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Heuristic approach for the integrated inventory-
distribution problem 

 

Abstract 

We study the integrated inventory distribution problem.  We consider an environment in which 

the demand of each customer is relatively small compared to the vehicle capacity, and the 

customers are located closely such that a consolidated shipping strategy is appropriate.  The 

model considers inventory holding, backorder, and transportation costs.  We develop a heuristic 

procedure to obtain an approximate solution for this NP-hard problem and demonstrate its 

effectiveness through computational experiments.  

 

 

1. Introduction 

Recent decades have seen fierce competition in local and global markets, forcing manufacturing 

enterprises to streamline their logistic systems, as they comprise an important component of the 

final cost of goods. The major components of logistic costs are transportation costs, representing 

approximately one third, and inventory costs, representing one fifth (Buffa and Munn, 1989). 

The transportation and inventory cost reduction problems have been thoroughly studied 

separately; while, the integrated problem has recently attracted more interest in the research 

community as new ideas of centralized supply chain management systems, such as vendor 

managed inventory (VMI), have gained acceptance in many supply chain environments.  

 The integration of transportation and inventory decisions is represented in the literature by a 

general class of problems referred to as dynamic routing and inventory (DRAI) problems. As 



 2

defined by Baita et al. (1998), this class of problems is “characterized by the simultaneous 

vehicle routing and inventory decisions that are present in a dynamic framework such that earlier 

decisions influence later decisions.” They classify the approaches used for DRAI problems into 

two categories. The first category operates in the frequency domain where the decision variables 

are replenishment frequencies, or headways between shipments. Examples in the literature 

include the work of Blumenfeld et al. (1985), Hall (1985), Daganzo (1987), and Ernst and Pyke 

(1993) (for more references see Daganzo, 1999).  

 The second category, referred to as the time domain approach, determines the schedule of 

shipments.  With discrete time models, quantities and routes are decided at fixed time intervals. 

Within this category the most famous problem is the inventory routing problem (IRP), which 

arises in the application of the distribution of industrial gases. The main concern for this kind of 

application is to maintain an adequate level of inventory for all the customers and to avoid any 

stockout. In the IRP, it is assumed that each customer has a fixed demand rate and the focus is on 

minimizing the total transportation cost; while inventory costs are generally not of concern. 

Examples of this application in the literature include Bell et al. (1983), Golden et al. (1984), 

Dror et al. (1985), Dror and Ball (1987) and recently Campbell et al. (2002). 

 In this paper, we consider a DRAI problem that addresses the integrated inventory and 

vehicle routing decision problem in the time domain.  This problem, referred to as the integrated 

inventory distribution problem (IIDP), considers multiple planning periods, both inventory and 

transportation costs, and a situation in which backorders are permitted.  The kind of application 

that permits backorders is, of course, different from the distribution of industrial gas, where no 

shortage is allowed.  Backorder decisions are generally justified in two cases. The first is when 
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there is insufficient vehicle capacity to deliver to a customer. The second case is when there is 

transportation cost saving that is higher than the incurred backorder cost by a customer.  

 In the literature, the integration between vehicle routing and inventory decisions with the 

consideration of inventory costs in the time domain approaches of the DRAI problems has taken 

different forms.  In a few cases a single period planning problem has been addressed as found in 

Federgruen and Zipkin (1984) and Chien et al. (1989). In the multi-period problem, the decisions 

are conducted for a specific number of planning periods, or the problem is reduced to a single 

period problem by considering the effect of the long term decisions on the short term ones. 

Examples include Dror and Ball (1987), Trudeau and Dror (1992), Viswanathan and Mathur 

(1997), and Herer and Levy (1997). 

 Other researchers take into consideration various forms such as distributing perishable 

products (Federgruen et al., 1986), and the consideration of the time value of money for long-

term planning (Dror and Trudeau, 1996). Some work focused on different structures of the 

distribution network such as Bard et al. (1998) in the case of satellite facilities, Chan and Simchi-

Levi (1998) in the case where warehouses act as transshipment points in a 3-level distribution 

network, and Hwang (1999 and 2000) in the case of a multi-depot problem. Two papers dealt 

with the integrated production-distribution-inventory problem: Chandra and Fisher (1994) and 

Fumero and Vercellis (1999). 

 To the best of our knowledge the consideration of backorder and shortage costs in the multi-

period planning problem is found only in one case in Herer and Levy (1997). However, they did 

not explicitly take backorder decisions into consideration in their solution approach as they 

impose a constraint that would never allow a delivery to a customer to be made after its 

inventory is consumed. In addition, they assume that customers with high demand rates are 
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treated separately. We introduce a new heuristic approach for solving the problem with 

backorders and benchmark it against lower and upper bounds found by a commercial software 

package, CPLEX, and a simple no inventory heuristic.   

 The rest of the article is organized as follows. In Section 2 we formulate the problem as a 

mixed integer program. The proposed heuristic is presented in Section 3. In Section 4 the 

experimental results are presented followed by the conclusion and directions for future research 

in Section 5. 

 

2. Problem Description and Mixed Integer Programming Formulation 

In the IIDP, we study a distribution system consisting of a depot, denoted 0, and geographically 

dispersed customers, indexed 1,…,N.  Each customer i faces a different demand dit per time 

period t (day/week). As traditionally considered, a single item does not restrict the problem to the 

case of a single product distribution, as the word ‘item’ can refer to a unit weight or volume of 

the distributed products and each customer can be viewed as a consumption center for packages 

of unit weight or volume (Daganzo, 1999).  We consider the case in which the demand of each 

customer is relatively small compared to the vehicle capacity, and the customers are located 

closely such that a consolidated shipping strategy is appropriate. Deliveries to customers 1,…,N 

are to be made by a capacitated heterogeneous fleet of V vehicles, each with capacity qv starting 

from the depot at the beginning of each period. Each customer i maintains its own inventory up 

to capacity Ci and incurs inventory holding cost of hi per period per unit and a backorder penalty 

of πi per period per unit  on the end of period inventory position. We assume that the depot has 

sufficient supply of items that can cover all customers’ demands throughout the planning 
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horizon.  The planning horizon considers T periods. Transportation costs include ft a fixed usage 

cost per vehicle, which depends on the period t, and cij a variable transportation cost between i 

and j, which satisfies the triangular inequality.  The objective is to minimize the overall 

transportation, inventory holding and shortage costs incurred over a specific planning horizon.   

