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Preface

No single volume could hope to describe, even succinctly, the tremendous
number of discoveries in cognitive science. We do not attempt this. Our

goal is to give readers a solid preparatory understanding of the major theoret-
ical contributions of each cognitive science discipline. So, rather than exhaus-
tively catalog all possible findings, we describe the major theories of mind that
have been developed within each discipline. But what is a theory of mind? We
define it as a unique, organized set of ideas that teaches us how to think about
the mind. We also describe models of mind. Whereas a theory is general and
may not be tied to a particular process, a model is specific and details how
information is represented and computed by a particular process.

This perspective means that we focus on theories and models rather than
the many experiments that have been conducted within cognitive science disci-
plines. We do not adopt the structure that is typical of textbooks in cognitive
psychology, for example, one that is ordered around detailed methodological
descriptions of classic experiments. We instead discuss general methods unique
to a perspective at the outset of each chapter. Some experimental results are
also presented, but these are intended to illustrate characteristics of a particu-
lar theory or model. Experiments and method in this book are thus used to
service larger conceptual ideas of mind rather than the other way around.

The Contents of the Book

Each chapter (or set of chapters) is devoted entirely to a single disciplinary
approach. These approaches include the evolutionary approach and robotics—
topics not usually addressed in other texts. The general structure of each
chapter is as follows: First, an approach is described in terms of what makes it

xv
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special. The major ideas that motivate each perspective and the problems each
attempts to solve are laid out. Following this, we present factual background
information that we believe is important and describe the approach’s method-
ology. The bulk of each chapter is devoted to detailing the specific discipline’s
significant theories and models of mind. Where relevant, we evaluate the
theory and outline its strengths and weaknesses. Each chapter ends with a
section entitled “Overall Evaluation.” These final sections evaluate the overall
contributions of the approaches. We hope that these evaluations help students
to realize that there is no single theory or approach that best captures what the
mind is about, and to think critically about these ideas on their own.

Throughout there is a consistent set of topics that we touch upon. These
topics are the major categories of mental processes. They include visual pattern
or object recognition, attention, memory, imagery, and problem solving. Judgment
and reasoning are dealt with primarily from an evolutionary perspective, while
language has its own chapter. In some cases, these topics are introduced in the
same order within chapters for ease of comparison. To further facilitate com-
parisons across chapters we have included a matrix (pp. xviii–xxii) that details
the primary and secondary topics, methodologies, major figures, and an evalua-
tion summary. The matrix is a useful tool for discerning similarities and differ-
ences across disciplines.

There are a number of distinctive features in this book. Every chapter con-
cludes with supplementary material, exercises, and activities. In Depth sections
illustrate specific theories in greater detail. The Minds On Exercises prompt
students to work on group activities that will help them to further connect with
chapter content. We also present Food for Thought sections with discussion
questions drawn from material throughout the chapter. Some of these discus-
sion questions are web questions that ask students to perform a specific activ-
ity or exercise on the Internet. Last but not least, there are lists of suggested
readings. These readings are for the most part accessible to an introductory
audience.

Beyond the Book

The text comes with many ancillary materials. Instructor’s Resources that
accompany the book are available on CD. The disk contains chapter outlines,
PowerPoint lectures, and a test bank with different question types. We also
include projects for instructors. These projects again encourage in-depth explo-
ration of selected topics. Some of the projects are web-based, others require
research, and all can serve as the basis of a topic for a paper. Students are able

xvi COGNITIVE SCIENCE
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to access a Companion Website containing electronic flashcards of glossary
terms. The website also allows students to take practice quizzes to assess their
level of understanding, and provides them with links used throughout the book
and some additional sites for further exploration.

xviiPreface
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“The sciences have developed in an order the reverse of what might
have been expected. What was most remote from ourselves was first
brought under the domain of law, and then, gradually, what was
nearer: first the heavens, next the earth, then animal and vegetable
life, then the human body, and last of all (as yet very imperfectly)
the human mind.”

—Bertrand Russell, 1935

A Brave New World

We are in the midst of a revolution. For centuries science has made great
strides in our understanding of the external observable world. Physics revealed
the motion of the planets, chemistry discovered the fundamental elements of
matter, biology has told us how to understand and treat disease. But during
much of this time, there were still many unanswered questions about something
perhaps even more important to us. That something is the human mind.

What makes mind so difficult to study is that, unlike the phenomena
described above, it is not something we can easily observe, measure, or manip-
ulate. In addition, the mind is the most complex entity in the known universe.

Introduction: Exploring Inner Space
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To give you a sense of this complexity consider the following. The human
brain is estimated to contain ten billion to one hundred billion individual nerve
cells or neurons. Each of these neurons can have as many as ten thousand con-
nections to other neurons. This vast web is the basis of mind, and gives rise to
all of the equally amazing and difficult-to-understand mental phenomena such
as perception, memory, and language.

The past several decades have seen the introduction of new technologies and
methodologies for studying this intriguing organ. We have learned more about
the mind in the past half-century than in all the time that came before that.
This period of rapid discovery has coincided with an increase in the number of
different disciplines—many of them entirely new—that study mind. Since then,
a coordinated effort among the practitioners of these disciplines has come to
pass. This interdisciplinary approach has since become known as cognitive
science. Unlike the science that came before, which was focused on the world
of external, observable phenomena, or “outer space,” this new endeavor turns
its full attention now to the discovery of our fascinating mental world, or
“inner space.”

What Is Cognitive Science?

Cognitive science can be roughly summed up as the scientific interdisciplinary
study of the mind. Its primary methodology is the scientific method, although
as we will see, many other methodologies also contribute. A hallmark of
cognitive science is its interdisciplinary approach. It results from the efforts
of researchers working in a wide array of fields. These include philosophy,
psychology, linguistics, artificial intelligence, robotics, and neuroscience. Each
field brings with it a unique set of tools and perspectives. One major goal of
this book is to show that when it comes to studying something as complex as
the mind, no single perspective is adequate. Instead, intercommunication and
cooperation among the practitioners of these disciplines tell us much more.

The term cognitive science refers not so much to the sum of all these disci-
plines but to their intersection or converging work on specific problems. In this
sense, cognitive science is not a unified field of study like each of the disciplines
themselves, but a collaborative effort among researchers working in the vari-
ous fields. The glue that holds cognitive science together is the topic of mind
and, for the most part, the use of scientific methods. In the concluding chapter,
we talk more about the issue of how unified cognitive science really is.

In order to really understand what cognitive science is all about we need to
know what its theoretical perspective on the mind is. This perspective centers

2 COGNITIVE SCIENCE
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on the idea of computation, which may alternatively be called information
processing. Cognitive scientists view the mind as an information processor.
Information processors must both represent and transform information. That
is, a mind, according to this perspective, must incorporate some form of men-
tal representation and processes that act on and manipulate that information.
We will discuss these two ideas in greater detail later in this chapter.

Cognitive science is often credited with being influenced by the rise of
the computer. Computers are of course information processors. Think for a
minute about a personal computer. It performs a variety of information-
processing tasks. Information gets into the computer via input devices, such as
a keyboard or modem. That information can then be stored on the computer,
for example, on a hard drive or other disk. The information can then be
processed using software such as a text editor. The results of this processing
may next serve as output, either to a monitor or printer. In like fashion, we
may think of people performing similar tasks. Information is “input” into our
minds through perception—what we see or hear. It is stored in our memories
and processed in the form of thought. Our thoughts can then serve as the basis
of “outputs,” such as language or physical behavior.

Of course this analogy between the human mind and computers is at a very
high level of abstraction. The actual physical way in which data is stored on a
computer bears little resemblance to human memory formation. But both sys-
tems are characterized by computation. In fact, it is not going too far to say
that cognitive scientists view the mind as a machine or mechanism whose
workings they are trying to understand.

Representation

As mentioned before, representation is fundamental to cognitive science. But
what is a representation? Before listing the characteristics of a representation,
it is helpful to describe briefly four categories of representation. A concept
stands for a single entity or group of entities. Single words are good examples
of concepts. The word “apple” denotes the concept of that particular type of
fruit. Propositions are statements about the world and can be illustrated with
sentences. The sentence “Mary has black hair” is a proposition that is itself
made up of concepts. Rules are yet another form of representation that can
specify the relationships between propositions. For example, the rule “If it is
raining, I will bring my umbrella,” makes the second proposition contingent
on the first. There are also analog representations. An analogy helps us to
make comparisons between two similar situations. We will discuss all four of

3Introduction: Exploring Inner Space
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these representations in greater detail in the In Depth section at the end of this
chapter.

There are four crucial aspects of any representation (Hartshorne, Weiss
& Burks, 1931–1958). First, a “representation bearer” such as a human or a
computer must realize a representation. Second, a representation must have
content—meaning it stands for one or more objects. The thing or things in the
external world that a representation stands for are called referents. A repre-
sentation must also be “grounded.” That is, there must be some way in which
the representation and its referent come to be related. Fourth, a representation
must be interpretable by some interpreter, either the representation bearer him
or herself, or somebody else. These and other characteristics of representations
are discussed next.

The fact that a representation stands for something else means it is sym-
bolic. We are all familiar with symbols. We know for instance that the symbol
“$” is used to stand for money. The symbol itself is not the actual money, but
instead is a surrogate that refers to its referent, which is actual money. In the
case of mental representation, we say there is some symbolic entity “in the
head” that stands for real money. Figure 1.1 shows some aspects of a mental
representation of money. Mental representations can stand for many different
types of things and are by no means limited to simple conceptual ideas such as
“money.” Research suggests that there are more complex mental representa-
tions that can stand for rules, for example, knowing how to drive a car, and
analogies, which may enable us to solve certain problems or notice similarities
(Thagard, 2000). See the In Depth section for a more detailed discussion of
these other forms of mental representation.

Human mental representations, especially linguistic ones, are said to be
semantic, which is to say they have meaning. Exactly what constitutes mean-
ing and how a representation can come to be meaningful are topics of debate.
According to one view, a representation’s meaning is derived from the rela-
tionship between the representation and what it is about. The term that
describes this relation is intentionality. Intentionality means “directed upon an
object.” Mental states and events are intentional. They refer to some actual
thing or things in the world. If you think about your brother, then the thought
of your brother is directed toward him, not toward your sister, a cloud, or
some other object.

Intentionality is considered to have at least two properties. The first is iso-
morphism, or similarity of structure between a representation and its referent.
This similarity means one can map different aspects of a representation onto
its referent. Analog visual images, discussed further below, are good examples
of this property. This is because they are believed to preserve the spatial
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01-Friedenberg-4747.qxd  8/22/2005  3:10 PM  Page 4



characteristics of the referent. A visual image of a cruise ship, for instance,
would have greater horizontal than vertical extent because these boats are
much longer than they are tall. The researcher Stephen Kosslyn has shown that
it takes longer to “scan” a visual image across a dimension where distances
between points in the object are greater and relatively less time across a dimen-
sion where such distances are shorter. The section on visual imagery contains
more on the methods and results of this experiment and others that demon-
strate the isomorphic characteristics of images.

A second characteristic of intentionality has to do with the relationship
between inputs and outputs to the world. An intentional representation must
be triggered by its referent or things related to it. Consequently, activation of
a representation (i.e., thinking about it) should cause behaviors or actions that
are somehow related to the referent. For example, if your friend Sally told you
about a cruise she took around the Caribbean last December, an image of a
cruise ship would probably pop to mind. This might then cause you to ask her
if the food on board was good. Sally’s mention of the cruise was the stimulus
input that activated the internal representation of the ship in your mind. Once

5Introduction: Exploring Inner Space

Figure 1.1 Different aspects of the symbolic representation of money
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it was activated, it caused the behavior of asking about the food. This relation
between inputs and outputs is known as an appropriate causal relation.

Digital Representations

In a digital representation, sometimes also known as a symbolic representa-
tion, information is coded in a discrete way with set values. A digital clock for
example, represents time discretely (see Figure 1.2). It displays a separate
number for each hour, minute, or year. There are distinct advantages to digital
representations. They specify values exactly. The symbols used in digital rep-
resentations, such as numbers, can be operated on by a more general set of
processes than analog structures. In mathematics, a wide range of operators
such as addition, division, or squaring can be applied to digital number repre-
sentations. The results of these operations are new numbers that can them-
selves be transformed by additional operations.

Language can serve as an example of a digital mental representation, and in
fact verbal concepts seem to be the system of human symbolic representation
that is most commonly used. The basic elements of written language are letters.
These are discrete symbols that are combined according to a set of rules. The
combinations, or words, have meaning and are themselves combined into
other higher-order units, sentences, which also have semantic content. The
rules by which these word elements are combined and transformed in language
are called syntax. Syntax constitutes the set of permissible operations on the word
elements. It is the elements themselves that are the mental representations. In

6 COGNITIVE SCIENCE

Figure 1.2 Digital and analog clocks represent time in fundamentally different ways
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the chapter on linguistics, we talk more about linguistic representations and
syntax.

Analog Representations

Analog representations, in contrast, represent information in a continuous
way. Information in an analog system can theoretically take on any value not
limited by resolution. Resolution refers to the amount of detail contained in an
analog representation. Representations with high resolution have correspond-
ingly more information. An analog clock represents time through the move-
ment of its various hands. The positions of these hands on the dial indicate the
time (see Figure 1.2). In addition to being able to represent large numbers of
values, analog representations have the advantage of providing simple, direct
solutions to some problems. They do however have a greater computational
margin of error and because of the smaller number of operations that can be
performed on them, are more limited for use in problem-solving.

Visual images are the best example of mental analog representations.
Researchers in cognitive psychology have conducted numerous experiments
that strongly suggest we represent visual information in an analog fashion.
Stop reading for a moment and close your eyes. Imagine a picture of a palm
tree on a sunny beach. Can you see the pattern on the bark? What about the
coconuts? Images capture many of the same properties as their referents, such
as distances between corresponding sets of points. The types of transforma-
tions that can be performed on images are also the kinds of changes that
physical objects in the external observable world undergo. These include
rotations, translations, and reflections. In the section on visual imagery in the
cognitive chapter, we elaborate on the nature of visual images and discuss
experiments that reveal the kinds of operations that can be performed on them.

The Dual-Coding Hypothesis

The use of both digital/symbolic and image representations collectively
has been referred to as the dual-code hypothesis (Paivio, 1971). Alan Paivio
believes that many ideas can be represented in either of these two forms inter-
changeably. This is especially true for a specific concrete concept, such as “ele-
phant,” for which we can form a visual image or a verbal representation.
However, there are some concepts for which a symbolic code seems more
appropriate. Take the idea of “justice.” This is abstract, and although we could
attach an image to it, such as that of a court building, there is no unambiguous
and unique identifying image.

7Introduction: Exploring Inner Space
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Evidence in support of dual-code theory comes from studies in which better
recall is demonstrated for words representing concrete concepts, as compared
to words representing abstract concepts (Paivio, 1971). According to Paivio,
the reason for this is that two codes are better than one. Let’s assume a subject
in a memory experiment is presented with the word “elephant” and forms two
codes to remember it. If he or she has forgotten one code later on at recall, he
or she should still be able to access and retrieve the other. In this case, the
image of the elephant may come to mind even if its symbolic word representa-
tion has faded.

Propositional Representations

Propositions are a third major category of representation, in addition to
symbolic and imaginal codes (Pylyshyn, 1973). According to the propositional
hypothesis, mental representations take the form of abstract sentence-like
structures. Propositions are good at capturing the relationships between con-
cepts. For example, the sentence “Mary looked at John” specifies a type of
relationship between Mary and John, and that relationship can then be trans-
lated into either a verbal symbolic code, as in the actual form of a sentence, or
an image code.

Propositions are believed to lie in a deep format that is neither visual nor
verbal. This format can best be described as a logical relationship among con-
stituent elements and is denoted by a predicate calculus. A predicate calculus
is a general system of logic that accurately expresses a large variety of
assertions and modes of reasoning. The proposition “Mary looked at John”
can be represented by a predicate calculus such as:

[Relationship between elements] ([Subject element], [Object element])

where “Mary” is the subject element, “John” is the object element, and “look-
ing” is the relationship between elements. What is nice about a predicate
calculus is that it captures the essential logical structure of a complex idea inde-
pendent of its actual elements. Any number of subjects, objects, and relation-
ships can be inserted into the abstract format of a proposition. A proposition
is thus believed to capture the basic meaning of a complex idea. This basic
meaning, when translated back into a symbolic or visual code, can then be
expressed in a variety of ways. For example, the sentences “Mary looked at
John” and “John was looked at by Mary” are two alternate verbal codes for
the same proposition. Likewise, one could form several different visual images
to convey the one proposition.

8 COGNITIVE SCIENCE
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Although a predicate calculus is a nice way of expressing a proposition, it
doesn’t mean that the proposition actually assumes this format in our brains.
In fact, it is not clear exactly how propositions are mentally instantiated or
realized. They do, however, serve as very useful hypothetical constructs
because they are concise and can specify virtually all of the possible relation-
ships between concepts.

To sum up this section, mental representations are powerful. They allow for
the creation of an inner world that we can think about. The byproducts of
these thoughts allow us to understand and interact successfully with the envi-
ronment. Rather than knocking about in the world and making mistakes or
taking risks, we can use representations to plan and carry out appropriate
actions. Furthermore, the formal implementation of representations in a set of
symbols, such as we envisage in mental pictures or language, allows us to com-
municate our thoughts to others. This in turn gives rise to more complex and
adaptive forms of social cooperation.

Computation

As mentioned earlier, representations are only the first key component of the
cognitive science view of mental processes. Representations by themselves are
of little use unless something can be done with them. Having the concept of
money doesn’t do much for us unless we know how to calculate a tip or can
give back the correct amount of change to someone. In the cognitive science
view, the mind performs computations on representations. It is therefore
important to understand how and why these mental mechanisms operate.

What sorts of mental operations does the mind perform? If we wanted to get
detailed about it, the list would be endless. Take the example of mathematical
ability. If there were a separate mental operation for each step in a mathemati-
cal process, we could say the mind adds, subtracts, divides, and so on. Likewise,
with language we could say there are separate mental operations for making a
noun plural, putting a verb into past tense, and so on. It is better, then, to think
of mental operations as falling into broad categories. These categories can be
defined by the type of operation that is performed or by the type of information
acted upon. An incomplete list of these operations would include sensation, per-
ception, attention, memory, language, mathematical reasoning, logical reason-
ing, decision making, and problem-solving. Many of these categories may
incorporate virtually identical or similar sub-processes, for example, scanning,
matching, sorting, and retrieving. Figure 1.3 shows the kinds of mental processes
that may be involved in solving a simple addition problem.

9Introduction: Exploring Inner Space
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The Tri-Level Hypothesis

Any given information process can be described at several different levels.
According to the tri-level hypothesis, mental or artificial information-processing
events can be evaluated on at least three different levels (Marr, 1982). The
highest or most abstract level of analysis is the computational level. At this
level, one is concerned with two tasks. The first is a clear specification of what
the problem is. Taking the problem as it may have originally been posed, in a
vague manner perhaps, and breaking it down into its main constituents or
parts can bring about this clarity. It means describing the problem in a precise
way such that the problem can be investigated using formal methods. It is like
asking the questions: What exactly is this problem? What does this problem
entail? The second task one encounters at the computational level concerns the
purpose or reason for the process. The second task consists of asking: Why is
this process here in the first place? Inherent in this analysis is the idea of adap-
tiveness—the idea that human mental processes are learned or have evolved to
enable the human organism to solve a problem it faces. This is the primary
explanatory perspective used in the evolutionary approach. We describe a
number of cognitive processes and the putative reasons for their evolution in
the chapter devoted to that approach.

Stepping down one level of abstraction, we can next inquire about the actual
way in which an information process is carried out. To do this we need an algo-
rithm, a formal procedure or system that acts on informational representations.
It is important to note that algorithms can be carried out regardless of a repre-
sentation’s meaning; algorithms act on the form, not the meaning, of the sym-
bols they transform. One way to think of algorithms is that they are “actions”
used to manipulate and change representations. Algorithms are formal, mean-
ing they are well-defined. We know exactly what occurs at each step of an

10 COGNITIVE SCIENCE

Computational Steps

1. 6 + 7 = 13 Add right column
2. 3 Store three
3. 1 Carry one
4. 3 + 4 = 7 Add left column
5. 7 + 1 = 8 Add one
6. 8 Store eight
7. 38 Record result

36
+ 47

83
Figure 1.3 Some of the computational steps involved in solving an addition problem
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algorithm and how a particular step changes the information being acted on. A
mathematical formula is a good example of an algorithm. A formula specifies
how the data is to be transformed, what the steps are, and what the order of
steps is. This type of description is put together at the algorithmic level, some-
times also called the programming level. It is equivalent to asking the question:
What information-processing steps are being used to solve the problem? If we
were to draw an analogy with computers, the algorithmic level is like software,
because software contains instructions for the processing of data.

The most specific and concrete type of description is formulated at the
implementational level. Here we ask: What is the information processor made
of? What types of physical or material changes underlie changes in the pro-
cessing of the information? This level is sometimes referred to as the hardware
level, since, in computer parlance, the hardware is the physical “stuff” the
computer is made of. This would include its various parts—a monitor, hard-
drive, keyboard, and mouse. At a smaller scale, computer hardware consists of
circuits and even the flow of electrons through the circuits. The hardware in
human or animal cognition is the brain and, at a smaller scale, the neurons and
activities of those neurons.

At this point, one might wonder: Why do we even need an algorithmic
or formal level of analysis? Why not just map the physical processes at the
implementational level onto a computational description of the problem, or
alternatively, onto the behaviors or actions of the organism or device? This
seems simpler, and we need not resort to the idea of information and repre-
sentation. The reason is that the algorithmic level tells us how a particular sys-
tem performs a computation. Not all computational systems solve a problem
in the same way. Computers and humans can both perform addition, but do
so in drastically different fashions. This is true at the implementational level
obviously, but understanding the difference formally tells us much about alter-
native problem-solving approaches. It also gives us insights into how these sys-
tems might compute solutions to other novel problems that we might not
understand.

This partitioning of the analysis of information-processing events into three
levels has been criticized as being fundamentally simplistic, since each level
can in turn be further subdivided into levels (Churchland, Koch & Sejnowski,
1990). Figure 1.4 depicts one possible organization of the many structural
levels of analysis in the nervous system. Starting at the top, we might consider
the brain as one organizational unit; brain regions as corresponding to another
organizational unit one step down in spatial scale; and then neural networks,
individual neurons, and so on. Similarly, we could divide algorithmic steps
into different sub-steps, and problems into sub-problems. To compound all
this, it is not entirely clear how to map one level of analysis onto another.

11Introduction: Exploring Inner Space

01-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 11



12 COGNITIVE SCIENCE

Brain Brain regions

Neural networks Neurons

Synapses Molecules

Figure 1.4 Structural levels of analysis in the nervous system
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We may be able to clearly specify how an algorithm executes, but be at a
loss to say exactly where or how this is achieved with respect to the nervous
system.

The Classical and Connectionist Views of Computation

Before finishing our discussion of computation, it is important to differenti-
ate between two distinct conceptions of what it is. So far, we have been talk-
ing about computation as being based on the formal systems notion. In this
view a computer is a formal symbol manipulator. Let’s break this definition
down into its component parts. A system is formal if it is syntactic or rule-
governed. The rules of language and mathematics are formal systems because
they specify which types of allowable changes can be made to symbols. Formal
systems also operate on representations independent of the content of those rep-
resentations. In other words, a process can be applied to a symbol regardless of
its meaning or semantic content. A symbol, as we have already indicated, is a
form of representation and can assume a wide variety of forms. Manipulation
here implies that computation is an active, embodied process that takes place
over time. That is, manipulations are actions, they occur physically in some
type of computing device, and they take some time to occur, that is, they don’t
happen instantaneously.

But this is not the only conception of what computation is. The network
approach to computation differs from the classical formal systems approach
in cognitive science in several ways. In the classical view, knowledge is repre-
sented locally, in the form of symbols. In the connectionist view knowledge is
represented as a pattern of activation or weights that is distributed throughout
a network. Processing style is also different in each approach. The classical
view has processing occurring in discrete stages, whereas in connectionism,
processing occurs in parallel through the simultaneous activation of nodes.
Some cognitive scientists downplay these differences, arguing that information
processing occurs in both systems and that the tri-level hypothesis can be
applied equally to both (Dawson, 1998). We compare and contrast the classi-
cal and connectionist views at the beginning of the network approach chapter.

The Interdisciplinary Perspective

There is an old fable about five blind men who stumble upon an elephant (see
Figure 1.5). Not knowing what it is, they start to feel the animal. One man feels
only the elephant’s tusk and thinks he is feeling a giant carrot. A second man,
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feeling the ears, believes the object is a big fan. The third feels the trunk and
proclaims it is a pestle, while a fourth touching only the leg believes it is a
mortar. The fifth man, touching the tail, has yet another opinion: he believes it
to be a rope. Obviously, all five men are wrong in their conclusions because
each has only examined one aspect of the elephant. If the five men had gotten
together and shared their findings, they may have easily pieced together what
kind of creature it was. This story serves as a nice metaphor for cognitive
science. We can think of the elephant as the mind and the blind men as
researchers in different disciplines in cognitive science. Each individual disci-
pline may make great strides in understanding its particular subject matter, but,
if it cannot compare its results to those of other related disciplines, may miss out
on understanding the real nature of what it is that is being investigated.

The key, then, to figuring out something as mysterious and complex as mind
is communication and cooperation among disciplines. This is what’s meant
when one talks about cognitive science—not the sum of each of the disciplines
or approaches, but their union. Recent years have seen an increase in this coop-
eration. A number of major universities have established interdisciplinary cog-
nitive science centers, where researchers in such diverse areas as philosophy,
neuroscience, and cognitive psychology are encouraged to work together on com-
mon problems. Each area can then contribute its unique strength to the phenom-
enon under study. The philosophers can pose broad questions and hypotheses,
the neuroscientists can measure physiological performance and brain activity,
while the cognitive psychologists can design and carry out experiments. The
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Figure 1.5 If you were the blind man, would you know it is an elephant?
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consequent exchange of results and ideas then leads to fruitful synergies
between these disciplines, accelerating progress with respect to finding solutions
to the problem and yielding insights into other research questions.

We have alluded to some of the different approaches in cognitive science.
Because this book is about explaining each approach and its major theoretical
contributions, it is worth describing each now in terms of its perspective,
history, and methodology. In the following sections we will also provide a brief
preview of the issues addressed by each approach.

The Philosophical Approach

Philosophy is the oldest of all the disciplines in cognitive science. It traces
its roots back to the ancient Greeks. Philosophers have been active through-
out much of recorded human history, attempting to formulate and to answer
basic questions about the universe. This approach is free to study virtually any
sort of important question on virtually any subject, ranging from the nature
of existence to the acquisition of knowledge, to politics, ethics, and beauty.
Philosophers of mind narrow their focus to specific problems concerning
the nature and the characteristics of mind. They might ask questions like:
What is mind? How do we come to know things? How is mental knowledge
organized?

The primary method of philosophical inquiry is reasoning, both deductive
and inductive. Deductive reasoning involves the application of the rules of logic
to statements about the world. Given an initial set of statements assumed to be
true, philosophers can derive other statements that logically must be correct.
For example, if the statement “College students study three hours every night”
is true and the statement “Mary is a college student” is true, we can then con-
clude that “Mary will study three hours every night.” Philosophers also engage
in inductive reasoning. They make observations about specific instances in the
world, notice commonalities among them, and draw conclusions. An example
of inductive reasoning would be: “Whiskers the cat has four legs,” “Scruffy the
cat has four legs,” therefore “All cats have four legs.” However, philosophers
do not use a systematic form of induction known as the scientific method. That
is employed within the other cognitive science disciplines.

In Chapter 2, we summarize several of the fundamental issues facing
philosophers of mind. With respect to the mind-body problem, philosophers
wrangle over what exactly a mind is. Is the mind something physical like a rock
or a chair, or is it nonphysical? Can minds exist only in brains or can they
emerge from the operation of other complex entities such as computers? In
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the free will–determinism debate we explore whether our actions can ever be
completely known and/or predicted beforehand. The knowledge acquisition
problem deals with how we come to know things. Is knowledge a product of
one’s genetic endowment or does it arise through one’s interaction with the
environment? How much does each of these factors contribute to any given
mental ability? We also look into one of the most fascinating and enigmatic
mysteries of mind, that of consciousness. What is consciousness? Are we really
conscious at all?

The Psychological Approach

Compared to philosophy, psychology is a relatively young discipline. It can
be considered to be old though, particularly when it is compared to some of
the more recent newcomers to the cognitive science scene, for example, artifi-
cial intelligence and robotics. Psychology arose in the late 19th century and
was the first discipline in which the scientific method was applied exclusively
to the study of mental phenomena. Early psychologists established experimen-
tal laboratories that would enable them to catalog mental ideas and to investi-
gate various mental capacities, such as vision and memory. Psychologists apply
the scientific method to both mind and behavior. That is, they attempt to
understand not just internal mental phenomena, such as thoughts, but also the
external behaviors that these internal phenomena can give rise to.

The scientific method is a way of getting hold of valid knowledge about
the world. One starts with a hypothesis or idea about how the world works
and then designs an experiment to see if the hypothesis has validity. In an
experiment, one essentially makes observations under a set of controlled con-
ditions. The resulting data then either support or fail to support the hypothe-
sis. This procedure, employed within psychology and cognitive science in
general, is described more fully at the start of Chapter 3.

The field of psychology is broad and encompasses many subdisciplines,
each one having its unique theoretical orientations. Each discipline has a dif-
ferent take on what mind is. The earliest psychologists, that is, the volun-
tarists and structuralists, viewed the mind as a kind of test tube in which
chemical reactions between mental elements took place. In contrast, func-
tionalism viewed mind not according to its constituent parts, but according to
what its operations were—what it could do. The Gestaltists again went back
to a vision of mind as composed of parts, but emphasized that it was the com-
bination and interaction of the parts, which give rise to new wholes, that was
important. Psychoanalytic psychology conceives of mind as a collection of
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competing entities, while behaviorism sees it as a device that maps stimuli
onto behaviors.

The Cognitive Approach

Starting in the 1960s a new form of psychology arrived on the scene. Known
as cognitive psychology, it came into being in part as a backlash against the
behaviorist movement and its profound emphasis on behavior. Cognitive psy-
chologists placed renewed emphasis on the study of internal mental operations.
They adopted the computer as a metaphor for mind, and described mental func-
tioning in terms of representation and computation. They believed that the
mind, like a computer, could be understood in terms of information processing.

The cognitive approach was also better able to explain phenomena such as
language acquisition, for which behaviorists did not have good accounts. At
around the same time, new technologies that allowed better measurement of
mental activity were being developed. This promoted a movement away from
the behaviorist’s emphasis on external observable behaviors toward the cogni-
tive scientist’s emphasis on internal functions, as these could, for the first time,
be observed with reasonable precision.

Inherent in the cognitive approach is the idea of modularity. Modules are
functionally independent mental units that receive inputs from other modules,
perform a specific processing task, and pass the results of their computation
onto yet additional modules. The influence of the modular approach can be
seen in the use of process models or flow diagrams. These depict a given
mental activity via the use of boxes and arrows, where boxes depict modules
and arrows the flow of information among them. The techniques used in this
approach are the experimental method and computational modeling.
Computational modeling involves carrying out a formal (typically software-
based) implementation of a proposed cognitive process. Researchers can run
the modeling process so as to simulate how the process might operate in a
human mind. They can then alter various parameters of the model or change
its structure in an effort to achieve results as close as possible to those obtained
in human experiments. This use of modeling and comparison with experimen-
tal data is a unique characteristic of cognitive psychology and is also used in
the artificial intelligence and network approaches.

Cognitive psychologists have studied a wide variety of mental processes.
These include pattern recognition, attention, memory, imagery, and problem-
solving. Theoretical accounts and processing models for each of these are given
in Chapters 4 and 5. Language is within the purview of cognitive psychology,
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but because the approach to language is also multidisciplinary, we describe it
separately in Chapter 9.

The Neuroscience Approach

Brain anatomy and physiology have been studied for quite some time.
Recent times however have seen tremendous advances in our understanding
of the brain, especially in terms of how neuronal processes can account for
cognitive phenomena. The general study of the brain and endocrine system
is called neuroscience. The attempt to explain cognitive processes in terms of
underlying brain mechanisms is known as cognitive neuroscience.

Neuroscience, first and foremost, provides a description of mental events
at the implementational level. It attempts to describe the biological “hard-
ware” upon which mental “software” supposedly runs. However, as discussed
above, there are many levels of scale when it comes to describing the brain, and
it is not always clear which level provides the best explanation for any given
cognitive process. Neuroscientists, however, investigate at each of these levels.
They study the cell biology of individual neurons and of neuron-to-neuron
synaptic transmission, the patterns of activity in local cell populations, and the
interrelations of larger brain areas.

A reason for many of the recent developments in neuroscience is, again, the
development of new technologies. Neuroscientists employ a wide variety of
machines to measure the performance of the brain at work. These include
positron emission tomography (PET) scanners, computerized axial tomogra-
phy (CAT) scanners, and magnetic resonance imaging (MRI) machines.
Studies that use these devices have participants perform a cognitive task; the
brain activity that is concurrent with the performance of the task is recorded.
For example, a participant may be asked to form a visual image of a word that
appears on a computer screen. The researchers can then determine which parts
of the brain became active during imagery and in what order. Neuroscientists use
other techniques as well. They study brain-damaged patients and the effects
of lesions in laboratory animals, and use single- and multiple-cell recording
techniques.

The Network Approach

The network approach is at least partially derived from neuroscience. In this
perspective, mind is seen as a collection of individual computing units. These
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units are connected to one another and mutually influence one other’s activity
via the connections. Although each of the units is believed to perform a
relatively simple computation, for example, a neuron’s either firing or not
firing, the connectivity of the units can give rise to representational and com-
putational complexity.

Chapter 7, which outlines the network approach, has two parts. The first
involves the construction of artificial neural networks. Most artificial neural
networks are computer software simulations that have been designed to mimic
the way actual brain networks operate, or the functioning of neural cell popu-
lations. Artificial neural networks that can perform arithmetic, learn concepts,
and read out loud now exist. A wide variety of network architectures have
developed over the last thirty years.

The second part of the network chapter is more theoretical and focuses on
knowledge representation—on how meaningful information may be mentally
coded and processed. In semantic networks, nodes standing for concepts are
connected to one another in such a way that activation of one node causes acti-
vation of other related nodes. Semantic networks have been constructed to
explain how conceptual information in memory is organized and recalled.
They are often used to predict and explain data obtained from experiments
with human participants in cognitive psychology.

The Evolutionary Approach

The theory of natural selection proposed by Charles Darwin in 1859
revolutionized our way of thinking about biology. Natural selection holds that
adaptive features enable the animals that possess them to survive and pass
these features on to future generations. The environment in this view is seen as
selecting from among a variety of traits those that serve a functional purpose.

The evolutionary approach can be considered in a quite general way and
used to explain phenomena outside of biology. The field of evolutionary psy-
chology applies selection theory to account for human mental processes. It
attempts to elucidate the selection forces that acted on our ancestors and how
those forces gave rise to the cognitive structures we now possess. Evolutionary
psychologists also adopt a modular approach to mind. In this case, the mod-
ules correspond to “favored” cognitive capacities that were used by ancestors
successful at solving certain problems. Evolutionary theories have been pro-
posed to account for experimental results across a wide range of capacities,
from categorization to memory, to logical and probabilistic reasoning, lan-
guage, and cognitive differences between the sexes.
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A variant on this theme is evolutionary computing, in which the rules of
evolution are applied to create successful computer algorithms. An offshoot of
this form of computing is artificial life. These are software simulations that
mimic biological ecosystems. There is also neural Darwinism, which uses evolu-
tion to explain the formation of neural circuits. See Chapter 8 for more on these.

The Linguistic Approach

Linguistics is an area that focuses exclusively on the domain of language.
It is concerned with all questions concerning language ability, such as: What is
language? How do we acquire language? What parts of the brain underlie lan-
guage use? As we have seen, language is a topic studied within other disci-
plines, for example, cognitive psychology and neuroscience. Because so many
different researchers in different disciplines have taken on the problem of lan-
guage, we consider it here as a separate discipline, united more by topic than
by perspective or methodology.

Part of the difficulty in studying language is the fact that language itself is so
complex. Much research has been devoted to understanding its nature. This work
looks at the properties all languages share, the elements of language, and how those
elements are used during communication. Other foci of linguistic investigation cen-
ter on primate language use, language acquisition, deficits in language acquisition
caused by early sensory deprivation or brain damage, the relationship between lan-
guage and thought, and the development of speech recognition systems.

Linguistics, perhaps more than any other perspective discussed here, adopts a
very eclectic methodological approach. Language researchers employ experiments
and computer models, study brain-damaged patients, track how language
ability changes during development, and compare diverse languages.

The Artificial Intelligence Approach

Researchers have been building devices that attempt to mimic human and
animal function for many centuries. But it is only in the past few decades that
computer scientists have seriously attempted to build devices that mimic com-
plex thought processes. This area is now known as artificial intelligence (AI).
Researchers in AI are concerned with getting computers to perform tasks that
have heretofore required human intelligence. As such they construct programs
to do the sorts of things that require complex reasoning on our part. AI pro-
grams have been developed that can diagnose medical disorders, use language,
and play chess.
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AI secondarily gives us insights into the function of human mental operations.
Designing a computer program that can visually recognize an object often
proves useful in understanding how we may perform the same task ourselves.
An even more exciting outcome of AI research is that someday we may be able
to create an artificial person who will possess all or many of the features that we
consider uniquely human, such as consciousness, the ability to make decisions,
and so on.

It is the development of computer algorithms and their testing, their com-
parison with empirical data or performance standards, and their subsequent
modification that constitute the methodology of the AI perspective. Not all
computer programs are alike, however. Researchers have employed a wide
range of approaches. An early attempt at getting computers to reason involved
the application of logical rules to propositional statements. Later on, expert
systems, scripts, and fuzzy logic procedures, among others, were used. Chapters 10
and 11 give detailed descriptions of these techniques.

The Robotics Approach

Finally, we consider robotics. Robotics may be considered a familial relation
to AI and has appeared on the scene as a formal discipline just as recently.
Whereas AI workers build devices that “think,” robotics researchers build
machines that must also “act.” Investigators in this field build autonomous
or semi-autonomous mechanical devices that have been designed to perform
a physical task in a real world environment. Examples of things that robots
can do presently include navigating around a cluttered room, welding or
manipulating parts on an assembly line, and defusing bombs.

The robotics approach has much to contribute to cognitive science and to
theories of mind. Robots, like people and animals, must demonstrate success-
ful goal-oriented behaviors under complex, changing, and uncertain environ-
mental conditions. Robotics therefore helps us to think about the kinds of
minds that underlie and produce such behaviors.

In Chapter 12 we outline different paradigms in robotics. Some of these
approaches differ radically from one another. The hierarchical paradigm offers
a “top down” perspective, according to which a robot is programmed with
knowledge about the world. The robot then uses this model or internal repre-
sentation to guide its actions. The reactive paradigm, on the other hand, is
“bottom up.” Robots that use this architecture respond in a simple way to
environmental stimuli: they react reflexively to a stimulus input and there is
little in the way of intervening knowledge.
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In Depth: Categories of Mental Representation

We have said that there are three broad classes of mental representation—
digital, analog, and propositional—each having its own characteristics, and we
gave examples of each. However, the history of research in cognition suggests
that there are also numerous forms of mental representation. Paul Thagard, in
Mind: Introduction to Cognitive Science (2000), proposes four. These are con-
cepts, propositions, rules, and analogies. Although some of these have already
been alluded to and are described elsewhere in the book, they are central to
many ideas in cognitive science. It is therefore useful to sketch out some of their
major characteristics here.

A concept is perhaps the most basic form of mental representation. A con-
cept is an idea that represents things we have grouped together. The concept
“chair” does not refer to a specific chair, such as the one you are sitting in
now, but is more general than that. It refers to all possible chairs no matter
what their colors, sizes, and shapes. Concepts need not refer to concrete items.
They can stand for abstract ideas, for example, “justice” or “love.” Concepts
can be related to one another in complex ways. They can be related in a hier-
archical fashion, where a concept at one level of organization stands for all
members of the class just below it. “Golden retrievers” belongs to the cate-
gory of “dogs,” which in turn belongs to the category of “animals.” We dis-
cuss a hierarchical model of concept representation in the network approach
chapter. The question of whether concepts are innate or learned is discussed
in the philosophical approach chapter. The artificial intelligence chapter out-
lines the use of structures called frames as a means of representing conceptual
knowledge.

