 502
least, 246
Least fixed point, 164

theorem, 182
Least upper bound (

⊔
), 595

Least upper bound (lub), 167
left, 246, 270

denotational semantics, 254
operational semantics, 243, 339

Left hand side (LHS) of a transition,
42

length, 216, 218, 220
length, 797–798
let, 204, 255, 257, 281, 306, 311

desugaring in FL, 209
desugaring in HOOPLA, 307

letrec, 204, 255, 257, 266, 281
desugaring in FL, 209

Lexical environment, 289
Lexical scope, 282
Lifted domain, 167
Lifting, 763
Lightweight closure conversion, 758
Linda, 511

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 839

Link time, 637
Linking, 637
Lisp, 778

not lambda notation, 788–790
Lisp, 2, 22, 36, 197, 199, 205, 206,

212–214, 274, 284, 428, 453,
456, 502, 517, 839, 843

List, 418
association, 418, 428
heterogeneous, 545
homogeneous, 543

list, 204
desugaring in FL, 209

list-map, 573
list?, 218, 220
listen, 597
listof, 573
lit-num, 219, 221
lit?, 219, 221
Literal

denotational semantics, 253
standard, 381

load, 640, 647

Location, 326, 332
Lock, 505–507
lock, 505, 603

operational semantics, 507
lock?, 505
Logic programming, 367, 510, 591
login!, 394
logout!, 394
lookup, 250
loop, 385–388
Loophole, 456
Lower bound, 167
lproduct, 430, 436

denotational semantics, 432
operational semantics, 431

lproj, 430, 436
denotational semantics, 432

operational semantics, 431

Mann, Thomas, 1

map-type, 573
Match

clause, 465, 795

body, 795
head, 795

s-expression pattern, 25
match, 464–480

body, 465

clause, 465
desugaring, 468–480

discriminant, 465
pattern, 465

match, 475, 478
match!, 332

match-inner, 376, 377

match-sexp, 223, 332, 375–377
match-with-dict, 223, 332, 374–376

matching , 794
matrix-invert, 296

Meaning function, 109
member?, 218, 220

Memoization, 265, 430, 431, 434, 493,
502

Memoize, 430

merge, 218

merge-sort, 218
Mesa, 651

Meta-application, 736
Meta-continuation, 735

Meta-rules in operational semantics,
496

Metalanguage, 13, 769–809

method, 306, 310, 311

desugaring in HOOPLA, 307
mfst, 351

mget, 437
denotational semantics, 439

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

840 INDEX

Milner, Robin, 510, 589, 591, 592,
594, 595, 598

Mini-language, 5
Miranda, 197, 259, 315, 518
Mitchell, John, 550
Mixed expression, 335
ML, 122, 123, 197, 201, 259, 315,

367, 398, 402, 423, 424, 427,
437, 453, 463, 464, 475, 480,
482, 483, 511, 515, 517–519,
591, 598, 768

Modelling, 492
Modularity, 491
Module, 296–302, 418, 636–651

first-class, 638
second-class, 638

module, 640
moduleof, 640
Modules

exports, 637
imports, 637
linking, 637

Monad, 326
Monadic style, 117, 324, 345, 348
Monadic-style, 324–326
Monitor, 510
Monomorphic type, see Type

Monotonic
subtype, 553

Monotonic function, 178
Moon Microsystems, 394
Morris, F. Lockwood, 414
Mostly functional language, 315
mpair, 351
mprod, 437, 438

denotational semantics, 439
mset!, 437

denotational semantics, 439
msnd, 351
Multi-Lisp, 511

Multi-Scheme, 511
Multi-threaded, 490, 491, 493–498

Multiple namespaces, 294
Multiple-value return, 369–371

Mutable, 327

Mutable cell, 327
Mutable pair, 351

Mutable variable, 356–357
Mutation, 315

n-tuple, 773

Name capture, 258
Name control, 258, 281

Name hiding, 281
Named product, see Product, named

Namespace, 258, 524
Naming context, 365

Nat, 770

Natural semantics, see big-step op-
erational semantics (BOS)