We consider an integer variable xv
ijt, which equals 1 if vehicle v travels from i to j in period t, and 

0 if it does not.  The amount transported on that trip is represented by yv
ijt.  At customer i, the 

inventory at time t is Iit and the backorder at time t is Bit.  The following is a mixed integer 

programming formulation for the problem.   

 
[IIDP] – Integrated inventory distribution problem 
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yv
ijt  ≥ 0 i = 0, …, N ,  j = 0, …, N, i ≠ j , t = 1, …, T  and v = 1, …, V (9) 

xv
ijt = 0 or 1,  i = 0, …, N ,  j = 0, …, N, i ≠ j , t = 1, …, T  and v = 1, …, V  (10) 

 

 The objective function includes transportation costs and inventory holding and shortage costs 

on the end inventory position. Constraints (1) make sure that a vehicle will visit a location no 

more than once in a time period, and constraints (2) ensure route continuity. Constraints (3) serve 

for two purposes. The first one is to ensure that the amount transported between two locations 

will always be zero whenever there is no vehicle moving between these locations, and the second 

is to ensure that the amount transported is less than or equal to the vehicle’s capacity. Constraints 

(4) are necessary to eliminate sub-tours. Constraints (5) are the inventory balance equations for 

the customers.  Constraints (6) limit the inventory level of the customers to the corresponding 

storage capacity. It is assumed that the amount consumed by each customer in a given period is 

not kept in the customer’s storage location; accordingly, it is not accounted for in constraints (6). 

Constraints (7) to (10) are the domain constraints. 

  

3. Approximate Transportation Costs Heuristic 

The integrated inventory and routing problem IIDP is NP-hard as it includes the vehicle routing 

problem (VRP). We therefore propose a constructive heuristic that provides a good solution in a 

reasonable time.  Solution heuristics that have been proposed in the literature for the different 

variations of the integrated inventory-distribution problem, particularly the inventory routing 

problem, are either based on subgradient optimization of a Lagrangian relaxation (see Bell et al., 

1984 and Chien et al., 1989) or a constructive procedure.  The constructive heuristics are broadly 

classified into heuristics that allocate customers to service days and then solve a VRP to generate 
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vehicle routes for each day (Dror and Ball, 1987); and heuristics that allocate customers to days 

and vehicles and then solve a traveling salesman problem for every assignment (Dror et al., 

1985).   

 The constructive heuristic we propose here is of this later type.  These strategies are mostly 

used when the inventory routing problem is not allowed backorders and the inventory holding 

costs are negligible. The consideration of inventory holding and shortage costs in the IIDP 

demands a modification to this strategy to explore the tradeoffs between transportation, 

inventory,  and backorder costs among customers.   

 

3.1. Algorithm Description 

Although the IIDP problem in question has two types of capacity constraints, storage limit at the 

customer and vehicle capacity, the main idea behind the proposed heuristic is inspired by the 

optimal policies for the uncapacitated lot-sizing problem (Silver et al., 1998).  The guiding 

principles for the uncapacitated case can motivate an effective heuristic for the IIDP, especially 

when the demand of each customer per period is small relative to the capacities (although the 

total demand across all customers could exceed the capacity).  These guiding principles are (1) 

deliveries are only made when the customer's inventory reaches zero, and (2) if inventory to a 

particular customer is carried over to the next period, there will be no delivery in the next period.  

 The main steps that our Approximate Transportation Costs Heuristic (ATCH) takes to decide 

what should be delivered on period t are the following:  First, for every customer i that needs 

delivery in period t and every period τ ≥ t whose demand could be serviced, we construct an 

estimate of the transportation cost values (TRi,τ).  This estimate, which is described in Subsection 

3.3, corresponds to the cost reduction obtained by removing a customer from the delivery tour.  
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Then the values TRi,τ are compared to the inventory holding and shortage costs that result by 

adding or subtracting quantities to the day t delivery of each customer.  Finally, after deciding 

the delivery for each customer, a VRP is solved using a savings algorithm (Clarke and Wright, 

1964) with these updated delivery amounts.  We note that any efficient solution technique for the 

VRP can be used at the last step.  

 Note that we only estimate future transportation costs for customers that require a delivery in 

period t. Thus, the solution we obtain will only consider deliveries to clients that have an 

inventory that reaches zero in the beginning of that period (and has positive demand), in 

agreement with our first guiding principle.  If we assume that an individual customer demand is 

small compared to vehicle capacity, it is rare that satisfying a future demand to a customer will 

saturate the vehicle capacity.  Thus when profitable, the solutions obtained by ATCH will tend to 

completely satisfy future demand, in agreement with the second guiding principle. 

 The comparison between the estimated transportation costs TRi,τ and inventory holding and 

shortage costs is separated into deciding whether to have backorders on period t and whether to 

use excess capacity in the vehicles to cover future customer demand.    

 Backorders can be profitable for two reasons, it is either cheaper to pay the backorder cost 

than the transportation cost, or there is insufficient capacity in the vehicles to satisfy demand.  

Let δi,t = di,t - Ii,t-1 + Bi,t-1 be the outstanding demand at customer i at the beginning of period t, 

and let ND be the set of customers that have δi,t > 0.  The following problem decides whether to 

deliver to customer i in period t or not (zi = 1 or 0 respectively) and the quantity ri to deliver such 

that the sum of backorder cost and estimated transportation cost is minimized and vehicle 

capacity constraints are satisfied. 