A proposition is a statement or assertion typically posed in the form of a
simple sentence. An essential feature of a proposition is that it can be proved
true or false. For instance, the statement “The moon is made out of cheese” is
grammatically correct and may represent a belief that some people hold, but it
is a false statement. We can apply the rules of formal logic to propositions to
determine the validity of those propositions. One logical inference is called a
syllogism. A syllogism consists of three propositions. The first two are premises
and the last is a conclusion. Take the following syllogism:

All men like football.

John is a man.

John likes football.
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Obviously, the conclusion can be wrong if either of the two premises is
wrong. If it is not true that all men like football, then it might not be true that
John likes football, even if he is a man. If John is not a man, then he may or
may not like football, assuming all men like it. Syllogistic reasoning of this sort
is the same as deductive reasoning, mentioned earlier.

You may have noticed that propositions are representations that incor-
porate concepts. The proposition “All men like football” incorporates the
concepts “men” and “football.” Propositions are more sophisticated represen-
tations than concepts because they express relationships, sometimes very
complex ones, between concepts. The rules of logic are best thought of as com-
putational processes that can be applied to propositions in order to determine
their validity. However, logical relations between propositions may themselves
be considered a separate type of representation. The evolutionary approach
chapter provides an interesting account of why logical reasoning, which is
difficult for many people, is easier under certain circumstances.

Logic is not the only system for performing operations on propositions.
Rules do this as well. A production rule is a conditional statement of the form:
“If x, then y,” where x and y are propositions. The “if” part of the rule is called
the condition. The “then” part is called the action. If the proposition that is con-
tained in the condition (x) is true, then the action that is specified by the second
proposition (y) should be carried out, according to the rule. The following rules
help us drive our cars:

If the light is red, then step on the brakes.

If the light is green, then step on the accelerator.

Notice that, in the first rule, the two propositions are “the light is red” and
“step on the brakes.” We can also form more complex rules by linking propo-
sitions with “and” and “or” statements:

If the light is red or the light is yellow, then step
on the brakes.

If the light is green and nobody is in the crosswalk,
then step on the accelerator.

The “or” that links the two propositions in the first part of the rule speci-
fies that if either proposition is true, the action should be carried out. If an
“and” links these two propositions, the rule specifies that both must be true
before the action can occur.
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Rules bring up the question of what knowledge really is. We usually think
of knowledge as factual. Indeed, a proposition such as “Candy is sweet,” if val-
idated, does provide factual information. The proposition is then an example
of declarative knowledge. Declarative knowledge is used to represent facts.
It tells us what is and is demonstrated by verbal communication. Procedural
knowledge, on the other hand, represents skill. It tells us how to do something
and is demonstrated by action. If we say that World War II was fought during
the period 1939–1945, we have demonstrated a fact learned in history class. If
we ski down a snowy mountain slope in the winter, we have demonstrated that
we possess a specific skill. It is therefore very important that information-
processing systems have some way of representing actions if they are to help
an organism or machine to perform those actions. Rules are one way of repre-
senting procedural knowledge. We discuss two cognitive rule-based systems,
the Atomic Components of Thought (ACT) and SOAR models, in the cogni-
tive approach chapters.

Another specific type of mental representation is the analogy, although, as
is pointed out below, the analogy can also be classified as a form of reasoning.
Thinking analogically involves applying one’s familiarity with an old situation
to a new situation. Suppose you had never ridden on a train before, but had
taken buses numerous times. You could use your understanding of bus riding to
figure out how to take a ride on a train. Applying knowledge that you already
possess and that is relevant to both scenarios would enable you to accomplish
this. Based on prior experience, you would already know that you have to first
determine the schedule, perhaps decide between express and local service, pur-
chase a ticket, wait in line, board, stow your luggage, find a seat, and so on.

Analogies are a useful form of representation because they allow us to
generalize our learning. Not every situation in life is entirely new. We can
apply what we have already learned to similar situations without having to
figure everything out all over again. Several models of analogical reasoning
have been proposed (Forbus, Gentner & Law, 1995; Holyoak & Thagard,
1995). We outline some features of analogical reasoning in the Minds On sec-
tion of this chapter. You can turn to this now if you want to try to solve an
analogical reasoning problem. The application of the analogical approach in
artificial intelligence is called case-based reasoning and is later described in the
artificial intelligence chapter.

Minds On Exercise: Analogical Reasoning

To give you a sense of what it is like to reason analogically, we present here a clas-
sic problem, first posed by Duncker (1945). It is called “the tumor problem.” Take a
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moment to read it. After reading it, see if you can come up with the solution. If
stumped, read past the next paragraph for the solution as well as an account of how
the problem can be solved.

Suppose you are a doctor faced with a patient who has a malignant tumor in
his stomach. To operate on the patient is impossible, but unless the tumor is
destroyed, the patient will die. A kind of ray, at a sufficiently high intensity, can
destroy the tumor. Unfortunately, at this intensity the healthy tissue that the
rays pass through on the way to the tumor will also be destroyed. At lower
intensities the rays are harmless to healthy tissue, but will not affect the tumor.
How can the rays be used to destroy the tumor without injuring the healthy
tissue?

And here is another story.This one is called “the general and fortress problem.”
Please read it. Does it help you to come up with a solution to the tumor problem?
How?

A small country was ruled from a strong fortress by a dictator.The fortress was
situated in the middle of the country, surrounded by farms and villages. Many
roads led to the fortress through the countryside. A rebel general vowed to
capture the fortress.The general knew that an attack by his entire army would
capture the fortress. He gathered his army at the head of one of the roads,
ready to launch a full-scale direct attack. However, the general then learned that
the dictator had planted mines on each of the roads.The mines were set so that
small bodies of men could pass over them safely, since the dictator needed to
move his own troops and workers to and from the fortress. However, any large
force would detonate the mines. Not only would this blow up the road, but it
would also destroy many neighboring villages. It seemed impossible to capture
the fortress. However, the general devised a simple plan. He divided his army
into small groups and dispatched each group to the head of a different road.
When all was ready, he gave the signal and each group marched down a differ-
ent road. Each group continued down its road to the fortress, so that the entire
army arrived together at the fortress at the same time. In this way, the general
captured the fortress and overthrew the dictator.

You may have noticed a number of similarities between these two stories. The
tumor is similar to the fortress.The rays that were to be used to destroy the tumor
are like the soldiers sent to capture the fortress.The healthy tissue in the first story
can be likened to the villages in the second. Noticing these similarities, you may have
then applied a solution similar that used by the rebel general to the problem of
eradicating the tumor. Like the solution of dividing up the army and sending its
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soldiers down separate roads to converge on the fortress, the solution to the tumor
problem involves dividing up the high-intensity ray into multiple low-intensity rays
and then targeting them on the tumor at different angles. In this fashion, the rays
converge on the tumor in a show of strength and destroy it without damaging any
of the surrounding healthy tissue. Gick and Holyoak (1980) found that only 10% of
participants in their study could solve the tumor problem correctly in the absence
of their being provided with the general and fortress story. A full 75% of participants
solved it correctly when they were provided with the story.

Models of analogical reasoning usually posit a novel analog that stands for a new
situation or problem to be solved.That is the tumor problem in this example.They
also employ an existing analog that has been derived from another learned situation.
That is the general and fortress problem.The analogy is the systematic relationship
between these two analogs and includes the similarities pointed out above. Most
models of analogical reasoning reveal that there are four stages to the process of
analogical reasoning. First is comprehension of the target problem. Second is remem-
bering a similar source problem for which a solution is already known. Next, the
source and target problems are compared.This is equivalent to mapping out simi-
larities in their corresponding structures. As a last step, the source problem is
adapted to produce a solution to the target problem.

Food for Thought: Discussion Questions

1. Many metaphors have been proposed for thinking about the mind. These
range from water pumps to telephone systems. Can a corporate office build-
ing serve as a metaphor for mind? Why or why not?

2. Might concrete concepts such as “snake” be represented differently from
abstract concepts such as “democracy”? Which kind of concept lends itself
more easily to an analog representation? Why?

3. Describe how a handheld pocket calculator performs division at computa-
tional, algorithmic, and implementational levels of analysis.

4. Images, concepts, propositions, rules, and analogies are all forms of mental
representation. Can you think of other examples?

5. Think of an instance in everyday life in which you used analogical reasoning.
Describe in as much detail as possible the target and source problems, and
the similarities between them.
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Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“What is Matter?—Never mind.”
“What is Mind?—No matter.”

—Anonymous, 1855

What Is Philosophy?

Philosophy in its broadest sense is the search for wisdom and knowledge. It is
the first approach we will tackle in our voyage through the different disciplines
of cognitive science. There are good reasons for beginning here. Philosophy
plays a vital participatory role in cognitive science. It does this not by generat-
ing results, since it is a theoretical rather than experimental discipline, but
by “defining problems, criticizing models, and suggesting avenues for future
research” (Garfield, 1995, p. 374). More than any other discipline in cognitive
science, philosophy is not limited by its subject matter or a particular theoret-
ical stance. It is therefore free to evaluate and contribute to the remaining dis-
ciplines in a way the others cannot. This approach is also the oldest of the
different approaches, tracing its origins back to the ancient Greeks. It is thus
fitting that we begin our tour here.

2

The Philosophical Approach:
Enduring Questions

29
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The translation of the word philosophy yields “love of wisdom,” indicating
the philosopher’s concern with knowledge and with understanding the uni-
verse. Philosophy as a formal discipline studies a wide range of topics. In fact,
there is no topic that is not fair game for a philosopher; he or she may exam-
ine politics, ethics, esthetics, and other subjects. We concern ourselves here
with two branches of philosophy. Metaphysics examines the nature of reality.
The mind-body problem is a metaphysical one at heart, because it seeks to
understand whether the mental world is part of the physical material world.
Epistemology is the study of knowledge and asks such questions as: What is
knowledge? How is knowledge represented in the mind? How do we come to
acquire knowledge?

In this chapter we will survey philosophic thoughts that center on four vex-
ing issues, most of which are summed up in terms of “this” versus “that.” This
terminology suggests that the debates that have arisen from these issues have
polarized the arguments and that there are only two possible answers to a
problem. We will see that this is actually not the case and that there are mul-
tiple ways to conceptualize the issues. These issues are the mind-body, free
will-determinism, and nature-nurture debates. In addition, we discuss the ques-
tion of consciousness and its relation to cognitive science.

The Mind-Body Problem

The mind-body problem addresses how psychological or mental properties
are related to physical properties. The debate stems from a fundamental con-
ception about what the mind is. On the one hand we have the brain that
is material and physical. It is made up of substances that we can measure
and understand. The mind could be thought of in the same way, as simply a
physical thing. On the other hand, there are those who argue that the mind is
something more. They say we can’t equate our subjective conscious experi-
ences, such as beliefs, desires, and thoughts, with something as mundane as the
brain. They say the mind is nonphysical and consists of something resembling
a soul or spirit. The mind as a nonphysical entity inhabiting the brain or other
physical entity is sometimes called “the ghost in the machine.”

The first question of the mind-body problem refers to the nature of what
mind is. Is the mind physical or something else? A second and more specific
question concerns the relationship between these two entities. If we assume
that there are two such entities, then what is the causal relationship between
them? Does the mind control the mind or does the body control the mind?
Table 2.1 shows the possible relationships between mind and body and the
labels that go with each.
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Our discussion in this section will be structured around basic conceptions of
the nature of mind. According to monism, there is only one kind of state or sub-
stance in the universe. The ancient Greek philosopher Aristotle (384–322 B.C.E.)
was a monist (Figure 2.1). He characterized the difference between mind and
body as the difference between form and matter. One way to think of his notion
is to consider a lump of clay. It is made up of physical matter and we can think
of it as corresponding to the brain. We can shape the clay with our hands into
different forms—for example, we can roll it into a ball or flatten it out into a
pancake. The shapes the clay can assume, Aristotle implied, are like the differ-
ent thoughts the mind can take on when it undergoes different patterns of activ-
ity. These shapes are just different physical states and do not constitute any
nonphysical or spiritual substance. There are two classes of monist. Monists
who believe only in mental substance are either idealists or solipsists. Monists
who believe exclusively in physical substance, like Aristotle, are physicalists.

In dualism, one believes that both mental and physical substances are
possible. Plato, another Greek philosopher (427–347 B.C.E.), was a dualist.
Plato was Aristotle’s teacher, but the two held quite different views. Plato
believed that the mind and the body exist in two separate worlds. Knowledge
of the mind, he thought, exists in an ideal world of forms, which is immaterial,
non-extended, and eternal. The body resides in a world that is material, extended,

31The Philosophical Approach: Enduring Questions

Class of Name of Physical Causal Mental 
Theory Theory Universe Direction Universe

Monism
Idealism/Solipsism None No causality Mind

Physicalism Body No causality None

Dualism
Classical Dualism Body Mind

Parallelism Body No causality Mind

Epiphenomenalism Body Mind

Interactionism Body Mind

Table 2.1 Different interpretations of the mind-body debate and the schools of
thought associated with each

Source: Adapted from Kitzis, S. N. (2002). Mind and meaning: A flight of imagination, a voyage of discovery.
Pacific Grove, CA:Wadsworth Thompson.
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and perishable. There are crucial differences between the objects of one world
versus those of the other. Mental ideas such as “circle” that reside in the ideal
world of forms are perfect, according to Plato: the circles of this world are
always perfectly round. Concrete examples of circles that we find in the real
world are always imperfect. If we examine an actual circle, at some level of
magnification the circle’s edge will lose its roundness. There are a variety of
different modern dualist schools, each based on a particular view of the rela-
tionship between the mental and the physical. These include classic dualism,
parallelism, epiphenomenalism, interactionism, and functionalism.
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Figure 2.1 A bust of the early Greek philosopher Aristotle. He believed there was no
substantial difference between mind and matter
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Flavors of Monism

Idealism has been attributed to the Irish philosopher George Berkeley
(1685–1783). In this philosophy, there is only the mental realm. There is no
physical realm. Our brains, bodies, and everything else in the universe exist
only as concepts in God’s mind. All our experiences are the same as God’s
experiences and we have them because God has them. Problems with the ide-
alist position should become immediately clear. It resorts to a religious and
mystical form of explanation and must be accepted on faith. Although it is log-
ically consistent, this view cannot be tested and so is not considered scientific.

Solipsism also falls into the category of “mental only” theories of mind.
According to this perspective, the universe exists only in one’s mind. In other
words, each person, by virtue of having a mind, creates his or her own world.
This brings up a host of questions. If the universe exists only in each individ-
ual mind, then there must be as many universes as there are individuals. If this
were the case, then which universe is the right one? Do they all exist at the
same time? This view is inherently subjective and, like idealism, is not subject
to experimental scrutiny.

On the flip side of our metaphysical coin is physicalism or materialism. The
origins of this view go back to the Greek philosopher Democritus (ca. 460–370
B.C.), who believed all things were composed of atoms. The attributes and
behaviors of the atoms, he said, can explain the differences between things,
including the differences between mind and body. Physicalists, like idealists
and solipsists, are also monistic, and believe that the universe is composed of
a single substance. They however regard this substance as physical and mater-
ial rather than spiritual or ethereal. Physicalism is thus the doctrine that every-
thing that exists is physical. The operations of the mind are seen here as simply
the operations of the brain.

A school of physicalism known as reductive physicalism is an example of
reductionism, where one theory or view is used to completely account for
another. As an example, it is often believed that neuroscience, which is con-
cerned with the study of the brain’s physical make up and processes, will
ultimately be able to account for all psychological or mentalistic levels of
description. To illustrate, a psychologist’s explanation of an anxiety disorder
that uses a mentalistic term such as “fear” may someday—this class of physi-
calists hopes—be reduced to a description of neurotransmitter changes in brain
structures, such as the amygdala. A second breed of physicalists go by the name
of nonreductive physicalists. They believe physical processes can give rise to
emergent and irreducible mental phenomena. This school believes that one
cannot completely do away with mentalistic description. We will discuss the
property of emergence in the context of consciousness.
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Physicalism has received its share of critique as well. Some allow that
physical processes can determine mental ones but deny that they can explain
them. So, they argue, changes in the amygdala may very well correlate with
and produce fear, but they do not explain different kinds of fear, how a person
becomes fearful, and so on. These critics acknowledge the world is physical but
indicate that for many phenomena there is no physical explanation. In these
cases, they believe, it is perhaps better to explain using mental terms.

Flavors of Dualism

Now that we have reviewed the various forms of monism, let us turn our atten-
tion to its logical alternative. Dualists believe both mental and physical realms
are possible, but differ in the way they think these two interact. Classical dual-
ism originated with the French philosopher René Descartes (1596–1650).
Descartes was a revolutionary philosopher for his time and introduced theories
on many of the ideas that underlie cognitive science. He believed in a one-way
causal link, with the mind controlling the body but not vice versa. Descartes
thought the mind exerted its control on the body through the pineal gland, per-
haps because it is one of the few anatomical structures not duplicated on either
side of the brain (see Figure 2.2). In this view, the mind is like a puppet mas-
ter, the body is like a puppet, and the pineal gland is like the puppet strings,
by which the former controls the latter. Classical dualism conforms to most
people’s common-sense notion of the mind-brain relationship, which is that
our thoughts control our actions. For instance, when we feel hungry, we get up
and eat a snack. It certainly seems as if the feeling of hunger comes first and
causes the action of getting up to eat.

There are three other dualist schools of thought. In parallelism, the mind
and body are distinct and isolated from each other. One cannot have an effect
on the other. But there certainly appears to be some sort of causal link between
them. Otherwise, how is it that we can move our legs when we decide to walk?
A parallelist response would be that God or some other unknown force has
synchronized the workings of the mind and body so that they work seamlessly
together. It is like having two clocks, a physical and a mental one, that were
both started at the same time and run alongside one another, keeping the same
time. The critique here is the same as for idealism. This view resorts to mysti-
cal explanation and so is not accepted within mainstream cognitive science.

The epiphenomenalist school allows the physical to cause the mental, but
prohibits causation in the other direction. In this account, the mind is like a
side effect of the brain’s operations, but cannot in any way feed backward to

34 COGNITIVE SCIENCE

02-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 34



influence the brain. As an analogy, imagine the exhaust coming out of a car
engine. The engine is the brain, while the exhaust it creates would be the mind.
The engine produces the exhaust, but the exhaust in no way affects the opera-
tion of the engine or car. A difficulty with this view is that it runs counter to
our introspections, many of which place thoughts before actions.

Interactionism allows causality to travel both ways. The body can affect the
mind and the mind can also affect the body. Here we have a two-way street
that allows each realm to influence the other. One can have a thought that pro-
duces an action, but also a physical brain activity that produces a thought. The
approach has its problems: how these two mutually influence one another as
an integrated whole is not specified. Of particular concern is how the mental
can affect the physical. It is easier to conceptualize how physical causes have
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Pineal gland

Figure 2.2 Descartes believed the pineal gland to be the location where the mind
influenced the body. This belief was itself influenced by the fact that the
pineal gland is located in the center of the brain
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effects. We already have a good account of this in Newtonian physics.
Immaterial causation is more of a mystery.

Evaluating the Dualist Perspective

One critique of dualism comes from the philosopher Gilbert Ryle. Ryle’s argu-
ment (1949) centers on our conceptualization of mind and its relation to the
body. He believes that the mind is not any particular component of the brain,
but all the parts working together as a coordinated, organized whole. He illus-
trates with a story. Imagine a visitor from a foreign country arriving at a large
university. He is shown around the campus and the various parts of the school
are pointed out to him, including the dormitories, departments, and lawns. The
visitor, who has never seen any of this before, is puzzled. He says; “Well, I’ve
seen all of this, but I haven’t yet seen the university.” We would have to
explain to him that the university is not any of the individual sites he has
viewed, but all the sites together and the interconnections among them (see
Figure 2.3). Ryle thinks philosophers fall into the same trap as the visitor, mis-
taking the part or parts for the whole. He argues that the mind belongs in a
conceptual category different from that of the body, just as the university is in
a category different from those of the things that make it up.

Andy Clark (2001) summarizes several other critiques of dualism. These
would apply to Descartes’ conception as well as other perspectives. Clark says
that dualism is uninformative and tells us what the mind isn’t, rather than what
it is. If the mind isn’t the brain and isn’t physical, then what is it? Dualists are
remarkably silent on this matter, often conceding that it is something non-
physical that we can’t understand yet. As a theory, dualism is also inelegant,
because it postulates two worlds that must be coordinated. An explanation
that does not violate the principle of Occam’s razor (that the simpler explana-
tion is usually the correct one) would involve a single type of world, not requir-
ing coordination.

There are further problems with dualism. One has to do with the depen-
dence of the mental on the physical. Factors that affect the brain such as head
trauma or drug use have direct and dramatic mental effects. We can see that
damage to a certain part of the brain, say, from a motorcycle accident, results
in specific forms of mental disruption, for example, language deficits. Taking
a drug like marijuana, which alters brain chemistry, results in altered mental
states. In addition, the evolutionary approach shows us there is a general pos-
itive correlation between brain size and intelligence across species, with larger
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brain sizes linked to increased cognitive capacity. It is obvious from these
observations that the mental is integrated with the physical, that the mind
depends on the brain.

Some dualists in response to attacks on their positions have stated that the
mind exhibits extraordinary abilities and that it is or will be impossible for a
physical system to duplicate such abilities. For instance, how can a physical
system, be it a brain or a computer, write a novel or negotiate a peace treaty?
The truth is that as our technological sophistication increases, many of these
abilities are becoming better understood and implemented computationally.
There are now computers that can beat the best chess champions and success-
fully diagnose medical disorders. These are capacities once thought to be the
exclusive domain of humans.

Dualists and other philosophers also argue that our subjective experiences—
things like thoughts, beliefs, and desires—are not equivalent to physical brain
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Figure 2.3 Where is the university? 

Source: Courtesy of Peter Finger Photography 2003.
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states. They base this conclusion primarily on introspection. When we examine
what is inside our heads, they say, these subjective experiences seem to be
something more than just physical. The problem with this argument is that
introspection is a weak form of evidence and can be wrong (as are many of our
ideas). What is required is objective proof that such experiential states are not
physical.

Functionalism

The most influential philosophical theory of mind in cognitive science is func-
tionalism. For this reason we will discuss it in considerably more detail than
any of the theories we’ve already discussed. To get an idea of what function-
alism is about, we need to make a distinction between two ways of classifying
things. Physical kinds are identified by their material composition only. In this
view, jellyfish and carpets are different because they are made up of funda-
mentally different physical substances. Functional kinds however are distin-
guished by their actions or tendencies. Here, we could say that all automobiles
fall under the same functional category because they do the same things,
namely, transport goods and people, even though they may be made up of dif-
ferent elements.

So far so good, but things get interesting when we extend these ways of clas-
sifying to the idea of mind. If we think of mind as a physical kind, then minds
must be the same things as brains, since, as far as we know, minds cannot exist
apart from physical brains. To many, this seems too exclusive. It is possible,
they argue, that computers might develop minds and that there might be alien
species with minds (see Figure 2.4). Neither computers nor aliens need have
brains in the sense that we know them. It is more fruitful, they say, to identify
minds as functional kinds and to define them by the sorts of processes they
carry out rather than the stuff they’re made of. According to functionalism,
mental states are not just physical states, but also the functioning or operation
of those physical states. According to this view, a mind could conceivably be
implemented in any physical system, artificial or natural, capable of support-
ing the appropriate computation.

Functionalism has several significant implications (Garfield, 1995). One is
that the same mental state could be realized in a quite different way in two sep-
arate physical systems. This can be illustrated with computing devices. Two
such different devices, say a desktop computer and a palm-sized personal data
assistant, can both compute the same result, such as displaying a page of
text, but in entirely different ways. The same might also be true for human
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computation. If we examined the brains of two people thinking exactly the
same thought, we would in all likelihood not find exactly the same processes
at work.

There are several schools of thought in functionalism. These range from
conservative views that advocate direct connections between physical and com-
putational states, to more liberal ones that emphasize computation over phys-
icality. The liberal schools give two reasons for their stance. They say that for
both computers and thinking organisms, the number of possible computational
states always exceeds the number of possible physical states. Take for example
all the different possible beliefs one could hold concerning politics, the envi-
ronment, one’s friends, and so on. Mathematically, the number of such beliefs
is infinite (Garfield, 1995). The number of possible physical states the brain
can assume, though, is finite. A computational level of description thus becomes
a richer and more diverse way of describing the mind and should be the pre-
ferred level. Second, liberal functionalists argue that psychological states such
as beliefs are defined more by their relations to other such states, to inputs
from the environment, and to behaviors than their relations to physical states.
A belief such as “patriotism” usually manifests itself in other beliefs, for
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Mind Mind Mind

Figure 2.4 According to functionalism, different physical substrates can in principle all
give rise to mind
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example, in flag-waving. It will elicit predictable reactions to environmental
stimuli, for example, feeling upset when one’s country has been criticized, and
will produce external behaviors such as marching or protesting.

To summarize, functionalism implies that mental states might not be
reduced to any particular physical state. This argument does not require us to
be dualists. It is not saying that mental states don’t conform to physical ones,
only that there may be a wide variety of possible physical states capable of
producing any given mental state.

Evaluating the Functionalist Perspective

Although functionalism has been the dominant view in cognitive science since
the 1970s, it is not without its deficiencies (Maloney, 1999). Remember that a
tenet of functionalism is that minds that are not based on brains can exist.
They can exist in things like computers as long as the physical substrates of
those objects allow for the relevant computations. Critics have argued that,
although it is possible that minds can exist in the absence of brains, this does
not make it plausible. There is no current empirical evidence to justify this
claim. We have yet to see something mental in the absence of a brain. Also,
some have argued that the failure to identify mind with a physical kind can
itself be considered reason to do away with the concept of mind—rather than
give it special status as a functional kind.

An additional problem with functionalism is that it cannot account for the
felt or experienced character of mental states—a phenomenon known as qualia
(quale, singular). Examples of qualia include the subjective experience of what
it is like to feel “hungry,” to be “angry,” or to see the color “red.” It would
seem that these kinds of experiences cannot be replicated as purely functional
processes. A machine could be programmed to “see” the color red, even mim-
icking the same human functional process, but this machine could not have the
same experience of what it is like to see red that a person has.

What is more, two individuals having the same conscious experience often
do not experience it subjectively in the same way. A number of experiments
have shown this to be the case with color perception. Participants looking at
the same color will describe it differently (Chapanis, 1965). If asked to point
out on a color spectrum what pure green looks like, one person may select a
yellow-green, another a blue-green. This is the case even though the functional
operations of their respective brains as they view the color are approximately
equivalent. In this case, the neurophysiological operations behind color per-
ception tend to be the same across individuals.
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The Free Will–Determinism Debate

The Issue of Determinism

Think for a minute about all the decisions you’ve made in your life. Some
of these were important, for example, deciding which college or university to
attend, or perhaps deciding whether or not to pursue a romantic relationship.
Others may have been less essential, for example, whether to get pork with
fried rice or Szechuan chicken for lunch. The free will–determinism debate
is about whether these behaviors are within our control. Did you consciously
ponder the consequences of attending one school versus another, thinking of
the possible pros and cons of each, or did forces beyond your control push you
to attend one school over the others? Those who take the free will side of this
debate argue that individuals independently initiate their own actions. Those
favoring determinism argue that actions can be explained in terms of the initi-
ating causes that precede them, which implies that individuals act only depen-
dently, as a consequence of these causes.

Let us start with determinism. It is the view that all physical events are
caused or determined by the sum total of all prior events. Our actions, which
are physical events, must therefore also be determined. Suppose you get up to
grab a snack from the refrigerator. According to determinism, your getting up
was caused by another physical event (or events) that immediately preceded it.
This event may have been a stomach pang or hearing a restaurant advertise-
ment on the radio. Furthermore, the determinist view is that it was inevitable
that you would have undertaken this action because of the preceding event. In
other words, there was no other action you could have taken, given the nature
of who you are and the set of events that preceded the act of getting up.

The philosopher David Hume (1711–1776) suggests we conceive of a deter-
ministic universe in terms of billiard balls. To get a sense of this notion, imag-
ine that, initially, a set of billiard balls is scattered across a table and the balls
occupy random positions. We then come along with a cue stick and knock one
ball into another. Each moving ball, in this Humean model of causation, is an
event that was caused by a preceding event and in turn causes another (see
Figure 2.5).

This model has several implications. The first, as mentioned before, is deter-
minism. If ball A strikes ball B, then there is only one “action” that ball B can
take, that action being entirely caused by ball A’s action. Of course, this is a
simplified model. It is possible to have multiple forces acting on ball B, in
which case their conjoint influence determines ball B’s action. The point is that
ball B’s action is determined completely by the forces acting on it in the
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temporally preceding moment. A second implication is replication. If we were
to return all of the balls to their original positions and strike ball A with the
cue stick again, in exactly the same way, then all of the balls would move once
more in exactly the same way. The third implication is prediction. If we know
the positions of all of the balls and the conditions under which the first ball
will be hit, such as the force to be applied and angle of the cue stick, then we
can know ahead of time what all of the balls on the table will do. Many of
these properties of a causal system also happen to underlie scientists’ under-
standing of the way that variables in a controlled scientific study interact. The
billiard balls’ actions on each other describe the way experimental variables are
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Figure 2.5 In the Humean model of causation, action in the physical universe can be
likened to billiard balls on a billiard ball table, where balls bump into one
another. In this instance the cue ball initiates two causal paths, one involving
balls having a stripe, the other solid-colored balls
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hypothesized to influence each other. Indeed, replicability and predictability
are two of the cornerstones of the scientific method. We will talk more about
the scientific method in the psychology chapter.

If we translate this deterministic model of causality to human behavior, it
means we can also predict any action a person might undertake for the rest of
his or her life. All that is needed is an understanding of the system and the
forces acting on it. In this case the system is the brain. The forces that act on
the brain can include influences such as a stomach pang or radio advertise-
ment. The behavior of the system would be the overt behavior the brain gives
rise to, such as getting up to get a snack. This notion is not too far removed
from what the behaviorist psychologists in the early 20th century were propos-
ing. In their case they didn’t purport to understand the mind or how it
operated; that is, they ignored the system itself. They instead concentrated on
understanding the causal relationship between stimulus inputs from the envi-
ronment and the consequent behavioral output. Some behaviorists felt they
could entirely predict a person’s actions on the basis of that person’s condi-
tioning history, which is the schedule of rewards and punishments he or she
has undergone so far in his or her life. We will talk more about behaviorism in
the following chapter.

The Issue of Free Will

Most people find the Humean billiard ball model of causality unsettling.
This is because it turns us into automatons reacting in known ways to the
forces impinging on us. We would like to believe that we instead choose our
own course of action. The free will perspective regards behavior as stemming
from a decision or act of will. The decision is made autonomously and is itself
not under the influence of any preceding causal factors. In other words, the will
of the individual is the sole determining cause of the action. The will itself
is not the product of any other cause, and is considered to be its own cause.
People, according to this view, are thus not at the whim of forces beyond their
control, but have the power to independently initiate their own actions.

The 20th century philosopher Ayn Rand (1963) has formulated an entity
model of causation that, according to Rand, underlies free will. In this model,
entities with specific identities are the cause of actions. An entity is defined
roughly as an object capable of independent action. A person is an example of
an entity. The actions an entity undertakes are determined not by some
antecedent factor that acts on the entity, but instead by the nature of that entity.
If an entity is a certain way, then it will act only in accordance with that way.
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In fact, it is not possible for an entity to act in a way that is contradictory to its
nature. By making entities rather than actions the cause of actions, Rand shifts
the force of causality away from the environment and toward individuals.

Rand further argues that humans are beings of volitional consciousness. By
this she means that although people are capable of thinking, they must make
the decision to do so. By this account, both thought and the decision to think
or not are part of human nature. If we decide to think, then we consciously
control our actions. If we fail to think, then we are at the whim of our mind’s
subconscious associational processes. This notion of voluntarily directing one’s
thought processes Rand calls focus. Cognitive psychologists refer to it more
broadly as attention. We discuss several models of attention in the cognitive
approach chapter.

Evaluating the Free Will–Determinism Debate

A problem with free will is that it violates one key assumption of causality,
which is that all events must have a cause. In this assumption, actions can’t
cause themselves. The causal universe is seen here as a network of dependen-
cies, with actions existing only as possibilities until they are actualized by a
triggering event or events. If this is true, then how can a person initiate an
action “out of nowhere”? The strict version of free will implies that the deci-
sion or will of an individual to act is a cause that is itself uncaused. This can-
not be accounted for in the scientific and causal view of the universe.

According to the cognitive science view, a decision is itself a mental process.
Like other such processes, it should have informational inputs, perform a com-
putation, and have corresponding informational or behavioral outputs. The
decision to decide which school to attend must have as a starting point a men-
tal list of possible schools along with data about each. The information, in this
view, is then passed through some sort of decision-making algorithm. This
algorithm might calculate a winning school by adding up scores pertaining to
certain features such as prestige and geographic location. The output of the
computation would be the single school to which one would then apply.

Using the above model, the decision is not uncaused, at least in the sense of
having no preceding events. These events are the list of schools and farther
back in time the decision to go to school in the first place. From a scientific and
causal perspective, if the decision-making algorithm and the data fed to it are
completely known, then the decision in principle should follow deterministic
consequences, that is, the decision should be determined, replicable, and pre-
dictable. However, empirical evidence in the cognitive sciences rarely produces
models that adhere perfectly to all three of these criteria. Part of the reason is
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incomplete knowledge. If the algorithm or data is only partially understood,
then the decision can be only partially determined, replicated, or predicted.

One way to reconcile the free will–determinism dilemma is to allow both to
be true. This is what compatibilism offers. Compatibilists allow that free will
and determinism can be reconciled and/or compatible with each other. It
allows these two schools of thought to coexist. Compatibilists believe we have
free will in the broad sense of moral responsibility, meaning that even though
we may be constrained to act in a certain way, we always have the freedom to
choose otherwise. For instance, imagine a thief pointing a gun at your head and
asking for your wallet. You are certainly constrained under these circum-
stances to fork over your cash. But in a compatibilist world you don’t have to
do so, you are perfectly free to refuse and accept the consequences. Just as com-
patibilists do not deny causality, they believe every event has a cause and that
our actions are always preceded by a cause. However, these antecedent events
do not fix our actions. In any past circumstance, we would have been free to
embark on some other alternate course of action.

In contrast to this is the theory of incompatibilism. Incompatibilists see free
will and determinism as irreconcilable, meaning they are not both simultane-
ously true. This school argues that a person cannot be truly free in the moral
sense if preceding causal events impact on his or her actions. Causal laws are
seen here as preventing us from being true “free agents,” from having absolute
moral responsibility for our actions. One group of incompatibilists, called lib-
ertarians, believes we do have free will, that free will is not compatible with
determinism, and that determinism must therefore be false. The problem with
this view is that its adherents must show how we can be morally responsible
in an indeterminist world (one where determinism is false). A second school,
whose adherents are called pessimists or no-freedom theorists, argue that
moral free will is impossible to prove. The pessimists say there are circum-
stances in which we can be free agents—but those circumstances occur only
when we are unconstrained, when circumstances allow us to choose to do what
we want. This however is not enough to explain free will in the larger sense,
which is that we always have moral responsibility for our actions, regardless
of the constraining factors.

The Knowledge Acquisition Problem

A fundamental question asked by even the earliest of philosophers was: How
do we acquire knowledge? Clearly, you are not born knowing everything, other-
wise you would not need to go to school, or wouldn’t be reading this book.
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But are we born knowing anything at all? Is the mind completely blank or do
we start with some rudimentary understanding of the world? One way to
frame these questions is within the nature-nurture debate. This debate centers
on the relative contributions of biology and experience in determining any par-
ticular capacity. The term nature, in this context, refers to traits that are genet-
ically or biologically determined. These are coded for in our genes and so are
“hardwired,” meaning they are present at birth or appear at a specific time
during development. The term nurture refers to traits that are learned through
experience and interaction with the environment. We will examine theories of
knowledge acquisition that argue for the greater influence of one or the other.

According to nativism, a significant body of knowledge is innate or “built
into” an organism. In this sense, nativism is a theory of knowledge that favors
nature over nurture. Plato was the first to outline a nativist theory of knowl-
edge. He thought learning was a matter of recollecting what is already
known—these concepts existing in the ideal world of forms and being part of
our immortal soul. Rationalism must be subtly distinguished from nativism.
Descartes was the progenitor of this perspective. Rationalists also believe in the
existence of innate ideas. These basic concepts include such ideas as “God”
and “triangle.” However, they additionally emphasize the existence of innate
reasoning powers. These include certain logical propositions, such as knowing
that something cannot exist and not exist at the same time. We can use these
a priori rational powers to form new ideas that are not given to us innately.
Descartes would agree that we are not born with the idea of “table,” but can
acquire it given our innate ability to perceive and think about objects.

Empiricism alternatively sees knowledge as acquired through experience: it
favors nurture over nature. In this view, knowledge gets into the head through
interaction with an environment, meaning it is learned. The senses provide the
primary channels via which knowledge of the world is born. Our knowledge
of the concept “lemon” in this account begins with looking at a lemon, touch-
ing and tasting it. The British philosopher John Locke (1632–1704) is credited
as the founder of the empiricist movement. He used the phrase tabula rasa,
which literally translates as “blank slate.” Locke believed that we are born as
blank slates, lacking any knowledge, and that over time experience puts writ-
ing onto the slate, filling it up.

Locke had a more fully developed theory of learning. He differentiates
between simple ideas and complex ideas. Simple ideas are derived through sen-
sory input or simple processes of reflection. They are received passively by the
mind and cannot be reduced to simpler ideas. Looking at a cherry would gen-
erate the simple idea of “red.” Tasting a cherry would produce the simple idea
of “sweet.” Complex ideas are formed from the active mental combination of
simple ideas. They are created through reflection only and can be reduced to
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parts, their component simple ideas. The idea of “cherry” would result from
the associative combination of such simple ideas as “red,” “sweet,” and other
commonly occurring sensations derived from one’s experiencing cherries. This
cluster of simple ideas is naturally associated because each time we experience
a cherry it comes to mind. For this reason, Locke and others who have pro-
posed similar notions are sometimes known as the associationists.

Evaluating the Knowledge Acquistion Debate

One might be tempted to immediately dismiss the doctrine of innate ideas
put forth by the nativists and rationalists. After all, it seems absurd that
we should be born knowing factual information such as the content of the
Gettysburg address. But the scope of knowledge is broader than this. Think
back to the previous chapter, in which we defined declarative knowledge for
facts and procedural knowledge for skills. There is quite a bit of research
supporting the notion that some forms of procedural knowledge are innate.
Newborn infants for instance come into this world with a variety of differ-
ent skills. These skills are universal across the human species and manifest
themselves so soon after birth that they couldn’t possibly have been learned.
They therefore qualify as examples of innate knowledge. Let us examine a
few of these.

All infants demonstrate a set of reflexes. These reflexes include the grasping
reflex, in which the fingers tighten around a touch to the palm, and the root-
ing reflex, in which the infant turns his or her head and begins sucking
an object placed near the mouth. Reflexes serve a clear adaptive function.
Grasping and sucking, along with behaviors generated by other early reflexes,
are important for survival. The physiology behind reflexes is simple and fairly
well understood. A stimulus triggers one or more sensory neurons that then
activate intermediary neurons. These in turn activate motor neurons, causing
the resulting behavior. It is easy to see how such a simple mechanism could be
hardwired at birth to enable the infant to respond effectively to its environ-
ment. Figure 2.6 shows the anatomy of a spinal reflex.

Smell preference is another example of innate behavior. Steiner (1979)
found newborns tend to agree with adults in terms of which odors they con-
sider pleasant or unpleasant. He found that odors such as strawberry and
banana elicited agreeable facial expressions from young infants, for example,
smiling. Unpleasant odors such as fish and rotten eggs elicited expressions of
disgust. As is the case with reflexes, these smell preferences have survival value.
Babies who find the smell of fruit attractive will eat the fruit and thereby gain
nutrients, those that are repulsed by spoiled or unpalatable food will reject the
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food and avoid getting sick. The neural mechanisms behind such preferences
are probably not too complex either. They need involve little more than a map-
ping between the odor and the emotional response.