NAVAL, 278

Neg, 770
Nested functions and objects, 748

new-key, 603
next-location, 342

nil, 216, 217
Non-determinism, 490, 494, 498

in operational semantics, 496

Non-deterministic transition relation,
42, 43

Non-hierarchical scope, 296–302

Non-local exit, 367, 371, 395–401
Non-strict, 201

pairs, 270
product, 428

Non-strict function, 190

Non-tail call, 720
Nonce type, 619–628

Nondeterminism, 367
Normal continuation, 367

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 841

Normal form, 262, 548
Normal order reduction, 262

not?, 217
denotational semantics, 254

operational semantics, 243
nproc, 278

nproduct, 428

denotational semantics, 429
operational semantics, 429

nproj, 428
denotational semantics, 429

operational semantics, 429
nth, 797–798

null, 217

Null pointer, 453
null-object, 306, 310

null?, 216, 217
Nullary procedure, 215, 316

O’Toole, James, 652
Object, 302, 427

object, 306
desugaring in HOOPLA, 307

object-compose, 306, 310, 311

desugaring in HOOPLA, 307
Object-oriented programming, 302–

312

Observable action, 491
Observable properties, 319

Observational equivalence, 82–85
in PostFix, 82–92

OCAML, 638
occam, 367, 415

Occurrence of an identifier, 226
one, 447

denotational semantics, 451

operational semantics, 449
One step transition, 42

One-to-one correspondence, 780
Oneof, see Sum, 447, 793

open, 640
Operand, 777, 802

Operational
final configuration, 40

Operational execution, 50–54
Operational semantics, 13, 37–104

answer, 40

axiom, 46–50
behavior, 43–44

error, 44–45, 51
evaluation context, 64

final configuration, 42
for FL, 239–248

initial configuration, 39

input function, 39, 43
output function, 40, 43

progress rule, 46, 54–64
redex, 64

rewrite rule, 46
stuck state, 41, 42

transition path, 42
Operationals semantics

error, 52

Operator, 777, 802
or, 204

or?, 217
operational semantics, 243

Output function of an operational
semantics, 40, 43

override, 297, 428

denotational semantics, 300

Package, 608

dependent, 629
existential, 609

Pair, 773

mutable, 351
pair, 198, 246, 270

denotational semantics, 253
non-strict, 271

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

842 INDEX

standard, 381
strict, 271

operational semantics
non-strict, 271
strict, 271

substitution in, 236
pair?, 217, 246
Pairwise disjoint, 772
Parallelism, 491, 492, 502
Parameter

formal, 224
Parameter passing, 258–270, 502

call-by-eager (CBE), 502

Call-by-name (CBN), 259, 361
Call-by-need (CBL), 361
Call-by-reference (CBR), 362
Call-by-value (CBV), 259, 359
in languages with mutable vari-

ables, 359–364
Parse, 21
Parser, 378
Partial function, 777
Partial order, 166, 490

complete, 174
discreet, 167
pointed, 176–272

Partition, 232, 772, 774
Pascal, 362
Pascal, 519
Pascal, 14, 197, 201, 259, 270, 296,

314, 327, 343, 356, 362, 383,
423, 424, 427, 436, 440, 456,
517–520, 523, 562, 748, 758,
763, 842, 843

Passable value, 270
Pattern matching, 219, 332, 374, 464–

487
pattern-constant?, 223
pattern-variable-name, 223
pattern-variable?, 223

pcall, 563
Pebble, 576, 633
Perform, 324
Phase distinction, 632
Phrase tag, 28
Pierce, Benjamin, 550
Pivot, 484
plambda, 563
Plotkin, Gordon, 104
point, 308