 [SUB1] – Backorder decision sub-problem 
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Constraint (11) ensures that we do not exceed the total vehicle capacity of period t, and 

Constraint (12) enforces that we deliver at most the outstanding demand and only to clients 

included in the delivery in period t.   
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 Constraint (15) represents both the available vehicle capacity and customers’ storage limits. 

For simplification, the customers’ storage limits are represented by the time index (TLi), which is 

computed in advance. In addition, the precedence constraints (16) are added to represent the fact 

that future demand in a certain day is to be considered only if the customer’s preceding day 

demand is fulfilled.  

 By solving SUB1 and SUB2, the algorithm decides how much to deliver to each customer in 

day t.  The used delivery routes are actually computed by solving a VRP. The flow chart in Fig. 1 

summarizes the major steps of the proposed heuristic ATCH. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An outline of ATCH 

1. Estimate transportation cost values (TRi,τ) for each customer i that needs delivery in 
every day τ , where τ  is from t to a maximum possible future delivery day. 

2.  Using TRi,τ values, formulate and solve sub-problems SUB1 and SUB2 to decide how 
much to be added to or subtracted from the deliveries in day t.  

t ≤ T 
Yes 

No 
Stop

Start 

0. Start with day index t=1 

3.  Using customers’ updated delivery values for day t, solve a VRP to generate vehicle 
tours.  Then, set t = t+1 
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 The following subsection provides the algorithmic solutions for both sub-problems used to 

decide the amount of delivery to each customer and related analysis. 

 

3.2. Solving Sub-Problems 

We present the following result that characterizes optimal solutions to sub-problem SUB1.  

Proposition 1.  There is an optimal solution to SUB1 that only makes deliveries to customer i if 

the quantity delivered satisfies ri > TRi,t / πi .  Also, every optimal solution to SUB1 only makes 

deliveries if  ri ≥ TRi,t / πi .  

Proof.  Assume that in the optimal solution to SUB1, some customer i is delivered ri that 

satisfies ri ≤ TRi,t / πi , or equivalently ( ) tiitiitii TRr ,,, δπδπ ≥+− .   If we consider the modified 

solution obtained by setting zi = ri = 0, then the previous inequality shows that the modified 

solution, which is feasible, is at least as good as the optimal solution.  In the case when ri < TRi,t 

/ πi , then the modified solution is strictly better. Thus, the original solution cannot be optimal. □ 

 Based by this result, we construct an efficient feasible solution to SUB1 by guaranteeing that 

it only makes deliveries when the amount delivered satisfies ri > TRi,t / πi.  We develop a greedy 

algorithm that assigns delivery quantities to potential customers in the order of their πi values. 

The algorithm is inspired by the following fractional knapsack problem obtained by considering 

deliveries to all customers and replacing variables ri with wi = ri/δi,t  in SUB1: 

Max ∑
∈NDi

itii w,δπ  

Subject to: 

≤∑
∈NDi

iti w,δ ∑
=

V

v
vq

1
    

1≤iw  NDi ∈∀   
 



 12

 The optimal solution for this fractional knapsack problem is obtained by a greedy algorithm 

with customers sorted by their iπ  values. Accordingly, the following is the algorithm that 

constructs an efficient solution to SUB1:   

Procedure SUBALG1 
1. Remove customers that have δi,t ≤ TRi,t / πi  from set ND; 

2. Let ∆Q = ∑
∈NDi

ti,δ –∑
=

V

v
vq

1
; 

3. Sort customers in set ND in an increasing order of πi values; 
4. For each customer i in the ordered set ND do 

If ∆Q ≥ δi,t then let ∆Q = ∆Q – δi,t, ri = 0, remove i from set ND; 
If δi,t > ∆Q > 0 then 

If  δi,t – ∆Q >TRi,t / πi , let ri = δi,t –  ∆Q, ∆Q = 0; 
Else let ∆Q = 0, ri = 0, remove i from set ND; 

 If ∆Q ≤ 0 then let ri = δi,t for all unassigned i in set ND, STOP; 
  Continue; 

 
     

 The sub-problem SUB2 is a precedence constrained knapsack problem (PCKP) which is 

known to be NP-hard (Garey and Johnson, 1979). However, Johnson and Niemi (1983) provide a 

dynamic programming algorithm for the PCKP that can solve the problem in a pseudo-

polynomial time, given that the underlying precedence graph is a tree, which is fortunately a 

property of SUB2. To illustrate this property, consider the sample case for SUB2 illustrated in 

Fig. 2. The decision variables uiτ  are represented by directed arcs, where the cost saving 

associated with each arc Siτ-t = ( ) ττ τ iii dhtTR −−, . A solid vertical line is drawn to represent the 

time limit TLi for customer i. Starting from node 0, arcs are to be selected using the order given 

by their directions, such that the total cost saving is maximized and the given capacity constraint 

is not violated. 
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Fig. 2. Tree property of precedence constraints in a sample SUB2 problem 

 

 We present here a simpler algorithm based on a greedy search that selects the next possible 

arc that has the maximum positive saving. This algorithm does not guarantee optimality to the 

solution of SUB2; however, it can produce relatively good solutions in polynomial time. The 

following steps describe the algorithm.  

Procedure SUBALG2 
1. For every customer i in set ND, Let ∆ti = 1; 
2. Find customer j in set ND that has the largest positive value of 

( )
jttjjjtj dhtTR ∆+∆− ,, ; If none found then STOP; 

3. If DL ≥ 
jttjd ∆+, then  

Let DL = DL - 
jttjd ∆+, ; 

Add 
jttjd ∆+, to customer j’s delivery amount; 

Let ∆tj = ∆tj +1; 
If ∆tj > TLj then remove customer j from set ND; 

 End-If 
 Else remove customer j from set ND; 

4. If ND = Ø then STOP; Else go to step 2. 
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 Obviously, the optimal solutions to the sub-problems depend significanly on the estimated 

transportation cost values. The following subsection discusses an appropriate method to calculate 

these estimates. 

