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Preface

For more than two thousand years some familiarity with mathe-
matics has been regarded as an indispensable part of the intellec-
tual equipment of every cultured person. Today the traditional
place of mathematics in education is in grave danger.

These opening sentences to the preface of the classical book “What Is Math-
ematics?” were written by Richard Courant in 1941. It is somewhat soothing to
learn that the problems that we tend to associate with the current situation were
equally acute 65 years ago (and, most probably, way earlier as well). This is not to
say that there are no clouds on the horizon, and by this book we hope to make a
modest contribution to the continuation of the mathematical culture.

The first mathematical book that one of our mathematical heroes, Vladimir
Arnold, read at the age of twelve, was “Von Zahlen und Figuren”! by Hans Rademacher
and Otto Toeplitz. In his interview to the “Kvant” magazine, published in 1990,
Arnold recalls that he worked on the book slowly, a few pages a day. We cannot
help hoping that our book will play a similar role in the mathematical development
of some prominent mathematician of the future.

We hope that this book will be of interest to anyone who likes mathematics,
from high school students to accomplished researchers. We do not promise an easy
ride: the majority of results are proved, and it will take a considerable effort from
the reader to follow the details of the arguments. We hope that, in reward, the
reader, at least sometimes, will be filled with awe by the harmony of the subject
(this feeling is what drives most of mathematicians in their work!) To quote from
“A Mathematician’s Apology” by G. H. Hardy,

The mathematician’s patterns, like the painter’s or the poet’s,
must be beautiful; the ideas, like the colors or the words, must
fit together in a harmonious way. Beauty is the first test: there
is no permanent place in the world for ugly mathematics.

For us too, beauty is the first test in the choice of topics for our own research,
as well as the subject for popular articles and lectures, and consequently, in the
choice of material for this book. We did not restrict ourselves to any particular
area (say, number theory or geometry), our emphasis is on the diversity and the
unity of mathematics. If, after reading our book, the reader becomes interested in
a more systematic exposition of any particular subject, (s)he can easily find good
sources in the literature.

About the subtitle: the dictionary definition of the word classic, used in the
title, is “judged over a period of time to be of the highest quality and outstanding

L “The enjoyment of mathematics”, in the English translation; the Russian title was a literal
translation of the German original.
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of its kind”. We tried to select mathematics satisfying this rigorous criterion. The
reader will find here theorems of Isaac Newton and Leonhard Euler, Augustin Louis
Cauchy and Carl Gustav Jacob Jacobi, Michel Chasles and Pafnuty Chebyshev,
Max Dehn and James Alexander, and many other great mathematicians of the past.
Quite often we reach recent results of prominent contemporary mathematicians,
such as Robert Connelly, John Conway and Vladimir Arnold.

There are about four hundred figures in this book. We fully agree with the
dictum that a picture is worth a thousand words. The figures are mathematically
precise — so a cubic curve is drawn by a computer as a locus of points satisfying
an equation of degree three. In particular, the figures illustrate the importance of
accurate drawing as an experimental tool in geometrical research. T'wo examples are
given in Lecture 29: the Money-Coutts theorem, discovered by accurate drawing
as late as in the 1970s, and a very recent theorem by Richard Schwartz on the
Poncelet grid which he discovered by computer experimentation. Another example
of using computer as an experimental tool is given in Lecture 3 (see the discussion
of “privileged exponents”).

We did not try to make different lectures similar in their length and level
of difficulty: some are quite long and involved whereas others are considerably
shorter and lighter. One lecture, “Cusps”, stands out: it contains no proofs but
only numerous examples, richly illustrated by figures; many of these examples are
rigorously treated in other lectures. The lectures are independent of each other but
the reader will notice some themes that reappear throughout the book. We do not
assume much by way of preliminary knowledge: a standard calculus sequence will
do in most cases, and quite often even calculus is not required (and this relatively
low threshold does not leave out mathematically inclined high school students).
We also believe that any reader, no matter how sophisticated, will find surprises in
almost every lecture.

There are about 200 exercises in the book, many provided with solutions or an-
swers. They further develop the topics discussed in the lectures; in many cases, they
involve more advanced mathematics (then, instead of a solution, we give references
to the literature).

This book stems from a good many articles we wrote for the Russian magazine
“Kvant” over the years 1970-19902 and from numerous lectures that we gave over
the years to various audiences in the Soviet Union and the United States (where we
live since 1990). These include advanced high school students — the participants of
the Canada/USA Binational Mathematical Camp in 2001 and 2002, undergraduate
students attending the Mathematics Advanced Study Semesters (MASS) program
at Penn State over the years 2000-2006, high school students — along with their
teachers and parents — attending the Bay Area Mathematical Circle at Berkeley.

The book may be used for an undergraduate Honors Mathematics Seminar
(there is more than enough material for a full academic year), various topics courses,
Mathematical Clubs at high school or college, or simply as a “coffee table book” to
browse through, at one’s leisure.

To support the “coffee table book” claim, this volume is lavishly illustrated by
an accomplished artist, Sergey Ivanov. Sergey was the artist-in-chief of the “Kvant”
magazine in the 1980s, and then continued, in a similar position, in the 1990s, at
its English-language cousin, “Quantum”. Being a physicist by education, Ivanov’s

2 Available, in Russian, online at http://kvant.mccme.ru/
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illustrations are not only aesthetically attractive but also reflect the mathematical
content of the material.

We started this preface with a quotation; let us finish with another one. Max
Dehn, whose theorems are mentioned here more than once, thus characterized math-
ematicians in his 1928 address [22]; we believe, his words apply to the subject of
this book:

At times the mathematician has the passion of a poet or a con-
queror, the rigor of his arguments is that of a responsible states-
man or, more simply, of a concerned father, and his tolerance
and resignation are those of an old sage; he is revolutionary and
conservative, skeptical and yet faithfully optimistic.

Acknowledgments. This book is dedicated to V. I. Arnold on the occasion of
his 70th anniversary; his style of mathematical research and exposition has greatly
influenced the authors over the years.

For two consecutive years, in 2005 and 2006, we participated in the “Research in
Pairs” program at the Mathematics Institute at Oberwolfach. We are very grateful
to this mathematicians’ paradise where the administration, the cooks and nature
conspire to boost one’s creativity. Without our sojourns at MFO the completion
of this project would still remain a distant future.

The second author is also grateful to Max-Planck-Institut for Mathematics in
Bonn for its invariable hospitality.

Many thanks to John Duncan, Sergei Gelfand and Giinter Ziegler who read
the manuscript from beginning to end and whose detailed (and almost disjoint!)
comments and criticism greatly improved the exposition.

The second author gratefully acknowledges partial NSF support.

Davis, CA and State College, PA
December 2006






Algebra and Arithmetics









—
~
L
~N
|
ﬂ

S

O

e%)

ARITHMETIC

AND
COMBINATORICS

e%)

272 BN

ZAZLTIDS

i

~



LECTURE 1

Can a Number be Approximately Rational?

1.1 Prologue. Alice! (entering through a door on the left): I can prove that
/2 is irrational.

Bob (entering through a door on the right): But it is so simple: take a calculator,

press the button , then , and you will see the square root of 2 in the screen.
It’s obvious that it is irrational:

Alice: Some proof indeed! What if v/2 is a periodic decimal fraction, but the period
is longer than your screen? If you use your calculator to divide, say 25 by 17, you
will also get a messy sequence of digits:

But this number is rational!

Bob: You may be right, but for numbers arising in real life problems my method
usually gives the correct result. So, I can rely on my calculator in determining
which numbers are rational, and which are irrational. The probability of mistake
will be very low.

Alice: T do not agree with you (leaves through a door on the left).
Bob: And I do not agree with you (leaves through a door on the right).

ISee D. Knuth, ”Surreal Numbers”.
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1.2 Who is right? We asked many people, and everybody says: Alice. If you
know nine (or ninety, or nine million) decimal digits of a number, you cannot say
whether it is rational or irrational: there are infinitely many rational and irrational
numbers with the same beginning of their decimal fraction.

But still the two numbers displayed in Section 1.1, however similar they might
look, are different in one important way. The second one is very close to the

25 25
rational number ﬁ: the difference between 1.470588235 and T is approximately
3-10710, As for 1.414213562, there are no fractions with a two-digit denominator
99
this close to it; actually, of such fractions, the closest to 1.414213562 is 70’ and

the difference between the two numbers is approximately 7 - 107°. The shortest

fraction approximating /2 with an error of 3 - 10710 is much longer than

33461°
25
just T What is more important, this difference between the two nine-digit decimal

fractions (not transparent to the naked eye) can be easily detected by a primitive
pocket calculator.

To give some support to Bob in his argument with Alice, you can show your
friends a simple trick.

1.3 A trick. You will need a pocket calculator which can add, subtract, multi-

ply and divide (a key will be helpful). Have somebody give you two nine-digits
decimals, say, between 0.5 and 1, for example,

0.635149023 and 0.728101457.

One of these numbers has to be obtained as a fraction with its denominator less
than 1000 (known to the audience), another one should be random. You claim
that you can find out in one minute which of the two numbers is a fraction and, in
another minute, find the fraction itself. You are allowed to use your calculator (the
audience will see what you do with it).

How to do it? We shall explain this in this lecture (see Section 1.13). Informally
speaking, one of these numbers is “approximately rational”, while the other is not
— whatever this means.

1.4 What is a good approximation? Let o be an irrational number. How
can we decide whether a fraction 2 (which we can assume irreducible) is a good

; we want it

approximation for a? The first thing which matters, is the error, ‘a _P

to be small. But this is not all: a fraction should be convenient, that is, the numbers
p and ¢ should not be too big. It is reasonable to require that the denominator ¢
is not too big: the size of p depends on « which is not related to the precision of

and

. . e p
the approximation. So, we want to minimize two numbers, the error ‘a - =
q

the denominator q. But the two goals contradict each other: to make the error
smaller we must take bigger denominators, and vice versa. To reconcile the two
contradicting demands, we can combine them into one “indicator of quality” of an

p| .
a—=|-qis

approximation. Let us call an approximation p of a good if the product
q
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1 1
small, say, less tha.un 100 o-r 1000000° The idea seems reasonable, but the following
theorem sounds discouraging.

THEOREM 1.1. For any o and any € > 0 there exist infinitely many fractions
P such that
q

a—g‘<fs.

q

q

In other words, all numbers have arbitrarily good approximations, so we cannot
distinguish numbers by the quality of their rational approximations.

Our proof of Theorem 1.1 is geometric, and the main geometric ingredient of
this proof is a “lattice”. Since lattices will be useful also in subsequent sections, we
shall discuss their relevant properties in a separate section.

1.5 Lattices. Let O be a point in the plane (the “origin”), and let v = OA

and w = (ﬁ be two non-collinear vectors (which means that the points O, A, B do
not lie on one line). Consider the set of all points (endpoints of the vectors) pv +qw
(Figure 1.1). This is a lattice (generated by v and w). We need the following two
propositions (of which only the first is needed for the proof of Theorem 1.1).

FIGURE 1.1. The lattice generated by v and w

Let A be a lattice in the plane generated by the vectors v and w.

ProproOSITION 1.1. Let KLMN be a parallelogram such that the vertices K, L,
and M belong to A. Then N also belongs to A.

— — —
Proof. Let OK =av +bw, OL =cv+dw, OM =ev + fw. Then

— —_—s  —— —_—s = — —_—  —
ON =OK+ KN =0K+ LM =0K+ (OM -OL)
=(a—c+e)v+(b—d+ f)w,

hence N e A. O

Denote the area of the “elementary” parallelogram O AC' B (where O—C)' = O—/>1+

—

OB) by s.
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ProrosITION 1.2. Let KLMN be a parallelogram with vertices in A.

(a) The area of KLMN is ns where n is a positive integer.
(b) If no point of A, other than K, L, M, N, lies inside the parallelogram K LM N
or on its boundary, then the area of KLM N equals s.

(For a more general statement, Pick’s formula, see Exercise 1.1.)

Proof of (b). Let ¢ be the length of the longer of the two diagonals of KLMN.

Tile the plane by parallelograms parallel to K LM N. For a tile 7, denote by
K the vertex of m corresponding to K under the parallel translation K LM N — .
Then m < K, is a one-to-one correspondence between the tiles and the points of
the lattice A. (Indeed, no point of A lies inside any tile or inside a side of any tile;
hence, every point of A is a K for some 7.) Let Dg be the disk of radius R centered
at O, and let N be the number of points of A within Dg. Denote the points of A
within Dg by K1, Ks,..., Kn. Let K; = K,,. The union of all tiles m; (1 <i < N)
contains Di_, and is contained in Dgyp. Thus, if the area of KLMN is S, then

m(R—0)?*< NS <m(R+¢)>

The same is true (maybe, with a different ¢, but we can take the bigger of the
two £’s) for the parallelogram O AC B, which also does not contain any point of A
different from its vertices; thus,

m(R—€)? < Ns < m(R+ 1)

Division of the inequalities shows that

(R—1)? < § < (R+1)?

(R+0)2~ s — (R-0)%
and, since M for big R is arbitrarily close to 1, that S = s
Y (R+€)2 g y 9 — 9

Proof of (a). First, notice that if a triangle PQR with vertices in A does not
contain (either inside or on the boundary) points of A different from P, @, R, then

its area is —: this triangle is a half of a parallelogram PQRS which also contains no

points of A different from its vertices, and S € A by Proposition 1.1. Thus, the area

of the parallelogram PQRS is s (by Part (b)) and the area of the triangle PQR is

s
—. Now, if our parallelogram KLM N contains ¢ points of A inside and p points

on the sides (other than K, L, M, N), then p is even (opposite sides contain equal
number of points of A) and the parallelogram KLMN can be cut into 2¢ + p + 2
triangles with vertices in A and with no other points inside or on the sides (see
Figure 1.2), and its area is

(2q+p+2)f:(q—i—z—?—i-l)s:nswheren:q—&—;;—?—i—lEZ.

2 2

(Why is the number of triangles 2¢ + p + 27 Compute the sum of the angles
of all the triangles which equals, of course, 7 times the number of triangles. Every
point inside the parallelogram contributes 27 to this sum, every interior point of
a side contributes 7, and the four vertices contribute 27. Divide by 7 to find the
number of triangles.) O
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N & . » » M

K * v v L
FIGURE 1.2. A dissection of a parallelogram into triangles

1.6 Proof of Theorem 1.1. Let a,p, and ¢ be as in Theorem 1.1. Consider
the lattice generated by the vectors v = (—1,0) and w = («,1). Then

pv +qw = (g —p,q) = (q (a—g) 7q)-

We want to prove that for infinitely many (p,q) this point lies within the strip
—e& < x < ¢ shaded in Figure 1.3, left, or, in other words, that the shaded strip
contains (for any ¢ > 0) infinitely many points of the lattice.

y y
(qof—p,q)

i

[ ] o [ ] [ ]
/ A
. e 0
- (1) 1
(=1,0) ©|¢ _1 _1 [ 1
2 2n 2n 2

FIGURE 1.3. Proof of Theorem 1.1

1
This is obvious if € is not very small, say, if ¢ = 5 Indeed, for every positive

integer ¢, the horizontal line y = ¢ contains a sequence of points of the lattice with
distance 1 between consecutive points; precisely one of these points will be inside

1
the wide strip |z| < =. Hence the wide strip contains infinitely many points of the
lattice with positive y-coordinates.

1
Choose a positive integer n such that on < ¢ and cut the wide strip into 2n
n

1
narrow strips of width —. At least one of these narrow strips must contain infin-

n
itely many points with positive y-coordinates; let it be the strip shaded in Figure
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1.3, right. Let Ag, A1, A, ... be the points in the shaded strip, numbered in the
direction of increasing y-coordinate. For every i > 0, take the vector equal to AgO
with the foot point A;; let B; be the endpoint of this vector. Since OApA;B; is
a parallelogram and O, Ap, A; belong to the lattice, B; also belongs to the lat-
tice. Furthermore, the z-coordinate of B; is equal to the difference between the
x-coordinates of A; and Ay (again, because OAgA;B; is a parallelogram). Thus,

the absolute value of the z-coordinate of B; is less that o < g, that is, all the
points B; lie in the shaded strip of Figure 1.3, left. O

1.7 Quadratic approximations. Theorem 1.1, no matter how beautiful its
statement and proof are, sounds rather discouraging. If all numbers have arbitrarily
good approximations, then we have no way to distinguish between numbers which
possess or do not possess good approximations. To do better, we can try to work
with a different indicator of quality which gives more weight to the denominator

p

a— —|is

q. Let us now say that approximation P of a is good, if the product ¢
q

small.
The following theorem, proved a century ago, shows that this choice is reason-
able.

THEOREM 1.2 (A. Hurwitz, E. Borel). (a). For any «, there exist infinitely

many fractions b such that
q

1
a- <.

q] V5

(b). There exists an irrational number o such that for any X > /5 there are

q2

only finitely many fractions b such that
q

q2

a-|<3.
q A

A proof of this result is contained in Section 1.12. It is based on the geometric
construction of Section 1.6 and on properties of so-called continued fractions which
will be discussed in Section 1.8. But before considering continued fractions, we want
to satisfy a natural curiosity of the reader who may want to see the number which
exists according to Part (b). What is this most irrational irrational number, the
number, most averse to rational approximation? Surprisingly, this worst number
is the number most loved by generations of artists, sculptors and architects: the

1 5
golden ratio +T\/_ 2

1.8 Continued fractions.

2To be precise, the golden ratio is not unique: any other number, related to it in the sense
of Exercise 1.8, is equally bad.
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1.8.1 Definitions and terminology. A finite continued fraction is an expression
of the form

1
ap + T
aq + 1
a9 —+
. 1
+
(n—1 + —
QA
where ag is an integer, aq,...,a, are positive integers, and n > 0.

PROPOSITION 1.3. Any rational number has a unique presentation as a finite
continued fraction.

Proof of existence. For an irreducible fraction 2—7, we shall prove the existence
of a continued fraction presentation using induction on ¢. For integers (¢ = 1), the

existence is obvious. Assume that a continued fraction presentation exists for all
/

fractions with denominators less than ¢q. Let r = B, ag = [r]. Then r = ag+ P with
q q

1
0<p' <gq,and r = ag+ — where 7’ = 2/ Since p’ < g, there exists a continued
r p

fraction presentation

' =a; + i
as +

and, since 7’ > 1, a; = [r'] > 1. Thus,

1
r=ao+— =a+ I
r
a1 +

(l2+

Proof of uniqueness. If

r=ag+ 1
a +

az +

then
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which shows that ag, a1, as,... are uniquely determined by r. O
The last line of formulas provides an algorithm for computing ag, a1, as, ... for a
given r. Moreover, this algorithm can be applied to an irrational number, «, in place
of r, in which case it provides an infinite sequence of integers, ag; a1, as,..., a; >0
for ¢ > 0. We write
1
a=ao+ ————g —
a+———
as + ..
The numbers ag, ay, as, ... are called incomplete quotients for a. The number
1
Tn = Qo + 1
ay +
. 1
+
Gnp—1 + —
Gnp

is called n-th convergent of a. Obviously,
ro<re<m<- - <a<- - <rs<rg<ri.
The standard procedure for reducing multi-stage fractions yields values for the
numerator and the denominator of r,,:
ag apal +1 apaias + ag + a2

rg=—, = ————, Ty =
1’ a; ajas +1

g eeey

or r, = Pn where
n
Do = ap, p1=aea1+ 1, p2 =apaiaz + ag+ az,
@0=1 q =ai, g2 = aras + 1,

From now on we shall use a short notation for continued fractions: an in-
finite continued fraction with the incomplete quotients ag,ai,as,... will be de-
noted by [ag; a1, as,...]; a finite continued fraction with the incomplete quotients
ag, ai,...,a, will be denoted by [ag; a1, ..., an].

1.8.2 Several simple relations.

ProrosITION 1.4. Let ag,a1,-..,00,P1,---590,q1,--- be as above. Then

(a) Pn = AQpPn—1 + Pn—2 (n > 2):
(b) Qn = QnQn—1 1+ qn—2 (Tl > 2);
(€) Pn—1Gn — Pndn—1 = (=1)" (n > 1).

Proof of (a) and (b). We shall prove these results in a more general form, when
ag, a1, az,... are arbitrary real numbers (not necessarily integers). For n = 2, we
already have the necessary relations. Let n > 2 and assume that

DPn—1 = Qp—1Pn—2 + Pn-3,
Gn—1 = 0p—-1Gn—2 + qn-3

for any ag,...,an—1. Apply these formulas to af = ag,...,al,_5 = an_2,a,_4
1

= ap—1+ —. Obviously, p, =pi, ¢ =¢q; fori <n-—2,and p],_, = &, ¢, = an.

a

n mn an
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Thus,
Pn = anpilfl = an(ailflpn72 + pnf?))

1
= Qn ap—1+ CL_) Pn—2 +pn3:|

n
= an(an—lpn—Q + pn—S) +pn—2
= GpPn—1 + Pn—2,
and similarly ¢, = anq¢n—1 + ¢n_o.
Proof of (¢). Induction on n. For n = 1:

Poq1 — p1go = apay — (apar +1)-1=—1.
If n > 2 and the equality holds for n — 1 in place of n, then
Prn—1Gn — Pndn-1 = Pn—1(nGn—1 + qn—2) — (@nPn—1 + Pn—2)Gn—1
= Pn—19n—2 — Pn—2qn—1

= —(Pn—20n—1 — Pn—1qn—2)
=—(-1) = (-

COROLLARY 1.3. lim r, = a.

n—oo

DPn Pn-1 _ Pndn—1 — qnPn—1 _ (_1)n—1 Si
= _ = = . Dlnce

dn gn—1 qndn—1 qndn—1

« lies between r,,_1 and 7, |r, — a| <

Proof. Indeed, r,, — 1,1 =

, and the latter tends to 0 when n
qndn—1
tends to infinity. O

1.8.3 Why continued fractions are better than decimal fractions. Decimal frac-
tions for rational numbers are either finite or periodic infinite. Decimal fractions
for irrational numbers like e, 7 or /2 are chaotic.

Continued fractions for rational numbers are always finite. Infinite periodic
continued fractions correspond to “quadratic irrationalities”, that is, to roots of
quadratic equations with rational coefficients. We leave the proof of this statement
as an exercise to the reader (see Exercises 1.4 and 1.5), but we give a couple of
examples. Let

a=[L1,1,1,...], B=[222,2,...].

1 1
Then o =1+ —, ﬁzQ—l—B,henceaQ—a—l:O, 3% —23—1=0, and therefore
«@

1+5
4T
a is the “golden ratio”; also v2 =8 —1=[1;2,2,2,...].

1.8.4 Why decimal fractions are better than continued fractions. For decimal
fractions, there are convenient algorithms for addition, subtraction, multiplication,
and division (and even for extracting square roots). For continued fractions, there
are almost no such algorithms. Say, if

, B = 14/2 (we take positive roots of the quadratic equations). Thus,

[ao;al,ag, . ] —+ [b(); bl,bg, . ] = [CO;Cl,CQ, . .},
then there are no reasonable formulas expressing ¢;’s via a;’s and b;’s. Besides the
obvious relations
[ap; a1,ag,...]+n=/[ag +mn,a1,as,...] (ifne€Z)
[ag; a1, as,...]”t = [0;a0,a1,az,...] (if ag > 0),
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there are almost no formulas of this kind (see, however, Exercises 1.2 and 1.3).

1.9 The Euclidean Algorithm.

1.9.1 Continued fractions and the Euclidean Algorithm. The Euclidean algo-
rithm is normally used for finding greatest common divisors. If M and N are two
positive integers and N > M, then a repeated division with remainders yields a
chain of equalities

N = CLQM + bo,
M = aq b() + bl
bo = (lzbl + bQ

bn72 = anbnfl
where all a’s and b’s are positive integers and
0<by1<bp_o<---<by< M.

The number b,,_; is the greatest common divisor of M and N, and it can be
calculated by means of the Euclidean Algorithm even if M and N are too big for
explicit prime factorization. (It is worth mentioning that the Euclidean Algorithm
may be applied not only to integers, but also to polynomials in one variable with
complex, real, or rational coefficients.)

From our current point of view, however, the most important feature of the
Euclidean Algorithm is its relation with continued fractions.

PROPOSITION 1.5. (a) The numbers ag,ay,...,a, are the incomplete quotients
N
Of M7
N
i [ap; a1, ..., an].
pi . N i
(b) Let — (i =0,1,2,...,n) be the convergents OfM' Then b; = (—1)"(Ng; —
Mp;).
Proof of (a).

N Lo
MM T T M,
1
- +b1_a0+a+ :
ar + L
! b() ! bO/bl
1 1
=ag + 1 =ag + 1
+ +
Nk T
2 by b1 /bs
=-.-=lap;a1,...,an]

Proof of (b). For ¢ = 0,1, the statement is obvious:
bo =N —Mayg = Ngo— Mpo;

ble—albo :M—Na1+Ma0a1:M(a0a1+1)—Na1
= —(Nq1 — Mpr).
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Then, by induction,

bi =bi—g —aibi_1 = (*1)1.[-7\/'%—2 — Mp;_2 + ai(NQi—l - Mpi—l)]
= (—1)*[N(aigi—1 + gi—2) — M(aipi—1 + pi—2)]

All of the above can be applied to the case when the integers N, M are replaced

by real numbers 3,7 > 0. We get an infinite (if A is irrational) sequence of
Y

equalities,
B =aoy + bo,
v = aiby + by,
bo = azb1 +bo,
where ag is an integer, a1, as,... are positive integers, and the real numbers b;

satisfy the inequalities
O<"'<b2<b1<b0<’y.

Proposition 1.5 can be generalized to this case:
PROPOSITION 1.6. (a) B _ [ag; a1, az,...].
Y

(b) zf% is the i-th convergent of g, then b; = (—=1) (vq; — Bps)-

(The proof is the same as above.)

1.9.2 Geometric presentation of the Euclidean Algorithm. It is shown in Figure
1.4.

Take a point O in the plane and a line ¢ through it (vertical in Figure 1.4).
Take points A_o and A_; at distance [ an ~ from ¢, both above the horizontal
line through O: A_5 to the right of £ and A_; to the left of £. Apply the vector
OT,l> to the point A_5 as many time as possible without crossing the line £. Let
Ag be the end of the last vector, thus the vector m crosses £. Then apply
the vector O—Ao> to the point A_; as many time as possible without crossing /¢;
let A; be the end of the last vector. Then apply the vector O—A{ to Ag and get
the point Ay, then As, A4 (not shown in Figure 1.4), etc. We get two polygonal
lines A_5AgA2A,... and A_1A1A3... converging to £ from the two sides, and
A_2A0 = aOOA_l,A_lAl = alvo,AoAg = ClgOA1, etc. This construction is
related to the Euclidean algorithm via the column of formulas shown in Figure 1.4.

In particular, A = [ag; a1, az,...].
y

Notice that if some point A,, lies on the line ¢, then the ratio é is rational and
Y

equal to [ap; a1, az,...,a,].

The following observation is very important in the subsequent sections. All
the points marked in Figure 1.4 (not only A_o, A_1, Ag, A1, As, but also B,C, D)
belong to the lattice A generated by the vectors OA_5 and OA_;. Indeed, consider
the sequence of parallelograms

A A_sB, A_OBC, A_,OCAy, A_10AyD, DOAgA1, A1OAyAs, ...
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|
I A_2A0 = ag OA_l
A_lAl = ai OA()

A2 ............

B = agy + bo
¥ = aiby + by
bo == a2b1 +b2

FIGURE 1.4. Geometric presentation of the Euclidean Algorithm

Since A_1,0, A_5 are points of the lattice, we successively deduce from Proposition
1.1 that B,C, Ay, D, Ay, As, ... are points of the lattice.
Moreover, the following is true.

PropoOSITION 1.7. No points of the lattice A lie between the polygonal lines
A_9AgAsAy ... and A_1A1As... (and above A_5 and A_4).

Proof. The domain between these polygonal lines is covered by the parallelo-
grams OA_QBA_l, OBCA_l, OCAOA_l, OA()DA_l, OAoAlD, OAQAQAl, OAQEAl
(the point F is well above Figure 1.4), etc. These parallelograms have equal areas
(every two consecutive parallelograms have a common base and equal altitudes).
Thus all of them have the same area as the parallelogram OA_sBA_1, and Propo-
sition 1.2 (b) states that no one of them contains any point of A.O

(By the way, the polygonal lines A_5AgAsAy... and A_1A;As... may be
constructed as “Newton polygons”. Suppose that there is a nail at every point of
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the lattice A to the right of £ and above A_5. Put a horizontal ruler on the plane
so that it touches the nail at A_, and then rotate it clockwise so that it constantly
touches at least one nail. The ruler will be rotating first around A_,, then around
Ap, then around A, etc, and it will sweep the exterior domain of the polygonal
line A,2AOA2A4 . )

1.10 Convergents as the best approximations. Let a be a real number.
In Section 1.6, we considered a lattice A spanned by the vectors (—1,0) and («, 1).
For any p and ¢, the point

p(=1,0) + q(e, 1) = (qa —p,q) = (q (a - Z) 7q>

belongs to the lattice; our old indicator of quality of the approximation b of a was

q
equal to the distance of this point from the y axis. The new indicator of quality,

2

q , is the absolute value of the product of coordinates of this point. So, the

p
o— =
q

question, for how many approximations b of « this indicator of quality is less than

q
€, is equivalent to the question, how many points of the lattice A above the x axis
(¢ > 0) lie within the “hyperbolic cross” |zy| < ¢ (Figure 1.5).

FIGURE 1.5. Lattice points in the “hyperbolic cross”

Let us apply the construction of Subsection 1.9.2 to the lattice A with A_5 =
(a,1) and A_y = (—1,0). What is the significance of the points Ag, 41, Ag,...7

PrOPOSITION 1.8. For n > 0, A, = (¢ — Pn,qn) where p,, and g, are the
numerator and denominator of the irreducible fraction equal to the n-th convergent
of the number «.

Proof. Induction on n. For n = 0,1 we check this directly: since pg = agp,qo =
1,p1 = aga; + 1,q1 = ag (see Section 1.8),

AO = A_Q + aoA_1 (a 1) + ao(—l, 0)

= (a —ao,1) = (g0 — po, qo);
A1 :A_1+a1A0 ( 1 0)4’&1(@7&0,1)
= (a1 — (apa1 + 1), a1) = (g1 — p1, q1).
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Furthermore, if n > 2 and the formulas for A, _1 and A, _» are true, then

Ap =42+ a,An_1= (Qn—Za — Pn—2, Qn—Q) + an(Qn—la — Pn—1, Qn—l)
= ((ananl + qn72)a — ApPn—1 — Pn—2,0nqn—1 + Qn72) = (qna — Pn, qn)

Proposition 1.8 shows that convergents are the best rational approximations of
real numbers. In particular, the following holds.
_bn
dn

PRrROPOSITION 1.9. Lete > 0. If for only finitely many convergents &, @ la <

n
n

g, then the whole set of fractions P such that q>
q

a—z—?‘ < € is finite.
q

Proof. The assumption implies that for some n, all the points A1, Anto,
Apt3, Ana lie outside the hyperbolic cross |zy| < e. This means that the whole hy-
perbolic cross lies between the polygonal lines A, 11 Apy3An14 ... and Ay 04, 144016 - -
(we use the convexity of a hyperbola: if the points Ay and Ay lie within a com-
ponent of the domain |zy| > €, then so does the whole segment Ay Ay 2). But
according to Proposition 1.7, there are no points of the lattice between the two
polygonal lines (and above A,). Thus the hyperbolic cross |zy| > & contains no
points of the lattice above A,,, whence the proposition. O

Notice that the expression ¢?|a — b is not very important for this proof. The

same statement would hold for the indicator of quality calculated as ¢®|a — b , or
q

"% — d , or, actually any expression F' | q,

o — P D where the function F' has
q

the property that the domain F(z,y) > e within the first or the second quadrant
is convex for any e.
Thus, convergents provide the best approximations. For example, for the golden
+v5
2

ratio

=[1;1,1,1,...], the best approximations are

2 3 5 8
= [L;1,1)==, [;1,1,1] ==, [1;1,1,1,1] = —,..;
1 2 3 5
these are the ratios of consecutive Fibonacci numbers (which follows from Propo-
sition 1.4(b)). For v/2 = [1;2,2,2,...] the best approximations are

3 7 17 41

1, [1;1] =

1, [1;2]=2,[12,2 ==, [1;2,2,2] = —, [1;2,2,2,2] = —,
2 99 O 12 27321
1:2,2,2,2,2] = —,...,[1:2,2,2,2,2,2,2,2,2,2,2,2] = ———— ..
[7 b b b) ) ] 707 7[7 b b b) ) b b b) ) bl b b) } 334617

We mentioned the last two approximations of /2 in Section 1.2; in particular, we

99
stated that -0 is the best approximation for /2 among the fractions with two-digit
denominators.
What is most surprising, there exists a beautiful formula for the indicators of
quality of convergents.
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1.11 Indicator of quality for convergents.

THEOREM 1.4. Let L% be the (irreducible) n-th convergent for the real number

qTL
a = [ag;a1,az,...]. Then
2la_re| L
" | M
where
1 1
An:an-i-l"' 1 + 1
Unyz+——— Gt —————7—
an+3+_ anfl"_
. -
+7
ai

The proof is based on the following lemma.

LEMMA 1.10. Let points A, B have coordinates (a1, az), (—b1, b2) in the standard
rectangular coordinate system with the origin O where ay,as, b1, by are positive.
Then the parallelogram OACB (see Figure 1.6, left) has the area ai1bs + bias.

c C E
D 5 F
5
A 1 GO~ 4
| 3 7
a2
' H
B! : B
b: X 4
b @
0 0

FiGURE 1.6. Computing the area of a parallelogram

Proof of Lemma. Add to the parallelogram (Figure 1.6, left) vertical lines
through A and B and a horizontal line through C. We get a pentagon OAF DB
(see Figure 1.6, right). Divide it into 7 parts as shown in the figure and denote
by S; the area of the part labeled i. Obviously, EF = GA = a1,DB = GD =
as, AF = OH = by. It is also obvious that Sy = S5 + S5 and S; = S7. Thus,

area(OACB) =S3+ 854+ 5S¢+ 57 =53+ (SQ + 55) + Sg + 51
= (Sl + S2 + 53) + (S5 + SG)
= area(HEDB) + area(AFEG) = bias + a1 bs.
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. y A, Y

dn

"qn—l

Ay 0

FIGURE 1.7. Proof of Theorem 1.4

Proof of Theorem. Consider Figure 1.7, left. It corresponds to the case when
n is even. We shall use the notation ry, = |agr — pi|- The coordinates of the points
A 9, A 1, An 1, A, are (a,1),(=1,0), (=7n—1, ¢n-1), (Tn, gn) (see Proposition 1.8).
The area of the parallelogram OA, EA, _ is 1 (see Proposition 1.7 and its proof).
We have the following relations:

(]-) Zn—IQn + -1 =1;

—1
(2) =— = [ant13anr2, anys, i
(3) n [an;an-1,...,a1].

qn—1
Relation (1) is stated by Lemma 1.10. Relation (2) follows from Proposition

1.6 (a) (the Euclidean Algorithm for ~2~*

is part of the Euclidean Algorithm for %

n
as presented in Figure 1.4). Relation (3) may seem less obvious, but it also follows
from Proposition 1.6 (a). To see this, reflect the points A,, A, _2,..., A in the
origin as shown in Figure 1.7, right. We get a picture for the Euclidean Algorithm

for dn

(turned by 90° and reflected in the z axis). The polygonal lines similar
qn—1
to A,2AOA2A4 ... and A,1A1A3A5 ... are A;zAfnf2 cee A6 and AnflAnfg cee A,]_.

The second one ends at a point A_; on the x axis which means (as was noticed in

Subsection 1.9.2) that i
qn—1
as stated by Relation (3).

Now, we divide Relation (1) by r,¢, and compute A,:

is a finite continued fraction [a,;an—1,an_2,...,a1],

1 Tn—1 dn—1 1
Ap = = + = |On4+1;An4+2, - - - + .
" T'ndn Tn dn [ e e ] [an§ Ap—1y - 7041]
Also,
1 r 1
)\nfl = = I + t = [an;anflwnaal] +

Tn—1qn—1  dn—1  Tn—1 [ant1i Ao, -
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This completes the proof of the theorem both for even and odd n.0

Theorem 1.4 shows that while convergents are the best rational approximations
of real numbers, they are not all equally good. The approximation Pr i really

good if A, is large, which means, since a,4+1 < A, < ap41 + 2, that the ﬁlcomplete
quotient a,; is large. In this sense, neither the golden ratio, nor v/2 have really
good approximations. Let us consider the most frequently used irrational numbers,
m and e. It is not hard to convert decimal approximations provided by pocket
calculators into fragments of continued fractions (we shall discuss this in detail in
Section 1.13). In particular,

m=[3:7,15,1,293,10,3,8,...], e=[21,2,1,1,4,1,1,6,...].

We see that, unlike e, m has some big incomplete quotients; the most notable are
15 and 293. The corresponding good approximations are

22 355

87 = 2, 31,151 = {2
The first was known to Archimedes; with its denominator 7, it gives the value of
7 with the error 1.3 - 1073, The second one was discovered almost 4 centuries ago
by Adriaen Metius. It has a remarkable (for a fraction with this denominator)
precision of 2.7 - 10~7 and gives 6 correct decimal digits of 7. Nothing comparable

exists for e: the best approximations (within the fragment of the continued fraction
given above) are — (the error is ~ 4 - 1073) and 1 (the error is ~ 2.8 - 1077).
For further information on the continued fraction for = and e, see [56], Appendix
II.

1.12 Proof of the Hurwitz-Borel Theorem. Let o = [ap;a1,a2,...] be

an irrational number. We need to prove that for infinitely many convergents &,
n

_ 1
Qn(Qna - pn)

and this is not always true if /5 is replaced by a bigger number.
Case 1. Let infinitely many a,,’s be at least 3. Then, for these n,

A1 > ap >3 > V5.

Case 2. Let only finitely many a,’s be greater than 2, but infinitely many of
them equal to 2. Then, for infinitely many n, ap4+1 = 2,a, < 2,a,42 < 2, and

A > /5,

1 1 1 1 8
An = Qi1+ + >2+4 —+ =2 > 5.
1 1 33 3

Case 3. For sufficiently big m, a,, = 1. Then, for n > m,
1
1;1,1,...,a1]

V541
2

A =[1:1,1,1,... ]+

, the second summand tends to

<¢5+1>_1:\/5—1 Vi1
2

5 5 when n — oo and is greater than

The first summand is the golden ratio,

for every other n.
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541 5—1
\/_;_ + \/_2 = /5 for infinitely many n, but, since lim A, = v/5,
n—oo

for any € > 0, the inequality A,, > v/5 + € holds only for finitely many n. O

Thus, A\, >

Comments. It is clear from the proof that only in Case 3 can we not replace
the constant /5 by a bigger constant. In this case the number o has the form
[ap;ai,...,an,1,1,1,...]. The most characteristic representative of this class is

the golden ratio
VE+1
p =

2

=[1;1,1,1,...].

ap+b
cp+d
with a,b,c,d € Z and ad — bc = +1. If « is not one of these numbers, then the
constant /5 can be increased to v/8. There are further results of this kind (see
Exercises 1.11-1.14).

In conclusion, let us mention the following theorem, for which its author, Klaus
Roth, was awarded a Fields medal in 1958.

One can prove that all numbers of this class are precisely those of the form

THEOREM 1.5 (Roth). If a is a solution of an algebraic equation
ant™ + ap12" L+ Faz+ag=0

with integral coefficients, then for any € > 0, there exist only finitely many fractions
P such that
q

o — a < F

1.13 Back to the trick. In Section 1.3, we were given two 9-digit decimal
fractions, of which one was obtained by a division of one 3-digit number by another,
while the other one is a random sequence of digits. We need to determine which is

p ’ 1

which. If « is a 9-digit approximation of a fraction P Gith a 3-digit denominator

q, then

P 1 1 1
‘a q < 109 1000 - (10002) < 1000¢2°
By Theorem 1.4, this means that one of the incomplete quotients a,4; of « is
greater than 1000, and the corresponding g, is less than 1000. How big can n be?
Since ¢, = apgn_1 + gn_2, the numbers ¢, grow at least as fast as the Fibonacci
numbers F,,. Since Fi5 = 987, n should be at most 15.

It is very easy to find the beginning fragment of the continued fraction for a
given a:

[a] = ag;

(a—ap) " =, ] =a;
(a1 —a1)™" = g, [ag] = ag;
(a2 —ag)™ " = as, [az] = as;

Using this algorithm, we can find a few incomplete fractions of the two numbers
given in Section 1.3 relatively fast:
0.635149023 = [0;1,1,1, 2,
0.728101457 = [0;1,2,1,2

]
15,1,59,7,1,39,...]
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Obviously, the first number, and not the second one, has a very good rational
approximation, namely [0;1,1,1,2,1,6,13].

Next step: using the relations from Proposition 1.4 (a-b), we can find the
corresponding convergents:

po=ao=0, pp=apa1+1=1, p2=1-p1+po=1,
ps=1-p2+p1 =2, ps=2-p3+p2 =275,
ps=1-ps+p3 =7, pe = 6-p5 + pg = 47,

p7 =13 - pg + ps = 618.
@w=1 @gq=a=1, @2=1-q+q =2,
G3=1-g+q =3, Ga=2-qg3+q =28,

g5 =1-q4+q3 =11, g6 =6-q5 +qqs =74,
q7:13QG+Q5:973

618
Final result: the first number is rational, it is 973 (to be on the safe side, you

can divide 618 by 973 using your calculator, and you will get precisely 0.635149023).

1.14 Epilogue. Bob (enters through the door on the right): You were right,
a calculator cannot give a proof that v/2 is irrational.

Alice (enters through the door on the left): No, you were right: using a calculator,
you can certainly distinguish between numbers like v/2 and Ta

Bob: Yes, but still it is not a proof of irrationality. I read in a history book that
when Pythagoras found a proof that /2 was irrational, he invited all his friends to
a dinner to celebrate this discovery.

Alice: Well, we shall not invite all our friends, but let’s have a nice dinner now. My
pie is ready.

Bob: Oh, pi! There is a wonderful approximation for pi found by Metius!

Alice: But I don’t mean this pi, I mean my apple pie.

Bob: Then let’s go and try it. (They leave together through a door in the middle).

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

1.15 Exercises.

1.1. (Pick’s Formula.) Let P be a non-self-intersecting polygon whose vertices
are points of a lattice with the area of the elementary parallelogram s. Let m be the
number of points of the lattice inside P and n the number of points of the lattice
on the boundary of P (including the vertices). Prove that

area(P) = (n + % — 1) s
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Hint. Cut P into triangles with vertices in the points of the lattice and without
other points of the lattice on the sides and inside and investigate how the right
hand side of the equality behaves.

1.2. Prove that

[ag:a1,a = [-1—ap;1,a1 — 1,ag,...], ifa >1,
0701 825 - [717&0;0,24*1,0,3,...], if(llil
1.3. (a) Prove that if ag, as, as, ag, . .. are divisible by n, then
lag;a1,az,...] [ao. as }
— = = |—;na;, —,nas,...
n n n

(b) Prove that if ay, as,as, ... are divisible by n, then
ay as
nlag; a1, asg, . ..] = [nag, —,nag, —,...]J.
n n
1.4. Assume that
a = [ag;a1,as...]
is a periodic continuous fraction, that is, for some r > 0 and d > 0, 4, +q = @y, for
all m > r. Prove that «a is a root of a quadratic equation with integer coefficients.
Hint. Begin with the case r = 0.

1.5. ** Prove the converse: if « is a root of a quadratic equation with integer
coeflicients, then « is represented by a periodic continued fraction.

1.6. Find the continued fractions representing v/3, v/5,vn2 + 1,v/n2 — 1.

1.7. Using Exercises 1.6 and 1.3, find the continued fractions representing

4\/5, ? and ! +2\/§.

1.8. (Preparation to Exercise 1.9.) Let a, 3 be real numbers. We say that «
b
is related to (3, if a = af +
cf+d
that if « is related to (3, then ( is related to «. Prove also that if « is related to 3
and ( is related to 7y, then « is related to .

1.9. *Let

where a, b, ¢,d are integers and ad — bc = £1. Prove

o = [ao;al,ag,...],ﬂ = [bo;bl,bz,...]
be “almost identical” continued fractions, that is, there are non-negative integers
k, ¢ such that agym, = beym for all m > 0. Prove that a and 3 are related.

1.10. * Prove the converse: if o and (3 are related, then their continued fractions
are almost identical (see Exercise 1.9).

Hint. The following lemma might be useful. If @ and ( are related, then there
is a sequence of real numbers, ag, a1, ...,ay such that ag = o, ay = 0, and for
1<i<N,

1
a1

1.11. Prove that if « is not related to the golden ratio (that is,

a; = —Q_1, Or a; = ;1 + 1, or a; =

a # lagyar,az,...,ar,1,1,1,.00]),

then /5 in the Hurwitz-Borel Theorem can be replaced by V8.
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1.12. Prove that if « is not related to the golden ratio or to \/5, then /5 in

221
the Hurwitz-Borel Theorem can be replaced by 95
. 221
Remark to Exercises 1.11 and 1.12. The reader can extend the sequence v/5, v/8, o5

as long as he wishes (so, if « is not related to the golden ratio, v/2 and one more
specific number, then v/5 in the Hurwitz-Borel Theorem can be replaced by a still
bigger constant, and so on.) The resulting sequence will converge to 3.

1.13. Prove that there are uncountably many real numbers a with the follow-

ing property: if A > 3, then there are only finitely many fractions P such that
q
P 1
-Z| < —.

’a Q‘ Ag?

Hint. Try the numbers

1;1,1,...,1,2,2,1,1,...,1,2,2,1,1,...,1,2,2,1,...]
—_—— —_—— —_——
no ni n2

where ng,ni,n9,... is an increasing sequence of integers.
1.14. ** The number 3 in Exercise 1.13 cannot be decreased.

1.15. Find the smallest number \,, with the following property. If « = [ag; a1, az, . . .]
and ay > n for k sufficiently large, then for any A > A, there are only finitely many

p 1
a—=|<—

fractions P such that .
q]  A?







LECTURE 2

Arithmetical Properties of Binomial Coefficients

2.1 Binomial coefficients and Pascal’s triangle. We first encounter bino-
mial coefficients in the chain of formulas

(a+b)° =1
( Yo=a+b
(a+b)? =a?+2ab+ b?
3 =a3 +3ad% + 3ab® + b3
(a+0)
(a+b)* =a*+4a®b + 6a2b? + 4ab® + bt
as the coefficients in the right hand sides. The coefficient of a™b"~"™ (where 0 <
m < n) is denoted by (n) (or, sometimes, by C)*) which is pronounced as “n
m

choose m” (we shall explain this below). There are two major ways to calculate

the numbers " . One is given by the recursive Pascal Triangle Formula:
m
()= (o) = ()
= +
m m—1 m
+ (;) a™y ™ 4= (a+b)" = (a+b)""a+b)

— (+ ("‘1>am—1bn—m+ (”_1>ambn—m—1+...) (a+0b)
m—1 m
n—1 n—1 _
m—1 m

27

which has a simple proof:
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The second expression for the binomial coefficients is the formula

(n)zn(nl)...(nm+1) nl

m

1-2-----m ml(n —m)!
which can be deduced from Pascal Triangle Formula by induction: it is obviously

-1
true for n = 0, and if it is true for (n i ) (for all k between 0 and n — 1), then

() = (o) () = e

mn=1)m+Mm-1-(n—m) (n—-1n n!

ml(n —m)! “ml(n—m)!  ml(n—m)!

The Pascal Triangle Formula gives rise to the Pascal Triangle, a beautiful trian-
gular table which contains all the binomial coefficients and which can be extended
downward infinitely.

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 95 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14

In this table, the n-th row (the top row with just one 1 has number 0) consists

of the numbers
n n n n
0/’\1)"7" " "\n—-1)"\n/)’

The Pascal Triangle Formula means that every number in this table, with the
exception of the upper 1, is equal to the sum of the two numbers above it (for
example, 56 in the 8-th row is 21 4 35). Here we regard the blank spots as zeros.

To legalize the last remark, we assume that (n) is defined for all integers
m

n
n,m, provided that n > 0: we set =0, if m < 0 or m > n. This does
m

not contradict the Pascal Triangle Formula (provided n > 1), so we can use this
formula for any m.
Let us deduce some immediate corollaries from the Binomial Formula

(a+b)" = (’(Da” + (T) a4 (nn 1)ab"_1 + (Z) b,
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PROPOSITION 2.1. (a) <g> + (Tf) +- 4 (n T_L 1) + <Z> =2".

(b) If n > 1, then

()~ eem (i) o

(¢) If n > 1, then

)6+ () )+ () ()

Proof. The Binomial Formula yields (a) if one takes a = b = 1 and yields (b) if
one takes a = 1,b = —1. The formula (c) follows from (a) and (b). O

2.2 Pascal Triangle, combinatorics and probability.

PROPOSITION 2.2. There are (n) ways to choose m things out of a collection
m
of n (different) things.

REMARK 2.3. (1) This Proposition explains the term “n choose m”.
(2) If m < 0 or m > n, then there are no ways to choose m things out of n. This

fact matches the equality (n) =0 form <0 or m>n.
m
Proof of Proposition. Again, induction. For n = 0, the fact is obvious. Assume
that the Proposition holds for the case of n — 1 things. Let n things be given

(n > 1). Mark one of them. When we choose m things out of our n things, we
either take, or do not take, the marked thing. If we take it, then we need to chose

-1
m — 1 things out of the remaining n — 1; this can be done in (n 1> ways. If we
m—
do not take the marked thing, then we need to choose m things out of n — 1, which

-1
can be done in (n > ways. Thus, the total number of choices is
m
+ = ;
m—1 m m

As an aside, this Proposition has immediate applications to probability. For
example, if you randomly pull 4 cards out of a deck of 52 cards, the probability to
get 4 aces is

and we are done. O

1 4! . 48! 1
= = ~3.7-1076
<52> 52! 270725 3.7- 10
4

52
(there are ( 4) choices, and only one of them gives you 4 aces). The probability

of getting 4 spades is higher: it is

13
4) 131-41-480 11

= = ~2.64-1073
(52> 41.91.521 4165

4
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2
(the total number of choices of 4 cards is <54 >, the number of choices of 4 spades

y <143) )

2.3 Pascal Triangle and trigonometry. The reader is probably familiar

with the formulas
sin20 = 2sinfcos¥,

cos20 = cos? 6 —sin? 4.
And what about sin 367 cos 56?7 sin 12607 All such formulas are contained in the
Pascal Triangle:

cos 00 = 1
cos 10 = sin 16 = 1cosf 1sind

_ 2 .2
cos 20 = $in 20 — 1cos® 0 2 cos 0 sin —1sin“6

cos 30 = 1cos® 6 —3cosfsin’ 6

—1sin6

. 4
39 +1sin* 0

3cos?fsinf

—6cos? 0sin’ 0

sin 30 =

cos 46 = 1cos* 6

sin 46 = 4cos® Osin b —4 cos fsin

Can you see the Pascal Triangle here? It is slightly spoiled by the signs. Here
is the result.

PROPOSITION 2.4.

sinnf = <71L> cos™ 1 fsinf — <§) cos” 3 0sin® 0 + <Z) cos" P hsin® 6 — ...

cosnf = cos" 6 — <Z> cos” "2 0sin%0 + <Z> cos” 4@sin*0 — ...

Proof. Induction, as usual. For n = 1, the formulas are tautological. If the
formulas for sin(n — 1)6 and cos(n — 1)6 (n > 1) hold then

sin nf = sin((n — 1)0 4 0) = sin(n — 1)6 cos 6 + sin f cos(n — 1)6

((n; 1) cos” 2 0sinf — (n; 1) cos”4esin39—|—...) cos 0+
-1 -1
sin9(<n0 )cos"_19—(n2 )cos”_3sin29—|—...)

_ n—1 n—1 ne1lpge o
= (( 0 )—i—( 1 >)cos fsin @
n—1 n—1 n—3p . 3
(( 9 )—i—( 3 ))COS fsin® 6+ ...

= <T) cos" 1 @sinf — (g) cos" 2 0sin®0 + ...,

and similarly for

cosnf = cos((n —1)8 + ) = cos(n — 1)f cos§ — sin(n — 1)fsin b,
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as needed. O

There is also a formula for tan nf (generalizing the textbook formula for tan 26):

n _(n 3 n 5,
<1>tan6‘ <3>tan 9+<5>tan9
_(m 2 n 49 [T 6
1 (2>tan 0+<4>tan9 <6)tan 0+ ...
(see Exercise 2.1).

These applications, however, do not represent the main goal of this lecture.
We will be interested mainly in arithmetical properties of binomial coefficients, like
divisibilities, remainders, and so on.

tannf =

2.4 Pascal triangle mod p. Let us take the Pascal triangle and replace
every odd number by a black dot, e, and every even number by a white dot, o. The
resulting picture will remind the Sierpinski carpet (for those who know what the
Sierpinski carpet — a.k.a. Sierpinski gasket — is).

A close look at this picture reveals the following. Let 2" < n < 2"T!. Then

_or
if m <n— 2", then " has the same parity as " ;
1) ifm < 2" th
m m
_or
(2) if m > 27, then (n) has the same parity as <n );
m m — 27"

(3) if n — 2" < m < 2", then (n) is even.
m

The following result generalizes these observations to the case of an arbitrary
prime p.
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THEOREM 2.1 (Lucas, 1872). Let p be a prime number, and let n,m,q,r be
non-negative numbers with 0 < q < p, 0 <r <p. Then

(1) = () (1) o

(We assume the reader is familiar with the symbol =. The formula A = B mod
N, “A is congruent to B modulo N” means that A — B is divisible by N, or A
and B have equal remainders after division by N. We shall also use this symbol for
polynomials with integral coefficients: P = @ mod N if all the coefficients of the
polynomial P — @ are divisible by N.)

To prove the theorem, we need a lemma.

LEMMA 2.5. If0 < m < p, then (:1) is divisible by p (and not divisible by p?;
but we do not need this).

Proof of Lemma.

(p) _plp=1)...(p=—m+1)

and no factor in the numerator and denominator, except p in the numerator, is
divisible by p. O

Proof of Theorem. The Lemma implies that (a+b)? = a?+b” mod p. Therefore,
(a+b)P"1 = ((a +b)P)"(a + b)? = (a¥ + b")"(a + b)Y mod p,

(aP + bP)"(a + b)? = (apn-i-'-'-i- (n>apmbp(”m)+---+bp”>
m

-<aq+---+ (z)arbqr+-~-+bq>

and it is clear that the term a?P™7bP("=™)+(4=7) appears in the last expression only

once and with the coefficient (:1) (g), whence
= InOd D,
pm+r m/)\r

To state a nice corollary of Lucas’ Theorem, recall that, whether p is prime or
not, every positive integer n has a unique presentation as n,.p” + n,_1p" ! +--- +
np+ ng with 0 <n, <pand 0 <n; <pfori=0,1,...,r — 1. We shall use the
brief notation n = (n;n,_1 ...n110),. The numbers n; are called digits of n in the
numerical system with base p. If p = 10, then these digits are usual (“decimal”)
digits. Examples: 321 = (321)19 = (2241)5 = (101000001)2. Note that we can use
the presentation of numbers in the numerical system with an arbitrary base to add,
subtract (and multiply; and even divide) numbers, precisely as we do this using the
decimal system.

Let us return to our assumption that p is prime.

and we are done.O
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COROLLARY 2.2. Let n = (nyny—1...11M0)p, M = (MyMy_1...m1myg), (we
allow m, to be zero). Then

() = G () () (o) o

Proof. Induction on r. The case r = 0 is obvious; assume that our congruence
holds if r is replaced by r — 1. Then n = pn’ + ng, m = pm’ + mg where n’ =
(npnp—1...n901)p, M = (Mpmy_1...Mmamy),. Lucas’ Theorem and the induction

hypothesis give, respectively,
n’ n
m mo

(1) = () (1) mot
()= () (o) G ) o

and we are done. O

This result shows that binomial coefficients have a tendency to be divisible by
prime numbers: if at least one m; exceeds the corresponding n; then the product on
the right hand side of the last congruence is zero. Example: what is the remainder

1241
of (3 ) modulo 37 Since 31241 = (1120212002)5 and 17101 = (0212110101)3,

17101
31241 (NN (2) (0N (2 (1) [2)(0)[0)[2
17101 —\0/\2/\1/\2/\1/\1/\o/\1/\0/\1
=1-0-2-0-2-1-1-0-1-2=0mod 3.
On the other hand, 31241 = (1444431)5, 17101 = (1021401)s5, and

() = ()6 GGG

=1-1-6-4-1-1-1=24=4mod 5.

N

3 3

N——
1l

whence

Note in conclusion that Corollary 2.2 explains the observations made in the
beginning of this section. If 2" < n < 2" then n = (In,_1...n1ng)2 (n; =
Oorlfori=0,...,r—1). If m <n—2", then m = (0m,_1...mymyg)2 and

() =G (o) = G () = (7 ) o

If m > 27, then m = (Im,_1 ... mymg)2 and

n 1 Np_1 no Np_1 ng n—2"
= o = o = mod 2.
m 1) \m,_1 mo My_1 mo m — 27
If n —2" <m < 2", then m; > n; for at least one ¢ < r — 1. In this case (m) =0
m;

and (n) =----0----=0mod 2, and so (n) is even.
m m
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2.5 Prime factorizations. Let us begin with the following simple, but beau-
tiful, result.

THEOREM 2.3. Let n = (n,...ning)p. Then the number of factors p in the
prime factorization of n! is
n—(n.+---+mny+ng)
p—1 '
REMARK 2.6. The fact that the last fraction is a whole number is true whether
p is prime or not, and is well known if p = 10: any positive integer has the same

remainder modulo 9 as the sum of its digits. It can be proved for an arbitrary p
precisely as it is proved for p = 10 in elementary textbooks.

Proof. Induction on n. Denote by Cp(n) the number of factors p in the prime
factorization of n. If Cp(n) =k, thenng_1 =---=ng =0, npy #0andn—1 =
Ny ... (n—1)(p—1)(p—1) ... (p—1)),. According to the induction hypothesis,
(n—1)—(ny+---+ngp1+n— 14+ (p—1)k)

p—1

Cp((n—-1)1) =

and hence

This Theorem provides a very efficient way of counting the number of prime
factors in a binomial coefficient. For example,

<31241) 31241!

17101) ~ 171011 14140
31241 = (1120212002)5,  C3(31241!) ::§12é%?:—11 — 15615,
17101 = (212110101)5,  Cs(171011) = 1312;!l§ — 8546,
14140 = (201101201)5,  C3(14140!) ::lélégli—§:= 7066,

31241
(13<17101) = C5(31241!) — C5(17101!) — C5(14140!)
= 15615 — 8546 — 7066 = 3.

31241
17101
that the number of factors 3 in the prime factorization of this number is 3, that is,
it is divisible by 27, but not divisible by 81.

Our exposition would not have been complete if we had skipped a beautiful
way to count the number of given factors in the prime factorizations of binomial
coefficients due to one of the best number theorists of 19-th century.

We established in the previous section that ( > is divisible by 3; now we see
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THEOREM 2.4 (Kummer, 1852). C’p(n> equals the number of carry-overs in
m
the addition m + (n —m) = n in the numerical system with base p.

For example, 17101 = (212110101)3, 14140 = (201101201)3. Perform the ad-
dition:

112 0 2 1 2 0 0 2
There are 3 carry-overs (marked by asterisks), and the prime factorization of
31241
(17101
We leave to the reader the pleasant work of deducing Kummer’s Theorem from
the previous results of this section (see Exercise 2.5).

> contains 3 factors 3.

2.6 Congruences modulo p? in the Pascal Triangle. It is much easier
to formulate the results of Sections 2.6 and 2.7 than to prove them. Accordingly,
we will give the statements of more or less all known results and almost no proofs.
The reader may want to reconstruct some of the proofs (although they are not
elementary) and to think about further results in this direction.

Lucas’ Theorem (Section 2.4) implies that

= = mod p.
pm m) \0 m
But experiments show that, actually, there are “better” congruences. For example,

(3 . 5) — <Z> should be divisible by 3; but, actually,

3-2
3-5 5 15 )
<3 - 2) (2> (6) <2) 5005 0 995 85-3

Another example:

5-3 3
— = —3= =24.5%.
<5 . 1) (1> 3003 — 3 = 3000 5

And there is a theorem that states precisely what we see!

THEOREM 2.5 (Jacobsthal, 1952, [11]). Ifp > 5, then

() = ()

is divisible by p>.

(This is also true for p = 2 and 3, but with some “exceptions”. Indeed,
1 i 3003 — 35 — 2068 — 371 2° and ! 216 = 8- 3°
— = — = = . an — = = M .

6 3 3 1

6 3 6 2
B - =15-3=12=23-22 - =920-2=18=2-3%. F
o (8) = (B) m15-am 2 m (%) - (3) 20201822

further results see Exercises 2.6, 2.7.)
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We shall not prove Jacobsthal’s theorem here; we shall restrict ourselves to a
more modest result.

PROPOSITION 2.7. For any prime p and any m and n,
n n
pm m

Proof. We shall use the following fact following from Lucas’ Theorem: if n is

is divisible by p?.

divisible by p and m is not divisible by p, then (:1) is divisible by p. (Indeed, if

0
n=prand m=ps+t, 0<t<p,then (:1) = (Z)(t) = 0 mod p.)

Now, we use induction on n (for n = 1, we have nothing to prove). Assume
that the statement with n — 1 in place of n is true. Consider the equality

(a+b)P" = (a+b)P" V. (a+b)P.

Equating the coefficients of a?™b?("~™) we get the following:

)= (")) () ()
2620+ (16

On the right hand side of the last equality every summand, with the exception
of the two extreme ones, is a product of two numbers divisible by p; hence, each of
these summands is divisible by p? and

()= () ()

By the induction hypothesis,
-1 -1
(o) ()= (o
m m—1 m

<p<n - 1)> . (p(n - 1))
pm p(m—1)
whence our result.0

Is it possible to enhance Jacobsthal’s result? In some special cases it is pos-
sible (see next section). In general, it is unlikely. Let us mention the following
(unpublished) result.

THEOREM 2.6 (G. Kuperberg, 1999). If
2 2
< p) = < ) mod p?,
p
(o) = () et
pm m

—_

then

for every m,n.
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2 2
However, this property (( p) = <1> mod p4) does not hold too often. Ac-
p

cording to G. Kuperberg (who has a heuristic “proof” that it is true for infinitely
many primes p), the smallest prime number for which it holds is 16,483.

Still, for some special m and n, congruence modulo a much higher power of p
may hold. We shall consider some results of this kind in the next (last) section.

2.7 Congruences modulo higher powers of p. Let us consider numbers

2n+1
of the form ( on ):

2 4 8 16 32
(1> =2, <2> =6, <4) =170, (8) — 12870, <16) = 601080390

None of these numbers is divisible even by 4. But let us examine their successive
differences:

() () =0 2mics
(0)- () =ni-ues

(186> _ (i) — 12870 — 70 = 12,800 = 25 - 2°

2 1
(?6) — < 86> = 601080390 — 12870 = 601067520 = 146745 - 212,

Consider similar differences for bigger primes:

()G

=84-3=81=3%

9
9 3
9 5
5 ]
4 7
( 79> _ <1> — 85900584 — 7 = 5111 - 7°

Let us try to explain these results.

= 53130 —5 =17 - 5°

<9> = 4686825 — 84 = 3143 - 37

THEOREM 2.7 (A. Schwarz, 1959). If p > 5, then

(£)=(0)

REMARK 2.8. (1) This result was never published. A. Schwarz, who is now
a prominent topologist and mathematical physicist, does not himself remember
proving this theorem. However, one of the authors of this book (DF) was a witness
to the event.
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(2) We do not know whether the congruence holds modulo p® for any prime p. We
realize that modern software can, possibly, resolve this problem in a split second.

To prove Schwarz’s Theorem, we shall use the following extended notion of a
congruence. We shall say that a rational number r = — (where the fraction is
n

assumed irreducible) is divisible by p¥, if m is divisible by p* and n is not divisible
by p. For rational numbers 7, s, the congruence r = s mod p* means that r — s is

1
divisible by p*. (For example, 3 = 2 mod 32.) These congruences possess the usual
properties of congruences: if » = s mod p* and s = t mod p*, then r = ¢t mod p*; if

r = s mod p* and the denominator of ¢ is not divisible by ¢, then rt = st mod p*;
etc.

LEMMA 2.9. For a prime p > 5,

is divisible by p?.
Proof of Lemma. Let p = 2¢ + 1 (since p > 5, p is odd). Then

1 1 1 1 1 1 1
1+=4 4+ — =(14+— |+ |+ — )+ =+ —
2 p—1 p—1 2 p- q9 p—q

_.<1+:1+”“+31>
-1 22 a(p—q)

and all we need to prove is that
1 1 1

is divisible by p.

SUBLEMMA 2.9.1. For everyi=1,...,p—1 there exists a unique s;, 1 < s; <
p — 1 such that is; = 1 mod p. Moreover,

(a) Sp—i = P — Sij

(b) the numbers s1,s2,...,5p—1 form a permutation of the numbers 1,2,...,
p—1.

Proof of Sublemma. For a given 4, consider the numbers ¢,2i, ..., (p—1)i. None
of these numbers is divisible by p, and no two are congruent modulo p (indeed, if
ji = ki mod p, then ji — ki = (j — k)i is divisible by p, which is impossible, since
neither ¢, nor j — k is divisible by p). Hence, the numbers ¢,2i,...,(p — 1)i have
different remainders mod p, and since there are precisely p — 1 possible remainders,
each remainder appears exactly once. In particular, there exists a unique j such that
ji = 1 mod p; this j is our s;. Statements (a) and (b) are obvious: (p—1i)(p—s;) =
p?—p(i+s;)+is; = 1 mod p, and since the numbers s1, sa, . . ., 8,1 are all different,
they form a permutation of 1,2,...,p—1. O

Example: if p = 11, then s1 = 1,50 = 6,83 = 4,84 = 3,85 = 9,56 = 2,57 =
8,88 = 7, SS9 = 5,510 = 10.
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Back to the Lemma. Since % = s; mod p (indeed, s; — % = i_ which is
divisible by p),
1 1 1
m"‘m—F"'—Fm = 518p—1 + S25p—2 + - + 54Sp—g mod p
(where, as before, p = 2¢ + 1). Of the two numbers s;,s,_; = p — 8;, precisely one
is less than B. Hence, the numbers s15p_1,525p—2, . ., 5¢5p—¢ fOorm a permutation
of the numbers 1(p — 1),2(¢ — 2),...,¢(p — q), and
1 1 1
E"‘m +---+m =lp-D+2p—2)+-+qlp—q)

=p(l+2+-+q) - (1*+22+ - +¢°)

palg+1) qlg+1)(2¢+1)  pg(g+1)

_ _ = = d
5 6 3 0 mod p,
as needed. O
Proof of Schwarz’s Theorem.
(p2><p) :pz(p2*1)~-~(p2*(p*1))fp
p 1 Lo (p—1p
p 2 2 2
= 1-p)2—p)...(p—1)—p°)—1-2----- (p—1)],
ool =R =) (0= 1) ) ()
and all we need to prove is that
1-p)2-pY) ... (p-1)—p*)—1-2---- (p—1) = 0mod p*.
But
1-p)2-p*)...(p—1)=p*) =1-2-----(p-1)
—p? 4o —— (p—1)
2 -1
+ terms divisible by p?,
whence

1 1
(144 +—) (p—1)! mod p*
p<—|—2+ +p1>(p )! mod p

which is divisible by p* by Lemma 2.9.0

Many of the congruences considered above are contained in the following (also
unpublished) result.

THEOREM 2.8 (M. Zieve, 2000). Ifp > 5 then, for any positive integers k, m, n,
k k—1
np np
< k) = < k1> mod p3*.
mp mp

We shall not prove this theorem here, but will restrict ourselves (as we did in
the case of Jacobsthal’s Theorem) to a more modest result.
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2k+1 2k
PROPOSITION 2.10. If k > 2 then ( ok ) - <2k_1> is divisible by 22++2,
k

m
2F. (The following, more general, result follows from Kummer’s Theorem, Section

2
Proof. We shall use the following fact: if 0 < m < 2* then < > is divisible by

2.5: if n is divisible by p* and m is not divisible by p, then (n) is divisible by p*.)
m

2+l 2k k
The difference ( ok ) — <2k1) in question is the coefficient of %" in the

polynomial

(1+ x)Q‘"’;f (1- 9;)2‘"’ = (14221 +2)? —(1—2)?
- {1+ (1>:c+ (2)x2+-~-+m2"]
(e (e (7))

Since the second polynomial in the last expression contains only odd degrees, the
k
coefficient of 2 in the product is

? KQD <2in 1) " (2; ) (2{ 3) L (2"02i 1) (21k)] '

Every binomial coefficient in the last expression is divisible by 2* by the remark
at the beginning of the proof; hence every summand in the last sum is divisible by
22k Also, every summand in this sum is repeated twice, and also there is a factor
2 before the sum. Thus the whole expression is divisible by 22+2. O

k

}

Let us mention, in conclusion, A. Granville’s dynamic on-line survey of arith-
metical properties of binomial coefficients [37].

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
John Smith Martyn Green Henry Williams

January 23, 2010 August 2, 1936 June 6, 1944
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2.8 Exercises.

2.1. Prove that

(n> tanf — (n> tan® 6 + (n> tan® 0 — ...

1 3 5

tan(nd) = - . - : - - .
1-— (2)tan 0+ (4>tan 0 — (6>tan 0+...

2.2. Prove that for the hyperbolic functions

e —e " e’ +e " sinh(x)
h(x) = ———, tanh(z) =
5 COS (x) 5 tan (x) cosh(z)

formulas hold similar to those in Section 2.3with all the minuses replaced by pluses.

sinh(z) =

2.3. What percent of the numbers (m * n) with 0 < m < 2190 0 <n < 2100
n

are odd?