Pointed partial order, 176–343
Polymorphic, 656
Polymorphic function, 786
Polymorphic type, see Type, poly-

morphic
Polymorphism, see Type, polymor-

phic
pop, 33, 34
Porter, Cole, 417
Pos, 770
PostFix, 498
PostFix, x, 5–13, 32–35, 37–41, 44–

47, 49–54, 56, 60, 61, 63,
64, 66, 67, 70, 71, 73, 77–88,
90–104, 107, 108, 124, 125,
127–133, 135–141, 143–146,
148–152, 192, 193, 195, 196,
199, 204, 206, 242, 246, 498,
830, 831, 841–843, 848, 850

deterministic behavior, 50
syntax, 32–35
termination, 77–82

PostFix2, 32–35, 52, 53, 80, 135,
826, 843

PostHeap, 102–104
PostLisp, 101–102, 292–293
PostLoop, 94–95
PostMac, 99–101
PostSafe, 95–96
PostSave, 97–98

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 843

PostScript, 5, 259
PostText, 98, 99, 101, 826, 843
Powerdomain, 492
Powerset, 44, 772
Pragmatics, 2, 4–5
prefix, 433
primes, 433
Primitive domain, 790, 802
Primitive operator, 18
Primitive set elements, 770
Primitive syntactic domain, 23
primop, 198, 216

denotational semantics, 253
standard, 381

free and bound identifiers, 228
operational semantics, 241, 339
substitution in, 236

primop->proc, 219, 221, 467
Principal type, 584

proc, 198, 224, 257, 278, 282, 289,
410

denotational semantics, 253

CBN, 267
CBV, 267
dynamic scoping, 282
standard, 381
static scoping, 282

free and bound identifiers, 228
operational semantics, 241, 339
CBN, 260
CBV, 260

substitution in, 236
Procedural continuation, 368–378
Procedure, 197

dependent, 631
different from function, 776–777

procedure?, 217
Process algebra, 511
prod-list, 396, 399
Producer, 378, 390–392

producer, 391, 392
Producer/consumer coroutines, 378
Product, 418

call-by-name, 428
call-by-value, 428
lazy, 430
mutable, 436–442
named, 426–428
non-strict, 428–436
of domains (×), 791–793
of sets (×), 773
positional, 419–426
strict, 428

product, 419, 420
denotational semantics, 421
operational semantics, 420

Product domain, 418
product-of-list1 , 374
product-of-list2 , 374
product-of-list3 , 375
Production, 25

Production rule, 23
Program

in PostFix, 6
program, 204, 306, 461
Programming language

C, 315
Id
I-structure, 510

FL!, 498
Fortran, 362
FX, 788
Lisp, 778
Pascal, 362
PostFix, 498
PostFix2, 52
PostText, 98
Scheme, 315, 357
actor, 415
Ada, 196, 314, 517, 748, 758

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

844 INDEX

Algol 60, 259
APL, 284, 517
assembly-level, 516
Basic, 270, 518
block structured, 283, 298
C, 196, 197, 201, 203, 259, 296,

314, 315, 327, 356, 367, 420,
424, 427, 436, 440, 454, 456,
520, 523, 524, 556, 562, 637,
748, 763

C++, 314, 420, 436, 453
C#, 314
CCS, 510
CLU, 367, 402, 423, 424, 436,

438, 638, 648, 651
Cobol, 314
Common Lisp, 196, 294, 315,

367, 399, 402, 464

concurrent, 490, 491
Concurrent Objects, 511
CSP, 510
Dylan, 367, 399
DYNALEX, 295
EL, 18–31, 55, 56, 60, 66, 72,