 

3.3. Estimating Individual Customer Transportation Cost 

An appropriate method to estimate the individual customer transportation cost values (TRi,τ) is to 

calculate the cost reduction that will result when customer i is excluded from the vehicle tour that 

includes it, given the VRP solutions. The VRP solutions need to be obtained for the current day t 

and for all future days for which customers’ demands can be covered in day t while considering 

capacity constraints. A suitable heuristic such as the Savings algorithm can be used to generate 

efficient VRP tours using the appropriate demand values for each day studied. However, if the 

summation of customers’ demands is found to exceed the available vehicle capacity, customers 

with the lowest unit shortage costs are assigned transportation cost values equal to the 

transportation costs incurred by a direct shipment from the depot. 

 The transportation cost estimates must be repeatedly updated during the course of the 

algorithm.  In particular, in SUBALG1 the estimation of transportation costs has to be updated 

every time a customer is removed in steps 1 and 4.  Similarly, in algorithm SUBALG2, after 

each arc selection made in step 3, the TRi,τ values for the remaining customers in the 

corresponding day of the selected arc have to be recalculated for the next iteration’s comparison. 

This recalculation is not expensive in terms of computational time, as it does not necessarily 

require resolving a VRP. 
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4. Experimentation and Results 

Two versions of the ATCH have been programmed. The first one uses a dynamic programming 

algorithm to solve sub-problem SUB2 optimally, and is referred to as ATCH-DP. The second 

version uses the provided greedy-search algorithm instead to solve for SUB2, and is referred to 

as ATCH-G. We benchmark these heuristics against a simple heuristic that does not allow any 

inventory to be carried from each day.  That is, in each period the day’s demand is shipped to 

each customer if there is sufficient capacity.  This heuristic, referred to as MPVRP, represents a 

solution to a multi-period VRP, where backorder decisions are taken only if the summation of 

the customers’ demands in a given period is found to be greater than the available vehicle 

capacity, and the backorder decisions follow the same approach of the heuristic ATCH. The 

results of the MPVRP are intended to illustrate the benefit of the inventory decisions made by the 

ATCH heuristics. These heuristics are benchmarked against the lower and upper bounds 

obtained by CPLEX 8.1 with a maximum running time of 60 minutes using an Intel Pentium 4 

processor running with a clock speed of 2.53 GHz. The presolve option of CPLEX is enabled to 

exploit the initial efficient cuts added by CPLEX to improve the obtained lower bounds.  

 

4.1. Experimental Design 

We assume that customers are allocated in a square of 20×20 distance units and their coordinates 

are generated using a uniform distribution within these limits. The depot is located in the middle 

of the square.  

 We generate random test problems where backorder decisions are economical, so that the 

backorder decisions of the heuristic ATCH are assessed.  That is, we set the parameter values so 

it is optimal to carry backorders.  Customers’ unit holding costs are generated using a normal 
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distribution with a mean of 0.1 and a standard deviation of 0.02, and each customer has a storage 

capacity of 120 items. The transportation cost per unit distance is set to 2, the customers’ unit 

shortage costs are generated using a normal distribution with a mean of 3 and a standard 

deviation of 0.5, and the customers’ demands are generated using a uniform distribution from 5 

to 50 items per day. 

 Sixty test problems have been generated by varying the number of customers (N), the number 

of planning periods (T) and the number of homogenous vehicles (V). We generate three levels of 

N (5, 10 and 15), two levels of T (5 and 7), and two levels of V (1 and 2).  For each combination 

of N, T, and V, we randomly generate five problems. The total vehicle capacity is selected to be 

fixed at 150, 300, and 450 for each level of N, respectively. 

 The naming convention of the test problems starts with the letters ‘IIDP’, followed by two 

digits for the number of customers. The third digit represents the length of the planning horizon, 

and the fourth digit represents the number of vehicles.  Finally, the replicate number is given at 

the last digit, and is separated from the former digits by a hyphen.   Thus, the problem IIDP0551-

1 represents the first randomly generated test problem with 5 customers, a planning horizon of 5 

periods and 1 vehicle. 

 

4.2. Results and Discussion 

The results of the experiments are listed in Table 1.   The table lists the total cost, the inventory 

holding, shortage and transportation costs of the three heuristics along with the CPLEX lower 

and upper bounds.  An * next to the lower bound in the tables indicates that CPLEX was able to 

find the optimal solution within the one hour time limit.   
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 The percentage differences between the total cost obtained by each heuristic and the lower 

and upper bounds are used as performance indicators. These percentage differences are 

calculated by taking the ratio of the difference between the heuristic’s total cost and the bound to 

the heuristic’s total cost.  A comparison against the CPLEX lower bound provides some measure 

of deviation from optimality.  A comparison against the CPLEX upper bound provides some 

benchmark of the heuristic against solving the problem using a general purpose commercial 

package.   Accordingly, a negative upper bound (UB) percentage difference is an indicator that 

the heuristic outperforms the general purpose package. These percentage differences and the 

computational times (in minutes) for the three heuristics are listed in Table 2.  

 The computational times are the actual CPU times recorded by running the heuristics on an 

Intel Pentium 4 processor, running at a clock speed of 2.53 GHz.  In some cases, the table lists a 

value of 0.00 for the CPU time which means the time to compute the solution was negligible.   

The computational times for the ATCH-G and MPVRP heuristics are less than a second in all 

test problems; whereas for heuristic ATCH-DP the computational time increased with the 

problem size to a few seconds, due to the pseudo-polynomial part of the algorithm.    