Given the above examples, we see that it is not so far-fetched for us to
be born with procedural knowledge. This knowledge is in the form of simple
neural circuits that map stimulus inputs to appropriate behavioral outputs.
This knowledge can even be represented using the conditional rules we talked
about in Chapter 1. A coding of a smell preference might look something like:
“If smell is fish then disgust.” The odor, if it satisfies the first part of the
conditional, would then trigger the response in the second part.

But how did these circuits get there in the first place? The early nativists and
rationalists either did not specify the source of innate knowledge or attributed
it to God. Evolutionary psychology offers us another explanation. It attributes
such capacities to generations of selection pressures acting on a species. These
pressures promote the development of adaptive (survival-related) cognitive
abilities. Evolutionary psychologists further argue that these innate abilities are
domain-specific, meaning they are attuned to perform special operations only
on a certain type of information. Domain-specific mechanisms can be distin-
guished from content-neutral or domain-general learning mechanisms, such as
the processes of associationism proposed by Locke. Evolutionary psychologists
can be considered modern-day nativists. See the evolutionary approach chapter
for more on their views.
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The phrasing of the nature-nurture debate as allowing for only a single
alternative, either one or the other, is misleading. Although some traits may
indeed be the product entirely of nature or of nurture, there is a large middle
ground consisting of traits or cognitive abilities that can result from the com-
plex interaction of the two. In these cases, nature may set constraints or limits
on environmental influence. Take memory for example. Tsien et al. (1996)
engineered a mutation in a gene that affects a particular type of receptor in the
hippocampus, a brain area responsible for the learning of new information.
Rats with the mutation did poorly in a memory task as compared to normal
rats in a control group. Tang et al. (1999) did something even more remark-
able. Through genetic manipulation they increased production of a particular
subunit in the hippocampal receptor. This change increased the receptor’s
effectiveness. Rats with this “enhanced” version of the gene outperformed rats
with normal receptors on a spatial memory test.

This research is exciting because it shows that memory in these animals is at
least partially under genetic control. However, it is also well documented that
human memory capability can be improved through organization and the use
of memory strategies (Roediger, 1980). The way in which these genetic and
environmental factors interact to determine memory in any given individual is
complex. It could be that any amount of organization could produce no more
than a small increase in memory performance if the aforementioned gene were
lacking. Alternatively, those with the enhanced version of the gene who also
employ memory strategies could perhaps acquire “supermemories,” and then
no longer need to employ memory strategies in order to remember effectively.

The Mystery of Consciousness

Consciousness is a complex concept and has no single agreed-upon definition.
In its broadest sense, we can think of it as the subjective quality of experience
(Chalmers, 1996). It may be thought of as our individual subjective awareness
of mental states. These states include sensation, perception, visual images, con-
scious thought processes, emotions, and sense of self, just to name a few. But
these states assume a person is in a normal, awake, and alert frame of mind.
The issue becomes more complex when we think of other types of conscious-
ness; for example, being unconscious, asleep, in a drug-induced state, hypno-
tized, or meditating. There are clinical cases representing other states of
consciousness as well. In dissociative identity disorder, a person can alternate
between separate personalities. Each personality can possess unique skills and
may or may not be aware of the others. In split-brain patients, one half of the
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brain can possess an awareness of an object the other half does not possess. For
simplicity, we do not consider these alternate states of mind.

An interesting aspect of consciousness is whether it is unitary or divided.
Subjectively, our consciousness seems to be unitary. That is, one recognizes
himself or herself to be one person, experiencing things in the present moment.
When one studies the brain, though, one finds that there is no single place or
even time where consciousness seems to happen. Instead, the brain in action is
a case of activity going on all over the place. Furthermore, the brain may even
be processing different aspects of a single experience at different times. How
can we reconcile this objective evidence with our subjective experience? See the
In Depth section for one theory on this apparent contradiction.

Chalmers (1996) makes a distinction between phenomenal and psycho-
logical concepts of mind. The phenomenal concept of mind is essentially the
idea of mind as a conscious experience. Mental states in this view need to be
explained in terms of how they feel. The psychological concept of mind sees
mental states only in terms of how they cause and explain behavior. Here,
mind is characterized by what it does—how it feels is irrelevant. Philosophers
have concerned themselves primarily with the former, psychologists and cog-
nitive scientists with the latter. To make this distinction clear, imagine biting
into a candy bar. A phenomenal investigation would attempt to explain why
you experience the mental states of “sweetness” or “chocolate” and why you
might perceive them differently than somebody else. A psychological investi-
gation would concern itself with the neural circuits that become activated
during the bite, how they might be represented computationally, and how this
explains when you might stop eating. In this section, we concern ourselves with
the phenomenal concept of mind and its relation to consciousness, since the
psychological view is in most cases the topic of the remainder of this book.

The What-It’s-Like Argument

Nagel (1974) says there is “something that it is like” to have a conscious
mental state. When you bite into a candy bar, you have a subjective conscious
experience of tasting it. The candy bar of course has no such experience. There
is nothing that “it is like” for the candy bar being bitten. This is one way of
describing consciousness—that organisms that possess it can be described as
having some sort of experience. Things incapable of supporting consciousness
cannot.

But what is this experience like? Nagel asks us to imagine what it must be
like for a bat to navigate by echolocation. In echolocation, the bat emits high-
pitched sounds. The sound waves bounce off an object in the animal’s path and
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the animal uses the reflection time as a measure of the object’s distance (see
Figure 2.7). We could conceivably build a machine that could compute echolo-
cation the same way a bat does. It might even perform as successfully as the bat.
But this would not tell us what it is like for the bat to experience the world in
the way it does. We have seen this argument before in our evaluation of func-
tionalism. There we said that a functional description of a cognitive process
does not account for the qualia, or subjective experience, of the process.

The problem here is that science can only provide an objective account of
a phenomenon and consciousness is an inherently subjective state. As organisms
capable of supporting consciousness, we can introspect and analyze what it is
like to have or to experience a mental state. Unfortunately for cognitive science,
this is not what is needed. Cognitive science must instead have a scientific and
objective account of what consciousness is. Frank Jackson (1982) aptly illus-
trates the difference between objective and subjective accounts of a conscious
experience. He asks us to think about a neuroscientist named Mary who is
well trained in the physical mechanisms underlying color vision. She under-
stands everything there is to know about how the eye and brain process color
information. Mary, however, is colorblind. Imagine now that we take away her
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colorblindness and allow her to look at a tomato. Interesting questions arise.
Does Mary learn anything new by this experience? Does the scientific commu-
nity gain anything by Mary’s (or anybody else’s) description of what it is like to
see red? Jackson argues that we do gain something, and that science needs to
explain this new information. This gulf between an objective and a subjective
description of mental phenomena goes by the name of the explanatory gap.

In contrast to this position, some state that subjective knowledge is not fac-
tual knowledge at all and therefore does not constitute any kind of an explana-
tion. Personally knowing what it is like to taste a candy bar or to see red is not
the same thing as objectively and factually knowing it. Adopting this position,
we as investigators would be forced to ignore introspection and any other form
of subjective description. Our focus would be only on legitimate objective tech-
niques for studying the mind, such as experimentation and brain scanning.

Mind as an Emergent Property

Consciousness is a “hot” topic in contemporary cognitive science. In the past
fifteen or so years there have been renewed interdisciplinary efforts to under-
stand it. A number of well-known authors have published books for academic
and layperson audiences that outline their definitions and views on the subject.
These authors’ theories are too numerous to mention here. We instead describe
one popular theory in this section and a more detailed description of another
in the In Depth part of the chapter.

John Searle (1992) introduces a new twist on consciousness in his book The
Rediscovery of Mind. He argues that consciousness is an emergent property of
the brain. An emergent property of a system is realized through the interaction
of the system’s parts. He says if we have a given emergent system S, made up
of elements a, b, c, and so on, then the features of S may not be the same as
the features of a, b, c, and so on. This is because the features of S arise from
the causal interactions of the parts. Water for example has the features or
properties of “liquidity” and “transparency.” The H2O molecules that make it
up do not share these properties. The causal interactions of these molecules,
that is, their bumping into each other, give rise to these properties. In the same
way, Searle says, consciousness is a property of the brain but not of its parts.
If we take neurons to be the relative parts, then they have their own properties,
such as being able to communicate via electrical signals with one another.
These properties that are inherent in the way the neurons interact give rise to
consciousness, but the properties of individual neurons need not be those of a
conscious mind.
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Searle is very careful to point out that he is not a reductionist. He does not
believe consciousness is reducible to its parts. In fact, emergence is just the
opposite of reductionism. In reductionism, explanation goes downward and a
phenomenon is directly explainable in terms of what is happening at a smaller
scale. In emergence, explanation goes upward. The smaller now gives rise to
the larger. The large-scale phenomena are more than just what is happening in
and around the parts and cannot be explained solely by an account of what the
parts are doing. This idea is similar to the concept of a gestalt in perception.
Gestalts are discussed in the next chapter (The Psychological Approach).

Searle seeks to avoid the monism-dualism dichotomy of the mind-body
problem. He does this by talking about consciousness as a property rather than
a substance. He likens consciousness to an emergent characteristic of what
brains do in the same way that digestion is what stomachs do, or photosyn-
thesis is what plants do. He sees consciousness as a natural process and a
byproduct of the brain’s nature. However, he does classify conscious mental
states as separate from physical ones. He states that they constitute a unique
and novel category of phenomena, with an independent reality and a distinct
metaphysical status.

Evaluating the Emergent View of Mind

As appealing as this formulation is, it still leaves us with some vexing ques-
tions. The reformulation of consciousness as a property, and a nonphysical one
at that, still begs the question: what is a property? If a property is not physical,
then of what substance is it? Although attempting to avoid the mind-body
debate, Searle seemingly ends up as a type of dualist. Restating consciousness
as a nonmaterial property of a material brain doesn’t get us any further toward
understanding what this type of property is. Also, it is not clear how emergence
happens, that is, we do not yet have an understanding of the relationship
between microscopic and macroscopic properties. In the case of water, we can
say its properties have something to do with the three-dimensional shape of the
H20 molecules and other conditions, such as the surrounding temperature. For
consciousness and the brain, this relationship between the microscopic and the
macroscopic is far more ambiguous.

Searle’s reason for believing in a nonmaterial consciousness is based on his
conception of the difference between physical and mental things. For physical
things, we can make a distinction between appearance and reality. A piece of
wood may subjectively appear a certain way to us; as brown, as having a cer-
tain length and weight, and so on. These characteristics can also be measured
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objectively; we can put the wood on a scale, use a ruler to determine its length
and a wavelength detector to measure its color. For mental things this distinc-
tion between the subjective and objective goes away. As regards mental expe-
rience, Searle believes that appearance is the same as reality and that our
subjective introspections are objectively correct. But if this were true, we would
have to trust our intuitions about the mental world as metaphysically special
and nonmaterial.

In opposition, Paul Churchland (1995) points out that this reliance on the
infallibility of introspection is an outdated notion. He notes that introspection
often does not give us direct and accurate knowledge of the mental. Our inner
assessments of mental states can be quite often and notoriously wrong. It is
commonplace for us to err in judging our thoughts, feelings, and desires. Many
of the early psychologists relied on introspection as a means to study the mind.
The next chapter provides a more elaborate discussion of the problems they
encountered.

Consciousness and Neuroscience

What does the brain have to do with consciousness? Is there some part of
the brain or some particular pattern of neural activity that gives rise to con-
sciousness? What is the neural correlate of conscious experience? Although
philosophers have been debating the relation between the brain and mental
phenomena for millennia, recent advances in neuroscience have yielded more
specific insights into these questions. Let’s examine some of them here.

In general, the neuroscience view is that consciousness results from the coor-
dinated activity of a population of neurons in the brain. Popper and Eccles
(1981) see consciousness as an emergent property of a large number of inter-
acting neurons. A different idea is that there are neurons specifically devoted
to producing consciousness. Crick and Koch (1995) believe these are located
throughout the cortex and in other areas associated with the cortex. Activity
in at least some subset of these neurons produces conscious experience. They
believe that these neurons are special and that they differ from other neurons
in terms of their structure and function. A similar but slightly different con-
ception is that any cortical neuron may contribute to a conscious experience;
however, different groups of cortical neurons mediate different types of con-
scious experience.

If there were special consciousness neurons, where might they be located?
It has been proposed that one area is the intralaminar nuclei of the thalamus
(Purpura, 1997). The thalamus is a relay center for incoming sensory information.

54 COGNITIVE SCIENCE

02-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 54



It sends information from each of the different sensory modalities, such as
vision, audition, touch, and taste, to specialized areas of the cortex devoted to
processing the information. Lesions of or damage to this brain region result in
coma and loss of consciousness. It may be that these thalamic neurons, because
they have widespread projections to many cortical areas, serve to activate or
arouse other cortical neurons. Specific activity in different cortical regions may
then account for specific forms of consciousness. For example, activation or
arousal in the occipital visual regions may correspond to visual awareness,
while activation of the somatosensory cortex may produce awareness of dif-
ferent parts of the body.

Churchland (1995) formulates a neurocomputational theory of consciousness
that focuses on connections between the intralaminar nuclei of the thalamus and
disparate cortical areas. The circuit consists of ascending projections from the
thalamus to the cortex, as well as descending pathways from the cortex to the
thalamus. Figure 2.8 shows the anatomical layout of this area. These pathways
are recurrent, meaning that a signal can be sent back and forth inside it. In this
case information coming into the thalamus can be passed to the cortex, while the
cortex can also pass information back to the thalamus. Recurrence is an impor-
tant network property because it allows for feedback and learning. Recurrent
activity in a network may sustain information over time and be the basis for con-
scious mental awareness. Recurrent artificial neural networks and their proper-
ties are described in Chapter 7 (The Network Approach).

Churchland believes the characteristics of this network can account for a
number of different features of consciousness. One such feature is the capacity
of consciousness to hold information over time—the equivalent of a short-term
memory in which we are aware of the current moment in relation to the past.
This is in keeping with the network’s recurrent nature, since information can
be held over time as it is cycled back and forth. Churchland also shows that
this network can maintain activity in the absence of sensory inputs, for example,
when we are daydreaming or thinking with our eyes shut. It can additionally
explain why we lose consciousness during sleep, why it reappears during
dreaming, and a host of other such features.

Churchland is quick to acknowledge, however, that it is the dynamical
properties of this recurrent network and not its particular neural locus that
make consciousness possible. He admits that a consciousness circuit may exist
in places that have been suggested by other researchers. One such area is within
the right parietal lobe (Damasio, 1994). The neuroscientist Rodolfo Llinas has
suggested that consciousness may arise within the layers of the primary sensory
cortex itself. He has written a comprehensive book that lays out his views
(Llinas, 2002).
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Consciousness and Artificial Intelligence

Researchers in artificial intelligence (AI) design algorithms to perform real
world computational tasks such as language comprehension or problem solv-
ing. Many of these algorithms can be judged successful from a behavioral
standpoint because they adequately perform their tasks, some under a variety
of different conditions. If we define thought as computation in some physical
substrate, as functionalists do, then we can also without much risk say that
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these programs are “thinking.” But are these programs conscious, or could
they ever become conscious? This is a much riskier proposition, since, as we
have seen, consciousness implies more than computation. It seems to involve
subjective experience and perhaps other things. In this section, we address the
question of whether a machine can be conscious. This is perhaps the most
interesting philosophical issue (but not the only one) in artificial intelligence
today.

There are a variety of different perspectives on whether or not a machine
can become conscious (Freedman, 1994). These may be generally classified
into two categories. The strong AI view asserts that consciousness can arise
from a purely physical process. Followers of this perspective believe that, even-
tually, as we create machines with greater complexity and computational
power, we will see consciousness emerge in them. Proponents of weak AI claim
that consciousness is itself either not a physical process and so can never be
reproduced, or is a physical process but such a complex one that we will never
be able to duplicate it artificially. We elaborate on what is meant by strong and
weak AI later in the chapter on artificial intelligence.

Let us examine the arguments both for and against strong AI. Daniel
Dennett (1998) raises several points in its defense. He mentions that many phe-
nomena that used to have mystical and supernatural explanations now have
scientific ones. Consciousness should be no different, he argues. Some have
claimed that consciousness may only be possible in an organic brain. Dennett
concedes this may be true, but notes that science has already been able to
mechanically reproduce small-scale biochemical processes. An alternate coun-
terargument is that consciousness is simply too complex to be artificially repli-
cated. In response to this Dennett says that consciousness of a more basic form
may not require a sophisticated artificial substrate. Dennett ends by noting any
conscious machine will probably have to develop this capacity through an
extended learning process, just as humans do. From a practical standpoint this
is not a barrier, since a number of machines that learn from experience have
been designed.

Perhaps the most persuasive and well-known argument against the strong
AI position is the Chinese room scenario (Searle, 1980). In this hypothetical sit-
uation a man is in a room by himself. Outside the room is a person who asks
a question in Chinese. This question is converted into written Chinese symbols
on paper. The man in the room understands no Chinese whatsoever, but has
a book of rules that tells him how to relate the Chinese symbols that make
up the question into a set of symbols constituting a response (see Figure 2.9).
These written symbols are then converted back into a spoken reply. For
example, if the outside person utters “How are you?” in Chinese, the man
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in the room may, using the rule book, counter with “I’m doing fine!” To an
outside observer, it would seem as if the person in the room understands
Chinese. After all, he has a reply to any question that is given. But Searle’s
point is that the man knows no Chinese. He is only following a prescribed set
of rules that maps one set of symbols onto another. This is a rote execution of
an algorithm and, according to Searle, it is all a machine can do. Therefore,
he says, machines can never “understand,” “know,” or “be aware of” the infor-
mation they process. They cannot be conscious of what they do. Consciousness
of the human sort requires something more than just following an algorithm.
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To Searle, these extra ingredients are intentionality and meaning—aspects of
mental representation discussed in the introductory chapter.

Boden (1990) raises a number of objections to the Chinese room argument.
First, the terms understanding and intentionality are not well defined. Under-
standing could be operationally defined as being able to respond successfully
when asked, rather than as entailing some inherent meaning on the part of the
person. Second, a person who remained for some time in the Chinese room or
even a machine in the room, if of sufficient complexity and if left there long
enough, might eventually achieve some level of understanding. Either might
eventually notice that certain combinations of characters always go together
and from this learn the basic elements of syntax. Finally, Boden mentions that
one could take this argument to its extreme by building a robot that, follow-
ing rules, is indistinguishable from a human, yet one would have intentional-
ity and the other would not.

Overall Evaluation of the Philosophical Approach

One of the main advantages of the philosophical approach is that it allows us
to ask much broader questions than those of other disciplines. A cognitive psy-
chologist studying memory for nouns might wonder why concrete nouns are
recalled better than abstract ones. This psychologist is constrained into formu-
lating specific questions and hypotheses by the narrow focus of the research.
This very focus of course is an advantage, since it allows the researcher to
examine and understand a natural phenomenon in depth. A philosopher exam-
ining the results of this same research is free to inquire about the nature of con-
creteness or what it means that something is abstract. He or she could also
inquire as to how concrete or abstract stimuli are processed in other cognitive
systems, such as attention and language. Of course he or she is free to ask even
more fundamental questions, like: Why do we have memory? What pur-
pose does memory serve? What would a person be like without a memory?
Philosophy thus shows us the “bigger picture.” It gives us key insights into the
relationships between different areas of study, within and between disciplines,
and therefore plays a very important role in the interdisciplinary endeavor of
cognitive science.

Keep in mind that philosophy is a non-empirical approach. It does not utilize
the scientific method. Concepts in philosophy are validated through logical rea-
soning and argument rather than by systematic observation and experimenta-
tion. For this reason, the conclusions reached in philosophy are speculative and
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theoretical until tested. Philosophy is better suited to the asking of important
questions—how, what, and why we should study something—rather than to
providing definitive answers. These answers come from the scientific disciplines.
It is therefore important that a good two-way working relationship exist between
philosophers and these science-based approaches.

In Depth: Dennett’s Multiple Drafts Theory of Consciousness

Dennett, in his book Consciousness Explained (1991), outlines an interesting
theory on the nature of consciousness. He begins by refuting the classical view
of consciousness. The classical view, promoted by Descartes, posits a single
point in the brain where all information funnels in. This area is a supposed
center of consciousness, where we experience the world or the contents of our
thoughts in a coherent, unified way. Dennett calls this center the “Cartesian
theater.” It is as if our consciousness is the result of a projector displaying
information onto a movie screen. The individual sitting in the theater watch-
ing the screen then has a single conscious experience of what is playing. Figure 2.10
gives a representation of the Cartesian theater.

There are a number of problems with the Cartesian theater. To start, linked
modes of information do not arrive within the brain simultaneously. Light
from an event precedes the arrival of sound. The sight of a fireworks display
reaches the mind prior to the sound of the explosion, yet we experience the two
in unison. This suggests that our consciousness is constructed; the visual expe-
rience is kept in check or delayed until arrival of the sound, at which point the
two are integrated into a unified percept of the fireworks. This example and
others imply that consciousness does not occur in real time—but (in many
instances) several fractions of a second or so after an event. Our experience of
consciousness as direct and immediate seems to be an illusion.

Another problem with the Cartesian theater is that, anatomically, it is diffi-
cult to find a brain region that links incoming sensory input and outgoing
motor outputs. There is no central processing unit (CPU) in the brain as there
is in a computer. The task of a computer’s CPU is to schedule and coordinate
ongoing activity. Furthermore, the Cartesian theater analogy requires an observer
in the audience watching the screen. This observer is the subjective self who
experiences the screen’s contents. But how is this person inside our heads inter-
preting the image and having the conscious experience? To explain this, we
need to posit another mechanism or theater inside this person’s head with
another even smaller person and so on, ad infinitum. This is known as the
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homunculus problem in psychology and philosophy. Homunculus translated
means “little man.” An effective theory of consciousness must avoid the logi-
cal conundrum of homunculi nested inside each other.

Dennett replaces this problematic formulation with a multiple drafts model
of consciousness (see Figure 2.11). In this model mental activity occurs in
parallel. Rather than projecting to a single location for processing in unison,
different ongoing streams of information are processed at different times. Each
of these streams can correspond to different sensory inputs or thoughts.
Processing or editing of the streams can occur, which may change their con-
tent. Editing can consist of subtractions, additions, and changes to the infor-
mation. Awareness of a stream’s content can happen before or after editing
takes place. To illustrate, take our fireworks example. One mental stream
would contain the visual experience of the fireworks while another would
contain its auditory representation. The visual stream would undergo editing
in the form of a delay to synchronize it with the auditory stream. Then the
information from both streams could be tapped to produce awareness.

There is abundant evidence in support of the multiple drafts model. Take,
for instance, the organization of the visual system. It adopts a “divide and
conquer” strategy. The visual system carves up different aspects of an object
during pattern recognition. These aspects are each processed separately in dif-
ferent parts of the brain by anatomically distinct pathways. This information
is later combined to yield a unitary percept, but we are not aware that the
information has been separated and then united.

A famous experiment by Loftus and Palmer (1974) also provides support
for Dennett’s idea. In this study, participants viewed a film of a car crash.
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Afterward, they were asked to estimate the speeds of the cars. The crucial
manipulation was in how the question was asked. Some were asked how fast
the cars were going when they “bumped” into each other. Others were asked
how fast they were going when they “smashed” into each other. As you might
predict, those who were queried with a mild descriptor like “bumped” esti-
mated that the cars were moving more slowly. Those queried with a more
severe descriptor like “smashed” estimated the speeds as considerably higher.
These results suggest that our memories of an event are not perfectly preserved
“snapshots” of what happened, but are actively edited over time. The posing
of a question and other subsequent experiences after the event can cause the
memory to be edited and changed.

Dennett’s theory also allows for different levels of awareness. Some infor-
mation that is part of a stream may be available to conscious awareness
and could be verbally described by the individual experiencing it. Other data
streams we may only be vaguely aware of, but they can persist and influence
additional mental processes. Yet other information may simply fade into the
background. We may never be aware of this information. These three levels of
awareness are comparable to Freud’s conscious, preconscious, and subcon-
scious aspects of mind, discussed in the next chapter.

In summary, Dennett’s theory is more logically coherent and captures some
of the empirical evidence on conscious experience. It suggests there is no cen-
tral place where consciousness happens, but that multiple mental events occur
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in parallel. These events may be edited and changed in such a way that
consciousness need not take place in real time. We may or may not be aware
of these events.

Minds On Exercise: Decision Making

Join up with a small group of fellow students. Everybody in the group should agree
on a list of ten possible graduate or other schools to which they might apply. Along
with the list, provide information on such things as prestige/reputation, geographic
location, student-teacher ratio, library resources, and so on.Next, each person in the
group will design an algorithm that will enable him or her to pick a winning school.
This algorithm should be a formal representation of the mental process he or she
would go through in making that decision. Once everyone is finished, they can show
and explain their algorithms to the rest of the group. Be sure to discuss the follow-
ing questions:

1. Compare and contrast the different decision making processes. Are any
similar? Can they be put into different categories? On what basis?

2. Did two people use different algorithms but pick the same school? Did two
people use the same algorithm but pick different schools?

3. Would the same algorithm pick the same schools each time? If not, in what
ways might an algorithm change over time? What does this say about pre-
dictability and the free will–determinism debate?

Food for Thought: Discussion Questions

1. Are you a monist or dualist? Take one side of this debate and argue in
support of it. Can cognitive scientists legitimately adopt a dualist position?

2. The billiard ball model of causality implies that with a sufficient understanding
of a system we should eventually be able to predict any natural phenomenon.
Is this true? Will we eventually be able to perfectly predict the weather?
Human behavior?

3. What kinds of knowledge are we born with? Create a list of human knowl-
edge that you think is innate. Is all of this knowledge procedural? Can we be
born with factual, declarative knowledge?

63The Philosophical Approach: Enduring Questions

02-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 63



4. Describe some emergent properties that exist in the natural world. Can these
tell us anything about how the mind might emerge from the brain?

5. Searle argues that consciousness is much more than a machine executing an
algorithm. Is this sufficient for consciousness, or is something more required?
What might this something more be?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“Mind, n. A mysterious form of matter secreted by the brain. Its
chief activity consists in the endeavor to ascertain its own nature,
the futility of the attempt being due to the fact that it has nothing
but itself to know itself with.”

—Ambrose Bierce, 1911

What is Psychology?

This chapter highlights a number of different perspectives adopted within the
discipline of psychology, primarily during the 20th century. Each has a rela-
tively unique answer to the question: What is mind? But first we need to ask
ourselves another question: What is psychology? As a discipline it is best
defined as the scientific study of mind and behavior. Psychology uses the
scientific method as a means of gaining valid knowledge. Its focus of study
includes internal mental events such as perception, reasoning, language, and
visual imagery. It also however studies behaviors, which are external events.
Behaviors include such things as walking, talking, and running. This distinc-
tion between mind and behavior makes its appearance in the fundamental
questions this approach attempts to answer. These questions include: What are
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the contents of the mind? How do these contents interact with each other?
How does the mind explain what we do?

The different movements in psychology described in this chapter have
focused on different themes. Many of the movements, including volun-
tarism and structuralism, were concerned with cataloging the “stuff” inside
our heads. That is, they tried to list the basic elements of mind and to delineate
how they interact to form other elements. We see this question of mental con-
tent taken up later by other approaches. Cognitive psychologists who studied
memory later on tried to describe concepts that exist in our memories and how
these concepts are related to one another. They formulated the idea of a men-
tal lexicon or dictionary as a way of explaining how concepts exist in memory.
In the network approach, we see that semantic networks were created to
explicitly describe the location and arrangement of concepts.

A second major theme that emerges in the history of psychology is centered
on operations—what the mind does, rather than what it contains. We see the
issue of operations being addressed first by the functionalists. Functionalism
veered away from a listing of the mind’s supposed “parts” and studied the
ways in which the mind performed various mental actions. The psychoanalytic
psychologists like Freud were also operational in their approach. Their focus
was on how mental structures such as the id and the ego dynamically inter-
relate. Gestalt psychology focused on a specific aspect of mental operations,
namely, how mental parts form wholes. The Gestalt psychologists wanted to
know how the mind creates larger-order structures during perception and
problem-solving. This theme of mental operations occurs repeatedly in other
areas of cognitive science. Cognitive psychologists would later form elaborate
models of mental processes to explain perception, memory, and attention. In
neuroscience, brain scans would reveal the neural sequences of events that
underlie mental tasks. Connectionists would devise neural networks with spe-
cific patterns of operation to simulate mental function, and in the domain of
artificial intelligence, computers would be programmed with complex sets of
rules to mimic the kinds of things the brain can do.

Interestingly, in the behaviorist movement we see a counter-reaction against
the whole concept of studying the mind. Behaviorists viewed the mind as some-
thing that passively mapped aspects of the environment onto an organism’s
response. It was the environment and not the mind, they believed, that controls
a person’s actions. The study of behavior and its relation to the environment
appears again in cognitive science in the field of robotics. A challenging goal in
this field is to get a machine to perform some task successfully in a real-world
environment. To do so requires an understanding of how variable stimulus
inputs can map onto a robot’s possible responses.
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A number of commonalities run through the different movements in
psychology. Many were influenced by developments in other branches of the
sciences. Particularly influential were chemistry and physics. Voluntarism and
structuralism both adopted fundamental ideas from chemistry and embraced
the idea that the mind, like the physical world, was made of basic elements that
combine into larger wholes. Similarly, the Gestalt psychologists adopted the
idea of field theory from physics and employed the notions of fields, particles,
and forces in their descriptions of mental phenomena. In addition, many move-
ments in psychology arose as counter-reactions to existing movements or as a
means to address problems raised by prior movements. Both functionalism and
Gestalt psychology, for instance, arose in opposition to structuralism.

Psychology and the Scientific Method

Before describing the foremost theories of each movement we need to digress
and examine how psychology goes about its business. Early psychologists
relied on techniques such as introspection and phenomenology. Modern psy-
chologists employ a wider variety of methods. They administer questionnaires
and surveys, analyze case studies of single individuals, and record behavior in
the wild through naturalistic observation. A number of modern day psycholo-
gists also cross over into other disciplines such as neuroscience or artificial
intelligence and so employ the methodologies of these approaches as well.
Many of these techniques are characterized by the principles of science.

The scientific endeavor in general is characterized by the hypothetic-deductive
approach. In this approach a hypothetical conjecture about the way the world
works is tested deductively. The testing is accomplished by carefully observing
the way the world works under controlled conditions. If the observation sup-
ports our conjecture, we can elaborate and expand upon it. If it doesn’t we
must change it to account for what has been observed. The testing, as we
alluded to above, can assume a variety of forms. In neuroscience, it can be the
observation of brain-damaged patients or the scanning of brain activity. In
artificial intelligence or cognitive psychology it may involve constructing a
computer simulation. The scientific method, in which an experiment is con-
ducted to test a hypothesis, is perhaps the most widely used method in all of
psychology and cognitive science. For this reason we will look into it now.

The scientific method uses an experiment, which is designed to test a
hypothesis, a specific statement about the world. For example, one could
hypothesize that a participant’s memory for a list of words will be worse when
the participant is listening to music. The validity of a hypothesis is based on
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the outcome of an experiment. The results of an experiment can either support
or fail to support a given hypothesis. In this example, if it were the case that
memory was worse while the participant listened to music, we could say the
results do support the hypothesis. Hypothesis testing in turn helps researchers
construct a theory, a more general understanding of the world that organizes
a set of facts and aids us in understanding how the world works. The data of
this particular experiment might support a theory that distraction interferes
with our ability to remember information.

Any experiment involves the use of independent and dependent variables.
An experimenter manipulates an independent variable to see if it will produce
a change. Going along with our previous example, a researcher might vary the
presence of music in a memory experiment. In the music condition, partici-
pants memorize a list of thirty words while listening to music being played in
the background. In the no-music condition, a different group of participants
must memorize the same thirty words without any music playing. The depen-
dent variable is what is measured or observed by the experimenter to see if a
change of some kind has occurred. Such a change may be thought of as the
effect or thing that happened as a result of the independent variable. In this
instance, the independent variable would be music and the dependent variable
might be the average number of words successfully recalled.

Generally experiments consist of a minimum of two conditions. The exper-
imental group receives the independent variable while the control group does
not. In our hypothetical example, the music condition would correspond to
the experimental group and the no-music condition to the control group.
Assuming that everything else that makes up the two conditions is held con-
stant by the researchers, then any difference between the two sets of results
must be attributed to the manipulation. If we found that average word recall
was higher in the no-music condition than in the music condition, then we
could conclude that background music interferes with memorizing words. As
stated above, this would support our hypothesis. It should be noted that his-
torically psychology has employed other techniques. Among these are intro-
spection and phenomenology, which will be defined later.

Mental Atoms, Mental Molecules, and a Periodic
Table of the Mind:The Voluntarist Movement

Duane Schultz and Sydney Ellen Schultz, in A History of Modern Psychology,
4th ed. (1987), give a good overview and critique of the various theoretical
movements in the history of psychology. These movements include voluntarism,
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structuralism, functionalism, behaviorism, Gestalt psychology, and the psycho-
dynamic view. They all preceded the cognitive revolution that we will discuss
in the next chapter. We refer our readers to their text for a more detailed
discussion of the history and ideas behind these movements.

We will begin our discussion of psychology with voluntarism. The volun-
tarism movement viewed the mind as consisting of elements, but stressed that
these elements were assembled into higher-level cognitive components through
the power of the will. It was the will, or voluntary effort of the mind, that was
seen as the force behind the creation of more complex mental elements.
German physiologist and psychologist Wilhelm Wundt (1832–1920) was the
founder of voluntarism (see Figure 3.1). Another field in science, chemistry,
had a significant influence on voluntarism. During Wundt’s time chemists were
attempting to describe the material world in terms of its basic components and
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how they combine. The Russian chemist Dimitri Mendeleev developed the
periodic table of chemical elements during this time. The idea behind this table
was that the entire physical universe consisted of atoms, characterized by dif-
ferent properties, and that atoms could, under certain conditions, combine
to create more complex, higher-order molecules. Wundt may have also been
attempting to create a periodic table of mental elements, and to specify how
these elements combine (Marx & Hillix, 1979).

Other historical antecedents influenced Wundt. His focus on elements is
something he inherited from 19th century British empiricists and association-
ists, although he differs from them in that in his view it is the will, rather the
laws of association, that synthesizes and creates novel elements. His approach
is also analytic and reductionistic in that he believed the contents of con-
sciousness could be reduced to basic forms. Wundt’s methodology was shaped
from the experimental methods in use in the sciences. In fact, voluntarism her-
alds the beginning of psychology as a formal discipline, since it is the first time
in history that mental phenomena were systematically studied in accordance
with the scientific method. The official birth of psychology is usually given as
1879, the year Wundt opened his laboratory in Leipzig, Germany.

Wundt’s method was introspection or internal perception. Introspection
literally means “inward looking.” Just as one can look out at the external
world to see various objects, such as a chair or table, Wundt believed one could
also look inward to experience and describe mental objects. He presented the
students in his lab with various stimuli, such as colored shapes, and asked them
to introspect. The students then recorded their subjective experiences in rela-
tion to the stimuli. Although various forms of introspection had been used by
philosophers for centuries, Wundt attempted to systematize and objectify the
technique. He had his students put themselves in a ready state of attention
prior to their introspecting and repeat their observations several times as he
varied specific physical aspects of the stimulus, such as size and duration of the
exposure. This kind of methodological exactness exemplifies the influence of
the scientific method.

Wundt believed psychology should study consciousness. However, he dis-
tinguished between two types of conscious experience. Immediate experience is
our direct awareness of something. For example, if we see a rose, our percep-
tion of the rose as red is immediate. It is the redness we experience directly
while we are looking at it. If someone then asked us what we were looking at
and we responded “a red rose,” then that thought would be a mediate experi-
ence (it was a thought about the rose). Mediate experiences are those that come
from mental reflection about an object. Wundt emphasized the study of imme-
diate experiences. He believed they are the best way to describe the basic ele-
ments of mind, since they are “untainted” by elaborate thought processes.
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Wundt went on to develop a tridimensional theory of feeling, according to
which all feelings can be characterized by three dimensions. These dimensions
were pleasure-displeasure, tension-relaxation, and excitement-depression. Wundt
would play a metronome, a device that produces audible clicks at different time
intervals. As he varied the rate of the metronome, he discovered that some
rhythms were more pleasant than others. He also reported a feeling of tension
that accompanied his waiting for a click, followed by a feeling of satisfaction
after the click occurred. Finally, he noted feeling excited when the tempo of
clicks was increased and calm when they were played at a slower rate. Based on
these introspective observations, he believed any feeling could be characterized
by pleasure-displeasure, tension-relaxation, and excitement-depression.

Although voluntarism attempted to describe and classify the basic elements
of mind, it also needed to account for the fact that we perceive unitary wholes,
rather than collections of individual elements. For instance, when looking at a
face, we see a face in its entirety, not just a collection of its different parts, two
eyes, a nose, and a mouth. To account for this, Wundt postulated the princi-
ple of creative synthesis, also called the law of psychic resultants. According to
this principle, the mind actively organizes disparate elements together such that
the resulting whole contains new properties. These new properties cannot be
explained by the characteristics of the individual elements themselves. A simi-
lar phenomenon is seen in chemistry. Here, characteristics of individual atoms,
for example, hydrogen and oxygen, are insufficient to specify the characteris-
tics of the water molecules that form when they combine. Water has unique
properties that cannot be understood simply by analyzing it down into its
component parts.

To Wundt, creative synthesis was an active process in which the mind took
hold of elements and forcefully combined them. This contrasts with the earlier
views of the empiricists and associationists, who saw mental combination as a
passive and mechanical effect. They argued that mental wholes were created
through automatic processes of association, and that these processes did not
require the active participation of the mind deemed necessary by Wundt. This
topic of the relationship between parts and wholes does not end here. The
Gestalt psychologists would have much to say on this issue several years later.

Evaluating the Voluntarist Approach

The voluntarist approach was beneficial because it was the first scientific
attempt at studying the mind. The establishment of a laboratory, the appli-
cation of experimental methods, and the formulation of the clearly defined
goals of listing elements and describing their combinations are all strengths
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of this movement. However, many of the criticisms that have been leveled at
voluntarism also center around the elements of its methodology, introspec-
tion in particular. Critics have pointed to a number of flaws in introspection.
First, a mental experience may change over time. A person’s experience of
red may undergo alteration after several seconds have elapsed—the experi-
ence perhaps becoming less vivid. Also, it may be impossible to separate
immediate and mediate experiences because the act of introspecting could
itself change an experience. According to this idea, the simple reporting of
red, even as a sensation, involves reflective and perhaps other thought processes
that alter the true experience of red. And there was the issue of individual
differences. Some observers in Wundt’s lab experienced the same stimulus in
different ways, which suggested that people’s expectations or learning expe-
riences could change their perceptions. Finally, Wundt was never able to
compile a short list of fundamental mental elements comparable to the list of
elements that had been compiled in physical chemistry. The list of elements
derived from his students’ introspections with respect to their immediate,
sensory type experiences was growing far longer than what a simple periodic
table would accommodate.

Structuralism: What the Mind Is

Structuralism shares a number of ideas with its predecessor, voluntarism. The
subject matter of psychology was again conscious experience, and the method
was a modified version of introspection with an emphasis on the scientific
method. There were still major theoretical differences between the two schools.
The structuralist view of the mind held that, once again, the mind was a pas-
sive agent, with mental elements combining according to mechanistic laws.
Structuralism, per its name, focuses on mental elements; that is, the structure
of mind is to be understood in terms of basic elements and their combination—
suggesting once again the analogy to chemistry. Its progenitor was U.S. psy-
chologist Edward Bradfort Titchener (1867–1927).

Titchener cautioned against making the stimulus error, which is to say, con-
fusing our true experience of an object with a description of the object based
on language and past experience. When one looks at a banana, the true expe-
rience would be that it is yellow and curved—not the recognizing of it as a
banana or a type of fruit. This distinction parallels Wundt’s differentiation
between immediate and mediate experience. Titchener in addition broke away
from Wundtian-style introspection. He believed that only well-trained obser-
vers could introspect accurately and not make the stimulus error.
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According to Titchener, psychology had three goals. These were: (1) to
describe consciousness in terms of its simplest and most basic components;
(2) to discover the laws by which these elements or components associate; and
(3) to understand the relation between the elements and their physiological
conditions. The initial aim was, as with voluntarism, to come up with a set
of fundamental mental units. Titchener believed a mental element was funda-
mental when it remained constant over numerous introspective trials. So, if
multiple introspective observers all consistently experienced an object in the
same way, then this experience qualified as a true element.