2.4. What percent of the numbers (m + n) with 0 < m < 2190, 0 < n < 2100
n
are not divisible by 47
2.5. Prove the Kummer Theorem 2.4 (deduce it from Theorem 2.3).

2n
2m

2
Namely, prove that < ;) — (T) = 0 mod 2% if and only if <Z> is even, that is, if

2.6. (a) Prove that - n) # 0 mod 2 for infinitely many pairs (m,n).
m

n =0 or 1 mod 4.

2
(b) Prove also that ( 4n> - (;) = 0 mod 2° if and only if n # 3 mod 4.

2 2
The reader is encouraged to consider the differences ( 6n> - <§) , < ;) - (Z)

and so on.

3n

2.7. (a) Prove that (3

) — (T) # 0 mod 3? if and only if n = 2 mod 3.

(b) Prove that (i?) — <;L) = 0 mod 3? for all n.

We do not know whether

(?m) — (n) = (0 mod 3°
3m m

for all m,n with 2 <m <n.

1 — (2
2.8. (a) Prove that for |z| < 1 the series Z (:) x™ converges to

n=0

1
V1—dx’

(b) Deduce from this (or prove directly) that for any n

)T (O ()1
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on ()

nl(n +1)! T htl’
these numbers are called the Catalan numbers.

2.9. Let

n =

(a) Prove that all the Catalan numbers are integers (the first 5 Catalan numbers
are 1, 2, 5, 14, 42).

Let C(z) = Z Cpa".
n=0
(b) Prove that
= /2n
C(z)) = i
ey =3 (7))
1

(¢) Deduce from (b) and Exercise 2.8(a) that (for 0 < |z| < Z)
1—-+v1—-4x

2z '
(d) Tt follows from (c) that zC(x)? — ¢(x) + 1 = 0. Deduce that for any n > 1

Co= Y. GCyCy

pt+g=n—1

Cx) =

The remaining parts of this exercise have solutions based on the last formula.

(e) Let * be a non-associative multiplication operation. Then the expression
a*bxcmay mean (axb)*cor ax* (bxc). Similarly, a b+ ¢ xd may have 5 different
meanings ((axb)*c)xd, (a*xb)*(cxd), (ax(bxc)), ax((bxc)*xd), ax(bx(cxd)).
Prove that the number of meanings which the expression a; * - - - * a,, 41 may have,
depending on the order of multiplication, is C,,.

(f) Let P be a convex n-gon. A triangulation of P is a partition of it into n — 2
triangles whose vertices are those of P. For example, a convex quadrilateral ABC D
has 2 triangulations: ABC' U ACD and ABD U BCD. A convex pentagon has 5
triangulations (draw them!). Prove that the number of triangulation of a convex
n-gon is C), _o.

See exercise 6.19 in R. Stanleys book [73] for 66 different combinatorial inter-
pretations of the Catalan numbers; see also an on-line addendum [74] for many
more.



LECTURE 3

On Collecting Like Terms, on Euler, Gauss and
MacDonald, and on Missed Opportunities

3.1 The Euler identity. In the middle of 18-th century, Leonhard Euler
became interested in the coefficients of the polynomial

on(@)=(1-z)(1 - x2)(1 — :c‘i) o (=2™).

He got rid of parentheses — and obtained the following amazing result:

pir(r) =1—=x

oa(x)=1—2 —22 423

p3(x) =1—2 —a? e

pa(r)=1—2 —2? +22° —8 —2% 4210
ps(r)=1—2 —a? +2% 2% 27 —2® 2% 210
pe(r)=1—2 —a? +a® +227 —z9  —a10
or(x)=1—z —a? +2° +27 428 —10
pg(x)=1—2 —a? +2° +a7 +a?
po(r)=1—2 —a? +a® +x” +10
o) =1-2 —22 +° +x7

The dots mean the terms of the polynomials which have degrees > 10 (we have no
room for them all: for example, the polynomial ¢10(z) has degree 55).

Following Euler, let us make some observations. First (not surprisingly), the co-
efficients of every 2™ become stable when n grows; more precisely, ©m+1(2), ©my2(x),
©m+3(x),... all have the same coefficient of ™. (It is obvious: @py1(x) =
Om () (1 —=2™ ), ria(®) = @yt (1 —2™F2), ... ; hence multiplication by 1 —z"
with n > m does not affect the coefficient of 2™.) Because of this, we can speak of
the “stable” product

p(2) = poo(z) = TT (1 - 2™);

n=1

43
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it is not a polynomial any more, it is an infinite series containing arbitrarily high
powers of . We will sometimes call p(x) the Euler function.

The second observation (more surprising) is that when we collect terms in the
product (1 — 2)(1 — 22)...(1 — 2™), many terms cancel. For example, when we
multiply (1 —z)(1—2?)...(1 —2'0), there will be 43 terms with x to the powers 0
through 10, and only 5 of them (1, —x, —x2, 2%, 27) survive the cancellations. This
phenomenon becomes even more visible when we make further computations; here
is, for example, the part of the series p(z) containing all the terms with = to the
power < 100:

o)=1—2z—22+2° +27 —212 -2 4222 4 226 — 235 40
LBl 4 5T 7O 7T 092 4 100

Euler, who was extremely good with long computations, probably calculated almost
this many terms. And after this he simply could not help noticing that all the non-
zero coefficients of this series are ones and negative ones and that they go in a
strictly predetermined order: two ones, two negative ones, two ones, two negative
ones, and so on. If you look at the table below, you can guess (as Euler did) the
powers of z with non-zero coefficients:

exponents || 0| 1,2 |5,7 | 12,15 | 22,26 | 35,40 | 51,567 | 70,77 | 92,100

coefficients || 1| —1 | 1 -1 1 -1 1 -1 1

3n24n

This table suggests that the term 2~ 2 (n > 0) appears with the coefficient
(=1)™, and there are no other non-zero terms. This conjecture may be stated in
the form

Q-z)(1-22)1—-2%... =1l-ax—2?+2°+27+...
’7'127’!1 ’712 n
+(=D)re T 4 (D) T L
or, shorter,
e s ’7'27’7' T‘2 T
[T -2 =143 (-1 (x = )
n=1 r=1
or, still shorter,
oo o0 T2 -
[Ta-2m= Y (-y=™=".
n=1 r=—00
24n
By the way, the numbers — arising in this formula are known as “pen-

tagonal numbers” (or “Euler pentagonal numbers”). The reason for this name is
clear from Figure 3.1 (the black-dotted pentagons have the same number of dots
along each side).

It is quite interesting that although the proof of Euler’s identity looks short
and elementary (see Section 3.3), Euler, who did so many immensely harder things
in mathematics, experienced difficulties with the proof. His “memoir” dedicated
to this subject and published in 1751 under the title “Discovery of a most extra-
ordinary law of the numbers concerning sums of their divisors” (the reader should
wait until Section 3.5 for an explanation of this title) did not contain any proof of
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°
° oo
ee ocoee
e oeee ooee
oo oeee oooe
e oo oee oooo ecccccee occccscee
O 0O 000 0000 00000000 000000000
1,2 5,7 12,15 22,26 35,40 51,57 70,77 92,100 117,126

FIGURE 3.1. Pentagonal numbers

the identity. A relevant extract from the memoir (taken from the book of G. Polya
[62]) is presented below.

3.2 What Euler wrote about his identity. “In considering the partitions
of numbers, I examined, a long time ago, the expression

1—2)1-22)(1—-23)(1 —zH(1 - 251 - 2501 -2 - 2%)...,

in which the product is assumed to be infinite. In order to see what kind of series
will result, I multiplied actually a great number of factors and found

12

17x7x2+x5+x77x fx15+x22+x267:c357x40+...

The exponents of x are the same which enter into the above formula; ! also the
signs + and — arise twice in succession. It suffices to undertake this multiplication
and to continue it as far as it is deemed proper to become convinced of the truth
of these series. Yet I have no other evidence for this, except a long induction which
I have carried out so far that I cannot in any way doubt the law governing the
formation of these terms and their exponents. I have long searched in vain for a
rigorous demonstration of the equation between the series and the above infinite
product (1 —z)(1 —22?)(1 —2?)..., and I proposed the same question to some of
my friends with whose ability in these matters I am familiar, but all have agreed
with me on the truth of this transformation of the product into a series, without
being able to unearth any clue of a demonstration.”

3.3 Proof of the Euler identity. Let us collect terms in the product
(1—x)(1—2?)(1 -2 (1 —z). ..
We shall obtain the (infinite) sum of the terms
(—1)Fgmt ot E>0,0<n; <- - < ng.

The total coefficient of ™ will be

IThis is a reference to a preceding part of the Memoir containing an explanation of the
sequences 1,5,12,22,35,... and 2,7,15,26,40,....
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The number of partitions The number of partitions
n=mny+---+ng _ n=mnp+---+ng
(0<ng < -+ <ng) 0<ng < - <mg)

with even k with odd k

We want to prove that the two numbers in the boxes are usually the same, and in
some exceptional cases differ by 1.

For a partition n = n; + -+ ng, 0 < n; < -+ < ni we denote by s =
s(ni,...,ng) the maximal number of n;’s, counting from ny to the left, which form
a block of consecutive numbers (that is, of the form a,a+1,...,a 4+ b). In other

words, s is the maximal number satisfying the relation ng_sy1 = ng —s+1. (Thus,
1<s<k)

We shall distinguish 3 types of partitions n =n1+---4+ng, 0 <ny <--- < ng

Type 1: n1 < s, excluding the case ny = s = k.

Type 2: nq > s, excluding the case ny = s+ 1=k + 1.

Type 3: the two excluded cases, ny =s=korn; =s+1=k+ 1.

Here is a 1 — 1 correspondence between partitions of n of Type 1 and partitions
of n of Type 2:

s consecutive numbers s
PN T TRITE Mo MRaTR M2 Tengd - T
.01 1 1. 41
n — 1l...1 1

In words: we remove the number n; from the partition, then split it into n; ones,
and then add these ones to ny last (biggest) terms of the partition (it is important
that if s = nq, then s < k; otherwise we shall have to remove n; and then to add 1
to nq1, but it is not there anymore). In formulas:

(s ime) = (s ), mg =4 e BT
1y---5 Tk 1y TE—-1), % ni+1+]~a 1f12k—n1

Examples:
13=1+3+4+5; (1,3,4,5) — (/1,3,4,;’)1) = (3,4,6)
37=24+5+9+10+11; (2,5,9,10,11) — (2,5,9&9,%) = (5,9,11,12)

The partition myq, ..., mg_1 belongs to Type 2. Indeed, m; > ny > ny = s(mq, ...,
mg—1) and if my = s(mq,...,mp_1)+1 = (k—1)+1, then, on one hand, m; = n;+1,
and on the other hand, ny + 1 = k, hence m; = n;41 + 1, if ¢ > kK —ny = 1, hence
mq = no + 1; this is not possible, since ny > ny.

The fact that the above transformation is 1 — 1 follows from the existence of
an inverse transformation:

s consecutive numbers s
—_— —_—
my... ..o mg—1 mi......... Mg_—1 = SM1... ME_s mprp_1
-1 -1 -1 -1
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(that is, we subtract 1 from each of the s consecutive numbers in the right end,
collect these ones into one number s and place this s before m4) or, in formulas:

s, ifi=1,
(ml,...,mk_1)0—>(nl,...,nk), n; = mi—1, ifQSZ'Sk—S,

m;—1 — 1, ifi > k — s.

Examples:

(3,4,6) — (3,4, 61) — (1,3,4,5)
(5,9,11,12) = (5,9, 11,12) = (2,5,9,10,11)
The terms
(_1)kxn1+-~-+nk and (_1)k—1xm1+---+mk71
corresponding to each other cancel in the product (1 —z)(1 — 2?)(1 —23)..., and

there remain only terms corresponding to partitions of Type 3. These are
kk+1...2k-1 and E+1k+2 ... 2k,
and the corresponding terms in (1 — z)(1 — 22)(1 — 23)... are

(_1)kxk+(k+1)+-~+(2k71) _ (—l)kxw

and
(_1)kx(k+1)+(k+2)+--~+2k _ (_ka k(3k+1)

O

Next we shall show two applications of the Euler identity.

3.4 First application: the partition function. The word “partition” which
we have been using before as a common English word, actually has a well estab-
lished meaning in combinatorics. From now on, we will use this word according to
the tradition: we call a partition of a number n a sequence of integers nq,...,ng
such that n =n; +---+ni and 0 < ny < --- < ng. We hope that this termino-
logical shift will not cause any difficulties, but still want to mention that partitions
considered in Section 3.3 are partitions of a special kind: with all parts n; different.

For a positive integer n, denote by p(n) the number of partitions n = n; +
st g, k>0, 0<ng <--- <ng. Compute p(n) for small values of n:

p(1) =1

p(2) =2 (2=1+41)

p(3) =3 B3=142=1+1+41)

p(4) =5 (4=143=242=14+14+2=1414+1+1)
Can you find p(10)? It is not hard, although you might not be able to get the right
result from the first try. The answer is p(10) = 42. And what about p(20)? p(50)?
p(100)? Tt turns out that we can find these numbers relatively quickly if we use
the Euler identity.

Consider the series

p(x):1+x+2x2+3x3+5x4+---:1+Zp(r)x’".
r=1

THEOREM 3.1. ¢(x)p(z) = 1.
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Proof.

_ n 2n 3n
o) I (1795" 1;[1—!—33 +zt a4 L)

1
(thus, the series —— is itself a product of infinitely many series). What is the
x
coefficient of " in the product
A+z+22+. . )A+22+2t + )+ +2%4..)...7?

We need to take one summand from each factor (only finitely many of them should
be different from 1) and multiply them up. We get:

xl'kl . Mekm _ xk1+2k2+~--+mkm.

We want to count the number of such products with ki 4+ 2ks + - - - +mk,, = r, that
is, the number of presentations

r=k+2k+---+mkp,=1+---4+142+---4+24+---+m+---+m,
kl k2 k‘nr

that is, the number of partitions of . Thus, the coefficient of " in

to p(r). O

is equal

1
o(x)

Now use the Euler identity:

1—z—2?+25+2" 22 -2 )1 +p()z+p2)z? +pB3)zd +...) =1,

that is, the coefficient of ™ with any n > 0 in this product is equal to 0. We get a
chain of equalities:

helio Lol ol ololo R o]
+ 4+ +
TTRT R oo
w2l
++ 1 °
Lol )

I

[en)

—
—_
~—
Il
o

p(n)=p(n—1)+pn—2)—p(n—-5)—pn—"17) +p(n—12) +p(n —15) —

where we count p(0) as 1 and p(m) with m < 0 as 0. We can use this as a tool for
an inductive computation of the numbers p(n):

p(5) =p@d)+pB)—1=5+3-1=7

)
p(6) =p()+p4)-pl)=7+5-1=11
p(7) =p6)+pB)—p(2)—1=15+11-3—-1=22
p(8) =p(M)+p6)—pB)—p(l)=15+11-3-1=22
P9 =p@B) +p(7)-p4)-p2)=22+15-5-2=30
p(10) =p9) +pB8) —p(4) — p() 304+22—-7—-3=142

and further computations show that p(20) = 627, p(50) = 204,226, p(100) =
190,569,791.
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It is worth mentioning that our recursive formula for the function p may be used
for constructing a very simple machine for computing the values of this function.
This machine is shown in Figure 3.2. Take a sheet of graph paper and cut a
long strip as shown in the left side of Figure 3.2 (the longer your strip is, the
more values of the function p you will be able to compute). In the upper cell of
the strip draw a (right) arrow. Then write the plus signs in the cells numbered
1,2,12,15,35,40,... (counting down from the arrow) and the minus sign in the cells
numbered 5,7,22,26,... Write 1 (it is p(0)) in the lower left corner of the sheet of
graph paper. Attach the right edge of your strip to the left edge of the sheet in
such a way that the arrow is against 1. Then move the strip upwards, and every
time when the arrow is directed into an empty cell (in the left column of the sheet)
write in this cell the sum of numbers against the pluses minus the sum of numbers
against the minuses. The numbers written are consecutive values of the function
p. This procedure is shown in Figure 3.2, up to p(12).

In conclusion we display an asymptotic formula for p(n) due to Rademacher:

1 2z
~N — 6
p(n) YA
This ~ means that the ratio of the expression in the right hand side to p(n) ap-
proaches 1 when n goes to infinity. Among other things, this formula reveals that
p(n) has a property that is rare for the functions usually occurring in mathematics:
it grows faster than any polynomial but slower than any exponential function c".

3.5 Second application: the sum of divisors. This application gave the
name to Euler’s memoir. In this section, we follow Euler’s ideas.
For a positive integer n, denote by d(n) the sum of divisors of n. For example,

d4) =1+2+4+4=7,
d(1000) =14+2+4+5+8+10+20+ 25+ 40+ 50 + 100 + 125
4200 + 250 + 500 + 1000 = 2340,
d(1001) =1+74+11+ 13477491 + 143 + 1001 = 1344.

Unlike the numbers p(n), the numbers d(n) are easy to compute, there is a sim-
ple explicit formula for them. Namely, if n = 2¥23%s . p*» is a prime factorization
of p, then

3k3+1 -1 pkarl -1
N 2 e p — 1
(see Exercise 3.3). Furthermore, it is interesting that there is a recursive formula for
the numbers d(n), very similar to the formula for p(n) in Section 3.4 and relating
the number d(n) to seemingly unrelated numbers d(n — 1),d(n —2),d(n —5),....
(For Euler, it was a step towards understanding the nature of the distribution of
prime numbers.)

Let

d(n) = (2F2+1 — 1)

d(z) =Y d(r)a" =z + 32+ 4a® + 72" + 62° + 122° + ...

r=1
THEOREM 3.2. o(z)d(z) + z¢'(z) = 0.
Here ¢'(z) means the derivative of ¢(x). Thus,

v’ (1) = —x — 22% 4+ 52° + 72" — 12212 — 1521 + ...
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Proof of Theorem. Consider the equality

P R S|
n=1 n=1

If dy,ds,. .., d,, are divisors of r (including 1 and ), then 2" appears in the last sum

as d; 2% T for every d;, and the total coefficient of " will be dy +do + - -+ d,p, =
d(r). Thus, the sum is ) .-, d(r)z" = d(z), that is,

But . )
S = 2 (12"
thus / /
d(z) = -z (Z In(1 - 33n)> =—x (ln H(l — x"))
=—z-[lnp(x ,:_xap’(x)
- 2 g} = - 218

which shows that d(z)p(z) + z¢'(z) =0. O

Equating to 0 the coefficient of 2™, n > 0, on the left hand side of the last
equality, we find that

d(n) —d(n—1)—d(n—-2)+d(n—>5)+d(n—-17)—...

3m? + 3m? +
] e,
0, if n is not a pentagonal number.

It is better to formulate this in the following form:
d(n)=d(n—1)+d(n—2)—d(n—-5)—d(n—7)+d(n—12) +d(n — 15) — ...
where d(k) with k& < 0 is counted as 0, and d(0) (if it appears in this formula) is

counted as n.

3.6 The identities of Gauss and Jacobi. About 70 years after Fuler’s
discovery, another great mathematician, Carl-Friedrich Gauss, proved that the cube
of the Euler function provides a series even more remarkable than the Euler series:

o)) =1 -2 —22)?1 -2 - =1—30 +52% — 72% + 921° — 11215 . ..
or
[T - = (1 + e
n=1 r=0

The Gauss identity appears even more remarkable, if we notice that the square
of the Euler function does not reveal, at least at the first glance, any interesting
properties:

QO(Z)Z:172%7$2+2:C3+:C4+2:C572(£67295872959%»9510...
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Several proof are known for the Gauss identity, and they belong to very dif-
ferent parts of mathematics, such as homological algebra, complex analysis, and
hyperbolic geometry (this fact by itself may be regarded as an indication that the
result is very deep). There exists also an elementary combinatorial proof (which we
shall discuss in Section 3.7). Most of these proofs (including the proof in Section
3.7) yield, actually, a stronger result: the two-variable Jacobi identity:

(31) H(l + yflenfl)(l + yZ2n71)(1 o ZQn) _ Z yr2r2
n=1 r=—00

Before proving it, we shall show that it implies the Gauss identity.
Deducing the Gauss identity from the Jacobi identity. Differentiate the two
sides of the Jacobi identity (3.1) with respect to z, then put y = —z, and then put
2
z¢ =z
To differentiate a product (even infinite) we need to take the derivative of one
factor, leaving all the rest unchanged, and then add up all the resulting products:

(fifefs...) = fifofs -+ fifofs-- -+ fifafs-+

But the very first factor in the left hand side of the Jacobi identity, (1 +y~'z), is
annihilated by the substitution ¥y = —z. Hence of all the summands in the derivative
of the product, only one survives this substitution, and this is

oo

(L y 2L (0 y) (1= 22) [T 4y 22 ) (4 g2 (1 - 22),

=y ')
1fz 10_0[ 2”2 1— 22 ﬁlfz

The whole identity (3.1) becomes (since (y"z"" ), = r2y"z"" 1)

After the substitution y = —z we get (since (1 +y~12),

oo oo

H(]'*Z - Z r o7 7"271 _ Z (71)7"+17,227“2+r7
n=1 T=—00 r=—00
which becomes, after the substitution 22 = z,
(oo}
(3.2) o(x)® = Z (— 1)“‘17“230
r=—00

It remains to notice that the r-th and the (—r — 1)-th terms on the right hand side

—r—1 2 —r—1 2
of (3.2) are like terms:( r-1 ;r( r-1 =T 2+r. Hence,

240

S ()2 = 3% (1)L 4 ( 21) (77471)2@#
=3 (1) (2 + 1) =

as required. O

We remark, in conclusion, that the Jacobi identity may be used to prove other
one-variable identities. For example, if we simply plug y = —1 in the Jacobi identity
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(3.1) (and then replace z by ), we get a remarkable identity

(1-2)?(1-a?)(1-a*21-ah) = Y (-2 =1+2) (-1)a’

r=—00 r=1

also known to Gauss. By the way, the left hand side of this identity is 1
2

we can get from it also a formula for ¢(z)?;

T=—00 S§=—00

not as remarkable, however, as the formulas for p(x) and p(x)3.
For another identity involving ¢(z) and following from the Jacobi identity, see
Exercise 3.4 .

3.7 Proof of the Jacobi identity. This proof is due to Zinovy Leibenzon;
we follow his article [50] and use his terminology.
Rewrite the Jacobi identity as

H(l + yz2n71)(1 + yflz2n71) _ H(l _ Z2n)71 Z yTzTQ
n=1 n=1 T=—00
22) Z yrZTQ _ Zp(n)ZZn Z yrZrZ
r=—00 n=0 r=—00

and compare the coeflicients of y"z 2n+7° On the right hand side, the coefficient is,
2
obviously, p(n). On the left hand side, yrxzn” may appear as a product

g2l el 121 -1 261

where 0 < ay < -+ < ag, 0< 1 <---< [, s—t=r, and

s t
> e —1)+> (28— 1) =2n+1r%
i=1 j=1

Thus, the coefficient of y"x 2ntr? g equal to the number of sets ((aq,...,as),

(B1,...,0:)) with the properties indicated. We denote this number by q(n,r).
To prove the Jacobi identity, we need to prove the following.

PROPOSITION 3.1. q(n,r) = p(n) (in particular, q(n,r) does not depend on
r).

To prove the proposition, we need the following construction.

By a chain we mean an infinite, in both directions, sequence of symbols of two
types: O (circles) and | (sticks), such that to the left of some place only circles
occur, and to the right of some place only sticks occur. Examples:

------ OO OoOIlIOo [ O 1 OO I
------ oCo Il 1 oo0oOo |l Ol ..

We do not distinguish between chains obtained from each other by translations to
the left or to the right.

The height of a chain A, h(A), is defined as the number of inversions, that is,
pairs of symbols (not necessarily consecutive), of which the left one is a stick and
the right one is a circle. For the two examples above, the heights are 13 and 17.
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We shall assume that the distance between any two neighboring symbols in a
chain is 2, and that between them, at distance 1 from each, there is a lacuna. The
lacunas of a given chain can be naturally enumerated: we say that a lacuna 71" has
index r, if the number of sticks to the left of 7" minus the number of circles to the
right of T is equal to r. It is clear that when we move from left to right the index
of the lacuna increases by 1. Example:

~ofoo™ I o T Yo oot 1Pe

Proof of Proposition. We shall compute, in two ways, the number of chains of
height n.

First way. For a chain A of height n, denote by n; the number of circles to the
right of the i-th stick from the left. Obviously, ny > no > ...; n; = 0 for i large
enough; and ny +ns + - - - = n. These numbers ni,ns,... determine the chain and
may take arbitrary values (if they satisfy the condition above). Thus, the number
of chains of height n is p(n).

Second way. Fix an integer r, and consider the lacuna 7" number r. Let there be s
sticks to the left of T" and ¢ circles to the right of T'; thus, s—t = r. Let the distances
of the sticks to the left of T' to T be (in the ascending order) 2a; — 1,...,2a, — 1
and the distances of the circles to the right of T" to T', in the ascending order, be
261 —1,...,208; — 1. Example:

Qy ag oo a1 B B2

8 4 3 1 1 4
O OO0 | OO0 O I | Ol OOl
The numbers s,t,aq,...,as,01,...,0: determine the chain. Let us prove that

S t
2417 =) (20, — 1)+ > (26; — 1).
i=1 j=1

There are 3 kinds of inversions in the chain A: (1) both the circle and the
stick are to the left of T; (2) both the circle and the stick are to the right of T,
and (3) the circle is to the right of T" and the stick is to the left of T. Between a
stick at distance 2c;; — 1 to the left of 7" and T (including this stick), there are o
symbols, of which i are sticks and «; — i are circles; thus this stick participates in
«a; — i inversions of the first kind, and the total number of inversions of the 1-st
kind is >.°_,(a; — i). Similarly, there are Z;Zl(ﬁj — j) inversions of 2-nd kind,
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and, obviously, the number of inversions of the 3-rd kind is st. Thus,

S

n :Z a; —1) —I—Z - )+ st

i=1

—ZaﬁZﬂJ S“ st——t(tgl)

s t 2 2
s+ s—2st+t°+t
:Zai+zﬁj_ 2
— =

_ZO‘H’Z@ 2 —|—S+t’
t
on + r? —ZZaZ—FQZﬂ]—S—t—Z 20; — 1) +Z 28; — 1).
i=1 j=1

We see that the number of chalns of height n is q(n, r).
Thus, p(n) = q(n,r) which proves the Proposition and the Jacobi identity. O

3.8 Powers of the Euler function. Thus far, we know how the series for
o(z) and ¢(z)? look like, but we have nothing equally good for ¢(x)?. And what
about the series (), ¢(2)°, etc.? In other words, for which n is there a formula for
the coefficients of the series p(z)™? To answer this informal (that is, not rigorously
formulated) question, we shall use the following semi-formal criterion. If, for some
n, there are many zeroes among the coefficients of the series ¢(x)™, this might
mean that there is a formula for ¢(z)"™ resembling the formulas of Euler and Gauss.
(However, if there are only few zeroes, or no zeroes at all, this cannot be considered
as a clear indication that a formula does not exist.) It is a matter of a simple
computer program to find the number of zeroes among, say, the first 500 coefficients
of p(z)™. We denote this number by ¢(n), and here are the values of ¢(n) for n < 35:

nif 1] 23| 4|5 6 |7 8

e(n) || 464 | 243 | 469 | 158 | 0 | 212 | 0 | 250

9|10 | 11-13 | 14 | 15| 16-25 | 26 | 27-35

0151 0 172 | 2 0 80 0

We can make the following observation. For n = 1,3, there are very many
zeroes (we already know this); for n = 2,4,6,8,10, 14,26, the number of zeroes
is substantial; for n = 15, there are 2 zeroes (which cannot be considered as a
serious evidence of anything?); for n = 5,7,9,11 — 13,16 — 25,27 — 35, there are

2Although a formula for ()% exists, see below.
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no zeroes at all. We should not be surprised by a substantial amount of zeroes
for n = 2,4,6: the series for p(z) and ¢(z) are so sparse that their products
p(a)? = p(z) - p(x), p(z)* = p(@) - p(@)? (2)°® = p(x)* - p(x)® may lack some
powers of x even before collecting like terms. For example, the numbers 11, 18,21
(and many others) cannot be presented as sums of pairs of numbers of the form

3n?+n . . .
“— ", and for this reason there are no terms x'!, z18, 22! in the series for ¢(z)2.

2
For a similar reason, there are no terms x°,z'4, 2'° in the series for p(x)*, and

no terms z°, 28, 2'* in the series for ()% But why are there many zeroes in the
series for ¢(2)%, o(2)'°, o(z)*, and ¢(z)%6?

It turns out that there are formulas for these powers of the Euler function,
not so simple as the formulas of Euler and Gauss, but also deep and beautiful.
(There are also formulas for some other powers of the Euler function, but this is
not reflected in our table.) As an illustration, let us show a formula for p(x)® due
to Felix Klein:

11 .18

1
(p(x)s = Z {5 + g(?»klm —kl — km —Im) o~ (kltkm+lm)

where the summation on the right hand side is taken over all triples (k,I,m) of
integers such that k +1+m = 1. One can see from the formula that if a number
r cannot be presented as —(kl + km + Im) with k + [ 4+ m = 1, then the series for
¢(2)® does not contain x". For example, it does not contain z” if r = 4s + 3 (with
s integral) or if r = 13,18, 28,29 (see Exercise 3.5).

We see from all this that there exist some “privileged exponents” n for which a
comprehensible formula for ¢(z)™ exists. The mystery of privileged exponents was
resolved in 1972 by Ian MacDonald (see Section 3.9 for a partial statement of his
results). An account of this discovery is contained in an emotionally written article
of F. Dyson [26]. A couple of words should be said about Dyson and his article.
Freeman Dyson is one of the most prominent physicists of our time. He started his
career as a mathematician and has some well known works in classical combinatorics
and number theory. The goal of his article was to show how lack of communication
between physicists and mathematicians resulted in a catastrophic delay of some
major discoveries in both disciplines. Below is an excerpt from Dyson’s article
related to our subject.

3.9 Dyson’s story. “I begin with a trivial episode from my own experience,
which illustrates vividly how the habit of specialization can cause us to miss op-
portunities. This episode is related to some recent and beautiful work by Ian
MacDonald on the properties of affine root systems of the classical Lie algebras.

I started life as a number theorist and during my undergraduate days at Cam-
bridge I sat at the feet of the already legendary figure G. H. Hardy. It was clear
even to an undergraduate in those days that number theory in the style of Hardy
and Ramanujan was old-fashioned and did not have a great and glorious future
ahead of it. Indeed, Hardy in a published lecture on the 7-function of Ramanujan
had himself described this subject as “one of the backwaters of mathematics”. The
7-function is defined as the coefficient in the modular form

o0 oo
(3.3) T(n)a" ! =) = [ @ —2™)*
m=1

n=1
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Ramanujan discovered a number of remarkable arithmetical properties of 7(n). The
proof and generalization of these properties by Mordell, Hecke, and others played
a significant part in the development of the theory of modular forms. But the 7-
function itself has remained a backwater, far from the mainstream of mathematics,
where amateurs can dabble to their hearts’ content undisturbed by competition
from professionals.® Long after I became a physicist, I retained a sentimental
attachment to the 7-function, and as a relief from the serious business of physics
I would from time to time go back to Ramanujan’s papers and meditate on the
many intriguing problems that he left unsolved. Four years ago, during one of
these holidays from physics, I found a new formula for the 7-function, so elegant
that it is rather surprising that Ramanujan did not think of it himself. The formula
is

II <i<j< (a; — a;)
(3.4) m(n) =) == 1!5!53!4! ’

summed over all sets of integers ai,...,as with a; = ¢mod 5, a1 + -+ + a5 =
0,a% + -+ + a2 = 10n2. This can also be written as a formula for the 24-th power
of the Euler function ¢ according to (3.3). I was led to it by a letter from Winquist
who discovered a similar formula for the 10-th power of ¢. Winquist also happens
to be a physicist who dabbles in old-fashioned number theory in his spare time.

Pursuing these identities further by my pedestrian methods, I found that there
exists a formula of the same degree of elegance as (3.4) for all d-th powers of ¢
whenever d belongs to the following sequence of integers:

(3.5) d=3,8,10,14,15, 21, 24, 26, 28, 35, 36, . . .

In fact, the case d = 3 was discovered by Jacobi, the case d = 8 by Klein and
Fricke, and the cases d = 14,26 by Atkin. There I stopped. I stared for a little
while at this queer list of numbers (3.5). As I was, for the time being, a number
theorist, they made no sense to me. My mind was so well compartmentalized that
I did not remember that I had met these same numbers many times in my life as
a physicist. If the numbers had appeared in the context of a problem in physics, 1
would certainly have recognized them as the dimensions of finite-dimensional simple
Lie algebras. Except for 26. Why 26 is there I still do not know*. So I missed the
opportunity of discovering a deeper connection between modular forms and Lie
algebras, just because the number theorist Dyson and the physicist Dyson were not
speaking to each other.

This story has a happy ending. Unknown to me the English geometer, lan Mac-
Donald, had discovered the same formulas as a special case of a much more general

3In a footnote to a Russian translation of Dyson’s article (published in 1980), the translator
noticed that it was difficult for him even to imagine that it could ever be so.

4Let us provide a short explanation. Rotations of the plane around a point depend on 1
parameter: the angle of rotation. Rotations of three-dimensional space depend on 3 parame-

ters: the latitude and longitude of the axis of rotation and the angle of rotation. In general,
n(n—1
rotation of an n-dimensional space depend on % parameters, and rotations of a complex

nn—1
n-dimensional space depend on n? — 1 parameters. To the numbers g and n? — 1, that

is, 1, 3,6,10,15,21,28,36,... and 3,8,15,24,35,... one should add five “exceptional dimensions”
14,52,78,133,248. If one also removes, as Dyson does, the number 1 and 6, and adds 26 (which
appears here, according to a more modern explanation, as 52 =+ 2), then the sequence (3.5) arises;
certainly, any theoretical physicist remembers this sequence very firmly.
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theory. In his theory, the Lie algebras were incorporated from the beginning, and it
was the connection with modular forms which came as a surprise. Anyhow, Mac-
Donald established the connection and so picked the opportunity which I missed. It
happened also that MacDonald was at the Institute for Advanced Study in Prince-
ton while we were both working on the problem. Since we had daughters in the
same class at school, we saw each other from time to time during his year in Prince-
ton. But since he was a mathematician and I was a physicist, we did not discuss
our work. The fact that we were thinking about the same problem while sitting
so close to one another only emerged after he had gone back to Oxford. This was
another missed opportunity, but not a tragic one, since MacDonald cleaned up the
whole subject without any help from me.”

3.10 MacDonald’s identities. We finish this lecture with an infinite collec-
tion of identities which comprise a substantial part of MacDonald’s work mentioned
by Dyson. The first formula generalizes the Jacobi identity (which corresponds to
the case n = 2):

e k k k k
k kyn—1 XT1...T, Ty ... Ty
Pt} 1<i<i<n iee-Tj—1 1. %4—-1T5...Tp
k .
=Y elky, ... kp)xyt ...zl

where the summation on the right hand side is taken over all n-tuples of non-

negative integers (ki,...,k,) satisfying the equation

(3.6) K+ 4 k2 =ki+ - +ky+kiko+ o+ kp1kn + Kk

and e(kq,...,k,) = %1 is defined in the following way. If the numbers kq,..., k&,
satisfy equation (3.6), then so do the numbers ki,...,ki—1,k}, kit1, .., kn where
ki = —k; + ki1 + ki1 + 1 (here 1 < ¢ < n; if i = n, we should take z; for z;41,
and if ¢ = 1 then we should take z,, for ;7). Moreover, any n-tuple ki, ..., k, of
non-negative integers satisfying equation (3.6) can be obtained from (0,...,0) by a
finite sequence of such transformations. This may be done in many different ways;
but the parity of the number of such transformations depend only on k1, ..., k,. If
this number is even, then e(kq,...,k,) = 1; otherwise, e(k1,...,k,) = —1. There
are some more explicit formulas for e(kq,...,k,). For example, if n = 2, then

equation (3.6) becomes (k; — k2)? = ki + k2 and all integral solutions are
(n(n— 1) nn+1)

2 7 2
the corresponding € is (—1)". If n = 3, then

[ 1, ifk;+ko+ ks =0mod 3,
€(k1,k2,k3)—{ —1, ifky+ko+ks=1mod3

(the case k1 + k2 + ks = 2 mod 3 is not possible). If n = 4, then
. 1, if ky + ko + ks + ks =0,2,3,7mod 8,
ek, ba, ks, ka) = { 1, ifky + kot ks + kg =1,4,5 6 mod 8.

The second formula generalizes the Gauss identity (and also Klein’s identity
n?-1.

>,—OO<7’L<OO;

and Dyson’s identity) to a formula for ¢(x)

p@) = (1) e m(nk_l 1) (n"’j 2) (k"1—1>xkn
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where the summation is taken over the same n-tuples (k1, ..., k,) as in the previous
identity and e(kq,...,k,) has the same meaning as before.
John Smith Martyn Green Henry Williams

January 23, 2010

Martyn Green
August 2, 1936

August 2, 1936

June 6, 1944

John Smith
January 23, 2010

Henry Williams
June 6, 1944

John Smith
January 23, 2010

3.11 Exercises.
3.1. Prove that

Martyn Green
August 2, 1936

Henry Williams
June 6, 1944

The number of partitions
n=mni+---+ng (k>0)
with 0 <mny < -+ < ny

The number of partitions
n=mny+-+ny (k>0)
with 0 <ny <--- < my
and all n; odd
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Hint. There is a natural 1 — 1 correspondence between the partitions in the left
box and the partitions in the right box. The reader is encouraged to guess how it
works from the following examples:

1+34+6+10 < 1+3+34+3+5+5
1+4+7+11 <~ 1414+1+1+1+7+11
24446 < 1+14+14+14+1+1+3+3

3.2. Prove that for any real s > 1 (or a complex s with the real part Res > 1),

1+i+i+i+i+ = 2 5 i T
25 ' 3s | 4s  5s T\l2s—1 35— 1 55 — 1 7s—1)"

or, shorter,
1 p°®
v Al (ps - 1) '

n=t pE{primes}

Remarks. 1. This formula, also due to Euler, is not related directly to the
subject of this lecture, but its proof strongly resembles the proof of Theorem 3.1,
and we hope that the reader will appreciate it.

2. The expression on the left hand side (and hence the right hand side) of
the last formula is denoted by ((s). This is the celebrated Riemann (-function.
A simple trick provides an extension of this function to all complex values of the
argument (besides s = 1). It is well known that ((—2n) = 0 for any positive
integer n. The Riemann Hypothesis (which is, probably, currently the most famous
unsolved problem in mathematics) states that if ((s) = 0 and s # 2n for any

o

positive integer n, then Res = 3

3.3. Prove the formula from Section 3.5: if n = 2*23%s5%s | is a prime factor-

ization of n, then
kp+1 _ 1

p
d(n) = H —
X p
pe{primes}
3.4. Deduce from the Jacobi identity the following identity involving the Euler
function ¢:

@(y)(p(yél) _ Z (_1)ny2n2+n.

Hint. Try z = —y2.

3.5. Prove that if k, [, m are integers and k + 1+ m = 1, then —(kl + km + Im)
is a non-negative integer not congruent to 3 modulo 4.

Remarks. 1. This is related to the Klein identity for ¢(z)®.

2. According to the table in Section 3.8, 250 of the first 500 coefficients of the
series for p(z)® are zeroes. This exercise specifies 125 of them. The numbers which
constitute the remaining 125 ones look chaotic. The reader may try to find some
order in this chaos.

3.6. (a) Let g(n) be the number of partitions n = ny + --- + ng with 0 <
ny <ng < -+ < ng_q <ng (if k=1, this means only that 0 < n). Prove that
q(n) =p(n—1) for n > 1.

(b) Deduce from (a) that p(n) > p(n — 1) for n > 2.
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3.7. Prove that p(n) < F,, where F,, is the n-th Fibonacci number (Fy = F; =
1, F,=F,_ 1+ F,_5 forn>2).

Hint. Use the Euler identity and Exercise 3.6 (b.)

3.8. *Let F,, (k=1,2,...) be the Fibonacci numbers (Fy = 1,Fy, =2 F,, =
F,_1 + F,,_o for n > 3; in contrast to Exercise 3.7, we do not consider Fy).

(a) Prove that every integer n > 1 can be represented as the sum of distinct
Fibonacci numbers, n = Fy, + -+ Fy_, 1 < k3 <--- < ks.

(b) Prove that a partition of n as in Part (a) exists and is unique, if we impose
the additional condition: k; — k;_1 > 2 for 1 <i < s.

(c) Prove that a partition of n as in Part (a) also exists and is unique, if we
impose the opposite condition: ky <2, k; —k;_1 <2 for 1 <i<s.

(d) Let K,, be the number of partitions of n as in Part (a) with s even and H,,
be the same with s odd. Prove that |K, — H,| < 1.

(e) (Equivalent to (d).) Let
(1—2)(1—2*)(1—2®)1 - 251 —2®) - =1+ g+ goa® + gza® + ...

o0 o0

(or, in the short notation, H(l —zfy =1+ Zgnx”) Prove that |g,| < 1 for
k=1 n=1

all n.

(f) (Generalization of (e).) Prove that for every k,¢ > k, all the coefficients of
the polynomial (1 — 2f%)(1 — zf%+1) . (1 — 2*) equal 0 or +1.
(g) (An addition to (e).) Prove that, for any k > 4,
gn =0 for 2F; —2 <n < 2F, + Fj_3.
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FIGURE 3.2. A machine for computing p(n)









64

Chapter 2

e
EQUATIONS

“
fl

4

¥

o
Ll i




LECTURE 4

Equations of Degree Three and Four

—pE/p?—4q
2

dratic equation z2 4 px +q = 0 is one of the most popular formulas in mathematics.
It is short and convenient, it has a wide variety of applications, and everybody is
urged to memorize it.

It is also widely known that there exists an explicit formula for solving cubic
equation, but students are, in general, not encouraged to learn it. The usual expla-
nation is that it is long, complicated and not convenient to use. These warnings,
however, are not always sufficient to temper one’s exploration mood, and some
people are looking for this formula in various text books and reference books. Here
is what they find there.

4.1 Introduction. The formula ;2 = for the roots of a qua-

4.2 The formula. We shall consider the equation

(4.1) 23+ pr+q=0.
(The general equation 2 + ax? + bx + ¢ can be reduced to an equation of this form
by the substitution x =y — %:

3 2 _ (a3 _a)? _a
o +azt+bo+e=(y 3> +a(y 3) 0 (y 3)+C
= 3_|_ b_aj + E_ib+c
- 3 )Y o7 T3
. 2 23 b
Whichisyd—kpa:—i—quthp:b_af’ :i_i+c).

3' 97 97 73
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The formula is!

s/ g PP s a PP ¢
4.2 Sy S R R B Y S S
(42) v \/2+ 27+4+\/2 27 T4

What we see is that this formula is not long and not complicated. The two
cubic roots are very similar to each other: memorize one, and you will remember
the other one. The denominators 2, 4, and 27 are also easy to memorize; moreover,
it is possible to avoid them if you write the given equation as

23 4 3rz + 25 = 0;

then the formula becomes z = v/—s + V3 + 52 + v/—s — /13 + s2. So, maybe,
this formula is not as bad as most people think? To form our opinion, let us start
with the most simple thing.

4.3 The proof of the formula.

3 2
THEOREM 4.1. If 12)—7 + qZ > 0, then (4.2) is a solution of the equation (4.1).

sl q [ ¢ sl g [pP ¢
A: —_— —_— — B: —_—= — - .
\/ s TV T \/ 2 o7 T

Then A3 + B3 = —q,
o a [P @ s a [P i./pf’ p
Y B e Sy § S L | R g <
\/2+ 27 4 \/2 07 "4 27 3’

23 =(A+B)? =A% +3AB(A+B)+B*= —px —q, 2° + pr +q=0,

Proof. Let

and
as required. O

4.4 Let us try to use the formula. If this formula is good, it should be
useful. Let us try to apply it to solving equations.

ExAMPLE 4.1. Consider the equation
z® +6z—2=0.

According to the formula,

r= 1+ vErT+1-VEBT1=Vi- 2

This result is undoubtedly good: without the formula, we should have hardly been
able to guess that this difference of cubic radicals is a root of our equation.

IThis formula is usually called the Cardano Formula or the Cardano-Tartaglia Formula. The
reader can find the dramatic history of its discovery in S. Gindikin’s book [35].
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ExAMPLE 4.2. Consider the equation
22 +3r—-4=0.

According to the formula,

z= €/2+\/1+4+ §/2—\/1+ = {’/2+x/5+ €/2—\/5.

Not bad. But if you use your pocket calculator to approximate the answer, you
will, probably, notice that /2 + v/5 + v/2 — v/5 = 1. The best way to prove this
is to plug the left hand side and the right hand side of the last equality into the
equation 23 4+ 3z — 4 = 0 to confirm that both are solutions, and then prove that
the equation has at most one (real) solution (the function x3 + 3z — 4 is monotone:
if 21 < wo,then 23 + 327 — 4 < 23 + 329 — 4).

This casts the first doubt: the quadratic formula always shows whether the
solution is rational; here the solution is rational (even integral), but the formula
fails to show this.

ExaMPLE 4.3. To resolve our doubts, let us consider an equation with the
solutions known in advance. By the way, the coefficient a of 22 in the equation
23 + ax® + bz + ¢ = 0 equals minus the sum of the roots; so, for our equation (4.1)
the sum of the roots should be zero. Let us take x1 = —3,x9 = 2,23 = 1. The
equation with these roots is

(x+3)(z—2)(z—1)=2> Tz +6=0.

Solve it using our formula:

3 [ —343 3 —343
:L‘—\/—3+ 2—7+9+\/—3— 2—7+9
3 100 3 100 10 10
=(\/-3+4/—+\/-3—/—=¢2/-3+—i+ -3 — ——i.
\/ V" \/ V" \/ NG V3

Nothing like —3,2, or 1. Too bad.

CONCLUSIONS. The formula is simple and easy to memorize, but it is somewhat
unreliable: sometimes it gives a solution in an unsatisfactory form, sometimes it
does not give any solution. Let us try to locate the source of these difficulties.

4.5 How many solutions? The question is very natural. Our formula gives,
at best, one solution, whereas a cubic equation may have as many as 3 (real)
solutions (see Example 4.3 above).

Consider the graph of the function

y=1"+pr+q.

The graph of y = 23 is the well-known cubic parabola (Figure 4.1); when we add pz,
the graph will be transformed as shown on Figure 4.1, and it will look differently
for p > 0 and p < 0. Finally, the graph of y = 2® 4+ px +¢ may be obtained from one
of the graphs of Figure 4.1 by a vertical upward or downward translation (Figure
4.2). We see the following. If p > 0, then the number of solutions is always 1. If
p < 0, then the number of solutions is 1, 2, or 3. Let us learn how to distinguish
between these cases.
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Yy Yy Y
T T T
p>0
p<O0
FIGURE 4.1. Cubic parabolas
y y
T1 T/ N~ | T
/ Tli/\\ T
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y=a"+pr+q
p>0
one root

/

y=1"+pr+gq
p<O0

one root

,$_7"2

y=1"+pr+gq
p<O0

three roots

FIGURE 4.2. The number of roots

LEMMA 4.4. The equation
® +pr+q
P
has precisely 2 solutions if and only if p < 0 and 77 + 1
REMARK 4.5. This result, with a proof different from the one below, is discussed
3 2

in Lecture 8. Let us recall that the expression o7 + qz, crucially important for our

current purposes, is called the discriminant of the polynomial 23 + px + ¢.

= 0.

Proof of Lemma. To have two solutions, the equation has to have a multiple
root. If this root is a, then the third root should be —2a, since the sum of the roots
is 0. In particular, a # 0 (otherwise, there is only one root, 0). Hence

23+ pr+q=(r—a)(x+2a) = 2> - 3a’z + 2d°,

3 2 27a%  4aS
= —3a%,q = 24%. In thi e L 2~ 0. Con-
D 3a“,q a n this case p < 0 an 27—1-4 57 + 1 0. Con
P ¢ q
versely, if p < 0 and 77 + 1= 0, then we take a = ¢{ 5 and deduce ¢ = 2a3, p =
s 27¢>
of 2l _ 2705 = 3a?, hence

=
23+ pr+q=12°—-3a*z+2d® = (z — a)*(z + 2a)

which has a multiple root a. O

Consider now a general equation 2% + pr + ¢ = 0 with p < 0 and without
multiple roots. Obviously, there are two different numbers r such that the equation
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2%+ px + ¢ = r has a multiple root (see Figure 4.2). If these two 7’s have the same
sign (that is, their product is positive), then the equation x® 4+ px + ¢ = 0 has one
solution; if they have opposite signs (their product is negative), then the number
of solutions is three.

Let us make computations. According to the Lemma, 22 4+ px 4+ ¢ = 7 has 2
solutions if and only if

3 A2
A )
27 4
that is,
4p3
=gt/
= 27

The product of the two values of r is
4p? P ¢
2
— =4 (=4 ).
LT (27 Ty
We thus get the following result.

THEOREM 4.2. The equation x> + pz + g =0 has
3 2

1 solution, ifp— + Ty (orp=q=0);

27 4

s
2 solutions, if o7 + i 0 (andp <0);

2
. .. D q
8 solut —+=—<0.
solutions, if 7 + 1 <
3 g2

4.6 Back to the formula. Since the expression 77 + "4 appears both in

Theorem 4.2 and formula (4.2), there arises a link between these two results which
explains fairly well the experimental observations of Section 4.4.

THEOREM 4.3. If equation (4.1) has only one real root (or two real roots), then
the right hand side of formula (4.2) is defined (is the sum of two cubic roots of real
numbers). If the equation (4.1) has three (different) real roots, then the right hand
sum of formula (4.2) is undefined: it is a sum of cubic roots of complex numbers.

4.7 The case of negative discriminant. To apply formula (4.2) to this
case, we need to learn how to extract cubic roots of complex numbers. Let us try
to do it. Our problem: given a and b, find x and y such that

(z +iy)® = a + ib.
The last equation yields the system
2 —3xy? = a,
3ty —y® = b,
which can be reduced to the equation
270%2% = (2® — a) (823 + a)?.

The latter is a cubic equation with respect to t = 23, and it must have three real
solutions (since our initial problem has three solutions); thus, our formula will not
help to solve it.
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There is a different approach to extracting roots of complex numbers based on
de Moivre’s Formula

r(cosf +isinf) = /r (cosg +isin§> .

So, we can use trigonometry to solve cubic equations with the help of formula (4.2).
Trigonometry, however, can be used for solving cubic equation without any formula
like (4.2).

4.8 Solving cubic equations using trigonometry. In trigonometry, there
is a formula for the sine of a triple angle:
sin 30 = 3sinf — 4sin® 0.

Thus, if our equation is
473 — 3z +sin30 = 0,

or

. 3 sin 36
3
_2 =0
T 433 + 1 )
3
then the solution is = sinf. In other words, if p = T then the solution of

equation (4.1) is
1
x = sin <§ sin_1(4q)) .

3
What if p # —-7 In this case, we can make the substitution z = ay. The equation

(4.1) becomes
a*y® +apy +q =0,

or » .
3 _
eyt =0
3 [ 4
Thus, if P _ ——, that is, a = ——p, then the solution is
a? 4 3
— g 1 4q
y = sin sin ,
Ap =
(=3)?

[ 4 1 9 4
(4.3) r=ay = —Epsin<§sin_lﬁ —?)

Isn’t this a formula? Well, certainly, p should be negative. But also the argu-
ment of sin~! should be between —1 and 1:

9 | 4p < 81q? - 4p
4p? 3

=b g ST

27¢* 2 3
21> 1,272 < 4
4p37 b qf p7
3 2
: P> q
27¢° + 4p° <0, = + 1 <0.
¢ +4pm <0, oo+ <
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We see that formula (4.3) works precisely when formula (4.2) does not work, so,
together, formulas (4.2) and (4.3) cover the whole variety of cases. By the way,
formula (4.3) always gives 3 solutions: if

sin™! % —@ = q,
4p? 3

then the 3 solutions are

4 1
x:w/—gpsin (3 (a+2k7r)), k=012

4.9 Summary: how to solve cubic equations. Formula (4.2) (together
with formula (4.3)) always expresses the solutions of equation (4.1) in terms of p and
q. For practical purposes, this formula may be not very useful; approximate values
of roots of cubic equations can be found by other methods (used, in particular, by
pocket calculators); and it does not seem likely that one can use such a formula on
the intermediate steps of calculations (plugging solutions of cubic equations into
other equations). The significance of formula (4.2) is mainly theoretical, and we
shall discuss this aspect below. Now we turn our attention to equations of degree
four.

4.10 Equations of degree 4: what is so special about the number 47
Equations of degree 4 can be reduced to equations of degree 3. This phenomenon
has no direct analogies for equations of degree greater than 4, and by this reason
deserves a special consideration.

What is so special about the number 47 Of many possible answers to this
question, we shall choose one which will be technically useful to us.

Among different mathematical problems, there are so-called “combinatorial
problems”. They look like this: “given such and such number of such and such
things, in how many ways can we do such and such thing?”

For example: “In a class of 20 students, in how many ways can a president and

18
two vice-presidents be selected?” Answer: 20 x = 3, 420.
Or: “In how many ways can one choose 2 green balls and 3 red balls from a
10-9 10-9-
box containing 10 balls of each color?” Answer: % : % = 5,400. And so

on.

We can observe that the answers are relatively big, usually, substantially bigger
than the number given in the statement of the problem. Do you know a combina-
torial problem where the answer is less that the given number (and, say, greater
than 1)? We know one such problem.

Problem: in how many ways can one break a set of 4 elements into 2 pairs?
Answer: 3 (if the set is {ABCD}, then the solutions are AB/CD, AC/BD,
AD/BC).

Surprisingly, this simple problem provides the main idea for solving equations
of degree 4.

4.11 The auxiliary cubic equation. Let
(4.4) 2t +pr? +qr+r=0

be our equation (precisely as in the cubic case, we can get rid of the “second leading
term” with 22 by making a substitution of the form z = y + ). Let 1, 2, 23,14
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be the solutions of equation (4.4). Then
2t Fpr? fqr4r = (2 — 1) (2 — 22)(x — x3) (T — 4),

whence
0 =x1+x2+ 23+ 24,
P =2X1T2 + X1T3 + X124 + T2T3 + T2Ty + T3T4,
—q = T1T2X3 + T1T2T4 + T1T3%4 + T2X324,
T =2X1X2T3%4.

Now, let us look once more at our problem and set

y1 = (x1+ x2) (x5 + z4),
y2 = (21 + x3)(z2 + z4),
yzs = (21 + x4)(z2 + 23).

Notice that, since x1 + x2 + x3 + x4 = 0, we can also write

1 = —(x1 +22)? = — (23 + 24)?,
yo = —(w1 +23)% = — (20 + 24)?,
Yys = _(371 + 374)2 = —(QTQ + Q?g)z.
Let
(4.5) v +ay’ +by+c=0
be the cubic equation with the roots y1,y2,y3. Then
a = —Y1—Y2 — Y3,
b = y1y2 +y1y3 + y2y3,
c = —Y1Y2Y3-

4.12 How to express a,b,c via p,q,r?
THEOREM 4.4. a = —2p, b=p? —4r, c=¢>.

Proof. (direct computation). It is slightly easier with a and ¢ and longer with

a=—y1—y2—ys = (x1+x2)® + (1 +x3)> + (22 + x3)*

= 2(37% + Z’% + x% + 2129 +T123 + .Z‘gwg)
24 ad+ 2+ (v e+ a3)? =23+ 23+ 23+ (—2y)?
= (z1 + 22+ 23 +34)% — 2p = —2p.

c=—nyys = (r1+ 962) (x1+ 1‘3)2(951 + I4)2
= [(z1 + z2) (21 + x3) (21 + 334)]2
=[x} + xl(xg + x3 + :c4) + 21 (22w + Tog + T324) + Tow374)?
(ﬁ fl - Q) =¢>

b= y1y2 +y1y3 + Y2ys3

= (331 +29)2 (w1 + 23)2 + (21 + 22)% (21 + 24)% + (21 + 23)% (21 + 334)

= xl + 223 (22 + x3) + 23 (23 + 23 + daow3) + 2w 17073(T2 + 73) + x2z3—|—
xl + 203 (20 + 24) + 22 (23 + 22 + dwozy) + 2717074 (T2 + T4) + x2$4+
xl + 203 (23 + x4) + 22 (2% + 22 + dw3zy) + 2117374 (T3 + T4) + x3x4

= xl + 203 (29 + x3) + 23 (23 + xg + dxoxs) — 2x120x3(21 + 24) + x2x3+
1:1 + 203 (w9 + x4) + 23 (23 + x4 + dxoxy) — 2212024 (21 + 23) + x2x4—|—
i+ 223 (23 + 14) + 22 (22 + 23 + dazzy) — 2x1x3z4(x1 + x9) + 2323

= 3z} + 423 (w2 + 23 + 74) + 223 (22 + T3 + 74)?
—223 (973 + TaTy + T3T4) — 611 T2T3T4 + :c2x3 + x2x4 + :1:3@21
= — 2x1(x2x3 + xoxy + x374) — 6T1T223T4 + x2x3 + x2x4 + x3x4
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p = —F + Tox3 + Toxy + T3T4;
p? = ol — 223 (w223 + Towy + 1374) + (T2T3 + T2Ty + T374)%;
p? —b = (vax3 + T2xg + 2374)? — (2323 + 2327 + 2323) + 611220374

= 2(z3x324 + Tox37y + T2w373) + 621127374
= 2wox324(To + T3 + T4) + 621 T2T324
= —21129x3T4 + 621202304 = 4T120T304 = 47

This proof is convincing but it does not reveal the reasons for the existence of
an expression for a, b, ¢ via p, ¢, r. Let us try to explain these reasons. If we plug the
(very first) formulas for y1, yo, y3 into the definition of a, b, ¢, then a, b, ¢ will become
polynomials in x,xs,x3, x4 (of degrees 2, 4, 6). Moreover, these polynomials in
Z1,%2, %3, T4 are symmetric which means that if you switch any two variables x;, z;,
the polynomial will remain the same. Indeed, if you, say, switch x; with x5, then
y1 remains unchanged while ys will be switched with ys; something similar will
happen if you switch any two x’s. But a, b, c remain unchanged, since they are,
obviously, symmetric with respect to the y’s.

There is a theorem in algebra (not difficult) stating that any symmetric polyno-
mial in x1, 22, T3, T4 can be expressed as a polynomial in the “elementary symmetric
polynomials”

€1 =T+ T2+ T3+ 24,

€2 = T1T2 + X103+ T1T4 + T2X3 + T2y + T3T4,
€3 = T1T2T3 + T1T2%4 + T1X3T4 + T2T3T4,

€4 =X1T2X3%4.

(A similar theorem holds for any number of variables.) Since e; = 0, a,b,c are
polynomials in es, e3, e4, that is, in p, ¢, 7. Since the degrees of p, g, are 2, 3,4, one
should have

a = Ap,
b = Bp*+Cr,
¢ =Dp®+ E¢ + Fpr,
and we can find A, ..., F by plugging particular values for 1, z2, 3, x4 (such that
21 4+ x2 + x3 + ¢4 = 0). For example, if 1 = 1,29 = —1,23 = x4 = 0, then
11 =02 =y3=—-1,p=-1,g=r=0,a=—-2,b=1,c=0. Hence
-2 =A (71)3

1 =B-1+C-0,
0 =D-1+E-0+F-0,

whence A =2, B =1,D = 0. Similarly, we can find C, F and F.

4.13 How to express z1,Zs, T3, 24 Via y1,y2,y3? Thus, given equation (4.4)
of degree 4, we can compose the auxiliary equation (4.5) of degree 3, solve it, and
find y1,y2,y3. How to find our initial unknowns, =1, z2, z3, 247 It is easy: since

y1 = —(21 +29)% = — (w9 + 23)?,
yo = —(z1+33)% = —(22 + 24)%,

ys = —(v1 4+ 24)* = — (22 + 23)%,
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and x1 + o + 3 + 4 = 0, we have

r1+as=—(22+23) =+£/=1,
1+ a3 =—(v2+x4) =EV—Y2,
1+ xa=—(z2+23) =E£V/—Ys,
3%1 +f£2 —+ I3 —+ Ty = 21‘1 = :|:\/ —U1 + vV Y2 + vV —Ys3,

_ BtV E Vo
5 )

X

Formulas for 9, x3, 4 are absolutely the same. Varying the signs in the expression
+v—v1, £v/—y2, £/—Yy3, we obtain 8 numbers, which are +xz1,+txs, *x3,tx,.
This completes solving equation (4.4). For the reader’s convenience, we shall repeat
the whole procedure, from the beginning to the end.
4.14 Conclusion: solving equation (4.4). 1. Given an equation

zt +pr? fqr+r=0.

2. Solve the auxiliary equation
Yy’ = 2py + (p° — 4r)y + ¢* = 0;

let y1,y2,y3 be the solutions.
3. Consider the eight numbers

V= £ V=Y V-3
5 )

Four of these numbers are solution of the given equation, the remaining are “minus
solutions.” Plug and select the solutions.

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

4.15 Exercises.

4.1. The equation
2%+ 92 +26=0

can be solved explicitly by formula (4.2) with all square and cubic roots being
integers:

x = /=134 27+ 169
=13+ M4+ Y—13—14=V1+I/—2T=1-3=—-2.

Find infinitely many cubic equations with non-zero integral coefficients p and ¢ with
the same property.
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4.2. Prove that the formula

T=7— =

3r
where r is an arbitary value of the cubic root ¢/ 7% + s where, in turn, s is an

3 2
arbitrary value of ;;—7 + qZ gives precisely 3 complex solutions of a cubic equation
3 2
2% + pz + ¢ = 0 with complex coefficients p, ¢ such that p # 0, ]2)—7 + qz #0.

4.3. Prove that if a cubic equation x® 4+ pz + ¢ = 0 (with real coefficients) has
a double (not triple!) root, then formula (4.2) gives the other (not double) root,
and it is equal to &/—4q.

a _ -«

4.4. For the hyperbolic sine, sinha = %, there is a formula

sinh 3o = 3sinh a + 4 sinh® a.

Use this formula as in Section 4.8, and find a hyperbolic-trigonometric formula for
the solutions of a cubic equation 23 + px + ¢ = 0 with real coefficients. For which
p, q does it work? How many solutions does it provide?

4.5. Solve, using the procedure in Section 4.14, the following equations of degree

(a) 2t + 42+ 3 = 0;

(b) 2% + 222 + 42 + 2 = 0;

(c) 2% + 480x + 1924 = 0.

Remarks. It is easy to solve the equation (a) by the usual high school method
of guessing, plugging and dividing; it is given here because it also provides a good
illustration to our method. However, it is permissible to apply the high school
method described above to the auxiliary cubic equations arising from equations (b)
and (c). In the latter case it is not easy to guess a root; for a desperate reader who
fails to guess, we provide a clue: try —100.

4.6. Find the solutions of the equation
4 prt+qr+r=0
following the lines of Sections 4.12, 4.13 with

Y1 = T1T2 + T3xy
Yo = T1T3+ Ty
Y3 = T1X4 + T2X3.

4.7. Let m,n, k be integers such that mnk is an exact square. Find an equation
z* + px? + gz + 7 = 0 with rational p, ¢, for which v/m + \/n + vk is a root.

Hint. Find an equation of degree 4 for which the auxiliary cubic equation is
(x+m)(z+n)(x+k)=0.






LECTURE 5

Equations of Degree Five

5.1 Introduction. In Lecture 4 we presented “radical” formulas solving equa-
tions of degrees 3 and 4. These formulas express the roots of polynomials of degree
3 and 4 (plus, possibly, some extraneous roots) in terms of the coefficients of these
polynomials. More precisely, the roots can be obtained from the coefficients by
the operations of addition, subtraction, multiplication, and extracting roots of ar-
bitrary positive integral degrees. Our goal in this lecture is to prove that no such
formula can exist for polynomials of degree 5 and more.

The first result of this kind was obtained in 1828 by Niels Henrik Abel, who
found an individual polynomial of degree 5 with integral coefficients such that no
root of this polynomial can be obtained from rational numbers by the operations
listed above. A general theory explaining such phenomena was created approxi-
mately at the same time by Evariste Galois. (Unfortunately, the work of Galois,
who died at a very young age in 1832, became broadly known to the mathematical
community only 50 years after his death.) The theorem which we shall prove here
does not deal with any individual equation: it studies the dependence of the roots
of a polynomial on the coefficients; in particular, we shall not care about the ratio-
nality or irrationality of the coefficients. The proof will be geometrical, although it
is based (in an implicit way) on the ideas of Galois theory.

5.2 What is a radical formula? Let us start with a quadratic equation,
(5.1) 2?4+ pr+q=0.
The solutions are expressed by the formula

L PEVP 4
; .

s
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We can describe the procedure of finding roots avoiding the awkward symbol “, /.
Instead, we write the sequence of formulas

z7 =p*—A4q,

Tro = —§p+ 5]31

Starting with p,q, we find x1, then x5, and xo will be a solution. Since x; is not
unique, xs is also not unique: we find all solutions of the equation (5.1).
Turn now to a cubic equation,

(5.2) ¥ +pr+q=0.
Again, we write a chain of formulas,
3 2
_pr T
7 - 2 + 4 )
__4
Ty = 2 + 1,
@ =-3
3 D) 1
Ty = To+ x3.

We have two values for x1, then three values for each of x5, x3. Seemingly, we have
36 values for z4, but actually only 9 of them may be different. The solutions of
equation (5.2) are three of them (the other 6 will be the roots of the polynomials

1 3
23 +espr+q, 23 +F3pr = 0 where e3 = —5 + 7@ is “the primitive cubic root of
1.7))
In a similar way, we can present the solutions of equations of degree 4 (see

Exercise 5.1). Now, we can give a precise definition of a “radical formula”. We say
that the equation

(5.3) 2" +az" P+ tanxta, =0
(with variable complex coefficients aq, ..., a,) is solvable in radicals if there exist
polynomials py,...,py (in n,n+1,...,n+ N — 1 variables) and positive integers
k1, ..., kn such that for any (complex) root = zy of the polynomial (5.3) with
given aq, ..., a, there are (complex) numbers 1, ...,z satisfying the system
k

xllcl :pl(ala"'van)a

x5? =pa(ay,...,an, 1),

x’f\,’\’ =pn(a1,...,Qn,T1,. ., TN_1).

We shall apply this definition also in the case when equation (5.3) contains (like
equation (5.2)) fewer than n variable coefficients.

5.3 Main result.
THEOREM 5.1. The equation
(5.4) P —r+a=0

is not solvable in radicals.
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The goal of this lecture is to prove this theorem.

This theorem will imply that the general equation (5.3) with n > 5 is also
not solvable in radicals. (Indeed, if equation (5.3) with some n > 5 is solvable in
radicals, then the same is true for the equation 2" — 2"~ % + az"=> = 2" 5(2® —
x + a) = 0; then the equation 2° — 2 + a = 0 is also solvable in radicals.)

Before we start proving Theorem 5.1, we shall make a general remark. The
proof may seem unusual to many people. Instead of directly dealing with radical
formulas, we shall analyze in some details things visibly unrelated to our goal. And
when some readers may start feeling irritated with this abundant “preparatory
work”, we shall find out that the proof is over.

5.4 Number of roots.

4

PROPOSITION 5.1. If equation (5.4) has multiple roots then a* in other

= ?’
words,

4 44
— or + ——.
5V/5 5V5

LEMMA 5.2. If b is a multiple root of the equation (5.4) then 5b* = 1.

a==+

Proof of Lemma. . If b is a multiple root of the polynomial z° — x + a, then
2° —r+a = (x—0b)%p(z) where p is a polynomial of degree 3. Take z = b+ ¢ where
€ is a very small number. Then

(b+e)’—(b+e)+a=e’p(b+e),

b® + 5eb* 4+ (100 + 10b%e 4 5be? + %) — b — e+ a = e2p(b + €).
Delete b — b+ a = 0 and divide by e:
56 — 1 = e(p(b+¢) — 10b® — 10b%¢ — 5be? — °).

This is true for any ¢, but the right hand side will be arbitrarily small (in absolute
value) if € is small. Hence, 5b6* — 1 is “arbitrarily small,” that is, 56* — 1 =0. O

Proof of Proposition. . If 56* = 1, then a* = (b — b°)* = (1 — bH)* =
1 é4 _ 44

5 5 55

5.5 Variation of a. If a = 0 then the equation is ° —z = 0, and the solutions

are 0, +1, +4. If we vary a then the 5 roots Wlll also vary, but they will not collide,

j_, 5\/_ (Figure 5.1).

What happens, if a traverses some closed path (“loop”) starting and ending
at 0 (and avoiding the dangerous values)? The five roots 0,+1, i of the equation
2% —z = 0 will come back to 0,41, +i; but will each 1nd1v1dual root return to its
initial seat? No! The roots, in general, will interchange their positions (Figure 5.2);
moreover, they can do it in an arbitrary way. We will prove it below, but before

we even make a rigorous statement we have to talk a little about permutations.

if a avoids the dangerous values +



80 LECTURE 5. EQUATIONS OF DEGREE FIVE

~—

a roots

oL ) e
dangerous <

values

/.

FIGURE 5.1. A variation of a yields a variation of roots

a roots

)

FI1GURE 5.2. A loop variation of a yields a permutation of roots

5.6 Permutations. We shall be interested only in permutations of the set of 5
elements which we will denote by 1,2,3,4,5 (so the word “permutation” will always
11,149, 13, 14, 15 are different integers between 1 and 5. The notation above means that
the permutation acts as

1*—>’i1, 2i—>i2, 3*—>’i3, 4l—>i4,5’—>i5.