73, 76, 82, 90–92, 107, 110,
120–122, 124, 128, 135, 139–
141, 143, 145, 149–151, 196,
199, 219, 221, 461

deterministic behavior, 73–76
ELM, 60, 66, 67, 69, 70, 76, 92,

118–122, 124, 149, 219, 221,
450, 452–455, 460, 467, 468

ELMM, 56–60, 64–66, 68–70, 73–
76, 91, 111–119, 122, 123,
149, 151

Erlang, 197
expressive, 378
FF, 53–54
FL, 383
FL, 195–255, 257, 259, 261, 262,

265–267, 270, 276–279, 281,
283, 285, 290–293, 295, 297,
302, 305, 307, 309–311, 314–
317, 319–321, 326–328, 338,
341, 349, 356, 359, 361, 367–
369, 374, 378, 384, 396, 400,
419, 423–426, 428, 431, 443,
446, 456, 459, 463–465, 467,
468, 470, 475, 485, 486, 503,
513, 515, 519–523, 525, 533,
536, 538, 543, 545, 546, 561,
586, 589, 600, 603, 669, 673–
675, 678, 680, 682, 697, 698,
700, 732, 790, 832, 841

denotational semantics, 248–
255

of Backus, 196
FL*, 533–535

FL/R, 586–590, 592–594, 596,
597, 608, 626, 627, 635, 638,
640, 655, 657–661, 663–665,
668, 675–680, 682, 688, 693,
694, 696–702, 705–708, 710,
713

FL/RM, 638, 640–642, 644, 647,
649

FL/X, 519–527, 529–545, 547,
548, 550–552, 554, 558, 559,
562, 567, 569, 583, 586, 589,
607, 608

FL/XS, 552–561, 563
FL/XSP, 563–567, 569, 573, 577,

580, 608, 610, 618, 620, 621,
623, 625, 627, 630

FL/XSPD, 569, 571–577

FL/XSPDK, 576–581
FLAT, 292
FLK, 197–199, 201–205, 208–213,

215, 216, 224, 226–230, 232,
234, 237, 239–255, 257, 258,

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 845

262, 265, 266, 268, 269, 272,
275, 278, 279, 281, 284, 285,
291, 293, 295, 317, 327, 335,
338–341, 346–348, 351, 356,
382, 394, 413, 497

informal semantics, 199–204

syntax, 197–199
FLUID, 290–292
Forth, 5
Fortran, 250, 270, 314, 356,

362, 436, 520, 835, 843
FP, 196
full, 195
FX, x, 197, 518, 591, 598, 648,

788, 836, 843
Haskell, 122, 123, 197, 201, 259,

315, 319, 326, 423, 424, 428,
453, 463, 464, 480, 482, 517–
519, 522, 591, 598

HTML, 454
Id, 502, 510, 511, 837, 843

idiom, 378
Java, 196, 197, 201, 203, 314,

367, 424, 427, 436, 438, 453,
517, 518, 523, 533, 555, 763

JCSP, 367, 415
kernel of, 195
Linda, 511
Lisp, 2, 22, 36, 197, 199, 205,

206, 212–214, 274, 284, 428,
453, 456, 502, 517, 839, 843

logic, 367, 510, 591
Mesa, 651
mini, 5

Miranda, 197, 259, 315, 518
ML, 122, 123, 197, 201, 259, 315,

367, 398, 402, 423, 424, 427,
437, 453, 463, 464, 475, 480,
482, 483, 511, 515, 517–519,
591, 598, 768

Multi-Lisp, 511
Multi-Scheme, 511
multi-threaded, 493–498
NAVAL, 278
object-oriented, 302–312
OCAML, 638
occam, 367, 415
pascal, 519

Pascal, 14, 197, 201, 259, 270,
296, 314, 327, 343, 356, 362,
383, 423, 424, 427, 436, 440,
456, 517–520, 523, 562, 748,
758, 763, 842, 843