The combination of elements, in Titchener’s scheme, was not effected
through active mental processes, as Wundt believed. Instead, Titchener saw the
mind as a passive mechanism or substrate within which elements combined
according to set laws. In chemistry a reagent is a substance added to a mixture
in order to produce a particular chemical reaction. Reagents are used to quan-
tify these reactions and their chemical products. In a similar fashion, struc-
turalists believed the mind to be a reagent, a medium inside of which mental
reactions and processes unfolded. Researchers of the day even went so far as
to call their subjects reagents!

Like Wundt, Titchener listed his elements. He described a total of 44,000
sensation elements alone. Out of these, 32,820 were visual and 11,600 were
auditory (Titchener, 1896). He thought that each of these elements was fun-
damental and indivisible, but that each was capable of combining with others
to form more complicated perceptions and ideas. Titchener believed all sensa-
tions could be characterized by four attributes. Quality is what separates a
sensation from any other sensation. The experience of heat therefore has a dif-
ferent quality than that of sound. Intensity refers to how strong a sensation is;
for example, a noise can be loud or soft, a light bright or dim. Duration refers
to how long a sensation persists, whether it is short-lived or longer lasting.
Sensations are characterized also by clearness. Sensations that one pays atten-
tion to possess greater clarity. To these basic four, Titchener later added exten-
sity, the extent to which a sensation fills or occupies space. The sensation of
pressure coming from a pencil tip that touches the skin has less extent than that
that would come from a chair-bottom.

Evaluating the Structuralist Approach

Many of the advantages and disadvantages of the structuralist movement are
identical to those of its ancestor, voluntarism. Structuralism further refined scien-
tific methodological procedures and applied them to the study of psychological
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phenomena. It employed a variety of techniques, including measurement,
observation, and experimentation. Introspection in a modified form would be
put to use later on in other areas of psychology, such as psychophysics, in
which observers judge the relative intensity of stimuli, and clinical psychology,
in which participants are asked to evaluate themselves along personality con-
tinua, such as those centering on anxiety or depression (Schultz & Schultz,
1987).

More elaborate critiques of introspectionism were now pointed at the struc-
turalist school. Among these were that the process itself is subjective and unre-
liable, that training participants to introspect only biases their responding even
more, and that some mental experiences, such as habits, happen without con-
scious awareness and so cannot be introspected about at all. The psychoana-
lytic school would expound considerably on this idea of an unconscious mind
that is inaccessible to attention or awareness. In conclusion, structuralism was
found to be too analytic and reductionistic. It was found to overemphasize the
role of low-level mental elements and to ignore holistic perception and experi-
ence, once again opening the way for the Gestalt psychologist’s concern with
this issue.

Functionalism:What the Mind Does

As is so often the case in scientific disciplines, a theoretical perspective that has
been entrenched for many years is often quickly replaced with an alternative,
sometimes completely contrary, perspective. This was certainly the case with
functionalism’s supplanting of structuralism. Rather than focusing on the con-
tents of mind, functionalism instead focused on what the mind could do. Its
emphasis was the mental processes or functions that operate on the elements,
instead of the elements themselves. Harvey A. Carr (1873–1954), one of the
later U.S. functionalists, summarizes the subject matter of functionalist psy-
chology as follows:

Psychology is primarily concerned with the study of mental activity. This
term is the generic name for such activities as perception, memory, imagi-
nation, reasoning, feeling, judgment, and will. . . . Stated in comprehensive
terms, we may say that mental activity is concerned with the acquisition,
fixation, retention, organization, and evaluation of experiences and their
subsequent utilization in the guidance of conduct. (Carr, 1925, p. 1).

The formal development of psychological functionalism in the United States
is credited to John Dewey (1859–1952) and James Rowland Angell (1869–1049),
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as well as to Harvey A. Carr. However, it was William James (1842–1910)
who was its pioneer and perhaps most lucid expositor (see Figure 3.2). James
is often considered the greatest American psychologist. James rebelled against
the Wundtian and structuralist conception of experience as being made up of
discrete elements, and believed such elements existed simply as a result of the
attentive, introspective process. He thought an individual erroneously created
the notion of an element by attempting to “freeze” or stop a moment in the
mind’s ongoing activity. He stated that one person’s subjective element in
response to a perception, for instance, does not guarantee that the same ele-
ment will exist in anyone else’s mind who experiences the same perception—
what he called the psychologist’s fallacy.

James replaced the “mind as elements” notion with the idea of mind as a
stream of consciousness, suggesting the mind was a process undergoing con-
tinuous flow or change. He likened thought to the water in a river that is
always moving. He provided another analogy when, referring to mind, he
declared: “Like a bird’s life, it seems to be made of an alternation of flights and
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Figure 3.2 William James was one of the early American psychologists
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perchings” (James, 1890, p. 243). James termed the resting-places or
“perchings” of thought as substantive. Substantive thought occurs when the
mind slows down, perhaps when focusing attention. James called the “flights”
of mind transitive. They correspond to a less focused, more associative form of
thinking.

James Rowland Angel articulated the three major themes of functionalism
(Angel, 1907). The first theme was the study of mental operations. By this, he
meant functionalism should investigate how a mental process operates, what
it accomplishes, and under what conditions it occurs. Second, Angel believed
functionalism should study the fundamental utilities of consciousness. One
ought to understand the role consciousness plays in the survival of the organ-
ism. This means asking such questions as: Why are we conscious? Of what
utility or usefulness is consciousness? How does consciousness help keep an
organism alive? Third, functionalism should study psychophysical relations,
the relations between the psychological mind and the physical body. The term
also refers to the total relationship of the organism to the environment, and
to how the organism, both physically and mentally, may have adapted to the
environment.

From these themes it is clear that functionalism was strongly influenced by
Darwin’s theory of natural selection. Functionalism then sought to explain not
just mental operations in and of themselves, but how the mind in general arose
through evolutionary pressures to serve the organism. The idea of an organism-
environment fit and how it may help to explain a variety of different psycho-
logical characteristics was to be elaborated on more fully at a later date by
evolutionary psychologists. Functionalism thus serves as the theoretical precur-
sor to evolutionary psychology, discussed in greater detail later in this book.

Evaluating the Functionalist Approach

The functionalist movement broadened the field of what could acceptably
be studied in psychology. Unconscious phenomena were fair game, as was the
study of children, the mentally retarded, and the “insane.” It allowed for a
wider variety of methods, such as tests, questionnaires, and objective behavioral
descriptions, and it permitted the continued use of introspectionism (Schultz &
Schultz, 1987).

Criticisms of functionalism came, perhaps not surprisingly, from the struc-
turalist camp. In 1913, C. A. Ruckmick , a student of Titchener’s, accused the
functionalist movement of failing to define the term “function,” having noted
that functionalists used the term in two different ways. First, function was used
to refer to an activity or process itself, such as perception or memory. Second,
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function was used to mean the utility or usefulness of an activity to the organism
(Schultz & Schultz, 1987). Functionalists sometimes used these terms inter-
changeably, which sometimes invited confusion. Another reported fault of
functionalism was that it was too applied and practical. Its adherents were
accused of focusing excessively on the usefulness of functions. In contrast, the
structuralists took a more basic scientific approach in their attempt to describe
and elucidate the basic aspects of mind. This debate over which is better—basic
or applied research—is ongoing in psychology and other sciences.

The Whole Is Greater Than the Sum of Its Parts:
Mental Physics and the Gestalt Movement

In the early part of the 20th century, another field of psychology arose. This
field was called Gestalt psychology and its three founders were all German.
They were Max Wertheimer (1880–1943), Kurt Koffka (1886–1941), and
Wolfgang Kohler (1887–1967). The Gestalt movement, like functionalism,
was a counter-reaction against structuralism and the atomism it entailed. The
Gestalt psychologists even referred to structuralism as “brick and mortar
psychology.” They saw wholes as more than just the sum of their parts; such
an integrated whole they called a Gestalt. What characterizes the Gestalt
approach is the importance of conscious wholes. The Gestalt psychologists
believed that conscious wholes could not simply be reduced to a listing and
description of their parts. The Gestalt psychologists also borrowed a metaphor
from physics: they believed that mental parts combined into wholes in much
the same way physical particles organized when subjected to fields of force.

The contributions of Gestalt psychology were greatest in two areas, per-
ception and learning. Gestalt psychology is phenomenological in method.
Phenomenology refers to subjective experience rather than objective descrip-
tion. When studying perception, for example, the Gestaltists preferred to cre-
ate stimulus patterns, show them to observers, and have the observers describe
their subjective experiences. Phenomenological description differs from intro-
spection in that it focuses on a person’s immediate and subjective perception
of an external stimulus. It does not require training or an intensive examina-
tion of one’s internal state. The Gestalt psychologists were looser methodolog-
ically when studying learning as well. They preferred to observe human or
animal subjects find solutions to problems rather than set up rigorously con-
trolled experimental conditions.

In vision, the relationship between parts and wholes is an important one. As
mentioned earlier, when we look at an object, we tend to see the entire object,
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rather than the parts of which it is composed. We tend to see a face, not an
aggregate of eyes, nose, and mouth. We tend to see trees and not collections
of leaves and branches. Max Wertheimer illustrates the problem this way: “I
stand at the window and see a house, trees, sky. Theoretically I might say there
were 327 brightnesses and nuances of color. Do I have 327? No. I have sky,
house, and trees” (1923, p. 71).

Wertheimer then went on to formulate the principles of perceptual organi-
zation. These are ways in which visual parts group to form objects. The
principles demonstrate that the relationships between parts, which can be inde-
pendent of the parts themselves, are important to determining how these parts
are assembled into wholes. According to the principle of proximity, parts that
are close to one another in the visual field are perceived as a whole. Here, the
physical distance between elements is a relationship, independent of those ele-
ments, but one that serves to group them together. According to the principle
of similarity, parts that are similar in lightness, color, shape, or some other
characteristic group together. The relationship here consists of the elements’
shared properties. The principle of closure holds that parts that form a com-
plete or almost complete and enclosed object go together. Wertheimer also
proposed the idea of pragnanz, or “good figure.” According to pragnanz, parts
that are simple will group together. Simple organizations are those that have
fewer parts or are bilaterally symmetrical. Wertheimer created lattices, or
matrices of regularly arranged parts, to demonstrate these principles. Several
lattices and other Gestalt stimulus patterns are shown in Figure 3.3. It should
be noted that these are only a few representative examples of grouping princi-
ples proposed by the Gestaltists. More recent perceptual investigators have
suggested others.

Wolfgang Kohler’s greatest contribution was in the area of animal learning.
Kohler studied chimpanzees on the island of Tenerife during World War I and
described those studies in The Mentality of Apes (1927). He would place a
banana on a ceiling hook and observe how the chimps would use available
materials to try and reach it. The chimps at first would use different approaches
at random—trying to knock the banana down with a stick, for example. He
then noticed that the chimps, with great suddenness, often after a period of
inactivity, would solve the problem by stacking crates on top of each other and
climbing that stack of crates to reach the prize (see Figure 3.4). Kohler termed
this behavior insight learning, the ostensibly spontaneous understanding of
relationships that produces a solution to a problem. He believed that this phe-
nomenon was operational in humans as well. For more on how humans exhibit
insight learning, see the In Depth section at the end of the chapter. Because the
solution is a holistic configuration and involves a set of interrelationships
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among component parts, it demonstrates again the Gestaltist’s emphasis
on mental wholes. These wholes can be perceptual, as is the case during the
perception of an object, or conceptual, as is the case during learning. It should
be stressed that these wholes in the Gestalt view consist not just of individual
parts, but additionally of the relationships between them.
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Figure 3.3 Dot lattices and other figures that demonstrate several of the Gestalt principles of
perceptual organization. In the lattice in (a), the organization is seen in terms of columns,
not rows, because the dots in that orientation group by proximity. In (b), the
organization is one of rows, because the dots group by similarity of size.The inward
pointing pairs of parentheses and bracket-like figures in (c) form a coherent whole
because of closure.The shapes in (d) are almost always perceived as a square overlapping
a circle, rather than a Pac-Man and a square, because a circle is simpler according to the
law of pragnanz

03-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 79



The Gestalt psychologists formulated a theory of how underlying brain
mechanisms give rise to Gestalts. Wertheimer suggested the cerebral cortex was
a dynamic system, in which the elements in force at a given time interacted.
Kohler, in Static and Stationary Physical Gestalts (1920), further proposed that
cortical processes operate like the fields of force that are studied in physics.
Metal filings caught in an electromagnetic field generated by the poles of a mag-
net will organize themselves around the poles. These and related phenomena in
physics are described by field theory. Similarly, it was believed that perceptual
elements spontaneously organized themselves because they were caught in
“mental force fields.” In this mental equivalent of field theory, sensory impulses
coming from a stimulus initiate neuronal activity. This electrochemical activity
then produces a mental field that causes the perceptual grouping. Here again we
see the influence on psychology of another discipline in the natural sciences.

The Gestalt psychologists believed there was a correspondence between the
psychological or conscious experience on the one hand and the underlying
brain experience on the other. This perspective is called isomorphism, because
the perception is identical (Greek: iso) in form or shape (Greek: morph) to the
brain activity that gives rise to it. The mental representation of elements and
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the fields operating on them were thought to be quite similar to the conscious
perception of the stimulus, in that same way that a map is similar to the geog-
raphy it represents.

Evaluating the Gestalt Approach

Gestalt theory gave an interesting alternative formulation of the part-whole
problem. It addressed the problem in a more detailed fashion than had the
structuralists or voluntarists. It also spawned research traditions in perception
and in learning and problem solving. However, critics soon pointed out a
number of flaws. The Gestalt psychologist’s methodology was the first aspect
of Gestalt theory to receive harsh treatment. The phenomenological approach
was labeled as “soft” and lacking in scientific rigor. Gestalt psychologists were
accused also of being too theoretical and of failing to back up their assertions
with empirically derived data. Much of their data, because it was not obtained
within controlled experimental settings, was not amenable to statistical analy-
sis. Their approach was thus critiqued as too qualitative and not quantitative
enough in orientation. Field theory was additionally accused of being specula-
tive and based on poorly defined physiological assumptions.

Some of the specific findings of the Gestalt researchers were also attacked.
The principles of perceptual organization were said to be merely descriptive;
they described how parts grouped, but did not provide a real explanation. Field
theory as an explication for grouping was seen as too vague as well as inade-
quate. Critics averred that the organizational laws seemed sufficient to describe
grouping when one principle was at work, but failed to make predictions about
organization taking place under more complex real-world circumstances.
Figure 3.5 shows three dots, A, B, and C. Dots A and B group by proximity
while dots B and C group by similarity. What is the resulting organization?
A further criticism was that the concept of pragnanz was ill-defined. Stimuli
can be constructed where a more complicated, not simpler organization is
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Figure 3.5 The first two dots group by proximity. The second and third dots group by
size similarity. The resulting perceptual organization cannot be predicted by
the individual laws of organization alone
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perceived. Gestalt findings in learning were also not immune from such
evaluations. Kohler’s idea of insight learning as something that happened quite
rapidly was questioned. Later investigators found that insight learning in ani-
mals such as chimpanzees does not always occur suddenly, and can depend on
factors such as prior experience and learning (Windholz & Lamal, 1985).

Mini-Minds: Mechanism and Psychoanalytic Psychology

Psychoanalytic psychology, sometimes called psychodynamic psychology, has
come to occupy a less prominent position in the contemporary academic
world. During its heyday it was quite influential, particularly as a means of
understanding and treating psychological disorders. The founder of the move-
ment is perhaps one of the most well known names in the discipline: Sigmund
Freud (1856–1939). Freud’s basic framework was modified subsequently by
a number of others, later called neo-Freudians. These included Carl Jung
(1875–1961), Alfred Adler (1870–1937), and Karen Horney (1885–1952).

Psychoanalytic psychology as promulgated by Freud saw the mind as made
up of distinct components, or “miniature minds.” Each of these minds com-
petes with the others and vies for control of behavior. Psychoanalytic psychol-
ogy posited not just one state of consciousness, but three, and emphasized the
role of the unconscious mind, of which the individual has little awareness and
over which he or she has little control, in influencing thought and action. Freud
also thought that sex, pleasure, aggression, and other primitive motivations
and emotions were powerful influences on personality, as were early childhood
experiences.

Freud proposed a three-tiered system of consciousness. The three tiers were:
(1) the conscious mind, which contains those thoughts and feelings of which
we are aware and can directly access; (2) the preconscious mind, that is, those
aspects of mind that we can bring into awareness with effort; and (3) the
unconscious mind, or the aspects of mind of which we are completely unaware.
An example of conscious content would be knowing the street address where
one lives. Preconscious content requires some mental effort for one to be made
aware of it. An example would be trying to recall and eventually recalling what
one did on his or her birthday last year. Unconscious content may never come
into awareness, although one goal of psychoanalytic therapy is to try to allow
this to happen. An example of unconscious content are memories of childhood
abuse or other traumatic experiences from the early developmental years.

Freud described three other mental structures, each having a different oper-
ating principle. The id contains unconscious impulses and desires such as sex
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and hunger. It operates on the pleasure principle and attempts to attain grati-
fication for its desires immediately. The superego is responsible for our ethical
sense. It operates on the idealistic principle and motivates the individual to do
what it considers morally sound or proper. The ego balances the competing
demands of the id and superego. It operates on the reality principle, spurring
one to act in a rational and pragmatic fashion.

A metaphor Freud proposed for thinking about these structures was an ice-
berg, depicted in Figure 3.6. He likened the conscious mind to the visible part
of an iceberg, above the waterline; thus it is always visible. The preconscious
mind is equivalent to the part of the iceberg near the waterline, since it is some-
times submerged and unconscious, but sometimes above the waterline and
inside awareness. The largest part of the iceberg is then the unconscious, which
is always submerged and hidden from view. The id lies completely in the
unconscious, its large mass indicating its power. Both the ego and the super-
ego occupy all three states of consciousness.

A crucial part of this perspective is the dynamic interplay between the id,
ego, and superego. The id demands immediate satisfaction of its appetite for
pleasure, while the superego in most cases advocates controlling or suppressing
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Figure 3.6 Sigmund Freud’s iceberg model of mind
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such urges in the name of decency. It then falls to the ego to attempt a rational
and viable solution to the conflict. The ego is thus being barraged with the id’s
impulses and the superego’s restraints. If it fails to satisfy either one, the result
is anxiety. To shield itself against anxiety, Freud believed the ego constructs
defense mechanisms, which reduce or redirect anxiety in various ways. Examples
of defense mechanisms include repression, the banishing of anxiety-arousing
thoughts and feelings from consciousness, and sublimation, the transformation
of unacceptable impulses into socially valued motivations. If a person lost
memory of his or her being abused as a child, Freud would say that he or she
repressed the memory because it was too painful. If instead that person chan-
neled the anger he or she felt as a result of having been abused toward becom-
ing successful in a career, he or she would be sublimating.

Mechanism and determinism are inherent in the psychodynamic view. One
can envision Freud’s model of mind as an elaborate machine with different
interacting parts. In his writings, there are many terms drawn from mechanics,
electrical circuitry, and hydraulics. Without too much imagination, it is possi-
ble to construct a Freudian hydraulic or “plumbing” model of the mind, with
pumping stations connected by valves and tubes. Id impulses in this model
could be represented as an increase in water pressure. Forces deriving from
other components that release or redirect this pressure could counteract that
increase. This view of mind as machine implies determinism as well. Freud
thought all mental events, including slips of the tongue and dreams, were deter-
mined and that nothing in human thought or behavior could occur by chance.

Evaluating the Psychoanalytic Approach

Many of the ideas in the psychoanalytic approach have permeated the wider
culture. Freud drew our attention to important issues such as the unconscious
and the influence of biological forces. The psychoanalytic approach served to
stimulate further research in these areas and inspired several generations of
clinical practice, but its lasting legacy may be in the strong counterarguments
it elicited.

The neo-Freudians, although they accepted most of the substantive parts of
Freud’s theory, differed in several regards. They placed more emphasis on the
role of the conscious mind and downplayed the importance of sex and agges-
sion as all-powerful motivators. Modern psychological research suggests Freud
overestimated parental and early childhood influence and underestimated the
importance of other social factors, such as peer influence (Frieze et al., 1978).
In addition, repression has been found to be a relatively rare mental response
to psychological trauma. In fact, it is typically the case that horrible memories
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are remembered quite clearly (Loftus, 1995). The unconscious mind is now
viewed not so much as a seething caldron of primitive urges, but as a reservoir
of information processing that goes on without awareness (Greenwald, 1992).

Psychoanalytic psychology has also been critiqued for its scientific short-
comings. The theory is not based on objective observations. Its raw material
comes from Freud’s subjective notes about his patients, written several hours
after therapy. Freud additionally offers few hypotheses that can be scientifi-
cally verified or rejected. Some have censured psychoanalytic descriptions as
being incapable of being proved one way or another. For example, the pres-
ence of anxiety in an individual could indicate fear of giving into id impulses.
The absence of such anxiety could indicate its repression. The perspective thus
offers after-the-fact explanations for personality. It also fails to predict behav-
ior or traits (Myers, 2001). One could in this framework explain why someone
is angry, but not anticipate accurately when he or she might get angry in the
future.

Mind as a Black Box:The Behaviorist Approach

The weaknesses of the psychoanalytic position were the behaviorist’s strengths.
Instead of attempting to describe complex mental operations, the behaviorists,
as their name implies, focused entirely on the study of behavior. In their view,
the internal workings of the mind were simply too complex as well as inca-
pable of being measured in an objective and scientific fashion. Behaviors, how-
ever, which are the actions that are produced by organisms, such as running,
grasping, or bar pressing, are external, which makes them easily measurable
and quantifiable. They are thus ideally suited for scientific study. Behaviorism
was influenced by work in animal and comparative psychology. In these disci-
plines, there was a trend to discover which environmental conditions might
cause animals to act in certain ways, as opposed to an emphasis on construct-
ing elaborate mental models of how they might be thinking. Humans were de
facto lumped into the same category as animals, making behaviorism a more
general science, and an extension of the more rigorous natural sciences.

The behaviorists clearly saw themselves as true scientists. Because the mind
could not be studied scientifically during their time, they preferred not to study
it at all! This did not mean that behaviorists such as Skinner denied the exis-
tence of mind or that they thought brains were unworthy of study. Rather, they
believed the scientific method could not be appropriately applied in this situa-
tion and so redirected their empirical investigations to something that was,
namely, behaviors.
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Behaviorism did reject outright the study of consciousness through intro-
spection, its adherents claiming that the goal of psychology was not to study
consciousness at all, but instead behaviors and the antecedent conditions that
give rise to them. Figure 3.7 shows a version of the stimulus-response (S-R)
model that represents their position. In the model, a stimulus (S) in the envi-
ronment impinges on an organism (O). The stimulus then causes the organism
to produce a response (R). The most important class of stimuli that influence
responses, according to behaviorists, are rewards and punishments. In this
case, a stimulus might consist of a reward given to an organism, for example,
a rat, which would then cause the rat to respond by continuing to press a bar.
Notice that in this model, the mind, contained in the organism, is not depicted.
It is treated as a “black box,” meaning that it is unfathomable and unexplain-
able. The mind becomes simply an entity that serves to convert stimuli to
responses.

John B. Watson (1878–1958) was the first person to lay out the assump-
tions and foundations of the behaviorist movement. He distinguished between
implicit and explicit responses. An implicit response is one that occurs inside
the animal. It includes such events as visceral movements, glandular secretions,
and nerve impulses. An explicit response on the other hand is overt and directly
observable and includes actions such as talking, reaching, and so on. Although
Watson allowed for the study of implicit responses in the realm of mental
activity, it was difficult to investigate them, he observed, due to the limited
instrumentation available at the time. The focus of behaviorism as a result cen-
tered on the study of explicit responses.

Other important figures associated with the movement were Edward Lee
Thorndike (1874–1949), Ivan Pavlov (1849–1936), and Burrhus Frederick
Skinner (1904–1990). Pavlov was a Russian physiologist who studied the dog’s
digestive system. In his lab, he noticed that dogs would salivate not only when
eating, but also immediately before. This was true only for dogs that had been
fed in the lab for some time. He assumed that, in addition to the food itself,
any stimulus that was put forward repeatedly just before the food was presented

86 COGNITIVE SCIENCE

The “Black Box”

S RO

Figure 3.7 The behaviorist stimulus-response model of behavior.The mind of an
organism (O) that emits a response (R) to a stimulus (S) in this view
could not be well understood.The mind was treated as a “black box.”
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would also be able to trigger salivation. To test this idea, Pavlov applied meat
powder to the dogs’ tongues. This caused them to salivate. Then, he sounded
a tuning fork each time, just prior to administering the powder. He did this
over several trials. Finally, he sounded the fork without presenting any powder
and found that the dogs still salivated.

As a result of these experiments Pavlov was inspired to propose several
terms. The unconditioned stimulus (UCS) is that which elicits a response all on
its own. In this instance, it is the meat powder. An unconditioned response
(UCR) is a response elicited by an unconditioned stimulus, here the salivation
caused by the administration of the meat powder. A conditioned stimulus (CS)
elicits a response only after it has been paired repeatedly with an uncondi-
tioned stimulus, here the sound of the tuning fork. Last, a conditioned response
(CR) is a response elicited by a conditioned stimulus, the salivation caused by
the tuning fork. This form of learning came to be known as classical condi-
tioning. Note that it pertains only to built-in reflexes and does not require any
conscious thought on the part of the animal. The dog learns simply by associ-
ating the two stimuli.

B. F. Skinner was responsible for uncovering more about the nature of
learning. Whereas classical conditioning works only with involuntary reflexive
behaviors, such as the salivatory response, operant conditioning is pertinent to
any voluntary motor act and is thus far more general. Operant conditioning is
that type of learning in which a behavior is strengthened if it is followed by
reinforcement, and diminished if followed by punishment. A reinforcement is
anything that increases the frequency of a response. Food is a good reinforcer
for most animals. A child, if given a cookie for taking out the garbage, will be
more likely to take out the garbage in the future. Punishment, on the other
hand, is any consequence of a behavior that is apt to decrease the future inci-
dence of that behavior. A painful stimulus such as electric shock can serve as
an effective punishment. Lab rats repeatedly shocked for touching an object in
their cage will soon cease to do so. Skinner was able to use various forms of
reinforcement and punishment to control the behavior of animals such as rats
and pigeons.

Evaluating the Behaviorist Approach

The strength of the behaviorist position is its adoption of a completely
objective science of behavior. Behaviorists understood that mentalistic con-
cepts were poorly defined and could only be measured via subjective methods
such as introspection. They were very rigorous in their application of the sci-
entific method to the study of psychological phenomena. As such, they were con-
fident that their results yielded the most accurate and valid information. The
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testimony to behaviorism’s success is that it was the dominant paradigm in
research psychology for approximately 50 years. It didn’t begin to decline until
it was challenged by the rise of cognitive psychology in the 1960s. Some of the
specific challenges posed by the cognitive movement will be discussed in the
next chapter.

Behaviorism had allowed for the controlled and systematic study of behav-
ior, but the behaviorists’ abandonment of consciousness and mind was the
movement’s greatest weakness. During the behaviorists’ reign, evidence came to
light that animals do indeed have mental representations that affect how they
learn. The work of Edward Chace Tolman (1886–1959), a behaviorist himself,
challenged some of the assumptions of traditional behaviorist doctrine. Tolman
allowed rats to explore a maze on their own and in some cases transported them
through the maze. In both scenarios, the rats were subsequently able to navigate
the maze successfully, even though they had never been rewarded for doing so.
Tolman suggested the rats developed a cognitive map, or mental representation
of the maze, that enabled them to navigate the maze without conditioning. This
shows animals can acquire behaviors through experience, without being subject
to any reinforcement—a concept called latent learning.

Tolman believed in five initiating causes of behavior. These were the envi-
ronmental stimuli (S), physiological drive (P), heredity (H), previous training
(T), and age (A). Behavior (B) can then be expressed as a function of these in
a simple equation: B = fx (S, P, H, T, A). But between these initiating causes
and the final behaviors exist what he called intervening variables. It is the inter-
vening variables that are the determinants of behavior. They are the internal
processes that connect the prior stimulus situation with the response. An
example of an intervening variable is hunger. Although hunger cannot easily
be observed, it can be related to other experimental variables that are readily
observable, such as the amount of time that has elapsed since an animal last
ate, or how much food the animal consumes at the end of a period of not eat-
ing. Intervening variables were the behaviorist’s attempt to objectify internal
mental states. However, these states were only acknowledged to exist as they
pertained to some external, easily measured variable, and in many cases it was
difficult to objectify them. Tolman himself later came to accept that a complete
understanding of intervening variables was perhaps not possible.

Overall Evaluation of the Psychological Approach

We have covered a plethora of theoretical positions in this chapter. There are
several reasons for this. Psychology was the first discipline to systematically
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apply experimentation to the study of mind. It was thus a new discipline with
many followers advocating many positions. Psychologists additionally had a
very difficult task in front of them, which was to try to understand things that
at the time could not be easily seen or measured. This lack of precision and
early reliance on nonscientific methods such as introspection may have led to
an overreliance on theory. Also, as was not the case in other disciplines, there
was no overarching theory or framework for psychologists to work within. It
would not be until the rise of the cognitive approach and the adoption of an
information processing perspective that some kind of unity would come to the
field. We next turn our attention to this cognitive approach.

In Depth: Insight Learning

According to Wallas (1926), insight learning happens in four stages. The first
is preparation and consists of the acquisition of and understanding of the prob-
lem as well as preliminary attempts at solving it. The second stage is incuba-
tion, whereby the problem is put aside for a while. During this period, there
are no conscious attempts at problem solving, but the unconscious mind may
be attempting to find or has found a solution. In the third stage, illumination
occurs. It is a flash of insight, a sort of “Aha!” experience in which the solu-
tion comes suddenly to awareness. Finally, there is verification, in which the
insight is confirmed and one checks to see that it yields a correct solution.

At least one experimental study supports this theory (Silveira, 1971). In
Silveira’s experiment, participants were presented with a chain-link problem,
illustrated in Figure 3.8. Go ahead and try to solve this problem on your own
now, as we will provide the solution below. There were two overall conditions.
In the control group, participants worked continuously for one half-hour
on the problem. Only 55% obtained a correct solution within this period.
Members of the experimental group were exposed to one of four conditions;
the results are shown in Table 3.1. Participants were given either short or long
preparation periods and a short (one half-hour) or long (four hour) interrup-
tion. The interruption here is like an incubation period, as participants were
allowed to do something else, but not to think about the task. In this experi-
ment, the lengths of the preparation and interruption periods were the two
manipulated independent variables, while the percentage of subjects to solve
the problem correctly was the dependent variable. The results showed that
only 55% of the participants came up with the solution under the short pre-
paration conditions, regardless of the length of interruption. Those subjects
who were operating under the long preparation/short interruption condition
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improved slightly, with a success rate of 64%. It was the long preparation/long
interruption condition that showed the best performance, with a success rate
of 85%.

We can draw several conclusions from this study. The incubation, whether
short or long, has no effect in instances in which people are allowed only a short
time to familiarize themselves with the problem and to try to solve it. In these
two cases, the 55% success rate is the same as that of the control group, who
were given no incubation time at all. Problem solving improves slightly with a
long preparation and a short interruption, but the greatest improvement is real-
ized when both periods are long. Why is this? Incubation effects are thought to
be the consequence of the unconscious mind’s attempts at solving the problem.
If an unconscious solution is obtained, it eventually enters conscious awareness.
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Figure 3.8 In the chain link problem, one starts with four pieces of chain with three
links each. It costs $2 to open a link and $3 to close a link. Initially, all links
are closed.The goal is to join all twelve links to form a circle and spend no
more than $15

Preparation

Interruption Short Long

Short
(1/2 hour) 55% 64%

Long
(4 hours) 55% 85%

Table 3.1 The results of the Silveira (1971) experiment
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Long preparation times could hypothetically give the unconscious greater
familiarity with the problem. This, combined with the long incubation, also
allows the unconscious more time to work on the problem, or, if a solution is
obtained, has allowed it to percolate up into conscious awareness.

Gestalt psychologists were already aware of similar findings. In a much ear-
lier study, subjects allowed to complete a series of tasks were found to have
poorer recall with respect to those tasks than those who had been allowed to
complete some of the tasks but not others (Zeigarnik, 1938). An example of
one such task might be reading a story in its entirety, or reading the story but
being interrupted part way through. This phenomenon of remembering more
information when there has been an interruption has been dubbed the Zeigarnik
effect. It was initially explained in terms of a tension system. Finishing a task
was thought to produce a sense of completion and a reduction in tension.
Failure to finish a task on the other hand produced an increase in tension,
which perhaps yields the result of the information being thought about more,
consciously or not, improving recall.

So here is the solution to the chain link problem. The standard incorrect
solution involves opening and closing one link from each of the four pieces.
This is incorrect, since it means opening four links and closing four links and
spending $20. The correct solution requires the opening of all three links from
one piece and using these to join the remaining three pieces, then closing them.
This involves three opened and closed links, totaling $15.

Minds On Exercise: Introspection

This activity requires two people. Have a friend pick a relatively unfamiliar object,
such as a bottle-opener or cat’s toy.The introspector must close his or her eyes and
is then handed the object. He or she is instructed to experience the object in as
many ways as possible, by manipulating it, smelling it, and so on.As the friend expe-
riences the object, he or she should look inward and examine the perceptions and
thoughts that come to mind. Have participants do this for several minutes, then
allow them to open their eyes and at this point to experience the object visually,
while continuing to introspect.When finished, the introspector then writes down a
list of his or her experiences and answers the following questions.

1. Was introspection difficult? Did you find it hard to “look inward”? Why or
why not?

2. Were you able to identify the object with eyes closed? With eyes open? Did
your inner experience change once recognition occurred?
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3. How many of your inner experiences were immediate experiences, corre-
sponding to direct sensory input, for example, colors or textures? How many
were mediate experiences, corresponding to higher-order thoughts, such as
the name of the object or its function?

4. Is it difficult to tell the difference between immediate and mediate experi-
ence? What about the subjective experience of “curve”? Is this a purely per-
ceptual idea, or is it learned?

Food for Thought: Discussion Questions

1. The voluntarists and structuralists drew many metaphors about the
mind from chemistry, such as the idea of the reagent. Can you think of addi-
tional concepts from chemistry that may serve as fruitful mind metaphors?
Examples might include isotopes, ionic and covalent bonds, and diffusion
across gradients.

2. The structuralists distinguish five aspects of a sensation: quality, intensity, dura-
tion, clearness, and extensity. Do you think there are more? Introspect about
a sensation. Can you come up with other basic aspects, or do they reduce to
these five?

3. Important to functionalism is explanation of the functions of mind, or mental
operations. Produce a list of possible mental functions. Does the mind search,
compare, select, or divide? Is there a finite number of mental operations, or
do functions suffer the same fate as elements, in that there may be too many
to effectively list and categorize?

4. The Gestalt psychologists suggested certain rules for ways in which percep-
tual parts may combine into wholes. Can you think of other rules of percep-
tual organization? Might parts that occupy the same spatial region go
together? Do such laws of perceptual organization tell us anything about how
conceptual parts combine into wholes? In other words, might ideas combine
in the same way as perceptual parts?

5. Sigmund Freud proposes the id, ego, and superego as three “miniature
minds” that compete with each other for control of behavior. Can you think
of other possible component minds? Under what principles might they
operate?
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6. The behaviorists thought most learning was the result of conditioning that
occurs either through association or a system of rewards and punishments.
Can you think of examples where you learned something in a different way?
When studying for a test or memorizing information, do you learn without
conditioning?

Go to the website:
http://www.psych.purdue.edu/~coglab/VisLab/demos.html

Explore the various illusions and other visual phenomena you see there.Answer
the following questions: (a) What is an illusory or subjective contour? What factors
affect the perception of illusory contours? (b) Another Gestalt grouping principle is
common fate. What is common fate? Describe the phenomena based on the
“Objects by Common Fate” demonstration. (c) Describe the Rubin (1915) vase/face
illusion.What is meant by the terms “figure” and “ground”?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“I sometimes worry about my short attention span, but not for very
long.”

—Strange de Jim, 1974

Some History First:The Rise of Cognitive Psychology

Early pioneering work in what would come to be known as cognitive psychol-
ogy began in the 1950s. Later, in 1967, Ulric Neisser published the first text-
book on this subject. Cognitive psychology is the newest of the major disciplines
in the overall field of psychology and is currently its most influential. The
impact of the cognitive approach can be measured in terms of how it has
affected other psychological disciplines. There are now cognitive theories in
social, developmental, and clinical psychology.

To really understand the cognitive perspective, though, we need to back-
track to our prior discussion of behaviorism. You may recall from the previ-
ous chapter that for many decades behaviorism was the dominant movement

The Cognitive Approach I:
History,Vision, and Attention

95

4

04-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 95



in psychology. Behaviorists avoided the study of mental phenomena because
they believed that they were too difficult to define or measure. They stuck
instead to external, observable behaviors, which were more amenable to
scientific scrutiny.

Cognitive psychology can be seen as a backlash or counter-revolution
against the behaviorist movement. This becomes evident when one examines
the basic assumptions of the cognitive movement (Ashcraft, 2002). Whereas
the behaviorists avoided studying the mental world and in some cases may
have denied its existence, the cognitivists firmly acknowledged the existence of
mental processes and focused their investigatory attentions on them. Whereas
behaviorism saw the mind as a passive organ that operated according to simple
rules of conditioning, cognitive psychology saw the mind as active, as selecting
information from the environment, relating it to prior knowledge, and acting
on the results of such processing.

Let us look more closely at some of the reasons for the so-called cognitive
revolution. There were three main reasons for the rapid growth of this new
perspective. The first was the failure of behaviorism to account for findings in
areas such as language acquisition. The second was the invention of new mea-
suring devices to examine mental activity. The third was the rise of the com-
puter and the widespread use of the metaphor of mind-as-computer.

B. F. Skinner outlined the behaviorist take on language in 1957 in his book
Verbal Behavior. He believed a child learned language through reward. If a
baby said “mama” in front of its mother, the mother would get excited, smile,
and talk back to the child—all forms of positive reinforcement. This would
reward the child for having made that utterance, which he or she would then
do more often. This process would be repeated, with the child uttering more
complex words and sentences, being rewarded each time for correct pronunci-
ation or syntax.

The linguist Noam Chomsky soon critiqued this theory of language acqui-
sition (Chomsky, 1959). Chomsky argued that the behaviorists gave us no
good account of why children suddenly use language. He asked: Why should
a child utter a new sound or word? The child can’t be reinforced until after he
or she has already said it. Yet all children around the world spontaneously
utter the basic phonetic elements of language. This suggests that there is an
innate mechanism for generating language and that this mechanism may not,
as the behaviorists would have us believe, be under environmental control.

Another problem is that children often combine the “pieces” of language in
new ways to create new meanings. A child, after having learned the words
“cat” and “sofa,” might say “cat on sofa,” even though he or she had never
been reinforced for arranging the two words in exactly this way in a sentence.
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The tremendous flexibility demonstrated by children in creating new meanings
couldn’t be accounted for by a system of reward.

A second reason for the rise of cognitive psychology was the development
of new measuring tools. During the behaviorist era, there were no ways of
“peering inside the head.” That is, one could not directly measure mental
processes. After the start of the cognitive movement, new technologies that
provided a more accurate picture of mental processes as they were occurring
emerged. The new devices included positron emission tomography (PET), com-
puterized axial tomography (CAT), and magnetic resonance imaging (MRI).
These techniques are described further in the neuroscience chapter.

But perhaps the thing that contributed most significantly to the decline of
behaviorism was the increased use of computers. Prior to the 1960s computers
were constructed using vacuum tubes. Because of the size and number of
vacuum tubes needed to perform computations, computers were quite large. In
some cases, entire rooms were required to house them. The transistor was
invented in 1947, but was not widely applied to computer design until years
later. The transistor performed the same computational function as a large
number of vacuum tubes, but was much smaller. This miniaturization allowed
for the construction of correspondingly smaller and cheaper computers. The
widespread presence of computers spurred psychologists to begin thinking
more about them. Psychologists realized that the mind, like a computer, could
be viewed as a device that represented and transformed information. The
mind-as-computer metaphor was born. Computers thus accelerated the adop-
tion of the information processing view, not only in psychology, but also more
generally, in other cognitive science fields.