We shall usually present the permutation by diagrams like the one in Figure 5.3
where the arrows indicate the images of 1, 2, 3, 4, 5; for example, the permutation on
Figure 5.3 is (41352). (The arrows on a figure like Figure 5.3 are usually assumed
straight, but we may want to deform them a little to avoid triple intersections; for
this reason, the arrow 3 — 3 on Figure 5.3 is not genuinely straight.)

The total number of permutations is 120.

If we successively perform two permutations, first o and then §, we get a new
permutation, which is called the product of permutations « and (8 and is denoted
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1 2 3 4 5

1 2 3 4 5

FIGURE 5.3. A permutation

by af. For example,
(21435)(13254) = (31524),
(13254)(21435) = (24153)

(which shows that the product may depend on the order of the factors.) For every
permutation, a, there is the inverse permutation, a~! which is obtained from o
by reversing the arrows. The products aa™!' and a~'a are both equal to the
identity permutation ¢ = (12345). Note that both products and inversions can be
visualized by means of diagrams like Figure 5.3: to find a product, we need to draw
the second factor under the first one, to find an inverse permutation, we need to
reflect the diagram of the permutation in a horizontal line. This is illustrated by
Figure 5.4 where the equalities (41352)(21354) = (52341) and (41532) ! = (25413)
are demonstrated.

FIGURE 5.4. Operations on permutations

the number of pairs s,t with 1 < s <t <5, iz > ;. Thus the number of disorders
varies from 0 (the identity permutation (12345) has 0 disorders) to 10 (the reversion
permutation (54321) has 10 disorders). The permutation (41352) has 5 disorders
(4>1,4>3,4>2,3>25>2). The best way to count disorders is to use a
diagram like Figure 5.3: disorders correspond to crossings on this diagram (this is
why we wanted to avoid triple crossings).

It is not the number of disorders, but rather its parity, that has a major signifi-
cance in the theory of permutations. A permutation is called even, if the number of
disorders is even, and is called odd, if the number of disorders is odd. For example,
(12345) and (54321) are even permutations, while the permutation (41352) is odd.

PROPOSITION 5.3. The product of two permutations of the same parity is even.
The product of two permutations of the opposite parities is odd.



82 LECTURE 5. EQUATIONS OF DEGREE FIVE

Proof. We use the description of the product of two permutations as presented
on Figure 5.4. For every s = 1, 2, 3,4, 5, there is a two-edge polygonal paths starting
at the point s of the upper row and going downward (see Figure 5.5). For two such
paths, starting at s and ¢, there are 3 possibilities: (1) they do not cross each
other either in the upper half of the diagram, or in the lower part; (2) they cross
each other either in the upper half or in the lower part, but not in both; (3) they
cross each other both in the upper half and in the lower part of the diagram. The
total number of the crossings of the two paths in the two halves of the diagram is,
respectively, 0, 1, and 2. The number of crossings of the same paths in the product
diagram (where the paths are straightened) is, respectively, 0, 1, and 0. We see,
that the parities before and after the paths being straightened are the same. O

FIGURE 5.5. Proof of Proposition 5.3

COROLLARY 5.2. For every permutation «, the permutations o and o~ have
the same parity.

Proof. This fact (obvious directly) follows from the equality aa™t = £.0

COROLLARY 5.3. There are precisely 60 even permutations and 60 odd permu-
tations.

Proof. Let aq,...,ax be all even permutations, and let v be some odd per-
mutation (say 12354)). Then the permutations 8; = vyaq,...,0, = yay are all
odd and are all different: if ya = o/, then v~ 'va = v~ 'y¢a/, that is, o = /.
Moreover, every odd permutation is among the 3;’s: if 3 is odd, then v~ ! is even
and 3 = vy~ '3. Thus the number of even permutations is equal to the number
of odd permutations, and since every permutation is either even or odd, and the
total number of permutations is 120, the number of even permutation, as well as
the number of odd permutations, equals 60. O

Now we shall prove two theorems about permutations which will be used in
subsequent sections of this lecture. First, we shall prove that every permutation
can be presented as a product involving only a few very special permutations. The
special permutations are

ay = (52341), an = (15342), oz = (12543), oy = (12354)
(briefly, «; swaps ¢ with 5 and fixes the rest of the numbers).

THEOREM 5.4. Any permutation can be presented as a product of a;’s.
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Proof. Consider a diagram (like Figure 5.3) of the given permutation. Assume
that no two crossings belong to the same horizontal level, and cut the diagram by
horizontal lines to pieces such that there is precisely one crossings within each piece
(Figure 5.6). Then the permutation falls into a product of “elementary transposi-
tions”

B = (21345), By = (13245), B3 = (12435), B4 = (12354)
(6; swaps ¢ with ¢ + 1 and fixes the remaining numbers). It remains to notice that
B1 = aeaiag, B2 = azaeas, 3 = agasay, B = oy
(check this!). O

1 2 3 4 5
FIGURE 5.6. A decomposition of a permutation into a product of 3s

For two permutations, a and 3, their commutator [, 3] is defined as afa~t3~1.
Clearly, the commutator of any two permutations is an even permutation.

THEOREM 5.5. Any even permutation is a product of commutators of even
permutations.

2

3

FIGURE 5.7. Proof of Theorem 5.5

Proof. Cut the diagram of the given even permutation by horizontal lines into
pieces containing two crossings each (Figure 5.7). Then our permutation will be-
come the product of two-crossing permutations. Obviously, there are precisely 9

such permutations (see Figure 5.8), 71,...,79.
Each of these permutations is a commutator of two even permutations:
M = [(42135), 75] Y4 = [73,72] V7 = [y2,73]

vo = [(42351), (14352)] ~5 = [(52431), (53241)] s = [(53241), (52431)]
v3 = [79, (14352)] Y6 = [v2,71] Yo = [71,72]
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X X1 XIX 1XX

Y2

K1 1T
ST I 113X

FIGURE 5.8. Permutations y
(check this!). O

REMARK 5.4. Theorem 5.4 and its proof are valid for permutations of the
set of n elements for any n > 2 (certainly, in this case we shall have to consider
n — 1 permutations «;). However, the statement of Theorem 5.5 is not true for
permutations of the set of n elements, if n < 5. Actually, this is the reason why
equations of degree less than 5 can be solved in radicals.

(7
N 1
a roots
p— | 5 b
— “ag — 0

FIGURE 5.9. A special variation of a

5.7 Variation of a¢ and permutations of roots. Consider a closed path
(a “loop”) in the plane of a that starts at 0, goes right along the real axis to

a close proximity of the “dangerous point” ag = e then encircles this point

counterclockwise along a circle of a very small radius, and then returns to 0 along
the real axis.

It turns out that the roots of our polynomial 2° — x + a react to this variation
of a in the following way (see Figure 5.9). The roots —1 and +i trace relatively
small loops and return to their initial positions. On the contrary, the roots 0 and
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1 approach the point by = —= (and, hence, each other, then make clockwise half-

4

rotations around by, and then move along the real axis, respectively, to 1 and 0. In
particular, they swap their positions: 0 goes to 1 and 1 goes to 0.

Y Y
b.U 1 =z _ b.U o
1 1 ~ 1
y=ua—zx ao y=a—x+a
a = ag, a < ag

FiGUrE 5.10. Two graphs

Let us explain why. The graph of the function y = z°

5.10, left (it is easy to draw it as the difference of the two well known graphs y = «
and y = z). If we add a > 0 to the function, then the graph goes up, the root —1
moves slightly to the left, the roots 0 and 1 move towards each other and almost
collide (at the point by), when a approaches ag. The roots +i remain complex
conjugated, they never cross the real axis (because if they do, they reach the real
axis simultaneously and become a double root therein).

When «a encircles ag, the three roots originating from —1 and =+7 stay almost
unchanged; but what happens to the two other roots? Let us take a small (in
absolute value) complex number ¢ and look for which a the polynomial 2° — z + a
has the root by + €. This is a matter of an easy computation:

— x is shown on Figure
5

a =(bg+e)—(bg+e)°
=bo — b3 +&(1 — 5bg) — (1063 + 10ebZ + 5e2bg + %)
= ap — £2(10b3 + 10b3 + 5e2by + €3) &~ ag — 10b3<2.

(we used the fact that by — b5 = ag and 1 — 5by = 0; the symbol ~ means an
approximation with an error much less, in the absolute value, than |¢|?). So, when =
makes a clockwise half-rotation around by, a makes a full counterclockwise rotation
around ag. And vice versa: when a makes a full rotation around ag, x makes a
half-rotation around bg; as a result, the two roots = close to by swap their positions.
This justifies Figure 5.9.

Now, let us make one more simple observation. The roots of the polynomial
2® —x+1ia are obtained from the roots of the polynomial 2® —+a by multiplication
by i. This means that if we turn the left Figure 5.9 counterclockwise by 90°, then
the right Figure 5.9 will also turn counterclockwise by 90°. We see that the loops,
similar to the loop on the left Figure 5.9, but encircling iag, —ag, and —iag (instead
ag), will swap the root 0, respectively, with i, —1, and —i and keep the remaining
three roots in their positions (see Figure 5.11).
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. @ . .
. _ ﬁ@kao .

roots roots f E roots roots

FI1GURE 5.11. Swapping the roots

And one more remark. A composition of two loops (that is, a loop which first
goes along the first loop and then along the second loop) leads to a permutation of
roots which is the product of permutations corresponding to the two loops.

From all this, we can deduce the main result of this section (promised in Section
5.5).

THEOREM 5.6. For any permutation of the 5 roots 0, £1, &1, there exists a loop

4
starting and ending at 0 and avoiding the points j:—5, + which leads to this

43
5V5° 55
permutation.

Proof. Enumerate the roots in the order 1,4, —1, —i,0. The construction above
gives loops which induce the permutations a1, asg, a3, ay (in the notations of Section
5.6). Hence, we can find a loop that induces any product of these permutations,
that is, according to Theorem 5.4, an arbitrary permutation. O

5.8 Variation of ¢ and permutations of intermediate radicals. Suppose
that equation (5.4) can be solved in radicals:

$ll€1 = pi(a),

x5 = pola, 1),

kN— ......................
Ty _pn(alvl‘la"~7$N71)v

and all the solutions of equation (5.4) are contained among the possible values of
xpn. Theoretically, we can have as many as ki1ko ...ky values of xp, but some of
them may coincide for all values of a (we observed this phenomenon in the case of a
cubic equation). Thus we have a “tower” of values of a, z1, ...,z x, see Figure 5.12.
(Figure 5.12 presents a schematic picture, which cannot occur in reality: if two
values of x5 coincide as shown in this picture then there will be at least two other
pairs of merging values). If we vary a then the whole tower begins varying. What
is important, the values of xy, which are solutions of the equation (5.4), remain
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solutions of the equation (5.4), and their variation is the same as was studied in
Section 5.7.

values of x1

values of x»

P r Y YL Y e oy

FIGURE 5.12. The tower of values of z;

One more remark. As we observed earlier, some values of s (for any M) may
coincide for all values of a. But there might be also accidental coincidences which
occur for isolated specific values of a. For example, the equation

21" = pi(a)
has ky solutions (for z1), if pi(a) # 0; if pi(a) = 0, there is only one solution
(x1 = 0). So, the roots of the polynomial p; (but there are only finitely many
of them) are sites of “accidental coincidences.” We have to declare these roots
“dangerous” (in addition to the 4 dangerous points (Section 5.5). A coincidence in
the second row happens, if

p2(a, 1) sz(avxﬁ)

for two different solutions 1,2/ of the equation 2¥* = p;(a). The system

21" = pi(a)

()" = pi(a)

p2(a,z1) = p2(a, 2})
either has finitely many solutions (a,x1,x}) (in which case we declare the corre-
sponding values of a dangerous) or has solutions for all a and also some isolated
solutions (a,z1,}) (and we declare dangerous the values of a, corresponding to
these solutions). Proceeding in this way, we declare dangerous a finite collection
of values of a and in the future consider only loops which avoid all dangerous val-
ues, old and new. (By the way, it may happen that 0 becomes a dangerous value.
Then we should consider loops which start and end not at 0, but at some near-by
non-dangerous point.)

5.9 Commutators of loops. Let /1,5 be two loops in the plane of a. Con-
sider the loop [¢1,43] = €1€2€f1€51 which traverses the loop ¢1, then {5, then #; in
the reverse direction, and then ¢5 in the reverse direction (Figure 5.13). This loop
is called the commutator of the loops ¢; and /5.
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FIGURE 5.13. The commutator of loops.

LEMMA 5.5. If a loop £ in the plane of variable a is a product of commutators
of loops (avoiding the dangerous points), then the variation of a along £ returns
each value of x1 to its initial position.

Proof. For any (non-dangerous) value of a, the k; values of x; can be obtained
from one value as

2 ki—1
(El,xlEkl,CElEkl, . .,(ElEkl

2w 2w

where €, = cos T + 4 sin T is the “primitive ki-th root of 1”. The ratios of these
1 1

values of x1 remain constant in the process of the variation of a.

Let ¢ = 616261_162_1. Let the variation of a along ¢; take z7 to 3315’,?11 (and,

hence, take xie}, to xle};jml) and the variation of a along ¢y take x to xlskm12

(and, hence, take e} to $1€Zj—m2).

Then the successive variations of a along
by, 05, 61_1, and 62_1 transforms z; according to the rule

T — x15};’;1 — x15Z§1+m2 — xlsz?erzfnu — xlgz?erzfmlfml = 7.

Thus, the variation of a along a commutator of loops takes every value of x; to
itself, and the same is true for products of commutators. O

LEMMA 5.6. If a loop £ in the plane of a is

a product of commutators of

products of commutators of
loops (avoiding the dangerous points), then the variation of a along ¢ returns each
value of x1 and xo to its initial position.

Proof. Let £ be a commutator of loops ¢1, /> which are, in turn, products of
commutators. Then, according to Lemma 5.5, the variation of a along each of the
loops £1, ¢5 takes every value of x7 to itself. Since

zh? = po(a, 1),

T3 must be taken to zoej for some m. In this case, z2e}, will be taken to nggm

(the ratios between x4s corresponding to the same — varying — value of x; remains
constant during the variation). Thus, the successive variations along the loops
by, 4, 61_1, 62_1 transforms x5 in the following way:

To x287];ﬂ;1 N $2€Z;1+m2 N $28Z1+m27m1 N $287];Z1+m27m17m1 — 2.

Thus, the variation of a along the commutator of products of commutators of
loops avoiding the dangerous points takes any value of z2 (as well as any value of
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x1) to itself, and the same is true for any product of commutators of products of
commutators. O

Proceeding in the same way, we prove a chain of lemmas ending with

LEMMA 5.7. If a loop ¢ is
a product of commutators of

N products of commutators of

products of commutators of
loops (avoiding the dangerous points), then the variation of a along ¢ returns any
values of x1,...,xN to its initial position.

We are fully prepared now for the

5.10 Proof of main theorem. Suppose that the equation 2° — z +a = 0 is

solvable in radicals. Fix some non-identical even permutation g of roots. Present
g as a product of commutators of even permutations,

g = [, as]fag, aq] . [aos 1, Qo).
Then present each «; as a product of commutators of even permutations,

Qy = [01117 0112} cee [01,2#17 041,2t]

And so on, N times. For each permutation «;, . ;, occurring in the last, N-th,
step, find a loop ¢;,. ;, avoiding all the dangerous values of a which induces this
permutation. In the expression of o via vy, .. i, 's replace each permutation «;, . i,
by the corresponding loop ¢;, ;. We shall obtain a loop which is an N-fold product
of commutators of loops (as in Lemma 5.7).

On the one hand, by Lemma 5.7, this loop returns every value of x  to its initial
position, and hence returns each root of the equation (5.4) to its initial position.
On the other hand, this loop induces the (non-identical) permutation g of the
roots.

This contradiction proves the theorem. O

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
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5.11 Exercises.

5.1. Write a chain of formulas, as in the end of Section 5.2, solving the equation
g +r=0.
How many solutions does it have? The extraneous solutions are the roots of some
other equations. Which ones?
Remark. We suggest to consider a particular equation of degree 4 above, since

for the general equation x* + pz? + gz + r = 0, the solution is basically the same,
but the formulas are much longer.

5.2. Prove that there are precisely 4 permutations (i1,is,143,74) of the set
{1,2,3,4} which can be presented as products of commutators of even permu-
tations (actually, they are just commutators of even permutations). Prove this and
find these 4 permutations.

5.3. Consider the cubic equation

22 +ar—1=0.

—1+/3i
2

(a) For which values of a, does our equation have double roots (that is, what
are the “dangerous values” of a)?

For a =0, it has 3 roots: 1, e3 = , and 3.

(b) One of these dangerous values of a is real (and negative). If @ makes a loop
around this dangerous value starting from 0 (as shown in the third diagram from
the left in the upper row in Figure 5.11), then what is the resulting permutation of
the roots?

(¢) Show that any permutation of the roots can be obtained from a loop starting
from a = 0, avoiding dangerous values of a and returning to 0.



LECTURE 6

How Many Roots Does a Polynomial Have?

Roots of polynomials are discussed more than once on these pages. The reaction
of an average student of mathematics (or that of a practicing mathematician) to
the question in the title of this lecture is that the number of roots of a polynomial
of degree n does not exceed n. Some would add that if one counts complex roots,
and counts them with multiplicities, then this number is exactly n (we shall prove
this Fundamental Theorem of Algebra in Section 6.4).

The content of this lecture is different: we shall discuss two rather surprising
facts. The first is that the number of real roots of a polynomial with real coefficients
depends not on its degree but rather on the number of its non-zero coefficients. The
second is that, although there are no explicit formulas for roots (see Lecture 5), one
can determine exactly how many roots any polynomial has on a given segment.

6.1 Fewnomials. A fewnomial is not a mathematical term.! That is the name
we give to a polynomial? of a large degree with only a few non-zero coefficients. A
typical fewnomial is £'°° — 1 or az™ 4 bxz™. The main property of fewnomials is
that they have only a few roots.

THEOREM 6.1. A polynomial with k non-zero coefficients has no more than
2k — 1 real roots.

Proof. Induction on k. For k = 1, the result is obvious: az™ = 0 has only one
root, x = 0.

Let f(z) be a polynomial with k+ 1 non-zero coefficients. Then, for some r > 0,
f(x) = 2"g(x) where g(x) still has k£ 4+ 1 non-zero coefficients, and one of them is
the constant term. Differentiation kills this constant term, and it follows that ¢'(x)
has k non-zero coefficients. By the induction assumption, ¢’(z) has at most 2k — 1
roots.

IThe term was coined by A. Khovanskii.
2The polynomials in this lecture, except for the last section, are with real coefficients, and
we are concerned only with their real roots.

91
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Rolle’s theorem implies that, between two consecutive roots of a polynomial
(actually, any differentiable function, see Figure 6.1), there exists a root of its
derivative. It follows that the number of roots of g(x) does not exceed 2k. As to
f(x), its roots are those of g(z) and, possibly, x = 0. Therefore, f(z) has at most
2k + 1 roots, as claimed. O

/ \

FIGURE 6.1. Rolle’s theorem

The estimate of Theorem 6.1 is sharp: z(z? —1)(z2—4)--- (2% — k?) has 2k +1
roots 0,+1,42,--- , £k and k 4+ 1 non-zero coefficients.

6.2 Descartes’ rule. Theorem 6.1 becomes too weak if one is interested only
in positive roots. For example, a polynomial with non-negative coefficients does not
have positive roots at alll The next, more refined, theorem is called the Descartes
rule.

THEOREM 6.2. The number of positive roots of a polynomial does not exceed
the number of sign changes in the sequence of its non-zero coefficients.

In particular, Descartes’ rule implies Theorem 6.1: one applies Descartes’ rule
twice, to the positive and the negative half-lines.

Proof. Let us examine what happens to the coefficients of a polynomial when
a new positive root appears. Let f(z) = (z — b)g(z) where b > 0 and g(x) =
apx™ + a12" 1 4+ -+ + ap_17 + a,. The coefficients of f(z) are:

(6.1) ag, a1 — bag,as —bay,- - ,a, — bap_1,—ba,.
The coefficients
(62) ap, a1, ,0n

of the polynomial g(x) are grouped into consecutive blocks of numbers having the
same sign (we do not care about zeros); see Figure 6.2 where these blocks are
represented by ovals. We see that in each place where the sequence a; changes
sign, there arises the same sign as in the right oval. Namely, if a < 0,a54+1 > 0
then ag41 — bap, > 0, and if ax > 0,ax+1 < 0 then ag41 — bay < 0. Moreover, at
the beginning of the sequence (6.1), we have the same sign as at the beginning of
sequence (6.2), and at the end of (6.1), one has the sign opposite to that at the end
of (6.2).

It follows that the number of sign changes in the sequence (6.1) is at least
one greater than that in the sequence (6.2). That is, each new positive root of a



LECTURE 6. HOW MANY ROOTS DOES A POLYNOMIAL HAVE? 93

(o= o+ HDC =D

DEE D e

Aiy1 — ba; >0 a1 — ba; <0

FIGURE 6.2. How a new root affects the coefficients of a polynomial

polynomial increases the number of sign changes in the sequence of its coefficients
by at least one.

To finish the proof, write f(x) as (x —by)--- (x — bg)g(x) where g(x) does not
have positive roots. Then the number of sign changes in the sequence of coefficients
of f(x) is at least that of g(x) plus k, hence, not less than k. O

6.3 Sturm’s method. In this section we shall explain how to determine
the number of roots of a polynomial on a given segment. Let f(z) be a poly-
nomial without multiple roots. We shall construct a sequence of polynomials
po(x),p1(x),p2(x), -, pn(x) of decreasing degrees, called a Sturm sequence, that
enjoys the properties:

(1) po(x) = F(@), p1() = f(@);

(2) if pr(t) = 0 then the numbers py_1(¢) and py41(t) are non-zero and have
the opposite signs;

(3) the last polynomial p,(z) does not have any roots at all.3

Let us call such a sequence of polynomials a Sturm sequence. For a given z,
let S(z) be the number of sign changes in the sequence po(x),---,pn(z) (again,
ignoring zeros). For example, the sequence 2,0,1 has no sign changes whereas
2,0, —1 has one.

To determine the number of roots of f(z) on a segment (a,b) (we do not exclude
the case when either a, or b, or both are infinite) one computes S(a) — S(b): this is
the number of roots of f(x) on the interval (a,b).

Let us prove that this is indeed the case. As x moves from a to b, the number
S(z) may change only when x is a root of one of the polynomials p;. If x is a root
of pg = f then either f changes sign from — to +, and then f’(z) > 0, or from + to
—, and then f’(z) < 0, see Figure 6.3. The first two terms in the Sturm sequence
change as follows:

(_+...),_,(++...) or (_|__...),_,(__...)’

and in both cases, the number of sign changes decreases by 1.

If x is a root of a polynomial p; with 0 < k < n then, according to the second
property of Sturm sequences, the signs of py_1(x) and pr41(z) are opposite. This
implies that, no matter how the sign of p; changes, the number of sign changes in

3Recall that we consider only real roots.



94 LECTURE 6. HOW MANY ROOTS DOES A POLYNOMIAL HAVE?
g ~
/o N\
f(xz) >0 f(xz) <0

FIGURE 6.3. The number of sign changes decreases by 1

the Sturm sequence remains the same:

(..._++...)._>(...__+...) or (..._|_+_...),_,(...+__...).

It remains to construct a Sturm sequence. This is done by long division of
polynomials. We already know the terms pg and p;. To construct px4i from py
and py_1, divide the latter by the former and take the remainder with the opposite
sign:

(6.3) Pr-1(x) = q(2)pr(2) = Pria (2)-

Note that the degree of the next term, pi41, is smaller than that of py; thus, the
division will terminate after finitely many steps.

This process is a version of the Euclidean algorithm for finding the greatest
common divisor of two numbers, discussed in Section 1.9. And indeed, the last
polynomial, p,(x), is the greatest common divisor of f(z) and f’(x). This implies
that p,(z) has no roots: if such a root existed it would be also a common root
of f(z) and f'(x), that is, f(x) would have a multiple root* — the case that was
excluded from the very beginning.

It remains to verify property (2) of Sturm sequences. Assume that pg(z) = 0.
We see from (6.3) that pri1(z) and pr_1(x) have opposite signs, provided they are
both non-zero. If prii(x) = 0 then (6.3) implies that pr_i(x) = 0 as well, and
iterating the argument, eventually that pi(z) = po(z) = 0. But this again means
that f has a multiple root at x which is impossible.

To summarize, (6.3) is an algorithm for constructing a Sturm sequence. Let us
work out an example.

Let f(z) = 2° — x + a, the main character of Lecture 5. The Sturm sequence
consists of four terms:

1 5 5\* 1

5 _ 4_ 1 9 2 4 L

T r+a, T 5’ T 4a, (4) a 5

(we scaled some terms by positive factors to keep the leading coefficient equal to

1). One immediately sees that the values of a for which a* = 4*/5° is “dangerous”,
hardly a new fact for those familiar with Lecture 5.

To fix ideas, assume that a* > 4%/5°. Let us determine the total number of
real roots of f(z). The signs of the Sturm sequence at —oco and +oo are

(_a+a_7+) and (+a+7+7+)7

hence there are 3 roots (if a* < 41/5° this number is equal to 1).

4This fact is proved in Section 8.2.
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What about the number of positive roots? To answer this question, we need
to evaluate the polynomials of the Sturm sequence at x = 0. We get:

S P AR
’ 5 47 4 5

Still assuming that the last number is positive, there are two cases: a > 0 and

a < 0. In the former, we have the signs (+,—, —, +), and in the latter (—, —, 4+, +).
Comparing this to the signs at +oo (all pluses), we conclude that if a > 0 there

are 2 positive roots, and if a < 0 there is a single one (this also holds for a = 0).

6.4 Fundamental Theorem of Algebra. We feel that this lecture would
not be complete without a discussion of the Fundamental Theorem of Algebra.’
The reader probably knows what it states: every complex polynomial of degree n
has exactly n complex roots (counted with multiplicities). In fact, it suffices to
show that there exists one: if b is a root of f(z) then z — b divides f(z). Then the
quotient also has a root, etc., until all n roots are found.

It has been noted that nearly every branch of mathematics tests its techniques
and demonstrates its maturity by providing a proof of the Fundamental Theorem of
Algebra. We shall give a proof that makes use of the notion of the rotation number
of a closed curve about a point.% Given a polynomial f(x) = 2" +a;2" 1 +---+ay,
with complex coefficients, assume that 0 is not its value for any complex z. We
view f as a continuous map from the complex plane to itself.

Consider the circle of radius ¢ about the origin and let 7, be the image of this
circle under the map f. Then 7, is a closed curve that does not pass through the
origin. Let r(t) be the rotation number (total number of turns) of this curve about
the origin. As t varies from very small to very big values, the number r(¢) does not
change: indeed, this is an integer, that continuously depends on ¢, and therefore
constant.

Let us compute r(t) for ¢ very small. The constant term a,, of f(z) is non-
zero, otherwise f(0) = 0. If ¢ is small enough then the curve 7; lies in a small
neighborhood of the point a, and does not go around the origin at all, see Figure

6.4. Thus r(t) = 0.

Tt
. 0

FIGURE 6.4. For t small, the rotation number is zero

5Its first proof was published by d’Alembert in 1746.
6See Lecture 12 for a detailed discussion.
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What about r(t) for t very large? Let us write
ar  a a
f(x)=x”(1+—1+—§+~--+—z).
r T x

Now we deform this formula:

aq a9 Qp
6.4 (z) = n(1 <_ a2 . _))
(6.4) @) =am (Ls (4 Z 4+
where s varies from 1 to 0. Let 7, ¢ be the image of the circle of radius ¢ under the
map fs.

If |x| is sufficiently large then the complex number inside the inner parentheses
in (6.4) is small, in particular, its absolute value is less than 1. Indeed, let |z|® >
nla;| for alli =1,...,n. Then

a8z ) el el L
It follows that the curves 7 s do not pass through the origin for all s. Hence they
all have the same rotation numbers about the origin. This rotation number is
especially easy to find for s = 0: since fo(z) = 2™, the curve 7; o is a circle of radius
t", making n turns about the origin and hence having the rotation number n.

It follows that r(t) = n for ¢ large enough, while r(¢) = 0 for small values of .
This is a contradiction, which proves that f(z) has a root.

In conclusion, let us outline a different argument, very much in the spirit of
Lectures 8 and 5.

We considered in these lectures the space of polynomials of a certain type (such
as 23 + px + q or 2° — x + a) and saw that the set of polynomials with multiple
roots separated the whole space into pieces, corresponding to the number of roots
of a polynomial. The set of polynomials with multiple roots is a (very singular)
hypersurface obtained by equating the discriminant of a polynomial to zero.

Unlike the real case, the set of zeros of a complex equation does not separate
complex space. This is particularly obvious in dimension one: a finite set of points
partitions the real line into a number of segments and two rays, but does not
separate the complex plane, so that every two points can be connected by a path
avoiding this set.

One starts with a polynomial fo(x) of degree n that manifestly has n roots,
say, (x —1)(x — 2)--- (x — n). Any other polynomial, f(x), without multiple roots
can be connected with fy(x) by a path in the space of polynomials without multiple
roots. When one “moves” fy to f, the roots also move, but never collide, until they
become the roots of f(x) (this process is described in detail in Lecture 5).

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
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6.5 Exercises.

6.1. A polynomial of degree n is called hyperbolic if it has n distinct real roots.
Prove that if f(z) is a hyperbolic polynomial then so is its derivative f’(x).

6.2. Prove that between two roots of a polynomial f(x) there is a root of the
polynomial f’(x) + af(x) where a is an arbitrary real.

6.3. Let f(z) be a polynomial without multiple roots. Consider the curve in
the plane given by the equations z = f(t), y = f'(t).

(a) This curve does not pass through the origin.

(b) The curve intersects the positive y-semiaxis from left to right, and the
negative one from right to left.

(¢) Conclude that between two roots of f there lies a root of f' (Rolle’s theo-
rem).

6.4. (a) If a graph y = f(x) intersects a line in three distinct points then there
is an inflection point of the graph between the two outermost intersections.

(b) If a function coincides at n + 1 points with a polynomial of degree n — 1
then its nth derivative has a root.

6.5. The polynomial

x? "

x
L+ g+t
has either no roots or one root according as n is even or odd.

Remark. In contrast, as n — oo, the complex roots of this polynomial have an
interesting distribution. More precisely, in the limit n — oo, the complex roots of
the polynomial ,

Mt ot
tend to the curve |ze!7?| = 1, a theorem by G. Szegd [77].

6.6. Prove that the number of positive roots of a polynomial has the same
parity as the number of sign changes in the sequence of its coefficients.

6.7. Prove the Descartes rule for the function
f(ﬁ) = alehx + a26>\2x NI ane)\nx .

if A7 < Ay < -+ < A, then the number of roots of the equation f(x) = 0 does not
exceed the number of sign changes in the sequence aq,...,a,.

6.8. Compute the Sturm sequence and determine the number of roots of the
polynomial 23 — 3z + 1 on the segments [—3,0] and [0, 3].

6.9. * The following result is known as the Fourier-Budan theorem.

Let f(x) be a polynomial of degree n. Let S(x) be the number of sign changes in
the sequence f(z), f'(z), f"(x), ..., f™(z). Then the number of roots of f between
a and b, where f(a) # 0, f(b) # 0 and a < b, is not greater than and has the same
parity as S(a) — S(b).

6.10. The following approach to the Fundamental Theorem of Algebra is due
to Gauss.

Let f(x) be a generic complex polynomial of degree n. Consider the two curves,
v1 and 79, given by the conditions that the real and the imaginary parts of f(z)
equal zero. One wants to prove that v, and v, intersect.
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Prove that each curve 7; and -5 intersects the boundary C of a sufficiently
large disc D at exactly 2n points, and the points y; N C' alternate with the points
v9 N C. Conclude that v; N D and 72 N D consist of n components each, and that
every component of v; N D crosses some component of 7, N D.



LECTURE 7

Chebyshev Polynomials

7.1 The problem. The topic of this lecture is a very elegant problem on
polynomials that goes back to P. Chebyshev, an outstanding Russian 19-th century
mathematician (cf. Lecture 18).

Fix a segment of the real axis, say, [—2, 2] (the formulas for this segment are the
simplest possible; see Exercise 7.2 for the general case). Given a monic polynomial
of degree n

(71) Pn(x) :xn—|—a1xn_l+...+an,

let M and m be its maximum and minimum on the segment [—2,2]. The deviation
of P,(x) from zero is the greatest of the numbers |M| and |m|. If the deviation
from zero is ¢ > 0 then the graph of the polynomial is contained in the strip |y| < ¢
and is not contained in any narrower strip symmetric with respect to the z-axis.

The problem is to find the monic polynomial of degree n whose deviation from
zero is as small as possible, and to find the value of this smallest deviation.

7.2 Small degrees. Let us experiment with polynomials of small degrees.

EXAMPLE 7.1. If Pi(z) = z+a then M = a+2,m = a—2. If ¢ is the deviation
from zero then |a + 2| < ¢, |a — 2| < ¢. By the triangle inequality

2c>la+2|+|a—2|>|(a+2)—(a—2)| =4,
and hence ¢ > 2. This deviation is attained by the polynomial P (z) = x.

EXAMPLE 7.2. Let us consider polynomials of degree two, Py () = 22 +px +q.
A little reflection suggests that the optimal position of the graph of a quadratic
polynomial is the most symmetric one, as in Figure 7.1. This figure depicts the
graph of the polynomial 22 — 2 whose deviation from zero is 2.

Let us prove that this is indeed the answer for polynomials of degree 2. If ¢ is
the deviation from zero of Py(x) then the moduli of its values at the end points +2

99
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Y
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[ ]

*
|

-2

FiGURE 7.1. The “best” quadratic parabola

and point 0 do not exceed c:

c > |4+2p+4q|,
> ql.

Using the triangle inequality again yields:
de>4—2p+q|+]4+2p+q|+2[g > |(4—2p+q)+ (4+2p+q) — 29| =8,
and hence ¢ > 2.

EXAMPLE 7.3. Let us try our luck once again, for polynomials of degree three,
P3(z) = 2% + px? + qx +r. If c is the deviation from zero of P3(x) then the moduli
of its values at the end points +2 and points £1 do not exceed c:

¢ > |—=8+4+4p—2q+r|,
c > [8+4p+2q-+r|,
c > |[=1+p—q+r]
c > [L+p+qg+r.

The triangle inequality yields:

2> |—8+4p—2q+7r|+|8+4p+2g+r| > |16 + 4q|,
4c > 2|—1+pfq+r|+2|1+p+q+r\2|4+4q|,

and applying the triangle inequality again,
6c > [16 + 4q| + [4 + 4q| = [(16 + 4q) — (4 + 4q)| = 12,

which implies that ¢ > 2. An example of a cubic polynomial with deviation from
zero 2 is % — 3x.

An adventurous reader may try to consider polynomials of degree 4 but this
is not a very inviting task. One may conjecture that the least deviation from zero
will be always 2, but to prove this, one needs more than just “brute force”.
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7.3 Solution. Suppose that, for some ¢ > 0, we found a polynomial P, (x)
of degree n such that its graph (over the segment [—2,2]) lies in the strip |y| < ¢
and contains n + 1 points of its horizontal boundaries: the right-most on the upper
boundary y = ¢, the next left on the lower boundary y = —c, the next left on y = c,
etc. Thus the graph snakes between the lines y = +c¢, touching them alternatively
n + 1 times.

FIGURE 7.2. The graph of an optimal polynomial

THEOREM 7.1. The deviation from zero of any monic polynomial of degree n
is not less than ¢, and P,(x) is the unique monic polynomial of degree n with the
deviation from zero equal to c.

Proof. Let @, (z) be another monic polynomial of degree n whose deviation
from zero is less than or equal to ¢. Then its graph also lies in the strip |y| < c.

Let us partition this strip into n + 1 rectangles by the vertical lines through
the maxima and minima of P, (z), see Figure 7.2. The graph of P, (x) connects the
diagonally opposite vertices of each rectangle, therefore the graph of @, (z) interests
that of P, (x) in each rectangle (see Figure 7.3). There are n such rectangles, and
therefore the equation P,(x) — Q,(z) = 0 has at least n roots. But P,(z) — Q,(x)
is a polynomial of degree n— 1, which has at most n— 1 roots, unless it is identically
zero. Conclusion: P,(z) = Q,(z), and we are done. O

We cannot claim yet “mission accomplished” because we still do not have the
polynomials P, (z) satisfying the conditions of Theorem 7.3.
LEMMA 7.4. There exists a monic polynomial P, (x) of degree n such that

(7.2) 2cosna = P,(2cos ).
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T
FI1GURE 7.3. Proof of Theorem 7.1
For example,
2cos2a = 4dcos?a—2=(2cos?a)? —2, thus Pp(z)=2%?-2,
2cos3a = 8cos®a —6cosa = (2cos?a)® —3(2cosa), thus Ps(z)= 2% — 3.

Proof. (cf. Proposition 2.4) Induction on n. Assume that (7.2) holds for n —1
and n. Then
cos(n + 1)a + cos(n — 1)a = 2 cos a cos na,

and hence

2cos(n + 1)a = 4cosacosna — 2cos(n — 1)a = (2cos ) (2 cosna) — 2 cos(n — 1)
= (2cosa)P,(2cosa) — P,_1(2cos ).

Therefore

(7.3) P i1(z) = 2P, (x) — Pp_1(x).

This recurrence relation defines the desired sequence of monic polynomials P, of
degree n. O

The polynomials P, (z) are what we need. Indeed, let « vary over [0,7]. Then
no varies over [0, n7], and the functions * = 2cosa and P,(x) = 2cosna range
over the segment [—2,2]. Moreover, x covers this segment exactly once, while
P, (x) covers it n times, assuming alternating values +2 for = = arccos(kn/n), k =
0,...,n. This means that the graph of the polynomial P, (z) lies in the strip |y| < 2
and contains n + 1 points of its alternating boundaries.

Let us summarize: there is a unique monic polynomial of degree m, given by
(7.2), whose deviation from zero on segment [—2,2] is 2, and the deviation from
zero of any other monic polynomial of degree n is greater.

The polynomials P, (x) are called Chebyshev polynomials ; see Figure 7.4 for
the graphs of the first Chebyshev polynomials.
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y y
\
y = Ps(x) y = Py(z)
y y y
| z X x
y= y = Ps(x) y = Pr(x)

FIGURE 7.4. The graphs of the first seven Chebyshev polynomials

7.4 Formulas. The Chebyshev polynomials
Po(x) =2, Pi(z) =2, Py(x) = 2% -2, Psy(x) =2 — 3z, Py(z) =a* —4a®+2,...

can be described by a number of explicit formulas. For example, consider the
continued fraction:

R,=x— !
1
T —
1
T —
1

2

r— 2

T

Thus ) .
e —2 x° — 3x
p— R pr— p—
Rl Z, 2 e ) 3 332 2 )
and in general,
LEMMA 7.5. ()
P,(x
R,(x) =
( ) Pnfl(.’t)
Proof. Induction on n. One has:
1 P, 1(z)  xP,(x)— Py 1(z)  Pnii(x)

Rn = —_— = — = = 5
S T E N ¢S Py (1) Po(z)
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the last equality due to the recurrence relation (7.3). O

Here is another formula which describes the coefficients of the Chebyshev poly-
nomials via binomial coefficients.

THEOREM 7.2.

_omn_ N n—1\ . 5 n n—2\ ,_4
P,(z)==z n—l( 1 >x +n—2< 5 )x +...

+(—1)jL <n ,j>x”2j +...

n—J\ J

(with j < n/2).
Proof. One can encode Chebyshev polynomials in the generating function
B(2)=2+4a2+ (22 —2)22 + -4 Po(x)2" +....
Using the recurrence relation (7.3), one can replace each P, (z), starting with n = 2,
by a combination of P,_1(z) and P,_o(x):
®(2) = 24a2+ (2P (x) — Py(x))22 + (xPa(z) — P1()) 2% + (xPs(x) — Po(z))2 +. ..
=242+ x2(P(x)z+ Py(z) 2 + P3(2)2 ... ) — 22 (Po(z) + Pi(z) 2 + Po(2)2% +...)
=24 x4+ x2(P(2) — 2) — 228(2) =2 — 22 + (x2 — 22)D(2).
Hence
22—z
C1l—zz 422
This formula contains all the information about Chebyshev polynomials; it remains
only to extract the information from there. The key is the formula for geometric
progression:

o(2)

L 2 3
—=14+q+q +q¢°+....
I—q

Thus
(7.4) B(2) = (2—x2)[1 + (22 — 22) + (w2 — 22)* + (x2 — 223 + .. ]
One has:

(z2 — 22)F = aF2h — k1P g (1) (j)xkakﬂ +....
Collecting terms on the right-hand side of (7.4) yields the following coefficient in
front of z™:

, —j —i-1 ,
x”+~~+(1)ﬂ[2<n,j><n J )]x"2j+....
J J
It remains to simplify the expression in the brackets:
2<n—j> B <n—j—1) _2m=j)! (==
j i) T =2 =2 - D)

et ()

and the result follows. O
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7.5 Exercises.

7.1. There is a shortcoming in the proof of Theorem 7.1: the graphs of the two
polynomials may be tangent at the intersection point, see Figure 7.5. Adjust the
argument to this case.

Y

F1cure 7.5. A difficulty with tangency

7.2. Prove that the least deviation from zero of a monic polynomial on a seg-

ment [a, b] equals
b—a\"
2 .

7.3. Find the least deviation from the function y = e® of a linear function
y = ax + b on the segment [0, 1].

7.4. Prove yet another formula for Chebyshev polynomials:

(2 + Va2 —4)" + (z — Va2 — 4"

b, (”C) - on

(we assume here that |z| > 2).




106 LECTURE 7. CHEBYSHEV POLYNOMIALS

7.5. Prove that

x 2 0 0 - 0
1 T 1 0
Bawy=det|” LT
o o0 - 1 =z 1
o o0 - 0 1 =z

7.6. Prove that the polynomials are orthogonal in the following sense:

2 P (z)P,(z) B
[27—4—x2 dr =0

for all m # n.

7.7. Prove that Chebyshev polynomials commute:
Pp(Pp () = Pp(Pa(2)).

7.8. * Consider a family of pairwise commuting polynomials with positive lead-
ing coefficients and containing at least one polynomial of each positive degree. Prove
that, up to linear substitution, it is the family of Chebyshev polynomials or the
family x™.

The next three exercises provide an alternative proof of 7.1.
7.9. Consider a trigonometric polynomial of degree n
(7.5) fla) =ap+ a1 cosa+ agcos2a + - - - + ap, cos na.

Prove that its “average” value

g [0 =1 G s (7)1 (5) e (7))

is equal to a,.

7.10. Prove that the deviation from zero of the trigonometric polynomial (7.5)
on the circle [0, 27] is not less than |a,|.
Hint. The deviation from zero is not less than

% [f(0)|+ f(%)\++‘f(w>u

Use Exercise 7.9 and the triangle inequality |a| + [b] > |a + b|.

7.11. Deduce Theorem 7.1 from Exercises 7.9 and 7.10.

Hint. After the substitution x = cosa, the polynomial P,(x) becomes a
trigonometric polynomial (7.5) with the leading coefficient 1/2"~1. As « ranges
over the circle, x traverses the segment [—1, 1].




LECTURE 8

Geometry of Equations

8.1 The equation 22 + pz + ¢ = 0. Looking at the expression in the title of
this section, we see a quadratic equation in the variable z whose coefficients are the
parameters p and ¢g. This is a matter of one’s perspective: equally well one may
view this expression as a linear equation in the variables p and g with coefficients
depending on the parameter z. A linear equation ¢ = —xp — 22 describes a non-
vertical line; thus one has a 1-parameter family of lines in the (p, ¢)-plane, one for
each .

2

F1GURE 8.1. The envelope of the family of lines ¢ = —ap —

107
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Let us draw a few lines from this family, see Figure 8.1. These lines are tangent
to a curve that looks like a parabola. This envelope is the locus of intersection points
of pairs of infinitesimally close lines from our family (the reader will find explicit
formulas in Section 8.3). That our envelope is indeed a parabola, will become clear
shortly. Each line in Figure 8.1 corresponds to a specific value of x. Let us write
this value of z at the tangency point of the respective line with the envelope. This
makes the envelope into a measuring tape, like the z-axis, but bent — see Figure
8.2.

FIGURE 8.2. A bent “measure tape”

The curve in Figure 8.2 can be used to solve the equation z? + pz +¢ = 0
graphically. Given a point in the (p, ¢)-plane, draw a tangent line from this point
to the envelope. Then the z-value of the tangency point is a root of the equation
2%+ px +q = 0, see Figure 8.3. In particular, the number of roots is the number of
tangent lines to the envelope from a point (p, ¢). For the points below the envelope
there are two tangent lines, and for the points above it — none.

What about the points on the envelope? For them, there is a unique tangent
line to the envelope, that is, the two roots of the quadratic equation coincide. Thus
the envelope is the locus of points (p, ¢) for which the equation 2% + px + ¢ = 0 has
a multiple root. This happens when p? = 4¢q, that is, the envelope is the parabola

q=p*/4.

8.2 The equation 23 + px + ¢ = 0. A simple quadratic equation probably
does not deserve this relatively complicated treatment. Let us now consider the
more interesting cubic equation z3 4 px 4+ ¢ = 0. Although this equation still can
be solved explicitly in radicals (see Lecture 4), these formulas are not so simple
and, in some situations, not very useful. Instead, let us treat this equation as a
1-parameter family of lines in the (p, ¢)-plane.

Figure 8.4 depicts several lines and features their envelope with a scale on
it. This envelope is a cusp and it strongly resembles the semicubic parabola from
Lecture 9. We shall find its equation in a minute.
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q
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T2
P

(p,q)

F1cURrE 8.3. A machine for solving quadratic equations

q q
1.5
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-1.3
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FIGURE 8.4. The envelope of the family of lines 2% + px + ¢ = 0
and a bent “measure tape”

As before, the curve in Figure 8.4 is a device for solving the equation 2% 4 pz +
q = 0 graphically: draw a tangent line to the envelope from a point (p,¢) and read
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off a root as the z-coordinate of the tangency point. For points inside the cusp,
there are three tangent lines, and for points outside it — only one, see Figure 8.5.
The curve itself is the locus of points (p, q) for which the equation has a multiple
root, and the vertex of the cusp, the origin, corresponds to the equation x® = 0
whose roots are all equal.

T / (p,q)

(p7 Q) T2

T1

T3

F1GURE 8.5. The number of roots of a cubic equation

To find an equation of the curve in Figures 8.4 and 8.5, one needs to know
when the equation 22 4+ px + ¢ = 0 has a multiple root. A general criterion is as
follows.

LEMMA 8.1. A polynomial f(x) has a multiple root if and only if it has a
common root with its derivative f'(x).

Proof. If @ is a multiple root of f(z) then f(z) = (z — a)%g(z) where g(z) is
also a polynomial. Then f’(z) = 2(z — a)g(z) + (z — a)?¢’(x), hence a is a root of
().

Conversely, let a be a common root of f and f’. Then f(x) = (x — a)g(z) for
some polynomial g, and hence f'(z) = g(z) + (z — a)g’(z). Since a is a root of f,
it is also a root of g. Thus g(z) = (z — a)h(z) for some polynomial h, and therefore
f(x) = (x — a)?h(x). It follows that a is a multiple root of the polynomial f. O
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In our situation, f(x) = 23 +px+q and f'(x) = 322 +p. If a is a common root
of these polynomials then p = —3a? and ¢ = —a® — pa = 2a>. These are parametric
equations of the envelope in Figures 8.4 and 8.5. One may eliminate a from these
equations, and the result is

4p3 4+ 27¢% = 0.
This is a semicubic parabola.

The expression D = —(4p® + 27¢?) is the discriminant of the polynomial 2 +
pr—+q; its sign determines the number of roots: if D > 0 there are three, and if D < 0
one real root. By the way, there is no loss of generality in considering polynomials
2% + px + ¢ with zero second highest coefficient: one can always eliminate this
coefficient by a substitution x +— x + ¢ (this is discussed in detail in Lecture 4).

8.3 Equation of the envelope. An equation for the envelope of a 1-parameter
family of curves, in particular, lines, is easy to find. Let us do this in the case of
our cubic polynomial f(x) = z3 + pz + q.

A point of the envelope is a point of intersection of the line 22 + pz + ¢ = 0
and the infinitesimally close line (z + &) 4+ p(z + &) + ¢ = 0. The second equation
can be written as

(2 + pzr+q) +e(32° + p) + O(*) =0

where, following the common calculus notation, O(g?) denotes the terms of order
2 and higher in . Since ¢ is an infinitesimal, we ignore its powers starting with
€2, and the system of equations becomes f(x) = 0, f(x) + ef'(x) = 0, which is of
course equivalent to
f(a) = f'(z) =0.

This is a parametric equation of the envelope (x being the parameter), and this
holds true for any 1l-parameter family of curves in the (p,q)-plane given by the
equation f(z,p,q) = 0. In view of Lemma 8.1, we see again that the envelope
corresponds to the points (p, ) for which the cubic polynomials 2° + pz + ¢ has a
multiple root.

8.4 Dual curves. Consider the equation
(8.1) l+kp+q=0.

We are free to consider (8.1) as a linear equation in the variables p, ¢ depending
on k,l as parameters, or as a linear equation in the variables k, [ depending on p, ¢
as parameters. Thus every non-vertical straight line in the (p, ¢)-plane corresponds
via (8.1) to a point of the (k,I)-plane, and vice versa. We have two planes, and
points of one are the non-vertical lines of the other. These two planes are said to
be dual to each other.

Let us use the following convention: points are denoted by upper-case letters
and lines by lower-case ones. Given a point of one of the planes, denote the cor-
responding line of the dual plane by the same lower-case letter. We shall think of
the (k,1)-plane as positioned on the left and the (p, ¢)-plane on the right.

The first observation is that the incidence relation is preserved by this duality:
if A €l then L € a. Indeed, let A and [ lie in the left plane, A = (k,1), and
L = (p, q) be the point dual to I. Then equation (8.1) says that ! passes through A
but, by the same token, that a passes through L.

For example, a triangle is a figure made of three points and three lines. Duality
interchanges points and lines but preserves their incidence, and the dual figure is
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again a triangle. Likewise, the figure dual to a quadrilateral with its two diagonals
consists of four lines and their six pairwise intersection points, see Figure 8.6.

LN

FIGURE 8.6. Dual figures

Duality extends to smooth curves. Let v be a curve in the left plane. The
tangent lines to -y correspond to points of the right plane (we assume that v has no
vertical tangents). One obtains a 1-parameter family of points of the right plane,
that is, a curve. This curve is said to be dual to v and we denote it by v*. The
following example will clarify this construction.

ExXAMPLE 8.2. Let v be a “parabola” of degree « given by the equation [ = k*.
The tangent line at the point (¢,t) has the equation | — at® 1k + (o — 1)t* = 0,
that is, [ + kp + ¢ = 0 with p = —at®" 1, ¢ = (a — 1)t®. This is a parametric
equation of another parabola of degree 8 = «/(av — 1), and hence v* is a parabola
of degree 3. A more symmetric way to write the relation between a and 3 is

1 1 1
a + g
In particular, if « = 2 then 8 = 2, and if & = 3 then 8 = 3/2.

Let us discuss how duality changes the shape of a curve. If v has a double

tangent line then the dual curve v* has a double point, see Figure 8.7.

SN TN ><

F1GURE 8.7. A double tangent is dual to a double point

Suppose now that v has an inflection point as in Figure 8.8. An inflection point
is where a curve is abnormally well approximated by a line (at a generic point, one
has first order tangency but at an inflection point the tangency is of at least second
order). This implies that the dual curve is abnormally close to a point, that is, has
a singularity, see Figure 8.8. This qualitative argument is confirmed by Example
8.2: if v is a cubic parabola then v* is a semicubic cusp.
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Y 7
FIGURE 8.8. An inflection is dual to a cusp
Due to the symmetry between dual planes, one would expect duality to be a

reflexive relation, that is, if v is dual to d then § is dual to ~. This is indeed the
case.

THEOREM 8.1. The curve (v*)* coincides with .

4
Y y*
L| b B
a
A

FIGURE 8.9. Proof of Theorem 8.1

Proof. Start with the curve v*. To construct its dual curve one needs to consider
its tangent lines. Consider instead a secant line [ that intersects v* at two close
points A and B. The dual picture consists of two close tangent lines a and b to ~y
intersecting at the point L, dual to the line [ — see Figure 8.9. In the limit, as the
points A and B tend to each other, the line [ becomes tangent to v* and the point
L “falls” on 7. Thus (y*)* =~. O

This duality theorem makes it possible to read Figures 8.7 and 8.8 backwards:
if a curve has a double point then its dual has a double tangent, and if a curve has
a cusp then its dual has an inflection. For example, the curves in Figure 8.10 are
dual to each other.

Let us relate this to what we did in Sections 8.1 and 8.2. For example, the
equation 23 +pz+¢ = 0 is obtained from the equation [ +kp+q =0if k = 2,1 = 3.
The latter equations describe a cubic parabola in the (k,1)-plane. The dual curve
in the (p, ¢)-plane is the envelope of the 1-parameter family of lines 2% +px +q = 0,
a semicubic parabola, as we discovered in Section 8.2.
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FIGURE 8.10. A pair of dual curves

We can also explain why the curves in Figures 8.2 and 8.4 do not have inflec-
tions. The l-parameter families of lines 22 + pz + ¢ = 0 and 2 + px +q = 0
determine smooth curves in the (k,[)-plane (for example, k = x,1 = 22, in the first
case). Therefore their dual curves in Figures 8.2 and 8.4 are free from inflections.

8.5 The projective plane. The self-imposed restriction not to consider ver-
tical lines is somewhat embarrassing. Can one extend duality between points and
lines to all lines? The way to go is to extend the plane to the projective plane.

The projective plane is defined as the set of lines in Euclidean three dimensional
space passing through the origin. Since every line intersects the unit sphere at two
antipodal points, the projective plane is the result of identifying pairs of antipodal
points of the sphere. The (real) projective plane is denoted by RP2.

Given a line in [ through the origin, that is, a point of the projective space,
choose a vector (u,v,w) along I. This vector is not unique, it is defined up to
multiplication by a non-zero number. The coordinates (u,v,w), defined up to a
factor, are called homogeneous coordinates of the point .

By definition, a line in the projective plane consists of the lines in space that lie
in one plane. Choose a plane 7 in space not through the origin (a screen). Assign to
every line its intersection point with this screen. Of course, some lines are parallel
to the screen and we shall temporarily ignore them. This provides an identification
of a part of the projective space with the plane 7, and the lines in the projective
plane identify with the lines in 7. In other words, the plane m can be considered
as a (large) part of the projective plane, called an affine chart. Another choice of a
screen would give another affine chart. If 7 is given by the equation z = 1 (where
x,y,z are Cartesian coordinates) then one may choose homogeneous coordinates
in the form (u,v,1) and drop the last component to obtain the usual Cartesian
coordinates in the plane 7.

Which part of the projective plane does not fit into an affine chart? These
are the lines in space that are parallel to 7. If a line makes a small angle with 7
then its intersection point is located far away, and if this angle tends to zero, the
respective point escapes to infinity. Thus the projective plane is obtained from the
usual plane 7 by adding “points at infinity”. These points form a line, “the line at
infinity”. The homogeneous coordinates of these points are (u,v,0).
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Given a line [ through the origin, consider the orthogonal plane 3 passing
through the origin. This defines a correspondence between points and lines of the
projective plane, the projective duality. Let (u,v,w) be homogeneous coordinates
of I, and let the plane 8 be given by the linear equation ax + by + cz = 0. The
condition that [ is orthogonal to (3 is

(8.2) au~+bv+ cw = 0.

Assume that w # 0 and a # 0. Then one may rescale the homogeneous coordinates
so that w = @ = 1, and equation (8.2) can be written as u + bv+ ¢ = 0. This differs
from equation (8.1) only by the names of the variables. The condition w # 0 means
that we are restricted to an affine chart and the condition a # 0 that we consider
non-vertical lines.

8.6 The equation z*+ pz?+ gz +7r = 0. This equation defines a 1-parameter
family of planes in Euclidean 3-space with coordinates p, ¢, 7. The envelope of this
family is a surface depicted in Figure 8.11.

Consider two planes from our family corresponding to very close values of the
parameter, x and = + €. These two planes intersect along a line, and this line has
a limiting position as € — 0. One has a 1-parameter family of lines, I(x), and they
all lie on the surface. Thus this surface is ruled.

Now take three planes from our family, corresponding to the parameter values
x — e,z and © + . These three planes intersect at a point, and again this point
has a limiting position as ¢ — 0. This point, P(z), is also the intersection point
of infinitesimally close lines I(z) and I(x + ¢). Thus the lines [(x) are tangent to
the space curve P(x) which they envelop. Note that, in general, a 1-parameter
family of lines in space does not envelop a curve: two infinitesimally close lines will
be skew; our situation is quite special! To summarize: the surface in Figure 8.11
consists of lines, tangent to a space curve.

In fact, it is easy to write down equations for this curve. Let f(z) = x* + pa? +
gx + r. Arguing as in Section 8.3, a parametric equation of the curve P(x) is given
by the system of equations f(z) = f/(z) = f”(x) = 0, that is,

4 prttqgr+r=0, 42®+2px+q=0, 1222 +2p=0.

Hence
p= —61‘2, q= 8x3, r= —31‘4,
a parametric equation of a spacial curve. This curve itself has a cusp at the origin.
In Figure 8.11, this curve cosists of two smooth segments, BA and AC'; A represents
the origin. Besides the curviliunear triangle BAC, the surface has two “wings,”
ABGF and ACHE, attached to the segments BA and AC and crossing each other
along the curve AD. Figure 8.11 shows the surface as it was presented in the
algebraic works of the 19-th century. In geometric works of the second half of
the 20-th century, this surface reappeared under the name of swallow tail. We
shall consider this surface in the context of Paper Sheet Geometry, and a (more
comprehensible) picture of this surface will be presented in Lecture 13 (see Figure
13.17).
Figure 8.12 depicts the curve

2

p=—62% ¢=82% r=—-3z*
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F

FIGURE 8.11. The envelope of the family of planes z* 4 pz? 4 gz +
r=20

separately from the surface. The side diagrams of Figure 8.12 show the projections
of this curve onto the pg-, pr-, and gr-planes. Notice that in the projection onto
the pr-plane, the curve folds into a half of a parabola.

s

NN

FiGURE 8.12. The curve itself has a cusp
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The surface in Figure 8.11 is given by the system of equations f(x) = f'(z) =0,

that is,

st pr?+qr+r=0, 42+ 2px+q=0.
If one eliminates = from these equations, one obtains one relation on p,q,r, and
this equation will be our goal in the next section.

Similarly to Sections 8.1 and 8.2, the number of roots of the equation z* +
px? + gr + v = 0 equals the number of tangent planes to our surface from the
point (p, ¢, 7). This number changes by 2 when the point crosses the surface. The
set complement of the surface consists of three pieces, corresponding to 4, 2 and 0
roots.

8.7 A formula for the discriminant. The discriminant of a polynomial
f(z) of degree n is a polynomial D in the coefficients of f(x) such that D = 0 if
and only if f(z) has a multiple root. Namely,

D =Th<icjen(zi — 25)°

where z1, ..., z, are the roots. Recall that the coefficients of a polynomial are the
elementary symmetric functions of its roots, see Lecture 4. The discriminant D
is also a symmetric function of the roots, and therefore it can be expressed as a
polynomial in the coefficients of f(x). The actual computation is a tedious task
but it is doable “barehanded” for polynomials of small degrees.

EXAMPLE 8.3. Let us make this computation for f(z) = 23 + px + ¢q (we know
the answer from Section 8.2). One has:

T+ 0+ 23 =0,
T1T2 + Tox3 + X371 =P,
T1T2x3 = —(.

Thus p has degree 2 as a polynomial in the roots, and ¢ has degree 3. The discrim-
inant has degree 6, and there are only two monomials in p and ¢ of this degree: p?
and ¢?. Thus D = ap® + bg? with unknown coefficients a and b.
To find these coefficients, let
Tr1 = T2 = t, Ir3 — —2t.
Then
D=0 and p=-3t3 ¢q=2t3
This implies that 27a = 4b. Next, let x1 = —x2 = t,23 = 0. Then
D=4t and p=—t? ¢=0.
It follows that a = —4,b = —27 and D = —4p® — 27¢>.
A similar, but much more tedious, computation yields the rather formidable
formula for the discriminant of the polynomial f(z) = z* + pa? + qx + 7
(8.3) D = 25613 — 128p?r? — 27¢" — 4p>¢® — 16ptr — 144pg®r.

Another method of computing the discriminant D is as follows. We want to
know when f(z) and f’(z) have a common root, say a. If this is the case then
f(x) = (z—a)g(z), f'(z) = (x — a)h(z) where g and h are polynomials of degree 3
and 2, respectively. It follows that

(8.4) F@)h(x) - f (2)g(x) = 0.
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One may consider the coefficients of h and g as unknowns (there are 7 of them), and
then equating all the coefficients in (8.4) yields a system of seven linear equations in
these variables. This system has a non-trivial solution if and only if its determinant
vanishes. The reader will easily check that this determinant is

1 0 P q r 0 0

0 1 0 p q r 0

0 0 1 0 P q r
(8.5) -4 0 —-2p —q 0 0 01,

0 -4 0 —2p —q 0 0

0 0 -4 0 -2 —q O

0 0 0 —4 0 —2p —q

and equating it to zero yields another form of the equation of the surface in Figure
8.11. This might be a nicer way to present the answer but it is still a separate and
not-so-pleasant task to check that this is the same as (8.3); nowadays we might
delegate this task to a computer.

A final remark: the coefficients in formula (8.3) are rather large numbers,
and one wonders whether these numbers have any combinatorial or geometrical
meaning. A conceptual explanation of this and many other similar formulas is
provided by the contemporary theory of discriminants and resultants, see the book
by I. Gelfand, M. Kapranov and A. Zelevinsky [33]; in particular, the coefficients
in (8.3) are interpreted as volumes of certain convex polytopes.

8.8 Exercises.

8.1. (a) Consider the 1-parameter family of lines
(8.6) psinz + gcosx = 1.

Draw its envelope and use it to solve equation (8.6) geometrically for different values

of (p,q).
(b) Same problem for the equation Inz = px + gq.

8.2. Draw the curve dual to the graph y = e”.

8.3. (a) The equation x2 +y? = 1 describes a circle in the affine chart z = 1 of
the projective plane. Draw this curve in the affine chart =z = 1.
(b) Same question for the equation y = 1/(1 + 22).

8.4. Draw the curves in the projective plane, dual to the curves from Exercise
8.3.

8.5. Take a unit disc and paste together every pair of antipodal points on its
boundary. Prove that the resulting space is the projective plane.

8.6. (a) Prove that the projective plane with a deleted disc is a Mobius band.
(b) Prove that the set of all non-oriented lines in the plane (not necessarily
passing through the origin) is a Mobius band.

8.7. (a) Prove formula (8.3).
(b) Prove that (8.3) is equal to (8.5).
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LECTURE 9

Cusps

Among the graphs that calculus teachers love to assign their students, there are
curves containing sharp turns, which mathematicians call cusps. A characteristic
example given in Figure 9.1 below. This is a semicubic parabola, a curve given by

the equation y? = 3.

FIGURE 9.1. Semicubic parabola

The next example is the famous cycloid (Figure 9.2). You will observe it if you
make a colored spot on the tire of your bike and then ask your friend to ride the
bike. The spot will trace the cycloid.

Our last example is the so-called cardioid (Figure 9.3), a curve whose name
reflects its resemblance to a drawing of a human heart. Mathematicians usually
present this curve by the polar equation p = 1 + cos 6.

123
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Ficure 9.2. Cycloid

FIGURE 9.3. Cardioid

Certainly, the cusps on these graphs may seem something occasional, acciden-
tal: there are so many curves without cusps. But do not come to a premature
conclusion. Our goal is to convince you that cusps appear naturally in so many
geometric or analytic contexts, that we can justly say: cusps are everywhere around!

Let us draw an ellipse, the one given by the equation % +y? =1 and a suffi-

ciently dense family of normals to the ellipse (a normal is a line perpendicular to
the tangent at the point of tangency, see Figure 9.4).

FIGURE 9.4. A tangent and a normal to an ellipse
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A picture of the ellipse and 32 of its normals is shown in Figure 9.5. Although
Figure 9.5 does not contain anything but an ellipse and 32 straight lines, we see
one more curve on it: a diamond-shaped curve with four cusps. This phenomenon
is not any special property of an ellipse. If we take a family of normals to a less
symmetric egg-shaped curve, the diamond will also lose its perfect symmetry, but
the cusps will still be there (see Figure 9.6).

FIGURE 9.5. An ellipse with thirty two normals

The curve with cusps is called the evolute of the given curve (to which we
have taken the normals). It has a simple geometric, or, better to say, mechanical
description. If a particle is moving along a curve, at every single moment its
movement may be regarded as a rotation around a certain center. This center
changes its position at every moment, thus it also traces a curve. It is this curve
that we see on Figures 9.5 and 9.6. Evolutes always have cusps. Moreover, the
celebrated Four Vertex Theorem! (proved about 100 years ago, but still appearing
mysterious) states that if the given curve is non-self-intersecting (like an ellipse or
the egg-shaped curve of Figure 9.6), then the number of cusps on the evolute is at
least four.

For self-intersecting curves this is no longer true; the next picture (Figure 9.7)
shows a family of normals to a self-intersecting curve; the evolute is clearly visible
on this picture, and it has only two cusps.

To be honest, this seemingly spontaneous appearance of a curve with cusps
on a picture of a family of normals is not directly related to normals. You will
see something very similar, if you take a “sufficiently arbitrary”, or “sufficiently

ISee Lecture 10.
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FIGURE 9.6. An egg-shaped curve with normals

o SO SNEY

FIGURE 9.7. A self-intersecting curve with normals
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random” family of lines. Imagine an angry professor who throws his cane at his
students. The cane flies and rotates in its flight. If you draw a family of subsequent
positions of the cane in the air, you will see something like Figure 9.8.

AKX LA XX
”'.' '32333“\,“;’!.,!,' 223

N2
L7

FIGURE 9.8. A flying cane (straight)

FIGURE 9.9. A flying cane (curvy)

You see here 32 subsequent positions of the cane, but also a curve looking a
bit like the cycloid (Figure 9.2), with cusps (one of the cusps is clearly seen in the
middle of the drawing). And straight lines do not play any special role, simply it
is more convenient to draw them. If the professor is old and heavy, and his cane
has long lost its linearity, then the picture of Figure 9.8 will look differently, but
the cusps will remain (see Figure 9.9).

But let us turn to another geometric construction where cusps arise in an even
more unexpected way. Let us again begin with an ellipse. Imagine that all point of
our ellipse simultaneously begin moving at a constant speed, the same for all points,
and that every point moves inside the ellipse along the normal to the ellipse. At
first, the ellipse shrinks, but still retains its smooth oval shape (Figure 9.10).

FI1GURE 9.10. First, the ellipse retains its oval shape
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But then the points begin forming sort of crowds at the left hand and right
hand extremities of the curve (Figure 9.11), then the trajectories of the points cross
each other (no collisions, they pass through each other), and, believe it or not, the
curve acquires four cusps (Figure 9.12).

FIGURE 9.11. Then the points begin forming crowds

FIGURE 9.12. Eventually, the curve acquires cusps

The evolution of the moving curve, which is conveniently called a front, can
be seen on Figure 9.13. We see that after the appearance of the four cusps, the
curve consists of four sections between the cusps, two short and two long, and the
long sections cross each other twice. Then the short sections become longer, and
the long sections become shorter. At some moment, the “long” sections (which are
not so long at this moment) go apart; then the “short” sections (which are quite
long at this moment) meet and form two crossings. Then the cusps bump into each
other and disappear, and the curve again becomes more or less elliptic.

It is interesting to draw all the fronts of Figure 9.13 on one picture. The cusps
of the fronts form a curve themselves (Figure 9.14), and if you compare Figure 9.14
with Figure 9.5, you will see that our curve is nothing but the evolute of the ellipse.

Similarly, the movement of the fronts of the self-intersecting curve of Figure
9.7 is shown on Figure 9.15. The drawing on Figure 9.16 presents the whole family
on one picture; if you trace, mentally, the curve of cusps, you will get the two-cusp
evolute visible on Figure 9.7.

If you want to have more examples, observe the family of fronts of a sine wave
(Figure 9.17); you can guess, what the evolute of a sine wave looks like (the evolute
of a curve with inflection points always has asymptotes; these asymptotes are the
normals to the curve at the inflection points; if the words “inflection points” and
“asymptotes” do not mean much to you, forget about them).

Still, all these examples do not seem to justify the statement “cusps are ev-
erywhere around.” One can argue, “if cusps are everywhere around, then why we
don’t see them?” But we do!
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FIGURE 9.13. The evolution of a front
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FIGURE 9.14. The fronts and the evolute

To be convinced, let us look around through the eyes of a great artist. Look
at the famous portrait of Igor Stravinsky drawn in 1932 by Pablo Picasso (Figure
9.18). This picture of a great composer made by a great artist, which probably
bears a notable resemblance to the original, is, actually, nothing but several dozens
of pencil curves. But Igor Stravinsky’s face was not made of curves! Then, what do
these curves represent? And why do they stop abruptly without any visible reason?

Certainly, this drawing is too complicated to begin thinking of such things. Let
us consider a more simple drawing. Imagine young Pablo Picasso first entering an
art school in his native Malaga, or, maybe, later, in Barcelona. It is very probable
that his teacher offered him a jug to draw (art students often begin their studies
with jugs).

It is very unlikely that Pablo’s picture of a jug, even if it ever existed, can be
still found anywhere. But maybe it looked like one of the drawings on Figure 9.19.

Or, maybe, the art teacher was a geometry lover, and Pablo’s first assignment
was a torus (the surface of a bagel, if you do not know what a torus is). Then
Pablo’s first drawing could look like Figure 9.20.

On these simple drawings, we see the same things as on the masterpiece: there
are curves, some of them end abruptly, either when they meet other curves, or
without any visible reasons.