Pebble, 576, 633
PostFix, x, 5–13, 32–35, 37–

41, 44–47, 49–54, 56, 60, 61,
63, 64, 66, 67, 70, 71, 73,
77–88, 90–104, 107, 108, 124,
125, 127–133, 135–141, 143–
146, 148–152, 192, 193, 195,
196, 199, 204, 206, 242, 246,
498, 830, 831, 841–843, 848,
850

deterministic behavior, 50
syntax, 32–35
termination, 77–82

PostFix2, 32–35, 52, 53, 80, 135,
826, 843

PostHeap, 102–104
PostLisp, 101–102, 292–293
PostLoop, 94–95
PostMac, 99–101

PostSafe, 95–96
PostSave, 97–98
PostScript, 5, 259
PostText, 98, 99, 101, 826, 843
pragmatics, 2, 4–5
Prolog, 367, 464
Quest, 652
Russell, 652

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

846 INDEX

Scheme, 14, 122, 123, 186, 197,
199, 201, 205, 216, 259, 274,
279, 315, 327, 356, 357, 398,
399, 415, 424, 434, 436, 438,
454, 712, 739, 843, 848

Selfish, 311
semantics, 2–4

sequential, 490
Silk, 675, 676, 678, 680–685, 688–

696, 698, 699, 705–708, 710,
711, 713–718, 721–725, 728,
729, 732–736, 739, 741, 745,
751, 762–764

SmallTalk, 259, 314, 453, 517
SML, 463, 475, 522, 623, 638,

644, 648, 651
SNOBOL4, 284
StackFix, 96–97

standard library of, 195
syntactic sugar for, 195
syntax, 2–3
typeless, 516
universal, 41, 72, 73, 92, 93, 103
Water, 454
XML, 454, 455

Programming paradigm, 492
Progress rule, 46, 54–64
Progress rules

proof tree, 57
proj, 419, 420

denotational semantics, 421
operational semantics, 420

Projection, 773
Projection function, 792
Prolog, 367, 464
Proof tree, 57, 58
Proof-carrying code, 767
Proper subset (⊂), 771
Properly tail recursive, 739
Proverbs, 257

Pure, 350, 634, 657

Purely functional language, 315

Quadruple, 773

Quest, 652

Queue, 507, 508
Quintuple, 773

quote, 204

desugaring in FL, 209

Quotient (/), 775

R-value, 358, 363

Rabbit, 767

Race condition, 494

raise, 558

raise, 402–404, 406–409, 411, 413,
414

denotational semantics, 406

Raise an exception, 402
raise-quota!, 394

Rand, 18

Rat, 770

Rator, 18

rec, 198, 257, 279, 337, 338, 385

denotational semantics, 253, 347

CBN, 272

CBV, 273

standard, 385
free and bound identifiers, 228

operational semantics, 241, 272,
336, 337

rec-handle, 408, 409

receive!, 508

operational semantics, 510

Receiver, 369

Receiver, to simulate multiple value
return, 783

reconstruct, 592
Reconstruction of types, see Type,

reconstruction

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 847

Record, 418, 426, 427, 436
dot notation, 427
variant, 456, 793, see also Sum

record, 297, 311, 426
denotational semantics, 300

record-delete, 427, 428
record-insert, 427, 428
record-size, 427
recordrec, 297, 298, 311

desugaring, 298
Recursion, 847
Recursion, 787–788
Recursive definition, 155
Recursive type, see Type
Recursive types

Equi-recursive type equality, 548
Iso-recursive type equality, 547

Redex, 64, 75
Reducible configuration, 42

Reduct, 65
Reduction

applicative order, 262
normal order, 262

reelect, 393
Referential transparency, 72, 319, 349–

350, 590
referentially transparent, 657
Reflexive, 166, 539, 553, 774
Reflexive domain, 192
Reflexive transitive closure, 188
Regions, 654
Register allocation, 723
Register allocation and spilling, 768
Relation, 498, 774–775

anti-symmetric, 774
binary, 774
closure of, 775
composition, 775
equivalence, 539, 774
reflexive, 774