The Cognitive Approach: Mind as an Information Processor

So now that we know how cognitive psychology came about, what exactly
is it? Cognitive psychology is the study of knowledge representation and use
in human beings. It is concerned with understanding how people represent,
process, and store information. According to Ulric Neisser, “cognitive psy-
chology” refers to all processes whereby the sensory input is transformed,
reduced, elaborated, stored, recovered, and used” (Neisser, 1967). The many
verbs used in the preceding sentence give us a sense of the many possible infor-
mation processing activities of the human mind.

Cognitive psychology differs from other approaches in cognitive science in
that its focus is on human information processing (as opposed to animal or
machine modes of information processing). Like the practitioners of many
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other disciplines in psychology, cognitive psychologists adopt the scientific
method as their primary tool of investigation. Hypotheses are tested by ana-
lyzing data that has been obtained from controlled experiments. However,
cognitive psychology also supplements experimentation with modeling and
computer simulation. A specific information-processing model of a mental
ability can be run on a computer. The results can then be compared against
data from human experiments. This is often a synergistic and iterative proce-
dure. Parameters of the computer model can be refined so as to provide a better
fit between the computer model and the empirical data. Aspects of the simula-
tion can also yield insights that cause researchers to go back and design new
experiments.

A defining characteristic of the cognitive approach is the way it represents
human information processing. These processes are often conceptualized using a
process model. In a diagram of a process model, boxes are used to designate each
stage or step in an information processing sequence. Arrows that point toward
or away from the boxes represent the flow of information among the stages.
Many of the figures in this chapter show a process model that depicts a particu-
lar theory of human computation. Feel free to examine a few of them now.

Process models, in the classical view of information processing, carry two
assumptions. First, they are assumed to be sequential, meaning that informa-
tion that lies within one stage is processed before it is output to the next.
Information cannot be processed simultaneously in multiple stages. Second,
excluding inputs and outputs, processing that occurs within one stage is inde-
pendent of processing that occurs within other stages. These assumptions were
later challenged by the connectionist view of information processing, which
adopts a radically different architecture as the basis of cognition.

Process models are a very important part of the cognitive perspective. They
are a powerful conceptual tool for understanding human information
processes. In fact, the remainder of this chapter and the next chapter are
devoted to describing the major processing models that underlie various
domains in cognition. These domains include, but are not limited to, percep-
tion, attention, memory, imagery, and problem solving.

Modularity of Mind

An assumption of many cognitive theories is modularity of mind. According to
this idea, the mind is made up of innate, functionally independent modules.
The boxes in the process models that are described throughout this chapter and
in the next chapter can in many cases be viewed as modules. The evolved
psychological mechanisms that are discussed in the evolutionary chapter can
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be viewed in this way as well. Because modularity of mind is such an important
and pervasive assumption in the cognitive perspective, let’s take some time
now to examine it further.

Jerry Fodor is the outspoken proponent of the modular view. In his book
The Modularity of Mind (1983), he gives a general description of the role these
putative structures play. In his view, information arriving from the outside
environment passes first through a set of sensory transducers. These convert
the information to a code that is suitable for processing by the modules, which
are domain-specific, that is, able to handle information of a specific type only.
The modules then convert the results of their operations into a common code
that can be interpreted by other non-modular domain-general processors.

In the same volume Fodor lists the many characteristics of a module.
Modules are hardwired, meaning that they cannot be constructed from more
basic units. They are genetically determined, domain-specific, fast, automatic,
stimulus-driven, and not subject to control by a central authority. Modules are
mandatory: they are triggered into operation by the presence of the appropri-
ate information. Fodor also states that modules are informationally encapsu-
lated. By this he means that other mental processes can only have access to a
module’s output; they cannot influence or access its inner workings.

Evaluating the Modular Approach

Case studies of brain-damaged patients support the modular view. There are
many case studies of patients who have suffered damage to a particular brain
area as a result of a stroke or accident. These patients then suffer very specific
deficits. In an aphasic patient, damage to one part of the brain might hamper
the patient’s understanding or comprehending language, whereas damage to
another region might cause difficulties in his or her speaking or producing lan-
guage. See the chapter on linguistics for more on these disorders. Similarly,
there are patients with developmental genetic disorders in whom one language
ability has been preserved while another has not. Individuals with Williams
Syndrome suffer grave deficits in visuo-spatial cognition but are relatively
unaffected with respect to the processing of face-specific information (Bellugi,
Wang & Jernigan, 1994).

Skeptics counter these claims. They point out that in many brain-damaged
patients there is not a clear-cut dissociation of one function from another
(Tyler, 1992). Also, genetic disorders of the sort described above rarely evidence
highly specialized deficits—usually more general impairments are manifest
(Bishop, 1997). Evidence from studies of early brain development additionally
fails to support claims of modularity. Experiments that have utilized brain-scanning
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techniques show that some language abilities are bilateralized, that is, located
in both cortical hemispheres, early in development. Hemispheric specialization
occurs later, which strongly suggests that these abilities cannot be genetically
preprogrammed (Mills, Coffey-Corina, & Neville, 1993).

Current thinking is that the brain may contain a number of processing struc-
tures that are modular, but that these may be a result of normal developmental
processes. However, the view opposite to that of modularity, that the brain
is entirely domain-general, does not appear to be tenable either. The task for
future researchers in this area is to define which developmental factors shape the
formation of modules and which cognitive functions are more general-purpose
and non-modular in nature. The role that development and genes play in the
creation of modules is discussed further in the evolutionary approach chapter.

Theories of Vision and Pattern Recognition

Perception is the process by which we gather information from the outside
world via the senses and interpret that information. Most work in perception
has focused on vision and secondarily on audition. Far less research attention
has been given to the remaining senses. This bias is species-centric, as vision is
our most sophisticated sense and the one we rely on most. Many of the major
perceptual theories are therefore based on and framed exclusively in terms of
visual processing. In this section we will examine several broad theories of
human vision, as we acknowledge that there is much theoretical work that
remains to be done for the other senses.

One of the main functions of a visual system is the recognition of patterns.
To demonstrate how important this is: imagine looking out at the world and
not being able to recognize what you see. You would be able to navigate suc-
cessfully, for example, you would be able to step out of the way of an oncom-
ing car, but you would not recognize what it was that just went by. You would
be able to see your best friend, but not know who he or she is. You would be
able to see writing, but not read it. Pattern recognition is the ability to identify
objects in the environment. We seem to do it effortlessly. Yet, as we will see,
this process is actually quite complex and far from being entirely understood.

Template Matching Theory

Any description of a pattern recognition process must begin with the
stimulus. The stimulus is the actual object in the external world that we are
trying to recognize. Light striking the stimulus is reflected and projects an
inverted image of the stimulus onto the retina. The retina is a layer of
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photoreceptor cells that lines the inside of the back portion of the eyeball. The
retina performs some preliminary processing of the image, after which infor-
mation about the stimulus is passed posteriorly along a set of pathways toward
visual areas in the brain. It is in these areas where the bulk of pattern recogni-
tion and other perceptual processing takes place. Figure 4.1 shows an overview
of these steps.

According to the template matching theory of pattern recognition, an image
generated by an external stimulus is matched to an internal mental representa-
tion of the stimulus, called a template. The degree of overlap between the
image and the template is then computed. This overlap is a measure of how
similar the two are to each other. A high degree of overlap will produce recog-
nition of the object.

Evaluating Template Matching Theory

The problem with this approach is that there is a wide range of variation
and possibility for any individual stimulus. Take the simple case of the letter
“A.” It can vary in terms of its location in one’s visual field, its size, shape, and
orientation. For template matching to work, there must be a separate template
for each of these possibilities. Imagine how many templates for just one letter
of the alphabet would be required. We would need a template for an “A” that
appears to the left or the right side of the visual field, other templates for big
and small “A’s,” others for “A’s” written in script or appearing in different
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fonts, yet others for “A’s” that are horizontally placed or upside-down. The
number of possible templates for an individual object multiplied by the number
of possible objects one could recognize becomes so large that it would become
impractical to store templates or to use them effectively in memory. Figure 4.2
shows the template matching process and some examples of the ways in which
a stimulus can vary.

For this reason, template matching is quickly dismissed as a theory of
the way in which humans recognize patterns. It is considered a “straw man”
theory, in that it is insubstantial. As a theory, though, it helps us to concep-
tualize what is required of and what gets in the way of a pattern recognition
process. Several computer versions of template matching have been success-
fully implemented. One is designed to read checking account numbers off the
bottoms of checks. In these cases, the procedure works because variability in
the stimulus has been reduced. The sizes, styles, and the numbers of the dig-
its that must be matched are relatively unvarying. These systems would fail
under real world conditions, in which stimulus variability is much greater.
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Figure 4.2 The top panel provides various depictions of the letter “A,” all recognizable.
The bottom panel shows the sequence of events in the template matching
model
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Feature Detection Theory

With feature detection models, an image of a stimulus, rather than being
matched in its entirety to a template, is broken down into its component fea-
tures. A feature is a part or subset of an object. The idea is that each different
combination of features uniquely specifies a different object. The upright letter
“A” can be specified by the fact that it has a short horizontal line as one of its
features and two longer diagonal lines as additional features. It can be distin-
guished from the upright letter “B,” which has a long vertical line and two
short loops as features.

The best-known feature detection model is called the pandemonium model
(Selfridge, 1959; Norman, 1972). It gets its name from little mental “demons”
that represent processing units. These demons “shout” during the recognition
process (creating a pandemonium). Figure 4.3 depicts a representation of the
model in terms of how it might be used to identify the letter “R.” First, the
stimulus, a letter “R,” is presented. It is represented by an image demon, which
preserves the overall appearance of the letter. In the next step there are feature
demons. There is one feature demon for each possible stimulus feature. A fea-
ture demon shouts if he sees his own feature in the image. The upright letter
“R,” in this example, can be thought of as having a vertical line, a diagonal
line, and a loop, and so has three feature demons. These feature demons would
shout out in the presence of their own features. In the next step there are cog-
nitive demons, one for each possible letter. If they hear any of their corre-
sponding features, they too will shout. The cognitive demon with the most
features shouts the loudest. Finally, there is a decision demon. It listens to the
cognitive demons. Whichever one shouts the loudest is chosen by the cognitive
demon as the recognized letter.

Evaluating Feature Detection Theory

The pandemonium model of pattern recognition represents a significant
improvement over template matching. It doesn’t require an extensive number
of templates, and will have only as many feature demons as there are features
and cognitive demons as there are letters or other objects. The model can also
explain the types of mistakes that people make during recognition. Often, an
individual will confuse two visually presented letters that have features in com-
mon. Continuing with our example, a person might mistake the letter “R” for
the letter “B,” because both have a vertical line and a loop. The decision
demon might accidentally choose the cognitive demon that represents the “B”
because it will be shouting almost as loud as the “R” cognitive demon.
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Another reason to like the pandemonium model comes from neurophysiol-
ogy. Evidence from this field demonstrates that neurons in the visual system act
as feature detectors. Single-cell recordings of neurons in the primary visual cor-
tex of cats show that these cells respond selectively to different features, such
as a line of a given length and orientation (Hubel & Wiesel, 1962).

But feature detection models are not without their share of difficulties. For
one thing, there is no good definition of what a feature is. For the letter “R,”
the vertical and diagonal lines could together form the single feature of an
angle, as opposed to their being separate features. Feature detection models are
also bottom-up, or data-driven processes. This means they are driven entirely
by the physical characteristics of the stimulus itself and fail to take into account
the larger context or meaning. In real world recognition scenarios, objects
appear in varied contexts. The surrounding conditions often yield clues that
can aid identification. In Figure 4.4, the central figure, when viewed alone, is
ambiguous. The features alone are not enough to produce recognition. When
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this figure is grouped with surrounding figures, in this instance letters or
numbers, it then takes on a new meaning—it appears either as a “B” or a “13.”

Additional evidence for the role of context in recognition comes from what
is called the word superiority effect (Reicher, 1969). Here, the time it takes to
recognize the letter “A” in “CAT” is shorter than the time it takes to recognize
it alone or as part of a nonsense word. This suggests that the overall word is
processed before any of the letters. Because the letter “A” appears in the word
CAT, the presence of the entire word facilitates recognition of the individual
letter. Both the example of the ambiguous figure given above and the word
superiority effect are examples of top-down or conceptually driven processes,
in which context and higher-level knowledge aid recognition.

A Computational Theory of Vision

In 1982 the renowned cognitive scientist David Marr wrote a book that
described his influential theory of pattern recognition. He adopts a computa-
tional approach to vision. In this approach, the visual system is treated as a
computer. The “computer” receives an image of an object and, after perform-
ing several algorithmic processing steps, accomplishes recognition of the object.
Each major processing step produces a more fully articulated version of the
object—what Marr calls “sketches.”

In the first stage the image of an object is presented to the retina. This image
is “analyzed” in terms of the intensity values, or areas of light and dark, that
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make up the image. Adjacent regions of sharp contrast in the image (that go
from light to dark or vice versa) indicate the presence of edges and contours.
The edges and contours in turn determine the basic features of the object. In
his scheme these features include line segments and circular shapes. The result
is a raw primal sketch of the image.

The raw primal sketch then undergoes further processing. Features that are
similar in size and orientation get grouped, in much the same way parts are
grouped into wholes according to the Gestalt principles discussed earlier. The
groups of features are then processed again to produce a representation of the
object that includes its surfaces and layout. Marr calls this the 2 1/2-D sketch.

This image is next transformed into a complete three-dimensional represen-
tation. In this 3-D sketch, the resultant object parts are linked by axes of sym-
metry and elongation (see Figure 4.5). A symmetry axis is a line that divides an
object into mirror-image halves. An elongation axis is the line defining the
direction along which the main bulk or mass of a shape is distributed. These
axes serve to hierarchically organize the parts into a coherent, large-scale
object that can be recognized. According to Marr, it is this final three-
dimensional construct that we perceive and are consciously aware of.

Marr’s theory is one solution to the object constancy problem in perception.
Simply put, stimulus objects as they are represented on the retina are rarely
viewed in the same way again. As we discussed in the template-matching
model, an object may appear in different locations, have different orientations
and/or different shapes, to name just a few possible types of variation. Any pat-
tern recognition mechanism must therefore produce a description of the object
that is impervious to these kinds of changes. In Marr’s model, the 2 1/2-D
sketch contains a viewer-centered description. This is one that is particular to
the viewer’s point of view. Because the viewer’s location, perspective, orienta-
tion, and so on, are subject to change, object recognition under these condi-
tions is difficult. But Marr’s 3-D sketch has an object-centered description. The
object’s parts are described relative to one another and are linked on the basis
of shared properties and axes. The relationships between parts thus remain
intact across object transformations, enabling recognition under a broad vari-
ety of conditions.

Evaluating the Computational Theory of Pattern Recognition

It is important to point out that Marr’s theory is not a statement of how
the visual system actually recognizes, but how it might go about doing so.
Although it is based on existing experimental and neurophysiological evidence,
Marr’s theory is more a speculation on the processes required of any pattern
recognition mechanism, human or machine. We should also emphasize that
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Figure 4.5 Object representations in Marr’s 3-D sketch

Source: Marr, D., & Nishihara, H.K. (1978). Representation and recognition of the spatial organization of
three-dimensional shapes. Proceedings of the Royal Society of London, B200, pp. 269-294. Reprinted with permission.
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Marr’s theory involves feature detection, as the image is first broken down into
component features that are then reassembled to form a complete holistic
object.

Feature Integration Theory

Another theory that entails feature extraction and recombination goes by
the name of feature integration theory (Treisman & Gelade, 1980). This theory
is unique, because it brings to light the special role that attention plays in pat-
tern recognition. It is based on a rather extensive set of cognitive psychology
experiments, some of which we will describe below. Feature integration, like
Marr’s computational view, is also a stage theory. An object’s basic features
are identified by way of the image in the preattentive stage. These features can
include color, motion, orientation, and curvature. Then, the features are com-
bined during a focused attention stage. Following this, the object is recognized.

Let us examine more closely how features are identified and combined in
these two stages. In a series of clever experiments, Treisman asked participants
to identify a target item located in a visual field that was filled with nontarget
items, or distractors (Treisman & Gelade, 1980). This task has since become
known as visual search. With each trial, there is always one target, but the
number of distractors can vary. For example, in one trial the target might be
the single letter “T,” hidden among five “S’s.” In another trial the “T” might
be hidden among ten “S’s.” In each trial the time it takes the participant to
locate the target is recorded. A plot that shows the time needed to identify the
target as a function of the number of distractors is then made. Figure 4.6 shows
a display and plot of the search function.

For the sort of task described above—locating a “T” among “S’s”—the
search function is flat. The amount of time it takes to locate the target is small
and constant, regardless of the number of distractors. Having ten distractors
does not make locating the target more difficult than having only five.
Participants in the experiment report that, under these circumstances, the tar-
get seems to “pop-out” at them, so the phenomenon has since been identified
as perceptual pop-out. Treisman argues that pop-out is preattentive. A preat-
tentive process is one that happens automatically and effortlessly. In vision
preattentive processes that are part of the processing of an image happen very
quickly—usually within the first 100 milliseconds. The target item segregates
out from the background of distractors and draws attention to itself before
participants even know what is happening. The participants have no voluntary
control over the process and don’t need to pro-actively search through the dis-
play to locate the target. Treisman calls this parallel search, because the target
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seems to be scanned in parallel across all the display items at once. Parallel
search is characterized by a flat search function. It occurs when the target dif-
fers from the distractors along a single perceptual dimension. In this example,
the relevant dimension is curvature. The “T” is composed of straight lines,
whereas the “S’s” are curved. Pop-out also happens when the target and the
distractor differ in color, motion, or brightness, suggesting that these dimen-
sions constitute a basic set of visual features.

Now imagine a second type of visual search (see Figure 4.7). This time your
job is to locate a blue “T.” It is hidden among red “T’s,” and red and blue
“S’s.” The search function in this case shows a linear increase. The greater the
number of distractors, the more time it takes to identify the target. This sug-
gests that a very different type of search strategy will be needed. Participants
in this instance report having to look at each item in the display, one after the
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Figure 4.6 Location of the target letter in the top panel is an instance of preattentive
and parallel search.The target seems to “pop-out” effortlessly.The bottom
panel shows an idealized version of the flat search function for this type
of task
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other, until they find the target. For this reason Treisman calls this serial
search. Serial search is characterized by a linear search function and appears
to require focused, concentrated attention that is under voluntary control.
Participants apparently need to match each item with respect to two dimen-
sions. They must ask themselves if an item is blue and if it is shaped like a
“T.” If the item fails to satisfy either of these conditions, the participants must
then turn their attention to the next item and do the same thing, over and
over, until the target is located. Serial search is thus necessary when the tar-
get differs from the distractors along two perceptual dimensions, such as
shape and color. Treisman says the job of voluntary attention, in this situa-
tion, is to “glue” together the different features. This attentional glue binds
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Figure 4.7 Location of the target letter in the top panel is difficult in this example
of attentive and serial search. Attention must be paid to each item in the
display. The search function for this task, an idealized version of which is
shown in the bottom panel, is linear and increasing
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features together into coherent objects—a necessary step before recognition
can take place.

So let’s review what we know of Treisman’s theory up to this point. In the
preattentive stage, an object’s features are identified. This process is fast, auto-
matic, and effortless. In other words, it does not require attention and happens
before attentional processes can even be brought to bear. A blue “T” in this
stage is immediately broken down into its basic components of the color blue
and its particular line segment orientation. In the subsequent focused atten-
tion stage, concentrated attention is required to glue these different features
together in one place so that they form an object representation. The color and
line segments are effectively linked together by attention in one location in the
visual field. Only the combination of such features can tell us what an object
really is and whether it differs from other objects with which it shares some of
those features.

You may encounter a real life example of visual search as you’re about to
leave the shopping mall. You look out into the parking lot to try to find your
car, a red Honda Civic. If your car is the only red car or the only Civic in the
lot, it will pop out, and you will locate it immediately. If, however, there are
other red cars and/or other Civics of different colors, you will have to focus
attention on each car in the lot before you will be able to locate yours.

Evaluating Feature Integration Theory

Feature integration theory has been widely accepted in the community of
perceptual researchers. Investigators have conducted experiments that have
generated numerous replications and extensions of its basic findings. An issue
arising out of the theory, however, is exactly how and where in the visual sys-
tem features get bound together. This is not a trivial problem, because, as we
discuss elsewhere, the visual system uses a “divide and conquer” strategy. It
breaks up an image into separate streams that correspond to object identity
and location. Distinct parts of the brain process distinct aspects of a stimulus,
such as its color, form, and motion. So if focused attention is the glue that
binds such features, where does it all come together and how does the brain do
it? This is referred to as the binding problem in vision. An intriguing solution
to the binding problem is that neurons that represent separate features may
synchronize their firing rates. This synchronization may then serve to link the
features. Focused attention, perhaps mediated by other parts of the brain,
could be the driving force behind this process. See the In Depth section at the
end of the neuroscience chapter for a more complete description of this point
of view.
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Theories of Attention

We have already alluded to attention, having described the role it plays in the
extraction and formation of features in pattern recognition. In this section we
will examine the nature of attention and describe several theories of how it is
used in a wider cognitive context.

Attention is defined as concentrated mental activity. In general, we can
think of attention as a form of mental activity or energy that is distributed
among alternative information sources. Informational sources can be stimuli
from the outside world or thoughts or other forms of internal mental content.
When attention is allocated to one source, that source comes into conscious
awareness and the processing of that information is usually facilitated. From a
cognitive perspective attention can be considered as having two sets of oppos-
ing characteristics. It is selective but divisible, as well as shiftable but sustain-
able. Let’s discuss each of these.

By selective, we mean that attention can be focused onto one source of
information and away from another. For example, in class you can decide to
listen to the sound of the instructor’s voice or to some competing sound, such
as the conversation of two students in the row behind you. At the same time
attention is divisible. It can be split or divided among several alternative infor-
mation sources. You could, with some effort, listen to both the voices of the
instructor and the students. In this situation, the ability to process information
from the two sources would be significantly reduced. Generally, the greater the
number of sources among which attention is divided, the less attention there is
to devote to any single source and the worse is the individual performance with
respect to each.

Implicit in the notion of selectibility is shiftability. One can selectively attend
to information source A while ignoring B, then switch back to B and ignore A.
Or, one could attend source A, then B, then C, and so on. The point is that
attention can be repeatedly shifted among different sources. This shifting can
be voluntary or involuntary. Distraction is an example of the involuntary shift-
ing of attention to some irrelevant or undesirable piece of information. The
converse of shifting is sustainability. Here, attention is focused exclusively on
one source and sustained in this way over time. We can think of sustained
attention as extended focus or concentration.

There are two general classes of theories that attempt to explain attention.
Bottleneck theories describe why it is that of all the information that is presented
to us, only a small portion of it actually gets through. These theories attempt to
explain the apparent bottleneck effect or the narrowing down of the information
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that reaches conscious awareness. Bottleneck theories are inherently theories of
selective attention because they describe how some information is selected for
processing as the rest gets discarded. Broadbent’s filter model, Treisman’s attenu-
ation model, the Deutsch-Norman memory selection model, and the multimode
model are all bottleneck theories. Capacity theories on the other hand are essen-
tially theories of divided attention. They conceptualize attention as a limited
resource that must be spread around different informational sources. Kahneman’s
capacity model is an example of a capacity theory.

Broadbent’s Filter Model

The British researcher Donald Broadbent did some of the earliest pioneer-
ing work in cognitive psychology. In his 1958 book Perception and Communi-
cation, he proposed a theory to account for why we can’t follow two streams
of information coming in simultaneously via the two ears. Before we get to the
details of his filter model, we need to describe some of the experimental evi-
dence that led to it.

The dichotic listening task has been widely used to study selective attention.
In this paradigm, a participant wearing headphones listens to two different
messages being played, one over each ear. For instance, a male voice may be
reciting a list of words into the left ear as a female voice recites a different list
of words into the right ear. The participant’s task is to pay attention to, or
shadow, one of the voices and to ignore the other. The messages or informa-
tion sources presented to the participant from both ears are in this context
referred to as channels. Afterward, the participant is asked to recall what he or
she has heard, for both the shadowed and unattended channels.

Early dichotic listening studies showed that participants were fairly accu-
rate in recalling content from the shadowed ear, but quite poor for recalling
that coming from the unattended ear (Cherry, 1953). To Broadbent, this
suggested the presence of a filter that could block out messages that were
being relatively ignored, allowing only attended information to enter aware-
ness. Figure 4.8 shows a diagram of Broadbent’s filter model. Information
from both channels first arrives in sensory memory. This is a place where
incoming sensory information is briefly held before it is processed. Next,
a filter is applied to this information. The filter selects certain portions of
the information, that coming from the shadowed channel in this case, and
allows it to pass through. Information coming from the unattended channel
is blocked.
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The selection in Broadbent’s model is based on the physical characteristics
of the stimulus, such as location (left or right ear), pitch, and loudness. This
conclusion was based on the fact that one could shadow messages easily using
these as criteria. In the next step, whatever information gets past the filter then
undergoes pattern recognition. Following this step, information travels past
any selection mechanism to a short-term memory store, where it is held for
a longer period of time and made available for subsequent processing and
response. Notice that selection in this model is performed entirely by the filter
and not by any selection mechanism that comes later. We describe this
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selection mechanism only to show how this model compares to others.
Broadbent’s model is referred to as an early selection model because the filter
screens out information before it can be recognized.

Evaluating the Filter Model

Almost from the get-go, it was realized that there were some problems with
this version of the theory. One problem is summed up in what is one of the
better names for a psychological phenomenon, the so-called cocktail party
effect. Imagine that you are attending a party and chatting with several people.
Somebody across the room then mentions your name. To your surprise, you
realize that you hear it, even though you were completely engrossed in the
immediate conversation. Researchers have empirically validated this intuitive
finding (Moray, 1959; Wood & Cowan, 1995). The observed cocktail party
effect and other studies have demonstrated that some information gets through
the unattended channel. The filter does not block words of great personal rel-
evance, such as your name and words associated with danger, for example,
“fire.” Broadbent’s model has the filter completely blocking all information
coming from the unattended channel. Clearly, his view requires some revision.

Treisman’s Attenuation Model

Attenuation theory is similar to filter theory but with one exception
(Treisman, 1964). Instead of completely blocking out the unattended message,
the filter attenuates or weakens it. Message attenuation is like having water
running through two faucets, where each of the faucets constitutes a different
information channel. The faucet corresponding to the shadowed message
would be open all the way, allowing water to pour through. The faucet corre-
sponding to the unattended channel would be only partially open, allowing
just a small amount of water through. The addition of Treisman’s model to
Figure 4.8 would have the unattended message passing through all of the pro-
cessing stages, but in a weakened form.

Treisman explains that different words have different chances of making
it through the unattended channel, due to a threshold effect. A threshold is the
minimum amount of activation required to produce conscious awareness of
a stimulus. Stimuli with associated low thresholds easily make their way into
awareness. Those with associated high thresholds do not. A word’s meaning
determines its threshold. Important words and those with personal relevance,
such as your name, have a lower threshold for recognition and make it past the

115The Cognitive Approach I: History,Vision, and Attention

04-Friedenberg-4747.qxd  8/22/2005  3:11 PM  Page 115



filter. Less important words, for example, “chair,” have higher thresholds and
are filtered out.

The Deutsch-Norman Memory Selection Model

The cocktail party effect shows that meaning, or semantics, is another criterion
according to which information is selected. This runs contrary to early filter
models that posit physical characteristics such as loudness or pitch as the
primary basis for selection. Deutsch and Deutsch (1963) and Norman (1968)
therefore proposed a second selection process, one that is based on semantic
characteristics. This selection happens later on in processing. Their model is
thus an example of a late selection model. The first stages of processing in this
model are the same as those of the other models. Information from the sensory
store is filtered on the basis of physical characteristics and then recognized.
However, before being passed into short-term memory, it goes through a sec-
ondary selection mechanism. This mechanism selects information on the basis
of semantic characteristics or message content. The selected items end up in
short-term memory and awareness. Those not selected never reach awareness.
The Deutsch-Norman model shown in Figure 4.8 depicts information from
two channels reaching the selection mechanism, which makes the choice as to
which information gets through.

The Multimode Model of Attention

So where does selection take place? A more current view is that selection can
occur early or late. Michael Posner and Charles Snyder (1975) advocate the
idea of a “moveable filter,” one that can operate at various points in process-
ing according to the observer’s needs. Data from another study support what
seemed to some to be the case all along, that selection can be based on physical
or semantic properties (Johnston & Heinz, 1978). They found, however, that
semantic selection imposes a greater cost, that is, it requires greater attentional
resources than physical selection. The model that arises from the view that
selection can be based on multiple modes, for example, the physical and the
semantic, is called the multimode model of attention.

There is also neurophysiological evidence to support the multimode model.
Hillyard, Hink, Schwent & Picton (1973) used an event-related potential (ERP)
technique to investigate when selection occurs. The ERP records brain electri-
cal activity that happens in response to the presentation of a stimulus.
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According to their design, the researchers had participants attend to a stimulus,
say, coming from the left ear, and compared the activity observed under that
condition with observable activity related to an identical unattended target,
say, coming from the right ear. They observed a very rapid change in electrical
activity only 80 milliseconds after the stimulus was presented, which suggested
that selection was happening early on in response to perceptual characteristics.
However, other ERP studies showed a change in electrical activity that hap-
pened approximately 300 milliseconds after stimulus onset, which suggested a
late selection based on task relevance and, perhaps, semantic features (Luck &
Hillyard, 1994). To summarize, it appears that attentional selection is more
flexible than was first assumed. It can happen early or late, and can be based
on more than just a single mode.

Kahneman’s Capacity Model of Attention

Capacity models describe attention as a resource. We can think of this
resource as the amount of mental effort or energy required to perform a task.
Like many other resources, attention exists in limited supply. At any given time,
we only have so much of it that is available for use. Daniel Kahneman, in his
1973 book Attention and Effort, outlined a detailed capacity model of attention.
In it, he described the factors that affect available attentional capacity as well as
the factors that determine how this capacity gets utilized. Because we are talking
about the distribution of attention to different sources, capacity models are really
models that describe the division, rather than the selection, of attention.

Figure 4.9 shows Kahneman’s model. Let’s walk our way through it. The
rectangular box at the top represents the pool of available attention. A
person’s arousal level is one thing that can affect this capacity. Arousal refers
to physiological activation and is reflected in values such as cardiac and res-
piratory rates. Moderate levels of arousal are assumed to produce the great-
est amount of available capacity. This follows from the Yerkes-Dodson law
(1908), which states that there is an inverted U-shaped performance function
for arousal. Performance is poor for low and high levels of arousal, wherein
individuals are presumably too tired or anxious, but optimal at intermediate
levels.

Determinants of arousal include such things as the amount of sleep a
person has had or the amount of food he or she has consumed. If a person has
not slept well or has not eaten recently, arousal, and therefore capacity, are
assumed to be low. Manifestations of arousal can include such overt behaviors
as finger tapping or other nervous habits that result from excessive arousal.
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Notice too that the circle that depicts the evaluation of demands on capacity
can itself affect capacity. If there is a greater demand for attention, there
may be increased arousal. Knowing that you have a final examination early
tomorrow morning might increase the attention you give to studying the night
before.

Attentional capacity must now be allocated to the cognitive activities that
need it. How is this determined? The ellipse in the center of Figure 4.9 repre-
sents the allocation policy. We can think of it as an executive or decision-
maker who determines how much attention will be given to a variety of tasks.
It is influenced by several factors. First among these are enduring dispositions.
An enduring disposition is an automatic influence on where attention gets
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directed. A new event or a sudden movement are things that automatically
draw attention. Momentary intentions also influence allocation. A momentary
intention is a conscious decision to pay attention to something. Momentary
intentions reflect our specific goals at a given moment in time. A mother dri-
ving a car might redirect her attention to children fighting in the back seat, but
she would quickly have to redirect her attention back to her primary goal of
driving. Notice that the evaluation of demands on capacity and available
capacity also have arrows pointing to allocation, indicating that they too exert
an influence. The amount of available arousal and the urgency of a task both
have an effect on the amount of attention that will go to a particular task.

The rectangular box at the bottom of Figure 4.9 contains a representation
of possible activities. These are all the cognitive processes or tasks that need
attention. The allocation policy that gives attention to them is flexible. For
example, equal amounts of attention could be given to all the activities or all
available attention could be given to just one activity. Those activities with the
greatest demand will be given the most attention. In the driving example given
above, the driver’s attention was momentarily taken away from driving, the
most demanding activity, and given to the children in the back seat, and was
then switched back again.

Evaluating the Capacity Model of Attention

Stephen Reed, in his book Cognition (2000), makes some summary com-
ments on attentional theories. He notes that capacity models such as Kahneman’s
are not designed to replace selection models, but rather to supplement them.
Both types of model predict that it will be difficult for an individual to pay
attention to two things at once (but for different reasons). According to selec-
tion theories, it is because a bottleneck develops, prohibiting the entry of two
packages of information at the same time. According to capacity theories, it
is because the demands of the two tasks exceed available capacity. Capacity
models give us a good overview of the many influences and interdependencies
that are involved in the allocating of attention. Selection models provide us
with a better feel for the discrete stages of information flow during attentional
processing.

Evaluating the Model-Building Approach

Our discussion of perceptual and attentional theories so far has demonstrated
several things. First, that even within a discipline there is no single widely
agreed-upon model that explains how a given cognitive process operates. In the
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case of pattern recognition, we summarized five major models of how it might
take place. Second, although these models may vary widely, each one captures
some unique aspect of the process better than the others. The feature detection
model is better suited to explain errors in recognition, whereas the computa-
tional approach can best account for object constancy. Third, and most impor-
tant, we learn more about a process by evaluating all of the theories and
comparing competing theories. The problems posed by the template-matching
model show that any model of pattern recognition must extract some invariant
feature from the image. That is in fact what is postulated in one form or another
by the remaining theories. This cross-theory analysis may not tell us what the
features actually are—we see they differ slightly from model to model—but it
does tell us that the process of feature extraction is a key element in the process.

Another major point worth mentioning here is that there is cross-fertilization
between model formation and experimention. In the case of attention, we have
seen a constant tug and pull between the models and the experimental evi-
dence. This dynamism led to the formation of better and more improved mod-
els. Broadbent’s filter theory showed us the basics of how a selective attentional
system might operate. Later research, however, proved that information could
get through the unattended channel. This led to the formation of Treisman’s
attenuation model, which by itself could not adequately explain selection that
is based on semantic characteristics. This in turn led to the development of the
Deutsch-Norman memory selection model. The results of later experiments
necessitated the introduction of multimode models and the idea of a moveable
filter. Drawing on this short history, it becomes obvious that we should not put
too much faith in one model. Instead, we must realize that each model is a
point along a developmental continuum and also encourage researchers to
modify their models based on current research.

In Depth: Biederman’s Recognition-by-Components
Theory of Pattern Recognition

In the preceding section on pattern recognition, we saw that there are many
ways to recognize an object. A problem inherent in all of these procedures is
to extract from the stimulus input aspects that are invariant with respect to
viewing angle, lighting, and so on. The template matching solution was to store
multiple copies of the object. The feature detection and integration solutions
were to extract certain invariant features—aspects of the object that remain
constant. Marr’s solution was to generate an object-centered description.

The psychologist Irving Biederman (1987) also proposes a feature extrac-
tion account for the constancy problem; his approach is interesting because it
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specifies how object constancy may be achieved for three-dimensional object
representations. In his theory features gathered from a stimulus are recombined
to form an object representation. These features he calls geons. A geon has a
basic volumetric shape, for example, a cube or a cylinder. Altogether there are
36 of them. Figure 4.10 shows two examples of individual geons. 

Geons are said to have three basic properties. The first is view invariance.
This means geons can be identified when viewed from many different per-
spectives. The second is discriminability: one can tell one geon apart from
another no matter what the viewing angle. The fact that geons have these
characteristics supports the notion that they may be used as features in human
pattern recognition, since they can account for the view-invariant aspect of
object constancy.

The third property of geons is resistance to visual “noise.” Geons can be
perceived even when many of the contours that make them up are obscured. In
one study, Biederman (1987) showed observers line drawings of objects that
were masked by noise. The noise in this case was amorphous black regions
resembling patches of spilled ink. In one condition, the noise covered the object
contours in a way that preserved the geons. The noise for the most part in this
condition covered single stretches of contour. In a second condition the noise
covered the contours such that the perception of the geons was disrupted. The
noise here covered contour junctions, which are needed for the construction of
the surface planes of three-dimensional shapes. Observers had no trouble rec-
ognizing the shapes in the first condition, but had great difficulty doing so in
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Figure 4.10 Cubes and cylinders can be considered examples of geons.These can then
be assembled to form more complex objects
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the second. These results suggest that geons may help us to recognize objects
that have undergone occlusion, a partial covering up by other objects, since in
the real world occluding shapes rarely obscure junctions.

Biederman’s recognition-by-components theory is thus supported because it
can account for view invariance and occlusion. Another strength of the theory
is the small basic feature set that consists of just 36 geons. In other pattern
recognition theories, features are either unspecified or extremely numerous.
Critics of the theory point out that broad classes of objects can be discrimi-
nated on the basis of geons, but that fine-level object categories cannot. For
example, geons can explain why we have no problem telling the difference
between an airplane and an automobile, but they have difficulty in providing
an explanation for how it is we can also tell apart objects that are much more
similarly-shaped, such as two similar bird species (Perrett & Oram, 1993). For
these sorts of differences, we must rely on other features, such as the angle or
taper of a part or perhaps color and texture.

Minds On Exercise: Silhouettes and Object Constancy

We rarely view an object from the same perspective twice.This poses a problem for
pattern recognition mechanisms, which must extract invariant features—those that
don’t change when there is some alteration of the stimulus input.To see what a dif-
ficult job the visual system has, try the following exercise. Have one person suspend
an object by a string behind a paper screen. Have another person shine a light on
the object, so that only its shadow appears on the screen to the observer. The
observer now has to guess what the object is. Rotate the object. Is recognition now
easier? Why? Were there some perspectives from which it was easy to recognize the
shape? What were they? From which perspectives was recognition most difficult?
Why? For each shape, record the feature or characteristic of the object that allowed
you to recognize it.

Food for Thought: Discussion Questions

1. Do you think a process model is a fair way to describe mental processes?
Do you agree with its assumptions that information processing is sequential
and independent? Can you think of another way of representing mental
processes? If so, what type of diagram would you draw to represent it?

2. Write down all the letters of the English alphabet. Compare them and deter-
mine which letters would be most easily confused with others.What features 
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do these letters have in common? Devise a new set of features that would
allow you to tell them apart.

3. Would it be easier to recognize your mother in your house or in a gas sta-
tion? What role does the context play in facilitating or interfering with recog-
nition? Is this an example of a data-driven or a conceptually-driven process?

4. What sort of things are good at causing distraction? Are there some stimuli
that are impossible to ignore? Conversely, name those things that don’t divert
attention and are easy to ignore.

5. How many things can we pay attention to at one time? Is it only one? Is it
greater than one?

6. Do animals possess attention? Can they control their attention in the same
way humans do? In what ways can humans control their attention that animals
cannot?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.
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& Bacon.
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“It isn’t so astonishing, the number of things that I can remember,
as the number of things I can remember that aren’t so.”

—Mark Twain, 1912

Types of Memory

In this chapter we continue our discussion of cognitive theories, as we focus
on three other prominent cognitive processes: memory, imagery, and problem
solving. We will describe the major theoretical approaches to each as well as
some of the classic experiments that led to their development. There has been
an immense amount of research on these and other topics in cognitive psy-
chology that has been conducted, and by necessity we must leave out many
interesting and important findings. As in previous chapters, refer the interested
reader to the works in the Suggested Readings sections if they wish to learn
more of these findings.

Memory, very generally defined, is the capacity to retain information over
time. Memory is of course very important to any information processing
system, animal or machine, because it underlies the ability to learn. Any
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system incapable of learning from its mistakes would soon perish or become
obsolete in a dynamic, real-world environment. Memory allows us to store our
past experiences and draw on them. In this way, we can deal with new situa-
tions that bear some similarity to old ones in the way we have in the past, and
not have to solve each new problem from scratch.