Let us think about the reasons. The curves we see (and draw) are boundaries
of visible shapes, or, in other words, they are made of points of tangency of the
rays from our eyes to the surface we are looking at. Let us denote this surface
by S and the curve made of tangency points by C' (see Figure 9.21). If we place,
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FIGURE 9.15. Evolution of fronts for a self-intersecting curve
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FIGURE 9.16. The fronts of a self-intersecting curve

FIGURE 9.17. The fronts of a sine wave

mentally, a screen behind the surface, then our rays will trace a curve on the screen,
and this curve C’ looks precisely like the contour of the surface that we see. If the
shape of the surface S is more complicated, then some parts of the curve C' may be
hidden from our eye by the surface (geometrically this means that the ray crosses
the surface, maybe more than one time, before the tangency). This is what happens
where a curve stops when meeting another curve: if the things we are drawing were
transparent, the curve would not have stopped, it would have gone further as a
smooth curve.

The second case, when the curve stops without meeting another curve is more
interesting. As we have said before, the tangency points of the rays of our vision
form a curve C on our surface S. A simple analytic argument, which we skip here,
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P\

FIGURE 9.18. Pablo Picasso. Portrait of Igor Stravinsky (1932)

shows that this curve C' is always smooth. However, the ray may be tangent not
only to the surface S, but also to the curve C. In this case, the image of this
curve on the screen, and, hence, inside our eye, or on our drawing, forms a cusp
(see Figure 9.22). But we see only a half of this cusp, while the second half is
hidden behind the shape. Thus, if the things around us were transparent (sounds
Nabokovian!), we would never have seen stopping curves; we would rather have
seen a lot of cusps, which in real life are visible only by half.

For, example, if Pablo’s jugs and torus were transparent, he would have sup-
plemented his drawing by the curves shown (dotted) on Figure 9.23.

In conclusion, let us look at the projections of a transparent torus. To make
it transparent, we replace it by a dense family of circles in parallel planes. More
precisely, a torus is a surface of revolution of a circle around an axis not crossing
the circle (see Figure 9.24 a). We replace the circle by a dense set of points, in our
example by the set of vertices of an inscribed regular 32-gon (Figure 9.24 b).
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FI1GURE 9.19. Pablo 77. Two jugs

FIGURE 9.20. Pablo ?77. A torus

Four projections (under slightly different angles) along with magnifications of
the central fragments of these projections are shown on Figures 9.25, 9.26, 9.27,
and 9.28. The curve with four cusps is seen on each of these projections.
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FIGURE 9.21. A visible (apparent) contour of a simple shape

/

FI1GURE 9.22. A visible contour of a complicated shape

GO

FIGURE 9.23. Transparent things



LECTURE 9. CUSPS

136

FIGURE 9.24. Replace a circle by a set of 32 points
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FIGURE 9.25. A projection of a torus
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FIGURE 9.26. Another projection of a torus
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FIGURE 9.27. One more projection of a torus
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FIGURE 9.28. The last projection of a torus
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Around Four Vertices

10.1 The theorem. There are results in mathematics that could have been
easily discovered much earlier than they actually were. One example that comes
to mind is Pick’s formula from Exercise 1.1 that could have been known to the
Ancient Greeks, but it was discovered by Georg Pick only in 1899.

The subject of this lecture is the four vertex theorem, and the reader will agree
with us that it also could have been discovered much earlier, say, by Huygens or
Newton. However, the vertex theorem was published by an Indian mathematician
S. Mukhopadhyaya only in 1909.

The four vertex theorem states that a plane oval has at least 4 vertices. An
oval for us will always be a closed smooth curve with positive curvature.! A vertex
of a curve is a local maximum or minimum of its curvature. That a closed curve has
at least two vertices is obvious: the curvature attains a maximum and a minimum
at least once.

10.2 Caustics, evolutes, involutes and osculating circles. Consider a
smooth curve 7 in the plane. At every point = € 7, one has a family of circles
tangent to the curve at this point, see Figure 10.1. Of these circles, one is “more
tangent” than the others; it is called the osculating circle.

The definition of the osculating circle is as follows. Let two points start moving
in the same direction from point x with unit speed, one along the curve v and
another along a tangent circle. For all tangent circles, but one, the distance between
the points will grow quadratically with time, and only for one exceptional circle the
rate of growth will be cubic. This is the osculating circle.

The osculating circle can be constructed as follows. Give v some parameteri-
zation so that x = ~(¢). Consider three close points (¢t — &), v(t),v(t — €). There
is a unique circle through these three points (we do not exclude the case of a line,
a circle of infinite radius). As ¢ — 0, the limiting position of this circle is the

1Ovum is an egg in Latin.

139
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v

FiGURE 10.1. The osculating circle of a curve

osculating circle of v at the point z. One can say that the osculating circle has
3-point contact with the curve or that it is second order tangent to the curve.

The radius of the osculating circle is called the curvature radius and its recip-
rocal the curvature of the curve at the given point; the center of the osculating
circle is called the center of curvature of the curve. If the curve is given an arc
length parameterization, that is, one moves along the curve with unit speed, then
the curvature is the magnitude of the acceleration vector.?

The order of tangency of the osculating circle at a vertex of a curve is higher
than at an ordinary point: the circle has 4-point contact with the curve at a vertex,
that is, the osculating circle hyperosculates.

Imagine that our curve is a source of light: rays of light emanate from ~ in
the perpendicular direction (in the plane of ). The envelope I of this 1-parameter
family of normals will be especially bright; this envelope is called the caustic,? or
the evolute, of the curve. See Figure 10.2 and the figures in Lecture 9. The curve ~y
is called an involute of the curve I'. Evolutes and involutes are the main characters
of this lecture.

LEMMA 10.1. The evolute of a curve is the locus of centers of curvature. A
vertex of the curve corresponds to a singularity of the evolute, generically, a cusp.

Proof. Let v(t) be a parameterization of the curve. The equation of the normal
line to v at the point (¢) involves the first derivative, 7/(¢), and the coordinates
of the intersection point of two infinitesimally close normals, that is, the center of
curvature, involve the first two derivatives, 7/(t) and " (t) (see the equation of an
envelope in Section 8.3).

This means that, computing the center of curvature of the curve at point x, one
may replace the curve by its osculating circle which is second order tangent with
the curve at this point. The normals of a circle intersect at its center. Hence the
infinitesimally close normals to the curve at x intersect at the center of this circle.

Likewise, the velocity vector of the evolute involves the first three derivatives
of the vector valued function (t). At a vertex, the curve is approximated by the

2This is known to every driver: the sharper a turn, the the harder to negotiate it.
3From Greek kaustikos via Latin causticus, “burning”.
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~
FIGURE 10.2. The evolute of a curve

osculating circle up to three derivatives. Therefore the evolute of the curve at a
vertex has the same velocity vector as the evolute of a circle. But the latter is a
point! This means that the velocity of the evolute vanishes and it has a singular
point. O

Let us add that, at a local maximum of curvature, the cusp of the evolute
points toward the curve, while at a local minimum of curvature it points from the
curve.

It follows from Lemma 10.1 that the four vertex theorem can be reformulated
as a four cusp theorem for the evolute. Note however that, unlike the four vertices,
the singular points of the evolute may merge together: for example, the evolute of
a circle is just one (very singular) point.

Orient the normals to v inward. Then the smooth arcs of the evolute also get
oriented. What happens to this orientation at a cusp is shown in Figure 10.3. It
follows that the cusps partition the evolute into arcs with opposite orientations.
Hence, if v is closed, the evolute has an even number of cusps.

FIGURE 10.3. Orientations of cusps

Evolutes may have cusps but they do not have inflection points. The reason
was explained in Lecture 8. The normals to a smooth curve determine a smooth
curve in the dual plane, and the envelope is dual to this smooth curve. An inflection
is dual to a cusp, so the evolute is inflection-free.

The reader who finds this argument too high-brow, may consider a more down-
to-earth approach: should I'" have an inflection point, at some point of v there would
be two different inward normals to v — see Figure 10.4.
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r

FIGURE 10.4. Evolutes have no inflections

Given the evolute I', can one reconstruct the initial curve? In other words, how
to construct an involute of a curve? The answer is given by the following string
construction. Choose a point y on I' and wrap a non-stretchable string around I’
starting at y. Then the free end of the string, x, will draw an involute of I, see
Figure 10.5.

FIGURE 10.5. The string construction of the involute

Proof of the string construction. We need to see that the velocity of the point
x is perpendicular to the segment zx. Physically, this is obvious: the radial com-
ponent of the velocity of x would stretch the string.

The reader suspicious of this argument, will probably be satisfied by the follow-
ing calculus proof. Give I' the arc-length parameterization I'(¢t) so that y = I'(0),
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and let ¢ be the length of the string. Then z(¢) = I'(¢) and z(¢) = ['(¢) + (c— )T’ (¢).
Hence

' (t) =T"(t) =T'(t) + (c = )T (t) = (c — )T (1),
and the acceleration vector I'(¢) is orthogonal to the velocity IV(t) since ¢ is an
arc-length parameter. O

Note that the string construction yields not just one but a whole 1-parameter
family of involutes: the parameter is the length of the string. Every two involutes
are equidistant: the distance between them along their common normals is constant.
The relation between involutes and evolutes resembles the one between functions
and their derivatives: recovering a function from its derivative involves a constant
of integration.

The string construction implies the following property.

COROLLARY 10.1. The length of an arc of the evolute I' equals the difference
of its tangent segments to the involute v, that is, the increment of the radii of
curvature of 7.

Consider the evolute of a plane oval. Let us adapt the convention that the sign
of the length of the evolute changes after each cusp; this convention makes sense
because the number of cusps is even.

LEMMA 10.2. The total length of the evolute is zero.

FI1cURE 10.6. The total length of the evolute is zero

Proof. Consider Figure 10.6. If the radii of curvature are r1, Ry, r2, Ry then,
according to Corollary 10.1, the arcs of the evolute have lengths R; — r1, Ry —
ro, Ry — 79 and Ry — 71, and their alternating sum vanishes. The general case is
similar. O

The zero length property, of course, again implies the existence of cusps of the
caustic of an oval, but this is hardly new to us.

Consider an arc v with monotonic positive curvature and draw a few osculating
circles to it. Most likely, your picture looks somewhat like Figure 10.7. This is
wrong! A correct picture is shown in Figure 10.8, as the next Tait-Kneser’s theorem
shows.
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FI1GURE 10.7. A wrong picture of osculating circles

54

FIGURE 10.8. Osculating circles si,s2,83,84 to a curve ~ are
shown. Although the circles s1, s2, s3, 4 are all disjoint, they seem
tangent to each other. No wonder: the shortest distance between
the circles s; and ss is approximately 0.2% of the radius of s1, and
the shortest distance between the circles s; and s4 is approximately
5% of the radius of s;.

THEOREM 10.2. The osculating circles of an arc with monotonic positive cur-
vature are nested.

Proof. Consider Figure 10.9. The length of the arc z125 equals r; — ro, hence
|z122| < r1 —7r9. Therefore the circle with center z; and radius r1 contains the circle
with center z, and radius ro. O
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FIGURE 10.9. Proof of the Tait-Kneser theorem 10.2

Consider Figure 10.10 featuring a spiral v and a 1-parameter family of its
osculating circles. The circles are disjoint and their union is an annulus.* This
figure is quite amazing (although this may not be obvious from the first glance)!

FI1GURE 10.10. An annulus filled with disjoint osculating circles

First of all, Figure 10.10 depicts 16 circles; the curve which you see “snaking”
between the circles is not drawn — but you clearly see it as the envelope of the circles.
Secondly, the partition of the annulus into disjoint circles is quite paradoxical, in
the following sense.

PRrROPOSITION 10.3. If a differentiable function in the annulus is constant on
each circle then this is a constant function.’

Thinking about what this proposition claims, the reader is likely to conclude
that it cannot be true. For example, there is an obviously non-constant function on
the annulus assiging to each point the radius of the circle passing through this point.
This function is clearly constant on the circles and non-constant on the annulus.
This function is so natural that it is hard to believe that it is not differentiable.
But differentiable it is not!

4In technical terms, the annulus is foliated by circles.
5In technical terms, the foliation is not differentiable — although its leaves are perfect circles.
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Proof. If a function f is constant on the circles, its differential vanishes on the
tangent vectors to these circles. Since the curve v is tangent to some circle at every
point, the differential df vanishes on «. Hence f is constant on . But 7 intersects
all the circles that form the annulus, so f is constant everywhere. O

REMARK 10.4. Most mathematicians are brought up to believe that things
like non-differentiable functions do not appear in “real life”, they are invented
as counterexamples to reckless formulations of mathematical theorems and belong
to books with titles such as “Counterexamples in analysis” or “Counterexamples
in topology”. Proposition 10.3 provides a perfectly natural example of such a
situation, and there is nothing artificial about it at all.

10.3 Proof of the four vertex theorem. A plane oval v can be described
by its support function. Choose the origin O, preferably inside . Given a direction
¢, consider the tangent line to v perpendicular to this direction, and denote by p(¢)
the distance from this tangent line to the origin, see Figure 10.11. If the origin is
outside of the oval, this distance will be signed.

v

FI1GURE 10.11. The support function of an oval

The support function uniquely determines the family of tangent lines to v, and
therefore the curve itself, as the envelope of this family. One can express all the
interesting characteristics of -, such as the perimeter length or the area bounded
by it, in terms of p(¢), but we do not need these formulas.

What we need to know is how the support function depends on the choice of
the origin. Let O’ = O + (a,b) be a different origin.

LEMMA 10.5. The new support function is given by the formula
(10.1) p' =p—acos¢ — bsin ¢.

Proof. Every parallel translation can be decomposed into one in the direction
of ¢ and one in the orthogonal direction. For a translation distance r in the former
direction, a = rcos¢,b = rsin¢, and (10.1) gives p’ = p — r, as required. For a
translation in the orthogonal direction, a = —rsin¢,b = rcos ¢, and (10.1) gives
p’ = p, as required. O
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What are the support functions of circles? If a circle is centered at the origin,
its support function is constant. By the previous lemma, the support functions of
circles are linear harmonics, the functions

p(¢) = ¢+ acos ¢ + bsin ¢.
We can now characterize vertices in terms of the support function.

LEMMA 10.6. The vertices of a curve correspond to the values of ¢ for which
(10.2) p"(¢) +p'(¢) =0.

Proof. Vertices are the points where the curve has the third-order contact with
a circle. In terms of the support functions, this means that p(¢) coincides with
a cos p+bsin ¢+c up to the third derivative. It remains to note that linear harmonics
satisfy (10.2) identically. O

Thus the four vertex theorem can be reformulated as follows.

THEOREM 10.3. Let p(¢) be a smooth 2mw-periodic function. Then the equation
p""($) + p'(¢) = 0 has at least 4 distinct roots.

Proof. A function on the circle changes sign an even number of times. The
mean value of the function f = p”’ + p’ is zero since it is the derivative of p”’ + p,
hence f changes sign at least twice. Assume that f changes sign exactly twice, at
points ¢ = a and ¢ = f3.

On can find constants a, b, ¢ such that the linear harmonic g(¢) = ¢+ acos ¢ +
bsin ¢ changes sign exactly at the same points, o and 3, and so that f and g have
the same signs everywhere. For example,

+g(¢) = cos (ﬁ_TO‘) — cos <¢ _5 ; O‘).

27

Then
f(0)g(¢) dp > 0.
0
On the other hand, integration by parts yields:

27 2 27
1 Ng db = — 1 "dd = 'a" — pa') d
/0 " +p)g do /0 (" +p)g do /0 (»'g" —pg') do

27
= —/ p(g" +9')dp =0
0

since ¢"' + ¢’ = 0. This is a contradiction. O

REMARK 10.7. Theorem 10.3 has generalizations. A smooth 27-periodic func-
tion has a Fourier expansion

flo) = Z (ar, cos ko + by sin ko) .
£>0

The Fourier series of the function f = p””’ + p’ does not contain linear harmonics.

The Sturm-Hurwitz theorem states that if the Fourier expansion of a function starts
with n-th harmonics, that is, K > n in the sum above, then this function has at
least 2n distinct zeroes on the circle [0,27). The above proof can be adjusted to
this more general set-up; other proofs are known as well, see, e.g., [57] and Exercise
10.6.
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10.4 Two other proofs. Like almost every good mathematical result, the
four vertex theorem has a number of different proofs. We present two geometrical
ones in this section. We know many other proofs, using different ideas and gener-
alizing in different directions; one would be hard pressed to choose “proof from the
Book”6 for the four vertex theorem.

First proof. [79]. Consider the evolute I' of an oval 4. According to Lemma
10.2, the length of T' is zero, and hence it has at least two cusps. Assume that the
(even) number of cusps is exactly two.

FIGURE 10.12. The number of tangents to a curve

Given a point z in the plane, let n(z) be the number of normals to 7 that pass
through this point. In other words, n(z) equals the number of tangent lines from
x to I'. This function is locally constant in the complement of the evolute. When
x crosses I' from the concave to the convex side, the value of n(z) increases by 2,
see Figure 10.12.

n=2

FIGURE 10.13. Proof of the four vertex theorem

For every point x, the distance to v has a minimum and a maximum. Therefore
there are at least two perpendiculars from z to the oval, and hence n(x) > 2 for
every x. Since the normals to v turn monotonically and make one complete turn,
n(xz) = 2 for all points z, sufficiently far away from the oval.

Consider the line through two cusps of the evolute; assume it is horizontal, see
Figure 10.13. Then the height function, restricted to I', attains either minimum, or

SPaul Erdos used to refer to “The Book” in which God keeps the most elegant proofs of
mathematical theorems, see [2].
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maximum, or both, not in a cusp. Assume it is a maximum (as in Figure 10.13);
draw the horizontal line [ through it. Since the evolute lies below this line, n(z) = 2
above it. Therefore n(z) = 0 immediately below [. This is a contradiction proving
the four vertex theorem. O

Outline of the second proof. This follows ideas of the famous French mathe-
matician R. Thom. This is a beautiful argument indeeed!

For every point z inside the oval 7, consider the closest point y on the oval. Of
course, for some points x, the closest point is not unique. The locus of such points
is called the symmetry set; denote it by A. For example, for a circle, A is its center,
and for an ellipse, A is the segment between the two centers of maximal curvature.
For a generic oval, A is a graph (with curved edges), and its vertices of valence 1
are the centers of local maximal curvature of v, see Figure 10.14.

Y

FIGURE 10.14. The symmetry set of an oval

The last claim needs an explanation. It is clear that the vertices of A of valence
1 are the centers of extremal curvature (where two points labeled y in Figure 10.14
merge together). But why not centers of minimal curvature? This is because an
osculating circle of minimal curvature locally lies outside of the curve . Therefore
the distance from the center of such a circle to the curve is less than its radius and
hence its center does not belong to the symmetry set A.

Delete the symmetry set from the interior of v. What remains can be contin-
uously deformed to the boundary oval by moving every point x toward the closest
point y. Hence the complement of A is an annulus, and therefore A has no loops
(and consists of only one component). Thus A is a tree which necessarily has at
least two vertices of valence 1. It follows that the curvature of the oval has at least
two local maxima, and we are done. O

10.5 Sundry other results. Since its discovery about a century ago, the
four vertex theorem and its numerous generalizations keep attracting the attention
of mathematicians. In this last section we describe, without proofs, a few results
around four vertices (see, e.g., [57]).
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One way to generalize the four vertex theorem is to approximate a smooth plane
curve not by its osculating circles but by some other type of curves, for instance,
conics. There exists a unique conic through every generic 5 points in the plane.
Taking these points infinitesimally close to each other on an oval, one obtains its
osculating conic. Just like an osculating circle, this conic may hyperosculate: such
a point of the curve is called sextactic (or, for reasons that we will not discuss here,
an affine vertex). What is the least number of sextactic points of a plane oval? The
answer is six, and this was proved by Mukhopadhyaya in his 1909 paper.

One can also approximate a curve by its tangent lines. Then we are interested
in inflections, the points where the tangent line is second-order tangent to a curve.
Of course, an oval does not have inflections. However, consider a simple closed
curve in the projective plane. Recall from Lecture 8 that the projective plane is the
result of pasting together pairs of antipodal points of the sphere. A closed curve
in the projective plane can be drawn on the sphere, either as a closed curve or as
a curve whose endpoints are antipodal, and an inflection is its abnormal tangency
with a great circle.

Assume that our curve belongs to the latter type, that is, its endpoints are
antipodal. Then a Mobius theorem (1852) states that the curve has at least three
inflections. See Figure 10.15 where the sphere is projected on a plane from its
center, and so the curves appear to escape to infinity; this figure features a simple
curve with 3 inflections and a self-intersecting curve with only 1 inflection.

FI1GURE 10.15. Inflection points of a curve in the projective plane

By the way, there is another, much more recent, result about spherical curves.
Assume that a smooth closed simple curve bisects the area of the sphere. Then it
has at least 4 inflection points. This result, which V. Arnold called the “tennis ball
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theorem”,” was discovered by B. Segre (1968) and rediscovered by Arnold in the
late 1980s.

One may also approximate a smooth curve by a cubic curve. An algebraic curve
of degree 3 is determined by 9 of its points, and the osculating cubic of a smooth
curve passes through 9 infinitesimally close points. A cubic is hyperosculating if
it passes through 10 such points, and the respective point of the curve is called
3-extactic (in this, somewhat cumbersome, terminology, 2-extactic=sextactic and
l-extactic=inflection).

A typical cubic curve looks like one of the curves in Figure 10.16; in the latter
case, its bounded component is called an oval. Recently V. Arnold discovered the
following theorem: a smooth curve, obtained by a small perturbation of the oval
of a cubic curve, has at least ten 3-extactic points. It is tempting to continue by
increasing the degree of approximating algebraic curves but, to the best of our
knowledge, no further results in this direction are available.

O

FIGURE 10.16. Cubic curves

In the early 1990s, E. Ghys discovered the following beautiful theorem. The
real projective line is obtained from the real line by adding one point “at infinity”.
This extension has clear advantages. For example, a fractional-linear function

ar+0b
f(z) = wrd ad — be # 0,
is not a well-defined function of the real variable: if z = —d/c then f(z) = oo; but

f regains its status of a well-defined and invertible function from the real projective
line to itself (f(o0) = a/c).

Let f(x) be a smooth invertible function from the real projective line to itself.
At every point z, one can find a fractional-linear function whose value, whose first
and whose second derivatives coincide with those of f at the point x. It is natural
to call this the osculating fractional-linear function. A fractional-linear function is
hyperosculating at x if its third derivative there equals f'(x) as well. How many
hyperosculating fractional-linear functions are there for an arbitrary f7 According
to the Ghys theorem, at least four. In terms of the function f, these points are the

"Every tennis ball has a clearly visible curve on it surface which has exactly four inflections.
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roots of a rather intimidating expression

o -3 (56)

called the Schwarzian derivative of f.

Another direction of generalizing the four vertex theorem is to replace a smooth
curve by a polygon. This discretization may be performed in different ways, leading
to different results. We mention only one, probably the oldest. This is the Cauchy
lemma (1813) which plays the central role in Cauchy’s celebrated proof of the
rigidity of convex polyhedra, described in Lecture 24: given two convex polygons
whose respective sides are congruent, the cyclic sequence of the differences of their
respective angles changes sign at least four times.

OK prohibited

F1GURE 10.17. Positive and negative self-tangencies

Finally, back to vertices. It has been known for a long time that the four vertex
theorem holds for non-convex simple closed curves as well. V. Arnold conjectured
that one could extend it much further. Starting with an oval, one is allowed to
deform the curve smoothly and even to intersect itself; the only prohibited event is
when the curve touches itself so that the touching pieces have the same orientations
as in Figure 10.17. According to Arnold’s conjecture, the four vertex theorem holds
for every curve that can be obtained from an oval as a result of such a deformation;
see Figure 10.18 for a sample.

FIGURE 10.18. An allowed deformation of an oval
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Recently Yu. Chekanov and P. Pushkar’ proved this conjecture using ideas
from contemporary symplectic topology and knot theory [15].

John Smith
January 23, 2010

John Smith
January 23, 2010

John Smith
January 23, 2010

10.6 Exercises.

Martyn Green
August 2, 1936

Henry Williams
June 6, 1944

Martyn Green
August 2, 1936

Henry Williams
June 6, 1944

Martyn Green
August 2, 1936

10.1. (a) Draw involutes of a cubic parabola.
(b) Draw involutes of the curve in Figure 10.19.

FiGure 10.19

Henry Williams
June 6, 1944

10.2. A cycloid is the curve traversed by a point of a circle that rolls without
sliding along a horizontal line. Describe the evolute of a cycloid.
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10.3. Compute the curvature of a semi-cubic parabola at the cusp.

10.4. (a) Express the perimeter length and the area of an oval in terms of its
support function.

(b) Parameterize an oval v by the angle ¢ made by its tangent with a fixed
direction, and let p(¢) be the support function. Prove that

V(¢) = (p(¢) sin g + p'(¢) cos ¢, —p(¢) cos ¢ + p'(¢) sin ).
(c) Show that the radius of curvature of y(¢) equals p”(¢) + p(¢).

10.5. Let f be a smooth function of one real variable. The osculating (Taylor)
polynomial g;(x) of degree n of the function f(x) at point ¢ is the polynomial, whose
value and the values of whose first n derivatives at point ¢ coincide with those of f:

@ ,
aw) =3 0
i=0 )

Assume that n is even and f("*+1)(¢) # 0 on some interval I (possibly, infinite).
Prove that for any distinct a and b from the interval I, the graphs of the osculating
polynomials g,(z) and g,(x) are disjoint.

Comment: this theorem strongly resembles the Tait-Kneser theorem 10.2.

10.6. * Consider a trigonometric polynomial
f(z) = ap coskx + by sinkx + agy1 cos(k + 1)z + by sin(k + Dz + ...
“+a, cosnx + b, sinnx
where k < n. Prove that f has at least 2k roots on the circle [0, 27].
Hint. Let I be the inverse derivative of a periodic function with the integration
constant chosen so that the average value of the function is zero. Denote the
number of sign changes of a function f by Z(f). Then Rolle’s theorem states that

Z(f) > Z(I(f)). Iterate this inequality many times and investigate how f changes
under the action of I.



LECTURE 11

Segments of Equal Areas

11.1 The problem. The main “message” of Lecture 9 was that cusps are
ubiquitous: every generic 1-parameter family of curves has an envelope, and this
envelope usually has cusps. This lecture is a case study: we investigate, in detail,
one concrete family of lines in the plane.

Let v be a closed convex plane curve. Fix a number 0 < ¢ < 1. Consider the
family of oriented lines that divide the area inside 7 in the ratio ¢ : (1 —t), the ¢-th
portion on the left, and the (1 — ¢)-th on the right of the line. This 1-parameter
family of lines has an envelope, the curve I';.

Let us make an immediate observation: the curves I'; and I'y_; coincide. Thus
we may restrict ourselves to 0 < ¢t < 1/2. The curves I'; are our main objects of
study.

11.2 An example. Let us start with a simple example (which still might be
familiar to some of the readers from high school'). Consider the family of lines that
cut off a fixed area A from a plane wedge, and let T be the envelope of this family
of lines.

THEOREM 11.1. The curve I' is a hyperbola.

Proof. Apply an area preserving linear transformation that takes the given
wedge to a right angle. We consider the sides of the angle as the coordinate axes.
It suffices to prove the theorem in this case.

Let f(z) be a differentiable function. The tangent line to the graph y = f(x)
at point (a, f(a)) has the equation y = f’'(a)(x —a)+ f(a). The z- and y-intercepts
of this line are

f(a)
f'(a)

and f(a) —af'(a).

L Admittedly, an over-optimistic statement.

155



156 LECTURE 11. SEGMENTS OF EQUAL AREAS

Consider the hyperbola y = ¢/2z. In this case, the z- and y-intercepts of the
tangent line at point (a,c/a) are 2a and 2c¢/a. Therefore the area of the triangle
bounded by the coordinate axis and this tangent line is 2¢, a constant.

This proves that the tangent lines to a hyperbola cut off triangles of constant
areas from the coordinate “cross”. Formally, this is not yet what the theorem
claims. To finish the proof, choose the constant ¢ in the equation of the hyperbola
y = ¢/x so that the areas in question equals A. Then this hyperbola is the curve T’
from the formulation of the theorem, the envelope of the lines that cut off triangles
of area A from the coordinate axes. O

11.3 The envelope of segments of equal areas is the locus of their
midpoints. The title of this section is a formulation of a theorem. The theorem
asserts that the curve I'; is tangent to the segments that cut off ¢-th portion of the
total area in their midpoints.

A A

S

FIGURE 11.1. Proving that the envelope of segments of equal areas
is the locus of their midpoints

Proof of Theorem. Consider Figure 11.1. Let AB and A’B’ be two close seg-
ments from our family and e the angle between them. Since both segments cut off
equal areas from the curve ~, the areas of the sectors AOA’ and BOB' are equal.
The areas of these sectors are approximately equal to (1/2)|AO|% and (1/2)|BO|%,
with error of order 2. Therefore |AO| — |BO| tends to zero as e — 0. O

As an application, let us solve the following problem: given two nested ovals,
is there a chord of the outer one, tangent to the inner one and bisected by the
tangency point? See Figure 11.2. Simple as it sounds, this problem is not easy to
solve, unless one uses the above theorem.

Solution to the problem. Let ¢ be the tangent segment to the inner curve that
cuts off the smallest area from the outer one. Denote by S be the value of this area.
Consider two close segments £ and ¢ that cut off area S from the outer oval. Let
A be the tangency point of ¢ with the inner oval, and B and C' the intersections of
¢ with ¢/ and ¢”, see Figure 11.3.
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FIGURE 11.2. A problem on two ovals

F1cURE 11.3. Solving the problem on two ovals

Since S is the minimal area, segments ¢’ with ¢ do not contain points inside
the inner oval. Hence point A lies between points B and C. As ¢ and ¢” tend to
£, points B and C tend to A. Thus A is the tangency point of segment ¢ with the
envelope of the segments that cut off area S from the outer oval. By the above
theorem, A bisects £.

Of course, one can repeat the argument, replacing the minimal area by the
maximal one. As a result, there are at least two chords, tangent to the inner oval
at their midpoints.

11.4 Digression: outer billiards. One is naturally led to the definition of
an interesting dynamical system, called the outer (or dual) billiard. Unlike the
usual billiards, discussed in Lecture 28, the game of outer billiard is played outside
the billiard table.

Let C be a plane oval. From a point x outside C, there exist two tangent lines
to C. Choose the right one, as viewed from z, and reflect = in the tangency point.
One obtains a new point, y, and the transformation that takes x to y is the outer
billiard map, see Figure 11.4.

There are many interesting things one can say about outer billiards, see [23,
78, 83] for surveys. We will establish but a few fundamental properties of outer
billiards.
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T
FIGURE 11.4. Outer billiard transformation

THEOREM 11.2. For every oval C, the outer billiard map is area preserving.

Proof. Consider two close tangent lines to the curve C, pick points z1, 22 and
a’,xh on these lines, and let y1,y2, ¥, ¥4 be their images under the outer billiard
map, see Figure 11.5. The outer billiard map takes the quadrilateral zzoxba) to

ylygy’gyi.

FIGURE 11.5. Area preserving property of outer billiards

Denote by O the intersection point of the lines and let € be the angle between
them. Arguing as in Section 11.3, the areas of the triangles 102} and y; Oy} are
equal, up to error of order €2, and likewise for the triangles z20z% and y2Oyb.
Hence, up to the same error, the areas of the quadrilaterals zqzoxba! and y1y2y5y]
are equal. In the limit € — 0, we obtain the area preserving property. O

Here is another question about outer billiards. Given a plane oval C, is there
an n-gon, circumscribed about C, whose sides are bisected by the tangency points?
Such a polygon corresponds to an n-periodic orbit of the outer billiard about C'.

The answer to this question is affirmative. Indeed, consider the circumscribed
n-gon of the minimal area. Then, arguing as in the solution to the problem in
Section 11.3, each side of this polygon is bisected by its tangency points to C. The
same argument applies to star-shaped n-gons, see Figure 11.6 for three types of
septagons.?

11.5 What the envelope has and what it has not. The envelopes I'; do
not have double tangent lines and inflection points. Indeed, if a curve has a double
tangent line or an inflection point then it has two close parallel tangents, see Figure
11.7, and these parallel tangents cannot cut off the same areas from the curve ~.

2In fact, for every n > 3 and every 1 < r < n/2, coprime with n, there are at least two
circumscribed n-gons, making r turns around the oval C', whose sides are bisected by the tangency
points, see [78, 83].
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OC#

FIGURE 11.6. Three types of circumscribed septagons

v 7
t T,

FiGURE 11.7. The envelope does not have double tangents

What the envelope of segments of equal areas may have are cusps. The following
theorem tells us when I'; has a cusp. We assume that v is an oval.

THEOREM 11.3. If the midpoint of a chord AB of the curve v is a cusp of the
envelope of segments of equal areas then the tangent lines to v at points A and B
are parallel.

Proof. Let O be the midpoint of AB. Since O is a cusp of the envelope of
segments of equal areas, the velocity of point O is zero, and the instantaneous
motion of the line AB is revolution about point O. Since O is the midpoint of the
segment AB, the velocity vectors of points A and B are symmetric with respect to
point O, and hence the tangent lines to « at the points A and B are parallel. O

Suppose that the tangent lines to v at points A and B are parallel. To describe
the behavior of the envelope of segments of equal areas I'; we need additional
information about the curvature of the curve v at points A and B. Assume that
the curvature at B is greater.

THEOREM 11.4. The envelope T'y has a cusp pointing toward B.

Proof. Consider Figure 11.8, left: 1 and -y, are pieces of the curve v near points
A and B; O is the midpoint of segment AB; and 7; is symmetric to v; with respect
to O.

Draw a chord C’D’ through point O, close to AB. Since the curvature of 7 is
greater than that of ;, the area of the sector AOC” is greater than that of BOD’
(it is equal to the area of the sector BOM, symmetric to AOC’). Therefore the
segment C'D, that divides the area of v in the same ratio as AB, lies to the right
of C'D’. The midpoint of C'D is close to point O’, the intersection of the segments
AB and CD. Similar observations can be made concerning the segments E'F’ and
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EF. Thus, the envelope I'y tangent to AB, CD, and EF and passing through O,
must have a cusp at O, pointing toward point B (see Figure 11.8, right). O

o C

FIGURE 11.8. Cusp of the envelope

And what if the curvatures at points A and B are equal? This event will not
happen for a generic curve . Indeed, we assume three conditions to hold: the
segment AB divides the area in the ratio ¢ : (1 — t), the tangent lines at A and B
are parallel, and the curvatures at A and B are equal. But a pair of points A and
B on the curve v have only two degrees of freedom, so for three conditions to hold
is too much to expect.

However, if one allows the parameter ¢ to vary, then one may encounter a chord
AB of v with parallel tangent lines and equal curvatures at the endpoints. We will
refer to this situation as the case of mazimal degeneracy. In fact, cases of maximal
degeneracy are bound to happen.

LEMMA 11.1. Any oval v has a chord with parallel tangent lines and equal
curvatures at the endpoints; the number of such chords is odd.

Proof. For every point A of v there exists a unique “antipodal” point B such
that the tangents at A and B are parallel. Assume that the curvature at A is
greater than that at B. Let us move point A continuously toward B; its antipodal
point will move toward A. After the points A and B have switched, the curvature
at the first point is smaller than that at the second. Therefore the curvatures at
the two points were equal somewhere in-between. Furthermore, the total number
of sign changes of the difference between the curvatures at points A and B is odd,
as claimed. O

11.6 How many cusps are there? How many cusps does the envelope I';
have? The answer depends on whether ¢t = 1/2 or not.

THEOREM 11.5. The number of cusps of 'y is odd and not less than 3.3

3Compare with the Mdbius theorem mentioned in Lecture 10
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Proof. For every direction, there is a unique non-oriented line that bisects the
area bounded by the curve v. Hence, after traversing I'; 5, its tangent line makes
a turn through 180°. How can this be? Each time one passes a cusp, the tangent
direction switches to the opposite, see Figure 11.9. This means that the total
number of cusps is odd.

FIGURE 11.9. A cusp reverses the direction

The number of cusps of I'y /5 is not one. Arguing by contradiction, assume there
is a single cusp with a vertical tangent line. Then I'; /5 has no other vertical tangent
lines. Left of the cusp, the smooth curve I'; ;, moves to the left, and right of the
cusp — to the right. Such a curve cannot close up, see Figure 11.10; a contradiction.
O

/N

AN

e ™

FI1GURE 11.10. Proving that there are at least 3 cusps

If ¢ # 1/2 then, for every direction, there is a unique oriented line that divides
the area bounded by the curve « in the ratio ¢t : (1 —t). Hence, after traversing I'y,
its tangent line makes a turn through 360°. It follows that the number of cusps is
even.

11.7 All in one figure. Figure 11.11 depicts the family of envelopes I'; as ¢
varies from 0 to 1/2. The delta-shaped curve at the center is I'y /5.

The main new observation is that the cusps of the curves I'; lie on a new curve,
A (shown as a dashed curve in Figure 11.11), the locus of midpoints of the chords
with parallel tangents at the endpoints.

The curve A also has cusps! These are the points where cusps of the envelopes
I'; appear or disappear in pairs, and these are precisely the points of maximal
degeneracy, introduced in Section 11.5.
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FIGURE 11.11. The family of envelopes I';

How many cusps does the curve A have? Asking this question, we assume,
as we always do when dealing with cusps, that our curves are sufficiently generic:
otherwise A might degenerate even to a single point — this is the case when the
original oval is a circle or an ellipse.

THEOREM 11.6. The number of cusps of A is odd and not less than 3.

Proof. That the number of cusps is odd, follows from Lemma 11.1. We claim
that the number of cusps of A is not less than that of I'y 5, that is, by Theorem
11.5, not less than 3.

Let k be the number of cusps of I'; /5. Then, for € small enough, the curve
I'yjo—c has 2k cusps — see Figure 11.11. On the other hand, for & small enough,
the curve I'; is smooth. Therefore, as t varies from 1/2 — ¢ to ¢, all 2k cusps must
pairwise vanish at points of maximal degeneracy, that is, cusps of A. Thus A has
at least k cusps, and since k > 3, the result follows. O

11.8 Polygons. Of course, a convex polygon is not an oval, but one can ap-
proximate it by a smooth strictly convex curve: almost flat arcs along sides and
sharp turns at the vertices.

FIGURE 11.12. For a triangle, the curve A is a homothetic triangle
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Let us start with a triangle. A pair of points A, B with parallel tangents is a
vertex of the triangle and any point of the opposite side. The locus A of midpoints
of such segments AB is a triangle, similar to the given one with coefficient -1/2,
see Figure 11.12. The vertices of A lie in the middles of the sides of the original
triangle, therefore all the envelopes I'; have cusps (even for very small values of t).
The curves I'; are made of arcs of hyperbolas: this follows from Theorem 11.1.

FiGURE 11.13. The envelopes I'; for a regular pentagon

The latter holds for every convex polygon: the envelopes I'; are piece-wise
smooth curves, made of arcs of hyperbolas. Notice that at the conjunction points
between different hyperbolas, the two hyperbolas have the same tangent line. The
directions of the two hyperbolas may be either opposite (in which case the conjunc-
tion point looks like a cusp) or the same (in which case the curve looks smooth,
although the two hyperbolas have, in general, different curvatures).

Let us call a vertex A of a convex polygon opposite to a side a if the line
through A, parallel to a, lies outside of the polygon. Every side is opposite to a
unique vertex (we assume that the polygon has no parallel sides), but a vertex may
be opposite to a number of sides, or to none, for that matter.

Similarly to triangles, a pair of points A, B with parallel tangents is a vertex
A of the polygon and points B of the opposite side; the locus of midpoints of such
segments AB is a segment, parallel to the side at half the distance to A. The union
of these segments is a (possibly, self-intersecting) polygon A, and this is the locus of
cusps of all the envelopes I';. The vertices of the polygon A are points of maximal
degeneracy. See Figure 11.13 for the case of a regular pentagon. The curve A in
this case is a star-like selfintersecting pentagon; it is shown in Figure 11.13 dashed.
The loci of other conjunctions of hyperbolas making the curves I'; are also shown
dashed. A magnified version of the central part of Figure 11.13 is shown on Figure
11.14.

Let us finish with a comment on the curious difference between odd- and even-
gons. For an n-gon with odd n and close to a regular one, the envelope I'y /5 of
lines that bisect the area has n cusps and resembles a regular n-pronged star. A
regular n-gon with n even is centrally symmetric, and the curve I'y /o degenerates
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FIGURE

FI1GURE 11.15. The envelopes I'; for a quadrilateral

to a point, the center of the polygon. After a small perturbation, one obtains
an “honest” curve I'y; with fewer than n cusps (the number of cusps is odd by
Theorem 11.5). For example, for a quadrilateral, this curve is a “triangle” made
of three arcs of hyperbolas, making cusps at the vertices (see Figure 11.15 for the
family of curves I'; in the case of a generic quadrilateral).

11.9 Exercises.

11.1. Given an oval, show that there exists a line that bisects its area and its
perimeter length.

11.2. Consider two nested convex bodies with smooth boundaries (ovaloids) in
space. Prove that there exist at least two planes, tangent to the inner body and
such that the tangency point is the center of mass of the intersection of the plane
with the outer body.
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Hint. Consider the plane that cuts off the maximal volume.

11.3. Given an oval v, prove that there exists at least 3 pairs of points on 7y at
which the tangent lines are parallel and the curvatures are equal.

Hint: Show that the number of such pairs is odd. Show that, in terms of the
support function p(a), we are interested in those a for which

p(e) +p"(a) = pla+ ) —p"(a+m) = 0.
Then argue as in Section 10.3.

11.4. The center symmetry set of an oval is the envelope of the family of chords
connecting pairs of points where the tangents to the oval are parallel, see [34].

(a) Prove that the center symmetry set of a generic oval has no inflections or
double tangents but has an odd number of, and not fewer than three, cusps.

(b) Consider a chord A; Ay connecting two points of an oval with parallel tan-
gents. Let k1 and ko be the curvatures of the oval at points A; and As. Prove that
A1 As is divided by the tangency point with the center symmetry set in the ratio
k‘g : k‘l.

(¢) Show that the cusps of the center symmetry set correspond to the case when
k1 = ko.

(d) If an oval has constant width then the center symmetry set coincides with
its evolute.

11.5. Prove that, for a quadrilateral which is not a parallelogram, all the curves
I'; have cusps.

11.6. (a) How many lines can there pass through a given point that bisect the
area of a given triangle?
(b) Same question for a quadrilateral without parallel sides.

11.7. Let P be a convex n-gon without parallel sides. Prove that if n is even
then the correspondence side +— opposite vertex is not one-to-one.






LECTURE 12

On Plane Curves

12.1 Double points, double tangents and inflections. The topic of this
lecture is smooth plane curves, like the one in Figure 12.1. Points of self-intersection
are called double points; the curve in Figure 12.1 has three.

FIGURE 12.1. A plane curve

A double tangent is a line that touches the curve at two differrent points. We
distinguish between outer and inner double tangents: for the former, the two small
pieces of the curve lie on one side of the tangent line, and for the latter — on opposite
sides, see Figure 12.2. It may be not immediately clear, but the curve in Figure
12.1 has 8 outer and 4 inner double tangents.

We shall be also interested in inflection points. Give a curve an orientation.
When moving along the curve, one is turning either left or right. The inflection
points are the points where the direction of this rotation changes to the opposite.
The “left” and “right” segments of the curve alternate, hence the total number
of inflection points of a closed curve is even. The curve in Figure 12.1 has two
inflections.

167
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FIGURE 12.2. Two kinds of double tangent lines

S

FicUure 12.3. Eliminating a triple point by a small perturbation

We are interested in typical properties of curves which are not destroyable by
small perturbations. For example, a curve may pass though the same point thrice,
but this event is not typical: a small perturbation replaces the triple point by three
double points, see Figure 12.3. Likewise, a double tangent may touch the curve a
third time, but this is not typical either, see Figure 12.4.

\/ \/
7\ /N TN 7\

FicURrE 12.4. Eliminating a triple tangent line by a small perturbation

There are many other non-typical events that we exclude, such as a double
tangent line passing through a double point, or a self-tangency of the curve, etc.
We always assume our curves to be generic.

12.2 Drawing doodles: the Fabricius-Bjerre formula. Let 7, and 7
be the number of outer and inner double tangents of a smooth closed curve, I its
(even) number of inflections and D the number of double points. These numbers
are not independent: there is a universal relation between them described in the
following theorem.

THEOREM 12.1. For every generic smooth closed curve, one has:
1

For example, for the curve in Figure 12.5, T, =5,T_ =2,1 =2,D = 2.

Formula (12.1) was found by the Danish mathematician Fabricius-Bjerre in
1962 [28]. Drawing doodles is a natural human activity, enjoyed by millions of chil-
dren around the world, and this beautiful result could easily have been discovered
much earlier!

Proof. Orient the curve and consider its positive tangent half-line at point . The
number of intersection points N of this half-line with the curve depends on the
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FIGURE 12.5. An example of the Fabricius-Bjerre formula: T =
5T =21=2,D=2

point. As x traverses the curve, this number changes, and when x returns to the
initial position, this number N assumes the original value.

When does N change? When x passes a double point, /N decreases by 1. Since
each double point is visited twice, the total contribution of double point to the
increment of N is —2D. When x passes an inflection point, N also decreases by 1,
hence the total contribution of inflections is —I, see Figure 12.6.

F1GURE 12.6. Two cases when N changes

A double tangent contributes +2, depending on whether it is outer or inner.
More precisely, there are 6 cases, depending on the orientations, shown in Figure
12.7. Their total contributions to N is 277 + 47" — 2T — 4T".

Thus

(12.2) 21" + 4T — 21" —4T" —2D — 1 =0.

Now change the orientation of the curve. The numbers T and T% will interchange

and the other number involved in formula (12.2) will remain the same. Therefore
(12.3) 2T +4T)" —2T" — 4T —2D — I =0.
It remains to add (12.2) and (12.3) and to divide by 4:

1
TL 4T+ T T ~T" ~T" ~ D~ I =0,
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which is the same as (12.1). O

N
2 YR
N X
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FIGURE 12.7. Bookkeeping of double tangent lines

Relation (12.1) is a necessary condition on T, I, D to be the numbers of outer
and inner tangents, inflections and double points of a closed plane curve. Is it also
sufficient? See Exercise 12.5 for a partial answer.

A generalization of the Fabricius-Bjerre formula (12.1), due to Weiner [89],
concerns smooth closed curves on the sphere. Of course, in this case, “lines” are
understood as great circles. There is one more ingredient that goes into the formula,
the number A of pairs of antipodal points of the curve. Weiner’s formula states:

1

If the curve lies in a hemisphere, it has no antipodal points. One may centrally
project the hemisphere, along with the curve, to the plane, and then (12.4) will
coincide with (12.1).

REMARK 12.1. To the reader familiar with algebraic geometry, formula (12.1)
resembles the Plucker formulas. These formulas concern algebraic curves in the
projective plane; everything is considered with complex coefficients. As before, let
T, D, I and C denote the number of double tangents, double points, inflections and
cusps of the curve (no signs are involved when working with complex numbers).

Two other numbers contribute to the Plucker formulas: the number of intersec-
tions of the curve with a general line, N (the degree of the curve) and the number
of tangent lines to the curve from a generic point, N* (the class of the curve). The
number N is the degree of the polynomial equation that defines the curve, and N*
is the degree of the polynomial equation that defines the projectively dual curve.
For example, for an ellipse, N = N* = 2.

The Plucker formulas are:

N*=N(N-1)-2D-3C, N=N*(N*-1)-2T-3I,
and
3AN(N—-2)=14+6D+8C, 3N*(N*—-2)=C+6T+8I.

The formulas in each pair are interchanged by the projective duality, described in
Lecture 8.
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For example, for a smooth curve of degree N = 4, one has C = D = 0, and
therefore N* = 12, I = 24 and T = 28; this will be of critical importance in Lecture
17.

Note the difference between algebraic curves and smooth curves, the “doodles”
of this lecture: the former are “rigid” objects, depending on a finite number of
parameters, the coefficients of their polynomial equations, whereas the latter are
extremely “soft” and can be deformed with much greater freedom. One manifesta-
tion off this flexibility will be discussed in Section 12.4.

12.3 Doodles with cusps: Ferrand’s formula. Another, quite recent, for-
mula for curves with cusps is due to E. Ferrand [29]. Consider a plane curve with
an even number of cusps and color the smooth arcs between the cusps alternatively
red and blue. We assign signs to double points: a double point is positive if it is the
intersection of two arcs of the same color, and it is negative if it is the intersection of
two arcs of the opposite colors. Denote by Dy the number of positive and negative
double points.

We also redefine the signs of double tangents. There are three attributes to a
double tangent: whether the orientations of the two arcs are the same or opposite;
whether the arcs lie on the same or opposite sides of the tangent line; and whether
the two arcs are of the same or opposite colors. The sign of a double tangent is
shown in Figure 12.8.

SN N N T

SN N N T
—~ i
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F1GURE 12.8. The signs of double tangents

Let T be the number of positive and negative double tangent lines. With this
preparation, Ferrand’s generalization of Fabricius-Bjerre formula to curves with
cusps is as follows.

THEOREM 12.2. For every generic plane curve with cusps, one has:
1 1

We shall not prove Ferrand’s theorem: we do not know a proof as simple as
the one given to the Fabricius-Bjerre theorem (but the reader is welcome to try to
find such a proof, see Exercise 12.8). Formula (12.5) is illustrated in Figure 12.9;
the first curve has

T,=4,T =3,1=6, D, =0, D_=1, C=2,
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008

FIGURE 12.9. An illustration of Ferrand’s formula

and the second
T, =2, T_=0,1=4, Dy =1, D_=0, C=2.

REMARK 12.2. Projective duality interchanges the numbers involved in the
Fabricius-Bjerre and Ferrand formulas: the numbers of double tangents and of
inflections of a curve equals the numbers of double points and of cusps of the dual
curve — see Figures 8.7 and 8.8.

12.4 Winding number and Whitney’s theorem. The winding number of

a closed smooth curve is the total number of turns made by the tangent vector as

one traverses the curve. If the curve is oriented, the winding number has a sign,

otherwise it is a non-negative integer. For example, the winding numbers of the
curves in Figure 12.10 are equal to 1 and 3, respectively.

¥

Ficure 12.10. Winding numbers 1 and 3

Let us continuously deform a smooth curve. We do not exclude self-tangency or
multiple self-intersections, as in Figure 12.11. In such a deformation,' the winding
number remains the same. Indeed, a small perturbation of a curve leads to a small
change in the winding number; being an integer, it must remain constant.

The converse statement is Whitney’s theorem.

THEOREM 12.3. If two closed smooth curves have the same winding numbers
then one can be continuously deformed to the other.

For example, the left curve in Figure 12.10 can be deformed to a circle, as the
reader has probably already noticed.

IThe technical term for such deformation is regular homotopy.
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FIGURE 12.11. A continuous deformation of a smooth curve

FIGURE 12.12. A long curve

We shall prove Whitney’s theorem for another class of curves, the long curves.
A long curve is a smooth plane curve that, outside some disc, coincides with the
horizontal axis, see Figure 12.12. Long curves are a little easier to work with,
whence our choice.

FIGURE 12.13. Model long curves

Proof of Whitney’s theorem for long curves. Long curves are oriented from left
to right. A model long curve with winding number n is the horizontal line with
|n| consecutive kinks, clock- or counter clock-wise, depending on the sign of n, see
Figure 12.13. We want to prove that a long curve with winding number n can be
deformed to one of these model curves.

Figure 12.14 features a deformation that adds (or cancels) a pair of kinks with
opposite orientations. Using this trick, one can always add |n| such pairs to a given
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curve so that one obtains a curve with winding number zero, followed by n kinks.
Therefore, it suffices to prove that a long curve y with zero winding number can be
deformed to the horizontal axis.

@@ﬁ%

F1cURE 12.14. Adding or canceling a pair of opposite kinks

Let v(t) be a parameterization of our curve. Consider the angle «(¢) made by
the positive tangent vector to y(¢) with the horizontal direction. The graph of the
function a(t) may look like Figure 12.15.

In fact, the angle «(t) is defined only up to addition of a multiple of 2r. We
choose a(t) = 0 on the left horizontal part of the curve and extend it continuously
to an “honest” function of ¢. Since the winding number is zero, a(tf) = 0 on the
right horizontal part of the curve as well.

LUV

\J

FIGURE 12.15. A graph of the function «(¢)

Let us squeeze this graph toward the horizontal axis: as(t) = sa(t) where s
varies from 1 to 0. For every value of s, one has a unique curve 5 whose direction
at point v, (t) is as(t). In particular, ag(t) = 0, hence 7y is the horizontal axis.

What do the curves 4 look like? They start as the horizontal axis and end as
horizontal lines, since a(t) = 0 for sufficiently large [¢|. The only problem is that
the right end of v, may be on a different height, see Figure 12.16. This problem
is addressed by smoothly adjusting the curve on its horizontal right part, see the
same figure, and one obtains a long curve ~,.

To wit: we have constructed a continuous family of long curves, from ~v = =
to 7o, the horizontal axis. This is a desired deformation. O

Let us mention a version of Whitney’s theorem for curves on the sphere. The
result is even simpler than in the plane. A generic smooth closed spherical curve
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FIGURE 12.16. Adjusting the height of the right end

has a single invariant that assumes values 0 or 1: this is the parity of the number
of double points.

THEOREM 12.4. Two generic smooth spherical curves can be continuously de-
formed to each other if and only if their numbers of double points are either both
even or both odd.

Sketch of Proof. That the parity of the number of double points does not change
under a generic deformation is clear from Figure 12.11.

Let us show that two curves with the same parity of the number of double points
can be deformed to each other. The sphere becomes the plane after deletion of a
point. One obtains a plane curve that, by the Whitney theorem, can be deformed
to (the closure of) a model curve in Figure 12.13. For these curves, the number of
double points is one less than the winding number. It remains to show that, on the
sphere, the model curves with winding numbers that differ by 2 can be deformed
to each other. Such a deformation (for the winding numbers 0 and 2) is shown in
Figure 12.17. O

REMARK 12.3. Whitney’s theorem has far reaching generalizations in which
the circle and the plane are replaced by arbitrary smooth manifolds. This area is
known as the Smale-Hirsch theory. One of the most striking results of this theory is
the sphere eversion, a deformation of the sphere in 3-dimensional space in the class
of smooth, but possibly self-intersecting, surfaces that ends with the same sphere,
turned inside out. A number of explicit constructions of such sphere eversions are
known; one, due to W. Thurston, is shown in the movie “Outside in” [94] which
we recommend to the reader.?

12.5 Combinatorial formulas for the winding number. To find the wind-
ing number of a closed or long curve, one may just traverse the curve and count
the total number of turns made. However, there are better ways of counting spins
without getting dizzy, and we shall discuss a few in this section.

The first formula is shown in Figure 12.18. This formula is, more-or-less, obvi-
ous. To count the number of total turns, it suffices to count how many times the

2 A more recent movie, “The Optiverse”, features a different sphere eversion based on mini-
mizing an elastic bending energy for surfaces in space.
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FIGURE 12.17. A deformation of a spherical curve

tangent line to the curve is horizontal. There are four possibilities shown in Figure
12.18. The first two contribute to rotation in the positive, counter clock-wise di-
rection, and the second two, to rotation in the negative direction. This proves the

NG Y NNV

FIGURE 12.18. A formula for the winding number

Another formula for the winding number was given by Whitney in the same
paper where he proved the theorem discussed in the preceding section. Let us first
describe this formula for long curves. Traverse a curve from left to right. Each
double point is visited twice and looks as shown in Figure 12.19. Call the first a
positive and the second a negative double point. Let Dy be the number of positive
and negative double points of the curve. The formula for the winding number is:

(12.6) w=D, —D_.

1 2

L N2 1

FicURE 12.19. The signs of double points

Proof of formula 12.6. If the curve is a model one, as in Figure 12.13, the result
clearly holds. Since every curve can be deformed to a model one, we shall be done
if we show that Dy — D_ does not change under deformations.



LECTURE 12. ON PLANE CURVES 177

During a generic deformation, one may encounter two “singular” events de-
picted in Figure 12.11. The first introduces (or eliminates) a pair of double points
of the opposite signs, and hence does not affect D, — D_, while the second does not
change the number or the signs of the double points involved. This proves (12.6).
O

o0 >

FIGURE 12.20. Rotation numbers

For a closed oriented curve v, formula (12.6) is modified as follows. First of all,
to assign signs to double points, one chooses a starting point x on +.

Let y be a point not on the curve v. Denote by r(y) the rotation number of
the curve about y, that is, the number of times v goes about y (cf. Section 6.4). In
other words, r(y) is the number of complete turns made by the position vector yx
as the point z traverses the curve. See for example Figure 12.20, where the rotation
numbers are assigned to the components of the complement of the curve.

When the point y crosses the curve, r(y) changes by 1, as in Figure 12.21. If y
is a point on the curve (but not a double point), the rotation number r(y) is defined
as the half-integer, equal to the average of the two values obtained by pushing y
slightly on both sides of the curve.

r+1 r

FicUre 12.21. How the rotation number changes upon crossing
the curve

The formula for the winding number of a closed curve is:
(12.7) w=Dy —D_+2r(x).

Still another way to find the winding number w of an oriented curve is to
resolve each double point as shown in Figure 12.22. After this is done everywhere,
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our curve decomposes into a collection of simple curves, some oriented clock-wise
and some counter clock-wise. Let I_ and I, be the numbers of these simple curves.

K-

FiGURE 12.22. The resolution of a double point

THEOREM 12.5. One has: w= I, — I_, see Figure 12.23.
) Q

FicURE 12.23. Computation of the winding number by resolving a curve

Proof. Traverse a curve -, starting at a double point, say, z. Upon the first
return to x, one traverses a closed curve (with corner) v1; let ay be the total turn
of its tangent vector. Likewise, continuing along ~ until the second return at z, one
traverses another closed curve, 7s; let as be the total turn of its tangent vector.
Clearly the total turn of the tangent vector of v is a3 + a. Resolving the double
point x, as in Figure 12.22, we make both curves smooth, adding the same amount
(say, m/2) to ay and subtracting from as. Thus the winding number of v is the sum
of the winding numbers of the rounded curves v; and 2. Applying this argument
to every double point yields the result. O

REMARK 12.4. The subject of this lecture is closely related with knot theory
(see [1, 72] for expositions). The Fabricius-Bjerre (12.1) and Ferrand (12.5) formu-
las have natural interpretations as self-linking numbers, and this stimulated recent
interest in them. The combinatorial formulas for the winding number in Section
12.5 resemble some formulas for finite order knot invariants in contemporary knot
theory.
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12.6 Exercises.

12.1. Prove that the complement to a closed plane curve has a chess-board
coloring (so that the adjacent domains have different colors).

12.2. Prove that the number of intersection points of two closed curves is even.

12.3. Consider two plane curves (as usual, in general position). Let ¢4 and ¢_
be the number of their outer and inner common tangent lines and d the number of
their intersection points (thus we are not concerned with double tangents or double
points of either curve). Show that t; =t_ +d.

12.4. Draw curves with

(a) Ty =2,T_=0,I=2,D =1;
(b)T, =3,T-=0,1=2,D=2;
()T =4,T-=2,1=0,D =2.

12.5. * (a) If I is a positive even number and T} —T_ — I/2 = D then there
exists a curve with the respective number of double tangents, inflections and double
points.

(b) If I =0, prove that T_ is even and 7_ < (2D + 1)(D —1).

(¢) IfT_ iseven and T_ < D(D—1) then there exists a curve without inflections
and with the respective number of double tangents and double points.
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FIGURE 12.24. A curve with cusps

12.6. Consider a curve with cusps, such as in Figure 12.24, and extend the
notion of double tangents to include the lines that touch the curve in cusps, see
Figure 12.25. Let C' be the number of cusps. Prove that

1

Hint. Round up cusps, trading each for two inflections, see Figure 12.26.

e 3

FIGURE 12.25. Generalized double tangent lines

o

FIGURE 12.26. Rounding up a cusp

12.7. * Prove the Weiner formula (12.4).
12.8. * Prove the Ferrand formula (12.5).

12.9. Prove formula (12.7).
Hint. Check that the right hand side of (12.7) does not depend on the choice
of x, see Figure 12.27.
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FIGURE 12.27. The effect of changing the base point

12.10. Prove that the rotation number r(y) of the curve about a point y can
be computed as follows: resolving all double points as in Figure 12.22, y gets
surrounded by a number of clock-wise and counter clock-wise oriented curves. Then
r(y) is the number of the latter minus the number of the former.

12.11. Show that the winding number of a closed curve is at most one greater
than the number of its double points and has the parity, opposite to it.

12.12. Assume that a closed curve has n double points, labeled 1 through n.
Traverse the curve and write down the labels of the double points in the order
they are encountered. One obtains a cyclic sequence in which each number 1,...,n
appears twice. Prove that, for any i, between two occurrences of symbol ¢, there is
an even number of symbols in this sequence (theorem of Gauss).

Hint. Resolve the i-th double point, as in Figure 12.22, and use the fact that
the resulting two curves intersect an even number of times.

FIGURE 12.28. Embedded and immersed discs

12.13. The left Figure 12.28 shows a disc embedded in the plane, whereas the
right one is an smmersed disc which overlaps itself. Such an immersion is a smooth
map of a disc in the plane that is locally an embedding. The boundary of an
embedded disc is a simple closed curve; the boundary of an immersed disc may be
much more complex.

(a) Does the curve in Figure 12.29 bound an immersed disc?

(b) Prove that the boundary of an immersed disc has winding number 1.

(¢) Show that the curve in Figure 12.30 bounds two different immersed discs.
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FIGURE 12.29. Does this curve bound an immersed disc?

FIGURE 12.30. This curve bounds two different immersed discs
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LECTURE 13

Paper Sheet Geometry

13.1 Developable surfaces: surfaces made of a sheet of paper. Take a
sheet of paper and bend it without folding. You will have in your hands a piece of
surface whose shape will depend on how you bend. Samples of surfaces which you
can get are shown on Figure 13.1.

SRy

FIGURE 13.1. Paper sheet surfaces

However, not every surface can be obtained by bending a sheet of paper. Ev-
erybody knows, for example, that it is impossible to make even a small piece of
a sphere out of a sheet of paper: if you press a piece of paper to a globe, some
folds will appear on your sheet. It is possible to make a cylinder or a cone, but you
cannot bend a sheet of paper like a handkerchief without making fold lines (Figure
13.2).

In geometry, surfaces which can be made out of a sheet of paper, in the way
described above are called developable. We shall not even try to make this definition
more rigorous, but still we shall specify the two physical properties of paper which
are essential for our geometric purposes: paper is not compressible or stretchable

185
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—

YES YES NO

FicUure 13.2. Cylinder and cone, but not a handkerchief

and is absolutely elastic. The first means that, after bending, all curves drawn on
the paper retain their lengths. The second means that there are no other restrictions
on bending paper. “Without folding” means that the surface remains smooth, which
means, in turn, that the surface has a tangent plane at every point.

We shall see that not all surfaces are developable from the simplest property of
developable surfaces (this property, as well as all other major results of the theory
of developable surfaces, was proved by Euler).

13.2 Every developable surface is ruled. The latter means that for every
point of a developable surface there exists a straight interval which is contained
in the surface and contains the point in its interior. In terms of our everyday
experience, we can say, that at every point A of the bent sheet of paper, we can
attach a bicycle spoke to the paper in such a way that some piece of it on both sides
from the point A will touch the paper (Figure 13.3). We shall not prove this fact
(the proofs known to us operate with formulas rather than geometric images) and
shall regard it as an experimental, but firmly established, property of developable
surfaces.

FIGURE 13.3. A straight ruling
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If some point of a developable surfaces belongs to two different straight inter-
vals, then some piece of the surface around this point is planar (Figure 13.4). To
avoid this possibility we shall simply restrict our attention to surfaces which have
no planar pieces. This assumption implies that for every point of the surface there
is a unique line belonging to the surface and passing through this point.

FIGURE 13.4. A planar point of a developable surface

We must add that no real life sheet of paper is infinite. So, our surfaces will
have boundaries. Every point of the surface belongs to a unique straight interval
which starts and ends on the boundary. These straight intervals form a continuous
family which sweeps the whole surface (Figure 13.5).

FI1GURE 13.5. A family of rulings

13.3 Not only a spoke, but also a ruler. There are too many ruled sur-
faces: a moving straight line in space sweeps one. Some ruled surfaces are well
known: we shall discuss, in detail, the properties of two of them in Lecture 16:
a one-sheeted hyperboloid and a hyperbolic paraboloid. Now we can state that
developable surfaces are much rarer than ruled surfaces; in particular, the doubly
ruled surfaces of Lecture 16 are not developable (which is seen already from the
properties of developable surfaces listed in Section 13.2.) We are going to formulate
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another experimental fact which characterizes the difference between ruled surfaces
and developable surfaces.

/

FIGURE 13.6. The tangent planes along a ruling revolve

Take an arbitrary ruled surface .5, take a line £ on .S, and consider the tangent
plane T4 to S at some point A of ¢. This plane will contain ¢, but the planes
T4 will be, in general, different for different points A of ¢; that is, when we move
point A along ¢, the plane T4 will rotate about ¢. For example, if S is a one-sheeted
hyperboloid (see Figure 13.6), then T4 will contain, besides ¢, the line of the second
family of lines (see Lecture 16), and hence these planes will be different for different
points A; when A moves along ¢, T4 makes almost half a turn about ¢. Such things,
however, never happen on a developable surface:

All tangent planes tangent to a developable surface S at points of a straight line
on this surface coincide. In other words, one can attach to a developable surface not

only a (one-dimensional) bicycle spoke, but also a (two-dimensional) ruler (Figure
13.7).

FiGure 13.7. The tangent planes along a ruling are the same
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This criterion (which we also do not prove) provides not only a necessary, but
also a sufficient condition for a ruled surface to be developable.

13.4 Let us expand the lines on a developable surface. Look again at
Figure 13.5. Since our surface S is not infinite (a sheet of paper cannot be infinite!)
the straight lines on S are not infinite: they begin and end on the boundary of the
surface. Let us expand these lines, in one of the two possible directions. What will
happen?

FIGUrE 13.8. Expanding the rulings upwards

This question seems innocent, at the first glance. Let us expand the lines shown
on Figure 13.5 upwards, in the direction where they diverge. We see that nothing
extraordinary will happen: the surface will grow, eventually becoming less and less
curved, more and more resembling a plane (Figure 13.8).

FicURE 13.9. Expanding the rulings downwards

But what if we expand the lines in the opposite direction (Figure 13.9)? The
reader can pause here and think of this question. The lines converge, but they
do not, in general, come to one point, we can expect that they are pairwise skew.
We can expect that they will first converge and then diverge, forming a surface
resembling a hyperboloid — but the hyperboloid is not a developable surface, so this
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is also not likely. It is not easy to guess what will happen. And what happens is
the following:

F1GURE 13.10. Cuspidal edge

The surface will not be smooth, it will gain a cuspidal edge. This is a curve
such that the section of the surface by a plane, perpendicular to this curve, looks
like a semi-cubic parabola (Figure 13.10). Moreover, all the lines on the surface S
will be tangent to this curve.

13.5 Why a cuspidal edge? Let us try, if not to prove this statement, then,
at least, to explain, why it should hold. Let us try to make an actual drawing of
the expanded lines on our Figure 13.5 (see Figure 13.11). You can see the cuspidal
edge on Figure 13.11 with your own eyes!

FI1GURE 13.11. The envelope of the rulings

But no, this is not convincing. The drawing of a hyperboloid (Figure 13.12)
looks precisely the same: there is a curve on the drawing (the side hyperbola) to
which all the lines on the hyperboloid are visibly tangent.
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FIGURE 13.12. The tangent plane of the hyperboloid is perpen-
dicular to the drawing

We say “visibly,” since the lines which we see on the drawing are the projections
of the lines on the surface onto a planar page of the book. No tangency occurs on
the surface; it is simply that the tangent planes to the hyperboloid at the point
corresponding to the points of the side hyperbola are perpendicular to our drawing
and their projections are lines. But this is not possible on a developable surface —
because of the rule formulated in Section 13.3. Indeed, the tangent plane to the
surface at the points of our line, not belonging to the proposed cuspidal edge, are
not perpendicular to the plane of the drawing. But the tangent plane is the same
at all points of the line (remember our ruler rule?); hence it is not perpendicular
to the drawing at the points of tangency to the edge.

R
] >ﬁ

FIGURE 13.13. The tangent plane of a developable surface is not
perpendicular to the drawing

Thus, the tangent plane looks like it is shown on Figure 13.13, which shows
that the curve, the cuspidal edge, is indeed tangent to the straight lines on the
surface.

13.6 Backward construction: from the cuspidal edge to a developable
surface. Since our surface consists of lines tangent to the cuspidal edge, we can
look at our construction from the opposite end. Let us begin with a space curve
(which should be nowhere planar). Take all the tangent lines to our curve; they
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sweep out a surface. This surface is a developable surface, and the initial curve is
its cuspidal edge. What is really surprising, is that an arbitrary nowhere planar
developable surface (including the sheet of paper which you are holding in your
hands) can be obtained in this way.

Well, not quite arbitrary. There are two exceptional, degenerate, cases. Your
surface may be cylindrical which means that all the lines on it are parallel to
each other; it has no cuspidal edge (one can say that its cuspidal edge escapes to
infinity). Or it can be conical which means that all the lines pass through one
point (one can say in this case that the cuspidal edge collapses to a point). But
a “generic,” randomly bent sheet of paper always consists of tangent lines to an
invisible cuspidal edge (invisible, because it always lies not on the sheet, but on the
expanded surface).

It is no less surprising that an arbitrary non-planar curve is a cuspidal edge of
the surface formed by its tangent lines. For an illustration, the reader may look at
the picture of the surface formed by tangent lines to the most usual helix (Figure
13.14).