Only for the small problem sizes (i.e., for some of the cases with 5 customers) was CPLEX 

able to find the optimal solution within the one hour time limit.  Of the three heuristics (ATCH-

DP, ATCH-G, and MPVRP), ATCH-DP provided the lowest costs in most cases with the simple 

no inventory heuristic performing the worst.  The performance of the two ATCH heuristics was 

close to one another suggesting that the greedy search to solve SUB2 is efficient.  A comparison 

between the CPLEX lower and upper bounds shows that the deviation from the lower bounds for 

the ATCH heuristics does not significantly increase as the size of the problem increases and that 

initially for the small problems the CPLEX upper bound outperforms the heuristics.  However, 
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for the larger problems the ATCH heuristics significantly outperform the CPLEX upper bound.  

This is best illustrated by examining Fig. 3.      

 In this figure, the heuristic solution percentage difference with the lower bound for the three 

heuristics and the CPLEX upper bound are represented graphically. These measures are plotted 

against the number of binary variables in the IIDP formulation as a representation for the 

problem size. Each point in the graph represents the average of the bounds percentage 

differences calculated for the five replications of each problem combination.     

 As illustrated in Fig. 3, the lower bound percentage differences for both the ATCH-DP and 

the ATCH-G lie below 20% for small sized problems and stay within this level for larger 

problems.  As the figure illustrates, the ATCH heuristics rapidly outperform the CPLEX upper 

bound as the problem size increases.  The performance of the ATCH-DP is better than the 

ATCH-G in small sized problems. However, with the increase of the problem size, their results 

appear to be converging. 
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Table 1. Detailed costs for the test problems 
CPLEX bounds ATCH-DP ATCH-G MPVRP 

Problem UB LB Hold. Short. Transp. Total Hold. Short. Transp. Total Hold. Short. Transp. Total
IIDP0551-1 649.8 649.8* 4.44 148 535 687.83 2.43 197.7 502 702.09 0 304 531 835.25 
IIDP0551-2 468 468* 5.46 54.8 477 537.27 5.46 54.81 477 537.27 0 151 525 676.2
IIDP0551-3 400 400* 42.7 16.2 348 406.85 13.37 42.7 374 430.07 0 42.7 425 467.7
IIDP0551-4 475.29 475.29* 5.11 19.8 451 475.95 5.68 19.84 455 480.52 0 39.7 490 529.68
IIDP0551-5 426.01 426.01* 6.75 67.1 408 481.87 8.34 67.12 408 483.46 0 105 540 645.16
IIDP0571-1 522.97 522.97* 19.65 0 621 640.65 31.57 22.8 580 634.37 0 0 854 854
IIDP0571-2 557.89 557.89* 21.49 129 430 580.81 14.59 156.9 439 610.47 0 129 532 661.32
IIDP0571-3 434.86 434.86* 12.86 37.1 461 510.92 12.86 37.06 461 510.92 0 37.1 553 590.06
IIDP0571-4 536.42 536.42* 22.7 56.4 568 647.07 26.32 48.75 571 646.07 0 15.1 770 785.12
IIDP0571-5 498.08 498.08* 12.62 33.6 536 582.22 18.92 33.6 536 588.52 0 15.8 651 666.84
IIDP0552-1 522.82 509 9.13 0 541 550.13 11.53 0 552 563.53 0 0 604 604
IIDP0552-2 940.47 933.76 0 399 593 991.78 0 398.8 593 991.78 0 399 593 991.78
IIDP0552-3 512.44 497.98 16.04 14.5 548 578.56 15.27 39.84 583 638.11 0 0 684 684
IIDP0552-4 537.37 519.91 4.94 26.4 524 555.34 9.01 26.4 546 581.41 0 28.6 560 588.6
IIDP0552-5 553.2 536.52 5.96 0 571 576.96 5.96 0 571 576.96 0 18.4 650 668.41
IIDP0572-1 828.6 789.04 5.81 70.3 904 980.06 5.81 70.25 904 980.06 0 101 933 1034.2
IIDP0572-2 988.31 943.43 2.92 98.9 941 1042.9 2.92 98.94 941 1042.8 0 128 976 1104