Any discussion of memory must begin with the notion that there is no sin-
gle type of memory. Cognitive research in this area has led to a rather consis-
tent finding: the existence of functionally distinct memory systems. Models of
memory specify how these different memory systems interact. Before we can
understand this interaction we must lay out some of the characteristics and fea-
tures of these individual memory systems. They include duration, which refers
to how long information remains viable in a memory system; capacity, which
refers to how much information the memory system can hold; and coding,
which refers to the particular type of information the system contains. In the
first part of this chapter we will summarize these characteristics. Following
this, we will describe formal memory models.

Sensory Memory

Sensory memory is a repository for incoming sensory information. Raw,
unanalyzed data that are derived from the senses are held here very briefly. The
purpose of sensory memory is to maintain the representation of a stimulus long
enough so that it can be recognized. Although you may have glanced at a visual
scene for only a very brief time, say, 100 milliseconds, a representation of the
scene is preserved in sensory memory for longer than that. This gives the
information a chance to be operated upon by selection and pattern recognition
mechanisms.

There are different forms of sensory memory—there is one for each of the
five senses. Each of these forms has different characteristics. Iconic memory is
a visual sensory memory. It holds a brief “snapshot” of what you have just
looked at. Iconic memory has a very short duration; it lasts only about 250 to
300 milliseconds (Averbach & Sperling, 1961; Sperling, 1960). Echoic mem-
ory is an auditory sensory store. You can think of it as an “echo” of what you
have just heard. It lasts considerably longer than iconic memory, on the order
of several seconds longer (Darwin, Turvey & Crowder, 1972). The coding or
representation of information in sensory memory thus varies with the modal-
ity. Iconic memory stores visual representations; echoic memory, auditory
ones.

George Sperling first began investigating iconic memory in the 1960s.
He would present subjects with a short display of letters of the alphabet
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consisting of a 4 letter x 3 letter array. In a given trial a display might look
something like the following:

R G C P

L X N F

S B J Q

There were two conditions in this study (Sperling, 1963). In the whole-
report condition, the partipants’ task was to remember as many of the letters
as possible. Most persons recalled only four or five. Sperling had a hunch that
they were actually remembering more than this. He suspected that the proce-
dure was testing for not what is available in the icon (in this case the display
of letters), but what we pay attention to or process after the fact. Four or five
individual items might be what is remembered, but not what is actually per-
ceived in the icon. To investigate this, he developed a partial-report condition.
Participants, immediately after being given the letter display, heard one of
three tones. A high-pitched tone cued the top row, indicating that the partici-
pants would be expected to report on that row; a medium-pitched tone, the
middle row; and a low-pitched tone, the bottom row. The results then showed
that subjects were able to recall all of the letters, regardless of their location.
This demonstrates that all the letters were stored and available in the icon, as
the observers had no way of knowing which row was going to be cued.

We learn from this research that the capacity of the visual icon, how much
it can hold, is at least twelve items. Subsequent research has shown that iconic
memory can in fact hold much more than this. Its capacity is essentially unlim-
ited. Everything that can be taken in during a glance—all the information in
the visual field—can be stored there. But the integrity of this information is
short-lived. The image is clearly represented early on, but then fades quite
rapidly. The loss of information over time in memory is known as decay.

Working Memory

Working memory is also sometimes known as short-term memory. Some
researchers sometimes use these terms interchangeably, as will we throughout
this text. As the term short-term memory suggests, information is briefly stored
there. However, the duration of items residing in working memory is, as we
will see, much longer than that of items residing in sensory memory. Working
memory retains less information; its capacity is unlike the unlimited capacity
of the visual icon. Working memory is limited to storing just a small number
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of items. Whereas information in the different sensory stores is specific to
modality, coding in working memory can be acoustic, semantic, or visual. We
will have more to say about how the different types of codes are put to use
when we discuss Alan Baddeley’s model of working memory later in this
chapter.

It is helpful to use the analogy of a workbench when thinking about work-
ing memory. A workbench is a space where one can construct something using
parts and tools. For example, if one wanted to build a spice rack, he or she
would need several pieces of wood, some nails, and varnish. In addition to this,
he or she would need saws to cut the wood to size, a hammer, and a paint-
brush. With these items in hand one could then set about to create the final
product. Working memory is the mental equivalent of this workbench. It is a
place where data (the parts) can be temporarily stored so that they can be oper-
ated on by cognitive processes (the tools). In this sense working memory is the
site where conscious thinking takes place. It is here that you remember a phone
number, figure out how to navigate your way around a new city, or solve an
arithmetic problem.

In a classic study, Peterson and Peterson (1959) demonstrated the duration
of items that reside in short-term memory. They presented participants with
items to be remembered. A tone was sounded following the presentation of
the items. In separate trials the tone was sounded at varying time intervals.
Sometimes it would go off immediately; during other trials there would be a
substantial delay. The participants were instructed to recall the items upon the
sounding of the tone. In this condition, all participants were able to remember
the items correctly, no matter the length of the delay. In a second condition,
presentation of a three-digit number followed presentation of the items. Parti-
cipants were instructed to count backward in threes from this number. If the
number was “796,” they would have to count out “793,” “790,” “787,” and
so on. A tone was sounded, again at varying intervals, cueing recall of the item.
At this point the results were quite different. The ability to remember the items
deteriorated rapidly as the period of delay increased. After an 18-second recall
interval, the accuracy of recall had dropped to just 5%, meaning participants
could only recall 5% of the items correctly. Figure 5.1 shows idealized results
for both conditions of such a study.

You may have guessed what’s happening here. In the first condition, partic-
ipants were able to rehearse the trigrams. Rehearsal is the mental repetition
or mental “practicing” of some to-be-learned material. It is usually manifested
as implicit speech, or “talking to oneself”—what you do when you need to
remember somebody’s phone number but can’t write it down. Rehearsal
refreshes items in short-term memory; it keeps them active and prevents them
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from decaying. In the second condition, participants were prevented from
rehearsing because of the backward counting. Here the items underwent decay.
Using this paradigm, Brown (1958) and Peterson and Peterson (1959) were
able to determine that the duration of short-term memory was about 18 sec-
onds. If you are interested in some of the other processes that can act on infor-
mation in working memory, go to the In Depth section, where you will see
that, in addition to rehearsal, items can be scanned.

Our next discussion is of capacity. How much can working memory hold?
It is easy to devise an experiment that tests this question. It would involve pre-
senting participants with a series of lists, each containing a different number of
items. For example, we could present a list of four digits, then a five-digit list,
a six-digit list, and so on. If there were a limit to how many digits could be held
in working memory, we would see a dramatic drop off in retention as we
arrived at that limit. Many early experiments of this sort demonstrated that
this was indeed the case. On average, individuals can retain about seven items,
give or take two, commonly denoted as 7±2. This limit has come to be called
the “magical number seven” (Miller, 1956).
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So short-term memory has a limited capacity. We can only hold about seven
items in it at one time. But what exactly is an “item”? Is it a number? A letter?
A word? To understand this, let’s start with a demonstration. Glance quickly at
the letters below and then close your eyes to see how many you can remember.

N F L C B S I R A M T V

Did you have a hard time? If you weren’t able to recall all of the letters
easily take a closer look. You may at this point notice that the letters cluster
in groups of three—each group is a popular acronym. “NFL” stands for
“National Football League,” “CBS” for “Columbia Broadcasting System,”
and so on. If you had noticed these groupings, it would have been easy for you
to remember all the letters. This is because you would then be remembering
only four groups of three letters and not twelve individual letters. A group of
meaningful items is called a chunk. The grouping of items into a single mean-
ingful whole in short-term memory is known as chunking. We can increase the
total amount of information that is contained in short-term memory by chunk-
ing: the bigger the chunk, the greater the capacity.

Let us turn now to the issue of coding. How is information coded or repre-
sented in working memory? Research in this area shows that information can
be coded in a variety of formats. Conrad (1964) presented letter strings to par-
ticipants and then asked them to perform immediate recall. He found that
although the letters had been presented visually, the pattern of errors was
based on the sounds of the letters. Participants would mistake an “A” for a
“K,” for example, or an “E” for a “P.” This suggests that the letters were being
converted to an acoustic code, one based on the sounds of the items.

Studies by Wickens (1972) and others have demonstrated the existence of
an alternate code that is part of working memory. To make sense of their
experiments, we must first differentiate between two types of interference. In
proactive interference, information that is learned earlier interferes with infor-
mation learned later. In retroactive interference, information that is learned
later interferes with information learned earlier. The more closely related
items are to each other with respect to meaning, the greater this interference.
Wickens presented words to subjects along the lines of the tasks that were
given participants in the Brown/Peterson experiments. He found that after they
had studied words that belonged to a single category, there was proactive inter-
ference, which engendered a steady decline in recall over the first few trials. For
example, the word “apple,” learned earlier, would interfere with recall of the
word “orange,” learned later. But in a final trial during which the semantic cat-
egories of the words the participants were asked to remember were sometimes
switched—in one condition, from fruits to flowers—there was an increase in
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recall. In this instance, the word “apple,” learned earlier, would interfere less
with the word “tulip,” as they belong to separate semantic categories. These
results showed that the words were represented not acoustically, but instead on
the basis of their inherent meanings—the code was a semantic code.

Additional studies showed that information in working memory may be
represented in yet a third way. A visual code is one that preserves spatial char-
acteristics. In studies of the mental rotation of objects, participants were pre-
sented with a visual pattern and were asked to compare it against another that
was either a different pattern or the same pattern rotated by a certain angle.
The plot of reaction time in these studies showed that subjects apparently
formed a visual representation of the pattern and rotated it mentally to enable
them to perform the comparisons (Shepard & Metzler, 1971; Cooper & Shepard,
1973). The representation must be visual because the greater the angular dif-
ference between the two patterns being compared, the longer it takes to
respond—exactly what one would expect if a real spatial object were rotated.
We will describe these experiments and the controversy that surrounds them in
greater detail later in this chapter.

Long-Term Memory

Obviously, individuals are capable of remembering information for longer
than just a few seconds. Many of us can recall quite vividly events from our
childhoods or facts learned decades ago in school. We must therefore have
another memory system, one that is capable of storing data for longer periods
of time.

It turns out that, as is the case for memory in general, long-term memory
has several distinct types. Procedural memory holds procedural knowledge. It
is memory for skill, is demonstrated by doing, and arises without conscious
recall. Knowing how to ride a bicycle is a good example. A person who knows
how to ride a bike can demonstrate that he or she has this ability really only
by actually doing it. The subconscious nature of this memory becomes evident
when we acknowledge that it sometimes happens that we learn how to perform
some skill, such as playing the piano, forget how, but then show improvement
when we attempt to perform the action at a later date. Procedural memory also
sometimes goes by the name of implicit memory.

Declarative memory contains declarative knowledge. It is memory for
facts and events, is demonstrated by speaking, and arises with conscious
recall. There are two types of declarative memory. Knowing that Thomas
Jefferson wrote the Declaration of Independence is an example of the first
type, called semantic memory. Semantic memory is knowledge of facts and
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general knowledge of the sort learned in school. The second type is episodic.
Episodic memory contains episodes, or personally experienced events, for
example, what you did on your birthday last year. We are usually con-
sciously aware of declarative information, which is sometimes referred to as
explicit memory.

A study by Bahrick (1984) shows us how long information in semantic
memory lasts. Bahrick studied a group of people who studied Spanish early in
life, usually during the high school or college years. They were tested at vari-
ous times throughout their lives with respect to how much they remembered
from their Spanish classes. When recall for various types of information was
plotted as a function of time, three distinct memory stages were discovered (see
Figure 5.2). In the first stage, stretching from 3 to 6 years after the classes,
there was an initial rather dramatic loss of information. In the second stage,
stretching from 6 to up to 30 years after initial learning, there was no further
loss—the amounts remembered stayed relatively constant. In the third stage,
stretching from 30 to 35 years later, there was another loss of information, but
only a slight one.
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We can draw conclusions from each of the three stages. First, information
in long-term storage, if not used or rehearsed, decays fairly rapidly over the
first few years. Second, there is some residual amount of learned information
that remains intact over a long period of time. Third, there appears to be a
slight additional loss of information that occurs later in life. This loss could be
due to the kind of general decline in cognitive function that accompanies aging.
The basic shape of this memory function stayed the same regardless of the
levels of training or the grades the participants had received. Better initial
learning, as measured by these indices, resulted in an elevation of the function
such that overall performance was better, but the shape of the function
remained unchanged.

Now back to capacity. How much can be retained in semantic long-term
memory? It has been proposed that we remember virtually everything we’ve
ever experienced in our entire lives, but simply have difficulty recalling it.
Therefore, although information may get into long-term memory and stay
there without its being lost, our inability to remember it could be due to a fail-
ure in “getting it out.” One researcher estimates that the average adult has
about a billion bits of information in memory and a storage capacity that is
perhaps one thousand to one million times greater than that (Landauer, 1986).
However, we must be skeptical about such estimates, since the inability to
recall an item in a memory test can be due to either retrieval failure or decay.

With respect to coding, the current belief is that information in long-term
memory is represented in various formats. Implicit memories may be stored in
the form of production rules—formalized if-then statements that match a sen-
sory input to a motor output. The proposed neural locus for production rules
is in the cerebellum, a part of the brain that mediates motor learning. Refer
back to the introductory chapter for more on production rules. Explicit mem-
ories may be stored as networks of connected nodes, each node representing a
fact or event that is linked to others. The distribution of these nodes is most
likely throughout the entire cortex and other diffuse brain areas. See the net-
work approach chapter for more on these networks.

Memory Models

We turn now to summarizing some of the most influential theories of infor-
mation processing that attempt to describe memory. These theories specify
interactions between all the different memory types we’ve seen so far. Alternatively,
some of these theories describe the interactions between components of a single
memory system. In each case, the interactions are conceptualized through the
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use of process models that show how information is transformed and shuttled
back and forth among the successive stages of processing.

The Modal Model

The modal model of memory was the first model to provide a general
overview of how information is processed in each of the different memory
types (Atkinson & Shiffrin, 1971). Figure 5.3 shows the stages of the modal
model. To start, stimulus information from the outside world first enters sen-
sory memory where, as we have seen, it is very briefly held. From there, the
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information is transferred to short-term or working memory, where a wide
variety of computations can be performed. These include rehearsal and recod-
ing. Following this, to-be-remembered information is passed to long-term
memory. Encoding is the name of the process by which information is taken
into long-term memory and converted into a usable form. A related process,
discussed at length in the neuroscience chapter, is consolidation. Consolidation
is another process by which information is transferred from short- to long-term
memory. Consolidation “strengthens” information so that it lasts longer.

Once in long-term memory, information may not be used immediately. We
say that the information is in a state of storage. Stored information is repre-
sented, but not available for immediate use. As alluded to above, this infor-
mation may sit in limbo for a very long time. When information that resides
within long-term memory is needed, a retrieval process takes place. Retrieval
is the act of accessing needed data and making it available for use. In the modal
model, retrieval is shown as the transfer of the information from long-term to
working memory, where it can then be operated on.

Evaluating the Modal Model

The modal model provides us with a good summary of memory function
and serves as a useful starting point. However, it was developed very early in
the course of cognitive psychology and fails to specify many of the nuances of
memory structure and function. Upgrading the model would require the pos-
tulation of additional memory subtypes and the insertion of a number of addi-
tional processing steps. For instance, inside the long-term memory box we
would need to designate distinctions for implicit and explicit memories. In
addition, the modal model fails to acknowledge the large number of informa-
tion processing operations that can be performed in working memory. More
recent models of working memory do just this and are discussed later in this
chapter.

The ACT* Model

John Anderson (1983, 1990) proposes a global model of memory function
that is similar to the modal model. Anderson’s model is really more than just
a description of how memory works. It is considered a cognitive architecture—
a concept we discuss later. However, we talk about it here in the context of
memory. The layout of his design, which he calls ACT* (read “act-star,” where
ACT stands for Adaptive Control of Thought), is shown in Figure 5.4. A
revised version, ACT-R, has also been formulated (Anderson & Lebiere,
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1998). Anderson’s model has three components: working memory, declarative
memory, and production memory. Declarative memory is equivalent to explicit
memory and production memory is equivalent to implicit memory. The arrows
in the figure indicate different kinds of processing that occur as information is
exchanged between the memory systems.

Let’s use two examples to illustrate how the model works. The first demon-
strates the use of procedural knowledge. Imagine that you are driving in your
car and you see a stop light. The stimulus of the red light is encoded into work-
ing memory. From there the stimulus is weighed against a production rule in
production memory. If there is a match, the corresponding command to step
on the brakes is given. This command is passed back to working memory
in the step labeled execution. The command is then translated into action in
the process of performance. In the model, this encoding-match-execution-
performance loop is activated when one is carrying out any learned skill,
whether driving, skiing, or playing the piano.

Now imagine that you are answering a factual multiple-choice question on
a college exam. A representation of the question enters working memory and
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is transferred to declarative memory, where semantic knowledge that is related
to the question is located. This transfer step is called storage. The question then
activates the answer and it is retrieved back into working memory where it
can be applied to the question. Once an appropriate response is selected, you
would write in the answer, this action of writing being the performance. This
encoding-storage-retrieval-performance loop is activated when one is using
declarative knowledge.

Evaluating the ACT* Model

The strength of Anderson’s model lies in its description of separate pro-
cessing loops for implicit and explicit memories. Notice that there are no
arrows that connect production memory and declarative memory. These are
considered two entirely distinct and independent memory stores. They do not
share information or communicate with each other. You should remember
that conscious awareness accompanies explicit, but not implicit, memory. The
absence of any information exchange between these two systems reflects this
dichotomy.

Anderson postulates an additional component of this model that represents
how propositional information in declarative memory is organized. This orga-
nization takes the form of a network in which nodes represent concepts and
links represent the relationships between them. He also allows for different
types of nodes that stand for specific examples of concepts we’ve encountered,
for example, a specific person we know. In this way, the network can repre-
sent episodic as well as semantic information, both of which are part of declar-
ative memory.

The Working Memory Model

Baddeley (1986, 1992) has formulated a detailed model for the components
and processes of working memory. These are shown in Figure 5.5. In Baddeley’s
scheme, working memory is composed of three separate units. He calls the pri-
mary unit the executive control system. The job of this system is to initiate and
control ongoing processes. Like the captain of a large ship, this system issues
orders and directs subsidiary crews. Some of its activities are reasoning, lan-
guage comprehension, information transfer to long-term memory via rehearsal
and chunking, and retrieval of information, also from long-term storage.

The second major component in Baddeley’s model is the articulatory loop,
sometimes called the phonological loop. This is the place where speech and
sound-related information are rehearsed. Information such as a telephone
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number that you want to remember and actively maintain for immediate recall
is passed to the articulatory loop to refresh it. A third unit, called the visuo-
spatial sketchpad, is specialized for the processing of visual information. It is
here that visual imagery tasks such as mental rotation or visual search are per-
formed. If you were to form an image of a cat with your eyes shut, the image
would be represented in the visuo-spatial sketchpad.

Both the loop and the sketchpad are “slave systems” to the central executive.
They carry out processes such as rehearsal and image formation. Other processes,
such as reasoning and language, are the responsibility of the executive. Notice
also that these two slave systems are domain-specific: one is devoted to the pro-
cessing of acoustic information only, the other to the processing of spatial infor-
mation only. This means that each one operates on a different code; the loop,
on an acoustic code, and the sketchpad, on a visual code. Tests of working mem-
ory have shown that each slave system relies on its own pool of attentional
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resources (Baddeley & Hitch, 1974; Logie, Zucco & Baddeley, 1990). If the
tasks that one of these systems is performing are simple and don’t require much
in the way of attentional resources, then working memory performance is
unchanged. If one of the systems is given a demanding task, though, it either
fails to complete the task or draws on the attentional resources of the executive,
which results in impaired working memory performance.

Evaluating the Working Memory Model

Baddeley’s working memory model is in essence a reformulation of the tra-
ditional idea of short-term memory. This idea would have us believe that short-
term memory is a relatively inactive location where information is either
rehearsed or it decays. Baddeley extended our concept of this memory system
to encompass a self-regulating collection of processors that perform imagery,
reasoning, and language tasks. Recent studies have shown that there are spe-
cific brain regions that correspond to the different components of the Baddeley
model (Smith & Jonides, 1999; Smith, 2000). Verbal storage, rehearsal, and
executive tasks were found to activate a number of regions in the parietal and
frontal lobes of the left hemisphere. In contrast, visual processing activated
regions in the occipital, parietal, and frontal lobes of the right hemisphere.
Much work in the area of uncovering exactly which types of neural activity
underlie the specific operations of working memory remains to be done. For
example, we do not as of yet have a detailed and accurate neural processing
model that can account for the performance of various mental arithmetic tasks,
such as addition.

Visual Imagery

How many windows are there in your living room? What is the shape of a
German shepherd’s ear? In order to answer these questions, you may have
resorted to the use of visual images. A visual image is a mental representation
of an object or scene that preserves metric spatial information. Visual images
are therefore isomorphic to their referents. They preserve spatial characteristics
of the objects they represent. An example would include spatial extent. If it
takes longer to scan what is in-between two parts of a physical object because
the distance between those parts is relatively greater, then it should also take
longer to scan in-between those parts in the image representation.

Isomorphisms do not imply that images have the same physical properties
as the objects themselves. An imagined banana is of course not really yellow or
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curved. But the representation of the banana in the image allows it to be
treated as if it were a real banana. That is, it may be mentally picked up,
peeled, or squashed. The image allows us to perform the same sorts of opera-
tions on the banana in our heads as we would on the actual banana with our
hands. Although images in many ways seem to follow the same laws as real
objects, they are by no means constrained by such laws. We could, if we
wanted, imagine a flying banana or a banana singing the blues!

A defining hallmark of imagery is that, unlike perception, it is not driven by
sensory input from the outside world. We can form a visual image of a car with
our eyes completely shut. Imagery can be driven by information coming from
memory, an internal information source. Having said this, though, numerous
studies have shown that there are many similarities between perceptual processes
and imagery. In particular, both processes seem to draw on the same underly-
ing neural machinery. Farah (1988) showed patients who had suffered damage
to the visual cortex as the result of a stroke and who could no longer form
visual images. Goldenberg et al. (1988) showed that when participants are
asked to answer questions that require the use of visual imagery, there is a
greater increase in vision-related brain activity, measured as increased blood
flow to the visual cortex, than in participants who are given questions that do
not require the use of imagery.

It is important to note that “imagery” in a more general sense refers to the
mental representation of something and need not be restricted to the visual
domain. It is possible to have auditory, or olfactory, images as well. For
example, one can imagine the melody to the song “Yankee Doodle Dandy” or
imagine the smell of a steak being grilled over an open fire. As was the case
with perception, most of the research that has been conducted in this area as
well as theorizing on this subject have focused on the visual, so we’ll discuss
only visual imagery here.

The Kosslyn and Schwartz Theory of Visual Imagery

In this section, we devote much of our attention to an early and influential
theory of imagery (Kosslyn & Schwartz, 1977; Kosslyn, 1980). It is a func-
tional theory, meaning that it describes what the brain does with images. It is
also a general theory; it attempts to account for the diverse operations that are
involved in image processing, as opposed to its being a specific theory that
focuses only on one type of operation. Mental rotation, described in this sec-
tion, would be an example of a more specific theory. The Kosslyn and Schwartz
theory of visual imagery was elaborated in enough detail that it has been
implemented as a computer program. In describing this theory, Kosslyn
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differentiates between the structures that are involved and the processes that
act on them. In keeping with this, we will describe the structures first and the
processes second.

Image Structures

Kosslyn posits two kinds of image structures. A surface representation is
a quasi-pictorial representation that occurs in a spatial medium. It depicts an
object or scene and underlies our experience of imagery. But what is this
medium? He describes the medium as a visual buffer. This buffer is a surface
matrix that consists of an array of points, similar to what makes up an image
on a TV screen. The visual buffer functions as coordinate space and has a lim-
ited extent and a specific shape. It also has a grain, or limited resolution
(Kosslyn, 1975). The resolution is highest at the center and decreases toward
the periphery (Finke & Kosslyn, 1980).

Representations in the buffer are short-lived. Much like an image on a com-
puter or TV screen, a visual buffer representation fades away if it is not
refreshed. If an object with many parts is imagined, the parts generated first
may decay before those generated later. This can explain why images of objects
that are part of complex scenes are more degraded than images of objects in
simple contexts (Kosslyn, 1975).

According to the Kosslyn theory, certain characteristics of the surface image
are unique to analog representations. The images exhibit features not present
in propositional representations. To start, the size of the image, shape of the
image, its orientation, and the location of information in the image do not exist
independently. When the value of one is specified, values of the others must
also be specified. If we were imagining a fish in different ways, for example, as
a big or small fish, a fat or thin fish, a right-side-up or an upside-down fish, or
a fish to the left or right, then no part of the fish in the image is guaranteed to
stay the same after the transformation. Images in this sense are holistic; a
change in the image produces changes across its entire extent. In addition, any
part or piece of an image is a representation of a part or piece of the actual
object being represented, the referent. The part of an image of a fish that cor-
responds to the fin would represent that fin on the real fish.

What about the content of such images? Images are about objects. They are
viewer-centered and represented according to the perspective of the observer
who is viewing them. An image can represent an object directly, as a photo-
graph does, or indirectly, as a diagram or schematic does. Content is deter-
mined not just by the image itself, but also by how the image is interpreted.
The meaning of an image therefore does not lie entirely within the image itself,
but also in how that image is processed by an interpretive device.
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Deep representations constitute the second type of image structure. They
consist of information in long-term memory that is used to generate the surface
representations. Kosslyn describes two classes. Literal encodings contain lists
of coordinates that detail the placement of points in the surface matrix such
that the represented object is depicted. Some evidence suggests they originate
in the right hemisphere. Propositional encodings are abstract, language-like
representations, similar to declarative statements. They contain information
about an object’s parts, the locations of these parts, and their sizes. They are
believed to lie in the left hemisphere. It helps to think of these encodings in the
following way: Imagine that you receive a chair that requires assembly from an
office supply store. The chair would come with a list of parts, such as the base,
legs, and back, as well as the various nuts and bolts needed to fasten the parts
together. This list of parts corresponds to the propositional encodings. The
chair would also come with a set of instructions specifying how to connect the
parts. It would tell you which bolt to use to fasten part A to part B. This
instruction list is analogous to the literal encodings.

Image Processes

We have already reviewed the empirical evidence that supports each of the
three types of image processes. Image generation occurs when the encodings in
long-term memory are used to form an image in the visual buffer. Kosslyn envi-
sions this process as a set of distinct operations, each labeled with a distinct
command in the computer simulation. A PICTURE command converts the
information that has been received from the encodings, FIND locates the posi-
tion for the placement of a new part, PUT adjusts the size of the imagined part,
while IMAGE coordinates other commands, and performs such operations as
determining the appropriate level of detail.

One question concerning image generation is whether images are formed
all at once or bit by bit. The evidence suggests that they are formed bit by bit
(Kosslyn, 1980). Images that have more parts take longer to create. The same is
true for images that have more detail. Data from another study show that people
who are asked to create images have some control over how complete and
detailed their images will be; depending on task demands and individual prefer-
ences, images can be sketchy or elaborate (Reisberg et al., 1986). This result is in
accord with the idea that images are formed gradually rather than all at once.

Image inspection occurs when we are asked some question about an image,
for example: “Is a pig’s tail lower than its snout?” Inspection is like looking
at the image with the proverbial “mind’s eye.” It also consists of a number of
distinct processes, each labeled with a different command in the computer
simulation. RESOLUTION determines if the image is at the right scale and
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calls on ZOOM or PAN to expand or contract the image. SCAN, as its name
suggests, scans between locations within the image.

An experiment by Kosslyn (1975) suggests we can zoom in on or magnify
images as part of the inspection process. He asked participants to imagine a
large object next to a small one. For instance, subjects were asked to imagine an
elephant standing next to a rabbit. They were then asked to respond to ques-
tions, for example: “Does the rabbit have a tail?” Kosslyn found that, under
these conditions, participants took longer to respond to questions about the
rabbit. His explanation was that the rabbit was relatively small in the image and
therefore difficult to resolve. Kosslyn inferred that participants zoomed in on or
magnified the part of the image in question in order to respond.

Another study, by Kosslyn, Ball, and Reiser (1978), showed that images
may be scanned or “looked across” in the same way real objects are. To get a
sense of what participants were asked to do in this study, try the exercise that
is depicted in Figure 5.6. The participants in the study were asked to memorize
a map of a fictitious island. They were then instructed to form an image of the
entire island and to focus on one of the objects on it. The name of a second
object was announced, and participants were asked to scan their images by
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Figure 5.6 Study this picture of a bus for one minute.Then close your eyes and form
a visual image of it, focusing on the back of the bus.Answer these two
questions: Is the luggage compartment open? How many headlights are
there? Which question took longer to answer? Why?

Short distance

Long distance
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imagining a black speck moving in a straight line from the first object to the
second. When the black speck arrived at the second object, participants pushed
a button, stopping a timer. When reaction times were plotted as a function of
map distance, a linear relationship was revealed. Participants took longer to
respond when the distances between objects on the island were greater. From
this result, it was inferred that images do preserve spatial extent. Figure 5.7
shows the pattern of the results that have been obtained in experiments like
this one.

Image transformation refers to an operation performed on an image.
Kosslyn describes two transformation modes—shift transformations and blink
transformations. Most image transformations are shift transformations, in
which the image is altered incrementally. These changes can be seen as contin-
uous changes in which the image passes through intermediate stages along a
trajectory of size, orientation, or location. Blink transformations, in contrast,
alter the entire image at once and can be used to re-form a complete image
after it has decayed in the buffer.

A classic experiment in cognitive psychology calls attention to an example
of a shift transformation. Shepard and Metzler (1971) presented participants
with drawings of pairs of three-dimensional objects (see Figure 5.8). Sometimes
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(A)

(B)

(C)

Figure 5.8 Stimuli from an early mental rotation experiment. Participants were
asked to judge whether the two patterns were rotated versions of each
other

Source: From Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science,
153, 652–654. Copyright © 1971 AAAS. Reprinted with permission.
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the paired objects were different. But sometimes they were the same, in which
case the two objects were rotated versions of each other. The observers were
asked to evaluate the pairs and to respond by pulling one lever, with their right
hand, if the objects were the same, and another lever, with their left hand, if
they were different. The response times were then plotted as a function of the
angle of rotation (see Figure 5.9). The plot demonstrates that the greater the
angular difference between the shapes, the longer it took to respond. Shepard
and Metzler concluded that participants had formed a visual image of an
object that was based on one of the objects in the drawings and then mentally
rotated this image until it matched the other object.

Evaluating the Kosslyn and Schwartz Theory

Pylyshyn (1981) provides several critiques of the theory. He says there are
too many free parameters, that is, functions or assumptions that are uncon-
trolled and that can affect the results of any experiment designed to test the
theory. For instance, Pylyshyn points out that the transformation processes
that are hypothesized to act on an image are very flexible. This flexibility,
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rather than being a strength, leaves many questions unanswered, for example:
Under what circumstances will a given transformation process operate? Pylyshyn
would like to see a more detailed theory and a greater number of constraints
put on its operation. He sees the theory as too open and as allowing for too
many uncontrolled possibilities.

A second critique concerns cognitive penetration, in which one’s knowl-
edge, beliefs, goals, or other cognitive states alter performance of a mental
task. Pylyshyn argues that mental imagery processing is biased by people’s
expectations. In Pylyshyn’s view, our knowledge of what objects are like and
the way they act in the world influences the way we process images of these
objects. For example, if we think an object is heavy, we may mentally rotate
it more slowly. If this is the case, and if imagery operations are cognitively
penetrable, then they cannot be, as suggested by the theory, innate, universal,
or automatic.

Pylyshyn also makes the argument that participants performing a mental rota-
tion task may not be rotating at all. They may in fact be employing non-analog or
propositional means of carrying out image transformation. The data that appear
to support image rotation are not reliable, according to Pylyshyn, and have been
obtained because the task and the instructions led participants to recreate, as accu-
rately as they could, the perceptual events that would have occurred if they had
been observing an analog process. In other words, the observers are doing what
the stimuli, task, and experimental situation seem to demand of them. This phe-
nomenon is believed to be a potential source of error in many psychology exper-
iments and goes by the name of demand characteristics.

Kosslyn counters these three arguments. He makes the distinction between
parameters and free parameters, and he points out that his theory contains
many of the former, but not many of the latter. This theory, or any general
theory that explains new cases, must include many parameters. Specific theories
have fewer parameters, but can explain only a limited number of cases. With
regard to cognitive penetrability, Kosslyn admits that rotation and other image
transformation processes ought to be cognitively penetrable, otherwise the
processes could not be applied to solve problems or could not be used in novel
ways. Finally, Kosslyn points out several experiments in which task demands
affected the results, but argues that these studies in no way preclude the use of
analog imagery processing.

The Imagery Debate

In the 1970s and 1980s, not long after the outbreak of the cognitive revo-
lution, there was considerable debate in academic circles as to whether or not
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visual images even exist. As Pylyshyn suggests above, many of the tasks
subsumed under the heading of imagery could in fact also be performed by
propositional operations. Ned Block (1981) sheds some light on the two sides
in this controversy. According to Block, people who believe in visual images
are pictorialists. They don’t believe that we literally have pictures in our heads,
but they do believe that we form quasi-pictorial representations that represent
in the same way that pictures do. Pictorialists advocate the widespread use of
mental analog representations. On the other side there are descriptionalists,
who believe images are not pictorial. The subjective experience of having a
visual image makes it seem as if there is a picture “in there,” when in reality it
is all just digital symbol processing.

This debate has some important implications. As we mentioned in the intro-
ductory chapter, analog and digital representations lend themselves to different
types of processing. Images are processed spatially; they are subject to transfor-
mative processes such as zooming, scanning, and rotation. Digital symbols are
processed according to syntactical rules similar to those of grammar or arith-
metic. Because traditional computers employ symbols and processing of the dig-
ital sort, the existence of mental images would imply that at least some human
mental operations differ fundamentally from computer operations. This means
that in order to truly understand these mental phenomena, we would probably
have to design computers with analog computational architectures. These com-
puters would then give us new insights into mental processing that are different
from the ones provided by simulating analog processes on a digital computer—
something that Kosslyn and others have done.

We have already presented much of the evidence in the case for imagery.
This includes studies that show the similarity between imagery and perception
and their shared neural machinery. It also includes the many experiments that
provide evidence for various forms of analog processing. So let us look at some
more arguments against imagery.

Daniel Dennett (1981) stands on record as a descriptionalist. He states that
the only place where we seem to have an image inside the head is the retina, a
place where a two-dimensional mapping between stimulus structure and neural
activation occurs. From that point on, according to Dennett, there is no neural
“map” that seems even remotely like an image. A representation of a visual
scene in the occipital lobe is a very distorted representation of the original stim-
ulus. The image has been split into left and right visual field halves that pro-
ject onto both hemispheres, and, within each hemisphere, onto brain areas that
represent one eye or the other. The pictorialist’s response to this is that the
image need not be a perfect pictorial representation (hence the pictorialist’s use
of the term quasi-pictorial). All that is needed is a representation that in some
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way mimics the spatial properties of the stimulus. Representations of this kind
can be instantiated in the brain in many ways.

Dennett points out that mental images are vague, yet real images are not. He
gives the example of a tiger. A picture of a tiger has an exact number of stripes,
whereas an image of a tiger does not seem to. The “vagueness” of visual images
implies that they are propositionally coded, as language is better suited to
expressing ambiguity such as is expressed in the phrase “a few stripes.”
Pictorialists counter this by saying that images can have any degree of clarity.
An image, if viewed from a distance, will have less detail and will appear fuzzy.
But a zooming operation can increase the resolution, allowing us to count
stripes if necessary.

The current emphasis in this debate is not so much on whether images and
image processing exist, but on which types of tasks call on them and under
what circumstances. It is now generally acknowledged that analog and digital
processing, as well as pictorial and descriptional processing, both happen.
According to dual-coding theory, discussed in the introductory chapter, items
can be represented by both verbal and visual codes (Paivio, 1971). The ability
to remember concrete items such as “cat” is better because we have both a ver-
bal code and an image to represent such an item. Memory for abstract words
such as “justice” is poorer because it is only possible to form a verbal code for
an item of this kind.

Problem Solving

Problem solving is the transformation of a given situation into a desired situa-
tion or goal (Hayes, 1989). Problems are solved not by people only, but also
by computers. The former type of problem solving is within the purview of the
cognitive approach and is studied by experimental psychologists. Researchers
in artificial intelligence and robotics study machine problem solving. We will
postpone a discussion of their perspective on problem solving until later in
the book.

We have already discussed two other approaches to problem solving. The
first approach was described in Chapter 1 and centers on the use of analogies.
There we presented evidence that showed that the structure of one problem
could be applied to and used to solve another. The second approach was the
Gestalt perspective, described in Chapter 3. You may recall that the Gestalt
psychologists focused on insight learning, in which a solution suddenly mani-
fests itself, perhaps as a result of some amount of subconscious processing.
In this section, we focus on an approach to problem solving that has been
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influenced by the discipline of artificial intelligence. The approach relies on the
setting of subgoals and the testing of different possible solutions in the pursuit
of a solution.

Anderson (1980, 1985) lists four characteristics of problem solving:

1. Goal directedness. Problem solving behavior is directed toward the
attainment of a goal, which is the desired end point or solution to the
problem. If we were attempting to solve an arithmetic problem, say, 25
+ 36, our goal would be to find the sum of these two numbers.

2. Sequence of operations. This problem solving behavior involves a
sequence of steps. To add 25 + 36, we can first add 20 + 30, to obtain 50.
That would be step one. We would then add 5 + 6, to get 11, in step two.
We would then add 50 + 11, to get 61, this being the third and last step.

3. Cognitive operations. This is the application of some process to the
problem solving situation that transforms the situation. Each permissi-
ble cognitive action that is applied in this way is called an operator.
Operators in arithmetic include the addition of two numbers, the carry-
ing of a remainder, or the retrieval of a number from memory.

4. The setting of subgoals. Each step in the problem-solving sequence pro-
duces a subgoal, an intermediate goal that is set along the way to even-
tual solution of the problem. There is thus a hierarchical organization of
goals in problem solving. The overall goal is broken down into subgoals.
Each subgoal may in turn be broken down further, into additional sub-
goals. In our example, adding 20 + 30 yielded 50, in step one. This
would generate the subgoal of adding 5 + 6, which produces the new
subgoal of adding 50 + 11 in the pursuit of the final goal, the total sum.

The problem space is a very important concept in problem solving. A prob-
lem space may be thought of as the different situations or states that can exist
in a problem. For any problem space, one can define three important states.
The initial state is what the problem is like at the outset. Intermediate states
are what results after some action is applied to the problem. The goal state is
a desired situation and can include the final situation or configuration of the
problem after a solution has been obtained. A problem space also includes the
problem solver’s knowledge at each step of the problem solving sequence,
knowledge that is applied at the step being negotiated, as well as knowledge
that is in memory and could be applied. Problem spaces are usually represented
in a diagram, called a solution tree, that shows all of the possible steps that can
be taken in pursuit of a solution (see Figure 5.10). The solution tree contains
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a series of branchings. Each fork that has two or more branches represents the
possibility of choosing one course of action over another. A given path can ulti-
mately dead-end in a nonsolution. The correct solution to a problem is a par-
ticular path, or a set of paths if there is more than one procedure that produces
a correct solution.

One approach to problem solving is to try all possible paths represented in
the solution tree. This brute force method is computationally intensive and
time-consuming. As an example, the game of chess has been estimated to have
1020 states, or possible moves a player can make. It is simply not possible to
search through all these states to locate the right one. Current computers can
search several billion states, still far fewer than the total number of states.
Chess grandmasters usually don’t consider more than 100 and an average
player might only consider several.

What is needed then is some guide to tell us which part of the space is likely
to yield a correct answer. Heuristics serve this function. A heuristic is an infor-
mal “rule of thumb” method of problem solving that does not guarantee a
solution but is faster and easier to use than a systematic search. Imagine that
you have misplaced your keys somewhere in your apartment. You could
engage in a systematic search and look everywhere for the keys: in each room,
under the bed, on the shelves, behind the drawers, and so on. Alternatively,
you could look first in those places where you usually put the keys down: in a
desk drawer, on a tabletop near the door, or some other likely location. This
heuristic would usually enable you to locate the keys more quickly and with
less effort.