symmetric, 774

transitive, 774

transitive closure of, 775

release!, 505

operational semantics, 507

relop, 34

rem

denotational semantics, 254

operational semantics, 243

rename, 298

desugaring, 298

Rendezvous, 508

Replication, 768

Representation invariant, 602

restrict, 298

desugaring, 298

resume, 411–413

Resumption semantics of exceptions,
402

return, 324

Return code, 402

Rewrite rule of an operational se-
mantics, 46

Rewrite rules

side conditions, 49

Rewrite rules of SOS, 41

Reynolds, John, 415

Reynolds, John C., 581

right, 246, 270

denotational semantics, 254

operational semantics, 243, 339

Right hand side (RHS) of a transi-
tion, 42

Rigor mortis, 49

Robinson, 590

RPN, 53

Run time, 513, 637

Russell, 652

Russell’s paradox, 771

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

848 INDEX

S-expression, 205
S-expression grammar, 13, 21–31, 109
Safe transformation, 72
Safety

of program transformations, 349
same-identifier?, 252
same-location?, 342
Scanner, 378
scar, 431
scdr, 431
Schema, see Type, schema
Scheme, 767
Scheme, 315, 357
Scheme, 14, 122, 123, 186, 197, 199,

201, 205, 216, 259, 274, 279,
315, 327, 356, 357, 398, 399,
415, 424, 434, 436, 438, 454,
712, 739, 843, 848

Schmidt, David, 415, 550
scons, 431, 433
Scope of a variable, 229, 258, 281

dynamic, 282
hierarchical, 281–293, 296
hole in, 229
lexical, 282
non-hierarchical, 296–302

static, 282
Scott, Dana, 153
SDT (Static Dependent Type), 634
SECD machine, 104
sel, 33, 34
select, 297, 426

denotational semantics, 300
select-sym, 428
Selective closure conversion, 756
Self, 305
self, 306, 311, 388, 389
Selfish, 311
Semantic algebra, 109
Semantics, 2–4

denotational, 109
informal, pitfalls of, 12–14
of PostFix, 7–10
operational, 37–104

Semaphore, 510
send, 306, 310
send!, 507

operational semantics, 510
seq-proj, 422
seq-size, 422
Sequence, 418, 421
sequence, 422
sequence, 345, 387
Sequence domain, 796–798
Sequence pattern, 29
Sequential, 489, 490
Set, 770–772

builder notation, 771
cardinality, 772
difference (−), 771
disjoint, 772

element of (∈), 770
empty {}, 770
equal, 771
functions, 775–790
intersection (∩), 771
partition, 772, 774
powerset, 772
product (×), 773
proper subset (⊂), 771
singleton, 770
subset (⊆), 771
union (∪), 771

Set theory, 769
set!, 357

denotational semantics, 358
set-mfst , 351
set-msnd , 351
sexp=?, 225
sfilter, 434

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 849

Shakespeare, William, 107, 155, 673
Shared data, 504
Sheldon, Mark, 652
Shelley, Percy Bysshe, 313
Side condition, 49
Side effect, see Effect
Sieve of Eratosthenes, 433
signal, 402
Signal an exception, 402
Signal processing style, 508
Signature of a function, 776
Silk, 675, 676, 678, 680–685, 688–

696, 698, 699, 705–708, 710,
711, 713–718, 721–725, 728,
729, 732–736, 739, 741, 745,
751, 762–764

simp, 467, 468
simp-arithop, 467, 468
Simultaneous substitution, 238
Single-assignment cell, 510

Single-threaded, 322–324, 332, 338,
341, 378

Singleton set, 770

skip, 33, 34
Skolem constant, 620
Small-step operational semantics (SOS),

41–66
SmallTalk, 259, 314, 453, 517
smap, 434
Smash sum, 178
SML, 463, 475, 522, 623, 638, 644,