F1GURE 13.14. This surface is made of the tangent lines to a helix

A handy reader may even make a model of this surface of a helical piece of
wire and a bunch of bicycle spokes. The spokes should be attached to the wire as
tangents to the curve.

13.7 Is the cuspidal edge smooth? Is this all that one can say? Actually,
no, as we shall see in a moment. Magnify, mentally, your surface to such a size that
you can walk on it, and then walk across the straight lines on the surface. Since the
lines are tangent to the cuspidal edge, the distance from you to the tangency point
will rapidly decrease or rapidly increase, and both are possible. What happens at
the moment of a transition from one mode to the other one? Figure 13.15 presents
a sheet of paper with straight lines on it and two segments of the cuspidal edge.
And what is between them? A smooth curve like the flash insert on this drawing?
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X

F1GURE 13.15. Is the cuspidal edge everywhere smooth?

No, this curve cannot be tangent to all straight lines. Thus, only one possibility
remains:
The cuspidal edge itself must have cusps at some points (see Figure 13.16).

P

FiGURE 13.16. The cuspidal edge has a cusp

Let us try to understand what the surface looks like in the proximity of these
incredible points.

13.8 The swallow tail. Let us begin with a picture. The surface shown on
Figure 13.17 is called a swallow tail (we let the reader judge how much is resembles
the actual tail of a swallow). Besides the cuspidal edge it also has a curve of self-
intersection. The left hand side drawing shows a family of straight lines on the
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FIGURE 13.17. The swallow tail: straight rulings and plane sections

surface; the right hand side drawing (of the same surface) presents several relevant
plane sections.

To convince ourselves that the surface indeed looks as shown on Figure 13.17,
let us act as in Section 13.6: start with a cuspidal edge and construct a surface as
the union of the tangent lines.

The “typical” space curve with a cusp can be obtained from a (planar) semi-
cubic parabola by slightly bending its plane. This curve may be described, in a
rectangular coordinate system, by parametric equations z = at?, y = bt?, z = ct*.
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Look at this curve from above (so you will see a semi-cubic parabola) and draw
its tangent lines. Break every line into three parts by the tangency point and the
intersection point with the line of symmetry of the semi-cubic parabola as shown
on Figure 13.18.

FicURE 13.18. Tangent line to a semi-cubic parabola

Then draw separately the first, the second, and the third parts of the tangent
lines (Figure 13.19, a—c); these are three parts of the swallow tail. Figure 13.19 a
shows the piece of the surface between the two branches of the cuspidal edge; it is
slightly concave up. Figure 13.19 b presents the two pieces of the swallow tail and
the self-intersection curve, and Figure 13.19 ¢ shows the rest of the surface. Notice
that the parts of the surface presented on Figures 13.19 b and 13.19 ¢ have edges
along the self-intersection curve, and that this curve is a half of a usual planar
parabola.

(a) (b) (¢)
FI1GURE 13.19. Three parts of the swallow tail

Thus a surface obtained by a most natural expansion of a randomly bent sheet
of paper has a cuspidal edge with cusps and looks like a swallow tail in a neighbor-
hood of the cusps of the cuspidal edge. This is the answer to an innocently looking
question which we asked in the beginning of Section 13.4.

13.9 There are swallow tails all around. You may remember that in an-
other part of this book (Lecture 9) we were trying to convince the reader that there
are cusps all around us. This was true for planar geometry; in space, we have to
admit that there are swallow tails all around. The spatial constructions similar
to those of Lecture 9, including fronts of surfaces and visible contours of four-
dimensional bodies, lead to surfaces with swallow tails. For instance, if you take
a surface looking like an ellipsoid (for example, an ellipsoid) and then move every
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point along a normal line inside the ellipsoid, then, at some moment, the moving
surface will acquire cuspidal edges, self-intersections and swallow tails which will
pass through each other and finally disappear.

But, historically, the first picture of the swallow tail (not the name: it was
given to the surface in the 1960s by René Thom) appeared in the middle of 19-th
century in algebra books. We discussed this aspect of the swallow tail in Lecture
8. Recall that if we are interested in the number of (real) solutions of the equation

(13.1) 4 pr? +qr+r=0,

then we need to consider a swallow tail in space with coordinates p, ¢, r (the cuspidal
edge of this swallow tail should be p = —6t2, ¢ = 83, r = —3t%).

Inside the triangular pocket of the swallow tail, there will be points (p, g, )
for which the equation (13.1) will have 4 real solutions. Above the surface there
will be points (p, g, r) corresponding to the equations with 2 real (and 2 complex
conjugated) solutions. Below the surface, there will not be real solutions at all. On
the surface, besides the boundary of the pocket (in other words, on the part of the
surface corresponding to Figure 13.19 c), there will be one real solution (repeated
twice) and a pair of complex conjugated solutions. On the boundary of the pocket,
there will be 3 real solutions: two simple and one repeated; the difference between
the top part of this boundary (Figure 13.19 a) and the side parts (Figure 13.19 b)
is in the order of the solutions: on the top part, the repeated root lies between the
simple roots, on the two side parts it is, respectively, less than each simple roots
and greater than each simple root. On the cuspidal edge, there are two roots: one
triple and one simple; the two branches of the cuspidal edge distinguish between
the two possible inequalities between these roots. On the self-intersection curve,
there are two pairs of double roots (by the way, the second half of the parabola of
self-intersection lies in the “no real roots” domain; it corresponds to equations with
repeated complex conjugated roots). Finally, the most singular point, the cusp of
the cuspidal edge, corresponds to the equation 2 = 0 with four equal roots.

Note that the first picture of the swallow tail looks very different from Figure
13.17 (see Figure 8.11 in Lecture 8).

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

13.10 Exercises. For solving the exercises below the reader may use all the-
orems provided in this lecture, with or without complete proofs.

Let vy ={z = z(t),y = y(t), 2 = 2(¢)} be a curve and P = (x(tg), y(to), z(to) be
a non-inflection point (which means that the velocity vector +'(to) = (2'(t0), ¥/ (o), 2’ (to))
and the acceleration vector v (to) = (2" (t0),y" (to), 2" (to)) are not collinear. The
plane spanned by these two vectors at P is called the osculating plane of v at the
point P.
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13.1. Prove that if a plane II contains the tangent line to the curve v at P and
in any neighborhood of P the curve v does not lie at one side of II, then IT is the
osculating plane.

13.2. Prove that the tangent planes of a generic (non-planar, non-cylindrical
and non-conical) developable surface are osculating planes to the cuspidal edge, and
vice versa. (There are tangent planes to the surface passing through cusps of the
cuspidal edge; these planes may be regarded as osculating planes of the cuspidal
edge, although this case is not covered by the definition above.)

13.3. Prove that a generic family of planes in space is the family of tangent
planes to a developable surface, and hence, by Exercise 13.2, also a family of oscu-
lating planes to a curve.

Comment. Thus, a family of planes has two “envelopes”: a developable surface
and a curve; the latter is the cuspidal edge of the former.

13.4. (Exercise 13.3 in formulas.)
(a) Let
At)x+ B(t)y +C(t)z + D(t) =0
(where t is a parameter) be a family of planes. Prove that to get parametric
equations of the enveloping developable surface, one needs to take, as parameters,
t and one of the coordinates and then to solve the system
At)x+B(t)y+C(t)z+ D(t) =0
A'(t)r + B'(t)y+ C'(t)z+ D'(t) =0
with respect to the remaining two coordinates. To get parametric equations of the
enveloping curve, one needs to solve with respect to z,y, z the system
At)x+ B(t)y+C(t)z+D(t) =0
Alt)x+ B'(t)y+C'(t)z+ D'(t) =0
A'(t)x+ B"(t)y+C"(t)z+ D"(t) =0

(b) Apply these formulas to the family of planes obtained from the plane z+2z =
0 by rotating about the z axis with simultaneous parallel shift in the direction of
the same axis:
rcost —ysint+z —t =0.

13.5. Take a spatial curve with an inflection point, = = t,y = t3, 2z = t*, and
consider the developable surface formed by tangents to this curve. Investigate all
singularities (cuspidal edges and self-intersections) of this surface.

13.6. * (a) Consider a ruled developable disc D and let v be a smooth closed
curve on D. Prove that there are two points of  that lie on the same ruling of D
and such that the tangent lines to y at these points are parallel.

(b) Construct a developable disc and a smooth closed curve on it that has no
parallel tangents.






LECTURE 14
Paper Mobius Band

14.1 Introduction: it is not about ants or scissors. The Mobius band is
an immensely popular geometrical object. Even small children can make it: take
a paper strip, twist it through 180 degrees (by half a turn), and then attach the
ends to each other by glue or tape. By the way, one of us is still grateful to his
analysis professor who taught his students how to draw a Mobius band: draw a
standard trefoil, then add the three double tangents, then erase three segments of
the curve between self-intersections and tangency points (Figure 14.1). You can see
the drawing, it is beautiful.

FIGURE 14.1. How to draw a Mobius band

There is a number of familiar tricks involving the Moébius band. You can cut
it along the middle circle, and — check for yourself what happens. Or you can let
a stupid ant crawl from one side to another without crossing the border. But we
shall consider a totally different problem: if it is so easy to make a M6bius band out
of a paper strip, then what shape of strip should one take? More precisely: there
should be a real number A such that with a rectangular strip of paper of width 1
and length ¢ one can make a Mobius band for ¢ > A, but it is impossible if ¢ < A.

Question: what is A?

Answer: not known.

We could have stopped here, but we shall not. Let us discuss, what is known
about this problem, and what the perspectives are.

199
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14.2 Do not fold paper. Our readers who are familiar with Lecture 13 on
paper sheet geometry know that the condition of smoothness is crucial in problems
of this kind. Indeed, if it is allowed to, say, fold the paper, then a Mobius band can
be made of an arbitrary paper rectangle, even when its width exceeds its length.
How to do it, is shown in Figure 14.2: take a rectangular piece of paper (of any
dimensions), pleat it, then twist and glue. The condition of smoothness of our
surface, that is, in more mathematical terms, of the existence of a unique tangent
plane at every point of the surface, should play a role in our problem.

’
N
’
N
’
N
’
N
/

FIGURE 14.2. Making a Md6bius band of folded paper
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Now we are prepared to formulate our main result.

14.3 Main Theorem. Let )\ be a real number such that a smooth Mdbius
band can be made of a paper rectangle of dimensions 1 x £ if £ > A and cannot, if
<A

THEOREM 14.1. <A< V3.

T
2
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Thus, the interval between 7/2 ~ 1.57 and v/3 ~ 1.73 remains a grey zone for
our problem. Later, we shall discuss the situation within this zone, but first let us
prove this theorem.

We shall need some general properties of surfaces made of paper.

=

Il

FIGURE 14.3. A ruling of a paper surface

14.4 Surfaces made of paper. We discussed these properties in Lecture 13
mentioned above. Not every surface can be made of paper. Restriction come from
physical properties of (ideal) paper: it is flexible but not stretchable. The latter
means that any curve drawn on a sheet of paper retains its length after we bend the
sheet into a surface. As we know from Lecture 13, any paper surface is ruled which
means that every point belongs to a straight interval lying on the surface. The line
containing this interval is unique, unless a piece of the surface around the chosen
point is planar. Thus, any paper surface consists of planar domains and straight
intervals. If we draw these intervals and shadow these domains on the surface and
then unfold the surface into a planar sheet, we will get a picture like the one shown
in Figure 14.3.

14.5 Proof of the inequality A > 7. Let a Mobius band be made of a paper
strip of width 1 and length ¢. If we take a very long (infinite) strip of width 1, we
can wind it onto our M&bius band, so that every rectangle of length ¢ will assume
the shape of our M&bius band (and these rectangles will be located alternatively
on two sides of the core band). Mark on the strip the straight intervals and the
planar domains (the latter will have the shape of trapezoids which may degenerate
into triangles, they are shaded in the upper Figure 14.4). The picture is periodic:
it repeats itself with period 2¢, and the successive rectangles of length ¢ repeat each
other but turning upside down. We fill the planar domains with straight intervals,
so that the whole strip will be covered by a continuous family of intervals (pairwise
disjoint) with the same periodicity property as above (see lower Figure 14.4). All
the intervals have lengths > 1, their ends lie on the boundary lines of the strip, and
all of them remain straight when we bend our strip into a Mobius band.
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|
|

FIGURE 14.4. Filing planar domains on the strip with straight segments

A C A

B B’ D
FIGURE 14.5. AB and CD.

Take any interval of our family, say, AB. Shift it to the right by ¢ to the position
A’B’ and then reflect the interval A’B’ in the middle line of the strip (Figure 14.5).
The resulting interval C'D also belongs to our family (because of the periodicity
properties described above).

Two things are obvious. First, AC+ BD = 2¢; second, on the M&bius band the
point C' coincides with B and the point D coincides with A. The second statement
means that on our paper model the angle between the intervals AB and C'D is 180°.
Thus, in space, the intervals of our family between AB and C'D form the angle with
the interval AB which continuously varies from 0 to 180°. Take some (big) number
n and choose intervals AgBy = AB, A1Bq,...,A,_1B,_1, A,B, = CD of our
family (Figure 14.6) such that the angle between AB and AjBj (on the Md&bius

180°

band) is equal to k - (for k = 0,1,...,n —1). This implies that the angle

o]

between Ay By and Ajy1Byy1 is at least

LEMMA 14.1. Let a,, be the side of the regular n-gon inscribed into a circle of
diameter 1. Then (on our paper strip) AxAg+1 + BrBgy1 > an, (for any k).



LECTURE 14. PAPER MOBIUS BAND 203

A=Al -

ik

B = BO Bl - :D

FIGURE 14.6. The family AgBy.

Proof. Consider a piece of our paper M&bius band containing the (images of)
the intervals Ay By and Ag41Bk4+1. The lengths of segments ApAgy1, BrBg41 in
space do not exceed the length of the same intervals on the strip (the latters are
equal to the lengths of arcs Ay Ax+1, BrBi+1 on the boundary curve of the Mébius
band). So, it is sufficient to prove our inequality for the points Ag, Ax11, B, Bgt1 in
space. Take point F such that Ay E has the same length and direction as Ag1Bgy1
(see Figure 14.7, left). Then Bpi1E = Agy1Ag and ByF < BpBii1 + By E =
ApAgs1 + BBy

But ByE > a,. To prove this, consider an isosceles triangle K LM inscribed
into a circle of diameter 1 whose base LM is a side of a regular n-gon inscribed into
the same circle and which contains the center of the circle (Figure 14.7, right). In
this triangle, /M KL = 180°/n and KL = KM = b, < 1. In the triangle Ay By E,
denote by F' and G the points on the sides Ay By, and A FE at distance b,, from Ay
(these points exist since AgBy > 1 > b, and AxF = Ag11Br11 > 1 > by,). Then
ByE > FH > FG > a, (the latter is true since ZB Ay E > 180°/n). O

FIGURE 14.7. Proof of Lemma 14.1
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Back to the inequality A > g We have:

2\>2¢ = AC+ BD
= (AoA1+---+ A 1A,) + (BoB1 + -+ Br_1By)
= (AOAl + BOBI) +-+ (An—lAn + Bn—an) > nap
Since this is true for every n, and na,, approaches m when n grows, we have 2\ > .
O

14.6 Proof of the inequality A\ < v/3. To prove this inequality, it is sufficient
to show how a Mobius band can be made of a 1 x £ strip for an arbitrary ¢ > /3.
We shall show how a Mobius band can be made of a strip of length precisely v/3,
but this will require several folds. We have a commitment to avoid folds, but it is
clear that disjoint folds can be smoothened at the expense of an arbitrarily slight
elongation of the strip (see Figure 14.8).

FIGURE 14.8. Rounding folds.

The construction is shown in Figure 14.9: we take a rectangle ABC'D with
AB =1, AD = /3, draw equilateral triangles AKL and KLC with K on BC
and L on AD. Notice that the right triangles ABK and C' DL are two halves of
one more equilateral triangle. (This construction is possible, since the side of an

2 2 1
equilateral triangle with altitude 1 is 2tan30° = §\/§’ and /3 = §\/§+ g\/g)

Then we fold the strip along the lines AK, KL, and LC, as shown in Figure 14.9.
O

Notice that a “Mobius band” we constructed does not look like a Mobius band.
It is rather the union of three identical equilateral paper triangles AK L, the top
one attached to the middle one along the side AL, the middle one attached to the
bottom one along the side KL and the top one and the bottom one attached to
each other along the side AK. If we take a strip slightly longer than v/3 and round
the folds, we shall get a smooth Mobius band which will still look more like an
equilateral triangle than a Md&bius band.
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i Lx

LA
FIGURE 14.9. Constructing a Mobius band of a rectangle 1 x /3.

B K C

A L D

14.7 Why is a more precise value of A\ not known? Until a problem is
solved, it is difficult to say why it is not solved. Still sometimes it is possible to
detect common difficulties in different unsolved problems, which, in turn, may help
to predict success or failure in solving some problems, or even to guess a solution.
In previous sections we proved that A is a point of the segment [71' /2, \/§] Which
point? Is there, at least, a plausible conjecture? Yes: we think that A = v/3 and
we are not surprised that a proof has not been found yet.

To justify this, let us notice that our proof of the inequality A > 7/2 does not
use one important property of a paper Mdobius band: it has no self-intersections.
One cannot make a self-intersecting Mobius band of a real-life paper sheet, but it
is not hard to imagine it: like a self-intersecting curve, it passes “through itself”
but consists of non-self-intersecting pieces.

Suppose that, from the very beginning, speaking of a paper Mébius band, we do
not exclude the possibility of self-intersections. Then the number A acquires a new
sense, and the new value of A will be less than or equal to the old one. Moreover,
the inequality A > 7/2 will remain valid, and we shall not need to change a single
word in its proof: the absence of self-intersections is not used in it at all. As to the
inequality A\ < v/3, it may be considerably improved.

THEOREM 14.2. A smooth self-intersecting Mébius band can be made of a paper
rectangle 1 X £ for any £ > /2.

Proof. Take an arbitrarily big odd n, and consider a regular n-gon such that
the distance from a vertex to the opposite side equals 1. Let p,, be the perimeter
of this n-gon; it is clear that when n grows, the n-gon becomes indistinguishable
from a circle of diameter 1 and p,, approaches .

Take a rectangle ABC'D of dimensions 1 x P and inscribe in it 7 — 1 isosceles

triangles AKQ, KQL, ..., MNC, equal to the triangle formed by a side and two
of the longest diagonals of our regular n-gon (see Figure 14.10 where n = 7). The
triangles ABK and NCD are two halves of such triangle. Then fold the rectangle
along the lines AK, KQ,...,NC (in alternating directions). The process of this
folding is shown in Figure 14.10.

In the end we shall obtain a paper figure, indistinguishable from a regular n-gon
(a regular heptagon in our picture), with the segments AB and C'D almost merging
together: they will be separated only by several layers of folded paper. If we make
the folds smooth (this will require a slightly longer strip) and then connect AB with
CD by a very short paper strip (which will create severe self-intersections), we shall
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B K L M C Q

Q P N D L

FIGURE 14.10. A heptagonal model of a self-intersecting Mobius band.

get a smooth self-intersecting Mobius band with the ratio between the length and
the width of the strip arbitrarily close to 7/2. O

Thus, if we want to prove that A > 7/2, our proof should have to use the absence
of self-intersections. The question whether a surface has self-intersections, belongs
to three-dimensional “position geometry”. The whole experience of mathematics
shows that this part of geometry is especially hard: there are almost no technical
means to approach its problems. Thus, if an improvement of the inequality A\ > 7/2
exists, it is difficult to find a proof. On the contrary, an improvement of the
inequality A < v/3 would have involved a construction better than that of Section
14.5. But one can expect this construction to be natural and beautiful; the fact
that we do not know it may be regarded as an indication that it does not exists.
By this reason it seems plausible to us that A = v/3, but the proof is hardly easy.

14.8 Exercise. Suppose that we have a paper cylinder, made of a paper strip
of dimensions 1 x ¢. Is it possible to turn it inside out (without violating its
smoothness)? Clearly, if the cylinder is short and wide (¢ is big), then it is possible,
but if the cylinder is long and narrow (¢ is small), it is impossible. Where is
the boundary between short and wide cylinders and long and narrow ones? The
following statements due to B. Halpern and K Weaver [41] give a partial answer to
this problem. (Nothing else is known, so far.)

14.1. *(a) If £ > 7w + 2, then it is possible to turn the cylinder inside out.

(b) If £ > m, then the cylinder can be turned inside out with self-intersections.

(¢) If £ < m, then the cylinder cannot be turned inside out, with or without
self-intersections.



LECTURE 15

More on Paper Folding

15.1 The fold line is straight. Take a sheet of paper and fold it: the fold
line is straight, see Figure 15.1. We start our discussion of paper folding with a
mathematical explanation of this phenomenon.

N

Ficure 15.1. Folding a sheet of paper yields a straight line

The model for a paper sheet is a piece of the plane. The fold curve partitions the
plane into two parts. Performing folding, we establish a one-to-one correspondence
between these parts, and this correspondence is an isometry: the distances between
points do not change. The last property means that paper is not stretchable; this
is our standing assumption, made in Lecture 13.

T+
v
vy

FIGURE 15.2. Proving that the fold line cannot be curved
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Call the fold line 7, and let us prove that it is straight. If not, v has a sub-arc
with non-zero curvature. Let 4 be the curve «y translated (small) distance € from
~ on the concave side, and y_ — that on the convex side. Then

length v4 > length v > length ~_,

see Figure 15.2 (the difference is of order ¢ - length « - curvature ). On the other
hand, the isometry takes v to v_, so length v and length v_ must be equal. This
is a contradiction.

15.2 And still, the fold line can be curved. In spite of what has just been
said, one can fold paper along an arbitrary smooth curve! The reader is invited to
try an experiment: draw a curve on a sheet of paper and slightly fold the paper
along the curve.! The result is shown in Figure 15.3 on the left.

FI1GURE 15.3. A sheet of paper folded along a curve

One may even start with a closed curve drawn on paper. To be able to fold,
one must cut a hole inside the curve, see Figure 15.4.

It goes without saying that there is no contradiction to the argument in Section
15.1: the two sheets in Figure 15.3, left, do not come close to each other, they meet
at a non-zero angle (varying from point to point).

To fix terminology, call the curve drawn on paper the fold and the curve in
space, obtained as the result of folding, the ridge. Experiments with paper reveal
the following:

(1) Tt is possible to start with an arbitrary smooth fold and obtain an arbitrary
ridge, provided the ridge is “more curved” than the fold.

(2) At every point of the ridge, the two sheets of the folded paper make equal
angles with the osculating plane? of the ridge.

(3) If the fold has an inflection point (where it looks like a cubic parabola)
then the corresponding point of the ridge is also an inflection point, that
is, has zero curvature.

LA word of practical advice: press hard when drawing the curve. It also helps to cut a neigh-
borhood of the curve not to mess with too large a sheet. A more serious reason for restricting to
a neighborhood is that this way one avoids self-intersections of the sheets, unavoidable otherwise.

2See Section 15.3 for definition.
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FIGURE 15.4. Closed fold line

(4) If the fold is closed and strictly convex then the ridge cannot be a planar
curve.

In the next sections we shall explain these experimental observations.

15.3 Geometry of space curves. We need to say a few words about curva-
ture of plane and space curves.

Let v be a smooth plane curve. To define curvature, give the curve arc length
parameterization, v(t). Then the velocity vector, /(t), is unit, and the acceleration
vector " (t) is always orthogonal to the curve. The magnitude of the acceleration,
|7 (¢)|, is the curvature of the curve. That is, the curvature is the rate of change
of the direction of the curve per unit of length.

Equivalently, one may consider the osculating circle of the curve at a given
point; this is the circle through three infinitesimally close points of the curve (see
Lecture 10). Curvature is the reciprocal to the radius of the osculating circle.

Still another way to measure curvature is as follows. Let every point of the curve
move, with unit speed, in the direction, orthogonal to the curve (cf. Lecture 9).
In this process, the length of the curve changes. The absolute value of the relative
rate of change of the length at a point equals the curvature of the curve (this is easy
to check for a circle; for an arbitrary curve, approximate by its osculating circle).
This characterization of curvature was used in the argument at the end of Section
15.1.

We now turn to curves in space. Let ~(t) be an arc length parameterized
spatial curve. Similarly to the planar case, its curvature is the magnitude of the
acceleration vector, |v"(t)].

Note the following important difference with the planar case. A typical plane
curve has inflection points (points of zero curvature) where it looks like Figure 15.5.
The word “typical” means that if one perturbs the curve slightly then the inflection
point will move a little but will not disappear. In space, typical curves have no
points of zero curvature.
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FIGURE 15.5. A typical plane curve has inflections

(An accurate proof of this claim is rather tedious, but here is a plausible expla-
nation. The acceleration vector v”(t) is orthogonal to the curve and has two degrees
of freedom. For this vector to vanish, two independent conditions must hold. But
a point of a curve has only one degree of freedom, so we have more equations than
variables, and hence a typical curve has no points of zero curvature.)

Suppose our space curve has no points of zero curvature. The plane spanned by
the velocity and acceleration vectors v'(t) and +”(t) is called the osculating plane
of the curve. This plane approximates the curve at point «(¢) better than any other
plane: up to infinitesimals of second order, the curve lies in its osculating plane.
Equivalently, the osculating plane is the plane through three infinitesimally close
points of the curve.

The unit vector, orthogonal to the osculating plane, is called the binormal. The
binormal vector changes from point to point, and the magnitude of its derivative
(with respect to arc length parameter) is called torsion. Torsion measures how the
osculating plane rotates along the curve.

Suppose that an arc length parameterized curve (t) lies on a surface M. The
acceleration vector 4" (t) can be decomposed into two components: the component
orthogonal to M and the tangential one. The magnitude of the latter is called the
geodesic curvature of the curve (cf. Lecture 20); it can be again interpreted as the
relative rate of change of the length as every point of v moves on M, with unit
speed, in the direction perpendicular to the curve.

15.4 Explaining paper folding experiments. Recall that our mathemat-
ical models for paper sheets are developable surfaces. Extend the two sheets of
the developable surfaces in Figure 15.3, left, beyond their intersection curve, the
ridge, as in Figure 15.3, right. One sees two developable surfaces intersecting along
a space curve . Unfolding either of the surfaces to the plane transforms v to the
same plane curve §, the fold. Reverse the situation and pose the following question:
given a plane curve ¢, a space curve v and an isometry (distance preserving corre-
spondence) f between & and +, is it possible to extend f to a planar neighborhood
of § to obtain a developable surface, containing v? Said differently, can one bend a
sheet, of paper, with a curve § drawn on it, so that § bends to a given space curve
7

THEOREM 15.1. Assume that for every point x of § the curvature of v at the
respective point f(x) is greater than the curvature of § at x. Then there exist ex-
actly two extensions of f to a plane neighborhood of § yielding developable surfaces,
containing -y.

Proof. Parametrize the curves v and § by an arc length parameter ¢ so that
~v(t) = f(4(t)). Let the desired developable surface M make the angle a(t) with the
osculating plane of the curve () (well defined since, by assumption, the curvature
of 4 never vanishes). Denote by k(t) the curvature of the space curve v and by k(t)
that of the plane curve §.
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The magnitude of the curvature vector of v is k, and its projection on M has
magnitude k(t) cosa(t); thus the geodesic curvature of v equals k(t) cosa(t). The
geodesic curvature of a curve on a surface depends only on the inner geometry
of the surface and does not change when this surface is bent without stretching.
Therefore the geodesic curvature of v equals the curvature of the plane curve 9:

(15.1) k(t) cos a(t) = k(t).

This equation uniquely determines the function «(t). Since k < k, the angle «
never vanishes.

To construct the developable surface M from the function a(t), consider a one-
parameter family of planes through points v(t), containing the tangent vector /' (¢)
and making angle «(t) with the osculating plane of v (there are two such planes,
see Figure 15.6). According to the discussion of developable surfaces in Lecture 13,
a one-parameter family of planes envelop a developable surface, and we obtain our
two surfaces through the curve . O

FIGURE 15.6. Construction of the developable surface from the
function a(t)

The two developable surfaces of Theorem 15.1 are the sheets, intersecting along
the ridge in Figure 15.3. Extending the sheets beyond the ridge one obtains another
configuration of sheets that meet along the curve «. Thus there are exactly two
ways to fold paper along curve § to produce the space curve . This explains and
extends the first observation made in Section 15.2.

In the particular case when + is a planar curve, one of the sheets is obtained
from another by reflection in this plane. In the general case of a nonplanar curve v,
the tangent planes of the two sheets are symmetric with respect to the osculating
plane of v at every point: indeed, the angles between the osculating plane and the
two sheets are equal to a.. This justifies the second observation in Section 15.2.

Proceed to the third observation. Let d(tp) be an inflection point where the
fold looks like a cubic parabola. Thus k(tg) = 0, and the curvature does not
vanish immediately before and after the inflection point. According to formula
(15.1), either a(tg) = 7/2 or k(tg) = 0. We want to show that, indeed, the latter
possibility holds.

Suppose not; then both sheets are perpendicular to the osculating plane of ~y
at point y(tg), and therefore their tangent planes coincide. Moreover, if x(tg) # 0
then the projection of the curvature vector of the space curve 7y onto each sheet
is the vector of the geodesic curvature therein. This vector lies on one side of
on the surface at points v(tg — €) just before the inflection point and on the other
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side at points vy(to + €) just after it. Therefore the function «(t) — 7/2 changes
sign at t = tg. This means that the two sheets pass through each other at ¢ = .
Impossible for real paper, this implies that x(tg) = 0, that is, the ridge has an
inflection point.

Now, to the fourth observation. Assume that both the ridge v and the fold
0 are closed planar curves and § is strictly convex. The relation (15.1) between
the curvatures still holds: xcosa = k, and k does not vanish anywhere. Hence k
does not vanish either, and 7 is a convex planar curve. In addition, x(t) > k(t)
for all ¢t and [ k(t) dt > [k(t) dt since a(t) does not vanish. On the other hand,
the integral curvature of a simple closed planar curve equals 27, see Exercise 15.1.
Therefore the two integrals must be equal, a contradiction.

15.5 More formulas and further observations. According to Theorem
15.1, the fold 6 and the ridge v determine the developable surface, the result of
extending the isometry between J and v to a neighborhood of §. Recall from
Lecture 13 that developable surfaces are ruled. Denote by ((t) the angle made by
the rulings with ~(¢).

One should be able to express the angles 3(¢) in terms of geometric character-
istics of the fold and the ridge. Indeed, such a formula exists:

o'(t) —7(t)
(15.2) cot B(t) = n() sina(t)’
where 7 is the torsion of the curve v and « is the angle between the surface and the
osculating plane of the curve v, given by equation (15.1). We do not deduce this
formula here: this is a relatively straightforward exercise on the Frenet formulas
in differential geometry of space curves; if the reader is familiar with the Frenet
formulas, he will do this as Exercise 15.3, and if not, he will trust us.

Back to the folded paper depicted in Figure 15.3. We see two developable
surfaces intersecting along the ridge v, and each carries a family of rulings. Thus
we have two functions, (;(t) and (2(t). Unfolding the surfaces back in the plane
yields a planar curve, the fold §, with two families of rulings along it, one on each
side, see Figure 15.7.

FiGURE 15.7. Unfolding the folded paper

The angles 0 and (2 are given by the formulas

cot B1(t) = %, cot B2(t) =
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the first being (15.2), and the second obtained from the first by replacing « by
7 — a. It follows that

—27(t)
K(t) sin a(t)

20/ (t)
k(t) sina(t)’

Formulas (15.3) have two interesting consequences. Suppose that the ridge is
a planar curve. Then 7 = 0, and therefore 51 + 82 = 7. In this case unfolding the
two sheets in the plane yields the straight rulings that extend each other on both
sides of the fold, see Figure 15.8. Suppose now that the dihedral angle between two
sheets along the ridge is constant. Then o’ = 0, and therefore 8; = B2. In this case
the rulings make equal angles with the fold.

(15.3) cot B1(t) + cot Ba(t) = , cot B3y (t) — cot Ba(t) =

b1
B2

FicURE 15.8. Rulings on both sides of the fold may extend each other

And again we may reverse the situation: start with the fold 6 and prescribe the
angles 01 and B2. The reader with a taste for further experimentation may paste,
with scotch tape, a number of pins or needles on both sides of the fold (thus fixing
the angles 1 and f(s.) Now fold!

15.6 Two examples. As the first example, let the fold be an arc of a circle,
and let the rulings on both sides be radial lines, orthogonal to the fold. Then
B1 = B2 = w/2. Therefore the ridge is planar and the dihedral angle between the
sheets is constant. The rulings on each sheet intersect at one point, hence both
sheets are cones, see Figure 15.9.

In the second example, we utilize the optical property of the parabola: the
family of rays from the focus reflects to the family of rays, parallel to the axis of
the parabola, see Figure 15.10 (the reader not familiar with this property should
either solve Exercise 15.4 or wait for a discussion in Lecture 28).

Let the fold be a parabola, let the rulings on the convex side be parallel to the
axis and let the extensions of the rulings on the concave side all pass through the
focus. By the optical property, these rulings make equal angles with the parabola,
hence the dihedral angle between the sheets is constant. One of the sheets is again
a cone; the rulings on the other being parallel, it is a cylinder, see Figure 15.11.

15.7 Historical notes. We learned that paper can be folded along curves
from M. Kontsevich in 1994; he discovered this as an undergraduate student a long
time ago. Among other things, Kontsevich noticed that the ridge tends to be a
planar curve; this cannot be proved, unless some assumptions on elasticity of the
folded material are made (our mathematical model of paper folding completely
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FIGURE 15.9. Both sheets are cones

F1GURE 15.10. Optical property of parabola

FIGURE 15.11. One sheet is a cone, another a cylinder
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ignored these issues). We published the results of our reflections on paper folding
n [32]. We discovered that Theorem 15.1 was quite old: it was mentioned in [6].

Later we found that folding of non-stretchable material along curves was con-
sidered before [24]. Duncan and Duncan studied the problem with an eye on engi-
neering products made by folding and bending of a single sheet (such as sheet-metal
duct-work or cardboard containers).

We wonder whether this interesting subject has further antecedents. It remains
for us to quote M. Berry’s Law (posted on his web site?): Nothing is ever discovered
for the first time.

15.8 Exercises.

15.1. Let v(t) be a smooth arc length parameterized closed curve of length L
and winding number w. Let k(t) be the curvature of v(¢). Find

/0 ’ k(t) dt.

15.2. Let v be a smooth closed curve of length L and winding number w. Move
every point of 7 in the normal direction a small distance € to obtain a curve ~..
Find the length of ~..

15.3. Prove formula (15.2).
15.4. Prove the optical property of the parabola.

15.5. Let the fold line be an arc of an ellipse, and let the rulings on one side
of the fold line pass through one focus and on the other side though another focus.
Prove that folding yields two cones making a constant angle along the ridge.

Hint. Use the optical property of ellipses, Lecture 28.

15.6. Why does one need to make a hole in a piece of paper when folding along
a closed curve?

Swww.phy.bris.ac.uk/people/berry_mv/quotations.html
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LECTURE 16

Straight Lines on Curved Surfaces

16.1 What is a surface? We would prefer to avoid answering this question
honestly, but to prove theorems we need precise definitions.

FIGURE 16.1. Definition of a surface

A set S in space is called a surface if for every point A in S there exists a plane
P and a positive number r such that the intersection of S with any ball of radius
< r centered at A has a 1 — 1 projection onto the plane P (Figure 16.1). Planes,
spheres, cylinders, paraboloids, etc., are all surfaces.

219
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Some surfaces, however curved they look, contain whole straight line (like the
one shown in Figure 16.2).

~

FIGURE 16.2. This surface contains a straight line

In this lecture, we shall consider surfaces which contain very many straight
lines.

16.2 Ruled surfaces. A surface S is called ruled, if for every point A in .S,
there exists a straight line ¢ through A contained in S.

There are many ruled surfaces. A plane is a ruled surface, but this is not
interesting. Some other ruled surfaces, like cylinders, readily display their rulings.
Some surfaces are also ruled, but this is less visible; for example, if you bend
(without folding) a piece of paper, you will obtain a ruled surface — see Lecture 13.
Here we shall be interested in a different class of surfaces.

()

N/

-

FIGURE 16.3. A one-sheeted hyperboloid

16.3 Two key examples. A one-sheeted hyperboloid is described in space by
the equation
24y -2 =1
It may be also described as a surface of revolution of the hyperbola 22 — 22 = 1 in
the xz plane about the z axis (Figure 16.3).
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Do you think, this surface is ruled? It is. To see it, make a cylinder of vertical
threads joining two identical horizontal hoops, and then rotate the upper hoop
about the vertical axis keeping the threads tight. Your cylinder will become a
hyperboloid, and you will see the ruling (Figure 16.4).

. '\.

{\I “
N, L+
—_—
o [
2T N
y
"
\ J
l\ I /

FIGURE 16.4. Twisting a cylinder provides a ruling of a hyperboloid

Moreover, there exists a second ruling of the same surface: just rotate the hoop
by the same angle in the opposite direction, see Figure 16.5 for a picture of both
rulings (in fact, we shall get the mirror image of our hyperboloid, but being a surface
of revolution, it is symmetric in any plane through the axis, and hence coincides
with its mirror image). To obtain the hyperboloid described by the equation above
one needs to make a special choice of the size of the cylinder and the angle of
rotation; we leave details to the reader.

FIGURE 16.5. A one-sheeted hyperboloid is doubly ruled

One more example: a hyperbolic paraboloid. This can be described by a very
simple equation:
z=uzy
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(Figure 16.6, left). It resembles a horse saddle, or a landscape near a mountain pass.
The easiest way to construct a ruling of this surface is to take its intersections with
planes x = ¢ parallel to the yz plane. The intersection is given (in the coordinates
Y,z in the plane x = ¢) by the equation z = cy; it is a straight line. Again, this
surface has another ruling: take its intersections with the planes y = ¢ (Figure 16.6,
right).

FIGURE 16.6. A hyperbolic paraboloid

16.4 Doubly ruled surfaces. The two surfaces described above are doubly
ruled which means that for every point A of any of these surfaces, there are two
different lines, ¢; and /5, through A contained in the surface. One can obtain
further examples of doubly ruled surfaces by compressing the previous surfaces
toward planes, or stretching them from planes. Speaking more formally, there
are doubly ruled surfaces described by the equations 22 +y? — 22 = 1, z = ay
in arbitrary, not necessarily rectangular, coordinate systems. What is amazing, is
that there are no other doubly ruled surfaces (we shall give a more precise statement
below). But we shall begin with a proposition which more or less rules out triply
ruled surfaces.

16.5 There are no non-planar triply ruled surfaces. A triply ruled sur-
face should be defined as a surface such that for any point there exist three different
lines through this point contained in the surface. We want to prove that, essentially,
a triply ruled surface should be a plane. We begin with a statement that a much
milder condition imposes a devastating restriction on the geometry of a surface.

THEOREM 16.1. Let S be a ruled surface, and let A € S be a point such that
there are three different lines £1,0s, 03 through A contained in S. Then either S
contains a planar disc centered at A, or S consists of straight lines passing through

A.
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FIGURE 16.7. The angles oy, oo, ag are disjoint

Proof. According to the definition of a surface, a piece of S around A hasa 1—1
projection onto a domain D in a plane P. Denote by A’, ¢}, ¢4, ¢4 the projections of
A, l1,0y,03 onto D. Take a point B in S, sufficiently close to A and such that the
line BA does not belong to the surface (if no such point exists, then the surface S
consists of lines passing through A). Let £ be a line through B (not passing through
A) contained in S. Let B’, ¢’ be projections of B, ¢ onto the plane P. Then, if B is
sufficiently close to A, the line ¢ must intersect, within our domain D, at least two
of the lines ¢}, ¢4, ¢4. (Indeed, if B’ is sufficiently close to A’, then lines through
B’ which do not intersect ¢] in D form a small angle o; at B’, and similar small
angles, ag and ag, arise for £, and ¢; — see Figure 16.7. These three angles are
disjoint, so a line through B’ can miss, in D, at most one of the lines ¢}, 5, ¢5.) Let
¢ cross ¢} and ¢,. Then ¢, ¢, {5 also cross each other in three different points and,
in particular belong to some plane, Q). Moreover, for every point C' € S sufficiently
close to A, the line in the surface through C must cross, in two different points,
at least two of the lines ¢, ¢1, {5 (the proof is identical to the previous proof), and,
hence C' also belongs to Q. O

COROLLARY 16.2. Locally, a triply ruled surface is a plane; that is, for every
point of a triply ruled surface, there is a planar disc centered at this point and
contained in the surface.

Proof. According to Theorem 16.1, the surface, in a proximity of A, is either
planar, or conical. But it is obvious that if a conical surface with the vertex at A
contains a line not passing through A, then it is planar. O

(A better looking statement, which we leave to the reader to understand and
to prove, says that every connected triply ruled surface is a plane.)
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Our next goal is to describe all doubly ruled surfaces in space. For this purpose,
we have to consider one very special class of surfaces.

16.6 Surfaces generated by triples of lines. Imagine that you have a job
of writing problem sections for textbooks in mathematics. Imagine further that
your assignment is to compose problems for a chapter dealing with equations of
lines and planes in space. Say, you write: find an equation of a plane passing
through three given points. It is a “good” problem: it always has a solution, and
this solution is usually unique (it is unique, unless, by accident, the three point are
“collinear”, that is, belong to one line). The problem, however, will not be good,
if you give four points (the problem, usually, will have no solutions) or two points
(there will be infinitely many solutions). Or a problem requires to find an equation
of a plane through a given point parallel to — how many? — given lines. The answer
to “how many?” is two: you take lines parallel to the given lines through the
given point, and if there are two lines, they determine (if they do not coincide) a
unique plane. Just for fun, think about the following problem: find a line (in space)
crossing — how many? — given lines. How many lines should we give to make the
problem good? We shall give the answer in the end of Section 16.7, so that you
have time to think about it. And for the time being, we shall consider a simpler
problem.

PrOPOSITION 16.1. Let A, ¢y, 0y be a point and two lines in space such that A
does not belong to either €1 or {5 and all three do not belong to one plane. Then
there exists a unique line through A which is coplanar with (that is, crossing or
parallel to) both €1 and {s.

FIGURE 16.8. Proof of Proposition 16.1

Proof. (See Figure 16.8.) Let P; be the plane containing A and ¢; and P5 be
the plane containing A and ¢3. The assumptions in the Proposition imply that
such planes Py, P, exist, are unique and different. Since they are not parallel (both
contain A), their intersection is a line. This line ¢ satisfies the conditions of the
proposition, and such a line is unique, because it must belong to both P, and Ps.
O
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As an immediate application, we single out a property of the two doubly ruled
surfaces considered in Section 16.3. Obviously, a line belonging to the first family
of lines (first ruling) of the one-sheeted hyperboloid is coplanar with any line of
the second family. Take any three lines, {1, {5, {3, from the first family. Then the
second family consists precisely of the lines coplanar with all three. Indeed, all the
lines of the second family have this property, so we only need to show that any line
£ with this property belongs to this family. Let ¢ cross the line, say, 1 at a point A
(it cannot be parallel to all three). There is a line of the second family through A.
It must be coplanar with /5 and £3, so it must be ¢, since a line with this property is
unique. Thus, the one-sheeted hyperboloid is the union of all lines coplanar to any
three pairwise skew lines contained in the hyperboloid. Precisely the same is true
(and is proved in the same way) for the hyperbolic paraboloid (with an additional
remark that no two lines on the hyperbolic paraboloid are parallel).

16.7 Equations for surfaces generated by triples of lines. Let /1, /5, /(3
be three pairwise skew (not coplanar) lines in space. Consider straight lines coplanar
to all these three lines. Actually, according to Proposition 16.1, there is one such
line passing through every point of /3, and there is one more line, parallel to {3 and
crossing ¢; and f». The union S of all such lines is a ruled surface (we shall not
check that it is a surface, since it will follow from further results). We shall call S
a surface generated by the lines ¢, {5, (3.

THEOREM 16.3. Let S be a surface generated by pairwise skew lines {1, {2, 3.
(1) If the lines 01,05, 05 are not parallel to one plane, then S is described in some
(possibly, skew) coordinate system by the equation x° + y* — 22 = 1.
(2) Otherwise, S is described in some coordinate system by the equation z = xy.

Proof. Let us begin with Part (1). Let the lines ¢, ¢, {3 be not parallel to one
plane.

LEMMA 16.2. There exists a coordinate system with respect to which the lines
are described by the equations

(41) x=—z,y=1,
(L) w=zy=—1,
(b) z=ly=>

(that is, consist of points (t,1,—t), (t,—1,t), (1,¢,t)).

Proof of Lemma. Let £,i =1, 2,3, be a line parallel to £; and crossing the two
remaining lines ¢;,j # 4. (This line exists and is unique. Indeed, choose j # ¢ and
take the plane P formed by lines, parallel to £; and crossing ¢;. This plane is not
parallel to the third line, i, otherwise it is parallel to all three lines. Let C be the
intersection point of P and f;. The line through C parallel to ¢; crosses both ¢;
and ¢;; it is £;.) The lines €1, 05, 03,07, {2, 05 form a spatial hexagon with parallel
opposite sides. We denote its vertices by ABCDEF (where A is the intersection
point of ¢ and ¢, B is the intersection point of ¢, and {3, etc. — see Figure 16.9,
left). The opposite sides of this hexagon are parallel (as we already mentioned),
but also have equal lengths: we have

— — — — — — —
AD=AB+ BC+CD =AF+FE+ ED,
and, since a presentation of a vector as a sum of vectors collinear to ¢, /05, {3 is
—_— = - = — —
unique, one must have AF = CD,AB = ED,BC = FFE.
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This implies that the hexagon ABCDFEF is centrally symmetric; take its center
of symmetry, O, for the origin of a coordinate system. For e;, take the vector from
O to the midpoint of BC'; for es the vector 0—1)4; for e3 the vector O—B) —e| — es.
In the coordinate system with the origin O and coordinate vectors e, es, e3 the
points A, B,C, D, E, F will have coordinates as shown in Figure 16.9, right. We
see that the points F, A have coordinates satisfying the equations x = —z,y = 1,
and hence the latter are the equations of the line ¢;. Similarly the coordinates of
D, E satisfy the equations z = z,y = —1 and the coordinates of B, C satisfy the
equations x = 1,y = z, so these equations are those of lines /5 and /3. O

4 (0,1,004  B(1,1,1)
A o ls
(~1,1,1) F C(1,-1,-1)
12
(~1,-1,-1) E D (0,-1,0)

FIGURE 16.9. Proof of Lemma 16.2

Lemma 16.2 implies Part (1) of Theorem 16.3. Indeed, the lines in the Lemma
obviously belong to the surface S’ presented (in our coordinate system) by the
equation z2 +y? — 22 = 1; The points of S’ correspond to points of the one-sheeted
hyperboloid (presented by the same equation in the standard coordinate system),
and this correspondence takes lines into lines. Since the hyperboloid is the union
of lines coplanar with any three pairwise skew lines on it, the same is true for S,
that is, S’ is the union of lines coplanar with ¢;,¢5, 3. Thus, S’ is S.

Turn now to Part (2). Let the lines ¢, {5, {3 lie in parallel planes, Py, Py, Ps.
Assume also that P, lies between P; and Ps3, and that the ratio of the distances
from P, to P, and from P, to P53 equals a.

LEMMA 16.3. There exists a coordinate system in which the lines are described
by the equations
(41) Yy = —a,z = —az,
(62) y=0,2=0,
(43) Y= 17 Z=1T.
Proof of Lemma. Fix two lines, m1, mo, crossing the lines ¢1, {5, {3 in the points
A1, Ag; By, Ba; C1, Cs respectively (see Figure 16.10, left). Take By for the origin of
—— —_—
the coordinate system and define coordinate vectors as e; = B1Bs,e; = B1Cq,e3 =
Bl—Cg> — e — e3. Then the coordinates of the points By, Bs, Cy,Cs are as shown in
Figure 16.10, right. Furthermore, since the lines ¢1, {5, {3 lie in parallel planes,
|A1B1|  |AsBs| a
|B1C1|  [B2Ch|
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and hence the coordinates of the points Ay, As are (0,0,0) —a((0,1,0)—(0,0,0)) =
(0, —a,0) and (1,0,0) — a((1,1,1) — (1,0,0)) = (1, —a, —a). This implies that the
lines /1, ¢5, f5 have equations as stated. O

Py

FIGURE 16.10. Proof of Lemma 16.3

Lemma 16.3 implies Part (2) of Theorem 16.3 precisely as Lemma 16.2 implies
Part (1). O

In conclusion, let us answer the question left unanswered in the beginning of
Section 16.6. If we want the problem of constructing a line coplanar with a certain
number of skew lines to be good, the number of lines should be four. Indeed, the
lines coplanar with the first three form a surface presented by an equation of degree
2. The fourth line intersects this surface in 2, or 1, or 0 points, and each of these
points is contained in a line coplanar with the first three lines. Thus, the number
of solution is 2, 1, or 0: just as for a quadratic equation.

16.8 There are no other doubly ruled surfaces.

THEOREM 16.4. Let S be a doubly ruled surface containing no planar discs.
Then for every point A in S there exists a surface Sy generated by three lines such
that within some ball around A the surfaces S and Sy coincide.

REMARK 16.4. It may be deduced from Theorem 16.4 that any connected non-
planar doubly ruled surface is generated by three skew lines, and hence, according
to the previous theorem, is described, in some coordinate system by one of the
equations 22 +y? — 22 = 1 or z = zy. We leave a proof of this statement to the
reader.

Proof of Theorem 16.4. Since the surface is not planar, there are only two lines
passing through A and contained in S; let ¢1, ¢5 be these two lines.

A piece of the surface around A has a 1 — 1 projection onto a domain D in a
plane. Let A’ ¢}, ¢, be the projections of A, ¢y, ¢y (Figure 16.11, left). For a point
B in S, sufficiently close to A, any line through its image B’ in D crosses either
¢y or t,. Let mq,mo be the two lines in S through point B, and let m}, m} be
their images in D. Then each of m}, m} crosses in D one of ¢}, ¢,. But neither of
then can cross both: if, say, m/ crosses both ¢1, ¢}, then the lines mq, {1, ¢y form a
triangle, and the planar interior of this triangle should be contained in .S (any line
through any point C inside this triangle crosses the contour of this triangle in two
points, and, hence, is contained in the plane of the triangle). For the same reason,
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the two lines m/], m} cannot cross the same line, ¢ or ¢,. Thus, in some proximity
of A, every line in S through any point of S, not on ¢; and /5, crosses precisely one
of these lines.

This enables us to speak of two families of lines in S: lines crossing ¢s (including
4y) form “the first family”, while lines crossing ¢; (including ¢5) form “the second
family”. Obviously: (1) within each family, the lines do not cross each other; (2)
every line of each family crosses every line of the other family; (3) the lines of each
family cover the whole surface (a whole piece around A) — see Figure 16.11, right.
This shows that the surface is generated (in a proximity of A) by any three lines of
any of the two families. O

B/
1 T
mj

FIGURE 16.11. Proof of Theorem 16.4

Thus, at least locally, every non-planar doubly ruled surface is either a one-
sheeted hyperboloid, or a hyperbolic paraboloid.

16.9 Shadow theater. In conclusion, we shall consider configurations of shad-
ows of rulings of a doubly ruled surface on a flat screen. We shall restrict ourselves
to the case of a one-sheeted hyperboloid made of two identical round hoops and
a couple of dozens of identical rods representing the two rulings (see Figure 16.5).
(See Exercise 16.6 for the case of a hyperbolic paraboloid.)

First assume that the rays of light are all parallel to each other (that is, the
source of light is at infinity) and to one of the lines, say, ¢, on the hyperboloid.
First ignore the hoops (that is, assume the lines very long and the distance from
the screen very big). The shadow of ¢ will be one point (let it be A). One of
the lines of the second family (say, ¢') is parallel to ¢; its shadow will be also one
point (say, A’). Any line from the first family, with the exception of ¢, will cross
?'; hence its shadow will pass through A’. Similarly, the shadows of all the lines
from the second family will pass through A. Hence, the shadows of all lines on the
hyperboloid will be the lines on the screen passing through one of the points A or
A’ (but not through both) — see Figure 16.12.

Now, add the hoops. Their shadows will be equal ellipses F1, E5 (or circles, if
we make them parallel to the screen; certainly, in this case the rays of light will not
be perpendicular to the screen). Since both ¢ and ¢ cross the hoops, the ellipses
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FI1GURE 16.13. Shadows of hoops and rods

E1, E5 both pass through A and A’. If s is the shadow of the line m of the second
family, that is, s passes through A, then s crosses F; in two points, A and B, and
crosses Es in two points, A and B’; the segment BB’ will be the shadow of the line
m between the hoops. In the same way, one can draw the shadows of the lines of
the first family (between the hoops). See Figure 16.13.

Consider now a different configuration. Place a one point light source at a point
L on the hyperboloid, denote by £ and ¢’ the two lines through L and make the
screen parallel to ¢ and ¢ (so the hyperboloid lies between the light source and the
screen — see Figure 16.14).

The lines £ and ¢ cast no shadow. Let m # £ be a line on the hyperboloid from
the same family as /; it crosses £’ at some point M (or is parallel to £'). The shadow
of m is the intersection line of the screen and the plane of ¢/ and m; in particular, it
is parallel to ¢'. Similarly, the shadows of the lines of the second family are parallel
to £. Thus, if we ignore the hoops, the configuration of the shadows will be that of
two families of parallel lines (see Figure 16.15, left).

Now, let A, A’ be the intersection points of the lines £, ¢’ with the first hoop,
and B, B’ be the intersection points of these lines with the second hoop. Of the
two arcs AA’ of the first hoop, one does not produce any shadow; the shadow of the
second (bigger) arc is one branch of a hyperbola with asymptotes parallel to ¢ and
¢'. The shadow of the big arc BB’ of the second hoop is one branch of a different
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screen

FIGURE 16.14. A projection from a point on the hyperboloid

hyperbola, also with asymptotes parallel to £, ¢'. The whole picture is presented on
Figure 16.15, right. Notice that it is centrally symmetric: the center of symmetry
is the shadow of the point L’ opposite to L (in other words, the intersection point
of the lines on the hyperboloid parallel to ¢ and ¢'.

FIGURE 16.15. Shadows at the screen

16.10 Exercises.

16.1. Two points, A and B are moving at constant speeds along two skew lines
in space. Which surface does the line AB sweep?

16.2. Prove that any non-planar quadrilateral is contained in a unique hyper-
bolic paraboloid.
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16.3. Let ABCD be a spatial quadrilateral. Consider points K, L, M, N on

. AK MD BL NA
the sides AB, BC,CD, DA such that AB-CD and BC - DA Prove that the
segments K M and LN have a common point.

16.4. Let ¢4, {2, ¢3 be three lines such that ¢ and ¢5 are coplanar (but different)
and /3 is skew to both of them. What surface do the lines ¢1, ¢, ¢35 generate? (In
other words, what is the union of all lines coplanar with all the three lines?)

Hint. Consider separately the cases when the line ¢3 is parallel to the plane of
the lines ¢1, {5 or crosses this plane.

16.5. Find all lines coplanar with the four lines
r=1, Z=1;
z =0, z=0;
r=-1, z=-y;
T =1y, z =4.
16.6. A hyperbolic paraboloid is projected onto a screen in the direction parallel
(a) to one of the rulings;
(b) to the two planes to which all rulings are parallel.
How will the projections of all the rulings look like?






LECTURE 17

Twenty Seven Lines

17.1 Introduction. We saw in Lecture 16 that some surfaces of degree 2 are
totally made up of straight lines; moreover, they are doubly ruled. We remarked
there that if we count not only real but also complex lines, then all surfaces of
degree two, even spheres and paraboloids, become doubly ruled.

If we adopt an algebraic approach to geometry, then the next step after surfaces
of degree 2 should be surfaces of degree 3. But while the geometry of surfaces (and,
certainly, curves) of degree 2 was well understood by the Greeks millennia ago, the
systematic study of surfaces (and curves) of degree 3 was not started before the
19-th century.

Now there are books dedicated to the “cubic geometry” (let us mention “The
non-singular cubic surfaces” by B. Segre [71] and “Cubic forms” by Yu. Manin
[53]). Cubic geometry is very much different from classical “quadratic geometry”.
In particular, cubic surfaces are not ruled, in general. But still they contain abun-
dant, although finite, families of straight lines. (By the way, surfaces of degree > 3
usually do not contain any straight lines.) Geometers of the 19-th century, like
Salmon and Cayley, found an answer to a natural question:

How many straight lines does a surface of degree 3 contain?

The answer is: twenty seven.

17.2 “How many?” — is this a good question to ask? The question
makes sense in algebraic geometry, that is, in the geometry of curves and surfaces
given by algebraic (polynomial) equations. Such curves and surfaces have degrees,
which are the degrees of the polynomials.

For example, how many common points do two lines in the plane have? The
right answer is 1, although it may be also 0 (if the lines are parallel) or co (if they
coincide). In the first case we may say that the point is “infinite” and still count
it. So the result is 1 or cc.

Consider now a curve of degree two. It may be an ellipse, a hyperbola, a
parabola, or something more degenerate, like a pair of lines. We can say that a

233
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curve of degree 2 and a line have 2, 1, 0, or co common points. But the cases of
1 or 0 are disputable. If there is only one point, this means that either we have a
tangent, or two colliding points, or a line parallel to an asymptote of a hyperbola
or the axis of a parabola; in these cases the “second point” is infinite. 0 means that
we have complex points (points with complex coordinates satisfying the equations
of both the line and of the curve), or both points at the infinity (this happens if
our line is an asymptote of a hyperbola). But if we count each point as many times
as it warrants and do not neglect complex or infinite solutions, then our answer is:
2 or oo.

Similarly, curves of degrees m and n must have mn or co common points (the
Bézout theorem).

3 = 22y + y? with inflection points shown

FIGURE 17.1. The curve =

Informally speaking, if a problem of algebraic geometry has finitely many so-
lutions, then the number of solutions depends only on the degrees of curves and
surfaces involved. Certainly, this becomes false if we are interested only in real
solutions. What is worse, for some problems, it is never possible that all the solu-
tions are real. For example, it is known that a curve of degree 3, not containing a
straight line, has precisely 9 inflection points. But no more than 3 of them are real.
A curve of degree 3 with 3 real inflection points is shown in Figure 17.1. (Another
curve of degree 3 with 3 real inflection points is shown on Figure 18.6.) For the
reader’s convenience, we marked an asymptote of the curve and indicated the three
inflection points by arrows.

17.3 Main result.
THEOREM 17.1. A surface of degree 3 contains 27 or oo straight lines.

17.4 An auxiliary problem: double tangents. A double tangent to a
curve, or a surface, is a straight line that is tangent to the curve or surface at two
different points. A point of tangency is counted as two (or more) intersection points
of a line and a curve or a surface. Hence, curves or surfaces of degree < 4 never
have double tangents that are not contained in them.
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Important Observation. A double tangent to a surface of degree 3 is contained
in this surface.

Consider now curves of degree 4 in the plane.

Question. How many double tangents does a curve of degree 4 have?

Answer: 28

We refrain from giving a full proof of this.! We restrict ourselves to constructing
a curve of degree 4 with 28 real, finite, different double tangents. Consider the
polynomial

pla,y) = (42° +y? = 1)(@? + 4y - 1).

It has degree 4. The equation p(z,y) = 0 defines in the plane an “elliptic cross”
(see Figure 17.2, left). The cross divides the plane into 6 domains. The function
p(x,y) is positive in the outer (unbounded) domain and in the central domain, and
is negative in the petals. Choose a very small positive € and consider the curve
p(z,y) + € = 0, also of degree 4. It consists of four ovals within the petals of the
previous cross.? These ovals are very close to the boundaries of the petals.

FIGURE 17.2. Construction of a curve

Every two ovals have (at least, but, actually, precisely) 4 common tangents:
two exterior and two interior. Also the ovals are not convex (their shape is close to
that of the petals), and each of them has a double tangent of its own. Total:

4
4+4=28
(o) 4+

17.5 Surfaces of degree 3 and curves of degree 4. Let S be a surface of
degree 3 given by the equation

pg(x,y,z) +p2($,y,Z) +p1($,y,Z) +c=0

where p1,ps2, p3 are homogeneous polynomials of degrees 1,2,3. Suppose that 0 =
(0,0,0) € S, which means that ¢ = 0. Counsider a line passing through 0; it consists

1This can be deduced from the Pliicker formulas, see Lecture 12.

2The term “oval” is used elsewhere in this book as synonymous to closed strictly convex
smooth curve. In real algebraic geometry, an oval of an algebraic curve is its component that
bounds a topological disc.
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FiGure 17.3. 28 double tangents

of points with proportional coordinates, say,

(171) x=at,y=pt,z =9t (aa6>7)7é(030a0)

This line crosses S at 0, and at two other points. Mark our line, if these two points
coincide, that is, each marked line crosses S at 0, tangent to S at some point T,
and has no common points with S, besides 0 and T. Consider intersections of the
marked lines with a screen. We get a curve in the screen, denote it by L.

FIGURE 17.4. A projection of the surface on a screen
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Thus, if P € L, then the line through 0 and P is tangent to S at some point,
T(P) € S. Note that if [ is a tangent line to L at P, then the plane p containing 0
and [, is tangent to S at T'(P).

Let us show now that the curve L has degree 4. To find the intersection of the
line (17.1) with S, plug (17.1) into the equation of S:

pS(aaﬁ7 ’V)t?’ +P2(047/37"Y)t2 +p1(a7 ﬁv’y)t =0.

One solution of this equation is 0, the other two coincide if and only if

D(aaﬂvfy) = pZ(O‘vﬂa 7)2 - 4p3(avﬂa 7)p1(a>ﬂ7fy) =0.

The intersection of the line (17.1) and the plane z = 1 corresponds to t = v~ ! (if
~v = 0, then there is no intersection; this possibility corresponds to the points of L
“at infinity”; there must be 4 such points). This intersection has the coordinates
(z,y,1) where x = a/v, y = B/v. The equation D(«,3,7) = 0 may be rewritten
as D(x,y,1)y* =0, that is, D(x,y,1) = 0. This is an equation of degree 4.

Let now [ be one of the 28 double tangents to L, with the tangency points Pj
and P,. The plane p containing 0 and [ is tangent to S at T'(P;) and at T'(Pz).
Hence, the line through T'(P;) and T(P,) is tangent to S at T'(P;) and at T'(Pz),
which is possible only if it is contained in S (see Important Observation in Section
17.4). This proves our theorem modulo the last, and rather unexpected, question.

FIGURE 17.5. From double tangents to lines on the surface

17.6 Twenty eight or twenty seven? Seemingly, we have constructed 28
straight lines within S. Let us show that one of them is a mirage.

Who can swear that if P = (x,y,1) € L, then T(P) # 07 The equality
T(P) = 0 holds, if and only if the line (17.1) has a triple intersection with S. This
means that the equation

p3(xa Y, 1)t3 +p2($7ya 1)t2 +p1(l', Y, 1)t =0
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has three coinciding solutions, ¢t; = to = t3 = 0, which happens if and only if
p2(z,y,1) = 0 and pi(z,y,1) = 0. These two equations describe a line and a
curve of degree two in the plane with coordinates x,y; so it has two solutions.
Geometrically, this means that there are two lines intersecting S only at 0: all the
three intersection points merge. These two lines generate the tangent plane pgy to
S at 0; they intersect the plane z = 1 at two points of the curve L, and the plane
po intersect the plane z = 1 in a line tangent to L at these two points. This double
tangent to L does not correspond to any line in S. Thus, we have “only” 28—1 = 27
lines in S.

17.7 All these lines can be real. Consider the surface
(17.2) 43+ ) = (e +y+ 2 +3(+y+2).

It is shown in Figure 17.6; the vertical axis in this picture is the “diagonal” z =
Y=z

FIGURE 17.6. A cubic surface (17.2)

THEOREM 17.2. The surface (17.2) contains 27 real straight lines.

All 27 lines on the surface (17.2) are shown in Figure 17.7 — you can try to count
them. Still this figure looks rather messy, but the proof of Theorem 17.2 given below
may shed some light on the construction of the lines and their behavior.
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FIGURE 17.7. The surface with 27 lines

Proof. Nine of the lines are obvious:

z=0 y=20 z=0
Wy,Zt, @2t @it
r=1 y=1 z=1
OR TR S R S
r=—1 y=—1 z=—1
My, Z, ®{IZT @i,

(each of these equations implies 2® + ¢ + 2% =2+ y+ 2z = (x + y + 2)*). These
lines lie in three parallel planes: x +y+2 =0, 2 +y+2=1, z+y+2z = —1;
in the first of these planes the lines all meet at the point (0,0,0), in the other two
planes the lines form equilateral triangles.

For the remaining 18 lines we introduce, for further convenience, letter notation:
a,b,...,r. Six of these lines have simple equations:

() { §:2+1 () { Zi2+1 (b) { ;zgﬂ

® 1,20 w0 @i

(To find these equation, we consider the intersections of the surface (17.2) with
the planes © = 0, y = 0 and z = 0. Say, plug = 0 into the equation (2):
4(y® + 23) = (y + 2)® + 3(y + 2), hence 323 + 3y® = 3yz(y + 2) + 3(y + 2), hence
either y+2=0,0ory? = yz+22 =yz+1, thatis (y—2)2 =1, y — z = £1. One of
the three equation obtained is that of the line (1), the other two are (f) and (g).
The cases y = 0,z = 0 are treated in a similar way.)
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| a
rT+y+z=12

r+y+2=15
r m
a qikubgow

r+y+z=1
1kbd

FIGURE 17.8. Sections of the surface (17.2)
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i d
f
$ k
1 A
m e C j h
u q

W {4 :
18 k k
1 c f a

r+y+z=-1 TH+y+z=-7

FIGURE 17.9. Sections of the surface (17.2), continued
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1 5
The equations of the remaining 12 lines involve the “golden ratio” ¢ = +2\/_.
The equations are:
=y +2) y=¢+z) [ z=vl@+y)
(a){y:z+<p (e){z:x+cp M r=y+ey
T = +z =plz+z z=p(r+
0 { :f(_y )@ { y=elzta) gy { —¢lety)
Y 2 =T T=Y—¢
and
-1 -1 -1
r=—¢p (y+2) y=—¢ (z+x) z=—¢p (z+y)
@ {2 @ { AR e
z=—¢"(y+2) {y=—s0 (z+ ) {Z=—<p (z +y)
o r N n h
(p) y=z— L (r) r=x—¢ (n) T=y—p !

(we leave plugging these 12 equations into the equation (17.2) and verifying that
these lines lie on the surface to the reader).

The diagrams in Figures 17.8, 17.9 show the sections of our surface by 12
different planes of the form z+y+ 2z = const (centered at the point with z = y = 2).
The traces of the lines (a) — (r) are also shown. You can see that in each of the
domains z+y+2z > 1 and £ +y+ 2z < 1 the surface consists of a “central tube” and
three “wings”. In the domain —1 < x + y 4+ z < 1 these wings and the tube merge
together; there are 9 lines, (1) — (9), contained in this domain. Of the remaining 18
lines, 6 (three pairs of parallel lines, (m) — (r)) lie on the wings, and 12 (six pairs
of parallel lines, (a) — (1)) lie on the central tube. The configuration of these lines
is shown in Figure 17.10. O

17.8 Some other surfaces. There are other cubic surfaces with ample fam-
ilies of real lines. We will briefly discuss some of them.
Consider the family of surfaces

(17.3) PP+ —l=al+y+2—1)>°

1
THEOREM 17.3. If o > 1 and o # 1, then the surface (17.3) contains 27 real
lines.

Proof. Three lines are obvious: {z = 1,y = —z} and two more obtained by
switching « with y and z. Four more are {x = v,y + 2z =0}, { = 1,y + uz = 0}
where u is one of the solutions of the quadratic equation

(—1)(u—1)* =3u
and eight more are again obtained by switching x with y and z. Finally, four more
are z +v%(y + 2) = 0,y — 2z = 2v — v*(y + 2)} where v is one of four solutions of
the equation
(4a —1)(v* = 1)? = 302
and, once again, eight more are obtained by switching x with y and z. The total is
27. 0

In the case o = 1/4, the equation (17.3) determines a surface with “singular
points (1,1,1),(1,—-1,-1),(-1,1,-1),(=1,—1,1) (in a neighborhood of each of
these points the surface looks like a cone; by the way, this “surface” is not a surface
in the sense of definition given in Lecture 15.2). There are only 9 lines on this
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k 4 @ p

FIGURE 17.10. Lines on the tube

surface: {x = 1,y =z}, {x = 1,y = —z}, {x = -1,y = —z}, and 6 more can be
obtained by switching x with y and z.

The case a = 1 is especially interesting. To make this surface more attractive,
it is reasonable to take a (non-rectangular) coordinate system such that the points
(0,0,0), (1,0,0),(0,1,0),(0,0,1) (belonging to the surface) are vertices of a regular
tetrahedron. Then all the symmetries of space which take the tetrahedron into
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itself also take the surface into itself. We leave the work of finding the equations of
the lines in this surface to the reader (see Exercise 17.1).

17.9 The configuration of the 27 lines. One can easily see in Figures 17.8,
17.9, and still better, in Figure 17.10, that there are many crossings between the
27 lines. Actually, these crossings obey very strict rules, the same for all cubic
surfaces. As usual, we shall not make a difference between crossing and parallel
lines, so we shall speak rather of coplanar, than crossing, lines. The first property
is obvious.

THEOREM 17.4. If some two of the lines in our surface are coplanar then there
exists a unique third line in our surface belonging to the same plane.

Proof. The intersection of a cubic surface with a plane is a cubic curve in
the plane, that is, it may be presented by an equation of degree three. If this
intersection contains two different lines, then the equation of the curve is divisible
by the equations of the lines, and, after division, we obtain an equation of degree
one, which is the equation of the third line. O

The following theorem characterizes the coplanarity properties between the
lines completely.

THEOREM 17.5. Let ¢y be any of the 27 lines in a cubic surface S.