The most effectual heuristic in problem solving is the means-end analysis. In
this technique the problem is solved via successive determinations of the dif-
ference between the existing state and the goal or subgoal state, and then the
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identification of and utilization of an operator that reduces this difference. We
all use means-end problem solving in our everyday life. If you wanted to get
groceries for the week (the goal), you would need to first get to the supermar-
ket (a subgoal). Since you are at home, you would need to drive to the super-
market (an operator). If this were accomplished, the first subgoal has therefore
been attained, and the difference between the state of being at home and that
of needing to get to the market is reduced. Once you are at the market, you
would set up another subgoal of getting the food, which would require a sec-
ond operator, obtaining a shopping cart. This process would then continue
until the final goal has been reached.

The Tower of Hanoi problem has been studied quite thoroughly by investi-
gators and serves as a good example of the application of the means-end analy-
sis. In this problem, there are three pegs, marked, from left to right, 1, 2, and
3 (see Figure 5.11). Initially, there are three disks of different sizes, A, B, and
C, that have been stacked on peg 1—the largest on the bottom, the smallest on
top. The goal is to get all three disks on peg 3, stacked in exactly the same way.
There are several constraints: you can move only one disk at a time and only
to another peg. You can also only place a smaller disk on top of a larger one.
Try to solve the Tower of Hanoi problem before reading on.

Figure 5.12 shows the seven-step solution. The first goal is to free up disk
C, since it must always be on the bottom. Doing this entails setting the subgoal
of getting disk B off of disk C. However, this necessitates the setting of another
subgoal, getting A off of B. The first move is thus to transfer A to peg 3, which
then allows us to move B to peg 2. The next few moves are along these lines,
with the generation of new subgoals and new operators for their attainment.
We cannot move C to peg 3 just yet, because A occupies that position. To
remove A, we place it on top of B on peg 2. This frees up peg 3, so that we can
now place C there. The remaining moves are straightforward. A goes to peg 1,
B goes to peg 3, on top of C, and A can finally be placed atop B to complete
the attainment of the goal.
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The General Problem Solver Model

Alan Newell and Herb Simon were early pioneers in problem solving
research. They developed the first comprehensive computer simulation of
human problem solving (Newell & Simon, 1972). Their program applied
means-end analysis to a wide range of problems and thus the program earned
the name General Problem Solver (GPS). The GPS model serves as a useful
analogy for how humans sometimes solve problems—by first representing the
problem and the goal, then identifying the subgoals and operators that will
produce that goal. The model suggests that humans and computers can both
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solve problems this way—by constructing “plans within plans” to effect a
solution.

A key component of the model was its use of production rules. These rules
were used to perform the operations that were required to bring about a solu-
tion. Ashcraft (2002) gives some examples of production rules for the Tower
of Hanoi problem:

1. IF the destination peg is clear and the largest disk is free, THEN move
the largest disk to the destination peg.

2. IF the largest disk is not free, THEN set up a subgoal that will free it.

3. IF the subgoal of freeing the largest disk has been set up and a smaller
disk is on that disk, THEN move the smaller disk to the stack peg.

The GPS program has been applied to several well-known logic puzzles,
including the Tower of Hanoi problem, the Missionary-Cannibal problem
(described later in this chapter), the three coins puzzle, the water jug task, and
more. It was able to solve each of these. In addition, Newell, Simon, and
others have tested the model. In one study, they had participants talk out loud
as they attempted to solve abstract logic problems (Newell & Simon, 1972).
They found that there was a significant correspondence between the steps the
participants reported using in their verbal protocols and the steps employed
by GPS.

Evaluating the General Problem Solver Model

However, GPS has its limitations. In some cases, it diverges from the strate-
gies human beings use to solve problems. With some problem solving, human
beings are apt to use another heuristic, called the hill-climbing strategy. It
involves taking actions that always bring one closer to the goal. To illustrate,
if you were climbing a mountain and your goal was to get to the top, you
would always choose a path that led upward. This strategy can sometimes fail,
however—in this example, in the case of a path that goes downward and then
back upward toward the summit. In the Missionary-Cannibal problem, there
is a necessary step where one must carry people who have been transported to
the far side of a river back to the original side of the river. Because this leads
away from the final goal, which is to move everyone to the far side, persons
attempting to solve the problem do not take the step, and therefore fail to solve
the problem. The GPS program doesn’t have difficulty with this particular kind
of pitfall, but does sometimes fail to obtain a solution because it applies the
means-end heuristic too rigidly (Greeno, 1974).
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The SOAR Model

SOAR, which historically stood for State, Operator And Result, is a prob-
lem-solving model, but it is also a universal cognitive architecture, a system
designed to account for a wide range of cognitive phenomena (Newell, 1991).
Cognitive architectures specify the structure and function of many different
cognitive systems and how the structure and function interact. Broadbent’s
(1958) early model of attention, the Atkinson and Shiffrin (1971) modal model
of memory, and Anderson’s (1983) ACT* memory model are all examples of
other cognitive architectures. These models can be applied within a specific
domain, such as attention, memory, or problem solving, but they go beyond
this, as they attempt to describe basic principles of cognitive functioning.

As we will see SOAR incorporates some of the elements found in GPS, but
is more general. Let’s discuss its main features. SOAR represents all its tasks as
problem spaces. Any problem is broken down into an initial state (the prob-
lem’s initial starting point), a desired state (the goal or solution), and the cur-
rent state (what the problem is like at any given moment). It can apply any one
of a set of operators to the current state, thereby altering it to create a new state
that is closer to that of the desired goal. SOAR was tested on block-world
problems. A block-world problem consists of a set of blocks that has one con-
figuration, a starting configuration, which must be rearranged so as to yield a
desired end-state configuration (see Figure 5.13).

In SOAR, knowledge stored in a long-term memory is used to select opera-
tors and guide movement through the problem space. The memory consists
entirely of production rules that specify an action that is to be taken if a set of
preconditions is met. Objects, such as blocks in the block-world problem, or
disks in the Tower of Hanoi problem, are represented by attributes and values.
These are simple descriptive characteristics that can be used to define objects
in the problem scenario exclusively.

SOAR goes through a decision cycle, where it accumulates evidence that
has to do with the problem. Once this has taken place, a decision is executed.
Examples of decisions that can be made are which problem space is to be used,
which state is to be used within a given space, and which operator is needed to
enable progression to the next state. One of the model’s most interesting
aspects is its capacity to develop preferences as it is accumulating evidence.
These preferences are for actions that ought to be taken, given their likelihood
of bringing about the goal. Based on these preferences a given operator may be
accepted, rejected, or considered as better, indifferent, or worse.

SOAR, like other computer programs, can follow a preprogrammed set of
instructions for solving a problem. But, unlike these programs, it is also capa-
ble of generating new ways of approaching the problem. SOAR creates novel
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subgoals when it comes up against an impasse—a situation in which there is
no option better than the rest. The setting of the new subgoal is based on
knowledge stored in memory. This ability allows SOAR to adapt itself to the
demands of a novel situation flexibly and dynamically.

Figure 5.14 gives an example of how SOAR would solve a simple block-
world world problem. The initial state has blocks A, B, and C arranged in a
row on a table. The goal state is a reconfiguration of the blocks such that block
A is on top of block B, and block B is on top of block C. At the initial starting
point there are three permissible operators. A can go on top of C (A → C), B
can go on top of C (B → C), or A can go on top of B (A → B). SOAR evaluates
these three options by trying them out in an evaluation space. The A → C
option produces a configuration that leads to an unacceptable solution, with B
on top of A and A on top of C. The A → B option also produces an unaccept-
able state, with C on top of A and A on top of B. SOAR then selects and imple-
ments the only remaining operator to produce a successful solution.

A final comment on the SOAR model concerns chunking, which in this
context is comparable to the process of grouping items together in memory,
discussed earlier. Chunking in this context corresponds to learning from expe-
rience. If SOAR has tested possible solutions and found a particular solution
to a problem in the past, it stores this solution in a general form in its memory.
When SOAR encounters a similar problem at a later date, it can then apply
operators it has applied previously to effect a similar solution. SOAR in effect
recognizes the problem as a combination of conditions that trigger the appro-
priate action. This grouping or chunking of the conditions into a single pre-
condition for applying an operator gives the process its name.

Evaluating the SOAR Model

The SOAR program represents an ambitious attempt to develop a cogni-
tive architecture that does more than solve problems. It was designed as a
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model for delving into the general principles that underlie learning,
memory, problem solving, and the interactions among these systems. It has
a good track record, having been applied to and having solved a variety of
problems.

What’s more, the incorporation of the chunking feature parallels the way
human experts diagnose and solve problems. Chase and Simon (1973) pre-
sented pictures of a chess board whose pieces occupied random positions and
pictures of a game in progress to two groups of participants—expert chess
players and novice chess players. There was no difference between the recall
of the novice players and that of the expert players when it came to remem-
bering the pictures of the randomly placed chess pieces, but experts were
better than novices when it came to remembering the game-in-progress pic-
tures. This suggests that the experts were chunking information; they were
organizing portions of the information into meaningful wholes. These wholes
then guided the selection of the appropriate operator to be applied to the
problem. For the expert chess players, seeing a particular configuration of
pieces apparently triggered a memory of how that situation was dealt with
in the past. Auto mechanics and physicians also chunk when they diagnose
the cause of a mechanical breakdown or biological illness from a set of
symptoms.
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A critique of the model centers on the assumption that only production rules
make up memory. Other architectures, notably ACT*, posit separate memory
types with separate structures that code for declarative and procedural knowl-
edge. The SOAR view of a single unitary type of memory simplifies the model,
but runs contrary to evidence that supports the existence of distinct memory
systems.

Overall Evaluation of the Cognitive Approach

The strengths of the cognitive approach are many. Unlike the disciplines that
preceded it, cognitive psychology is governed by a set of common assumptions.
These are that the mind represents and operates on information and that spe-
cific models of how the mind does these things can be formulated. Another
advantage of the cognitive approach is that, rather than view the mind in a
general, undifferentiated way, as some of the adherents of other approaches
did, it compartmentalizes the mind into distinct processes. This carving up of
the mind into modules makes research easier because it simplifies and delimits
the range of a phenomenon under investigation. Although not all cognitive
processes may actually be compartmentalized, this compartmentalization has
usually proven to be a useful approach.

Another advantage of the cognitive approach is, as was discussed at the end
of the previous chapter, its use of model building. Models provide a concise
way of formulating how a given mental process might operate. They are more
precise than theories and can be tested using experimental data. The imple-
mentation of a theory as a model and the subsequent modification of the model
on the basis of empirical findings is a fruitful method for uncovering more
about a cognitive process.

Of course, like any other discipline, the cognitive approach has its limita-
tions. It supports the traditional view of information processing, in which
representations are symbolic and transformations are operations that are
performed on the symbols. This needs to be reconciled with the network
view—that information is coded in a distributed way and that transforma-
tions consist of activations of nodes in a network. Model builders in cogni-
tive psychology also need to consider findings from neuroscience. Any model
maker that attempts to provide an information processing explanation of a
brain function should map the different components of the relevant model
onto the known anatomical and physiological evidence. This will help to
delineate and develop the model so that it more accurately reflects its bio-
logical implementation.
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In Depth: Search in Working Memory

You go to the grocery store to buy some food for dinner. Because you needed
only a few items, you memorized the items rather than wrote out a list. After
buying rice and broccoli, you pause to consider what else it is you have to pur-
chase. What mental process occurs when we perform this sort of task? The
process in question is called “search,” and it is one of the many operations car-
ried out in working memory. In this section we describe a classic experiment
from cognitive psychology that suggests how such a mechanism might work.

Search, in an abstract informational sense, involves looking for a target
among a set of items. Each of the items must be represented mentally, as must
the target. Then, a representation of the target must be compared against each
of the represented items in the set in the expectation that a match will be made.
But now a question arises. This search process can proceed in two ways. If it
is a serial memory search, then comparisons take place one at a time, with a
participant perhaps beginning at the beginning of the list and proceeding
through till the end. If this is the case, then search times should be long, as each
comparison takes time. If it is a parallel memory search, then the target can be
compared to all the items at once. Assuming this to be the case, search times
should be short, as only one comparison is being made.

To find out whether search was serial or parallel, Sternberg (1969) asked
participants in his study to memorize a set of items, such as a series of digits.
The size of the set varied between one and six digits—always below the 7 ±2
limit. Sternberg then presented a target digit. The participants had to decide
whether the target was a member of the memory set or not. For example, in
one trial that used a set size of four, the participants might have had to mem-
orize the digits 4, 9, 0, and 2. They were then given a target, the number 9.
Following presentation of the target they were to respond as quickly as possi-
ble, pushing one button if the target was present in the set (a positive trial) and
another if it was absent (a negative trial).

Reaction time (the time it took to push the buttons) was analyzed and plot-
ted against set size for both positive and negative trials. Sternberg made two
predictions. If the search was serial, he should obtain an increasing function
with longer search times for larger set sizes. This follows, since if each com-
parison takes a given amount of time, a greater number of comparisons will
require more time. If, on the other hand, the search was parallel, he should
obtain a flat function over set size, indicating the smaller amount of time it
takes to compare the target to all items in the set at once.

Sternberg made yet another prediction. He speculated that search, if it were
serial, could be self-terminating or exhaustive. In a self-terminating search, the
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search process stops as soon as a positive match occurs. Because the target can
be located anywhere in the set, the search times will be variable. Sometimes, if
the target matches an item at the beginning of the list, the search will end
quickly. On other occasions, when the target matches an item that is near the
end of the list, it will take longer. This effect manifests itself as a lesser slope in
the search function for positive trials, in which a target is present in the set, but
steeper slopes for negative trials, in which scanning must always continue to
the end. In an exhaustive search, comparisons are made all the way to the end
of the list, even if the target has already been located. In this situation, the
slopes for positive and negative trials should be both steep and identical.

The data showed that search was serial and exhaustive. The search function
increased with set size and had a lowered slope for positive trials (see Figure 5.15).
At first blush, this result seems counterintuitive and inefficient. Why should
you continue looking for something you’ve already found? There are several
possibilities. Exhaustive search could serve as a “double check,” a way to
ensure that the target isn’t duplicated later in the list. Or, it could be that once
search is initiated, it proceeds automatically and cannot be stopped. The latter
possibility is interesting because it implies that search is only partially under
voluntary control. The central executive in the working memory model may
issue a command to the articulatory loop to begin a search, but once this com-
mand is issued it cannot be further regulated.
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Minds On Exercise: Memory Effects

This exercise requires the making up of two lists of words. Each list will contain
20 words. Put only concrete words into the first list, words for which a visual image
and a verbal representation are possible. Put only abstract words into the second
list, words for which there is only a verbal representation. Make sure that all the
words are fairly similar with respect to the number of syllables and the frequency of
usage. Read off each list slowly to a group of participants.Then have them perform
an immediate recall task; ask them to write down as many of the words as they can
remember, in any order.When this has been done, read off the lists again and have
the participants tally up the numbers of words they recalled successfully in each con-
dition. Calculate the group’s overall correct response rate, for both lists. For which
list was the recall greater? Why? Ask the participants which strategies they used to
remember in both cases.

If you have time, you can calculate average percent correct for the group as a
function of the position of the words in a list.Was recall greater for words located
at the beginning, middle, or end of the lists? Did this pattern differ in the concrete
or abstract conditions? The primacy effect predicts that more words at the begin-
ning of a list will be remembered because they have been rehearsed more often.The
recency effect predicts greater recall for items near the end of a list because these
items have not had time to decay from working memory.Words in the middle of a
list are generally not remembered as well. One explanation is that they receive both
proactive interference, from words near the beginning, and retroactive interference,
from words near the end.

Food for Thought: Discussion Questions

1. In what ways might semantic and episodic information be organized? Do we
store and remember facts in a manner different from the way we store and
remember personal events? How might these two organizational systems differ?

2. How can you improve your memory? Compare your ideas to techniques for
memory improvement that have already been established—called mnemonics.

3. When do you use visual imagery? When do you use verbal or propositional
reasoning? Are there some tasks for which either could be used? Do you pre-
fer one mode of processing to the other? Why?

4. Name processes other than rotation that can be applied to an image. Can the
image inspection processes of scanning, zooming, and panning, and so on be con-
sidered transformations of an image, for example, a rotation? Why or why not?
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5. Here is the Missionary-Cannibal problem. Three missionaries and three
cannibals are on one side of a river and need to cross to the other side.The
only means of crossing is a boat, and the boat can hold only two people at a
time. Devise a set of moves that will transport all six people across the river,
bearing in mind the following constraint: The number of cannibals can never
exceed the number of missionaries in any location, for the obvious reason.
Remember that, for every return trip, someone will have to row the boat back
across the river. Hint: At one point in the solution, you will have to send more
people back to the original side than you have just sent over to the destination
side. Draw a diagram to help you solve this problem.Apply a means-end analy-
sis to your solution.What is the goal? What are the subgoals and operators?

6. Bill is driving home from work at the end of the day. He runs over some bro-
ken glass and gets a flat tire. Draw the problem space for this problem.The
drawing will include the solution path and the area of the space that would be
reduced through the application of a heuristic.

Go to the website:
http://rec-puzzles.org/logic.html

Try your hand at a few of the puzzles. Attempt to solve the black hat
“smullyan/black.hat” problem. How did you first try to solve it? Now, draw diagrams
that depict the structure of the problem. Do these diagrams help you to determine
a solution to the problem? Why or why not? If not, would a different diagram have
helped you? How?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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Referring to the brain: “My second favorite organ!”

—Woody Allen, 1973

The Neuroscience Perspective

Neuroscience is the study of nervous system anatomy and physiology. It is con-
cerned with both the structure of this system in humans and other animals as
well as its function. As such, neuroscience provides a body of knowledge that
serves as a foundation for understanding how cognitive operations are carried
out. It gives us a hardware or implementational level of description upon
which we can base an algorithmic and computational description. Neuroscience
is invaluable in this regard because it constrains the sorts of models of brain
function that can be formulated in the other approaches.

There has been a fairly recent trend in neuroscience toward the integration
of biology with cognition. Out of this union, a new discipline has emerged,
called cognitive neuroscience or neuropsychology. The goal of this discipline
is to explicate the structures and physiological processes that underlie specific
cognitive functions. We adopt a cognitive neuroscience perspective in this
chapter and focus on the cognitive operations that were surveyed in the two

The Neuroscience
Approach: Mind as Brain
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chapters on the cognitive approach (Chapters 4 and 5). These cognitive
operations are visual object recognition, attention, memory, and problem
solving. This neuroscience perspective builds and expands on the information
processing models for these operations that were described previously. For
neuroscientific accounts of visual imagery and language please see the relevant
sections in Chapters 5 and 9, respectively.

A fair amount of background knowledge is needed to interpret the findings
of neuroscience studies. We will therefore provide general information on
methodology, anatomy, physiology, and terminology prior to a discussion of
the specific topic areas. Our present discussion begins with the tools used by
neuroscientists, and is followed by a discussion of the geography and function
of neurons and of the overall brain. We will then address the neuroscience of
cognitive functions and models of their operation.

Methodology in Neuroscience

There are many procedures for collecting data in neuroscience. In this section
we group these procedures into three main categories. The first category of
procedures involves the investigation of brain damage. In studies of humans,
researchers, using the case study method, investigate the behavioral deficits of
patients who have suffered damage to some part of the brain as the result of
accident. In animal lesion studies this damage is deliberately induced. The sec-
ond category of procedures involves the recording of brain activity in healthy
subjects. The electrical action of individual neurons or small groups of neurons
can be measured with cellular recording techniques that use an implanted
electrode. Larger patterns of brain activity can be measured through the use of
surface electrodes that have been implanted on the scalp or through the use
of more sophisticated brain-imaging devices. The third category involves direct
stimulation of the brain itself.

Techniques for the Study of Brain Damage

It is of course unethical to damage a person’s brain deliberately and then
look at the effects. For this reason researchers examine brain damage and its
effects in people that have come about as a result of accident—what is called
the case study method. There are different types of brain damage. In a patient
who has had a stroke, a blood vessel servicing a part of the brain bursts,
depriving that part of the brain its blood supply. Direct mechanical damage to
the brain accompanies head trauma. This type of damage can be incurred in an
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automobile accident or a fall. Brain damage is also an end result of exposure
to carbon monoxide gas. Usually in these cases, localized damage occurs and
follow-up evaluations of affected persons can reveal exactly which areas were
damaged. The resulting behavioral and cognitive deficits can then be mapped
against the damaged areas. If, for example, the front part of the brain has
suffered damage and the patient has subsequently had trouble planning, we
could conclude that the front part of the brain is in command of the faculty of
planning.

A related method of study involves the deliberate destruction of brain tissue
or brain areas in animals and the examination of the resulting behavioral
deficits. A brain lesion is a wound in or injury to brain tissue. A study that uses
this method is thus referred to as a lesion study. Lesions can be generated in
several ways. Brain tissue can be drawn off by suction, destroyed by passing
a high-frequency radio current through an electrode, or frozen by pumping
coolant through an implanted probe. With this last procedure, the tissue is pre-
served and normal function returns as the affected area warms. The motivation
for using these procedures is the same as that for using the case study, and this
type of study suffers from the same flaws.

Evaluating Techniques for the Study of Brain Damage 

There is logic behind case studies and lesion studies. If brain area X is dam-
aged and a deficit is subsequently observed in behavior Y, researchers infer that
area X plays some role in the control of behavior Y. This seems straightfor-
ward enough, but is actually fraught with difficulties. Some have likened this
kind of conjecture to removing part of a car engine to see how its removal
affects the car’s function. If we removed the carburetor, the engine wouldn’t
run because the spark plugs wouldn’t receive any gasoline. However, the same
would be true if we removed the gas tank. The point is that in a car many of
the systems are interdependent. Removing any of a number of different parts
can produce the same symptom. Areas of the brain are also interdependent.
The effects of damage to one area could have a variety of functional interpre-
tations. That area could be entirely responsible for a cognitive ability or part
of a collection of areas that are in charge of that ability. Alternatively, the area
could be a center where information is processed or simply a region through
which pathways that connect one center to another pass.

A second criticism specifically of lesion studies is ethical instead of proce-
dural. It has to do with whether animals should be used at all for research. This
criticism is at the center of an ongoing and heated debate. From a utilitarian
perspective, the debate consists of a weighing of the costs versus the benefits of
using animals for research. On the one hand, there is the pain and suffering
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that the animals experience. On the other, there are the benefits to be gleaned
from the research. A partial solution to this quandary is to minimize these costs
through the use of more humane treatment of laboratory animals, keeping
them in good health, and maintaining them in comfortable, sanitary condi-
tions. Other solutions include the proper administration of anesthetics and
analgesics to the animals before and during surgery and preventing infections
through the use of antibiotics and proper surgical techniques (Carlson, 2001).
In the United States and other countries there are currently oversight agencies
in place that have developed regulations governing animal care. However, ani-
mal rights activists argue that enforcement of these regulations by the agencies
has been less than rigorous. These activists advocate a greater number of sur-
prise inspections and the setting of stricter regulations that have to do with
caging, feeding, and exercise.

On the other side of the balance: How is it possible to justify the use of
animals for research? The scientific community points out the store of knowl-
edge and the wealth of benefits that have come from the use of animal subjects.
These include the discovery of insulin, the prevention of polio and tetanus, and
treatments for anthrax and small pox. Many of the medical discoveries that
have sprung from studies that used animals have additionally benefited ani-
mals themselves—the discovery of treatments for feline leukemia being a prime
example. Animal rights activists counter that alternative, noninvasive testing
procedures, such as cell culture and computer simulations, should be used
instead.

Brain Recording Techniques

In single-cell recording, a very fine microelectrode is inserted into either
a single neuron or the extracellular fluid adjacent to it. Changes in that cell’s
electrical conductivity or its rate of firing can then be measured. In multiple-
unit recording, a larger electrode is used to measure the collective electrical
activity of a group of neurons. In a classic study Hubel and Wiesel (1962)
recorded activity in single cells of a cat’s visual cortex. They discovered that
specific cells responded to lines of a specific orientation in the cat’s visual field,
implying that line orientation constitutes a basic visual feature of pattern
recognition. Although cell recording can give us very detailed information
about what one neuron or a relatively small number of neurons is doing, it fails
to yield the “big picture.” That is, it does not inform us about more global
brain activity.

If one wants to investigate what the brain as a whole is up to, he or she can
choose from a variety of other tools. The electroencephalogram (EEG) is a
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recording of the brain’s gross electrical action. The procedure uses large
electrodes that are taped to the scalp. The output of an EEG is in the form of
wave patterns. This method has been used extensively in the measurement of
brain activity during sleep. From research that has used this method we have
learned that the brain passes through several distinct sleep stages, each having
its own pattern of wave activity.

The EEG can also be used to measure a subject’s brain activity that is in
response to his or her experience of a particular event. The resulting waves
that are recorded are called event-related potentials (ERPs). For instance, a
researcher could sound a tone to a participant in a study and then record the
subsequently occurring brain activity. This has been used in many studies to
yield insights into the brain mechanisms that underlie perception and atten-
tion. A problem with the EEG is that it is a very crude measurement. What
researchers usually want to know is which specific brain areas become active
during a specific type of brain functioning, and in what order. This informa-
tion is important because it tells us something about how information is
processed.

Modern technology has produced new brain imaging techniques that allow
us to “peer inside” the head with greater accuracy than ever before. These tech-
niques allow imagery of both brain structure and function. They allow us to
see not only the static, three-dimensional organization of brain areas, but also
the dynamic activities of these areas as they unfold in time. Although there are
many brain mapping procedures that have clinical and medical purposes, we
will describe here only those three that have the greatest relevance to cognitive
science research.

Computerized Axial Tomography (CAT). This technique was first developed
in the 1970s. With this technique, an X-ray source rotates around the brain.
Low-level X-ray beams pass through the brain and are picked up by a detector
positioned on the opposite side. The information from all of the individual
X-ray scans is collected and processed by a computer, and two- and three-
dimensional views of the underlying tissues are then constructed. A CAT scan
typically yields an image of a single cross section of the brain. A downside of
this procedure is that it does not have fine temporal resolution. It can only pro-
duce images at the rate of one per second, and so may miss very fleeting men-
tal events. New techniques have partly overcome this resolution problem. CAT
procedures are best used for structural-level analysis.

Positron Emission Tomography (PET). This imaging procedure (developed
in the 1980s) was developed later than computerized axial tomography.
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PET scans measure blood flow in the brain while a participant is carrying
out a cognitive task. This is accomplished through the use of radioactive
isotopes (tracers) attached to carrier molecules, such as glucose or oxygen
molecules. The molecules are injected into the participant’s bloodstream,
whereupon they make their way to the brain. Brain areas that are more
active during the carrying out of the task will show greater regional cerebral
blood flow and, correspondingly, a greater concentration of the tracer mol-
ecules bearing the isotopes. The activity in these areas is measured using a
detection device that counts the positron particles that are emitted by the
isotopes. PET scans are especially useful for mapping those parts of the brain
that are involved in specific cognitive operations, such as visual imagery,
language, and memory.

PET scans have a leg up on CAT scans in that they are better at depicting
brain function. They have a fairly good spatial resolution, being able to mon-
itor locational changes in brain activity to within just a few millimeters. PET
scans lack some of the temporal resolution of other brain mapping techniques,
however. They cannot show rapid changes in brain activity—those that occur
over time periods that are on the order of milliseconds. The radioactive iso-
topes that are used are expensive and their radioactivity is short-lived. There is
also a small risk associated with the introduction of radioactive compounds
into the body.

Magnetic Resonance Imaging (MRI). In most MRI evaluations, a patient is
placed inside a tube that contains a powerful magnet. Protons, which are
subatomic particles present everywhere in the body, align themselves in the
magnetic field in the same way iron filings organize themselves around a
small magnet. A radio-wave pulse is then applied to the brain or other part
of the body undergoing the scan. The radio signals are bounced back and
picked up by a detector unit. The reflected signals exhibit different charac-
teristics that are determined by the nature of the atoms that have been pene-
trated by the signals and their surrounding chemical environment and are
converted to images. The cross-sectional images show the structure of inter-
nal soft tissue.

A recently developed variant of this procedure is called functional magnetic
resonance imaging, or fMRI for short, and is used to reveal changes in brain
activity over time. Like PET scans, fMRI scans detect alterations in local
blood flow and oxygen level. Brain areas that show increases in these mea-
sures are those that have been activated during specific cognitive operations.
So, fMRI scans, like PET scans, are used to map out these active brain areas.
fMRI scans provide better spatial resolution than CAT scans without any of
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the risks associated with the injection of radioactive isotopes. They are the
current method of choice for investigation of brain function. Figure 6.1
depicts an MRI image showing a horizontal scan of the brain.

The Electrical Stimulation Technique

So far, we have examined procedures that have to do with brain damage or
the recording of brain activity. There is a third procedure that is neither as
intrusive nor as passive. This method involves the actual activation of a spe-
cific brain area via electrical stimulation. An electrical current is passed
through a bipolar electrode, which causes the neurons of a localized area of
brain tissue to become active. The resulting behavioral effects are usually the
opposite of those observed in the brain lesion technique. Lesions prevent neu-
rons from firing, resulting in negative symptoms—the absence of some behav-
ior that is believed to be governed by the affected region. Stimulation, on the
other hand, encourages neuronal firing, resulting in positive symptoms—the
facilitation of the behavior governed by the area. A difficulty with this proce-
dure is that stimulation might induce supra-normal activity, or an over-activation
of the region and the areas associated with it. This would produce behaviors
not associated with normal functioning.
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The Small Picture: Neuron Anatomy and Physiology

Neurons are the microscopic basis of the brain. They are the individual func-
tional units that perform computations. The purpose of a neuron is to conduct a
message in the form of an electrical impulse. A neuron can be thought of as a link
in a complex chain because it receives messages from other neurons and then
“makes a decision” whether to send a message of its own. Figure 6.2 depicts the
major structures of a typical neuron. Messages are received by the feathery pro-
jections that are known as dendrites. Dendrites form an extensive branching
“tree,” which connects the neuron to many other neurons. Any incoming mes-
sages picked up by the dendrites are then passed along the cell body.

A process whereby the neuron sums up all the inputs it receives from other
neurons determines whether or not it will fire. The cell fires if the sum of these
inputs exceeds the cell’s threshold of excitation. This process represents a suf-
ficient change in the neuron’s resting electrical state. If the “decision” to fire
is made, an electrical signal called an action potential is initiated. The action
potential then propagates down the axon, a long tubular structure that projects
outward from the cell body. The axon, which can extend for some distance,
ends in a terminal button.

The terminal button does not have direct physical contact with the next cell.
Instead, there is a gap between the two cells that is known as the synaptic cleft
(see Figure 6.3). How, then, is a message passed from one cell to the next? The
answer lies in molecules known as neurotransmitters. The job of these neuro-
transmitters is to complete the transmission of the signal across the synapse.
When the action potential arrives at the terminal button, it triggers the release
of neurotransmitter molecules into the synapse. The transmitters diffuse across
the synaptic cleft and attach to receptor molecules located on the dendritic sur-
face of the next cell. A neurotransmitter molecule fits into a cavity in the recep-
tor molecule and activates it, in much the same way that a key fits into and
opens up a lock. These activated receptors then contribute to the formation of
a new signal in the dendrite of the second cell.

The Big Picture: Brain Anatomy

We now step back a bit and look at the brain from a broader perspective. The
brain is a complex structure, with many areas and parts that are associated
with particular functions. Rather than catalog all of these, we will describe
only the ones relevant to important cognitive processes. There are a number of
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good texts on this topic that are more comprehensive and we again refer those
interested in finding out more to these references.

Directions in the Nervous System

Our discussion of brain anatomy must begin with a discussion of the terms
used to imply direction in the nervous system. Anatomists use a special set of
terms when referring to these directions. With respect to the human brain, dor-
sal means toward the top and ventral means toward the bottom. Anterior is
used to signify regions that are toward the front of the brain and posterior,
those that are toward the back. Regions that are located toward the middle of
the brain are medial, whereas those near the outside are lateral. Figure 6.4
illustrates the application of some of these terms to a view of the cortex.
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In addition to the terms that signify these directions, there are also terms
that signify imaginary planes that “section” the brain. These planes allow us
to consider or to view a “slice” through the brain. There are three main types
of planes. A sagittal plane “cuts” vertically through the brain, separating it into
left and right halves. A horizontal plane cuts horizontally, dividing the brain
into dorsal and ventral portions. A coronal plane also cuts vertically through
the brain, but divides it into an anterior and posterior section. These planes are
used in the interpretation of PET and fMRI scans.

The Cortex

The cortex is the part of the brain to have been selected for by evolutionary
forces most recently and is responsible for a number of higher-order cognitive
activities. The cortex is naturally divided into two halves or cerebral hemi-
spheres. Each hemisphere is associated with a unique processing style (Sperry,
1985). The left hemisphere is the seat of more analytic, serial, and logical
reasoning. The right hemisphere is the seat of more synthetic, parallel, and
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relational thought processes. Language function in most persons is localized to
the left hemisphere, whereas spatial ability is usually concentrated in the right
hemisphere. Information is transferred back and forth between the hemi-
spheres via connecting fibers that are known, collectively, as the corpus callo-
sum. The longitudinal fissure separates the two hemispheres.

A fissure is a large cleft or separation between two areas of brain tissue,
whereas a sulcus refers to a smaller such separation. A sulcus typically sepa-
rates neighboring ridges or folds of tissue. A single ridge of this kind is known
as a gyrus. At a smaller scale, brain tissue is made up of nuclei (singular:
nucleus), which are collections of cell bodies and tracts. The tracts are collec-
tions of nerve cell axons.

Figure 6.4 is a view of the cortical regions of the left hemisphere. The first
thing you may notice is that the cortex has several large regions, called lobes.
The frontal lobe is located anteriorly and is bounded by the central sulcus and
the lateral fissure. It contributes to problem solving and language production.
The temporal lobe lies ventral to the lateral fissure. The temporal lobe medi-
ates auditory processing, pattern recognition, and language comprehension.
Just posterior to the central sulcus is the parietal lobe. It governs aspects of
attention and spatial processing. The parietal lobe also plays a role in soma-
tosensory processing and in awareness of one’s own body. Finally, there is the
occipital lobe, where visual information begins to undergo more extensive pro-
cessing. Two other cortical regions should be noted. Anterior to the central fis-
sure is the precentral gyrus. It is the location of the primary motor cortex. It is,
in effect, a spatial representation or map of the body’s parts. Electrical stimu-
lation of the primary motor cortex at a specific point provokes muscular con-
traction at the site of the corresponding body part. The function of the primary
motor cortex is to initiate behavior via the activation of different muscle
groups. Just posterior to the primary motor cortex, on the postcentral sulcus,
is the primary somatosensory cortex. It is also, in effect, a topological body
map. Electrical stimulation of any portion of the primary somatosensory cor-
tex triggers the perception of a sensation coming from the corresponding part
of the body. The primary somatosensory cortex processes sensory information
arriving from the body surface.

The Split Brain

An important feature of the cortex is that information received from the
right or left halves of the body is mapped onto the opposite, or contralateral,
side of the brain. This means that a stimulus presented in the left visual
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field—basically everything to the left of your nose—is projected onto the right
hemisphere, whereas a stimulus presented in the right visual field is projected
onto the left hemisphere. Information presented to one side of the body is thus
not processed on the same (or ipsilateral) side of the brain. This contralateral
organization is the result of the crossing of fibers originating from sensory neu-
rons that are located on one side of the body over to brain areas of the other side.
The same holds true for motor control: the left hemisphere sends commands to
the right side of the body while the right hemisphere controls the left side.

Experiments with split-brain patients, in whom the corpus callosum has
been surgically severed to prevent the spread of epileptic seizures, demonstrate
just how specialized the two brain hemispheres are. In these studies, a patient
is presented with the name of an object: it is presented to the left or right visual
field and so projects to the right or left hemisphere, respectively. The patient
can identify the word either by reading it or grasping the object the word rep-
resents from among a set of objects that are hidden from view. The utterance
of the word can only be accomplished if the information that has been pre-
sented to the patient reaches the left hemisphere, as the left hemisphere is spe-
cialized for language. The patient’s grabbing hold of the correct object with
either hand is a form of identification that must be initiated by the contralat-
eral hemisphere. Either hemisphere with information that has to do with the
object can lie behind correct identification through grasping because this course
of action relies on tactile information alone. 

Imagine that the word “spoon” is presented to a split-brain patient in his
or her left visual field. The information projects to the right hemisphere. The
patient, in all likelihood, cannot read the word because, in most persons, lan-
guage ability is lateralized to the left hemisphere. He or she also cannot identify
the object with his or her right hand because such an action would be controlled
by the left hemisphere, which has no knowledge of the spoon. The participant
can however reach out and select a spoon with his or her left hand. Imagine
another scenario. The word “spoon” is flashed in the right visual field and so
projects to the left hemisphere. The participant can at this point say that it is a
spoon, as well as grab a spoon with his or her right hand. Correspondingly, this
patient would not be able to identify the spoon with the left hand.

The Neuroscience of Visual Object Recognition

You may recall the different models of pattern recognition that were discussed
in Chapter 4 (The Cognitive Approach I). These were all ways of describing
how we visually recognize objects. In this section, we examine several clinical
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disorders to see what they can tell us about the neurological basis of these
recognition mechanisms. But first we must introduce a basic principle of infor-
mation processing in the visual system—the partitioning of visual input into
separate streams.

The visual system, as we mentioned earlier, breaks objects down into their
parts or features, with different areas of the brain handling them. Research has
revealed two distinct anatomical pathways for the processing of visual infor-
mation (Ungerleider & Mishkin, 1982). Visual inputs undergo preliminary
processing in the primary visual cortex, located in the occipital lobes, at the
back of the head. Following this, the information is divided and streams to two
geographically diverse parts of the brain. One stream, called the dorsal visual
pathway, travels upward to the parietal lobe where information about motion
and location is extracted. It is sometimes called the “where” pathway because
of its representation of the spatial positions of objects. A second stream, the
ventral visual pathway, carries data about color and form and travels down-
ward to the temporal lobe. It is referred to as the “what” pathway. Figure 6.5
shows the location of both.

Visual Agnosias

Oliver Sacks is a neurologist who is also a gifted writer. In The Man Who
Mistook His Wife for a Hat he recounts the case histories of several patients
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with disorders so bizarre that they border on the fantastical (Sacks, 1985).
Take, for example, the case of patient P., who is a music teacher. P.’s gaze is
unusual, his eyes dart around as they take in Sacks’s face, fixating on one fea-
ture and then another. P. is unable to recognize a rose and describes it as “a
convoluted red form with a linear green attachment.” During one interview
with Sacks, P. took hold of his wife’s head as he apparently tried to lift it and
put it on his own head. Sacks writes: “He had . . . mistaken his wife for a hat!”
Although it may seem highly improbable, such patients really do exist. They
have a pattern recognition disorder that is called visual agnosia. What is wrong
with these patients’ brains? How can they make such errors? Let’s take a look.

A visual agnosia is an inability to recognize a visual object (Farah, 1990).
Visual agnosias are perceptual in nature and cannot be attributed to problems that
have to do with memory. They are modality-specific. In one case study, a woman
who was not able to recognize a picture of a hammer was able to recognize an
actual hammer through the use of another sense. She was able to pull a hammer
out of a bag that was filled with objects. Furthermore, it seems that most other
visual system processing abilities in patients with visual agnosias remain intact.
These patients do not have difficulty in detecting motion, interpreting location
information, or in recognizing other types of objects. Agnosias are associated with
damage to the brain regions that process visual object information.

There are two broad categories of visual agnosia. Persons with apperceptive
agnosia cannot assemble the parts or features of an object into a meaningful
whole. Persons with associative agnosia perceive this whole, but have difficulty
in assigning a name or label to it. The apperceptive form of the disorder seems
to involve a disruption of the formation of an object representation and is
therefore more perceptual, or “lower level,” in nature. The associative form
involves a disruption of the ability to categorize or identify objects, and can be
considered more cognitive, or “higher level,” in nature.