648, 651
snd, 217
SNOBOL4, 284
snoc, 480, 481
snoc~, 480, 481
Solution to a recursive definition, 156
Sort, 581
SOS (small-step (or structured) op-

erational semantics), 41–66

Soundness
semantic of a type system, 592
syntactic of a type reconstruc-

tion algorithm, 594
Soundness of a transformation, 677
Soundness of denotational semantics,

145
Source of a function, 775
special variable, 294
Spinoza, Benedict, 653
split, 218
square, 366, 368
Stack equivalence, 86
StackFix, 96–97
Standard identifiers, 207
Standard library, 195
Standard semantics, 379
State, 313
State components of a configuration,

39
State context, 365
State variables, 320
Static checkability, 72

Static dependent type, 634
Static property, 513
Static scoping, 281–293
Static semantics, 513
Static type, 517, see Type
Steel Jr., Guy L., 327
Steiner, Jacqueline, 365
Store, 326, 332

in denotational semantics, 341–
343

Store effect, 655
Stoy diagram, 229–232, 284, 319
Stoy, Joseph, 415
Strachey, Christopher, 153, 414
Stream, 378, 431

examples of, 435
Strict, 201

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

850 INDEX

pairs, 270
product, 428

Strict function, 190
Strictness analysis, 265
String, 418
String, 770
Strong sum, 633
struct in C, 454
Structural induction, 81, 227
Structure, 418, 427, 436
Structure restriction, 62
Structured operational semantics, 62
Structured operational semantics (SOS),

41–66
Stuck state, 42
Stuck state of operational semantics,

41
Subset, 771

proper (⊂), 771
Substitution, 224–239, 590

definition of, 234
simultaneous, 238

Subtype, see Type

Success continuation, 458, 480
Sugar, 802
Sum, 442–449

discriminant, 443
named, 442, 447–449
positional, 442–447
strong, 633
tagged, 442
weak, 633

sum, 391
Sum domain, 442, 793–796
Sum of products, 449–464
sum-list, 403, 407
sumcase, 443, 446

denotational semantics, 445
operational semantics, 445

Supertype, see Type,supertype

Surjective function, 780
swap, 33, 34

switch, 413, 414
sym=?, 217

symbol, 198
symbol?, 217

Symbolic token, 22

Symbolic-expression, see S-expression
Symmetric, 539, 774

Synchronization, 503, 507
Synchronize, 490

Syntactic algebra, 109
Syntactic domain, 23

compound, 23

primitive, 23
Syntactic sugar, 195, 802

Syntactic value, 350, 590, 635, 646,
648, 649

Syntax, 2–3, 17–36

abstract, 18–20
concrete, 20–21

of PostFix, 6
S-expression grammar, 21–31

Table, 418
tabulate, 425

Tag, 442

Tagbody, 294
tagcase, 447, 448

denotational semantics, 451
else, 447

operational semantics, 449
Tagged sum, see Sum

Tagged union, see Sum, 793
tail, 434

tail, 797–798

Tail call, 720
Tail call optimization, 739

Tail recursion, proper, 739
talk , 597

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 851

Target of a function, 775
Termination, 72
Termination semantics of exceptions,

402
Test, 18
test-boolean, 380
test-location, 380
test-procedure, 380
the, 524
Thread, 367, 490–503, 507

handle, 493, 495
thread?, 496
thread?, 493

operational semantics, 497
throw, 367, 399, 402
Thunk, 270–272, 279, 341
Time-slice, 491, 492
tlet, 524
Token, 22
Top (>), 167
Top-level Procedure, 763
top-level-cont, 380

Total function, 274, 777
touch, 266, 434, 502
Transaction, 352
Transform equivalence, 85–88
Transformation

safe, 72
Transition

deterministic, 43
left hand side (LHS), 42
non-deterministic, 43
one step, 42
right hand side (RHS), 42