(1) There exists precisely 10 lines in S coplanar with ¢1; let us denote them by
by, ..., 011. These 10 lines can be arranged into 5 pairs of mutually coplanar lines,
by, l3; Ly, ls;...;l10,011. No other two lines among {s, ..., 011 are coplanar.

(2) Each of the remaining 16 lines, {12, ...,la7, is coplanar with precisely one
line of each of the pairs in (1). For any two of the lines {1a, ..., 027, the number of
lines from ly to 11, coplanar with both, is odd.

(3) Two of the lines 12, ...,0a7 are coplanar if and only if there is precisely
one of the lines €y, ..., 011 coplanar to both (that is, the odd number mentioned in
Part (2) is one).

It is remarkable that all these statements are true whichever of the 27 lines one
takes for /7.

We shall not prove this theorem, but for the surface in Section 17.7 it can be
checked with the help of the diagrams (Figures 17.8, 17.9, 17.10) and/or equations.
For example, the line a is coplanar to each of the lines

(1),1; (5),b; (9),d; b,r; j,n.
The 5 pairs in this formula are also shown. Any of the other lines is coplanar with
one line from each pairs. For example:

the line ¢ is coplanar with 1, (5),d, b, j;
the line f is coplanar with (1), (5), (9),r, n;
the line m is coplanar with 1, (5),d, r, n.
The quintuples for the lines ¢ and f contain only one common line, (5), and the
lines ¢ and f are coplanar. On the contrary, the quintuples for the lines ¢ and m
contain 3 common lines, 1, (5), and d, and the lines ¢ and m are not coplanar.

Some other properties of the lines follow from Theorem 17.5. We leave them
to the reader as exercises.
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17.10 Conclusion. Other enumerative problems in algebraic geome-
try. Problems of computing the number of algebraic curves of a given degree (say,
straight lines) intersecting some other curves and/or tangent to some other curves
became very popular recently because of their importance in modern theoretical
physics (more specifically, in the quantum field theory, see [18, 44]). We will discuss
here briefly one such problem, interesting by an unexpected result and a dramatic
200 year long history.

Question. Given 5 conics (= ellipses, hyperbolas, parabolas), how many conics
are tangent to all of them?

(Why 57 Because for 4 conics the number of conics tangent to them is infinite,
and for a generic set of 6 conics, there are no conics tangent to all of them at all.)

This problem was first considered by Steiner (whose theorem is mentioned in
Section 29.5), who published, in the beginning of 19-th century, his result: there are
7736 such conics. This result, however, seemed doubtful to many people. Several
decades after Steiner’s work, De Jonquieres repeated Steiner’s computations, and
got a different result. But Steiner’s reputation in the mathematical community was
so high that De Jonquieres did not dare to publish his work. Finally, the right
answer was found, in 1864, by Chasles (whose other result is proved in Section
28.6); there are 3264 conics tangent to 5 given conics.

However, Chasles counted complex conics, and it remained unclear how many
of them could be real. In 1997, Ronga, Tognoli and Vust found a family of 5 ellipses
for which all 3264 tangent conics were real. And in 2005 Welschinger proved that
for a family of 5 real conics whose interiors are pairwise disjoint at least 32 of the
3264 conics tangent to them are real.

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

17.11 Exercises.
17.1. Find the equations of all lines in the surface

Byl -l1=(r+y+z-1)>



246 LECTURE 17. TWENTY SEVEN LINES

Hints. (a) There are only 24 lines; the remaining three escape to infinity.

(b) There are three lines through each of the vertices of the tetrahedron de-
scribed in Section 17.8; they are parallel to the three sides of the face, opposite to
this vertex. This gives 12 lines.

(c) The equations of the remaining 12 lines involve the golden ratio.

17.2. Find straight lines on the surface
ryz 4+ Bz + oy + 2%) = .

17.3. Among the 27 lines on a cubic surface, there are precisely 45 coplanar
triples of lines.

Remark. Some coplanar triples in Section 17.7 consist of lines passing through
one point (there are 7 such triples) or mutually parallel (there are two such triples).
These properties should be regarded as accidental, on a general cubic surface, these
events do not happen.

17.4. The maximal number of mutually non-coplanar lines is 6. There are
precisely 72 such 6-tuples.

17.5. The number of permutations of the 27 lines taking coplanar lines into
coplanar lines is 51,840 = 27 - 3* . 5. (These permutations form a group known in
group theory as the group Fj.)



LECTURE 18
Web Geometry

18.1 Introduction. This lecture concerns web geometry, a relatively recent
chapter of differential geometry. Web geometry was created mostly by an out-
standing German geometer W. Blaschke and his collaborators in the 1920s. Web
geometry is connected by many threads with other parts of geometry, in particular,
with the Pappus theorem discovered by Pappus of Alexandria in the 4th century
A.D. A nice introduction to web geometry is a small book [8] by Blaschke (which
unfortunately was never translated into English) and an article by his student, a
great geometer of the 20-th century, S.-S. Chern [14].

In differential geometry, one is often concerned with local properties of geomet-
rical objects. For example, we mentioned in Lecture 13 that a sheet of paper, no
matter how small, cannot be bent so that it becomes part of a sphere. The invariant
that distinguishes between the plane and the sphere is curvature, zero for the plane
and positive for the sphere (cf. Lecture 20), and the allowed transformations are
isometries (paper is not compressible or stretchable). In web geometry, the sup-
ply of allowed deformations is even greater: one does not insist on preserving the
distances and considers all differentiable and invertible deformations of the plane.

18.2 Definition and a few examples. A d-web in a plane domain consists
of d families of smooth curves so that no two curves are tangent and through every
point there passes exactly one curve from each family. We always assume that each
family consists of level curves of a smooth function (this is a meaningful condition:
see the example of osculating circles of a plane curve discussed in Lecture 10); note
however that this function is not at all unique.

Two d-webs are considered the same if there is a smooth deformation of the
domain that takes one to another.

For d = 1, there is nothing to study: one can deform the curves into horizontal
lines. Likewise, if d = 2, one can deform both families so that they become horizon-
tal and vertical lines. (Proof: if the families consist of the level curves of functions
f(z,y) and g(x,y) then, in the new coordinates X = f(x,y), ¥ = g(z,y), the

247
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curves are horizontal and vertical lines.) Interesting things start to happen when
d=3.
Let us consider a few examples. The simplest 3-web consists of three families
of lines
T = const, y = const, x -+ 1Yy = const.

This 3-web is called trivial.

Every 3-web consists of the level curves of three smooth functions f(z,y),
g(z,y) and h(z,y); since no two curves in the web are tangent, the gradients of
any two of these functions are linearly independent. One has a simple triviality
criterion for a 3-web.

LEMMA 18.1. If functions f, g, h can be chosen in such a way that
(18.1) f+g+h=0
then the 3-web is trivial.

Proof. As before, consider the new coordinates X = f(z,y), ¥ = g(z,y) in
which the first two families consist of horizontal and vertical lines. Since h = — f —g,
the third family has the equation X +Y = const. O

Our next example is a 3-web in the interior of triangle A; A3 A3. The curves of
the i-th family (¢ = 1,2, 3) counsist of the circles that pass through vertices A; and
A1, see Figure 18.1 (we consider the indices mod 3: this convention makes sense
of the notation, such as A;q, for ¢ = 3).

FIGURE 18.1. A 3-web consisting of circles passing through pairs
of vertices of a triangle

A point P inside a triangle is uniquely characterized by the angles « = A1 PA,, 3 =
AyPAz and v = A3PA;. Since an angle supported by a fixed chord of a circle has
a fixed measure, the three families of circles have the equations:

a = const, [ = const, = const.
Since a + 8 + v = 2w, one may take the functions
f=a—-2n/3, g=0-2n/3, h=v—27/3
as defining the 3-web. These functions satisfy (18.1), and hence this 3-web is trivial.
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Next example: the 3-web in the interior of the first quadrant that consists of
horizontal lines, vertical lines and lines through the origin, see Figure 18.2. This
web has the equations

x = const, y = const, y/xr = const.

/

/
j
/
/-
é L—]

L1/ -~

FI1GURE 18.2. A 3-web consisting of the horizontal lines, the ver-
tical lines and the lines through the origin

Another choice of defining functions is Inx, —Iny and Iny — Inx. These three
functions satisfy (18.1), and hence this 3-web is trivial as well.

Our next example is a modification of the previous one, see Figure 18.3. This
3-web inside a triangle A; A3 A3 is made of the families of lines through the vertices
of the triangle. Is this web trivial?

F1cURE 18.3. A 3-web consisting of the lines though the vertices
of a triangle

Project the plane of the triangle A; A3 A3 on another plane, a screen, from a
point O so that the lines OA; and OAj are parallel to the screen. Then the lines
through point As project to parallel lines, and likewise for A3. Hence the projection
of the 3-web in Figure 18.3 is the one in Figure 18.2, and therefore trivial.
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18.3 Hexagonal webs. The reader might have developed an illusion that all
3-webs are trivial. The truth is, a generic 3-web is not.

To see this, consider the configuration in Figure 18.4. Pick a point O and draw
the curves of the three families through it. Choose a point A on the first curve,
draw the curve from the second family through it until its intersection with the
third curve through O at point B, draw the curve from the first family through B
until its intersection with the second curve through O at point C', etc. The final
result of this spider-like activity is the point G on the first curve. For a trivial
3-web, G = A; in general, not necessarily so.

FIGURE 18.4. A hexagon in a 3-web

A 3-web for which the hexagon in Figure 18.4 always closes up is called hezag-
onal. A trivial 3-web is hexagonal. The converse is also true, see Exercise 18.5.

18.4 Hexagonal rectilinear webs and cubic curves. A rectilinear web is
a web whose curves are straight lines, see the examples in Figures 18.2 and 18.3. In
this section we shall describe hexagonal rectilinear 3-webs. This subject is closely
related, somewhat unexpectedly, with a classical result in geometry, the Pappus
theorem.

A generic 1-parameter family of lines consists of lines tangent to a curve; this
was discussed in detail in Lectures 8 and 9. We have three such families, and they
consist of lines tangent to three curves, say y1,v2 and ~s.

Our web is assumed to be hexagonal, see Figure 18.5. Consider the dual con-
figuration of points and lines (see Lecture 8 for a discussion of projective duality).
This configuration is shown in Figure 18.5, right, where the points, dual to lines
AB, BC, etc., are marked AB, BC, etc., and lines, dual to points A, B,... are
marked a,b,.... Points AD, FE, BC lie on the dual curve v, points AF,CD, BE
on the curve 75 and points FC, AB, DE on the curve 3. Let us call a configuration
of 6 lines and their 9 intersection points, as in Figure 18.5, a Pappus configuration.

We should like to know for which triples of curves 77,75 and 73 one has a
Pappus configuration inscribed into these three curves. A sufficient (and necessary
— but we shall not prove it) condition is that 77, v4 and 3 are all parts of the same
cubic curve.
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F1cURE 18.5. A closed hexagon and the projectively dual configuration

Cubic curves are given by equations of degree 3
P(z,y) = az® + ba’y+ -4+ =0
(all in all, 10 terms). Multiplying all the coefficients by the same factor, yields the
same curve. There is a unique cubic curve through a generic collection of 9 points.

Cubic curves have numerous interesting properties. The one that we need is as
follows.

THEOREM 18.1. Consider two triples of lines intersecting at 9 points. If a
cubic curve T' passes through 8 out of these points then it also passes through the
9-th point (see Figure 18.6).

Proof. Denote the intersection point of line L; = 0 with R; = 0 by A;;; here L;
and R; are linear equations of the lines. Assume that all points, except possibly Ao,
lie on I'. Let P(z,y) = 0 be an equation of I and set: £ = LoLiLy, R = RoR1Rs.

We claim that P = AL + pR for some coefficients A and p. This would imply
that P = 0 at point Ass since Ly and Ry both vanish at this point.

Choose coordinates so that Lo(x,y) = « and Ro(z,y) = y (this involves only
an affine change of coordinates, so a cubic curve remains cubic). Then £ = z(x —
a1 —bry)(x — ag — bay) where ay and as are the a-coordinates of the points A;¢ and
Asg. Since P = 0 at points Agg, A1p and Ay, one has P(x,0) = Az(z —a1)(x — a2)
for some constant A, that is, P(x,0) = A\L(x,y). Likewise, P(0,y) = uR(0,y).

Consider now the polynomial @ = P — AL — uR. One has: Q(z,0) = Q(0,y) =
0, hence Q(z,y) = xyH (x,y) where H is a linear function. Note that () vanishes at
points Aj1, A1 and Aoy but zy does not vanish at these points. Therefore H = 0
at these three non-collinear points. This implies that H = 0 identically, and so is
Q. Therefore P = AL+ pR. O

Let us summarize: a rectilinear 3-web is hexagonal if it consists of three families
of tangent lines to a curve whose dual is a cubic.

For example, consider the semicubic parabola 3% = z3. The dual curve is a
cubic parabola (see Lecture 8), and hence the 3-web in Figure 18.7 is hexagonal.
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FIGURE 18.6. Illustration of Theorem 18.1

18.5 Pappus and Pascal. Two particular cases of Theorem 18.1 are espe-
cially worthwhile to mention. The first concerns the case when a cubic curve I
consists of three lines. Then we obtain the celebrated Pappus theorem depicted in
Figure 18.8.

The dual curve to the union of three lines is degenerate and consists of three
points. The respective 3-web is the one in Figure 18.3. Our earlier proof that this
web is hexagonal implies, via duality, the Pappus theorem.

Another particular case is when I" consists of a line and a conic. We obtain the
celebrated theorem of Pascal (1640) illustrated in Figure 18.9.

18.6 Addition of points on a cubic curve. Theorem 18.1 is intimately
related to a remarkable operation of addition of points on a cubic curve. This
operation is defined geometrically, based on the property that a line that intersects
a cubic curve twice will intersect it once again.

Here is the definition. Let I' be a non-singular cubic curve. Choose a point E
that will play the role of the zero element. Given two points, A and B, construct
the third intersection point D of the line AB with I'; connect D to E and let C be
the third intersection point of this line with I'. By definition, A + B = C.

Let us work out an example: T is the graph y = x® and E is the origin. Let
points A, B and D have the first coordinates x1, z2 and z3, see Figure 18.10. These
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FIGURE 18.7. A hexagonal 3-web consisting of the tangent lines
to a semicubic parabola

N

Ficure 18.8. The Pappus theorem

7Y

FIGURE 18.9. The Pascal theorem
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yd v

T1

F1GURE 18.10. An example of addition of points on a cubic curve

points are collinear, therefore

-1 2 —ad

Ty —r3 Xy — T3
which implies 72 + z123 + 23 = 22 + 2913 + 23 or (v1 — x2)(z1 + 22 +23) = 0, and
finally, 1 + x5 +x3 = 0. Point C is centrally symmetic to D, so its first coordinate
is —x3 = 1 + x2. Thus the addition of points on this cubic curve amounts to the
usual addition of the first coordinates.

The addition of points on a cubic curve is commutative and associative. The
former is obvious: the line AB coincides with the line BA. The latter follows from
(and is equivalent to) Theorem 18.1, as illustrated in Figure 18.11. This theorem
implies that the intersection point of the lines connecting A to B+ C, and A+ B
to C, lies on I" (this is point X in the figure). It follows that

A+ (B+C)=(A+B)+C =Y,
the desired associativity.

18.7 In space. We mentioned in Section 18.2 that every 2-web in the plane
is trivial. Not so in space!! A trivial 2-web in space is the one made of two families
of lines, parallel to the z and y axes, and every 2-web that can be deformed to this
one.

To construct an obstruction to triviality of a 2-web in space is even easier than
in the plane. Take a point A, draw through it the curve from the first family, choose
a point B on this curve, draw through it the curve from the second family, choose
a point C on this curve. Now draw through C the curve from the first family and
through A the curve from the second family, see Figure 18.12. Will these curves
intersect? Yes, if the web is trivial, and no, in general.

Here is an example of a non-trivial 2-web. The first family consists of the
vertical lines and the second of horizontal ones. The horizontal lines in the plane at

IEvery 1-web in space is trivial.
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W=(A+B)+C=A+(B+C)

FIGURE 18.11. Associativity of addition

7/

B

F1cUre 18.12. This quadrilateral may fail to close up

height h are parallel to each other and have slope h in this plane. In other words,
take a horizontal plane with a family of parallel lines on it and move it along the
vertical axis, revolving about this axis with a positive angular speed. This screw
driver motion yields the web depicted in Figure 18.13.

Non-triviality of this 2-web has an interesting consequence. The two lines
through point = span a plane, say, 7(x). We obtain a family of planes in space.
These planes enjoy the property called complete non-integrability: there does not
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F1GURE 18.13. A non-trivial 2-web in space

exist a surface (no matter how small) for which 7(z) would be the tangent plane
at every point z. Indeed, if such a surface existed then the quadrilateral in Figure
18.12 would lie on it and be closed.

At first glance, this non-integrability is rather surprising: it contradicts our
intuition developed in the plane case. In the plane (and in space of any dimension),
if one has a direction at every point, smoothly depending on the point, then there
exists a family of smooth curves, everywhere tangent to these directions — see Figure
18.14 (this is the Fundamental Theorem of Ordinary Differential Equations). A
completely non-integrable field of planes in space is called a contact structure, this
a very popular object of study in contemporary mathematics.

YOO PO
KA A
YOO OO
KA
YOO OO
KA A

FIGURE 18.14. A family of directions integrates to a family of curves

18.8 Chebyshev nets. Can one model fabric by a web?

A flat piece of fabric is woven of two families of non-stretchable threads making a
rectangular grid. Drape this piece of fabric over a curved surface, and the rectangles
will get distorted to elementary parallelograms, see Figure 18.15.

A Chebyshev net is a 2-web such that the lengths of the opposite sides of every
quadrilateral, made by a pair of curves from each family, are equal, see Figure 18.16.

Pafnuty Chebyshev, a prominent Russian mathematician of the 19-th century,?
was motivated by an applied problem: how to cut fabric more economically (he

2The reader of Lecture 7 is familiar with some other works of Chebyshev.
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FIGURE 18.15. A piece of fabric

A B
AD = BC
AB = DC
D C

FIGURE 18.16. Chebyshev net

was working for a private client, an owner of a textile business). This was an acute
problem: with the onset of the Crimean War, there was a huge demand for army
uniforms.

Here is a construction of a Chebyshev net in the plane. Start with two curves, a
and b, intersecting at the origin O. For every point A on curve a, parallel translate
curve b through vector OA. Likewise, for every point B on b, translate a through
vector OB. The result is a 2-web, and this is a Chebyshev net. Indeed, the
quadrilateral OBCA in Figure 18.17 is a parallelogram. Therefore the curve BC
is a parallel translate of the curve OA, and likewise for the curves AC and OB.
Hence the opposite sides of the curvilinear quadrilateral OBC A are equal.

One can say more: the curves a and b uniquely determine a Chebyshev net.
To see this, let us approximate the curves a and b by polygonal lines, say, with
sides of length €. If an elementary quadrilateral of a Chebyshev net has rectilinear
sides then it is a parallelogram. It follows that the polygonal lines a and b uniquely
determine a family of parallelograms, see Figure 18.18. In the limit ¢ — 0, one
obtains a Chebyshev net generated by the curves a and b.

To obtain a Chebyshev net on a curved surface, one can draw a planar Cheby-
shev net on a sheet of paper and then bend the sheet into a “developable” surface
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&
Q

FIGURE 18.17. A construction of a Chebyshev net in the plane

FIGURE 18.18. A Chebyshev net made of parallelograms

(see Lecture 13); for example, one can consider a surface made of a sheet of a graph
paper. However, Chebyshev nets exist not only on developable surfaces.

Here is a more general construction of a Chebyshev net, this time, on a curved
surface. Let a and b be two curves in space. For every pair of points, A on a and B
on b, let C' be the midpoint of the segment AB. The locus of points C' is a surface.
This surface is made of two families of curves: these curves are obtained by fixing,
in the above construction, point A (first family) or point B (second family). This
is a Chebyshev net.

Indeed, consider two pairs of points: A and A’ on curve a, and B and B’ on
curve b, see Figure 18.19. The midpoints of the four segments, K, L, M, N, lie on
the surface. The pairs K, L and M, N lie on two curves from one family, and the
pairs K, N and L, M on two curves from another family. One has:

1 1
KL=3AA' =NM, KN= BB =LM,

and hence curve NM is obtained from curve KL by parallel translation through
vector K N; and likewise for curves LM and K N. It follows that the lengths of the
opposite sides of the curvilinear quadrilateral K LM N are equal.

The surface itself (the locus of midpoints C) is the result of parallel translation
of curve a along curve b. Such surfaces are called translation surfaces. If curves
a and b lie in one plane, the translation surface coincides with this plane, and the
constructed Chebyshev net is the one in Figure 18.17.
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./

A \
FIGURE 18.19. A construction of a Chebyshev net in space

A familiar example of a translation surface is a hyperbolic paraboloid z =
22 — y?; the respective curves are the parabolas (2z,0,22%) and (0, 2y, —2y?) (see
Figure 18.20, left); a circular paraboloid z = 22 + y? provides one more example
(see Figure 18.20, right).

FicURE 18.20. Quadratic surfaces as translation surfaces
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Returning to the difference between developable surfaces and surfaces with
Chebyshev nets, one can notice that while the former are images of maps of the
plane to space preserving lengths of all smooth curves, the latter are described by
maps which preserve only the lengths of vertical and horizontal lines. Less formally,
one can say that a surface is developable if one can tightly attach to it a piece of
paper, while it admits a Chebyshev net, if one can tightly attach to it a fishing
net. For example, the paraboloids of Figure 18.20 are not developable, but admit
Chebyshev nets.

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

18.9 Exercises.

18.1. (a) Prove that the web made of horizontal lines, vertical lines and hyper-
bolas xy = const is trivial.

(b) Same for the web made of horizontal lines, vertical lines and the graphs
y = f(x) + const where f(x) is any function with positive derivative.

18.2. Consider the 3-web made of the lines through one fixed point, the lines
through another fixed point and of tangent half-lines to a fixed circle. Is this web
trivial?

18.3. Prove that the 3-web made of the tangent lines to a fixed circle and the
lines through a fixed point is hexagonal.

18.4. Consider a triangle made of curves of a 3-web. Show that there exists a
unique inscribed triangle, made of curves of this web.

18.5. * Prove that a hexagonal 3-web is trivial.

Hint. Extend the hexagon to a “honeycomb” as in Figure 18.21. One can
change coordinates so that the honeycomb is made of three families of parallel
lines. Making the original hexagon smaller and smaller, one deforms, in the limit,
a hexagonal 3-web into a trivial one.
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F1GURE 18.21. A hexagonal 3-web is trivial

18.6. * Prove that the three inflection points of a smooth cubic curve lie on a
straight line (this is clearly seen in Figure 18.6).






LECTURE 19
The Crofton Formula

19.1 The space of rays and the area form. The Crofton formula concerns
the set of oriented lines in the plane. Sometimes, as in geometrical optics, we shall
think of oriented lines as rays of light and call them rays.

An oriented line is characterized by its direction ¢ and its distance p from the
origin O. This distance is signed, see Figure 19.1. Thus the space of rays is a
cylinder with coordinates (¢,p) (which we visualize as the vertical unit circular
cylinder in space).

p<O0

0 p>0

FIGURE 19.1. Coordinates in the space of oriented lines

Changing the orientation of a line is the central symmetry of the cylinder:
(¢,p) — (p+m,—p). It follows that the set of non-oriented lines identifies with the
quotient of the cylinder by this central symmetry, that is, the M&bius band.

Translating the origin changes the coordinates of a line. Namely, if O =
O + (a,b) is a different choice of the origin then the new coordinates depend on the
old ones as follows:

(19.1) o =p, p =p-—asiny+bcosyp.

The reader may look up a proof of this formula in Lecture 10 or do Exercise 19.1.
In particular, the set of rays through point (a,b) is given by the equation p =
—asin g + bcos p. This is a plane section of our cylinder.

263
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The cylinder has the area element dpdp; this area form is the main character of
this lecture. It does not change under isometries of the plane. Indeed, an isometry
is a composition of a rotation about the origin and a parallel translation. A rotation
through angle « acts on the space of rays as follows:

¢'=p+a, p=p
This is a rotation of the cylinder that does not distort the area. A parallel trans-

lation acts according to formulas (19.1). This does not change the area either, see
Figure 19.2.

FIGURE 19.2. Parallel translation preserves the area form in the
space of oriented lines

It is worth mentioning a fact known to Archimedes. Inscribe a unit sphere
into the cylinder and consider the axial projection from the sphere to the cylinder
(which is not defined at the poles). This projection is area-preserving: the areas of
any domain on the sphere and the cylinder are equal, see Exercise 19.2. This fact
makes it possible to immediately find the area of the sphere.

The axial projections are used in cartography where they are known under
a number of names: Gall-Peters, Behrmann, Lambert, Balthasart, etc. They do
not distort areas, so Greenland appears approximately 13 times as small as Africa
(unlike the Mercator projection where they appear roughly of the same areas) but
they severely distort distances, especially, near the poles. See [90] for the history
of cartography.

The fact that the axial projection from the unit sphere to the cylinder is area-
preserving implies that the area of a spherical belt (the domain of the sphere be-
tween two parallel planes) depends only on the height A of the belt (that is, h is
the distance between the planes); namely, this area equals 27h. This high school
geometry fact has a curious consequence.

Let the unit disc be covered by a collection of strips with parallel sides (“planks”).

THEOREM 19.1. The sum of the widths of the strips is not less than 2.

This is the Tarski plank theorem (its statement is of course obvious if the strips
are parallel).
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Proof. Consider the disc covered by strips as the vertical projection of the unit
sphere covered by spherical belts. The total area of the belts is 27 times the sum
of their widths, and this is not less than the area of the sphere, 4w. Thus the sum
of the widths is not less than 2. O

19.2 Relation to geometrical optics. The area form dedp on the space
of rays plays a role in geometrical optics. An ideal mirror, in dimension 2, is
represented by a plane curve; the law of reflection is “the angle of incidence equals
the angle of reflection”.

Thus a mirror determines a (partially defined) transformation of the space of
rays: an incoming ray is sent to the reflected, outgoing one. This is a transformation
of the cylinder, and its crucial property is that it is area-preserving. The same holds
for more complicated optical systems involving a number of mirrors and lenses. See
Lecture 28 for a detailed discussion of this area preserving property in the framework
of billiards.

By the way, the existence of an area form on the space of rays, invariant under
mirror reflection, is not specific to the plane. Consider, for example, the unit sphere.
The role of lines is played by great circles. An oriented great circle is uniquely
characterized by its pole, a center of this great circle in the spherical metric (it is a
matter of convention which of the two poles to choose, but once made, this choice
should be consistent; in particular, changing the orientation of a great circle, one
chooses the opposite pole).

Thus the space of rays on the sphere is identified with the sphere itself (this
construction almost coincides with the projective duality discussed in Lecture 8).
The sphere has a standard area element, and this provides an area element on the
space of rays. This area form is invariant under the motions of the sphere (Exercise
19.3) and does not change under a reflection in any mirror, represented by a smooth
spherical curve.

19.3 The formula. Consider a smooth plane curve 7 (not necessarily closed
or simple), and define a function n., on the space of oriented lines as the number of
intersections of a line with the curve. There are some problems with this definition:
for example, if 7 is a straight segment then n, will have an infinite value for the two
oriented lines that contain this segment. Not to worry: we are going to integrate
n, over the cylinder, and these “abnormalities” will not contribute to the integral.

Generically, the value of n, changes by 2 when the lines becomes tangent to
the curve 7, see Figure 19.3. If (y,p) are the coordinates of the line we write the
function as n+(p,p).

Crofton’s formula is the following statement.

THEOREM 19.2.
1
(19.2) length (v) = //nw(%p) de dp.

If the curve 7 is bounded, that is, lies in a disc of some radius r, centered at
the origin, then n,(¢,p) = 0 for |p| > r, and hence the integral has a finite value.

Proof of Crofton’s formula. The curve v can be approximated by a polygonal
line, and it suffices to prove (19.2) for such a line. Suppose that a polygonal line
is the concatenation of two, v; and 2. Both sides of (19.2) are additive, and the
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FIGUre 19.3. The function n,

formula for v would follow from those for «; and 5. Hence it suffices to establish
(19.2) for a segment.

Let C be the value of the integral (19.2) for a unit segment; the constant does
not depend on the position of the segment because the area form on the space of
lines is isometry invariant. A dilation by a factor r» multiples the area form by r,
therefore

//nv(%p) de dp = Cly|

for every segment 7.

It remains to check that C = 4. This is most easily seen when ~ is the unit
circle centered at the origin: the length is 27, while n,(¢,p) = 2 for all ¢ and
—1 < p <1, and zero otherwise. O

An analog of Crofton’s formula holds for curves on the sphere: of course, the
integral is taken with respect to the area element, discussed at the end of Section
19.2, see Exercise 19.5.

19.4 First applications. The Crofton formula has numerous applications.
In this section, we shall discuss four.

1). Consider two nested closed convex curves, v and I, see Figure 19.4, and let
[ and L be their lengths. We claim that L > [. Indeed, a line intersects a convex
curve at two points, and every line that intersects the inner curve intersects the
outer one as well. Hence nr > n.,, and the result follows from the Crofton formula.

FIGURE 19.4. Nested ovals
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2). The width of a convex figure in a given direction is the distance between
two lines in this direction, tangent to the figure on the opposite sides. A figure of
constant width has the same width in all directions. An example is a circle.

There are many other figures of constant width, see Figure 19.5. What they
have in common is their perimeter length, equal to wd, where d is the width. Let
us prove this claim.

FIGURE 19.5. A figure of constant width

Let v be a closed convex curve of constant width d. Choose an origin inside 7.
Consider the tangent line to v in the direction ¢ and let p(¢) be its distance from
the origin. The periodic function p(y) is called the support function of the curve,
see Lecture 10.

The constant width condition is: p(¢) +p(¢+7) = d. By the Crofton formula,

1 2m rp(p) d %
length (fy):Z /0 / ( )de dgpzi | do = md,
—p(p+m

as claimed.

3). The distance between the lines on a ruled paper is 1. What is the probability
that a unit length needle, randomly dropped on the paper, intersects a line? This
is the celebrated Buffon’s needle problem.

Assume that the unit segment, -, is horizontal and centered at the origin, while
the ruled paper may assume all possible positions. Now, instead of the ruled paper,
consider just one line at distance at most 1/2 from the origin. Then all possible
positions of the line is the rectangle 0 < ¢ < 27, —1/2 < p < 1/2 whose area is 2.

If a line intersects v then n, = 1, otherwise n, = 0. Therefore the desired

probability equals
(//nw(so,p) dy dp) /2.

By Crofton’s formula, the integral is 4 times the length of -+, and the probability
equals 2/7.

4). The curvature of a smooth space curve is the magnitude of the acceleration
vector if the curve is given an arc length parameterization, see Lecture 15.

THEOREM 19.3. The total curvature of a closed space curve is at least 2.
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Proof. Let (t) be the curve. As the parameter t varies, the velocity vector
I'(t) = +/(t) describes a closed curve on the unit sphere (sometimes called the
tangent indicatriz, or simply the tantriz). The length of the tantrix is

[ = [ 1 i

that is, the total curvature of 7. We want to show that the length of I' is not less
than 2.

We claim that the tantrix intersects every great circle at least twice. All great
circles being equal, take the equator. Consider the highest and the lowest points of
. At these points, the velocity v’ is horizontal, and hence I intersects the equator.

Finally, apply the spherical Crofton formula: np > 2 everywhere and the total
area of the sphere is 4, therefore length (I') > 2. O

-
%
S

FIGURE 19.6. A curve with one local maximum and one local
minimum cannot be knotted

The celebrated Fary-Milnor theorem says more:

THEOREM 19.4. If a closed spacial curve is knotted then its total curvature is
greater than 4m.

That the total curvature is not less than 4w follows from the more-or-less ob-
vious fact that a knot must have at least two local maxima and two local minima,
see Figure 19.6. We do not dwell on how to make this inequality strict.
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19.5 The DNA geometric inequality. Consider again two plane closed
smooth nested curves: the outer one, I', is convex and the inner one, v, is not
necessarily convex and may have self-intersections. The picture resembles DNA
inside a cell, see Figure 19.7.

FIGURE 19.7. DNA inside a cell

Define the total absolute curvature of a closed curve as the integral of the
absolute value of the curvature with respect to the arc length parameter. Total
absolute curvature is the “total turn” of the curve. The average absolute curvature
of a curve is the total absolute curvature divided by the length.

One has the following geometrical inequality.

THEOREM 19.5. The average absolute curvature of I' is not greater than the
average absolute curvature of .

We call this the DNA geometric inequality. This theorem was proved only
recently [49, 54|, and the proof is surprisingly hard. We shall prove a weaker
result, due to Fary (of the Fary-Milnor theorem fame; this theorem was mentioned
in Section 19.4). Namely, we assume that the outer curve, I', has a constant width
(for example, a circle).

Proof. We already know that the length of I' is wd, where d is the diameter,
and its total curvature is 2w. Denote the total curvature of v by C, and let L be
its length. We want to prove that

(19.3)

Vv

Cc _2
L~ d
Give ~y an orientation and define a locally constant function ¢(¢) on the circle as

the number of oriented tangent lines to v having direction ¢. One has the following
integral formula for the total absolute curvature:

27
(19.4) C:/O q(p) de.

Indeed, if ¢ is the arc length parameter on v and ¢ the direction of its tangent line
then the curvature is k = dp/dt. The total curvature

"
— | dt
dt |’

L L
/ k| dt :/ d
0 0

is the total variation of ¢. Let I be an interval of ¢ for which the function g(¢) has
a constant value, say, m. Then I has m pre-images under the function ¢(t), and
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the value of the integral
de

/1

over each of these m intervals is the length of I. This implies formula (19.4).
Let us use Crofton’s formula to evaluate L. The crucial observation is that

(19.5) ny(p,p) < q(p) +qp + )

for all p, . Indeed, between two consecutive intersections of v with a line whose
coordinate are (¢, p), the tangent line to 7 at least once has the direction of ¢ or
© + 7 (this is, essentially, Rolle’s theorem), see Figure 19.8.

dt

/ \

FIGURE 19.8. A version of Rolle’s theorem

Denote the support function of T by p(¢ ) It remains to integrate (19.5), taking
into account (19.4) and that p(¢) + p(p +7) = d:

27
//nv% dpd<p<—/ / )+ q(e+m)) dp de
p(w+7r)

=%/0 (a(p )+q(so+ﬂ))d<p=g/o q(p) d@:%,

This implies the desired inequality (19.3). O

We can add that equality in (19.3) implies that « coincides with I', possibly
traversed more than once. This follows from our proof as well.

It is interesting to investigate the spatial version of the DNA inequality when
the cell is a convex body containing a closed curve. If the cell is a ball one has
essentially the same result, but nothing is known for cells of more general shapes.

19.6 Hilbert’s Fourth problem. In his famous talk at the International
Congress of Mathematicians in 1900, D. Hilbert formulated 23 problems that would
greatly influence the development of mathematics in the 20-th century and are likely
to continue to inspire mathematicians. The Fourth problem asks to “construct and
study the geometries in which the straight line segment is the shortest connection
between two points”. In this section, we shall show how Crofton’s formula yields a
solution to Hilbert’s Fourth problem in dimension two.

First of all, what does one means by “geometry”? Geometrical optics sug-
gests the following answer. Consider propagation of light in an inhomogeneous and
anisotropic medium. This means that the speed of light depends on the point and
the direction. One may define “distance” between points A and B as the shortest
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time it takes light to get from A to B. This defines geometry, called Finsler ge-
ometry, and the trajectories of light will be the analogs of straight lines (they are
called geodesics). We want these geodesics to be straight lines.

The speed of light at every point x can be described by the “unit circle” at x
consisting of unit velocity vectors at this point. This “unit circle”, called the indi-
catriz, is a smooth convex centrally symmetric curve, centered at z. For example,
in the standard Euclidean plane, all indicatrices are unit circles. If all indicatrices
are ellipses, the geometry is called Riemannian (this is the most important and
thoroughly studied class of geometries).

Let us start with examples satisfying Hilbert’s requirement. The very first one,
of course, is the Euclidean metric in the plane. Next, consider the unit sphere
with its standard geometry in which the geodesics are great circles. Project the
sphere on some plane from the center; this central projection identifies the plane
with a hemisphere, and it takes great circles to straight lines. This gives the plane
a geometry, different from Euclidean, whose geodesics are straight lines (for the
reader, familiar with differential geometry, this is a Riemannian metric of constant
positive curvature).

The next example features hyperbolic geometry whose discovery was one of the
major achievements of 19-th century mathematics. Consider the unit disc in the
plane and define the distance between points x and y by the formula:

(19.6) d(z,y) = Inla,z,y,b]

where a and b are the intersection points of the line xy with the boundary circle,
see Figure 19.9, and [a, z,y, b] is the cross-ratio of four points defined as

(a—y)(z—b)
(a—x)(y—b)
This is the so-called Beltrami-Klein (or projective) model of the hyperbolic plane.

la, 2,y 0] =

FIGURE 19.9. The Beltrami-Klein model of the hyperbolic plane

In fact, it was well known by the time of Hilbert’s talk that the only Riemann-
ian geometries whose geodesics are straight lines are the Euclidean, spherical and
hyperbolic ones (Beltrami’s theorem).

Posing his problem, Hilbert was motivated by two other examples. One was
discovered by Hilbert in 1894, and it is called the Hilbert metric. The Hilbert
metric is a generalization of the Klein-Beltrami model with the unit disc replaced
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by an arbitrary convex domain. The distance is given by the same formula (19.6)
but, unless the boundary curve is an ellipse, this Finsler metric is not Riemannian
anymore. Another example was studied by H. Minkowski in the framework of
number theory. In Minkowski geometry, the indicatrices at different points are
identified by parallel translations. This is a homogeneous but, generally, anisotropic
geometry.

The solution to Hilbert’s Fourth problem is based on the Crofton formula. Let
f(p, ¢) be a positive continuous function on the space of rays, and even with respect
to the orientation reversion of a line: f(—p,¢ + 7) = f(p,¢). Then one has a new
area form on the space of rays f(p,¢) de dp. Define the length of a curve by the
formula

(19.7) length (1) = ;[ [ malo0) 10 dio dp.

We obtain a geometry in the plane, and we claim that its geodesics are straight
lines. To see that this is the case one needs to check the triangle inequality: the
sum of the lengths of two sides of a triangle is greater than the length of the third
side. Indeed, every line intersecting the third side also intersects the first or the
second, and integration (19.7) yields the desired triangle inequality.

In fact, every Finsler metric whose geodesics are straight lines is given by
formula (19.7), but we do not prove this fact here. This means that in each such
geometry one has a version of the Crofton formula. In higher dimensions, Hilbert’s
Fourth problem has a similar solution; instead of the space of lines one utilizes the
space of hyperplanes and a version of Crofton’s formula therein.

To conclude our brief discussion of Hilbert’s Fourth problem, let us mention
an elegant description of metrics whose geodesics are straight lines. This is due to
Hilbert’s student, Hamel, and was obtained in 1901, shortly after Hilbert’s talk.

One may characterize a Finsler metric by a function which, following the tradi-
tion in physics, we call the Lagrangian and denote by L. Given a velocity vector v
at point x, the value of the Lagrangian L(x,v) is the magnitude of the vector v in
units of the speed of light, that is, the ratio of v to the speed of light at this point
and in this direction. Said differently, the indicatrix at point = consists of the ve-
locity vectors v satisfying the equation L(z,v) = 1. Clearly, L(z,v) is homogeneous
in the velocity: L(z,tv) = tL(x,v) for all positive t.

For example, in Euclidean geometry, L(x,v) = |v|, the Euclidean length of the
vector. In Minkowski geometry, the Lagrangian L(z,v) does not depend on z.

For a smooth curve 7(t), its length is given, in terms of the Lagrangian, by the
formula

[rom. @) a

Due to the fact that the Lagrangian is homogeneous of degree one, this integral
does not depend on the parameterization (as every student of calculus learns when
studying line integrals).
One may recover the Lagrangian from formula (19.7) by applying it to an
infinitesimal segment v = [z, x + ev]. The result is the following formula:
1

2
(19.8) L(zy1,x2,v1,v2) = Z/ |v1 cosa + vosinal f(x1 cosa + xgsina, a) da,
0

see Exercise 19.11.
We are ready to formulate Hamel’s theorem.
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THEOREM 19.6. A Lagrangian L(x1,xs,v1,v2) defines a Finsler metric whose
geodesics are straight lines if and only if

0?L _ 0*L
83)181)2 o 8.132(91)1 '
The explicit formula (19.8) provides a solution to this partial differential equa-
tion.

For more on Hilbert’s Fourth problem, see Busemann’s contribution in [93],
the books [61, 91] and the article [3].
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19.7 Exercises.
19.1. Prove formula (19.1).

19.2. Prove that the axial projection from a sphere to the circumscribed cylin-
der is area-preserving (Archimedes).

19.3. Prove that the area element on the space of oriented great circles on the
sphere, defined in Section 19.2, is invariant under the rotations of the sphere.

19.4. Make an explicit computation to verify Crofton’s formula (19.2) for a
unit segment.

19.5. Prove Crofton’s formula for the sphere.

19.6. Let I be a closed convex curve and 7 a closed, possibly self-intersecting,
curve inside I'; let L and [ be their lengths. Prove that there exists a line that
intersects ~y at least [21/L] times.

19.7. (a) Replace each side of an equilateral triangle with the arc of a circle
centered at the opposite vertex. Prove that the resulting convex curve has constant
width (Reuleaux triangle).

(b) Construct a similar figure of constant width based on a regular n-gon with
odd n.

(c) Prove that one can circumscribe a regular hexagon about a curve of constant
width.

Hint. Circumscribe a hexagon with angles 120° and show that the sum of any
two consecutive sides is the same. Rotate this hexagon 60° and show that some
intermediate hexagon is regular.

(d)* Prove that the Reuleaux triangle has the smallest area among the figures
of constant width.

Hint. Circumscribe a regular hexagon about the curve of constant width ~y
and inscribe a Reuleaux triangle into this hexagon as well. Show that the support
function of the Reuleaux triangle is not greater than that of v and use Exercise
10.4 (a).

19.8. Prove that if one randomly drops a curve of length [ on the ruled paper

then the average number of intersections with a line equals 2/7.

19.9. Let v be a not necessarily closed curve inside a unit circle, C' its total
absolute curvature and L its length. Prove that L < C' + 2.

19.10. Formulate and prove a version of the DNA theorem for a curve inside a
ball in space.

19.11. * Let « be a closed curve in space and C' its total curvature. For a unit
vector v, consider the orthogonal projection on the plane along v. Let C, be the
total absolute curvature of the plane projection of «. Prove that

1
C—E/Cvdv

where v is considered as a point of the unit sphere and the integration is with
respect to the standard area element on the sphere.
Hint: assume that v is a polygonal line and reduce to the case of a single angle.

19.12. Prove the triangle inequality for Hilbert metric.






Chapter 6

e%)

POLYHEDRA




LECTURE 20

Curvature and Polyhedra

20.1 In the plane. The curvature of a smooth plane curve is the rate with
which the tangent line turns as one moves along the curve with unit speed. How
does one define the curvature of a polygonal line?

The curvature of a plane wedge « is defined as its defect, m — «, the angular
measure of the complementary angle. The more acute the angle is, the greater its
curvature. The curvature of a polygonal line is the sum of the curvatures of its
angles.

FIGURE 20.1. Sum of exterior angles of a convex polygon

The sum of curvatures of a convex polygon is 27, see Figure 20.1. The sum of
curvatures of the two 7-pronged stars in Figure 20.2 are 47 and 6.

20.2 Curvature of a polyhedral cone. Each face of a polyhedral cone
has an angle subtended at the vertex; we call this angle a flat angle. Consider

277
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N

FI1cURE 20.2. Two 7-pronged stars

a polyhedral cone with flat angles a,...,a,. Define its curvature as the defect,
27 — (a1 + - -+ + ay,). Note that curvature can be positive or negative; if the cone
is flat then its curvature is zero.

If the cone has more than three faces, it is flexible. Imagine that the faces,
which are rigid plane wedges, are connected at the edges by hinges. Then one can
deform the cone in such a way that each face is not stretched or compressed, but the
dihedral angles vary. Under such a deformation, the curvature remains constant.

Let P be a convex polyhedron.

LEMMA 20.1. The sum of curvatures of all vertices of P equals 4.

Proof. Let v, e, f be the number of vertices, edges and faces of P. These num-
bers satisfy the Euler formula: v — e + f = 2 (see Lecture 24 for a proof).

Let us compute the sum S of all angles of the faces of P. At a vertex, the sum
of angles is 27 minus the curvature of this vertex. Summing up over the vertices
gives:

S=2mv—-K
where K is the total curvature. On the other hand, one may sum over the faces.
The sum of the angles of the i-th face is w(n; — 2), where n; is the number of sides
of this face. Hence
S=m(ni+---+ny)—2nf.
Since every edge is adjacent to two faces, ni + - -- +ny = 2e; therefore
S =2me — 2nf.

Thus 27v — K = 2me — 27 f, which, combined with the Euler formula, yields the
result. O

An analog of Lemma 20.1, along with its proof, holds for non-convex polyhedra
as well and even for other polyhedral surfaces not necessarily topologically equiv-
alent to the sphere (for example, a torus): the total curvature equals 2wy where
X =v — e+ f is the Fuler characteristic.

20.3 Dual cones and spherical polygons. Given a convex polyhedral cone
C with vertex V', consider outward normal lines to its faces through V. These
lines are the edges of a new convex polyhedral cone C* called dual to C. A similar
construction in the plane yields an angle which complements the original angle to 7.
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The relation between a cone and its dual in space is more complex and is described
in the next lemma.

LEMMA 20.2. The angles between the edges of C* are complementary to m of
the dihedral angles of C, and the dihedral angles of C* are complementary to m of
the angles between the edges of C'.

Proof. The first claim is clear from Figure 20.3 and the second from the sym-
metry of the relation between C' and C*. O

FicURE 20.3. Proving Lemma 20.2

From this point on, our arguments involve spherical geometry. It is natural to
replace the Euclidean plane by the (unit) sphere — after all, the surface of the Earth
is (approximately) a sphere.! The role of straight lines is played by great circles
(unlike the plane, any two such “lines” intersect at two points); a spherical polygon
is bounded by arcs of great circles. The reader who wants to learn what are the
counterparts of straight lines on arbitrary surfaces should wait until Section 20.8.
The angle between two great circles, intersecting at point X, is defined as the angle
between their tangent lines in the tangent plane to the sphere at X.

A peculiar property of spherical geometry is the absence of similarities; in
particular, one cannot dilate a polygon so that its angles remain the same but the
area changes. More precisely, the area of a spherical polygon is determined by its
angles.

THEOREM 20.1. Let P be a convexr n-gon on the unit sphere, A its area and
Qag,...,0n its angles. Then

(20.1) A=+ +a, —(n—2)m.

Note that, for a plane n-gon, the right-hand side of (20.1) vanishes.

Proof. Let us start with n = 2. A 2-gon is a domain bounded by two meridians
connecting the poles. If « is the angle between the meridians, then the area of the
2-gon is the (a/27)-th part of the total area 47 of the sphere, that is, 2a.

1Spherical geometry was already known to the Ancient Greeks. Many results of plane geom-
etry have spherical analogs, for example, there are spherical Laws of Sines and Cosines.
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FI1GURE 20.4. Area of a spherical triangle

Next, consider a spherical triangle; see Figure 20.4. The three great circles form
six 2-gons that cover the sphere. The original triangle and its antipodal triangle
are covered three times, and the rest of the sphere is covered once. The total area
of the six 2-gons equals 2(2a1 + 2as + 2a3); hence

4(o1 + ag + az) = 47 + 4A.

This implies the statement for n = 3.

Finally, every convex n-gon with n > 4 can be cut by its diagonals into n — 2
triangles. The area and the sum of angles are additive under cutting, and (20.1)
follows. O

As a consequence, we interpret the curvature of a convex polyhedral cone C
as the area of a spherical polygon. Let C* be the dual cone and consider the unit
sphere centered at its vertex. The intersection of C* with the sphere is a convex
spherical polygon P. The area of P measures the solid angle of the cone C*.

COROLLARY 20.2. The area A of the spherical polygon P equals the curvature
of the cone C.

Proof. Assume that P is n-sided and let «; be its angles. The area of P is given
by formula (20.1).

The angles «; are the dihedral angles of C*. Let (3; be the angles between the
edges of the cone C. By Lemma 20.2, a;; = m — f3;. Substitute into (20.1) to obtain:

A=21—(B1+- + Bn).

The right hand side is the curvature of the cone C, as claimed. O

Corollary 20.2 provides an alternative proof of Lemma 20.1: one may translate
the dual cones at all the vertices of P to the origin, and then the cones will cover the
whole space, see Figure 20.5. It follows that the sum of the areas of the respective
spherical polygons is 47, and Lemma 20.1 follows. This alternative proof, combined
with the argument of Lemma 20.1, implies Euler’s formula as well.
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FI1GURE 20.5. Sum of curvatures of a convex polyhedron

20.4 Parallel translation and rolling. Let us define parallel translation on
a polyhedral surface P. What we want to translate is a vector, say, v, that lies
in one of the faces of the polyhedron. As long as one stays within one face, one
parallel translates v, just as in the plane. The question arises when one wants to
carry the vector over an edge.

Let F} and F, be adjacent faces that share an edge F. Identify the planes of
the two faces by revolution about E (as if they were connected by hinges). Let a
tangent vector v be parallel translated inside F;. When the foot point of v reaches
E, apply this rotation to obtain a vector u that lies in F5. Vector u is the result of
parallel translating v across edge F.

Said differently, under the parallel translation of v across edge F, the tangential
component of v along F and its normal component remain the same. See Figure
20.6, featuring parallel translation of a vector across three adjacent edges of a cube.

FIGURE 20.6. Parallel translation on a cube

Equivalently, position P so that the face F} is on the horizontal plane and roll
it across edge E. Now the face F5 is on the horizontal plane. The prints of the
vectors v and u on the horizontal plane are parallel. Thus parallel translation on
the surface of a polyhedron is the same as rolling this polyhedron on the horizontal
plane.

A geodesic v is defined as a curve on a polyhedral surface which is straight
within each face and whose tangent vectors are parallel translated across each edge
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intersected by v. We assume that geodesics do not pass through vertices. A realistic
image of a geodesic is a ribbon wrapped around a box of chocolate. When rolling
a polyhedron in the plane, a geodesic leaves a straight trace.

Geodesics minimize the distance between their sufficiently close points.

LEMMA 20.3. Consider two planes in space, Fy and Fs, intersecting along a
line E, and let Ay and Ay be points in Fy and Fy. Let vy be the shortest path from
Aq to As across the edge E on the surface made by two half-planes, separated by E
. Then v is a geodesic.

Proof. Turn the plane F5 around the edge F until it coincides with the plane
Fy. The shortest curve v from A; to Ay unfolds to a straight segment, therefore
the unit tangent vector to ~ is parallel translated across E. O

20.5 Gauss-Bonnet theorem. Let V be a vertex of a polyhedral cone C.
Consider a vector that lies in one of the faces of the cone. Choose a closed path on
the surface of the cone, starting at the foot point of the vector and going around
V' once counterclockwise, and parallel translate the vector along the path. What
happens? The foot point returns to the initial position, and the vector turns through
some angle . This angle depends neither on the choice of the vector nor on the
path. What is this angle?

LEMMA 20.4. The angle a equals the curvature of C.

Proof. Instead of parallel translating, put C on the horizontal plane and roll
it across consecutive edges. The resulting unfolding of the cone is a plane wedge
whose measure is the sum of flat angles of C. The angle in question complements
this sum to 27, and the result follows; see Figures 20.6 and 20.7. O

Vv

B4
B2

b1

FI1GURE 20.7. Proving Lemma 20.4

More generally, let v be an oriented simple closed path on a polyhedral surface
P; we assume that v intersects the edges transversally and avoids the vertices. The
curve ~y partitions P into two components, one on the left and one on the right of
the curve. We refer to the former as the domain bounded by ~. Choose a tangent
vector v with foot point on v and parallel translate it along . Let u be the final
vector, whose foot point coincides with that of v; denote by () the angle between
v and w. The next result is (a polyhedral version of) the celebrated Gauss-Bonnet
theorem.

THEOREM 20.3. The angle o() equals the sum of curvatures of the vertices of
P that lie in the domain bounded by ~y.
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Proof. Let us argue inductively on the number n of vertices inside v. If n =1,
this is Lemma 20.4.

FI1GURE 20.8. Proving the Gauss-Bonnet theorem

If n > 1, one may cut the domain bounded by 7 by an arc § into two domains,
each with fewer than n vertices; see Figure 20.8. Let ; be the path that follows
~v from A to B and then § from B to A. Likewise, o is the path that follows
from A to B and then v from B to A. The concatenation of v; and 7, differs
from « by the arc ¢, traversed back and forth. Hence the contribution of § cancels,
a(y) = a(y1) + a(y2), and the result follows by induction. O

20.6 Closed geodesics on generic polyhedra. Figure 20.9 depicts simple
closed geodesics on a regular tetrahedron and a cube. The former is the section of
the tetrahedron by a plane parallel to a pair of pairwise skew edges, and the latter
is the section of the cube by a plane perpendicular to its great diagonal.

N

FicURE 20.9. Closed geodesics on polyhedra

Can one find such a geodesic on a generic closed convex polyhedron P? What
we mean by “generic” is that the only linear relation, with rational coeflicients,
between the curvatures of the vertices and 7 is the one given by Lemma 20.1.

THEOREM 20.4. There exist no simple closed geodesics on P.
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Proof. Assume there is such a geodesic v. Then the unit tangent vector to ~
is parallel translated along . In particular, this tangent vector returns, without
rotation, to the initial point.

On the other hand, by the Gauss-Bonnet theorem, parallel translation along -y
results in rotation through the angle equal to the sum of curvatures of the vertices
inside y. This set of vertices is a proper and non-empty subset of the set of vertices
of P. Since P is generic, the sum of curvatures cannot be a multiple of 27, a
contradiction. O

In particular, the geodesics in Figure 20.9 will disappear after a generic small
perturbation of the tetrahedron or the cube.

20.7 Closed geodesics on regular polyhedra. The discussion in the pre-
ceding section suggests that more symmetric polyhedra are more amenable for con-
structing closed geodesics. From this point of view, it is reasonable to investigate
the case of regular polyhedra (see [16, 31] for such a study).

(XIN/

AX B A

FI1GURE 20.10. Triangular tiling of the plane

The simplest case is that of a regular tetrahedron. Denote a regular tetrahedron
with the edge 1 by T and its vertices by A, B,C, D. Consider the standard tiling
of the plane by equilateral triangles with the unit edge and label vertices by letters
A, B,C,D as shown in Figure 20.10. There is a natural map 7 of the plane onto
the tetrahedron T' taking the vertices of the tiling into the vertices of T" labeled by
the same letters, edges into edges and triangles (tiles) into the faces.

Take the coordinate system in the plane with the origin at a point labeled A
and coordinate vectors A—B), AC where B is the next right to A and C' is immediately
above AB. Take points X = (,0), 0 < a < 1, on AB and X' = (o + 2p,2q),q >
p > 0, ¢ > 0 on another side labeled AB. If (p,q) = 1 and qa ¢ Z, then the
map 7 takes XX’ into a simple (not repeating itself) closed geodesic on T of
length \/p? + pg + g2. Moreover, this geodesic is non-self-intersecting and all closed
geodesics on T are given by this construction; in particular, all closed geodesics
on T are non-self-intersecting (see Exercise 20.8). The geodesic corresponding to
p = 2,q = 3 is shown in Figure 20.11. It cuts the tetrahedron into two pieces also
shown in Figure 20.11. (In accordance with the Gauss-Bonnet Theorem, each of
the two pieces contains two vertices.)
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D

FI1GURE 20.11. A closed geodesic on the tetrahedron

A full description of closed geodesics on the regular octahedron is given in
Exercise 20.9. Up to a parallelism and symmetries of the octahedron, there are only
two non-self-intersecting closed geodesics, of lengths 3 and 2v/3 (where the edge of
the octahedron is unit); one of them is planar, one is not. There are also infinitely
many non-parallel self-intersecting geodesics. The two non-self-intersecting closed
geodesics and one self-intersecting closed geodesic are shown in Figure 20.12.

5
Vv

F1GURE 20.12. Three closed geodesics on the octahedron

An almost full description of closed geodesics in the cube is given in Exercise
20.10. There are three types of non-self-intersecting closed geodesics (their lengths
are 4,3v/2,2v/5), and infinitely many types of self-intersecting closed geodesics. The
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three non-self-intersecting and three self-intersecting closed geodesics are shown,
respectively, in Figures 20.13, 20.14.
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FIGURE 20.14. Self-intersecting closed geodesics on the cube

On a regular icosahedron, there are 3 (up to parallelism and symmetries of
the icosahedron) non-self-intersecting closed geodesics (of lengths 5,3+/3 and 2v/7),
and only one of them is planar. They are shown in Figure 20.15. Also, there are
infinitely many self-intersecting closed geodesics. (See the details in [31].)

20.8 Smooth surfaces: a panorama. In differential geometry, all the no-
tions that we have discussed so far, are defined for smooth surfaces. The relation
between the polyhedral and smooth cases is, roughly, the same as between polygonal
lines and smooth curves in the plane discussed in Section 20.1.

The definition of curvature is modeled on the statement of Corollary 20.2. Let
X Dbe a point of a surface. Consider a small neighborhood of point X of area A.
At every point of this neighborhood consider the unit normal vector to the surface
(so the surface looks like a porcupine). Translate the foot points of these normal
vectors to the origin to obtain a piece of the unit sphere. Let A’ be its area. The
curvature of the surface at point X is the limit value of the ratio A’/A as the
neighborhood shrinks to point X.

For example, the curvature of a cylinder or a cone is zero: the end points of the
unit normal vectors lie on a curve, whose area is zero. The curvature of a sphere
of radius 7 is 1/r2.

The relation of this definition to the definition of the curvature of a polyhedral
cone in Section 20.3 is straightforward. Let C' be a polyhedral cone. One can
smooth its edges and its vertex to obtain a smooth surface, approximating the
cone. The unit normal vectors to this surface describe a domain on the unit sphere.
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Ficure 20.15. Closed geodesics on the icosahedron

For the cone, this domain becomes a spherical polygon P, the intersection of the
sphere with the dual cone C*. The area of P is the curvature of C, as we know
from Corollary 20.2.

The curvature has sign. This is because the area A’ is signed. Specifically,
traverse the boundary of a neighborhood of point X counter clock-wise. The end
points of the unit normal vectors traverse a curve on the unit sphere; if this curve is
oriented counter clock-wise, the curvature is positive, and if clock-wise — negative.
See Figure 20.16 for the case of a torus.

FIGURE 20.16. Positive and negative curvature

Similarly to Lemma 20.1, the total curvature of a closed convex surface is
4m. For more general closed surfaces, the answer is 2wy where x is the Euler
characteristic.

The curvature of a polyhedral cone does not change under deformations that
preserve flat angles. Likewise, the curvature of a smooth surface remains constant
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under isometric deformations, the deformation that do not change the inner geome-
try of the surface.? For example, a wide variety of developable surfaces are obtained
by bending, without stretching, a sheet of paper (piece of plane), and they all have
zero curvature; see Lecture 13.

Let v be an oriented smooth curve on a smooth surface S. Parallel translation
along 7 is defined as rolling, without sliding, of the tangent plane to S along ~.
Equivalently, one may put S on the plane and roll the surface along the curve ~.

The Gauss-Bonnet theorem holds in the smooth setting: parallel translation of
the tangent plane to a surface S along an oriented simple closed curve vy results in
the rotation of the tangent plane through the angle, equal to the total curvature of
S inside 7.

A geodesic curve on a smooth surface S is defined as a curve v whose tangent
vector is parallel translated along . If one rolls a surface along a geodesic curve, the
trace on the horizontal plane is straight. Geodesics are trajectories of a free particle
confined to S: their speed remains constant and their acceleration is orthogonal to
the surface (that is, the only force acting on the particle is the normal reaction
force). For example, the geodesics on a sphere are great circles. Just as in the
polyhedral case, geodesics minimize the distance between pairs of their sufficiently
close points.

Unlike Theorem 20.4, every closed smooth convex surface carries a simple closed
geodesic, in fact, even three: this was conjectured by Poincaré; a proof was pub-
lished by Lyusternik and Shnirelman in 1930. These three closed geodesics are
manifest for an ellipsoid, they are its sections by the three planes of symmetry.

Finally, define the geodesic curvature of an oriented curve on a smooth surface.
Approximate a curve by a geodesic polygonal line, v. The geodesic curvature is
concentrated at the corners, and its value is the angular measure of the comple-
mentary angle, positive if v turns left and negative if it turns right. The geodesic
curvature of a geodesic line is zero.

Let ~ be an oriented simple geodesic polygon. Parallel translation along ~
results in rotation of the tangent plane, and the angle of this rotation complements
the total geodesic curvature of v to 27, see Figure 20.17. This yields another version
of the Gauss-Bonnet theorem: the total geodesic curvature of an oriented simple
closed curve v plus the total curvature of the surface inside v equals 2.

20.9 Three examples: tennis ball, Foucault pendulum, and bicycle
wheel. Every tennis ball has an indented closed curve on its surface. Mark a point
of this curve and put the ball on the floor so that it is touching the floor at the
marked point. Now roll the ball without sliding along the curve until it again
touches the floor at the marked point. From the initial to the final positions of the
ball, it has made a certain revolution about the vertical axis. What is the angle of
this revolution?

The Gauss-Bonnet theorem provides an answer. The angle in question is the
total curvature bounded by the curve. Although the curve has a complicated shape,
a glance at a tennis ball reveals that this curve is symmetric and bounds exactly
one half of the total curvature of the ball, that is, 2. Hence the angle of revolution
is zero.

2This is the Teorema Egregium of C.-F. Gauss.



LECTURE 20. CURVATURE AND POLYHEDRA 289

FIGURE 20.17. Parallel translation on a surface

Our second example concerns the Foucault pendulum demonstrating rotation
of the earth. The original pendulum was constructed by Léon Foucault for the 1850
Paris Exhibition: this was a 67 meter, 28 kilogram pendulum suspended from the
dome of the Panthéon in Paris; the plane of its motion, with respect to the earth,
rotated slowly clockwise.? Now almost every science museum exhibits a Foucault
pendulum.

Imagine that the pendulum is suspended at the North Pole. The plane of
its motion remains the same while the earth rotates eastward. Thus the plane of
motion of the pendulum rotates, with respect to the earth, with angular speed of
360°/24 = 15° per hour. The closer to the equator, the weaker the effect, and on
the equator, the plane of motion of the pendulum does not rotate relative to the
earth (by symmetry!)

The Foucault pendulum is a purely geometric phenomenon. Its behavior is due
to the motion of the suspension point. Let us imagine that the earth is not rotating,
and only the suspension point of the pendulum is moving along a curve v on the
surface of the earth. Assume further that + is a spherical polygon. As long as we
are moving along a geodesic segment, the plane of motion of the pendulum does
not rotate relative to the direction of the geodesic. At a corner, the plane of motion
of the pendulum remains the same but the direction of motion of the suspension
point changes by the exterior angle v. Thus the plane of motion of the pendulum
turns relative to the direction of v by the exterior angle at the corner.

Conclusion: the total rotation of the plane of motion of the pendulum equals
the total geodesic curvature of the trajectory of its suspension point. By the Gauss-
Bonnet theorem, this is 27 minus the total curvature inside this trajectory.

Consider Foucault pendulum at latitude . The trajectory of the suspension
point is a latitude circle. The total curvature of the polar cap of the sphere bounded
by this circle equals the area of the polar cap of latitude ¢ on the unit sphere; it
is easily computed — see Exercise 20.3 — and the answer is 27(1 — sint). Thus the
total rotation of the plane of motion of the pendulum is 27 sin .

For Paris, 1 is about 48°, and the angular speed of the Foucault pendulum in
the Panthéon equals 11° per hour.

3The reader is recommended to the novel “Foucault’s Pendulum” by Umberto Eco.
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In physics, the rotation of the plane of motion of the pendulum is attributed
to an inertia, Coriolis, force. The same force is accountable for the direction of
the major circulations of air and wind on earth. It is observed that rivers of the
Northern Hemisphere tend to erode chiefly on the right bank; those of the Southern
hemisphere chiefly on the left bank. This is especially manifest for the great North
flowing rivers in Russia, such as the Ob, Lena and Yenisey. This phenomenon is
also often attributed to the Coriolis force although the issue remains somewhat
controversial (and the Coriolis force is not responsible for rotation of water in
bathtubs!)

Finally, following M. Levi [51], one can use a bicycle wheel with frictionless
bearings for physical realization of parallel translation. Keep the plane of the
wheel tangent to the surface, and set the angular velocity of the wheel relative
to its axis to zero. Guiding the center of the wheel along a curve on the surface,
each spoke, considered as a tangent vector, undergoes parallel translation along
the curve. (The explanation of this phenomenon is essentially the same as for the
Foucault pendulum.)

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

20.10 Exercises.

20.1. Find the sum of curvatures of an (n, k)-star, that is, an n-pronged star
making k£ turns; the numbers n and k are relatively prime.

20.2. Let C be a convex cone and C* its dual cone. Show that (C*)* = C.
20.3. Compute the area of the polar cap of latitude 1 on the unit sphere.

20.4. One throws a loop on a cone and pulls it down. If the cone is sharp, the
loop will stay but if the cone angle is sufficiently obtuse the loop will slide off (of
course, we assume that there is no friction). Find the critical cone angle separating
the two cases.
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20.5. A closed smooth simple curve is drawn in the plane. One places a convex
body on the plane at some point of the curve and rolls the body, without sliding,
all around the curve. Prove that the trace of the curve on the surface of the body
cannot be a closed simple curve.

Hint. Use the Gauss-Bonnet theorem and the fact that the total curvature of
a closed simple plane curve is 2.

The next problem concerns geometry of curves on the unit sphere and has much
to do with the material of Section 10.2.

20.6. Let 7y be a simple convex curve on the unit sphere. Move each point of ~y
distance 7/2 along the outer normal (that is, the orthogonal great circle). Denote
the resulting curve v* and call it dual to ~.

(a) Show that (()*)* is the curve antipodal to ~.

(b) Prove that the length of v* equals 27 minus the area bounded by .

(c) Let . be the curve obtained from v by moving each point distance ¢ along
the outer normal. Find the length of 7. and the area bounded by it.

Denote by 7' the curve obtained from 4 by moving each point distance /2
along the tangent great circle to 7. The curve +' is called the derivative of ~.

(d) Let v be a circle of latitude ¢. Find +/.

(e) Prove that + bisect the area of the sphere.

20.7. Given a convex polytope P, denote by S(P) the sum of the solid angles
at its vertices and by D(P) the sum of its dihedral angles.

(a) If P is a tetrahedron, prove that S(P) — 2D(P) + 4w = 0.

Hint. Parallel translate the faces of P to the origin and consider the partition of
the unit sphere by the respective half-spaces. Use the inclusion-exclusion formula.

(b) In general, prove that S(P) —2D(P)+2n f — 4w = 0 where f is the number
of faces of P (Gram’s theorem).

Hint. Cut P into tetrahedra and use additivity of the desired relation.

20.8. (a) Prove that the construction given in Section 20.7 gives all closed
geodesics on a regular tetrahedron.
(b) Prove that all closed geodesics on a regular tetrahedron are non-self-intersecting.

20.9. A straight interval in the plane equipped with the standard triangular
tiling as in Figure 20.10 (but without letter notations for the vertices) not passing
through the vertices yields a geodesic on a octahedron, once the trianlge containing
the initial point is identified with a face of the octahedron. Consider an interval
with the endpoints («,0), (a+ k,¢) with 0 < a <1, k{4 €Z, L >k >0, £ >
0, (ka)a ¢ 7, as in Figure 20.10. Call (k,¢) a good pair, if this interval corresponds
to a ,closed, non-self-repeating geodesic.

(a) Let (p,q) =1, ¢ > p>0,qg>0. If p=¢gmod 3, then (2p,2q) is a good
pair. If p # ¢ mod 3, then (3p, 3q) is a good pair.

(b) Up to parallelism and symmetries of the octahedron, the pairs from Part
(a) yield all closed geodesics on the regular octahedron.

(¢) Only geodesics corresponding to the good pairs (0,3) and (2,2) are non-
self-intersecting.

20.10. A straight interval in the plane not passing through the vertices of the
standard square tiling yields a geodesic on a cube, once the square containing the
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initial point is identified with a face of the cube. We use the natural coordinate
system in which the vertices of the tiling are the points with integral coordinates.
Consider an interval with the endpoints («,0), (o + k,¢) with 0 < a < 1, k,¢ €
Z,L>k>0,¢>0, (];L@a ¢ Z. Once again, (k,?) is a good pair if this interval
corresponds to a closed, 7non—self—repeating geodesic.

(a) Let (p,q) = 1. If p and ¢ are both odd, then (3p,3q) is a good pair. If
one of p,q is even, then either (2p, 2q) or (4p,4q) is a good pair. (We do not know
which one.)

(b) Up to parallelism and symmetries of the cube, the pairs from Part (a) yield
all closed geodesics on the cube.

(¢) Ounly the geodesics corresponding to the good pairs (0,4),(3,3) and (2,4)
are non-self-intersecting.



LECTURE 21

Non-inscribable Polyhedra

21.1 Main theorem. The vertices of a randomly chosen convex polyhedron
are not likely to lie on a sphere. For example, the pyramid in Figure 21.1 is not
inscribed into a sphere if its quadrilateral base is not inscribed into a circle. But one
can easily adjust the shape of the base so that it becomes an inscribed quadrilateral,
and then the pyramid becomes an inscribed polyhedron. One is tempted to think
that every convex polyhedron can be adjusted to get inscribed into a sphere.

F1GURE 21.1. Deforming a pyramid to inscribe it into a sphere

This is not at all so! In 1928, E. Steinitz proved the following theorem.