IIDP0572-3 864.23 793.38 5.04 55 900 960.04 5.04 55 900 960.04 0 90 965 1055
IIDP0572-4 786.53 738.55 11.47 64.6 860 936.11 13.87 64.64 859 937.51 0 121 933 1054.3
IIDP0572-5 771.35 728.76 20.18 58.2 852 930.36 17.98 58.18 859 935.16 0 41.4 1052 1093.4
IIDP1051-1 528.69 509.59 21.58 19.3 532 572.84 21.58 19.26 532 572.84 0 0 700 700 
IIDP1051-2 487.7 423.78 47.26 0 448 495.26 43.41 0 472 515.41 0 2.09 610 612.09
IIDP1051-3 724.13 660.23 3.6 142 553 698.7 3.6 142.1 553 698.7 0 169 565 734.05
IIDP1051-4 456 445.86 21.22 0 442 463.22 18.7 0 456 474.7 0 44.3 530 574.31
IIDP1051-5 591.03 546.62 33.61 27.8 546 607.43 19.26 27.82 582 629.08 0 51.4 675 726.36
IIDP1071-1 784.36 728.48 35.77 47.8 731 814.52 35.33 47.75 731 814.08 0 33 861 894
IIDP1071-2 842.4 730.1 35.37 37.7 758 831.05 37.67 37.68 753 828.35 0 37.7 875 912.68
IIDP1071-3 748.65 668.8 72.15 0 697 769.15 54.83 0 753 807.83 0 77.7 959 1036.7
IIDP1071-4 897.24 799.72 65.85 27.7 795 888.57 57.8 13.86 865 936.66 0 27.7 1155 1182.7
IIDP1071-5 763.69 712.32 36.19 19.6 724 779.75 27.63 19.56 778 825.19 0 32.6 889 921.6
IIDP1052-1 829.24 758.39 10.77 105 715 831.04 10.77 105.3 715 831.04 0 95.4 797 892.39
IIDP1052-2 676.22 566.94 35.34 0 662 697.34 52.66 0 694 746.66 0 158 787 945.18
IIDP1052-3 759.4 659.22 19.28 26.4 724 769.63 20.58 26.35 728 774.93 0 22.9 830 852.9
IIDP1052-4 630.89 509.46 26.17 0 669 695.17 26.8 0 667 693.8 0 5.46 699 704.46
IIDP1052-5 799.24 718.07 8.5 46.9 742 797.42 6.41 46.92 761 814.33 0 46.9 802 848.92
IIDP1072-1 955.63 808.46 37.19 43.9 932 1013.1 40.69 69.8 893 1003.4 0 126 1201 1326.6
IIDP1072-2 1266.9 1029.21 31.53 99.8 1144 1275.3 31.53 99.81 1144 1275.3 0 169 1339 1508.4
IIDP1072-3 1037.6 857.06 44.7 48.1 1026 1118.8 55.12 99.63 975 1129.7 0 0 1216 1216
IIDP1072-4 1135.9 896.78 39.79 45.2 1088 1173 55.41 45.18 1077 1177.5 0 155 1170 1325.3
IIDP1072-5 938.11 750.97 27.41 35 882 944.37 29.88 34.96 887 951.84 0 261 943 1203.9
IIDP1551-1 823.1 736.42 22.01 45.2 739 806.16 20.97 45.15 757 823.12 0 45.2 830 875.15 
IIDP1551-2 781.1 725.42 6.8 0 779 785.8 12.67 0 763 775.67 0 36.9 835 871.86
IIDP1551-3 800.63 666.94 20.23 77.2 643 740.41 20.79 77.18 644 741.97 0 169 765 934.47
IIDP1551-4 739.67 608.49 39.51 0 675 714.51 38.72 0 691 729.72 0 0 785 785
IIDP1551-5 1012.9 971.66 3.8 195 834 1033.3 3.78 182.7 852 1038.4 0 366 851 1217
IIDP1571-1 1095.1 747.3 80.96 48.2 813 942.16 91.35 0 857 948.35 0 219 1109 1328.1
IIDP1571-2 1097.7 660.8 85.18 0 752 837.18 63.73 0 825 888.73 0 338 1072 1409.8
IIDP1571-3 1217.2 800.45 94.91 0 929 1023.9 106.83 0 931 1037.8 0 0 1281 1281
IIDP1571-4 1095.3 803.99 86.96 0 917 1004 83.15 20.1 950 1053.2 0 233 1274 1506.8
IIDP1571-5 1383.8 1130.8 27.53 211 999 1237.4 38.34 210.9 998 1247.2 0 207 1169 1376.2
IIDP1552-1 924.1 620.96 39.04 14.6 795 848.64 56.67 14.6 761 832.27 0 185 914 1098.8
IIDP1552-2 818.36 595.9 39.02 0 707 746.02 50.05 25.28 682 757.33 0 40.3 855 895.32
IIDP1552-3 1103.7 923.58 55.26 22.5 888 965.73 56.45 0 912 968.45 0 10.1 1081 1091.1
IIDP1552-4 1086.4 923.82 14.05 101 937 1052 14.05 101 937 1052.0 0 129 985 1113.8
IIDP1552-5 1125.5 729.65 30.91 0 902 932.91 31.11 0 909 940.11 0 33.9 1009 1042.9
IIDP1572-1 1375.1 881.63 52.65 19.1 1118 1189.7 87.65 0 1108 1195.6 0 92 1277 1369
IIDP1572-2 1415.2 972.09 22.55 20.6 1146 1189.1 25.87 23.14 1152 1201.0 0 113 1220 1333.1
IIDP1572-3 1768.9 1042.43 67.25 21.1 1221 1309.4 60.24 21.12 1275 1356.3 0 111 1526 1636.9
IIDP1572-4 1328.7 920.04 83.92 0 1150 1233.9 106.63 0 1157 1263.6 0 0 1566 1566
IIDP1572-5 1575.2 1117.42 20.6 116 1199 1335.8 21.16 116.2 1207 1344.3 0 194 1257 1450.6