Transition path, 42
Transition relation

confluence, 75
deterministic, 42, 50
non-deterministic, 42

Transition relation of SOS (⇒), 42

Transitive, 166, 539, 553, 774
Transitive closure, 553, 775
trap, 403, 404, 406–408, 413

denotational semantics, 406
treeof, 572, 573
Triple, 773
true, 216, 217
try, 410
try, 355
try-catch-finally, 410
Tuple, 418, 773, 791

equal (=), 773
pair, 773
projection, 792
projection (↓), 773
quadruple, 773
quintuple, 773
to simulate multiple arguments,

781
to simulate multiple return val-

ues, 783
triple, 773

tuple, 596

tuple-ref, 596
Twiddle, 459
Type, 513–550

abstract, 599–652
algebraic schema, 665–668
as approximate value, 516, 527
as set, 516
checking, 525–583
coercion, 556
constructor, 522
dependent, 629
derivation, 533
dynamic
advantages of, 518

dynamic vs. static, 517–518
environment, 528–529, 591, 592
error, 517

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

852 INDEX

existential, 608–619

explicit, 519, 583

explicit vs. implicit, 518–519

generic, 589, 665

inclusion, see Type, subtype

inference, 518, see Type, recon-
struction, 584

decidability of, 595

judgment, 529

monomorphic, 519–536, 561

most general, 584

nonce, 619–628

of a function, 776

of an application, 778

polymorphic, 519, 520, 561–567,
586

projection, 563, 564

principal, 584

reconstruction, 518, 583–592

recursive, 546–550

rule, 529–533

safe, 552

schema, 589, 665–666, 668

simple vs. expressive, 519

static

advantages of, 517–518

subtype, 551–561

anti-monotonic, 554

monotonic, 553

supertype, 552, 556

typed data, 536

unification, 590–591

well-typed, 517, 555, 584, 592

Type checker, 517

Type loophole, 456

Typed assembly language, 767

Typed data, see Type

Typed intermediate languages, 767

Typeless language, 516

unbound, 225
unbound?, 225

Uncountable, 772
Undefined, 777

Unholy commingling, 629
Unification, 590–591

Union, see Sum

disjoint, 793
tagged, 793

union in C, 454
Union (∪), 771
Unit, 770
unit, 216, 217

unit, 249

unit?, 217
Unitary, 658

Universal programming language, 41,
72, 73, 92, 93, 103

Universal quantification, 563, 589

unlock, 603
up-to, 391

update, 345, 387
Upper bound, 167

useq-delete, 425

useq-insert, 425
useq-proj, 425

useq-size, 425
useq-update, 425

usequence, 425

val-to-comp, 252, 344, 386, 405

val-to-storable, 358–360
Valuation function, 111, 128

Value
syntactic, 350, 635, 646, 648, 649

Value constructor, 458

Value deconstructor, 458
Value environment, 528

Value, syntactic, 590
Variable, 224, 281, 802

Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 -- Draft November 23, 2004 --

INDEX 853

capture, 233, 566
declaration, 227, 281

dereferencing, 358
reference, 227, 281

scope, see Scope of a variable

Variable capture
external, 234

internal, 233
Variant record, 442, 456, 793, see

also Sum

Vector, 418
vector-map, 573

vectorof, 573
View, 480–487

vproc, 278

Wadsworth, Christopher, 414
Water, 454

Weak sum, 633
Wegner, Peter, 550

Well-typed, 467, 517, 530, 555, 584,
592, 778

lambda abstractions, 785
while, 330, 366, 385

Whitespace, 6, 22, 197
with-boolean, 386

with-boolean-comp, 252
with-boolean-val, 252

with-denotable, 252

with-fields, 297, 298
desugaring, 298

with-lock, 506
with-pair, 324

with-procedure, 386
with-record, 299

with-value, 252, 344, 386, 387, 405

with-values, 252, 344, 386
Witty, Carl, 93

Wordsworth, William, 37, 513
Wright, Steven, 313

writeln, 383

XML, 454, 455

yield, 389, 390