THEOREM 21.1. Let P be a convex polyhedron whose vertices are colored black
and white so that there are more black vertices and no two black vertices are adja-
cent. Then P cannot be inscribed into a sphere.

The condition is purely combinatorial, so no deformation can make P inscribed.
Thus P is a non-inscribable polyhedron.

Here is an example of a polyhedron satisfying this condition. Consider an
octahedron and color its vertices white. Attach a tetrahedron to every face (with
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sufficiently small altitude, not to violate convexity) and color these new vertices
black. We have 8 black and 6 white vertices, and no two black ones are connected
by an edge, see Figure 21.2. Equally well, one may start with an icosahedron instead
of an octahedron.

FIGURE 21.2. A non-inscribable polyhedron

At first glance, the situation appears paradoxical. A regular octahedron is
already inscribed into a sphere. One can easily choose the sizes of the tetrahedra,
attached to its faces, so that their new vertices lie on the same sphere, and we
obtain an inscribed polyhedron. What goes wrong is that this new polyhedron is
not convex!

Proof. Consider a sphere S and a wedge (formed by two planes) whose edge
intersects S at points A and B. The intersection of the two planes, that make
the wedge, with the sphere are two circles. Let a be the angle between the circles
evaluated at point A. We shall call « the dihedral angle relative to the sphere or, for
short, the relative dihedral angle. Clearly, one may equally well choose the point B:
this yields a congruent angle, see Figure 21.3. An exterior relative dihedral angle
is m — o where « is a relative dihedral angle.

Consider now a convex polyhedral cone whose vertex A lies on the sphere S
and whose edges intersect the sphere. Then the sum of its exterior relative dihedral
angles is 27. Indeed, one can use the tangent plane to S at A to evaluate the relative
dihedral angles as follows. Move this plane parallel to itself inside the sphere so
that it intersects all the edges of the cone. The intersection is a convex polygon
whose angles are equal to the relative dihedral angles. But the sum of the exterior
angles of any convex polygon is 27, and this proves our claim — see Figure 21.4.

After this preparation, consider an inscribed polyhedron P satisfying the con-
dition of the theorem. For every vertex, the sum of the exterior relative dihedral
angles is 2w. Let X be the sum of these angles, taken with positive signs for the
white vertices, and negative signs for the black vertices. On the one hand, there
are more black vertices, so % < 0.
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FicURE 21.3. Relative dihedral angles

FIGURE 21.4. Proof of Theorem 21.1

On the other hand, there are two kinds of edges: with two white vertices and
with one white and one black vertex. The exterior relative dihedral angles at the
end points of an edge are equal. For a white-white edge, the two contributions to
> are positive, and for a white-black edge the contributions cancel. Thus ¥ >0, a
contradiction. O

21.2 Another example. Theorem 21.1 is a sufficient condition for convex
polyhedron not to be inscribable, but by no means it is necessary. Consider the ex-
ample shown in Figure 21.5. This truncated cube P does not satisfy the conditions
of Theorem (21.1). Let us prove that P is not inscribable.
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FIGURE 21.5. Truncated cube

Consider a polyhedral cone with three faces and vertex A whose edges intersect
a sphere S.

LEMMA 21.1. The sum of the relative dihedral angles is less, equal or greater
than 7 depending on whether A lies outside, on or inside S.

Proof. The faces of the cone intersect the sphere along three circles, and the
angles between these circles are the relative dihedral angles. Pick a point of the
sphere not on the circles and project S stereographically from this point. We obtain
three circles in the plane, and the angles between the circles are the same as on the
sphere (this is because stereographic projection preserves angles and takes circles
to circles).

If A lies on S then the three circles intersect at one point, and the sum of the
angles is 7, see Figure 21.6. If A lies off S, there are two cases, shown in Figure
21.6, depending on whether A is outside or inside. In the former, the sum of angles
is less than 7, and in the latter greater than 7. O

FIGURE 21.6. Mutual position of three circles

Let us return to the truncated cube P, and assume that it is inscribed into a
sphere S. Denote by @ the initial cube, that is, the polyhedron whose truncation
is P. Let us color the vertices of () black and white so that the end points of each
edge have opposite colors. Call the truncated vertex A and assume that it was
white.

Assign to each edge of @ the exterior relative dihedral angle of the respective
edge of P. For each vertex of @), except A, the sum of these angles is 27. The vertex
A clearly lies outside of S so, by Lemma 21.1, the sum of the relative dihedral angles
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at A is less than 7, and therefore, the sum of the exterior relative dihedral angles
is greater than 2.

Now, as in the proof of Theorem 21.1, sum up, with signs, these sums of relative
angles over all vertices of (). On the one hand, we get zero: every edge has one black
and white end point. On the other hand, this sum is positive: the seven vertices of
@, 3 white and 4 black, contribute —27 to the total, and the contribution of A is
greater than 27. A contradiction. O

In conclusion, let us mention that there is a third type of mutual position of
a sphere and convex polyhedron: when all the edges are tangent to the sphere.
P. Koebe proved in 1936 that such polyhedra realize all combinatorial types of a
convex polyhedra. Much later, in 1992, O. Schramm proved in the paper titled
“How to cage an egg” [69] that the sphere can be replaced by an arbitrary ovaloid.

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

21.3 Exercises.

21.1. Make an explicit computation to check that if one attaches tetrahedra to
the faces of an octahedron so that their vertices lie on the circumscribed sphere of
the octahedron then the resulting polyhedron is not convex, see Figure 21.2.

21.2. Prove that the stereographic projection from the sphere to the plane takes
circles to circles and preserves the angles between them.

21.3. *Let P be a polyhedron whose faces are colored black and white so that
there are more black faces and no two black faces are adjacent. Then P is not
circumscribed about a sphere.

A simple example of such a polyhedron is obtained by cutting off all the vertices
of a cube, see Figure 21.7.

21.4. Consider a polyhedron such that every vertex is adjacent to the same
number of faces. Prove that if the vertices are colored black and white in such a
way that no two vertices of the same color are adjacent then the number of black
vertices equals the number of white ones.

21.5. Prove that the vertices of a polyhedron can be colored black and white
in such a way that no two vertices of the same color are adjacent if and only if each
face has an even number of edges.

Hint. Color one vertex, then the adjacent vertices, then their adjacent ones,
etc. This process either results in the desired coloring or there is a closed path
made of an odd number of edges of the polyhedron.
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FIGURE 21.7. A non-circumscribable polyhedron



LECTURE 22
Can One Make a Tetrahedron out of a Cube?

22.1 Hilbert’s Third Problem. Is it possible to cut a cube by finitely many
planes and assemble, out of the polyhedral pieces obtained, a regular tetrahedron
of the same volume?

This is a slight modification of one of the 23 problems presented by David
Hilbert in his famous talk at the Congress of Mathematicians in Paris, on August
8, 1900; it goes under the number 3. Hilbert’s problems had a tremendous impact
on mathematics. Most of them were solved during the 20-th century, and each
has a very special history. Still, the Third Problem remains exceptional in many
respects.

First, this was the first of Hilbert’s problems to be solved. The solution be-
longed to a 23 year old German geometer, Hilbert’s student Max Dehn [20]. His
article appeared two years after the Paris Congress, but the solution was found
earlier, maybe, even before Hilbert stated the problem.

Dehn’s proof (more or less the same as the one presented below) was short and
clear, and it became one of the favorite subjects for popular lectures, articles, and
books in geometry, like the one you are holding in your hands. But among working
mathematicians, it was almost forgotten.

Certainly, the name of Dehn was not forgotten. He became one of the few top
experts in the topology of three-dimensional manifolds, and his work of 1902 has
been never regarded as his main achievement.

In 1976, the American Mathematical Society published a two-volume collec-
tion of articles under the title “Mathematical Developments Arising from Hilbert
Problems” [93]. It was a very solid account of the three quarters of century history
of the problems: solutions, full and partial, generalizations, similar problems, and
so on. This edition contains a thorough analysis of 22 of 23 Hilbert’s problems.
And only the Third Problem is not discussed there. The opinion of the editors is
obvious: no developments, no influence on mathematics; nothing to discuss.

How strange it seemed just a couple of years later! Dehn’s theorem, Dehn’s
theory, Dehn’s invariant became one of the hottest subjects in geometry. This
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was stimulated by then new-born K-theory, an exciting domain developed on the
borderline between algebra and topology. We shall not follow this development,
but shall just present the theorem and its proof.

22.2 For a similar problem in the plane the answer is yes.

THEOREM 22.1 (Wallace, Bolyai, Gerwien). Let Py and Py be two plane poly-
gons of the same area. Then it is possible to cut Py into pieces by straight lines and
to reassemble these pieces as Ps.

Proof. First, it is clear that it is sufficient to consider the case when P; is a
rectangle with one side of length 1 and with area Pj; in doing this, we can shorten
the notation of P; to just P.

Second, since any polygonal domain can be cut into triangles, we can reduce
the general case to that of a triangle (see Figure 22.1).

X -

area P
FI1cURE 22.1. Reducing the general polygonal case to that of a triangle

Third, we need to transform, by cutting and pasting, a triangle into a rectangle
with one of the sides having length one. This is done, in four steps, in Figure 22.2.

First, we make a parallelogram out of our triangle (Step 1). Then we cut a
small triangle on one side of the parallelogram and attach it to the other side in
such a way that the length of one of the sides of the parallelogram becomes rational,
p/q (Step 2). On Step 3, we make this parallelogram a rectangle (the number of
horizontal cuts needed depends on the shape of the parallelogram). On the final
step, we cut the rectangle into pq equal pieces by p — 1 horizontal lines and ¢ — 1
vertical lines (with the understanding that it is the vertical side of the rectangle
that has the length p/q); then we rearrange these pg pieces into a rectangle with
the length of the vertical side being 1.

22.3 A planar problem which does not look similar to Hilbert’s Third
Problem, but has a similar solution. Is it possible to cut a 1 x 2 rectangle into
finitely many smaller rectangles with sides parallel to the sides of the given rectangle
and to assemble a V2 X /2 square?

The answer is NO. The proof is more algebraic than geometric, but still, unlike
the Hilbert Problem, it requires a small geometric preparation.

22.8.1 A geometric preparation. Let us be given two rectangles with vertical
and horizontal sides (below, we shall call such rectangles briefly V H-rectangles),
and suppose that it is possible to cut them into smaller V H-rectangles such that
the pieces of the first are equal (congruent) to the pieces of the second.

Then there exists a collection of N (still smaller) V H-rectangles such that each
of the given rectangles can be obtained by a sequence of N — 1 admissible moves.
An admissible move is: we take two of our small rectangles having equal widths or
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FIGURE 22.2. Making a triangle into a rectangle
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FIGURE 22.3. Creating rectangles by admissible moves

equal heights and attach them to each other vertically or horizontally, creating one
rectangle of the same width or height. Thus our process of cutting is replaced by
the process of attaching rectangles. How to do this, is shown on Figure 22.3.
Suppose that two rectangles are cut into equal pieces as requested by the Prob-
lem (the rectangles (A) and (C) in Figure 22.3; equal pieces are marked there by
the same Arabic numbers). Then we extend the sides of the pieces of the rectangle
(A) to the whole width or length of this rectangle (see the rectangle (B) in Figure
22.3). Some of the pieces of the division are cut into smaller pieces (marked by
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Roman letters in the rectangle (B): so 1 becomes a union of a and d, 2 becomes
a union of g and h, etc.) Then we divide in the same way the pieces of the second
given rectangle (see the rectangle (D) in Figure 22.3; we break the rectangle 1 of
the rectangle (C') into pieces congruent to a and d, the rectangle 2 into pieces g, h,
and so on). We obtain a new division of the second given rectangle, C, into smaller
rectangles, and again extend the sides of these smaller pieces to the whole width
or length of the rectangle (see the rectangle (E) of Figure 22.3). These last pieces
form our collection. Obviously we can assemble the rectangle (C') from these pieces
using the admissible moves. Other admissible moves produce, out of our small
rectangles, the parts of the finer division of the rectangle (A) (that is, a,b,¢c, ... 1),
and out of these parts we can assemble, using admissible moves, the rectangle (A).
The geometric preparation is over.

22.8.2 An algebraic proof. Let us have a finite collection of V H-rectangles with
total area 2. Suppose that one can compose out of these rectangles, using only
admissible moves, a (1 x 2)-rectangle. Then it is impossible to compose out of these
rectangles, using only admissible moves, a (v/2 x /2)-square.

This is what we need to prove that the answer to the question of this section
is negative.

Let wy,...,wy be the widths of the rectangles of our collection (N being the
number of these rectangles), and hy, ..., hy be their heights.

Consider the sequence

(22.1) 1,V2,wy,. .., wyN;

remove all terms in this sequence that are linear combinations of the preceding terms
with rational coefficients. (Thus, we do not remove 1; we do not remove /2, since
it is irrational; we remove wy, if and only if wy = r + rov/2, with rational 71, s,
and so on.) Let aq,...,a, be the remaining numbers (thus, a; = 1,a2 = \/5) It
is important that each of the numbers (22.1) can be presented as a rational linear
combination of the numbers ay,...,a,, in a unique way.

(This is a standard theorem from linear algebra, but for the sake of complete-
ness, let us give a proof. 1 = a; is a rational linear combination of aq,..., Gm,
and so is v/2 = ap. Assume, by induction, that all the numbers (22.1) preceding
wg are rational linear combinations of aq,...,a,. If wg is not a rational linear
combination of preceding numbers, then it is one of a;’s, and hence is a rational
linear combination of ay,...,a,,; if wy is a rational linear combination of preced-
ing numbers, then it is a rational linear combination of ay,...,a,,, since all the
preceding numbers are rational linear combinations of ai,...,a,,. It remains to
prove uniqueness. If two different rational linear combinations of aq,...,a,, are
equal, Y. rla; = Z;n:l raj, and s is the largest of 1,...,m, for which r{ # 7,

s—1 "
then ay = Z Tf/ i, a; which shows that a, is a rational linear combination of
i=1 "5 s
preceding a;’s, in contradiction to the choice of ay, ..., an.)
Now, do the same with the sequence

(22.2) 1,v/2,h1, ..., hy.

We shall get the numbers by, ..., b, with by = 1,by = /2 such that each of the
numbers (22.2) can be presented as a rational linear combination of the numbers
bi,...,b, in a unique way.
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Call a rectangle admissible, if its width is a rational linear combination of
ai,...,a,, and its height is a rational linear combination of by,...,b,. Let P be
an admissible rectangle of the width w and the length A, and let w = ZZ’;I Ti0;
and h = 2?21 s;b; with rational r;’s an d s;’s. We define the symbol Symb(P)
of the rectangle P as the rational m x n matrix ||.S;;|| with S;; = r;s;. We shall
use the notation Symb(P) = >, ;risja; @ b; for the symbols (which is simply
an alternative notation for the matrix above). Thus, we regard the symbols as
“formal rational linear combination” of the “expressions” a; ®b;. Such formal linear
combinations can be added in the obvious way; we consider two formal rational
linear combinations 7, ;ti;a; ® bj, >, i tia; ® b; equal if ¢;; = 7/, for all 4, j.

Let P’ and P” be two admissible rectangles of equal heights or equal widths.
Then we can merge these two rectangles into one rectangle, P, using an admissible
move. Obviously, P is also an admissible rectangle, and Symb(P) = Symb(P’) +
Symb(P"). Indeed, if P’ and P” have widths v’ = >"1" | r}a; and w” = >"1"  r/a;
and the same height h = 3°7_, s;b;, then P has the width w’+w” = 37" (rj+7])a;
and the height h, and

Symb(P) =32, (i +1{)sj ai ®b;
=255 Ti55 G ® b+, ;18 ai @ b;
= Symb(P’) + Symb(P").

Thus, if we have a collection of admissible rectangles, P, ..., Py, and can assem-
ble out of them, by N — 1 admissible moves, a rectangle P, then Symb(P) =
ZzN=1 Symb(P;). If we can assemble in this way two different rectangles, P and P’,
then Symb(P’) = Symb(P). This proves our theorem, since the symbol of a 1 x 2
rectangle is 2(a; ® b1), and the symbol of a v/2 x v/2 square is as ® by which is
different. O

22.4 Proof of Dehn’s Theorem. We want to prove the following.

THEOREM 22.2. Let C' and T be a cube and a regular tetrahedron of the same
volume. Suppose that each of them is cut into the same number of pieces by planes.
(That is, we cut our polyhedron into two pieces, then cut one of the two pieces into
two pieces, then cut one of the three pieces into two pieces, and so on.) It is not
possible that the two collections of (polyhedral) pieces are the same.

Proof. Let ¢1,...,¢n be the lengths of all edges of all polyhedra involved in
the two cutting processes. Let ¢1,...,n be the corresponding dihedral angles
(we suppose that 0 < ¢; < 7 for all 7). Take the sequence ¢1,...,¢y and remove
from it any term which is a rational linear combination of the previous terms; we
obtain a sequence aq, ..., a,, such that each of the ¢;’s is equal to a unique rational
linear combination of a;’s. Then do the same with the sequence m, @1, ..., ¢n; the
resulting sequence is denoted by ag = 7, a1, ..., a,, and each of the ¢;’s is equal
to a unique linear combination of «;’s. Call a convex polyhedron admissible, if the
length of every edge is a rational linear combination of a1, ..., a,, and each dihedral
angle is a rational linear combination of ag, aq, ..., a,.

Let mq,...,mq be the lengths of edges of an admissible convex polyhedron P,
and let 91,...,19, be the corresponding dihedral angles. Let m; = Z:’;l rria; and
Y = Z?:o spjoj. Similarly to the symbol considered in the previous section, we
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define the Dehn invariant of P by the formula

m n q
Dehn(P) = ZZ ( Tkﬁkj) a; @ ay.
k=1

i=1 j=1

Important remark: it is not a misprint that the second summation is taken
from j = 1 to n, not from 5 = 0 to n; we do not include into the Dehn invariant
the summand siom. Thus, if one changes an angle by a rational multiple of 7, then
the Dehn invariant is not affected; if some dihedral angle is a rational multiple of
7, then the corresponding edge does not appear in the expression for the Denh
invariant at all.

EXAMPLE 22.1. The Dehn invariant of a cube (or of a rectangular box) is zero.
Indeed, all the angles are /2.

LEMMA 22.2. Let P be a convex polyhedron. Suppose that it is cut by a plane
L into two pieces, P' and P". Then (provided that P, P’, and P" are admissible)

Dehn(P) = Dehn(P’) + Dehn(P").

Proof. Let S = {e1,...,e,} be the set of all edges of P, let ¢; be the length of
the edge e and ¥, be the corresponding dihedral angle. We divide the set .S into
four subsets: S; consists of edges which have no interior points in L and lie on the
P’ side of L; S5 is the similar set with P” instead of P’; S3 consists of edges ey, cut
by L into an edge e}, of P’ and an edge e} of P”; and Sy consists of edges which
are totally contained in L; for each e € Sy, the dihedral angle v, is divided by L
into two parts: 1}, and ¢}. Consider also the intersection L N P. This is a convex
polygon; each ey, € Sy is its side; let T' = {f1,..., fp} be the set of the other sides.
Each fy is a side of both P’ and P”; let my, be the length of f; and X}, x} be the
corresponding dihedral angles in P’ and P”. Obviously, x}, + xj = 7.

The edges of P’ are:

— the edges ej € S1; the lengths are /;, the angles are 1y;

— the edges e}, for e, € Ss; the lengths are £, the angles are y;

— the edges ey, € Sy; the lengths are ¢y, the angles are v} ;

— the edges fi € T'; the lengths are my, the angles are ;.

The edges of P” are:

— the edges ey € So; the lengths are ¢, the angles are 1y

— the edges e} for e, € Ss; the lengths are ¢}, the angles are y;

— the edges ey € Sy; the lengths are ¢y, the angles are };

— the edges fi € T'; the lengths are my, the angles are xj..

The Dehn invariant of each of the polyhedra P’, P”, and P consists of four
groups of summands; for P’ and P” these groups correspond to the four groups
of edges as listed above; for P they correspond to the sets Si,S2,.53,54. The first
group of summands in Dehn(P’) is the same as the first group of summands in
Dehn(P). The first group of summands in Dehn(P") is the same as the second
group of summands in Dehn(P). The sum of the second groups of summands
in Dehn(P’) and Dehn(P”) is the third group of summands in Dehn(P) because
0, 40} = {i. The sum of the third groups of summands in Dehn(P’) and Dehn(P")
is the fourth group of summands in Dehn(P) because 9}, + ¢j = 1;. Finally, the
sum of the fourth groups of summands in Dehn(P’) and Dehn(P”) is zero, since
X5, + xi = 7. Thus, Dehn(P) = Dehn(P’) + Dehn(P"”) as stated in the Lemma. O
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FIGURE 22.4. Proof of Lemma 22.2

An example is shown in Figure 22.4. A polyhedron P (a four-gonal prism with
non-parallel bases, shown at the left of the first row) is cut into two polyhedra by a
plane (the cut is shown in the first row, the polyhedra P’ and P” are shown in the
second row). The edges of P are ey, ...ej; the sets S; are: S; = {e1,e3,e4,€5}, 52 =
{eq, €7, €9, €10, €11, €12}, 53 = {es}, Sa = {e2}.

Back to Theorem 22.2. If two polyhedra can be cut into the same collection of
polyhedral parts, then their Dehn invariants are both equal to the sum of the Dehn
invariants of the parts, and, hence, the Dehn invariants of the given two polyhedra
are equal to each other. But the Dehn invariant of a cube is equal to zero, since all
the angles are /2 (see Example 22.1). The Dehn invariant of a regular tetrahedron
is equal to 6(¢ ® «) where ¢ is the length of the edge and « is the dihedral angle.
All we need to check is that « is not a rational multiple of 7.
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F1GURE 22.5. The dihedral angle of a regular tetrahedron

The dihedral angle of a regular tetrahedron is the largest angle of an isosceles

V3 V3

triangle whose sides are /, ZT, 67 (see Figure 22.5). The cosine theorem shows

that 5 5
) r(eg) e

TEICON

LEMMA 22.3. Ifcosa = 3 then @ is irrational.
™

Proof. Otherwise, cosna = 1 for some n. However, it is known from trigonom-
etry that
cosna = P, (cos a)
where P, is a polynomial of degree n with the leading coefficient 2"~1 (cf. Lecture
7).
This is proved by induction. Statement: for all n,

cosna = P,(cosa), sinna = Q,(cosa) -sina

where deg P, = n, deg@Q,, = n — 1, and the leading coefficients of both P, and @,
are equal to 2”71, For n = 1, this is true (P (t) = t,Q1(t) = 1); assume that the
statement is true for some n. Then
cos(n 4+ 1)a = cosnasina — sinnasin o
= P,(cosa) cos o — Qp(cosa) sin” a
= P,(cosa) cos a + Q,(cosa)(cos® o — 1);

sin(n + 1)a = sinnacosa + cosnasin «
= Qn(cosa)sinacosa + P,(cos ) sin a
= (Qn(cosa) cosa + P, (cosa)) sin

Hence,
Poii(t) = Pa()t+ Qn(t)(* — 1),
Qn+1(t) = Qn(t)t + Pn(t)v
and the statement for the degrees and the leading terms follows.
This shows that

1> _2"71 " an integer

cosna = P, <§ 3 31

which cannot be an integer, in particular, 1. O

This proves Lemma 22.3 and completes the proof of Dehn’s theorem. O
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22.5 Further results. In the language of algebra (which may be technically
unfamiliar to the reader, but the formulas below seem to us self-explanatory), the
construction of the previous section assigns to every convex (actually, not necessar-
ily convex) polyhedron a certain invariant,

Dehn(P) € R®q (R/7Q),

and Dehn’s theorem states that if two polyhedra, P, and P, are equipartite (that
is, can be cut by planes into identical collections of parts), then

Dehn(P;) = Dehn(P).

This is precisely the result of the previous section.

7

FIcURE 22.6. These tetrahedra do not have to be equipartite

Certainly, this may be applied not only to cubes and tetrahedra. The initial
Hilbert’s problem, by the way, dealt with a different example; Hilbert conjectured
that two tetrahedra with equal bases and equal heights (like those on Figure 22.6)
are not equipartite.

FiGure 22.7. Computing the volume of a tetrahedron by a limit-
ing process

The origin of this question belongs to the foundations of geometry. The whole
theory of volumes of solids is based on the lemma stating that the volumes of the
tetrahedra in Figure 22.6 are the same. The similar planar lemma (involving areas
of triangles) has a direct geometric proof based on cutting and pasting. But the
three-dimensional fact requires a limit “stair construction” involving pictures like
Figure 22.7 (you can find a figure like this in textbooks on spatial geometry). The
question is, is this really necessary, and the answer is “yes”: Dehn’s theorem easily
implies that the tetrahedra like those in Figure 22.6 are not, in general, equipartite.

More than 60 years after Dehn’s work, Sydler proved that polyhedra with equal
volumes and equal Dehn invariants are equipartite [76]. There are similar results
in spherical and hyperbolic geometries.
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Dehn’s invariant may be generalized to polyhedra of any dimension: for an
n-dimensional polyhedron P,

dihedral

Dehn(P) = Z volume(s) ® {angle ot s

(n — 2)-dimensional
faces s of P

} € R®q (R/mQ)

(the angle is formed by the two (n — 1)-dimensional faces of P adjacent to s).
In dimension 4, as in dimension 3, two polyhedra are equipartite, if and only if
their volumes and their Dehn invariants are the same. But in dimension 5 it
is not true any longer: there arises a new invariant, a “secondary Dehn invari-

ant” involving a summation over the edges (for an n-dimensional polyhedron, over
(n—4)-dimensional faces) of P. There is a conjecture that an “equipartite type” of

. . . . n+1], .
an n-dimensional polyhedron is characterized by a sequence of {T} invariants:

the volume, Dehn invariant, secondary Dehn invariant, and so on, taking values in
more and more complicated tensor products (k-th Dehn invariant involves a sum-
mation over (n— 2k)-dimensional faces. In particular, for one- and two-dimensional
polyhedra (segments and polygons) only the “volume” (the length and the area)
matters; in dimensions 3 and 4 we also have Dehn invariant, and so on).

For more information about this subject, we recommend the popular book of
Boltianskii [9], the talk of Cartier at the Bourbaki Seminar [13] and the books
[25, 67, 91].

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

22.6 Exercises.

22.1. Prove that the Dehn invariant of any rectangular prism with a polygonal
base is zero.

Exercises 22.2-22.4 are particular cases of Sydler’s theorem (see Section 22.5).
Since we did not prove this theorem, we suggest to solve these exercises by direct
constructions.

22.2. Prove that two collections of parallelepipeds of equal total volumes are
equipartite.

22.3. A regular octahedron O with the edge 1 can be obtained from the regular
tetrahedron 7" with the edge 2 by cutting off 4 regular tetrahedra T" with the edge

1 contained in T and containing the 4 vertices of T'. Since, obviously, Dehn(f) =
2Dehn(T),

Dehn(O) = Dehn(T) — 4 Dehn(T') = —2 Dehn(T).
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Prove that the collection of the octahedron O and two tetrahedra T is equipartite
to a cube of the appropriate volume (6 Vol(T')).

22.4. (a)Let T and T denote the same as in Exercise 22.3. Prove that T is
equipartite to a collection of two copies of T" and a cube.

(b) Generalization. Let P be an arbitrary polyhedron and P is its double
magnification (of the volume 8 Vol(P)). Prove that P is equipartite to a collection
of two copies of P and a cube of the volume 6 Vol(P).

Hint. (a) follows from Exercise 22.3; to prove (b), observe that (a) holds for any
(not necessarily regular) tetrahedra, and then cut P into the union of tetrahedra.

22.5. A polyhedron P is called a crystal if there exist a tiling of whole space
by polyhedra congruent to P. Prove that the Dehn invariant of a crystal is 0.






LECTURE 23

Impossible Tilings

23.1 Introduction. This lecture is about tilings of plane polygons by other
plane polygons. An example of such a problem is probably known to the reader:

Two diagonally opposite squares (Al and H8) are deleted from a chess board.
Can one tile this truncated board by 2 x 1 “dominos”? See Figure 23.1.

L

]
|

-

FIGURE 23.1. Can one tile this truncated chess board by dominos?

A typical fragment of a tiling by dominos is shown in Figure 23.2. The tiles do
not overlap (they touch each other along parts of their boundaries), and every point
of the board belongs to a tile. Note two things: we allow both horizontal and vertical
positions of the tiles, and we do not assume that adjacent tiles necessarily share a
full side. In general, a tiling problem is formulated as follows: given a polygon P
and a collection of polygons Q1,Qs,. .., is it possible to tile P by isometric copies
of the tiles @Q;7

In case the reader failed to solve the truncated chess board problem, its (nega-
tive) solution appears in the next section. In what follows, we shall see many more
examples of impossible tilings but the proofs will get more and more involved.

311
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| |
L]

FI1GURE 23.2. A fragment of tiling

23.2 Coloring. To solve the truncated chess board tiling problem, recall that
the chess board has a black-and-white coloring. The diagonally opposite squares
are both black, and the truncated board has 30 black and 32 white squares. On
the other hand, every 2 x 1 domino covers one black and one white square. Hence
the tiling is impossible, see Figure 23.3.

7, 0,07,
/////
///////

///// A
/////
//////

V7

i s
//////

Ficure 23.3. Coloring argument

There is an alternative way to present the black-and-white coloring argument.
Write 0 in each white square and 1 in each black one. The total sum of these
numbers on the truncated board is 30. But every domino has a 0 and a 1 written
on it, and 31 dominos will make the total sum equal to 31, not to 30. Thus no
tiling exists.

Here is a variation on this argument. Can one tile a 10 x 10 square by L-
shaped tiles as shown in Figure 23.4? Note that a tile may now have 8 different
orientations!

The answer again is in the negative. Write 1s and 5s in the squares as depicted
in Figure 23.4. Each tile covers either three 1s and one 5, or three 5s and one 1. In
either case, the sum on a tile is a multiple of 8. On the other hand, the total sum
of the numbers on the board is 300, which is not divisible by 8. Hence the tiling
does not exist.

23.3 What a coloring argument cannot do. Imagine that we have two
kinds of tiles: the usual, positive, ones and the negative ones, made of “anti-matter”.
We are allowed to superimpose tiles so that the common parts of the positive and
negative ones annihilate each other, see Figure 23.5. It is convenient to write 1 on
each positive tile and —1 on each anti-tile. The multiplicity of a point is the sum
of these +1s, taken over all tiles that cover this point. We say that a polygon P
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1111111111
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1111111111
5 5 5 5 5 5 5 5 5 5
1111111111
5 5 5 5 5 5 5 5 5 5
1111111111
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1111111111
5 5 5 5 5 5 5 5 5 5

F1GURE 23.4. Coloring modulo 8

admits a signed tiling if one can superimpose negative and positive tiles so that the
multiplicity of every point inside P equals 1.

e S

,,,,,,,,,,

FIGURE 23.5. Tiles and anti-tiles

It is clear that if a coloring argument, like the ones discussed in Section 23.2,
proves that a polygon cannot be tiled by a certain collection of tiles, then this
proof implies that a signed tiling does not exist either. There are, however, tiling
problems that have solutions in signed tiles and no solutions in positive tiles only.

Consider a triangular array of dots as in Figure 23.6. We want to cover this
triangle by “tribones” consisting of three dots; a tribone may have one of the three
indicated orientations. For which values of n does such a tiling exist?

FIGURE 23.6. Can one color a triangle by tribones?

First of all, for a tiling to exit, the number of dots must be a multiple of 3.
This number is n(n + 1)/2, and hence n = 0 or 2 mod 3.

Let us now “color” the dots as shown in Figure 23.7. The sum of numbers
covered by each tile is divisible by 3. The total sum depends on n periodically with
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period 9, and its value mod 3 is as follows:
0,2,2,2,1,1,1,0,0.

Therefore n mod 9 should be either 1, or 8, or 0. We already know that n = 0 or
2 mod 3, so only the latter two cases “remain on the table”.

0 00O
11111
2 2 2 2 2 2
000 O0OO0OTP O
11111111
222 2 2 2 2 2 2
0 000OO0OOO0OOTG OU O

F1cUre 23.7. Coloring modulo 3

Let us show that if n = 8 or 0 mod 9 then there exists a signed tiling of the
triangular array by tribones. Figure 23.8 depicts such a tiling for n = 8, and Figure
23.9 shows how to build bigger arrays from triangles of size 8 and rows of tribones.

FIGURE 23.8. Signed tiling for n = 8

We conclude that the following surprising theorem is beyond the reach of any
coloring argument.

THEOREM 23.1. For every n, a triangular array of size n cannot be tiled by
tribones.

23.4 Conway’s tiling group. To prove Theorem 23.1, we need to do some
preparatory work. To fix ideas, assume that all the polygons, the region to be tiled
and the tiles, are drawn on graph paper, that is, are composed of unit squares. We
assume that every polygon involved does not have holes: its boundary consists of
a single closed curve.
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FIGURE 23.9. Building larger signed tilings from smaller ones

A path on the square grid will be described by a word in four symbols z, 27!,y
and y~': a step right by z, a step left by =!, a step up by y and a step down by
y~ 1. See Figure 23.10, for example. We write k consecutive symbols x or 27! as

xt* and likewise for y, and denote by e a trivial path. We also cancel consecutive

x and 271 or y and y~1; for example, ryy lx~! =e.

xylzy 2y

*r——

FIGURE 23.10. A path and the respective word

To compose two words a and b, consider their concatenation and reduce it by
canceling all consecutive pairs of 2 and 2! or y and y~'. The resulting word is
denoted by ab.

The composition satisfies the associativity law: (ab)c = a(bc), where a,b and ¢
stand for any words. Given a word w, the word w~? is obtained from w by reading
its letters from right to left and changing their exponents to the opposite. For
example, (ry~1)~! = yz~1. Clearly, ww=! =e.

Let T1,...,T, be a complete list of tiles, positioned on the grid in all possible
orientations (so that a domino has two, and an L-shaped tile eight different orien-
tations). Choose a starting point on the boundary of T; and traverse this boundary
counter clock-wise. This closed path is encoded by a word W; in ,z~ !,y and y~!.

This word depends, of course, on the choice of the starting point.
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So far, the only rule for manipulating with words was

zr =2 lr=e=yy =y ty.

Let us add to this rule the new ones: W7 = Wy = ... = e. These rules mean that
whenever one of the words W, appears in a longer word, we may replace it by e,
and conversely, we may insert either of the words W, anywhere. If a word V; can
be obtained from another word V5 by consecutive applications of these rules, we
call them equivalent and write simply V3 = V5.

We need to address an ambiguity in the choice of the words W;, namely, their
dependence on the starting point. Let p’ be another starting point on the boundary
of the tile T}, and let W/ be the word obtained by traversing the boundary starting
at p’.

LEMMA 23.1. One has: W/ =e.

pOp/

v
Ficure 23.11. Proving Lemma 23.1

Proof. Let u be (the code of) the path from p to p’, and v the path from p’ to
p, see Figure 23.11. Then W; = uv and W/ = vu. Since W; = e, we have uv = e.
Then vu = (v~ u)(vu) = w1 (uwv)u = u=lu = e, as claimed. O

Let P be a polygon. Traverse its boundary to obtain a word U (again depending
on the starting point). The following proposition provides a necessary condition
for tiling.

PRrROPOSITION 23.2. If P is tiled by T1,...,T, then U = e.

Proof. Induction on the number of tiles. If this number is one then P is itself
a tile, say, T;. The word U is then what we called W/ above, and the claim follows
from Lemma 23.1.

Now suppose there are several tiles. Then we can cut the polygon P into two
polygons, P; and P», by a path inside P, going from a boundary point p to a
boundary point p’ and traveling only on the boundaries of the tiles, see Figure
23.12. Let w be the word corresponding to this path pp’ inside P, and let v; and
vy be the boundary words of P from p to p’ and from p’ to p, respectively.

A closed counter clock-wise path along the boundary of P, starting at point p’,
is encoded by the word vivs. We have: vjve = (viw™!)(wvy). The words in the
parentheses are the boundary words of the polygons P; and P,. By our choice of
the cutting path pp’, these two polygons are tiled by a smaller number of tiles. By
the induction assumption, viw ™! = e and wvs = e. Therefore vivy = e as well. !

Finally, the boundary word U may differ from v;vs by the choice of the starting
point. We already know from Lemma 23.1 that if one of these words is equivalent
to e then so is the other. This completes the proof. O

INote similarity of this argument to the one from the proof of the polyhedral Gauss-Bonnet
theorem 20.3.
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/

p

U1

p

F1GURE 23.12. Induction step in the proof of Proposition 23.2

It is convenient to summarize the constructions of this section in terms of
groups. The collection of tiles T7,...,T,, determines a group with two generators
x and y and the relations W1, ..., W,,. This group is called Conway’s tiling group.
The boundary word of the polygon P is an element of Conway’s tiling group, and
if P is tiled by Ti,...,T, then this is the unit element.

EXAMPLE 23.3. Let us revisit the truncated chess board problem from the very
beginning of this lecture.

The two positions of the 2 x 1 dominos have the boundary words W; =
x2yr~2y~! and Wy = xy?x~'y~2, and the truncated chess board has the bound-
ary word U = 27y o~ lyz ="y~ "zy~!, see Figure 23.13. We want to show that the
equalities W; = W5 = e do not imply that U = e; then, by Proposition 23.2, the
board cannot be tiled.

=l
1
D 22yz—2y~1

-7

y’?
l.nyflny
T

FIGURE 23.13. Truncated chess board revisited

Replace = by the permutation (213) and y by (132). Then 22 and 3? both
become equal to the trivial permutation (123), and hence both words W; and W,
become trivial as well. It follows that if U = e then, after  and y are replaced by
the permutations (213) and (132), we must obtain a trivial permutation.

But this is not the case! The reader will easily verify that U = (312), a non-
trivial permutation.?

2In group theoretical terms, we constructed a homomorphism from Conway’s tiling group to
the group of permutations of three elements; this homomorphism takes the boundary word of the
truncated chess board to a non-trivial permutation.
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23.5 Proof of Theorem 23.1. It should not come as a surprise that Theorem
23.1 will take more work compared to Example 23.3: after all, the truncated chess
board problem has an easy coloring solution.

First of all, we know from Section 23.3 that a necessary condition for a tiling
is that n = 8 or 0 mod 9. If a tiling exists for n = 8 mod 9 then, as Figure 23.9
shows, it also exists for n = 0 mod 9. Thus it suffices to prove that the tilings do
not exist for n a multiple of 9.

Redraw the triangular array of dots as a staircase-like polygon on graph paper:
one square in the first row, two in the second, etc. Then the tribones become the
kinds of tiles, depicted in Figure 23.14. The figure also indicates the boundary
words of these polygons. We want to prove that, for every n, the equalities W7 =
Wy = W3 = e do not imply that U, = e.

]

Wy = alya3y~!

Wo = ayPe™ty™ Wi = (yz~')*(y '2)°

FicURE 23.14. Tiles and the corresponding words

Consider three families of evenly spaced oriented parallel lines, see Figure 23.15.
These lines intersect at angles of 60° and form a tessellation of the plane by equilat-
eral triangles and regular hexagons. Write letters z and y in the triangles as shown
in Figure 23.15. We shall refer to this pattern of lines and letters as the hexagonal
grid.

The hexagonal grid is very symmetric. For its every two vertices, there exists a
motion of the plane that takes one to another and preserves the grid. For example,
a parallel translation takes vertex B to D in Figure 23.16, and the rotation through
120° about point A, the center of a triangle marked x, takes vertex B to C.

A path on the square grid can be shadowed on the hexagonal grid. A path
on the square grid is encoded by a word in z, 27!, y,y~!. At every vertex of the
hexagonal grid, two oriented lines meet, and two of the four angles are labeled x and
y, see Figure 23.15. We interpret the symbols =, 271, 3,4~ ! as instructions to build
the shadow path: z*! means “move one step on the boundary of the angle labeled
x, along or against the orientation, respectively”, and likewise for y*!. Thus, once
one chooses a starting point, a path on the square grid determines a path on the
hexagonal grid.

Figure 23.15 shows shadows, on the hexagonal grid, of the boundary paths of
the three tiles from Figure 23.14. Note that all three shadow paths are closed; this
fact holds true for any choice of the starting point of a shadow path, due to the
symmetries of the hexagonal grid. In contrast, the path zyz~'y~!, that is, the
boundary of a single square, has a non-closed shadow.
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FIGURE 23.16. Symmetries of the hexagonal grid

Let us consider only those paths on the square grid whose shadows on the
hexagonal grid are closed. The boundary paths of the three tiles satisfy this prop-
erty, and so does the boundary path of the staircase region in Figure 23.14; its
shadow is shown in Figure 23.17 (we use the assumption that n is a multiple of 3).

An oriented closed curve partitions the plane into a number of components.
To each component, there corresponds the rotation number of the curve about any
point of this component. We discussed this notion in Lecture 12, see Figure 12.20.
The signed area, bounded by a closed curve, is the sum of areas of the components,
multiplied by the respective rotation numbers. For example, a counter clock-wise
oriented unit circle has signed area 7, and a clock-wise oriented one has signed
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w3

FiGURE 23.17. The shadow of the staircase region

area —m. In Calculus, signed area is defined as the integral, over the curve, of the
differential form xdy.

Assign to a path on a square grid the signed area, bounded by its shadow on
the hexagonal grid. For the boundary paths of the three tiles, this signed area is
zero, see Figure 23.15. And for the boundary path of the staircase region, this
signed area is negative, see Figure 23.17.

This implies that U,, # e. Indeed, when we replace one of the words Wy, Wy
or W3 by e, or vice versa, the signed area of the shadow path is not affected. This
area is zero for the trivial word e but it is non-zero for the word U,,. This completes
the proof of Theorem 23.1. O

In conclusion of this section, here is another theorem that can be proved sim-
ilarly to Theorem 23.1. Start with the same triangular array of dots but now we
want to tile it by triangles made of three dots, see Figure 23.18.

Fi1cURE 23.18. Can one tile the large triangle with small ones?
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THEOREM 23.2. Such a tiling exists if and only if n = 0,2,9,0r 11 mod 12.
For more information on Conway’s tiling group, see [17, 65, 85].

23.6 Back to Max Dehn. After solving Hilbert’s Third problem, M. Dehn
[21] proved in 1903 the following theorem.

THEOREM 23.3. If a rectangle is tiled by squares then the ratio of its side lengths
s a rational number.

The converse is obviously true, see Figure 23.19. The following proof is quite
similar to what we did in Section 22.3.3

q=71

FIGURE 23.19. If the ratio of the sides of a rectangle is rational
then it can be tiled by squares

Proof. Let us argue by contradiction. We can scale the rectangle so that its
width is 1; let = be its height, an irrational number.

F1GURE 23.20. Extending the sides of the tiles

Assume that there is a tiling by squares. Extend the sides of the squares to
the full width or height of the rectangle, see Figure 23.20. Now we have a tiling
of our = x 1 rectangle and of all the squares by a number of smaller rectangles; let
a1, ...,an be their side lengths (in any order). Consider the sequence

(23.1) 1,z,a1,...,anN;

remove a term if it is a linear combination, with rational coefficients, of the pre-
ceding terms. Since z is irrational, it will stay in the sequence. Let b; = 1,0y =
x,b3,..., b, be the remaining numbers. As in Section 22.3, each of the numbers

(23.1) is a unique rational linear combination of by, ..., by,.
Let f be the following function on the numbers by, ..., by,:

f) =1, f(z) = =1, f(bsg) =--- = f(bm) = 0;

3 And this similarity is the reason for a lecture on tiling problems to be included into a chapter
devoted to polyhedra.
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extend f to rational linear combinations of the numbers b1, ..., b,, by linearity:
Friby+ - 4 rmbm) =r1f(b1) + - + 7 f (b))

Thus, if u and v are rational linear combinations of the numbers by, ..., b,,, then

(23.2) flutv) = f(u) + f(v),

that is, the function f is additive.

Consider a rectangle with side lengths u and v, both rational linear combina-
tions of the numbers by, ..., b,,. Define the “area” of this rectangle as f(u)f(v). If
two such rectangles share either a horizontal or a vertical side, they can merge to-
gether to form a bigger rectangle. Due to the additivity of the function f, equation
(23.2), the “area” of the bigger rectangle is the sum of “areas” of the two smaller
ones.

It follows that the “area” of the x x 1 rectangle is the sum of the “areas” of the
squares that tile it. The former is f(x)f(1) = —1, while the area of a u X u square
is f(u)?, a non-negative number. This is a contradiction. O

23.7 Tilings by squares and electrical circuits. Consider a tiling of a
rectangle by squares, such as in Figure 23.21. Let x1,...,x9 be the side lengths of
the squares. For each segment in this figure, horizontal or vertical, we have a linear
relation between the variables z;: these relations express the length of a segment
as the sum of the sides of the squares, adjacent to this segment on its two sides.
For the tiling in Figure 23.21, these equations are:

(23.3) To =Ty + Ty, T3+ X5 = X6, X1+ Ty = T7 + Ty, Tg+ Ts = Tg
(horizontal segments), and
(23.4) T1 =To + Ty, Ty =T+ X9, T4+ T3 = Ts + Tg

(vertical segments). For a tiling to exist, this system of linear equation should
have a solution in positive numbers. The tiling in Figure 23.21 corresponds to the
following solution:

I1:15, $2=8, l‘3297 I4:7, .1‘5:1, $6:10, I7:18, $8:4, J,‘g:14;

of course, one can multiply these numbers by any factor.

Equations (23.3) and (23.4) can be interpreted at Kirchhoff laws for electrical
circuits. An example of a circuit is shown in Figure 23.22. We assume that all the
resistors are unit, and that the currents are given by the numbers x;. There are two
Kirchhoff laws: the vertex equations state that the flow of current into every vertex
equals the flow out of it, and the mesh equations state that the voltage drop around
any closed path is zero. Since the resistors are unit, by Ohm’s law, the voltage drop
on the i-th resistor equals xz;, the current. The vertex equations for the circuit in
Figure 23.22 are precisely the equations (23.3), and the mesh equations are the
equations (23.4).

The circuit in Figure 23.22 is constructed from the tiling in Figure 23.21 as
follows: to every horizontal segment there corresponds a vertex in the electric
circuit, and each square in the tiling corresponds to a resistor. A resistor connects
two vertices if the respective square is adjacent to the two corresponding horizontal
lines. This construction works for any tiling of a rectangle by squares and provides
an electrical circuit.
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Ficure 23.21. Tiling by squares

FI1GURE 23.22. The circuit corresponding to the tiling in Figure 23.21

A choice of a voltage drop between the upper and lower vertices uniquely
determines the currents in all resistors, and we obtain a solution of the system
(23.3)-(23.4). In particular, the system (23.3)-(23.4) has a unique solution, up to a
common factor. The same conclusion holds for any tiling of a rectangle by squares.
The downside of this method is that we have no control on the signs of the currents:
some of them may be zero or negative, and then the circuit will not correspond to
a tiling by squares.

23.8 Tilings by rectangles with an integer side.

THEOREM 23.4. A rectangle R is tiled by rectangles each of which has an integer
side. Then R has an integer side.
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This tiling theorem has a record number of different proofs (14 given in [87],
and more are known). We choose one of the most elegant.

Proof. The integral [sin27rx dz over an interval of integer length is zero. It
follows that the double integral

/ / sin 27z sin 27y dxdy

over each tile is zero. Hence this double integral, evaluated over R, vanishes as
well. Assume that the lower left corner of R is the origin and its sides have lengths
a and b. Then

a b 1
0= / / sin 2w sin 2wy dady = ——
o Jo (2m)?

It follows that either cos2mwa = 1 or cos 2mb = 1, that is, either a or b is an integer.
O

(1 — cos2ma)(1 — cos 27h).

Theorem 23.4 has an interesting consequence. Suppose that an m x n rectangle
is tiles by p x ¢ rectangles (the numbers m,n, p and ¢ are integers). Of course, this
implies that pg divides mn. We can say more:

COROLLARY 23.5. The number p divides either m or n, and so does q.

Proof. Rescale by the factor 1/p: now an (m/p) x (n/p) rectangle is tiled by
1 x (¢/p) rectangles. By Theorem 23.4, either m/p or n/p is an integer, that is, p
divides either m or n. Similarly for ¢. O

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

23.9 Tilings by triangles of equal areas, briefly mentioned. In conclu-
sion, we cannot help mentioning one more, extremely intriguing, “impossible tiling”
result: one cannot tile a square by an odd number of triangles of equal areas (for
any even number of tiles, see Figure 23.23). This theorem is relatively new (1970)
and has a very surprising proof. Perhaps, even more surprisingly, there are quadri-
laterals that cannot be tiled by any number of triangles of equal areas. See chapter
5 of [75] for an exposition.

23.10 Exercises.

23.1. Can one tile the polygon in Figure 23.24 by dominos?

23.2. Delete one black and one white square from the chess board. Prove that
the truncated board can be tiled by dominos.

Hint. Consider a closed path that covers all all the squares of the chess board
and place the dominos along it.
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Fi1GURE 23.23. Tiling by triangles of equal areas

FIGURE 23.24. Variation on the coloring argument

23.3. Show that a 10 x 10 square cannot be tiled by 1 x 4 rectangles.
Hint. Use 4-coloring.

23.4. ** Prove Theorem 23.2.

23.5. Prove that the polygon in Figure 23.25 cannot be tiled by squares (it
clearly can if we allow anti-tiles!).

V2-1

V2 -1

V2

Ficure 23.25. This region cannot be tiled by squares

23.6. Let © = 2 — /5. Tile a square by three rectangles similar to the 1 x x
rectangle.
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Comment. A square can be tiled by rectangles similar to the 1 x = rectangle if
and only if x is a root of a polynomial with integer coefficients and, for a polynomial
of least degree satisfied by z, every root a + ib satisfies a > 0, see [30].

23.7. Show that Theorem 23.3 still holds true if one is allowed to use tiles made
of “anti-matter”.

Hint. Redefine the “area” of a u X v rectangle as uf(v) — vf(u). This area is
again additive and it vanishes for all squares.

23.8. Give a coloring proof of Theorem 23.4 considering an infinite chess board
with (1/2) x (1/2) squares.

Comment. This is the same as to replace the function sin 27z sin 27y by the
function (—1)2#](—1)v],



LECTURE 24
Rigidity of Polyhedra

24.1 Cauchy Theorem. A cardboard model of a convex polyhedron P is cut
along its edges into a number of polygons, the faces of P. One has a complete list
of adjacencies: when faces F; and F; shared an edge Ej. Following this list, one
assembles a polyhedron P’ by pasting the faces along the same edges as in P. Is
P’ necessarily congruent to P?

E

A A

FIGURE 24.1. These polyhedra are combinatorially the same and
have congruent faces

The answer depends on whether P’ is a convex polyhedron. Without the con-
vexity assumption, the polyhedron is not uniquely determined, see Figure 24.1.
However, for convex polyhedra, one has the following Cauchy theorem (1813).

THEOREM 24.1. If the corresponding faces of two convex polyhedra are congru-
ent and adjacent in the same way then the polyhedra are congruent as well.

327
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In the plane, a similar statement clearly fails: every polygon, except a triangle,
admits deformations so that the lengths of the edges remain the same but he the
angles change, see Figure 24.2.

FIGURE 24.2. Plane polygons are flexible

A consequence of Theorem 24.1 is the Cauchy rigidity theorem: a convex poly-
hedron cannot be deformed. A more precise formulation is as follows.

COROLLARY 24.2. If a convex polyhedron is continuously deformed so that all
its faces remain congruent to themselves then the polyhedron also remains congruent
to itself.

This result is in stark contrast with the constructions of flexible (non-convex!)
polyhedra described in Lecture 25.

A continuous version of Cauchy’s theorem, due to Cohn-Vossen, states that
smooth closed convex surfaces (ovaloids) are rigid: an isometric deformation is a
rigid motion. It is not known whether smooth non-convex closed surfaces admit
non-trivial isometric deformations.

24.2 Proof of Cauchy’s theorem. The proof is based on two lemmas. The
first is combinatorial (or, one may say, topological).

Suppose that some of the edges adjacent to a vertex of a convex polyhedron are
marked + or — (and some edges are not marked at all). Let us make a full circuit
around the vertex keeping track of the signs of the edges. We say that a sign change
occurs if a positive edge follows a negative one, or a negative edge follows a positive
one; the unmarked edges are ignored. For example, there are 4 sign changes in
Figure 24.3.

FI1cURE 24.3. Four sign changes
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LEMMA 24.1. Assume that some edges of a convex polyhedron are labeled + or
—. Let us mark the vertices adjacent to at least one labeled edge. Then there exists
a marked vertex such that, going around this vertex, one encounters at most two
sign changes.

The second lemma is geometrical. Consider two convex spherical (or plane)
n-gons P; and P, whose corresponding sides have equal lengths. Mark by + or —
the vertices of P; according to whether the corresponding angle of P is greater or
smaller than that of P»; if the angles are equal, the vertex is not marked.

LEMMA 24.2. If there are marked vertices at all, that is, the polygons are not
congruent, then, going around polygon Py, one encounters at least four sign changes.

An explanation is in order. In spherical geometry, the role of straight lines is
played by great circles. The shortest segment between two points is the smaller
arc of the great circle through these points. With this convention, the definition of
convexity is the same as in the plane.

Probably Lemma 24.2 is historically the first in a long series of geometrical the-
orems involving the number four (four vertex theorems); quite a few are discussed
in Lecture 10.

The rest of this lecture is devoted to proofs of Lemmas 24.1 and 24.2. But first
we deduce Cauchy’s theorem from them.

Proof of Cauchy’s theorem. Assume that the faces of two convex polyhedra
S1 and Sy are congruent and adjacent in the same way. If the polyhedra are not
congruent then some of their corresponding dihedral angles are not equal. Label
the edges of S1 by 4+ or — sign according to whether the corresponding dihedral
angle of S is greater or smaller than that of So; if the angles are equal, the edge is
not labeled.

By Lemma 24.1, there is a vertex V; of the polyhedron S;, adjacent to some
labeled edges and with no more than two sign changes around it. Let V5 be the
corresponding vertex of S,. Consider the unit spheres centered at Vi and V. The
faces of the polyhedra S; and Ss, adjacent to V; and V3, intersect the spheres along
convex spherical polygons, P; and P,. The lengths of the sides of these polygons
equal the angles of the respective faces of the polyhedra S; and S;. Therefore Py
and P, have equal corresponding edges.

The vertices of the spherical polygons P, and P, are the intersections of the
respective edges of S; and S, with the spheres, and the angles of P; and P, are
equal to the respective dihedral angles of S; and S5. Hence the marking of the
vertices of the polygon P, as described in Lemma 24.2, coincides with the labels of
the edges of the polyhedron S; according to the dihedral angles. In particular, the
number of sign changes around P; is not greater than two. But by Lemma 24.2,
this number is at least four, a contradiction. O

24.3 Euler’s theorem and the proof of Lemma 24.1. The classical Euler
theorem relates the number of vertices v, edges e and faces f of a convex polyhedron:
v—e+ f = 2. For example, a dodecahedron has 20 vertices, 30 edges and 12 faces:
20-30+12 = 2.
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We need a little more general result concerning graphs on the sphere (central
projection of a a convex polyhedron on a sphere whose center lies inside the poly-
hedron yields such a graph). Denote by v, e, f the number of nodes, edges and faces
and by ¢ the number of components of the graph.

THEOREM 24.3. One has:
(24.1) v—e+ f=c+1

Proof. The argument goes by induction on the number of edges.

Assume that the graph has a vertex V of valence 1, that is, a vertex adjacent to
exactly one edge, say, E. Delete V and E (but do not delete the other end point of
E). Then the numbers v and e decrease by 1. Since the edge F does not separate
faces, the number f remains intact, and so does ¢, the number of components of
the graph. Therefore the number v — e + f — ¢ does not change.

Next assume that all vertices have valences 2 or higher. Then there exists a
closed non self-intersecting path in the graph. Indeed, choose a vertex, say, V;.
There is an edge going from this vertex. Go to the other end-point of this edge, V5.
The valence of V5 is not less than 2, so there is another edge going from V5. Let V3
be the other end-point of this edge, etc. We continue until we return, for the first
time, to an already visited vertex. This yields a closed non self-intersecting path.

This path separates the sphere into two components (see Lecture 26 for a
discussion of the Jordan Theorem). Delete one edge from this path (but do not
delete its end points). Then the number f decreases by 1, and so does e, while v
and ¢ remain the same. Again v — e + f — ¢ does not change.

Continue in this way until all edges are deleted. Then the graph consists of
v isolated vertices, has f = 1 face and ¢ = v components, and the relation (24.1)
holds. O

Now we proceed to the proof of Lemma 24.1. The labeled edges of a convex
polyhedron form a graph which we think of as drawn on the sphere. Let v, e, f and
¢ have the same meaning as before, and let s be the sum of the numbers of sign
changes over all vertices of the graph. The number of sign changes around a vertex
is even. Hence Lemma 24.1 will follow if we show that the average number of sign
changes per vertex is less than 4, that is, s < 4v. Following Cauchy, one has a
stronger estimate.

PROPOSITION 24.3. One has:
(24.2) s < 4v-—8.

Proof. Instead of going around the vertices of the graph let us traverse the
boundaries of all the faces. The total number of sign changes s will be the same:
indeed, two edges are neighbors when going around a vertex if and only if they are
neighbors when traversing the boundary of a face, see Figure 24.4.

When traversing the boundaries, we make the following conventions:

a) if the boundary of a face has many components, we traverse them all and add
the number of sign changes;

b) if a segment is adjacent to the face on both sides, we treat this segment as two-
sided, both sides carrying the same sign; such a segment will be traversed twice,
once on each side.
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FIGURE 24.4. Counting the number of sign changes in two ways

FIGURE 24.5. There are 8 sign changes on one of the boundary
components and 2 on the other

This is illustrated in Figure 24.5: the total number of sign changes, contributed
by the quadrilateral face, is 8.

Denote by f; the number of faces whose boundary consists of i edges. Here
1 > 3, and an edge is counted twice if it is adjacent to the face on both sides. For
example, the boundary of the face in Figure 24.5 has 13 edges. Thus

(24.3) f=fas+fut+fs+....

When one traverses the boundary of a domain with 7 edges, one encounters at most
i sign changes, and if ¢ is odd, at most ¢ — 1 ones. Therefore

(24.4) §<2f3+4fa+4fs +6fc +6f7+....
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Each edge either belongs to the boundary of two faces or is counted twice in the
boundary of one face, hence

(24.5) 2e =3f3+4fs+5f+....

It follows from Euler’s formula (24.1) that v —e + f > 2, or 4v — 8 > 4e — 4f.
Substitute f and e from (24.3) and (24.5):

dv—82> (6f3+8fs+10fs+...)—(dfs+4fa+4fs+...) =2f3+4fa+6f5+8fs+...
and the right hand side is not less than that of (24.4). This completes the proof. O

24.4 Arm Lemma and proof of Lemma 24.2. The following statement is
known as the Cauchy Arm Lemma.!

LEMMA 24.4. Let Py ... P, and Py ... P} be two convex spherical or plane poly-
gons. Assume that |P;Pi 1| = |P{P{ || fori=1,2,....,n—1 and ZP;Pi;1 P15 <
ZP{P{ P/ 5 fori=1,...,n—2. Then |P\P,| < |P{P}| with equality only if all
the corresponding angles are equal, see Figure 24.6.

FI1GURE 24.6. The Cauchy Arm Lemma

One may view P; ... P, as robot’s arm: when the arm opens the distance be-
tween the “shoulder” and “tips of the fingers” increases. This fact is intuitively
quite clear; it is interesting that Cauchy’s proof contained an error that went un-
detected for about 100 years. The proof below is due to I. Schoenberg.

Proof of the Arm Lemma. Induction on n. When n = 3, the result is obvious:
if two triangles have two pairs of congruent corresponding sides then the third side
opposite the greater angle is greater; see Figure 24.7.

Let n > 4. If the two polygons have equal angles, say, at vertices P; and P/,
then one may cut off these vertices by the diagonals P;_1 P, and P;_, P{ ;. Since
these diagonals are equal, we are reduced to the same statement but with n one
less.

Thus we assume that each angle of the first polygon is smaller than the re-
spective angle of the second one. Let us start increasing the angle P, _sP, 1P,
by rotating the side P,_1P, about the vertex P,_i1, keeping the polygon con-
vex, until one of the two things happens: either Z/P,,_5P,,_1 P, becomes equal to
ZP! 5P/ _| P! or we reach the situation when the vertices Py, P, and P, lie on one

IThis lemma was stated and proved, in different terms, by Legendre in 1794. Legendre also
conjectured that convex polyhedra were rigid.
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B

IAC| > |AC!| T
FIGURE 24.7. The side, opposite the greater angle, is greater

line, see Figure 24.8. We obtain a new polygon P; ... P,, and in both cases, the
side P, P, has increased — see the first paragraph of the proof applied to the triangle
PP, 1P,.

P2 P1 Pn

FIGURE 24.8. Inductive proof of the Cauchy Arm Lemma

In the first case, we obtain two n-gons satisfying the conditions of the Arm
Lemma having a pair of equal corresponding angles. This case was already dealt
with in the second paragraph of the proof.

In the second case, we ignore the first vertices in both polygons and apply
the induction assumption to the polygons P ... P, and Py... P/ to conclude that
PLPL| > |P,P,. Then

|PIP,| > [Py Py | = |PLP;| > [Py Py| — |PLPs| = | PPy,
where the first inequality is the triangle inequality. This concludes the proof. O
It remains to prove Lemma 24.2. This is not hard, given the Arm Lemma.

Proof of Lemma 24.2. The number of sign changes being even, assume first
that there are two sign changes. Then we can number the vertices of the polygon

P consecutively so that the first k vertices Ay, ..., Ay are all positive or unmarked
and the remaining n — k vertices Agy1,..., A, are all negative or unmarked. Let
By, ..., B, be the respective vertices of P.

Choose points C' and D on the sides ApAry; and A, A7, and let E and F be
points on the sides By Byy1 and B, B so that |AyC| = |BpE| and |A, D| = | B, F|,
see Figure 24.9.

Apply the Arm Lemma to polygons DA; ... Ay D and FB; ... BiFE to conclude
that |CD| > |FE|. Similarly, applied to polygons CAg11 ... A, D and EBgy1 ... B, F,
the Arm Lemma yields: |CD| < |FE|, a contradiction.
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FIGURE 24.9. Proof of Lemma 24.2

Finally, if there are no sign changes at all, let us assume that all signs are
positive. Then, by the Arm Lemma, |A;A4,| > |B1B,|, again a contradiction. O

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

24.5 Exercises.

24.1. Prove that every polyhedron has two faces with the same number of sides.

24.2. Prove that every convex polyhedron has either a triangular face or a
vertex incident to three faces (or both).

24.3. * Prove the following continuous analog of Lemma 24.2: given two plane
ovals, let ds and ds; be the arc length elements at points with parallel and equally
oriented exterior normals. Then the ratio ds;/ds has at least four extrema.

24.4. * Let P and P’ be plane convex n-gons, n > 4, whose sides have lengths
ly,..., 0y, and ¢, ... ¢/ . Assume that the corresponding sides of the polygons are
parallel to each other. Consider the cyclic sequence

A
‘ liva i) \lica  4;)

Prove that either a; = 0 for all i or a; > 0 for at least four values of 7.
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24.5. *Prove a continuous analog of the Arm Lemma: given two smooth convex
arcs 71(s) and 7a(s) of equal lengths and parameterized by arc length, if their
curvatures satisfy the inequality k1(s) > ko(s) for all s then the chord subtended
by 72 is not less than that subtended by ;.






LECTURE 25
Flexible Polyhedra

25.1 Introduction. This lecture is closely related to the previous one (Lec-
ture 24), but they can be read independently, in particular, in either order. Again,
we consider polyhedra made of rigid (say, metallic) faces attached to each other
along edges of equal lengths by hinges which do not obstruct changing angles be-
tween faces. Except several clearly specified cases, polyhedra are assumed “com-
plete” which means that every edge belongs to precisely two faces. Our problem
is: is it possible to bend the polyhedron without deforming its faces (Figure 25.1).
The readers of the previous lecture are familiar with the following theorem.

D <A
< Z

FicURE 25.1. Can a polyhedron be flexible?

THEOREM 25.1 (Cauchy, 1813). Any convexr polyhedron is rigid (cannot be
bent).

Here we shall prove the following, quite unexpected result.
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THEOREM 25.2 (Connelly, 1978). There exists a (non-convez) flexible polyhe-
drom.

Unlike Cauchy’s theorem, the theorem of Connelly can be proved by providing
one single example of a flexible polyhedron. We shall construct such a polyhedron
quite explicitly, and if you have appropriate materials (rigid cardboard and tape),
you will be able to make a model of such polyhedron and to feel its flexibility with
your own fingers.

25.2 Bricard’s octahedron. One can ask why it took so long (more than
150 years) after the Cauchy theorem to find the Connelly example. Of course,
questions like that can never be answered with certainty, but we can try to guess.
The rigidity problem was well known and respected among geometers, but almost
all of them believed and tried to prove that the answer is positive: all polyhedra,
convex or not, are rigid. (By the way, the efforts of these geometers were not totally
fruitless: the rigidity of polyhedra was established under conditions much milder
than convexity.) Connelly, on the other hand, had the courage to doubt. And then
he noticed that almost all necessary mathematical work was done in the 1890s by a
French mathematician and architect Raoul Bricard. Bricard was able to construct
a flexible polyhedron which, however, not only fails to be convex, but also has a
self-intersection. So, Connelly looked for a tool to make the Bricard polyhedron
free of self-intersections, and he found such tools — again in Bricard’s construction.

Bricard’s polyhedron is an octahedron, in the sense that it consists of eight
triangular faces attached to each other precisely in the same way as the faces of
Plato’s regular octahedron. To construct the Bricard octahedron, we need two
simple observations. The first is that a pyramid without bottom (this is an “in-
complete” polyhedron) is flexible if and only if the number of its (triangular) faces
is more than 3, see Figure 25.2.1 Note that the (missing) bottom of this pyramid
is not supposed to be flat (the points A, B, C, D are not assumed to belong to one
plane for either of the 4-gonal pyramids of Figure 25.2).

rigid
flexible

F1curE 25.2. Rigid and flexible pyramids

The second observation is the following lemma.

LEMMA 25.1. Let ABCD be a non-planar spatial quadrilateral such that AB =
CD and BC = AD. Let E, F be the midpoints of “diagonals” AC and BD. Then
EF 1 AC and EF 1 BD.

I This observation was also made in Lecture 20.
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N
FIGURE 25.3. Proof of Lemma 25.1

Proof. (Figure 25.3). Draw the segments AF and CF. Since AABD = ACBD
(their sides are equal), ZADB = ZCBD. Hence, AADF = ACBF (they have
two pairs of equal sides forming equal angles). Thus, AF = CF, hence AACF
is isosceles and its median F'E is also its altitude. So, FF 1 AC, and we can
establish, in the same way, that FF 1. BD. O

Lemma 25.1 can be reformulated in the following way: a spatial quadrilateral
with equal opposite sides is symmetric with respect to the line joining the midpoints
of its diagonals. In this form, it can be regarded as a spatial version of the well-
known theorem stating that the diagonals of a parallelogram bisect each other.

Now we are prepared for Bricard’s construction. Take a spatial quadrilateral
ABC D with equal opposite sides, AB = CD, BC = AD. Lemma 25.1 provides for
this quadrilateral an axis of symmetry; denote it by ¢. Take two points, M and
N, different from each other and from each of A, B,C, D, and also symmetric with
respect to . (To visualize the construction better, you may choose the point M
and N sufficiently far away from the quadrilateral ABC'D). Bricard’s octahedron is
the union of 8 triangles: ABM, BOCM,CDM,DAM, ABN, BCN,CDN,DAN (see
Figure 25.4). Some faces intersect each other: in Figure 25.4, E'F is the intersection
line of the faces ABN and CDM, the faces ABN and BC'M meet at BE, and the
faces CDM and ADN meet at FD.

THEOREM 25.3 (Bricard, 1897). The Bricard octahedron is flexible.

Proof. We shall consider the Bricard octahedron as the union of two 4-gonal
pyramids: ABCDM and ABCDN. According to the first observation above, the
(bottomless) pyramid ABCDM is flexible. Its deformation retains the relations
AB = CD and BC = AD, thus the “base” ABCD of the pyramid has a line of
symmetry at every moment of the deformation. If we reflect the varying pyramid
ABCDM in this line, we shall get a deformation of the pyramid ABCDN, and
together these two deformations form a deformation of the Bricard octahedron. O

25.3 Geometry of Bricard’s octahedron. Of the geometric observations
we are going to make in this section only the last one will be needed later. Still the
fascinating properties of the Bricard octahedron deserve a detailed consideration.

First, the Bricard octahedron has axial symmetry: the midpoints of the “diag-
onals” AC, BD, and M N lie on one line, and the whole octahedron is symmetric
in this line. This gives the simplest construction of the Bricard octahedron: take
a line in space, take three pairs of points, symmetric with respect to this line (no
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FIGURE 25.4. Bricard’s octahedron

four of them should lie in one plane), denote these pairs of points by A and C, B
and D, and M and N, and you are done.

Since the Bricard octahedron is always self-intersecting, you cannot make a
good model of it. But it is possible to make a model including 6 of 8 faces of
the octahedron. (Notice that the octahedron in Figure 25.4 will be free of self-
intersections, if you remove the faces ABN and CDN.) To create your model, you
can use a 6-triangle development like the one shown in Figure 25.5.

A D C

A D

F1GURE 25.5. A development of the Bricard octahedron less two faces
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You need to cut a polygon ABMCBAKD out of a thin and rigid cardboard,
then fold it along the segments AM, M B, BC,CN, and ND in such a way that the
two segments AD come together (A to A and D to D); attach them to each other
by a tape. The whole “strip” should be twisted twice (twice as many times as we
twist a strip to make a Mdbius band). You can make a development of your own,
but it is important that

AB = CD,BC = AD, AM = CN, »
AN = CM,BM = DN, BN = DM;

in particular, the two pentagons ADMCB and CBNAD are identical (with their
decompositions into triples of triangles), but opposedly oriented. The figure ob-
tained will be bounded by two triangles, NAB and M CD, which will be linked (as
they are linked in Figure 25.4).