* Optimal solution found
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 Table 2. Lower and upper bounds percentage differences and computational time results  
ATCH-DP ATCH-G MPVRP Problem  

LB diff. % UB diff. % Time (min.) LB diff. % UB diff. % Time (min.) LB diff. % UB diff. % Time (min.)
IIDP0551-1 5.5 5.5 0.00 7.4 7.4 0.00 22.20 22.20 0.00 
IIDP0551-2 12.9 12.9 0.00 12.9 12.9 0.00 30.79 30.79 0.00
IIDP0551-3 1.7 1.7 0.00 7.0 7.0 0.00 14.48 14.48 0.00
IIDP0551-4 0.1 0.1 0.00 1.1 1.1 0.00 10.27 10.27 0.00
IIDP0551-5 11.6 11.6 0.00 11.9 11.9 0.00 33.97 33.97 0.00
IIDP0571-1 18.4 18.4 0.00 17.6 17.6 0.00 38.76 38.76 0.00
IIDP0571-2 3.9 3.9 0.00 8.6 8.6 0.00 15.64 15.64 0.00
IIDP0571-3 14.9 14.9 0.00 14.9 14.9 0.00 26.30 26.30 0.00
IIDP0571-4 17.1 17.1 0.00 17.0 17.0 0.00 31.68 31.68 0.00
IIDP0571-5 14.5 14.5 0.00 15.4 15.4 0.00 25.31 25.31 0.00
IIDP0552-1 7.5 5.0 0.00 9.7 7.2 0.00 15.73 13.44 0.00
IIDP0552-2 5.9 5.2 0.00 5.9 5.2 0.00 5.85 5.17 0.00
IIDP0552-3 13.9 11.4 0.00 22.0 19.7 0.00 27.20 25.08 0.00
IIDP0552-4 6.4 3.2 0.00 10.6 7.6 0.00 11.67 8.70 0.00
IIDP0552-5 7.0 4.1 0.00 7.0 4.1 0.00 19.73 17.24 0.00
IIDP0572-1 19.5 15.5 0.00 19.5 15.5 0.00 23.70 23.7 0.00
IIDP0572-2 9.5 5.2 0.00 9.5 5.2 0.00 14.55 10.48 0.00
IIDP0572-3 17.4 10.0 0.00 17.4 10.0 0.00 24.80 18.08 0.00
IIDP0572-4 21.1 16.0 0.00 21.2 16.1 0.00 29.95 25.40 0.00
IIDP0572-5 21.7 17.1 0.00 22.1 17.5 0.00 33.35 29.45 0.00
IIDP1051-1 11.0 7.7 0.00 11.0 7.7 0.00 27.20 24.47 0.00 
IIDP1051-2 14.4 1.5 0.00 17.8 5.4 0.00 30.77 20.32 0.00
IIDP1051-3 5.5 -3.6 0.00 5.5 -3.6 0.00 10.06 1.35 0.00
IIDP1051-4 3.7 1.6 0.00 6.1 3.9 0.00 22.37 20.60 0.00
IIDP1051-5 10.0 2.7 0.00 13.1 6.0 0.00 24.75 18.63 0.00
IIDP1071-1 10.6 3.7 0.00 10.5 3.7 0.00 18.51 12.26 0.00
IIDP1071-2 12.1 -1.4 0.00 11.9 -1.7 0.00 20.00 7.70 0.00
IIDP1071-3 13.0 2.7 0.00 17.2 7.3 0.00 35.49 27.79 0.00
IIDP1071-4 10.0 -1.0 0.00 14.6 4.2 0.00 32.38 24.14 0.00
IIDP1071-5 8.6 2.1 0.00 13.7 7.5 0.00 22.71 17.13 0.00
IIDP1052-1 8.7 0.2 0.00 8.7 0.2 0.00 15.02 7.08 0.00
IIDP1052-2 18.7 3.0 0.00 24.1 9.4 0.00 40.02 28.46 0.00
IIDP1052-3 14.3 1.3 0.00 14.9 2.0 0.00 22.71 10.96 0.00
IIDP1052-4 26.7 9.2 0.00 26.6 9.1 0.00 27.68 10.44 0.00
IIDP1052-5 10.0 -0.2 0.00 11.8 1.9 0.00 15.41 5.85 0.00
IIDP1072-1 20.2 5.7 0.00 19.4 4.8 0.00 39.06 27.96 0.00
IIDP1072-2 19.3 0.7 0.00 19.3 0.7 0.00 31.77 16.00 0.00
IIDP1072-3 23.4 7.3 0.00 24.1 8.2 0.00 29.52 14.67 0.00
IIDP1072-4 23.5 3.2 0.00 23.8 3.5 0.00 32.33 14.29 0.00
IIDP1072-5 20.5 0.7 0.00 21.1 1.4 0.00 37.62 22.07 0.00
IIDP1551-1 8.7 -2.1 0.00 10.5 0.0 0.00 15.85 5.95 0.00 
IIDP1551-2 7.7 0.6 0.00 6.5 -0.7 0.00 16.80 10.41 0.00
IIDP1551-3 9.9 -8.1 0.00 10.1 -7.9 0.00 28.63 14.32 0.00
IIDP1551-4 14.8 -3.5 0.00 16.6 -1.4 0.00 22.49 5.77 0.00
IIDP1551-5 6.0 2.0 0.00 6.4 2.5 0.00 20.16 16.78 0.00
IIDP1571-1 20.7 -16.2 0.00 21.2 -15.5 0.00 43.73 17.55 0.00
IIDP1571-2 21.1 -31.1 0.02 25.6 -23.5 0.00 53.13 22.14 0.00
IIDP1571-3 21.8 -18.9 0.01 22.9 -17.3 0.00 37.51 4.98 0.00
IIDP1571-4 19.9 -9.1 0.01 23.7 -4.0 0.00 46.64 27.31 0.00
IIDP1571-5 8.6 -11.8 0.00 9.3 -10.9 0.00 17.83 -0.55 0.00
IIDP1552-1 26.8 -8.9 0.01 25.4 -11.0 0.00 43.49 15.90 0.00
IIDP1552-2 20.1 -9.7 0.01 21.3 -8.1 0.00 33.44 8.60 0.00
IIDP1552-3 4.4 -14.3 0.02 4.6 -14.0 0.00 15.35 -1.15 0.00
IIDP1552-4 12.2 -3.3 0.00 12.2 -3.3 0.00 17.06 2.46 0.00
IIDP1552-5 21.8 -20.6 0.00 22.4 -19.7 0.00 30.04 -7.92 0.00
IIDP1572-1 25.9 -15.6 0.03 26.3 -15.0 0.00 35.60 -0.44 0.00
IIDP1572-2 18.3 -19.0 0.00 19.1 -17.8 0.00 27.08 -6.16 0.00
IIDP1572-3 20.4 -35.1 0.00 23.1 -30.4 0.00 36.32 -8.07 0.00
IIDP1572-4 25.4 -7.7 0.05 27.2 -5.1 0.00 41.25 15.15 0.00
IIDP1572-5 16.3 -17.9 0.00 16.9 -17.2 0.00 22.97 -8.59 0.00
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Fig. 3. % percentage difference against lower bounds vs. number of binary variables  

 

5. Conclusion and Future Work 

This article addressed the integrated inventory distribution problem in which vehicle routing and 

inventory holding and backorder decisions for a set of customers are to be made for a specific 

planning horizon.  We considered an environment in which the demand of each customer is 

relatively small compared to the vehicle capacity, and the customers are closely located such that 

a consolidated shipping strategy is appropriate. We presented a heuristic approach based on the 

idea of allocating single transportation cost estimates for each customer. Two sub-problems, 

comparing inventory holding and backorder decisions with these transportation cost estimates, 

are formulated and their solution methods are incorporated in the developed heuristic. A mixed 
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integer programming formulation is provided and used to obtain lower and upper bounds using 

CPLEX to assess the performance of the heuristic. The benchmarking results show that the 

developed heuristic can obtain solutions that are within 20% from optimal for this NP-hard 

problem in a reasonable amount of computation time. 