You will be surprised how flexible your model is (with the triangular faces
remaining rigid!). It can be deformed to look as shown in Figure 25.6, left, or
Figure 25.6, right.

B c D
&
M N >
M
A D A

FIGURE 25.6. What the flexible model can look like

It is interesting that to be flexible, Bricard’s octahedron needs to be symmetric.
If you slightly distort the sizes of the triangles in Figure 25.5 in such a way that
the equalities (*) fail to hold (still the two segments AD should be equal), you can
make a model indistinguishable by sight from the previous model, but it will be
rigid, and you will be able to feel the difference with your fingers. (How slightly
the sizes should be varied, depends on the quality of your materials, the cardboard
and the tape.)

Another way to make a non-self-intersecting incomplete Bricard’s octahedron
is to remove two faces which share an edge, say, AM B and ANB. You can cut the
6-triangle development which is shown in Figure 25.7, left, and then attach to each
other the two segments AD above the plane CM DN and the two segments BC
below this plane. (Actually, this figure is too symmetric, all we need is the equalities
(*); but it is more convenient to deal with an excessively symmetric octahedron.)
You will get a flexible polyhedral surface with a 4-gonal edge (AM BN) as shown
in Figure 25.7, right; note that the distance AB does not change in the process of
deformation.

You cannot add to this model either of the missing faces AMB or ANB,
because of self-intersections. But still you can make your polyhedron complete,
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N

FIGURE 25.7. Another model of Bricard’s octahedron

although infinite. Namely, replace the face AM B by the complement of it in the
half-plane bounded by AB (see Figure 25.8) and do the same with the face ANB.

A_'/i\
A~——B A B

FIGURE 25.8. A replacement for a face

You will get a complete flexible polyhedron (resembling an open book) with 6
finite faces and 2 infinite faces. It is shown in Figure 25.9, left, and its side view,
important for the next section, is shown in Figure 25.9, right. (The meaning of the
arrow in this figure will be also explained in the next section.)

FIGURE 25.9. Bricard’s octahedron as an open book

25.4 Connelly’s construction. We start with a very degenerate Bricard oc-
tahedron. Take a (planar) rectangle ABCD (AB < CD) and a point M inside
this rectangle such that MA = MB < MC = MD. Break the rectangle into 4
triangles: AM B, BMC, CM D, DM A. Take another copy of this rectangle and a
point N symmetric to M with respect to the center of the rectangle. Then break
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B c
M
B = C
- M \ x N
C ‘,” \\‘
A D
N
A D

FIGURE 25.10. Starting point of the construction: a degenerate
Bricard octahedron

the second rectangle into the triangles ANB, BNC,CND,DNA. After this, put
the first copy of the rectangle onto the second one as shown in Figure 25.10.

The 8 triangles AMB, ..., DN A, although they all lie in one plane, form a
Bricard octahedron, which is flexible within the class of self-intersecting polyhedra.
(Figure 25.6, right, may serve as a right picture of this deformation.)

We can make the self-intersections less dramatic if we erect pyramids on some
of the faces of this octahedron. It should be noticed that we shall not destroy the
flexibility of a polyhedron if we replace some faces by pyramids based on these faces
(see Figure 25.11); the pyramids will stay rigid during the deformation.

— ‘
FIGURE 25.11. Adjoining pyramid to faces

Add pyramids to the faces of the flat octahedron of Figure 25.10 (we need,
actually, only 6 pyramids, since the small triangles AM B and C N D will not touch
any other faces). We get a flexible polyhedron with 20 faces and with a very mild
self-intersection: there will be two pairs of crossing edges. (The two halves of this
polyhedron are shown in Figure 25.12, and the crossing point of the edges are
marked as F and F in this figure.)

The dihedral angles at the crossing points have no other common point, they
only touch each other as shown in Figure 25.13, left. But in the process of deforma-
tion these pairs of touching dihedral angles may behave as shown in Figure 25.13,
right: they either go apart, or penetrate each other.

Actually, of the two pairs of touching dihedral angles, one behaves in one of the
ways, and the other one behaves in the other way (this is not important for us, but
can be easily confirmed by a calculation, or even by an experiment). Anyhow, this
polyhedron still cannot be deformed without self-intersections. What to do? What
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FIGURE 25.12. Two halves of an almost ready Connelly’s polyhedron

'E
N or s
FE

FIGURE 25.13. Deformation of touching dihedral angles

we want is to remove a small neighborhood of the touching point in (at least) one
of the two touching dihedral angles (Figure 25.14, left). And this must be done in
a “polyhedral” way. But we know how to do it: Figure 25.9, right, shows it! The
arrow points at a small cavity, and all we need is to locate this cavity at and around
the point E (see also Figure 25.14, right). This completes Connelly’s construction
and the proof of Theorem 25.2.

It should be noted that the construction shown above is very good for proving
Theorem 25.2 but not convenient for modeling and demonstration. The constructed
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E

FI1GURE 25.14. A final modification of a dihedral angle

polyhedron consists of 26 faces, of which 24 are triangles and 2 are non-convex
hexagons. Even if you manage to make a model of this polyhedron, it will admit
a very small deformation (compared with the size of the polyhedron), and you will
never know, whether this deformability is ensured by the mathematical properties
of the polyhedron or rather by flaws of the material used (the cardboard and the
tape). However, there are modifications of Connelly’s construction which yield
quite a satisfactory model. We shall discuss these modifications in the next section.

25.5 Better constructions. After the breathtaking discovery of Connelly,
many geometers tried to improve his construction. One possibility for an improve-
ment is obvious: the insert in Figure 25.14 may be made bigger, so that it would
eat up completely the two faces forming the dihedral angle. This will reduce the
number of faces to 24, and all of them will be triangular. Then one can observe
that not all the pyramids are really needed, and this gives rise, eventually, to a
model with only 18 faces, all of which are triangular.

C

K K

FIGURE 25.15. Cut this out of cardboard and make a model of
Steffen’s polyhedron

It was a young German mathematician Klaus Steffen who found, probably, the
best possible construction. His polyhedron consists of 14 triangular faces and has
only 9 vertices. You can make a model using the development on Figure 25.15.
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A drawing of this polyhedron can be seen in Figure 25.16 (to make the drawing
better understandable, we notice that the vertex G is located in a cavity surrounded
by the ridge BDK H).?

H

FIGURE 25.16. The Steffen polyhedron

We notice in conclusion that, as is seen from Figure 25.15, Steffen’s polyhedron
contains two identical 6-face pieces of Bricard’s octahedron similar to those shown
in Figure 25.8 (the two wings of Figure 25.15), and two more triangular faces (the
middle part of Figure 25.15) which are attached to both octahedral pieces. These
three parts of the Steffen polyhedron are shown separately in Figure 25.17.

These remarks make the flexibility of Steffen’s polyhedron less surprising. We
already know that the two octahedral pieces are deformable, and, certainly, we can
deform them when they are attached to each other; thus the Steffen polyhedron
less two faces (ABC and ABD), is deformable. It is not hard to see that this
deformation does not affect the distance C'D which makes deformable the whole
polyhedron (and the dihedral angle formed by these two faces stays rigid in the
process of deformation).

25.6 The bellows conjecture. There is one more natural problem: does
the volume inside a flexible polyhedron vary in the process of deformation? There
are indications that it does not. It is not hard to prove that the modification of
a dihedral angle shown in Figure 25.14, right, does not affect the volume of the
polyhedron.? From this, it is easy to deduce that the volume inside the Connelly
polyhedron is equal to the sum of the volumes of 6 pyramids attached at the first
step of the construction and does not vary in the process of the deformation. Sim-
ilarly, the volume of the Steffen polyhedron (Figure 25.16) is equal to that of the

2An animated picture of Steffen’s polyhedron showing its deformation is available on the
web, e.g., at www.mathematik.com/Steffen/.

3With a right definition of the volume “inside” a self-intersecting polyhedron (we leave the
details to the reader), one can prove that the volume inside any Bricard octahedron is zero.
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FI1GURE 25.17. The Steffen polyhedron disassembled

tetrahedron ABCD and is also constant. Still there remained a possibility of a
construction of a flexible polyhedron with a variable volume. However, in 1995,
I. Sabitov proved that such a construction is not possible; thus, Sabitov proved a
statement which was called “the bellows conjecture”. Actually, Sabitov’s theorem
states that, given a set of (rigid) faces of a polyhedron, the volume of the polyhe-
dron can assume only countably many values, [66]. This, certainly, excludes any
variation of the volume.

Let us mention, in conclusion, a somewhat paradoxical construction. Start with
a tetrahedron and deform it, as shown in Figure 25.18. Namely, one subdivides each
edge of the tetrahedron into two segments and each face into 10 triangles, and then
pushes the new vertices on the edges inwards. This is an isometric deformation of
the original tetrahedron.

The middle parts of the edges are pushed inwards, so one may expect the
volume to decrease. However, the middle parts of the faces move outwards, and the
total volume actually increases, by more than a third! Similar volume increasing



348 LECTURE 25. FLEXIBLE POLYHEDRA

FIGURE 25.18. Isometric volume increasing deformation of a tetrahedron

isometric deformations can be made for all the Platonic solids [7, 12] and even all
polyhedral surfaces [58].

It may appear that this construction contradicts the bellows conjecture. This
is not the case: the deformation of a tetrahedron depicted in Figure 25.18 is not a
continuous isometric deformation (the sizes of the small triangles, subdividing the
faces of the original tetrahedron, change in the process).

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

25.7 Exercises.

25.1. Let ABCD be a non-self-intersecting quadrilateral in the plane. We are
allowed to deform it in such a way that the lengths of the sides stay constant but
the angles may vary.

(a) Prove that we can always deform the quadrilateral ABC'D into a triangle.

(b) Prove that we can always deform the quadrilateral ABCD into a trapezoid.

(c) Is it always possible to deform the quadrilateral ABC'D into a trapezoid
with AB being one of two parallel sides?

25.2. Let ABCD be a trapezoid. We want to deform it as in Problem 25.1 in
such a way that in the process of deformation it remains a trapezoid. Prove that
it is possible if and only if it is a parallelogram.
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25.3. Let A1 Ay ... A, be an n-gon in the plane. An admissible deformation of
this n-gon consists in a continuous motion of points Aq, As,..., A, not affecting
the distances |A1Asl, ..., |An—14,], |AnA4].
(a) Let n = 4. In terms of the four numbers, |A;As|, |A2A3], |[AsA4l, |As 41|,
find a necessary and sufficient conditions for the existence of an admissible defor-
mation joining the quadrilateral Ay A3 A3 A4 with its mirror image A} A, AL A (the
latter means that there exists a line £ such that A; is symmetric to A} for all 7).
Hint. See the comment below.
(b) Do the same for n = 5 and the numbers |A;As|,. .., |A445], |A5A4].
Hint. See the comment below.
Comment. There is a general result due to Kapovich and Milson [43] stating
that for any n-gon A;As ... A, the following two sattements are equivalent.
(1) For any n-gon Aj A, ... Al with |[A] AL = |A14s], ..., |AL_ ALl = |An—1 44|, |AL AL =
| A, A1|, there exists an admissible deformation of the n-gon A1 Ay ... A, into AJ AL ... Al
(2) Let ay,as,...,a, be the numbers |A;As|,...,|An_144|,|AnA1| arranged
in the non-increasing order: a; > as > --- > a,. Then

azt+az < a1 t+as+---+an

25.4. Let ABCD be a non-self-intersecting quadrilateral in the plane, M be
a point not in this plane. The pyramid M ABCD becomes flexible if one removes
the base ABCD (see Section 25.2). Prove that in the process of deformation the
points A, B, C, D cannot remain coplanar.

25.5. A (possibly self-intersecting) polyhedron is called two-sided if one can
paint the two sides of each face black and white in such a way that the colors
match at each edge. Otherwise, a polyhedron is called one-sided.
(a) Prove that a non-self-intersecting polyhedron is two-sided.
(b) Take a regular (Plato’s) octahedron as shown in Figure 25.19, remove the
triangular faces AM B, BNC,CMD, DN A and add the square faces ABCD, AMCN, BMDN.
Prove that this construction creates a complete (every edge belongs to precisely 2
faces) one-sided polyhedron.

.

FIGURE 25.19. One-sided polyhedron made of an octahedron

(c) Prove that the Bricard octaherdron is two-sided. Prove also that the reflec-
tion in the axis of symmetry takes white into black and black into white.

25.6. Let P be a complete two-sided polyhedron. Choose a black and white
coloring of faces as in exercise 25.5 and choose a plane II not perpendicular to any
face of P and not crossing P. For a face I’ define its underlying volume as the
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volume of the prism between F' and its orthogonal projection onto II (see Figure
25.20) multiplied by —1 if the upper face of the prism is white. Define the signed
volume of P as the sum of underlying volumes of all faces.

FiGUure 25.20. Signed volume

(a) Prove that the signed volume does not depend of II.

(b) Prove that if P is non-self-intersecting, and the exterior of is painted white,
then the signed volume is the usual volume.

(c) Prove that the (signed) volume of the Bricard octahedron is zero.

Hint. Use the symmetry property from Exercise 25.5 (c).

In particular, this shows that the bellows conjecture holds for the Bricard oc-
tahedra.

(d) Prove that the signed volume of the Steffen polyhedron (Section 25.5) is
equal to that of the tetrahedron ABCD. Deduce the bellows conjecture for this
polyhedron.

25.7. (a)* Consider a smooth family of convex polyhedra P, where ¢ is a
parameter, and denote by [;(t) its edge lengths and by ¢;(t) the respective dihedral

angles. Prove that
de;(t)
A0 ét =0.
J

(b) The total mean curvature of a polyhedron is defined as 3, l;;. Prove that
the total mean curvature of a flexible polyhedron remains the same in the process
of deformation.
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LECTURE 26

Alexander’s Horned Sphere

Two properties of the “horned sphere” make it worthy of describing in this
book. First, it delivers a solution of an important and difficult problem. Second, it
is really beautiful.

26.1 Theorems of C. Jordan and A. Schoenflies. A curve in the plane
is a trace of a moving point. If the starting point of the movement coincides with
the terminal point, the curve is called closed, if the positions of the moving point
do not coincide at any two distinct moments of time, the curve is called simple, or
non-self-intersecting. Jordan’s theorem states that a simple closed curve C' divides
the plane into two domains, “interior” and “exterior,” in the sense that any two
points from the same domain may be joined by a polygonal line disjoint from the
curve C, while any polygonal line joining points from different domains crosses the

curve (Figure 26.1).
Ay

FIGURE 26.1. A closed curve divides the plane into two parts

This theorem is important in analysis, say, in integration theory where we
need to consider domains bounded by a given simple closed curve; but it leaves

355
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unanswered a question belonging rather to topology than to analysis: what the
parts into which the plane is divided by a simple closed curve, look like.

In mathematics this frivolous expression “look like” is usually replaced by a
more rigorous word “homeomorphic”: two domains are homeomorphic, if there
exists a bijective map of one onto the other such that both this map and its inverse
are continuous. For example, the interiors of a circle and a square are homeomorphic
(although one can cay that they look different), while an annulus (the domain
between two concentric circles) is not homeomorphic to either of them.

o

FIGURE 26.2. Interior and exterior

In 1908, A. Schoenflies proved that, whichever simple closed curve in the plane
one takes, its interior and exterior will be homeomorphic to those of a usual circle:
to an open disc and a plane with a round hole (Figure 26.2). Similarly, one can
prove that a domain between two disjoint simple closed curves, of which one is
contained in the interior of the other one, is homeomorphic to an annulus.

26.2 Spatial generalizations. One could expect that there should be theo-
rems in space geometry similar to those of Jordan and Schoenflies — all you need
is to find right statements. Closed curves, certainly, must be replaced by closed
surfaces. Here, however, we encounter our first difficulty: while closed curves all
look the same (homeomorphic), closed surfaces may be essentially different: there
are spheres, tori, spheres with handles, etc (Figure 26.3). We shall resolve this
difficulty by brute force: we shall simply ignore all this diversity, restricting our
attention to surfaces obtained by a continuous deformation, without self-crossings,
of the usual round sphere. For such surfaces we can hope to establish results similar
to theorems of Jordan and Schoenflies.

As to Jordan’s theorem, its spatial analog turns out to be true: the surface
divides space into two parts, interior and exterior, and the statement of the planar
Jordan theorem is true for them without any changes. The same is true for spheres
with handles, and there are natural generalizations to arbitrary dimensions.

But what about the Schoenflies theorem? Its spatial counterpart should state
that the interior and the exterior domains are homeomorphic to the those of the
usual sphere, that is, to an open ball and the complement to a closed ball. It was
an American topologist John Alexander, then very young, who proved in 1924 that
this conjecture, however plausible it looked, was actually wrong. Alexander’s work
was very convincing: he presented an explicit construction of a deformed sphere in
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O=0

F1GURrE 26.3. Different kinds of surfaces
space which divides space into non-standard parts. The details of his construction
are described below.

26.3 It is very beautiful. And very simple. The main ingredient of the
construction is shown in Figure 26.4: we take two disjoint small disks inside a
bigger planar disc, pull out of them two “fingers” in such a way that their ends
come close to each other but do not touch each other.

& &

FIGURE 26.4. Pulling out fingers

The ends themselves remain planar discs. We shall usually perform this pulling
fingers simultaneously from two parallel discs, and the four fingers will form a “lock”
as shown in Figure 26.5.

FIGURE 26.5. The lock
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Now we can describe the whole construction. Take a round sphere. Then we
pull out from two discs on this sphere two fingers, almost touching each other, as
in Figure 26.4 — see Figure 26.6.

FIGURE 26.6. The first step: two fingers are pulled out of a sphere

The ends of the fingers are two parallel and close to each other planar discs;
from these two discs we pull out four fingers, two from each disc, and lock them as
in Figure 26.5 — see Figure 26.7.

FIGURE 26.7. The second step: a lock is inserted between the fingers

Now we have two pairs of still smaller and still closer discs, and insert small
copies of Figure 26.5 between the discs of each pair. And so on, infinitely many
times. What we obtain after this “so on,” is what is called “Alexander’s horned
sphere”. It is hardly possible to make a satisfactory drawing of this sphere (be-
cause the fingers involved become smaller and smaller); still Figure 26.7 provides a
reasonable visual approximation.
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26.4 It is an honest sphere. On the first glance, this does cause some
doubts.

Alexander’s sphere looks like a weightlifter’s weight with a slot sawed out of the
handle and a complicated combinations of pieces of wire of different sizes inserted
in the slot. Is it really true that the ends of the pieces of the handles do not meet?
Seemingly, they could infinitely approach, and in the limit merge together, since on
each step of the construction we pull together some parts of the surface.

No, this danger is purely imaginary. We can perform the previous construction
in such a way that for every two different points of the sphere, the distance between
their final positions is not less, than, say, 1% of their initial distance. (We say “say,”
since all the sizes — the lengths of the fingers, the width of the slots, etc. — are not
specified on Figures 26.4 and 26.5, and we can choose them to our wishes.)

FIGURE 26.8. Discs involved in the construction

Examine our constructions, step by step. The first pulling of fingers involves
two discs on a round sphere. The rest of the sphere remains untouched during the
whole construction. The second step involves four smaller discs, two inside each of
the previous discs (see Figure 26.8). The part of the sphere outside these four discs
remains untouched by all steps of the construction after the first step. Similarly,
there are 8 discs involved in the third step (see again Figure 26.8), 16 discs involved
in the 4-th step (not shown on Figure 26.8), and so on. We shall refer to these discs
as the discs of sizes 1,2, 3,4, ...; thus, there are 2" discs of size n, and each disc of
size n contains precisely two discs of size n + 1. Points of the sphere not contained
in any disc of size n remain untouched by all steps of our construction starting with
the n-th step.

Let us now examine the behavior of the distances between the points. Take
two different points, A and B, on the sphere. If neither A nor B belongs to either
of the two discs of size 1, then these two points remain unchanged and so does the
distance between them. If one of them is contained in one of the discs of size 1, and
the other one is not, then the distance between them is not changed significantly,
we can assume that even if it decreases, then it decreases not more than thrice. If
A and B belong to different discs of size 1, then after the first step they become
significantly closer, but we can assume that the distance between them decreases
not more than 10 times. If, in addition to that, the two points belong to discs of
size 2, then the next step makes them much closer, say not more than 10 times
closer, to each other (see Figure 26.9). However, even if these points belong to
discs of size 2 or more, they will not become significantly closer after all subsequent
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FIGURE 26.9. Points A and B do not approach each other

)4,

steps of our construction (see again Figure 26.9). This is because of the following
fundamental property of the construction: on the n-th step of the construction, we
pull together only points from the same disc of size n — 1.

Now we can formulate the general Principle of Distances. Let n be the greatest
number such that A and B belong to the same disc of size n. Then the distance
between them remains unchanged under steps 1 through n. If neither of them
belongs to a disc of size n + 1, then the distance between them remains unchanged
also under all the subsequent steps of the construction. If only one of the points
A, B belongs to a disc of size n+ 1, then after all the subsequent steps the distance
between them decreases no more then thrice. If they both belong to discs of size
n + 1, then under the n + 1-st step the distance between them decreases no more
than 10 times. If neither of the points belong to discs of size n+2, then the distance
between them remains unchanged after the n + 1-st step. If precisely one of these
points belongs to a disc of size n+ 2, then the distance between them may decrease
thrice on the n + 2-nd step and is not changed significantly after this. Finally,
if both A and B belong to discs of size n + 2, then the distance between them
decreases at most 10 times on the n + 2-nd step and is not changed significantly
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after this. In all cases, the distance between A and B decreases not more than 100
times.

Thus, Alexander’s horned sphere is indeed a sphere, that is, it is “homeomor-
phic” to the sphere as we stated above.

26.5 The exterior of the horned sphere. The interior of the horned sphere
is homeomorphic to the usual ball (without the boundary); it is not hard to prove
this, but we shall not need it. What is more important is that the exterior of the
horned sphere is not the same as (not homeomorphic to) that of the usual sphere.
The proof of this is simple but interesting, since it provides a sample of a topological
proof. The exterior of the usual sphere (and the interior as well) possesses a property
which topologists call simply connectedness: every closed curve can be continuously
deformed to one point. It looks obvious (see Figure 26.10), although a rigorous proof
of it involves some technicalities.

QgQQ?

FIGURE 26.10. The exterior of the usual sphere is simply connected

Homeomorphic domains are simply connected simultaneously: if one is simply
connected, then the other one should be also simply connected. However, the
exterior of the horned sphere is not simply connected: a curve enclosing the handle
of the weight (Figure 26.11) cannot be continuously pulled out of the handle. (To
pull it out, we shall have to carry it between a pair of close parallel discs of any
size; hence, in the process of deformation, the curve becomes arbitrarily close to the
horned sphere, which means that it will touch the sphere at some moment, which
is prohibited: our deformation should be performed in the exterior of the sphere.)

Thus, the exterior of the horned sphere is not simply connected and, hence, not
homeomorphic to the exterior of the usual sphere. This shows that the conjectured
spatial version of the Schoenflies theorem is false.

26.6 What else? Now, it is easy to be smart. We could pull the horns not
outside but inside the sphere; then we get a sphere for which the interior, not the
exterior, is not homeomorphic to the interior of the standard round sphere. Or we
could pull two pairs of horns, one inside and one outside the sphere; then both the
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FIGURE 26.11. The exterior of Alexander’s sphere is not simply connected

exterior and the interior of the sphere will be different from those for the usual
sphere (not simply connected). Or we can pull not two, but, say, twenty two (or
two hundred twenty two) pairs of horns, some inside and some outside the sphere
and tangle them with each other in any way. This variety of possibilities does not
surprise us any longer.

26.7 Conclusion: further developments. Years and decades passed after
Alexander’s discovery. Still topologists hoped that a spatial version of the Schoen-
flies theorem may exists: one only needs to exclude too complicated shapes. What
if we take polyhedral spheres, that is spheres made out of finitely many polygonal
pieces of a plane? Even in this case the problem turned out to be very hard. Still,
in 1960, Morton Brown proved the polyhedral version of the Schoenflies theorem
(actually, Brown’s result holds for a wider class of surfaces, see Exercise 26.1).

Brown’s theorem holds also in higher dimensions. However, in higher dimen-
sions even polyhedral spheres sometimes provide unexpected surprises. For example
R. Kirby and L. Siebenmann showed in the 1970’s that two polyhedral spheres in
four-dimensional space, one of which is contained in the interior of the other, may
cobound a domain different from the standard domain cobounded by two concentric
round spheres.

All this, however, goes beyond our technical possibilities.
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26.8 Exercises. A surface S is called locally flat at a point P € S, if there
exists a homeomorphism of a small ball B centered at P onto another ball, B’,
which maps the intersection BN S onto the intersection of B’ with a plane. Brown’s
theorem (see Section 26.7) states that if a surface in space is homeomorphic to a
sphere and is locally flat at all its points, then it cuts space into two standard parts.

26.1. At which points is Alexander’s sphere not locally flat (describe this set
on the sphere both before and after the deformation)? Is this set countable or
uncountable?

Further exercises are not related directly to Alexander’s sphere, but they con-
cern constructions which have a similar flavor. We begin with the classical Cantor

1 2
set. Take the interval [0,1]. Remove the middle third, (3, 3> Then remove the

2
middle third from each of the two remaining intervals, that is, remove <§, 5) and
7 8
(5, 5) Then remove the middle third of each of the 4 remaining intervals, and
so on. The set obtained as a result of this infinite process is called the Cantor set.
We denote it by C, and denote its complement by D.

1 10 19
26.2. (a) Prove that 11337
(b) More generally, let © = [0.d1dz2d3 . . .]3 be a presentation of z in the numer-
ical system with the base 3; express the condition that x belongs to C' in terms of
the digits d;.

12
Next, we shall define the Cantor function ~v: [0,1] — [0,1]. For = € 3'3)
1 . 1 2 78
put y(z) = 3 On the two intervals deleted at the second step, 39 and 99 )

we set our function to be equal, respectively, to 1 and T On the four intervals
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deleted at the third step, we set the function to be equal, respectively, to

ool ot

13
z 8’8’
and 3 And so on. This process determines our function on D.

26.3. (a) Prove that for every x € C there exists a unique y € [0, 1] such that
v(z) <y for every z € [0,2) N D and v(z) > y for every z € (z,1] N D.

We put v(z) = y. It is easy to see that  is a continuous monotonic function.

o comme (1) (5

(¢) More generally, let © = [0.d1dads . . .]3. Find a presentation of y(x) in the
numerical system with the base 2.
(d) Prove that if x is rational, then ~y(z) is rational.

Now we will define the Peano curve in the square [0,1]? = {(z,y) | 0 <
r < 1,0 <y <1} Let F:[0,1] — [0,1]? be a continuous curve with F(0) =
(0,0), F(1) = (0,1). The coordinates of F(t) are denoted by (f(t),g(t)). We define

a curve F: [0,1] — [0,1]? by the formula

1 1 1
—q(4t), = f(4 fo<t< =
Jo(a0). 3. ro<i< s
1<f<4t1>+1>,1g<4t1>>, ilor<!
=~ 2 2 4 2
Ft)=93 71 1 1 3
il _ _ = _ fo<t< 2
2(f(?) 4t) +1),1 2g(3 4t)), 1f277574
1 1 3
Zg(4— ~Zf4— if 2 <t<1.
S9(4—46),1- 5 f(4 4t)), if S <t<l

In words: we compress the curve F' at the scale 1: 2 and then compose the new curve
of 4 copies of the rescaled old curve with the appropriate translations, rotations
and reflections. See Figure 26.12. Starting from the arbitrary curve F' as above,
we apply the transformation described infinitely many times, and denote the limit
curve as P: [0,1] — [0,1]?; this is the Peano curve.

FIGURE 26.12. The Peano curve

26.4. (a) Prove that the limit exists and is continuous.

(b) Prove that P does not depend on the initial curve F (provided that it is
continuous and joins (0,0) with (0, 1)).

(c) Prove that for every (z,y) € [0,1]* there exists a t € [0,1] (maybe, not
unique) such that P(t) = (z,y) (in other words, the Peano curve fills the whole
square).

@ r(2).r (1)
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(e) For t = [0.d1dads .. .]2 find (in the numerical system with the base 2) the
coordinates of F'(t).
(f) Prove that if ¢ is rational, then the coordinates of F'(¢) are rational.






LECTURE 27

Cone Eversion

27.1 The problem. In the plane with the origin deleted, consider two func-
tions: fo(z,y) = /22 +y? and fi(z,y) = —v/2? +y2. Their gradients are the

constant radial vector fields, from and to the origin, see Figure 27.1. One can eas-
ily deform the first field to the second so that no vector of any intermediate field
vanishes: just rotate each vector 180°.

NN/
/N /N

F1GURE 27.1. Two radial fields, from and to the origin

But can one perform such a deformation in the class of nondegenerate gradient
vector fields? In other words, can one include the functions fo(x,y) and fi(z,y)
into a one-parameter family of smooth functions fi(x,y) without critical points in
the punctured plane, continuously depending upon the parameter t? This is the
problem that we shall discuss in this lecture.

The problem is less innocent that it might appear at first glance. Simply looking
at the flow-lines of a vector field, it is hard to tell whether this is a gradient field
of some function. For example, the field in Figure 27.2 is not a gradient: it does
non-zero work along circles centered at the origin. (Recall, from physics, that the
work done by a force F' along a curve + is the line integral f,y F'-ds. The work done
by a conservative force, that is, the gradient of a potential function, along a closed
curve is always zero.)

367
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FIGURE 27.2. This is not a gradient field

We can formulate the problem more geometrically. Let Sy be the graph of the
function fi(x,y). The surfaces Sy and S; are cones, see Figure 27.3. One wants
to deform one cone to the other (in the class of surfaces whose projection on the
punctured plane is one-one, that is, the graphs of functions defined in the punctured
plane) in such a way that no intermediate surface S; has a horizontal tangent plane
at any point. Indeed, the tangent plane is horizontal precisely when the function
has a critical point, and its gradient vanishes.

FIGURE 27.3. Can the left cone be everted to the right one without
being horizontal anywhere at any time?

In the next section we shall construct such a cone eversion.

27.2 A solution. First, it is more convenient to deal with an annulus, say,
1 < /22 + y2 < 3, than the punctured plane. The smooth mapping, given in polar
coordinates by the formula
r—1
a,r)— o, — |,
(o7) ( 3— 7“)

identifies the annulus and the punctured plane, and a solution of our problem in
one domain yield a solution in the other.
Here is an explicit deformation. The surface S; is given by the equation

zi(a,r) = gi(a) +0.25(r — 2) hy(e)
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in cylindrical coordinates («,r, 2); here 0 < a < 27, 1 < r < 3 and ¢t varies from 0
to 1. The functions g; and h; are as follows:

gr = 4tsina, hy = (1—2t)+4tcosa, for te[0,0.25];
gt =2(1 —2t)sina+ (4t — 1)sin2«c, hy =cosa+ (1 —2t), for ¢ e€[0.25,0.5;
g = —2(2t — 1)sina + (3 — 4¢)sin2a, hy = cosa— (2t — 1), for ¢ €[0.5,0.75];

g =—4(1—t)sine, hy=—(2t—1)+4(1 —t)cose, for t€[0.75,1].

One could stop here: formulas are written, and an industrious reader is welcome
to check that the surfaces S; have no horizontal tangent planes anywhere (that
is, the functions z; have no critical points). But of course we owe the reader
explanations.

Let us explain the genesis of these formulas. Since the original and the terminal
functions are linear in r, it is natural to look for the function z; in the form:

z(e,r) = gi(a) +e(r — 2) hi(a),

where g and h are periodic functions and ¢ is a sufficiently small parameter (its
actual value in our formulas is 0.25). The original cone corresponds to go(a) = 0
and hg(a) = const > 0; the terminal cone — to g;(a) = 0 and hy(a) = const < 0.

It might be instructive to think of the surface S; as a closed rope ladder in
space whose axis is the closed curve

z=g(a), 0<a<2m, r=2
and whose rungs are the radial segments
z=gi(a) +e(r—2) hy(a), a=const, 1<r<3

with the slope eh;(«). So, at the beginning, the axis is a horizontal circle and the
slopes of all the rungs are positive. At the end, the axis is again a horizontal circle,
but the slopes of the rungs are all negative.

What one wants to avoid in the deformation are the instances when the axis
and the rungs are simultaneously horizontal. Thus the functions

dgs(av dhi(a

% te(r— 2)%) and  hy(a)
should have no common zeroes. If, for some %, the zeroes of

d
gctl((ya) and  hy(a)

are disjoint, then so are the zeroes of

d dh

% +e(r— 2)ﬂ and  hy(a)

e

for a sufficiently small e.

The strategy is clear now. First, change the shape of the axis of the rope
ladder (i.e., the graph of g(a)) into a non-horizontal curve, after which one can
safely change the slope of the rungs (the sign of h(«)) from positive to negative on
its non-horizontal segments.

The graphs of g;(«) are sketched in Figure 27.4 on the left. The graphs are
drawn in solid or broken lines; the former means that h:(«) is positive, and the
latter, that it is negative at the corresponding points «. The half-way picture,
t = 1/2, is symmetric with respect to the time eversion: ¢t +— 1 — ¢; from that
point on, one just repeats the process backward. Figure 27.4, right, shows the
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FIGURE 27.4. The deformation: geometry behind the formulas

corresponding deformation of the gradient vector fields, thus answering the original
question.

Figure 27.5 shows level curves of the functions z; for t =1/8,1/4,3/8 and 1/2,
and Figure 27.6 the whole deformation, from beginning to end.

27.3 Comments. The existence of a deformation, explicitly constructed in
Section 27.2, follows from the h-principle theory, an actively developing chapter
of differential topology. In fact, the existence of such a deformation is the first
application of Gromov’s h-principle, discussed in the book [27] (section 4.1); con-
structing an explicit deformation is an exercise in this book. Our construction is
based on the article [80]. As far as we know, the problem, discussed in this lecture,
was posed by M. Krasnosel’skii in his lecture titled “Mathematical divertissement”
in the 1970s.

One of the early precursors of the h-principle theory was the Whitney theorem,
discussed in Lecture 12; a sphere eversion, mentioned in the same lecture, is another
manifestation of this theory (more precisely, the Smale-Hirsch immersion theory).
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FIGURE 27.5. Level curves of the functions z; for t = 1/8,1/4,3/8
and 1/2

Let us mention another famous result, the Nash-Kuiper theorem concerning dif-
ferentiable, but not twice differentiable, maps. We shall not formulate the general
theorem but instead mention one of its striking consequences: one can differentially
and isometrically embed a unit sphere into an arbitrarily small ball (this would be
impossible if the isometric embedding was twice differentiable)!

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
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FI1GURE 27.6. Cone eversion, from beginning to end

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
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John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944

27.4 Exercises.

27.1. (a) Construct a function of two variables that has two local maxima and
no local minima or saddle points. Draw level curves and gradient lines of this
function.

(b)* Can one take a polynomial for such a function?

27.2. (a) Construct a function of two variables that has only one local minimum
and no other critical points and such that this local minimum is not an absolute
minimum. Draw level curves and gradient lines of this function.

(b)* Can one take a polynomial for such a function?

27.3. **Let f(x,y) = cosx cosy. The critical point of the function f form the
lattice (mwk/2,7l/2) with k + [ even. Consider two nondegenerate vector fields in
the complement to the lattice: the gradient of f(z,y) and the gradient of — f(x,y).
Construct a continuous deformation of one field to the other in the class of nonde-
generate gradient vector fields.

Comment. A similar fact holds for any smooth function with isolated local
maxima, minima and saddle points.

27.4. Construct a polynomial of two variables whose range is the interval
(0,00)?

Comment: essentially, this problem was given on the Putnam Competition in
1969. Only 1% of the contestants got a score of 8,9 or 10 for this problem. When
the examination was printed it was believed that such a polynomial did not exist.
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LECTURE 28

Billiards in Ellipses and Geodesics on Ellipsoids

28.1 Plane billiards. The billiard system describes the motion of a free point
inside a plane domain: the point moves with a constant speed along a straight
line until it hits the boundary, where it reflects according to the familiar law of
geometrical optics “the angle of incidence equals the angle of reflection”. Equally
well, one may imagine rays of light reflecting in the boundary which is a perfect
mirror. We shall consider billiard tables bounded by smooth convex closed curves
5.

The billiard reflection is a mapping that sends the incoming billiard trajectory
to the outgoing one. We shall denote this “billiard ball map” by T. The map T
acts on oriented lines that intersect the billiard table; if a line is tangent to the
boundary, then T leaves it intact.

One can characterize an oriented line by its two points of intersection with the
boundary curve v. The map T sends xy to yz, see Figure 28.1.

The reflection law can be interpreted as a solution to an extremal problem.!
Fix points x and z and let y vary.

LEMMA 28.1. The angles made by lines xy and yz with v are equal if and only
if y is an extremal point of the function |zy| + |yz|:

I|zy| + |yz])
dy

Proof. Assume first that y is a free point, not confined to . The gradient of
the function |zy| is the unit vector from z to y, and the gradient of |yz| is the unit
vector from z to y. Indeed, if, say, zy is an elastic string, fixed at one endpoint x,
then the other endpoint y will move directly toward x with unit speed.

Point y, confined to v, is a critical point of the function |zy| + |yz| if and only
if the sum of the two gradients is orthogonal to « (this is the Lagrange multipliers

(28.1) = 0.

1 As many other laws of physics. The one describing propagation of light is called the Fermat
principle: light “chooses” the trajectory that takes least time to get from one point to another.
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Ficure 28.1. Billiard ball map

principle, familiar from calculus). This is equivalent to the fact that xy and yz
make equal angles with . O

4

In the language of mechanics, the point (or, better, a bead) y on the “wire” ~
is acted upon by two unit forces exerted by the elastic string: from y to x and from
y to z. The point y is in equilibrium if the total force is perpendicular to ~.

It is mentioned in Lecture 19 that the billiard ball map admits an invariant
area element; this is the area on the space of oriented lines in the plane, which is the
main character of Lecture 19. Now we shall deduce this fact from the variational
principle of Lemma 28.1.

Consider an arc length parameterization of v and let  and y be two values of
the parameter, that is, two points on the curve. Then (z,y) are coordinates on the
space of oriented lines intersecting the billiard table.

THEOREM 28.1. The area element
_ Py
- 0z0y

s 1nvariant under the billiard ball map T .

(28.2) w(x,y) dzdy

A necessary clarification before the proof: dxdy is the oriented area of an
infinitesimal box whose sides are parallel to the coordinate axes and have lengths
dx and dy. In this sense, dydy = 0, and dxdy = —dydz.?

Proof. Differentiate equation (28.1):

0%|zy| 0%z 0%|yz| 0?|yz|

—— dz +

Oxdy Oy? Oy Oyoz
and multiply by dy. Taking into account that dydy = 0 and dzdy = —dydz, we
obtain:

dy + dy + dz =0,

0|yl ddy 9%|yz|

Oxdy - Oyoz dydz.

2The technically correct notation is dx A dy; the wedge product is skew-symmetric.
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The last equation means that w(z,y) = w(y, z), as claimed. O

28.2 Optical properties of conics. Geometrically, an ellipse is defined as
the locus of points whose sum of distances to two given points, F; and Fj, is fixed;
these two points are called the foci. An ellipse can be constructed using a string
whose ends are fixed at the foci, see Figure 28.2. This is sometimes called the
“gardener” or “string construction” of an ellipse. A hyperbola is defined similarly,
with the sum of distances replaced by the absolute value of their difference; and a
parabola is the locus of points at equal distances from a point (focus) and a line.

X

F1 F2

FIGURE 28.2. String construction of an ellipse: |Fy X |+ |F2X| = const

The following optical property of conics was known to the ancient Greeks.

LEMMA 28.2. A ray from one focus of an ellipse reflects to a ray through the
other focus.

Proof. We want to prove that the angles made by F; X and F» X with the ellipse
in Figure 28.2 are equal.

Assume that X is free to vary in the plane. The ellipse is a level curve of the
function f(X) = |F1X|+ |F2X]|, and the gradient of this function at point X is
orthogonal to the curve. Similarly to the proof of Lemma 28.1, the gradient of
f(X) is the sum of the two unit vectors, having directions F1 X and F»X. This
sum is orthogonal to the curve if and only if the vectors make equal angles with it,
as claimed. O

Likewise, a ray from the focus of a parabola reflects to a ray parallel to its axis,
see Figure 28.3 — see Exercise 28.3. This optical property of parabolas has numerous
applications in designs of projectors, flashlights, and other optical devices, and we
already used it in Lecture 15.

FiGURE 28.3. Optical property of parabola

Consider an ellipse and a hyperbola with the same foci passing through point
X.

LEMMA 28.3. The ellipse and the hyperbola are orthogonal to each other.
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Proof. The hyperbola is a level curve of the function ¢(X) = |F1 X| — |FoX|,
whose gradient at point X is the difference of the two unit vectors, having directions
F1 X and F5X. The difference of two unit vectors is orthogonal to their sum, hence
the curves are perpendicular to each other. O

The construction of an ellipse with given foci has a parameter, the length of
the string. The family of conics with fixed foci is called confocal. The equation of
a confocal family, including ellipses and hyperbolas, is

2 y?
28.3 —_ =1
(28:3) a?+ A T +A

where X is a parameter.
The next result generalizes Lemma 28.2 to billiard trajectories not through the
foci.

THEOREM 28.2. A billiard trajectory inside an ellipse forever remains tangent
to a fixed confocal conic. More precisely, if a segment of a billiard trajectory does not
intersect the segment I Fy, then all the segments of this trajectory do not intersect
F1F5 and are all tangent to the same ellipse with foci F1 and Fs; and if a segment of
a trajectory intersects Fy Fs, then all the segments of this trajectory intersect FyFb
and are all tangent to the same hyperbola with foci Fy and Fs.

Proof. Let AgA; and A As be consecutive segments of a billiard trajectory, see
Figure 28.4. Assume that AgA; does not intersect the segment FyFh (the other
case is dealt with similarly). It follows from the optical property of an ellipse, that
the angles made by segments F} A; and F5A; with the ellipse are equal. Likewise,
the segments AgA; and As A; make equal angles with the ellipse. Hence the angles
ApgAFy and Ay A Fy are equal.

FIGURE 28.4. Proof of Theorem 28.2

Reflect Fy in AgA; to point FY, and Fy in A3 A5 to Fy. Let B be the intersection
point of the lines F]F» and AgA;, and C of the lines F4F; and A;As.

Consider the ellipse I'y with foci F; and F» that is tangent to the line AgA;.
Since the angles Fy BA; and F]BA, are equal, and so are the angles F]BAj and
F1BAy, the angles F, BA; and Fy BAg are equal. By the optical property of ellipses,
the ellipse I'y touches AgA; at the point B. Likewise the ellipse I'y with foci F} and
F5 touches A A5 at the point C. One wants to show that these two ellipses coincide
or, equivalently, that Fy; B+ BFy = F1C + CF», which boils down to F|Fy = F1 F}.
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We claim that the triangles F| Ay F5 and Fy A1 F} are congruent. Indeed, FjA; =
F1 Ay and FA; = Fj A, by symmetry. In addition, the angles F{ A, F5 and Fy A, F}
are equal: the angles AgA; Fy and Ay A; F; are equal, hence so are the angles Fj A1 Fy
and FjA1F,, and adding the common angle F)A;F, implies that /F|A1Fy =
/F, A, F},.

Equality of the triangles F{A; F» and Fy A, Fy implies that F{Fy = Fy Fy, and
we are done. O

As an application, here is a construction of a room with reflecting walls that
cannot be illuminated from any of its points; this construction is due to L. and
R. Penrose [60] — see Figure 28.5.3 The upper and the lower curves are half-ellipses
with foci FY, F» and G1, G2. Since a ray passing between the foci reflects back again
between the foci, no ray can enter the four “ear lobes” from the area between the
lines F Fy and G1G4, and vice versa. Thus if the source of light is above the line
G1Go, the lower lobes are not illuminated; and if the source is below FF5, the
same applies to the upper lobes.

Ficure 28.5. This room cannot be illuminated from a single point

28.3 Caustics, string construction and the Graves theorem. A caustic*
is a curve inside a billiard table such that if a segment of a billiard trajectory is
tangent to this curve, then so is each reflected segment. We assume that caustics
are smooth and convex.

There is a string construction, similar to the string construction of ellipses,
Figure 28.2, that recovers a billiard table from its caustic: wrap a closed non-
stretchable string around the caustic, pull it tight at a point and move this point
around to obtain the boundary of a billiard table, see Figure 28.6.

THEOREM 28.3. The billiard inside v has I' as its caustic.

3Roger Penrose is leading contemporary mathematical physicist. Lionel Penrose, his father,
was a prominent psychiatrist and geneticists.

4Caustic also has a different meaning: the envelop of the normal lines to a curve; we used it
in Lecture 10.
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X

FIGURE 28.6. String construction: recovering a billiard table from
a caustic

Proof. Choose a reference point Y on I'. For a point X, let f(X) and ¢g(X)
be the distances from X to Y by going around I' on the right and on the left,
respectively. Then 7 is a level curve of the function f(X) + ¢g(X). We want to
prove that the angles made by the segments AX and BX with v are equal.

We claim that the gradient of f at X is the unit vector in the direction AX.
Indeed, the free end X of the contracting string Y AX will move directly toward
point A with unit speed (compare with the proofs of Lemmas 28.1 and 28.2). It
follows that the gradient of f 4 g bisects the angle AX B. Since the gradient of a
function is orthogonal to its level curve, AX and BX make equal angles with . O

Note that the string construction provides a one-parameter family of billiard
tables: the parameter is the length of the string.

As a consequence of Theorem 28.2, one obtains the following Graves theorem:
wrapping a closed non-stretchable string around an ellipse produces a confocal el-
lipse, see [63] for other proofs.

28.4 Geometrical consequences. The space of oriented lines, that intersect
an ellipse, is, topologically, a cylinder. This cylinder is foliated by invariant curves
of the billiard ball map, see Figure 28.7. Each curve represents the family of rays
tangent to a fixed confocal conic. The oo-shaped curve corresponds to the family
of rays through the two foci. The two singular points of this curve represent the
major axis with the two opposite orientations, a 2-periodic, back-and-forth billiard
trajectory. Another 2-periodic trajectory is the minor axis represented by two
centers of the regions inside the co-shaped curve.

Consider the invariant curves that go around the cylinder; they represent the
rays tangent to confocal ellipses (other invariant curves, the ones inside the oo-
shaped curve, represent the rays, tangent to confocal hyperbolas).

THEOREM 28.4. One can choose a cyclic coordinate on each invariant curve, x
mod 1, in such a way that the billiard ball map is given by the formula T(z) = z+c¢
(the value of the constant ¢ depends on the invariant curve).

Proof. The construction of the desired coordinate x depends on the two struc-
tures available to us: the family of invariant curves and the area element w (28.2)
on the cylinder.

Choose a function f on the cylinder whose level curves are the invariant curves
of the billiard ball map. Let « be a level curve f = a. Consider the nearby level
curve 7. given by f = a+e. For an interval I C -, consider the area w(I, ) between
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F1GURE 28.7. Phase portrait of the billiard ball map in an ellipse

~ and . over I; clearly, this area tends to zero as € — 0. Define the “length” of I
as

| w(l,e)

e—0 5 ’
Choosing a different function f, one replaces the infinitesimal € by another one, say,
0; then the length of every segment is multiplied by the same factor §/e. Choose
a coordinate x so that the length element is dxr and normalize x so that the total
length is 1. This determines x up to a shift x — = + const.

The billiard ball map T preserves the area element w and the invariant curves.

Therefore it preserves the length element on the invariant curves, and hence it is
given by the formula x — z + ¢ on each invariant curve (of course, the value of the

constant ¢ depends on the invariant curve). O

The first consequence is a closure theorem for billiard trajectories in an ellipse,
cf. Lecture 29.

COROLLARY 28.5. Assume that a billiard trajectory in an ellipse v, tangent to
a confocal ellipse T, is n-periodic. Then every billiard trajectory in -y, tangent to
I', is n-periodic.

Proof. Consider the invariant curve that consists of the rays tangent to I'. In
the coordinate x from Theorem 28.4, the billiard ball map is z — x + ¢. A point
is n-periodic if and only if nc is an integer. This condition does not depend on =,
and the result follows. O

Let v1,72 and T" be confocal ellipses, see Figure 28.8. One has two billiard ball
maps, 17 and T3, corresponding to reflections in v; and 7. Both maps act on the
same space of oriented lines that intersect both ellipses, and they share a caustic,
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7 A

FicURE 28.8. Commuting billiard ball maps in confocal ellipses

AN

I'. The choice of the parameter x on the invariant curve, corresponding to this
caustic, depended only on the area element in the space of oriented lines and the
family of confocal ellipses, which are the same for both maps. We arrive at the
next corollary.

COROLLARY 28.6. The maps Ty and Ty commute: TyoTy = Ty 0Ty (see Figure
28.9 for a resulting configuration theorem,).

Proof. Parallel translations z — x + ¢; and & — x + ¢ commute. O

C

A

D E

FIGURE 28.9. The most elementary theorem of Fuclidean geometry

In the degenerate case, when I' is the segment connecting the foci, one obtains
the following “most elementary theorem of Euclidean geometry”:®

AB+ BF = AD + DF if and only if AC + CF = AE + EF,

see Figure 28.9. Indeed, points B and D lies on an ellipse with foci A and F' if and
only if so do points C and FE.

5Discovered by M. Urquhart, 1902-1966, an Australian mathematical physicist; it was later
found out that this theorem was published much earlier by De Morgan, in 1841. This is another
manifestation of M. Berry’s Law, mentioned in Lecture 15.
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28.5 Elliptic coordinates. Let us return to the confocal family of conics
(28.3). Through a generic point P(z,y) there passes an ellipse and a hyperbola
from this family (the point P should not lie on the segment connecting the foci;
this is the general position assumption in this case). Let A; and A2 be the respective
values of the parameter A\. Then (A1, A2) are called the elliptic coordinates of the
point P. The ellipses and hyperbolas from the confocal family (28.3) play the role
of coordinate curves of this coordinate system; they are mutually orthogonal, see
Figure 28.10.

Ficure 28.10. Confocal ellipses and hyperbolas

Consider now an ellipsoid M in space

2 2 2
T Y z°
Sttt =1
and assume that all semiaxes a, b, ¢ are distinct: 0 < a < b < ¢. The confocal family
of quadratic surfaces M) is defined by the equation

$2 y2 22

PENES WL TRy WL R Y

where X is a real parameter. The type of the surface M) changes as A passes the
values —b? and —a?: for —c? < A < —b?, it is a hyperboloid of two sheets, for
—b? < XA < —a?, a hyperboloid of one sheet, and for —a? < ), an ellipsoid; see
Figure 28.11.

Similarly to the plane case, we introduce elliptic coordinates of a point (z,y, z)
as the three values of A for which equation (28.4) holds. A justification is provided

by the following theorem.

(28.4) 1

THEOREM 28.7. A generic point P = (x,y,z) is contained in exactly three
quadratic surfaces, confocal with the given ellipsoid. These confocal quadrics are
pairwise perpendicular at point P, see Figure 28.12.
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Ficure 28.11. Confocal quadratic surfaces

Proof. Given a point P, equation (28.4) can be rewritten as a cubic equation in
A. We want to show that it has three real roots. Indeed, the graph of the left-hand
side, as a function of A, looks as depicted in Figure 28.13. Therefore this function
assumes value 1 three times (assuming that xyz # 0: this suffices for the present
argument; in general, we need to assume that the discriminant of the cubic equation
in A does not vanish). Let (A1, A2, A3) be the roots.

Next, we want to show that the quadrics are pairwise orthogonal at point P.
Consider, for instance, M)y, and M),. A normal vector to M), at point P is the
gradient of the function on the right hand side of (28.4) (we divide it by 2 for
convenience):

N = T y z
L PRIV VL I UL W
and likewise for N5. Hence

22 y2 Z2

+ + :
(a2 +)\1)(a2 +)\2) (b2 +)\1)(b2—|—)\2) (02"1')\1)(02 +)\2)
Consider equations (28.4) for A\; and Ae. The difference of their left-hand sides is

equal to the right-hand side of (28.5) times (A; — A2). Hence this right-hand side
is zero, and Ny - Ny = 0, as claimed. O

(28.5) Ny-Np =

28.6 Apparent contours and Chasles’ theorem. Our goal in this section
is to prove the following theorem, due to Chasles.

THEOREM 28.8. A generic line in space is tangent to 2 distinct quadratic sur-
faces from a given confocal family. The tangent planes to these quadrics at the
points of tangency with the line are orthogonal to each other.

Let ¢ be the line. The strategy of the proof is to project space along ¢ to the
orthogonal plane. A generic orthogonal projection of a surface on the plane (screen)
is a domain bounded by a curve, the apparent contour (or, simply, the shadow) of
the surface. The apparent contour is the locus of intersection points of the screen
with the lines, parallel to ¢ and tangent to the surface. For example, the apparent
contour of a convex surface is an oval.

The projection of the family of confocal quadrics yields a 1-parameter family
of apparent contours.
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FIGURE 28.12. Three pairwise perpendicular confocal quadratic
surfaces, transparent and opaque

PROPOSITION 28.4. The apparent contours of confocal quadrics is a family of
confocal conics.

This proposition implies the Chasles Theorem.

Proof of Theorem 28.8. The projection of the line ¢ is a point. Through this
point, there passes an ellipse and a hyperbola from a confocal family, and they
are orthogonal to each other. Each of the two curves is the apparent contour of a
quadratic surface from the given confocal family. Therefore these two surfaces are
tangent to ¢ and are orthogonal at the tangency points. O
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M
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F1GURE 28.13. The graph of the equation of a confocal family

Proof of Proposition 28.4. First of all, it is easy to show that the apparent
contour of an individual quadratic surface is a conic.

Assume that the screen is the horizontal (z,y)-plane and the line ¢ is ver-
tical. Our quadratic surface M is given by a quadratic equation in x,y,z; its
specific form is not important to us (this equation is a combination of 10 terms:
x2,y2,22,xy7yz,zx,x,y,z and constants). For a given point of the screen (m,y),
the vertical line through this point has the parametric equation (z,y,t). If we
substitute this into the equation of M, we obtain a quadratic equation in t:

(28.6) pa(z, y)t* + p1 (2, y)t + po(x,y) = 0

where ps is a constant, p; is a linear and ps(z,y) a quadratic function of x, y.

The apparent contour of M counsists of those points (x,y) for which the vertical
line through this point is tangent to M, that is, when equation (28.6) has a multiple
root. This happens when the discriminant equals zero:

D1 (Jj, y)2 - 4p2(xa y)po($, y) =0.

This is a quadratic equation in x and y, and it describes a conic on the screen.

It takes an extra work to prove that the apparent contours of a confocal family
of quadrics is a confocal family of conics.

As we know, the normal vector to the quadric M at point P(z,y,2) is

o x Y z
N(P)=(z,y,z) = , .
)= @39 = (o s s )

We have chosen the magnitude of the normal vector in such a way that N(P)-P = 1;
this equation holds due to (28.4).

As P varies over My, the point N(P) describes the quadric M, given by the
equation

(28.7) (@ + 0722 + (P + Vg2 + (F+ N2 =1,
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the latter equation being just another form of (28.4). Such a family of quadratic
surfaces is called linear: the left hand side can be written as Q1 + AQ2 where
and ()2 are quadratic forms

a2 + V5% + 222 and 72 497 + 7

Denote the screen by W. A line, parallel to ¢, is tangent to M, at point P
if and only if the normal N(P) is orthogonal to ¢, that is, if N(P) is parallel to
W. Note that these vectors N(P) are the normals to the apparent contour of the
surface M), see Figure 28.14.

~
S

w

FIGURE 28.14. A surface and its apparent contour

The set of such vectors N is the intersection curve of the quadratic surface M y
with the plane W. This curve is a conic given, in appropriate Cartesian coordinates
(&,m) on W, by a formula, similar to (28.7):

(28.8) (@® + N+ (B2 + N =1

Thus the normals to the apparent contours of the surfaces M) form a linear family
of conics in the plane W.

In the plane, by the same token, it is also true that the normals to a confocal
family of conics constitute a linear family of conics. It follows that these apparent
contours form a confocal family on the screen. O

28.7 Geodesics on ellipsoids. Let M be a surface. A geodesic curve on
M is a trajectory of a free particle confined to stay on M. If v(¢) is an arc length
parameterization of a geodesic, then the acceleration vector 4" (¢) is orthogonal to M
(physically, this means that the only force acting on the point is the normal force
that confines the point to M). Geodesics locally minimize the distance between
their points. For example, a geodesic on a developable surface becomes a straight
line after the surface is unfolded to a plane. The geodesics on a sphere are its great
circles. See Lecture 20 for a more detailed discussion.

Let M be an ellipsoid. The behavior of geodesics is very regular; it is described
by the following theorem, due to Chasles and Jacobi. This result is one of the
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great achievements of 19th century mathematics. We assume that the ellipsoid has
distinct axes, so that the confocal family of quadratic surfaces is defined.®

THEOREM 28.9. The tangent lines to a geodesic on M are tangent to another
fixed quadratic surface, confocal with M.

Proof. Consider an arc length parameterized geodesic curve «(t) on M, and
let £(t) be the straight line, tangent to this geodesic at point (¢). By Theorem
28.8, ((t) is tangent to another quadratic surface, M), confocal with M and
corresponding to parameter A(¢) in equation (28.4). We want to prove that A(t) is
independent of ¢, that is,

d\(t)
dt

Fix a value of t, say, t = 0. Let N be a normal vector to M at point v(0) and
let 7 be the plane spanned by N and the line £(0). Consider a close point y(g).
Since the acceleration vector of the geodesic « is orthogonal to M, the line £(¢) lies
in the plane , up to an error of order 2.

Indeed, using the “Big O” notation, one has:

Y(€) = 7(0) +e7'(0) + O(e?), +'() =7'(0) +e7"(0) + O(?).
The point v(0) and the vectors +/(0),~v”(0) lie in the plane 7. Hence, up to an error
of order €2, a point v(¢) of the line () and its directional vector /() lie in 7.

Let y be the tangency point of the line £(0) with M. By Theorem 28.8, the
normal vector N lies in the tangent plane to Mg at y, that is, this tangent plane
is the plane 7, see Figure 28.15. Denote by m(e) the orthogonal projection of £(¢)
on the plane 7. Note that m(e) and £(¢) are close to order £2. Therefore, as far as
equality (28.9) is concerned, we may replace £(g) by m(e), that is, to assume that
the line ¢(¢) lies in the plane 7.

(28.9) = 0.

FI1cURE 28.15. Proving Theorem 28.9

60f course, the regular behavior of geodesics,, described in Theorem 28.9, extends, by conti-
nuity, to ellipsoids with coinciding axes, that is, ellipsoids of revolution.
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We want to prove that A(e) — A(0) = O(g?). Intuitively, this is clear: the line
{(¢) lies on the tangent plane to the surface M) and is e2-close to this surface.
To make an exact sense of this argument, we need a technical lemma.

Let f(x,¢e) be a smooth function of two variables; we think of this as a family of
functions in variable z, with € being a parameter, and use the suggestive notation
fe(x). Assume that the function fy(x) has a critical point at = 0, and this critical
point is non-degenerate: f['(0) # 0. Assume also that the respective critical value
is zero: fo(0) = 0. Then, for every sufficiently small €, the function f.(z) has a
critical point near x = 0; let ¢(e) be the respective critical value, see Figure 28.16.

FIGURE 28.16. Lemma 28.5

LEMMA 28.5.
(28.10) tim 4 =0
e—0 £
O(e)
0(62) TC(E)‘f (0)
0
0 t(e)

FIGURE 28.17. Proof of Lemma 28.5

Proof of Lemma. Expand f.(z) in a series in &:
(28.11) fo(x) = fo(x) +eg(x) + O(?).

Let t(e) be the critical point of the function f.(z) near zero; since t(0) = 0, one
has: t(e) = O(e). It follows from (28.11) that

c(e) = fe(t(e)) = fo(t(e)) + eg(t(e)) + O(e?).
Since fy has a critical point at z = 0 with zero critical value, fo(z) = O(z?), and
hence fo(t(c)) = O(e?). Also g(t(g)) = g(0) + O(e). It follows that c(e) = eg(0) +
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O(&?). But (28.11) implies that f.(0) = £g(0) + O(g?). Hence c(¢) — f-(0) = O(?),
and (28.10) follows. See Figure 28.17. O

Now we can finish the proof of Theorem 28.9. Assume that the tangency of
line £(0) with the surface M)y is non-degenerate: for a quadratic surface, this
means that the line does not lie on the surface (cf. Lecture 16). We shall prove
the statement of the theorem for such a generic line, and then (28.9) extends to all
lines by continuity.

Recall that the surface My from the confocal family (28.4) passes through
point y. Then, through every point in a vicinity of y, there passes a quadratic
surface from this confocal family, and we consider the corresponding elliptic coor-
dinate A as a function, defined in a neighborhood of y. In particular, the value of
A at y is A(0).

We can restrict the function X on a straight line. A line is tangent to a quadratic
surface M. when the restriction of the function A\ on this line has a critical point
with the critical value ¢. Identify all the lines, sufficiently close to £(0), with the
real line, assuming that the origin on ¢(0) is at point y. Let  be the variable on
R. Subtract A(0) from the function A and denote its restriction on the line £(¢) by
f.(@).

Now we apply Lemma 28.5. Since the line £(0) is tangent to My (q), the function
fo(x) has a non-degenerate critical point at & = 0 with zero critical value. The
distance between the origins on the lines £(0) and £(¢) is of order ¢ (or higher).
Since the line £(¢) lies in the tangent plane 7 to the level surface {A = A(0)}, the
distance from the origin on this line to this surface is of order €2 or higher. That is,
f-(0) = O(¢?). By Lemma 28.5, lim._,o c(¢)/e = 0 where c(¢) = A(e) — A(0), and
(28.9) follows. O

Theorem 28.9 imposes very strong restrictions on the behavior of geodesics on
ellipsoids. The lines, tangent to a fixed geodesic v on M, are tangent to another
quadric @, confocal with M. Let = be a point of . The tangent plane to M at x
intersects @ along a conic (depending on z). The number of tangent lines to this
conic from z can be equal to 2, 1 or 0 (the intermediate case of a single tangent
line, having multiplicity 2, occurs when x belongs to the conic). Thus the surface
M gets partitioned into two parts depending on the number, 2 or 0, of common
tangent lines of M and @, passing through a fixed point on M. The geodesic v is
confined to the former part and can have only one of the two possible directions in
every point, namely, the directions of the common tangent lines of M and Q); see
Figure 28.18.

In conclusion, two remarks. First, most of the results concerning billiards
inside the ellipsoid and geodesics on the ellipsoid have multi-dimensional analogs;
for example, the tangent lines to a geodesic on an ellipsoid in n-dimensional space
are tangent to (n — 2) other fized quadratic confocal hypersurfaces.

Secondly, if the smallest semi-axis of an ellipsoid tends to zero, the ellipsoid
degenerates to a doubly covered ellipse. The geodesic lines on the ellipsoid become
the billiard trajectories inside this ellipse, and Theorem 28.9 implies Theorem 28.2
as its limit case.

For more information about billiards in general, and in particular, billiards
inside the ellipsoids and the geodesics on the ellipsoids, see, e.g., [78, 83].
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FIGURE 28.18. A geodesic on an ellipsoid: the lines tangent to
the geodesic are tangent to a confocal hyperboloid (transparent
and opaque)

John Smith Martyn Green Henry Williams
January 23, 2010 August 2, 1936 June 6, 1944
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January 23, 2010 August 2, 1936 June 6, 1944

28.8 Exercises.

28.1. Prove that, in terms of the angles in Figure 28.19, the area element (28.2)
can be expressed as w = sin a dadzx.

T

FiGURE 28.19. The angles associated with a chord

28.2. (a) Prove that the ellipse, hyperbola and parabola, given by the “gardener
construction” of Section 28.2, indeed have familiar equations of second degree.
(b) Deduce the formula for a confocal family of conics (28.3).

28.3. Prove the optical property of the parabola.

28.4. Prove that a billiard trajectory in an ellipse that starts at a focus tends
to the major axis of the ellipse.

28.5. (a) Consider a disc with center O and let A be a point inside the disc.
For every point X of the circle fold the disc so that the point X coincides with
point A. Prove that the envelope of the fold lines is the ellipse with the foci A and
O. What happens if A lies outside of the disc?

(b)* Given a smooth curve v and a point A, reflect the lines emanating from
A in «y. Let W be the locus of points obtained from A by reflection in the tangent
lines to y. Prove that W is a curve orthogonal to the reflected lines.

Hint. Approximate -y by an ellipse and use (a).

28.6. According to the optical property of the ellipse, rays emanating from
a point source of light L located at a focus of the elliptic mirror will pass, after
reflection, through the other focus. However, if L is not located at a focus, then
the reflected rays will not pass through one point; on the contrary, they will have
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an envelope, once again called the caustic. Draw a picture which allows to visualize
these caustics; consider three cases: L is close to the focus, L is not close to the
focus but still insuide the ellipse, L is outside of the ellipse. In the last case we
need to assume that the ellipse is both transparent and reflecting.

28.7. Geodesics emanating from a point of the sphere all arrive at the opposite
point. This will not be true, however, if one replaces the sphere by an ellipsoid.
Draw the family of geodesics emanating from a point of an ellipsoid (better take the
ellipsoid close to a sphere) in the neighborhood of the opposite point. What does
the envelope of this family look like? ( Warning: your picture should not contradict
to the fact that any two points of the ellipsoid can be joined by a geodesic.)

28.8. * Construct a trap for a parallel beam of light (by a trap we mean a non-
closed curve such that if a family of rays having, say, the vertical direction enters
the curve and starts to reflect in the curve according to the law of geometrical
optics, then no ray will ever escape to infinity).

Hint. Use the optical properties of the ellipse and the parabola.

¢

28.9. Find an elementary geometry proof of the
Euclidean geometry”.

‘most elementary theorem of

28.10. Show that the Cartesian coordinates are expressed in terms of the elliptic
ones as follows:

2 (a® + A1) (a? + A2) 2 (0% + A1) (02 + A2)

b2 _ o2 Y= b2 _ o2

28.11. The apparent contour of an algebraic surface given by an equation of

degree n is an algebraic plane curve given by an equation N. Prove this and find
the relation between n and N.







LECTURE 29

The Poncelet Porism and Other Closure Theorems

29.1 The closure theorem. Consider two nested ellipses, v and I', choose
a point X on the outer one, draw a tangent line to the inner until it intersects
the outer at point Y, repeat the construction, starting with Y, and so on. We
obtain a polygonal line, inscribed into I' and circumscribed about . Suppose that
this process is periodic: the n-th point coincides with the initial one. Now start
at a different point, say, X;. The Poncelet closure theorem states that again the
polygonal line closes up after n steps, see Figure 29.1.

Poncelet’s porism! is a classical result of projective geometry. It was discovered
by Jean-Victor Poncelet when he was a prisoner during the Napoleonic war in the
Russian city of Saratov in 1813-1814, and published in 1822 in his “Traité sur les
propriétés projectives des figures”.

One can devise one’s own closure theorem as follows. Start with a parametrized
oval T'(t) with ¢ varying from 0 to 1. Choose a constant ¢ and consider the 1-
parameter family of chords I'(¢)I'(t + ¢). These chords have an envelope v. This
envelope may have cusps (but not inflection points, see Lecture 8); suppose it is
smooth, which will always be the case if ¢ is small enough. Then we obtain a pair
of nested ovals, I and ~y, for which the statement of the closure theorem holds.

Indeed, the correspondence X — Y is given, in the parameter ¢, by the formula
t — t+ c. A point returns back after n iterations if and only if nc is an integer.
This condition depends only on ¢, that is, on the pair of ovals, but not on the choice
of the starting point X, whence the closure theorem.

The question then is: given a pair of nested ellipses, how to choose a parameter
t on the outer one so that the correspondence T : X — Y is given by the formula
t—t+c?

29.2 Proof. First of all, stretch the plane so that I" becomes a circle (a tech-
nical name for stretching is an affine transformation). Since the Poncelet theorem

IFor all practical purposes, the Greek word “porism” means “theorem”. One of the lost
books by Euclid was “Porisms”.

397
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FIGURE 29.1. The Poncelet closure theorem

involves only lines (but not distances or angles), transformations of the plane that
take lines to lines do not violate the theorem (such transformations are called pro-
jective). We consider the circle ' in its arc length parameter x.

FIGURE 29.2. Left and right tangent segments

Denote by R, (x) and L-(x) the lengths of the right and left tangent segments
from point x to the curve 7, see Figure 29.2. Consider a point z1, infinitesimally
close to . Let O be the intersection point of the lines xy and x1y; and € the angle
between these lines. The line z1y;, as every line, makes equal angles with the circle
I'; denote this angle by «, see Figure 29.3.

What follows is, essentially, the argument from Theorem XXX, Figure 102, in
I. Newton’s “Principia” [55]; see also Lecture 30.
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!

FIGURE 29.3. Distortion of the arc length

By the Sine theorem,

lyya| _ sine _ Jaz|

L,(y)  sina R ()

or

dy dx
(29.1) ==
L (y) Ry (x)

Assume, for the moment, that - is a circle too. Then the right and left tangent
segments are equal: R (z) = L (x). Denote this common value by D, (x). It follows
from (29.1) that the length element dz/D- (z) is invariant under the transformation
T. Tt remains to choose a parameter ¢ so that this length element is dt; this is done

by integrating:
/ dx
t= [ ——,
Dy (x)

and the transformation 7" becomes a translation ¢ — ¢ 4 c.

Finally, if + is not a circle, let A be a stretching of the plane that takes v to
a circle. An affine transformation does not change the ratio of parallel segments.
Taking (29.1) into account, we have:

dv  Ry(r) 