 The solution heuristic is based on guiding principles from the uncapacitated lot-sizing 

problems, which assume inventory replenishment decisions only when the customer’s inventory 

reaches zero. Using these principles, the heuristic generates solutions in which delivery 

schedules cover customers’ exact demand requirements in future days.  That is, partial 

fulfillment of a customer’s demand in a future day is not considered by the heuristic.  This 

approximation is reasonable when each individual customer order quantity is significantly less 

than the vehicle capacity since neglecting these partial demand fulfillments facilitates the 

decisions involved and results in significant reductions in transportation costs.  However, this 

strategy is clearly not always optimal. Thus, further research can focus on developing 

approximate solution approaches that allow for partial deliveries.   

 

 
 

  

 

 



 23

References 

Baita, F., Ukovich, W., Pesenti, R., and Favaretto, D. (1998) Dynamic routing-and-inventory 

problems: a review. Transportation Research, 32(8), 585-598. 

Bard, J. F., Huang, L., Jaillet, P., and Dror, M. (1998) A decomposition approach to the 

inventory routing problem with satellite facilities. Transportation Science, 32(2), 189-203. 

Bell, W. J., Dalberto, L. M., Fisher, M. L., and Greenfield, A. J. (1983) Improving the 

distribution of industrial gases with an on-line computerized routing and scheduling 

optimizer. Interfaces, 13(6), 4-23. 

Benders, J. F., (1962) Partitioning procedures for solving mixed-variables programming 

problem. Numerische Mathematik, 4, 238-252. 

Blumenfeld, D. E., Burns, L. D., Diltz, J. D., and Daganzo, C. F. (1985) Analyzing trade-offs 

between transportation, inventory and production costs on freight networks. Transportation 

Research, 19, 361-380. 

Buffa, F. P., and Munn, J. R. (1989) A recursive algorithm for order cycle-time that minimises 

logistics cost. Journal of the Operational Research Society, 40, 367-377. 

Campbell, A., Clarke, L., and Savelsbergh, M. (2002) Inventory routing in practice. The Vehicle 

Routing Problem, SIAM, Philadelphia, PA, pp 309-330. 

Chan, L. M. A., and Simchi-Levi, D. (1998) Probabilistic analyses and algorithms for three-level 

distribution systems. Management Science, 44(11), 1562-1576. 

Chandra, P., and Fisher, M. L. (1994) Coordination of production and distribution planning. 

European Journal of Operational Research, 72(3), 503-517. 



 24

Chien, T. W., Balakrishnan, A., and Wong, R. T. (1989) An integrated inventory allocation and 

vehicle routing problem. Transportation Science, 23(2), 67-76. 

Clarke, G., Wright, J. (1964) Scheduling of vehicles from a central depot to a number of delivery 

points. Operations Research, 12, 568-581. 

Daganzo, C. F. (1987) The break-bulk role of terminals in many-to-many logistic networks. 

Operations Research, 35, 543-555. 

Daganzo,C. F., (1999) Logistics Systems Analysis, Springer, Berlin, Reading, Germany. 

Dror, M., Ball, M., and Golden, B. (1985) A computational comparison of algorithms for the 

inventory routing problem. Annals of Operations Research, 4, 2-23. 

Dror, M., and Ball, M. (1987) Inventory/routing: reduction from an annual to a short-period 

problem. Naval Research Logistics, 34(6), 891-905. 

Dror, M., and Trudeau, P. (1996) Cash flow optimization in delivery scheduling. European 

Journal of Operational Research, 88(3), 504-515. 

Ernst, R., and Pyke, D. F. (1993) Optimal base stock policies and truck capacity in a two-echelon 

system. Naval Research Logistics, 40, 879-903. 

Federgruen, A., and Zipkin, P. (1984) Combined vehicle routing and inventory allocation 

problem. Operations Research, 32(5), 1019-1037. 

Fumero, F., and Vercellis, C. (1999) Synchronized development of production, inventory, and 

distribution schedules. Transportation Science, 33(3), 330-340. 

Golden, B., Assad, A., and Dahl, R. (1984) Analysis of a large scale vehicle routing problem 

with an inventory component. Large Scale Systems, 7(2-3), 181-190. 

Hall, R. W. (1985) Determining vehicle dispatch frequency when shipping frequency differs 

among suppliers. Transportation Research, 19B, 421-431. 



 25

Herer, Y. T., and Levy, R. (1997) The metered inventory routing problem, an integrative 

heuristic algorithm. International Journal of Production Economics, 51(1-2), 69-81. 

Hwang, H. (1999) Food distribution model for famine relief. Computers and Industrial 

Engineering, 37(1), 335-338. 

Hwang, H. (2000) Effective food supply and vehicle routing model for famine relief area. 

Journal of Engineering Valuation and Cost Analysis, 3(4-5), 245-256. 

Silver, E. A., Pyke, D. F., and Peterson, R. (1998) Inventory management and production 

planning and scheduling, Wiley, New York, NY. 

Trudeau, P., and Dror, M. (1992) Stochastic inventory routing: route design with stockouts and 

route failures. Transportation Science, 26(3), 171-184. 

Viswanathan, S., and Mathur, K. (1997) Integrating routing and inventory decisions in one-

warehouse multicustomer multiproduct distribution systems. Management Science, 43(3), 

294-312. 

 