Apperceptive Agnosia

In patients suffering from apperceptive agnosia, most of their basic visual
functioning is intact. This includes the capacity to see details, discriminate
between lights of different brightness, and perceive color. They have great
difficulty, however, in naming, matching, copying, or telling the difference
between simple visual forms. In one test, patients were asked to indicate which
of four drawings of common objects matched a single target drawing. The
apperceptive agnosic patient Mr. S was unable to do this. He matched a circle
to a triangle and a paperclip to a key. Mr. S was also incapable of copying
letters of the alphabet. While attempting to copy a capital letter “X,” he drew
two separated oblique lines.
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So how can we explain this disorder? The current explanation is that
apperceptive agnosic patients have suffered a disruption of their perceptual
grouping mechanism. In the psychological approach chapter we described that
grouping is the process of assembling basic perceptual features. These agnosics
lack the ability to integrate the various features of an object, although they can
perceive the individual features accurately. For example, an apperceptive agnosic
patient might be able to recognize that a picture of a car has wheels, windows,
and doors, but he or she could not combine these parts into a complete percept
of a car. These individuals have sustained general damage to the occipital lobes
and nearby areas. In these individuals, this kind of damage interferes with the
combination or assembly of features into a unified object representation.

Another disorder that may be considered a type of apperceptive agnosia
involves difficulty in recognizing objects when they are viewed from unusual
angles or are lit unevenly. This disorder sometimes goes by the name of per-
ceptual categorization deficit. It often goes unnoticed, as patients who have the
disorder usually have no problems in performing other visual tasks. The exis-
tence of the disorder can be revealed under certain testing conditions, however.
Affected persons are for instance not able to say that the object represented in
a picture of an upright ladder is the same object as that represented in a pic-
ture of a ladder as viewed from below. Notice that this deficit constitutes a fail-
ure of object constancy, since it is an inability to recognize an object after it has
undergone a transformation, such as a change in perspective (see Figure 6.6).
These patients have sustained damage to the right hemisphere, especially the
right parietal lobe.

Associative Agnosia

Associative agnosias have three diagnostic criteria. First, affected persons
have difficulties in recognizing objects visually. Second, these patients can rec-
ognize objects using sensory modalities other than vision, for example, touch
or sound. Third, they do have the ability to perceive objects holistically, at least
in the operational sense of their being able to copy or match drawings of
objects. It is with respect to this third criterion that associative agnosics differ
from apperceptive agnosics, who cannot perform these tasks.

Individuals with this disorder demonstrate a behavioral anomaly. They can
copy a drawing accurately, albeit quite slowly, but cannot name what it is they
just copied. One patient, L. H., copied line drawings of a teabag, a diamond
ring, and a pen rather precisely, but could not supply the correct verbal label
for any of the items (Levine & Calvanio, 1989). This implies that associative
agnosics are able to perceive entire objects correctly. Their difficulty lies in
coming up with a name for what they see.
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Figure 6.6 Patients with visual agnosia can have difficulty in recognizing an object when
it is viewed from an unusual angle (foreshortened view) or from a
perspective with few features visible (minimal feature view).
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Several theoretical explanations of this disorder have been proposed (Farah,
1990). Early explanations posited a disconnection between language areas that
contain linguistic representations and visual areas. Under these theories the two
areas have remained intact; it is the connections between them that are dam-
aged, which would preclude the matching of visual inputs to verbal labels.
Humphreys and Riddoch (1987) later elaborated upon this idea. They believed
that the deficit was owing to damage to a system that contains stored visual
object representations, which would prevent the matching of one to the other.
More recent explanations use neural network pattern recognition architectures
(Hinton, 1981). Damage to the connections that enable the formation of object
representations is then used to account for the observed anomalous behaviors.

Face Perception

Prosopagnosia is an inability to recognize faces, despite the capacity to rec-
ognize other types of visual stimuli and the presence of generally intact intel-
lectual functioning. Prosopagnosia is considered a type of associative agnosia
because, in persons who have the disorder, the ability to perceive faces is
mostly intact. The difficulty again lies in recognition: in one’s being able to
identify the faces. Individuals with this disorder are sometimes unable to rec-
ognize close friends, family members, and, in some cases, even the reflection of
their own face in the mirror (Burton et al., 1991; Parkin, 1996)! The faculty of
discrimination is also impaired. Prosopagnosics have problems in telling faces
apart.

Research with monkeys has uncovered the existence of cells that respond
selectively to faces. The area that has been identified is in the inferotemporal
cortex (IT), part of the ventral pathway that is responsible for the recognition
of forms. Bruce et al. (1981) found that some IT neurons fired most rapidly
when the animal was presented with the stimulus of a complete face, either that
of a monkey or a human being. The neurons fired less rapidly when the mon-
keys were presented with images of incomplete faces—those that had one fea-
ture, such as the eyes, removed. A caricature of a face produced even slower
responding. Wachsmuth, Oram, and Perret (1994) also measured neural firing
in area IT in monkeys. They discovered that there were cells that became active
when the animal was shown a picture of a face or a face and a body. Response
dropped significantly when the stimulus consisted of a picture of a body only
(with the face covered up).

It is worth digressing for a moment to discuss the idea of neural coding. The
research described in the preceding paragraph makes it seem possible that we
have individual neurons that respond to individual faces—that there are single
or multiple cells that fire only when the stimulus consists of a particular face,
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such as that of your grandmother. This type of representation is known as
specificity coding. In specificity coding, a single cell fires only in response to the
presence of a particular face, say, your grandmother’s, but not in response to
any other face. Another cell would fire only in response to your grandfather’s
face, but not to your grandmother’s or anybody else’s. Although specificity
coding of this sort is possible, it is unlikely for two reasons (Goldstein, 2002).
First, it is now known that cells that respond to one face often respond to
others as well. Second, a tremendous number of cells would be required for the
coding of all the faces we know, and of all possible views and expressions of
these faces.

A more likely explanation is distributed coding, in which a specific face is
coded for by a specific pattern of activation among a group of cells. In this
scheme your grandmother’s face might cause cell A to fire rapidly, cell B to fire
slowly, and cell C to fire at a moderate rate. Your grandfather’s face might
induce a different pattern of activation among these same three cells. Distributed
coding can efficiently represent a large number of faces or facial attributes and
in a way that uses many fewer neurons.

In human beings “face cells” seem to be located in the fusiform face area
(FFA). Studies that have relied on fMRI show that visual stimuli that consist
of pictures of faces activate this area, located in the fusiform gyrus of the
human IT (Clark et al., 1996; Puce et al., 1995). This region appears to be
dedicated to the processing of face information (Kanwisher et al., 1997). That
there should be a part of the brain devoted to faces is not surprising, consid-
ering the important role they play in social interaction. Evolutionary forces
have probably selected for a face-processing mechanism, although there is an
ongoing debate over whether faces constitute a special class of perceptual
stimulus.

The Neuroscience of Attention

Attention plays a key role in many different cognitive phenomena. This may
explain why there are at least six distinct brain structures that underlie atten-
tional effects (Posner & Peterson, 1990). We can think of these structures as
being interconnected and as collectively forming an attentional neural net-
work. Figure 6.7 shows their locations. These different areas work, sometimes
in concert, to control attention.

We will describe the location and function of each of these structures in
detail in the numbered list that follows, but first let us give you a sense of
how they work together. The reticular activating system is responsible for our
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overall arousal level, that is, the extent to which we will pay attention to
anything. The thalamus, in conjunction with input to the reticular activating
system, regulates the amount of incoming sensory information that reaches the
cortex for processing. A more refined processing of the information becomes
possible once it reaches the cortex. This processing becomes the job of the pari-
etal lobe, which allocates attentional resources to certain aspects of the infor-
mation, such as an object’s spatial location or some other feature of the object.
Ultimately, the cingulate cortex initiates a response on the basis of what is
attended.

The structures are:

1. The reticular activating system (RAS), located in the midbrain, consists
of a network of about 100 nuclei. These nuclei have projections to
diverse areas of the cortex. The function of this system is very basic: it
controls the brain’s overall arousal and alertness levels. Activation of the
RAS is linked to the ability to sustain attention over time. Bilateral
lesions to the RAS result in a comatose state in which patients are unre-
sponsive to most stimuli.

2. The superior colliculus is located in the midbrain, dorsal to the hind-
brain. Its function seems to be the shifting of one’s visual attention from
one object or spot in one’s visual field to another. Monkeys in which
superior colliculus lesions have been induced are unable to shift their
gaze to a novel stimulus that has turned up suddenly in the peripheral
visual field (Schiller, Sandel & Maunsell, 1987). This type of deficit has
also been observed in humans in whom there has been a degeneration of
the colliculus (Rafal et al., 1988).

3. The thalamus is dorsal and anterior to the superior colliculus. It
receives inputs from the RAS and forwards them to the cortex. It
thus is a part of the general RAS arousal circuit. The thalamus also
serves as a relay center; it forwards incoming messages that correspond
to the different sensory modalities to parts of the cortex specialized for
processing them. It is believed that a particular nucleus within the thal-
amus is responsible for regulating those sensory messages. It serves as a
filter or gatekeeper, as it determines how much of this information is
allowed to continue to the cortex for further processing. A study that
used PET observed a greater amount of thalamic activity in instances
in which a participant was asked to single out a target item from a
collection of items, as compared to when the participant was asked to
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identify a target item that had been presented by itself (LaBerge &
Bochsbaum, 1990).

4. The parietal lobe seems to service a broad variety of visual attention-
related tasks. In monkeys, cells in the intraparietal sulcus of the parietal
lobe are active when a particular spatial location is attended (Colby,
Duhamel & Goldberg, 1996). In human beings the intraparietal sulcus is
active in processing situations that entail the conflation of visual stimu-
lus features such as color and shape, which suggests that it is responsi-
ble for the binding together of features in visual search (Wojciulik &
Kanwisher, 1999). The parietal lobe is also the site where attentional
resources are allocated to different tasks (Coull & Nobre, 1998; Fink
et al., 1997). Think back to Kahneman’s capacity model of attention
from Chapter 4. You may remember that there was a component of that
model called the allocation policy. Its job is to distribute attentional
resources among a range of possible activities. The parietal lobe appears
to be the neural equivalent of that component.

5. The cingulate cortex is believed to be the site where a response is selected,
especially in instances in which that response entails the inhibition of or
the ignoring of an alternative response. An example of the selection of a
response in the presence of competing inputs is the Stroop effect (Besner
& Stolz, 1999). As an illustration of this well-known phenomenon: par-
ticipants are asked to look at a word that has been printed in color, and
to identify the color or to read the word. The two attributes can be con-
gruent, as when the word “red” has been printed in the color red, or
incongruent, as when the word “red” has been printed in the color blue.
In the congruent condition, observers react quickly because the two
attributes prompt similar responses. In the incongruent condition,
observers’ reactions are slowed, because one of the attributes elicits a
response that must be ignored. Milham et al. (2001) observed an activa-
tion of a portion of the cingulate cortex in participants who were required
to perform tasks in the incongruent condition.

6. We have already introduced the frontal lobes. With respect to attention-
related tasks, their job, like that of the parietal lobes, is quite varied. The
frontal lobes play a role in the selection of motor responses, in goal-
directed action, and in adherence to a task, among other things. The
frontal lobes feature prominently in executive function and problem
solving situations, and so we reserve the greater part of our discussion of
the frontal lobes for later.
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Models of Attention

Baniche (2004) outlines several major categories of attention models. We
describe two of them here. In component process models, distinct brain areas
each have a unique and non-redundant function. In distributed network mod-
els, the areas can be characterized as having some operational overlap.

A Component Process Model

Posner, Inhoff, Friedrich, and Cohen (1987) propose that each of the mul-
tiple brain areas responsible for the control of attention performs a distinct
operation. Their model specifically describes the changes that occur in visual
selective attention, where attention is shifted from one spatial location to
another. They posit that cells of the parietal lobe are used to disengage atten-
tion or to remove it from a specific location. The superior colliculus then
moves attention to a new location. Finally, the thalamus engages the attention
and focuses it on the new location.

The data that support this model come from an experimental paradigm in
which participants are asked to focus on a central cross and are then cued to
respond to a target, such as an asterisk, that can appear to either side of the
cross (Posner, 1980). The target appears in one of two boxes, to the left or
right of the cross. There are two types of trials. In “valid” trials, the box that
will contain the target lights up. In “invalid” trials, the box that will not con-
tain the target lights up. In conditions in which the majority of the trials are
valid, participants are faster to respond during valid trials, because the cue is a
reliable indicator of where the target will appear.

In a variation of the Posner visual selective attention paradigm, patients
with damage to either the right or left parietal lobe had no difficulty respond-
ing when the cue and target appeared on the side contralateral to the damage.
In these cases the cue was valid and the damaged parietal lobe, which processed
information coming from the opposite visual field, did not have to disengage
attention. But during invalid trials in which the cue appeared on the side ipsi-
lateral to the lesion and the target appeared on the other side, response time
was slowed. In these cases the parietal lobe of the damaged hemisphere did
have to disengage attention (Posner, Walker, Friedrich & Rafal, 1984).

Patients with collicular damage show delayed responses in valid trials. This
suggests they are slower to shift attention from the fixation cross to the cued
target location, no matter which side of the cross it is on (Rafal et al., 1988).
Individuals that have sustained damage to the thalamus exhibit yet another
result. They are slower to respond whenever the target appears on the side
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contralateral to the side of the thalamus that is damaged, whether the trial is
valid or invalid. This implies that they cannot engage attention upon the target.

Distributed Network Models

Mesulam (1981) proposes an alternative model for the neural machinery
that controls attention. In this model, the separate neural structures are not
specialized and functionally independent, as they are in the component process
model. Instead, the functions of the different areas overlap to some degree.
Each brain region performs a major operation that is attention-related but can
perform other attention-related functions as well. This redundancy in the net-
work implies that any given area can suffer damage while the system as a
whole will maintain some of the functionality subsumed by the damaged
region.

Mesulam’s (1981) model explains how attention is directed to extrapersonal
space, that is, to areas outside the body, and is derived in part from the pat-
terns of deficits that are observed in connection with specific types of brain
damage, in monkeys and in humans. The model encompasses four brain areas,
each playing a primary but not exclusive functional role in the control of an
aspect of attention. First, the posterior parietal cortex provides a sensory map
or representation of the space in which attention will be directed. Second, the
cingulate gyrus in the limbic cortex plays a motivational role. It determines
what should be paid attention to and what can be ignored. Third, the frontal
cortex coordinates motor programs for attention-related actions. These actions
would include fixating on certain regions in the visual field, scanning across
the visual field, or reaching out to grasp an object. Finally, reticular structures
generate arousal and vigilance levels.

Let’s give an example that will illustrate how all these areas might work
together. Imagine that Susan is sitting at the breakfast table. She missed
dinner the night before and so is quite hungry. Her posterior parietal cortex
would contain a sensory representation of the breakfast table that included the
locations of items such as a glass of orange juice and a bowl of cereal. Her cin-
gulate cortex would direct her attention to items and/or regions of significance.
In this case she would pay more attention to the orange juice than to the table-
cloth. Her frontal cortex would supervise motor actions, such as her looking
at the glass of juice and reaching out to pick it up. Underlying all this would
be arousal levels that have been determined by her reticular system. If Susan
had a good night’s rest, her arousal and vigilance ought to be at high levels.

In some versions of distributed network models, larger brain regions process
attention differently from what is outlined above. Posner (1992) breaks up
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the system into posterior and anterior attentional networks. The first network
consists of structures located posteriorly and is concerned primarily with the
selection of information on the basis of the sensory characteristics of external
stimuli. The second network is made up of frontally located structures, pri-
marily, and selects information on the basis of abstract representations, such
as meaning. It is important to emphasize that these areas are not mutually
exclusive in the performance of their operations; there is some shared func-
tionality (Posner, Sandson, Dhawan & Shulman, 1989).

If multiple brain areas are responsible for our attention, then you might be
wondering how these areas coordinate their activity. This might be achieved
via a synchronization of nerve cell firing in each area. To learn more about
how such a synchronization might take place in perception, see the In Depth
section.

The Neuroscience of Memory

Early neuroscience research on memory asked a very basic question: Where in
the brain are memories located? Karl Lashley (1950) attempted to find out. He
was searching for the engram, a physical change in a part of the brain that is
associated with learning. His methodology was to train monkeys to perform
different tasks, for example, to open up a box that has a latch, in the expectation
that the animals would form a memory of the task. He would then introduce
lesions to parts of the brain to see if the memory of the task was destroyed in
the process. Lashley’s rationale was that if you destroy the part of the brain
that contains the engram for the task, the monkey’s memory of how to perform
it will have been lost. In one experiment, he destroyed larger and larger areas
of cortex in a graded manner. He found that the greater the amount of tissue
that had been destroyed, the greater was the amount of time needed to retrain
the monkeys to perform the task. But in no case did the animals actually for-
get how to perform the task.

Lashley concluded that memories are not laid down in any one area of the
brain, but that all parts of the brain participate in memory storage—a princi-
ple referred to as equipotentiality. This principle has some interesting implica-
tions. It suggests that multiple copies of a single memory are stored throughout
the brain and that multiple brain regions participate in memory formation. We
now know that there is some truth to this statement. The distinct cortical areas
that process information derived from a single sensory modality do contain
very different representations. It is also the case that many brain areas are
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involved in memory. These areas include the hippocampus, the entorhinal
cortex, the amygdala, the striatum, the left parietal cortex, and the prefrontal
regions (see Figure 6.8). In this section we will examine some of the more
recent work on the neuroscience of memory. Our focus, as before, is to
describe the different brain structures that underlie memory processes and to
formulate models of how they work together to create memories.

Learning and Memory

Learning has taken place when an event has provoked a nervous system
alteration that in turn provokes a change in the organism’s behavior. It is this
change in the nervous system that is a memory. From a neuroscience point of
view, a memory is essentially the formation of a neural circuit—the forging of
a pathway among neurons. The memory is then contained within the circuit.
When the circuit is reactivated at some point in time after its establishment,
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the memory that corresponds to the circuit is experienced and informs the
organism’s behavior. In this way, nervous systems preserve the past and help
organisms to adapt to their environments.

Learning requires synaptic plasticity, which refers to a capacity for change
in the structure or biochemistry of a synapse. Donald Hebb (1949) was per-
haps the first to understand this and formulated what has become known as
the Hebb rule. It states that if two connected neurons are active simultaneously,
the synapse between them will become strengthened. Take two cells, A and B.
That there has been an increase in the strength of their connection means that
when cell A is active, it is more likely to activate cell B than it had been for-
merly. Cells A and B have now become linked together in a circuit: when A
fires, B fires also.

The specific neural change that mediates this Hebbian form of learning is
called long-term potentiation (LTP). It is the enduring facilitation of synaptic
transmission that occurs following activation of a synapse by intense high-
frequency stimulation. Rapid repeated stimulation is the key to LTP. It causes
a buildup of electrical activity in the cell and induces changes, such as an
increase in the number of receptors (Tocco, Maren, Shors, Baudry & Thompson,
1992) as well as other structural changes that result in increased neurotrans-
mitter release (Edwards, 1995). These factors strengthen the synapse, increas-
ing its responsiveness to further stimulation. LTP occurs in parts of the brain
where learning and the creation of new neural circuits are important. It has
been most often studied in the cells of the hippocampal system, which we will
now discuss.

The Hippocampal System

We begin our discussion of the hippocampus with a famous case study
(Corkin, 1984). H. M. was a patient who suffered from epilepsy, a disorder in
which neurons fire uncontrollably, producing muscle spasms and seizures.
H. M. did not respond to anticonvulsant medication. To stop his seizures,
which were severe and debilitating, surgeons took drastic measures. They
removed portions of his medial temporal lobes, including the hippocampus. The
surgery was successful in the sense that it put an end to his seizures, but it left
him with a profound memory deficit. After the operation H. M. lacked the abil-
ity to learn any new information. He could have a conversation with a friend,
turn around to talk to someone else and, in just a minute or so, completely
forget that his friend was even there. The removal of the medial temporal lobe
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tissue disrupted the process by which information is transferred from working
or short-term memory to long-term memory—called consolidation.

Despite his memory deficit, many of H. M.’s other memory abilities were
unaffected. His working memory and problem solving capacity were intact. He
in fact enjoyed solving crossword puzzles—but would sometimes solve the
same puzzle several times, as he forgot that he had already completed them!
The content of his long-term memory prior to the surgery was also unaffected.
This was true for both declarative and procedural long-term memory. He
could remember the location of the house he lived in and could still perform
the skills he had acquired prior to the surgery. The case of H. M. demonstrates
that different memory functions are handled by different neural structures.
Damage to one of those structures can selectively remove a component of
memory ability. This is a theme that is repeated later in this section.

Hippocampal damage is associated with anterograde amnesia, an inability
to retain new information following some traumatic incident. H. M. suffered
from this type of amnesia, as he could not retain new information after the
surgery. This form of amnesia needs to be distinguished from retrograde amne-
sia, an inability to remember information acquired prior to the traumatic
event. Retrograde amnesia is often caused by head injury and in most cases the
loss extends only as far back as a week or so before the injury.

It is the hippocampus and associated areas that are responsible for the con-
solidation of newly acquired information. Before we can understand how the
hippocampus functions, we need to familiarize ourselves with its rather com-
plex anatomy. The hippocampus is just one of a collection of structures in the
limbic system. Figure 6.9 is a diagram of the circuits that run through the hip-
pocampal system.

With these pictures in mind, let’s take a guided tour of this amazing area.
Sensory information from the olfactory, frontal, parietal, and temporal lobes
of the cortex is first passed to the superficial layers of the entorhinal cortex.
From there, it is transmitted via the perforant path to cells in the dentate gyrus.
These cells then send signals through mossy fibers to another collection of cells
in field CA3, which in turn send projections by Schaffer collaterals to field
CA1. The axons of CA1 cells feed to the subicular complex and then return to
the deep layers of the entorhinal cortex. At this point, information is passed
back out to the cortical lobes, forming a loop.

Models of Hippocampal Function

The job of the hippocampus is essentially to take information about “cur-
rent events” that it has received from the cortex, process this information, and
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send it back out to the cortex, where it is stored in a more permanent state.
Inputs from the cortical regions contain representations of episodes or events
that the organism has just experienced. More specifically, we may think of the
hippocampus as an integrator. If the job of the cortex is to “divide and
conquer” sensory input into distinct processing streams, the job of the hip-
pocampus is to “combine and reunite” them. The hippocampus weaves the dis-
parate parts of an experience into a single unified memory. Let’s use the
example of a birthday party to illustrate this. The various parts of the cortex
have divided up your experience of the party into fragments. The visual system
maintains an image of the presents; the auditory system, the sounds of your
friend’s singing; the gustatory system, representations of the taste of the cake,
and so on. All of these representations converge as inputs to the hippocampus,
which combines them to form a whole memory of the birthday party. To get
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an idea of exactly how it does this, we need to look at computational models
of hippocampal function.

There are a number of models that have been designed to simulate the oper-
ation of the hippocampal system. These are computational models that use
artificial neural networks and that are informed by what is known of the
anatomy of the region. Marr (1971) proposed one of the earliest models. His
ideas were subsequently tested, and his revised ideas were used to create a
newer model (Willshaw & Buckingham, 1990). There are more recently
devised models as well (Alvarez & Squire, 1994; McClelland, McNaughton &
O’Reilly, 1994; O’Reilly & McClelland, 1994). We will describe the model by
Treves and Rolls (1994), because it is more tightly constrained by hippocam-
pal anatomy and physiology than the others.

In the Treves and Rolls model, a neural network in the dentate gyrus stores
patterns of entorhinal input that represent fragments of an episode. The net-
work then “teaches” these patterns to the neurons in field CA3. Different
groups of neurons in field CA3 code for different scene fragments. The field
CA3 to field CA1 projection then combines these fragments into conjunctions
that represent larger parts of the entire scene. According to the model, entire
episodes are stored in field CA1 for up to several months—forming a sort of
“medium-term” memory. Some of these episodes can then be selected for
transfer to long-term storage in the cortex. These patterns of activation are fed
back out to the cortex through the subicular complex and entorhinal cortex.
The outputs then encode the patterns into cortical neurons.

Although we have omitted many of the details, the work by Treves and
Rolls (1994) is an excellent example of model building in cognitive science. It
uses the methodology of the network approach and “marries” it to some of the
hard facts of neuroscience. A number of network models of cognitive function
tend to ignore anatomical data. They simulate cognitive operations through the
use of standard network architectures, because they are available and because
they are well understood. These standard architectures are useful. They can be
quite informative and in some cases can lead to insightful computational solu-
tions to problems. But if the goal is to discover how brains work, then a greater
effort is needed in the way of constraining the formulation of network models
to neuroanatomy.

Neural Substrates of Working Memory

In Chapter 5 (The Cognitive Approach II), we discussed the components of
working memory. These were the articulatory loop, where operations on
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verbal representations are performed; the visuo-spatial sketchpad, where visual
information is processed; and the executive control system, which coordinates
activities. Recent neuropsychological evidence confirms the existence of these
structures as functionally distinct units and has pinpointed their locations in
the brain.

Smith, Jonides, and Koeppe (1996), using PET in an experimental scenario,
have discovered the existence of anatomically separate areas for storage and
rehearsal of verbal information in working memory. They employed a design
in which participants in one condition viewed a stream of letters and were
asked to judge whether a given letter matched the one that they had viewed
two letters back in the sequence. This task requires both storage and rehearsal.
The performance of these participants was compared to that of two control
groups. Participants in the first control group were asked to search for a single
target letter. This ostensibly requires storage only. Participants in the second
control group viewed the letter stream and were asked to make only manual
responses to the presentation of a letter as they rehearsed that letter until the
next one appeared. This condition requires rehearsal only.

The PET images that were obtained under these study conditions were com-
pared to each other using a subtraction technique. In this technique, the record
of brain activity obtained in one condition is subtracted from that of another.
According to this logic, if the “two-back” condition calls on storage and
rehearsal and the “search” condition calls on storage, the subtraction of the
latter from the former should identify the brain areas that are responsible for
rehearsal. Similarly, the subtraction of the record of brain activity of the “man-
ual” group from that of the two-back group should identify those brain areas
that are involved in storage.

Using this type of analysis, the researchers found that activation of the left
hemisphere’s posterior parietal cortex corresponded to the storage of verbal
material. Three other sites also turned up. All three were in the prefrontal cor-
tex and corresponded to rehearsal for verbal materials. These sites were the
inferior frontal gyrus (called Broca’s area), another region in the premotor
cortex, and a region of the supplementary motor area. These areas are believed
to generate a code for use in explicit speech, as we discuss in the linguistics
chapter. This code can be used to represent verbal materials for rehearsal and
implicit speech as well. These two areas, the left hemisphere’s posterior pari-
etal cortex and the left hemisphere’s prefrontal cortex can be considered to
form part of the articulatory loop that is part of Baddeley’s (1986) model of
working memory.

In a separate experiment, Smith et al. (1996) investigated the neural sub-
strate of spatial working memory. Participants in this study were presented
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with letters that appeared at different positions around an imaginary circle.
They were asked to judge whether a given letter appeared in the same posi-
tion as that of a letter that had appeared three letters back in the series. The
resulting PET analysis showed activation in the posterior parietal cortex, but
this time in the right hemisphere. The researchers identified this region as the
area where spatial information in working memory is stored. They noted that
these data were in accord with that of other studies that have identified the
same area as the site of storage of spatial information (Jonides, Smith,
Koeppe, Awh, Minoshima & Mintun, 1993; Petrides, Alivisatos, Meyer &
Evans, 1993).

Evidence from animal studies suggests a location for the rehearsal or main-
tenance of a spatial code in working memory. Goldman-Rakic (1993) tested
monkeys by giving them a delayed response task. In this procedure a monkey
is shown two locations, only one of which contains a food item. There is then
a forced delay of several seconds, during which the locations are visually
obscured by a barrier. The delay forces the monkey to maintain the spatial
location of the food item in working memory. The barrier is then removed
and the monkey must choose the location that holds the food item in order to
get the item as a reward. Monkeys in which the dorsolateral prefrontal cor-
tex has been lesioned cannot perform this task—implying that this region is
the site for the maintenance of spatial information in the working memory
system.

Studies with both animal and human subjects reveal a third working mem-
ory system for objects. This system codes and stores visual object representa-
tions. Whereas spatial working memory would code for the location of a letter
in space, for example, whether it appears to the left or to the right, visual
object memory would code for a visual representation or image of the letter
itself, which would include such attributes as its shape and color. This differ-
entiation reflects the existences of the dorsal “where” path for location and
the ventral “what” path for identity. Data from Wilson, O’Scalaidhe, and
Goldman-Rakic (1993) show that, in monkeys, one brain region mediates
object shape memory and another mediates object location memory. The
principal sulcus is the area corresponding to spatial location; the inferior
convexity, shape location. Both are located in the frontal area. In humans,
distinct brain areas lateralized to either hemisphere carry out these functions.
Occipital, parietal, and frontal sites in the right hemisphere are linked to spa-
tial memory, whereas parietal and IT sites in the left hemisphere are linked
to object memory (Smith & Jonides, 1994; Smith, Jonides, Koeppe, Awh,
Schumacher & Minoshima, 1995).
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Evaluating the Neuroscience of Working Memory

Jonides and Smith (1997) make a few general conclusions concerning the
neural architecture for working memory. They speculate that there may be a
separate working memory system for each sensory modality—each having its
own storage buffer and rehearsal capacity. The visual object memory system
described above would serve vision, another system would serve audition, yet
another gustation, and so on. Verbal and spatial working memory, however,
are modality-independent. They can represent and rehearse information from
any modality.

These investigators are also careful to point out that the various memory
codes are in the service of other cognitive processes and they give several
examples (Jonides and Smith, 1997). One could, in effect, use the spatial code
to form a mental map of how to get somewhere and a visual code to mentally
compare the shapes of two objects. What is lacking, they argue, is a more
abstract conceptual code that could represent semantic items such as words.
This type of code would allow for additional cognitive tasks such as language
comprehension, problem solving, and deductive reasoning. There are hints in
the literature of the existence of a semantic code of this nature. Future research
would be needed to determine whether such a code would have its own atten-
dant working memory structures for storage and rehearsal.

The studies of the neural basis of working memory that we have surveyed
thus far have been very informative. They show us that there is in fact a large
number of distinct working memory systems that correspond to different sen-
sory modalities and various abstract characteristics. This work can help us to
reconceptualize Baddeley’s (1986) model of working memory, which originally
postulated the existence of verbal and visual components only. We could
update this model by incorporating these additional working memory systems.
You might recall that Baddeley’s model also included an executive control sys-
tem. This system is responsible for the control of various aspects of working
memory function. Executive processes are also used in reasoning and problem
solving. For this reason we will talk about reasoning and problem solving in
the section on executive function.

Neural Substrates of Long-Term Memories

We have already reviewed some aspects of long-term memory in our
discussion of learning and the hippocampal system. Remember that when
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information first comes into the brain, multiple areas of the cortex, each
corresponding to a unique sensory modality, process it. These representations,
however, are short-lived, and would fade away quickly if it were not for the
hippocampal system, whose job it is to integrate the disparate aspects of a
memory experience and to return the consolidated memory to the cortex. So
the cortex is the site where some of our long-term memories reside. But there
are multiple forms of long-term memory. Procedural memories store proce-
dural or skill knowledge and are demonstrated through action. Declarative
memories store factual or event knowledge and are demonstrated through
explanation. The two types of declarative memory are semantic memory, for
facts, and episodic memory, for events. See Chapter 5 for a more extensive
treatment of these types.

Given this variety of types of long-term memory, what can we say about
their neural bases? Are there different brain areas that mediate processing with
respect to the different types of long-term memory? The answer is yes. Research
in this area shows that they are governed by different brain regions.

Declarative memories rely on the cortex for storage and the hippocampal
system for consolidation. But semantic and episodic information are mediated
by two separate aspects of this system. This conclusion comes from an exami-
nation of case study data. Vargha-Khadem, Gadian, Watkins, Connelly, Van
Paesschen, and Mishkin (1997) reported on patients who sustained damage to
the hippocampus only early in life. There was in these patients no damage to
the limbic cortex of the medial temporal lobe. The limbic cortex consists
of the parahippocampal, entorhinal, and perirhinal cortexes. These areas, as
we discussed earlier, are considered part of the overall hippocampal system
and mediate connections between it and the overall cortex. These patients
could not recall anything that happened to them during the course of a day. If
they went to a movie or visited a friend they would have no memory of it. They
did, however, have excellent memory for facts and did relatively well in school.
This suggests that the hippocampus proper is responsible for the consolidation
of episodic memory, and that the limbic cortex mediates semantic memory.
These researchers also concluded that if both the hippocampus and the limbic
cortex were destroyed, all declarative memory ability would be lost. More
research is needed to confirm these interesting conclusions.

Learning in procedural memory corresponds to a change in the neural
systems that underlie the acquisition of a given task. It is the motor regions
that govern skill performance that contain procedural knowledge, not the
widespread sensory cortical areas that hold declarative information. Also,
procedural memory is not dependent on the hippocampus for consolidation.
The basal ganglia play a critical role in skill learning (Graybiel, Aosaki,
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Flaherty & Kimura, 1994). They are a cluster of brain areas involved in
voluntary motor responses. The basal ganglia consist of the striatum, which is
made up of the caudate nucleus and the putamen, and the globus pallidus (see
Figure 6.8). Changes to the motor cortex have also been documented as taking
place during skill learning (Grafton, Mazziotta, Presty, Friston, Frackowiak &
Phelps, 1992; Grafton, Woods & Tyszka, 1994). In one study, monkeys
trained to pick up small objects such that fine finger and hand movements were
required evidenced increased representation of those body areas in the primary
motor cortex (Nudo, Milliken, Jenkins & Merzenich 1996).

The Neuroscience of Executive Function and Problem Solving

Executive function refers to cognitive operations such as planning, the
sequencing of behavior, the flexible use of information, and goal attainment.
Many of these same operations are called upon in problem solving. As we saw
in our examination of the cognitive approach, problem solving consists of try-
ing to attain a final goal, which is the problem’s solution, via the performance
of a sequence of operations that leads to the attainment of individual subgoals.
In this section, we discuss the neural basis of such problem solving ability.

The hallmark of frontal lobe damage is a diminished capacity to perform
goal-directed behaviors. Patients who have sustained this type of brain damage
suffer from executive dysfunction, a disorder characterized by a broad array of
deficits. Some of these patients have difficulties in initiating actions or in ter-
minating them once they have been initiated. For example, the patients may be
listless, may sit around the house all day, and so on, but once they are engaged
in some action, such as brushing their teeth, they may not be able to stop. This
kind of behavioral deficit is referred to as psychological inertia. These patients
sometimes appear to be impelled to perform actions that are “suggested by”
the environment, such as picking up a pencil and writing with it as soon as they
see it. This phenomenon, in which a stimulus in the environment triggers an
automatic behavior, is called environmental dependency syndrome. Needless
to say, these individuals have difficulty in solving even simple problems.

Sequencing, which is the sequential ordering of actions, is necessary in prob-
lem solving. Any strategy that is part of problem solving includes sequencing,
because multiple steps are simply part of the problem solving process. The
Tower of London problem is a tool that researchers have used to test this
capacity (Shallice, 1982). Figure 6.10 shows several Tower of London config-
urations. One sees three sticks of different heights. Three balls of different

197The Neuroscience Approach: Mind as Brain

06-Friedenberg-4747.qxd  8/22/2005  3:41 PM  Page 197



colors have holes through them and can be placed on the sticks. The left-most
stick is the tallest and can accommodate all three balls. The middle stick is
intermediate in height and can accommodate two balls. The stick to the right
is the shortest and can hold only a single ball. The solution to any of the Tower
of London problems involves moving the balls that make up an initial starting
configuration until they conform to a final target configuration in the smallest
number of moves possible.

Patients who have sustained frontal lobe damage, especially when it is to the
left frontal lobe, have great difficulty in solving Tower of London problems.
Shallice (1982) studied 61 patients with and without localized lesions of either
frontal lobe. The patients were then given Tower of London problems. The
numbers of these problems that the patients were able to solve in one minute
were tallied. The results showed that the group with left anterior frontal lobe
damage had scores that were significantly worse than those of the other
groups. He concludes that this area is responsible for planning and sequencing
of the type that is needed in Tower of London tasks.

In a more recent study, healthy individuals were asked to solve a computer
version of the Tower of London task; regional cerebral blood flow (rCBF) in
these individuals was measured simultaneously (Morris, Ahmed, Syed & Toone,
1993). Participants who performed the computer task showed increased levels
of rCBF in the left prefrontal cortex. Those subjects who took more time to
plan their moves and computed the solutions in fewer moves also had greater
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rCBF, suggesting that activity in this brain area is responsible for planning
during problem solving.

When we examine the insights that are to be gleaned from studies of frontal
lobe damage, we see a good example of convergence between cognitive science
approaches. In this case the convergence is between neuroscience, on the one
hand, and studies of problem solving in the areas of cognition and artificial
intelligence on the other. Patients with frontal lobe damage clearly demonstrate
deficits that have to do with directing themselves toward a goal or in breaking
a problem down into subgoals. They also have difficulty in sequencing their
actions appropriately. These components of problem solving are exactly what
we said would be required in the solution of any problem, and what computer
programs such as GPS and SOAR do to solve problems. The fact that these
ideas come up independently in different disciplines shows they are fundamen-
tal to an understanding of problem solving.

Theories of Executive Function

In this section we consider two theories of executive function. The theories
are cognitive in nature, but have specific neurological implications. Both are
formulated to account for automatic versus controlled forms of attention.
Automatic attentional processes do not require conscious control. They occur
when one is experiencing familiar situations. Automatic responses are then
triggered by environmental stimuli. Driving a car is an example of an auto-
matic process. It can be carried out virtually without thinking while one exe-
cutes other actions, such as carrying on a conversation. Controlled attentional
processes, on the other hand, require conscious control. They are operational
when one responds to novel or difficult situations for which there is no prior
learned reaction. In these instances, attention must be voluntarily directed.
Problem solving calls on this type of processing.

Norman and Shallice (1980) have proposed the first model. It relies on
action schemas, structures that control automatic attentional processes. In this
model, a schema can be triggered by perceptual input or by the output of other
schemas. An example of the former would be the image of your unmade bed
in the morning. The sight of it would activate a bed-making schema. An action
schema can be thought of as an if-then production rule, where perceptual
inputs serve as the preconditions necessary to trigger a context-specific action.

In a more general sense, a schema can be thought of as a stored framework
or body of knowledge on the subject of some topic (Schank & Ableson, 1977).
This type of schema is sometimes referred to as a script. The most often-used
example is a script for eating in a restaurant. It would consist of a sequence of
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events: being seated, getting menus, ordering, waiting, eating, paying the bill,
and so on. Scripts can be used for solving problems because they specify goals
and the sequences of actions needed to achieve them. We discuss some of the
ways in which scripts are used to solve problems in the upcoming chapter on
artificial intelligence.

In the Norman and Shallice (1980) model, schemas can be activated inde-
pendently of one another. This can pose a problem, since, in everyday situa-
tions, usually just one or a small number of actions need be performed at any
given time. The model specifies two ways in which a subset of appropriate
schemas can become activated. The first is contention scheduling and is used
to govern routine, habitual performances as well as the performance of non-
routine, novel tasks. The second selection mechanism is the Supervisory
Attentional System (SAS) and is used only for non-routine actions.

In contention scheduling, each action schema is executed when the level of
activation in one of its control units reaches a certain threshold. However, each
schema has mutually inhibitory connections to others, so that the more one
schema is activated, the more it suppresses the activation of those it is con-
nected to. This prevents the simultaneous activation of multiple schemas and
ensures that the most appropriate one—the one receiving the greatest amount
of activation—is triggered. Contention scheduling ensures that you don’t do
two things at once, for example, trying to step on the accelerator and the brake
while driving.

In the solving of problems that are related to new situations, existing
schemas can fail, or there may be no learned schema that can be applied; that
is, there is no a priori solution. In these cases, the contention system needs to
be supplemented with an alternate selection process. According to the model,
this supplementation occurs as the additional activation of other schemas from
the SAS. The SAS contains general programming or planning systems that are
slower and more flexible than the fast, automatic, and unchanging schemas of
contention scheduling. These schemas are designed to be more general purpose
and applicable to a wide variety of problem types.

So one can think of the SAS as a higher-level monitoring system, one that
can apply general strategies to bear on a problem. The SAS can also suppress
or turn off inappropriate schemas that might be triggered inadvertently. The
failure to suppress these inappropriate schemas can result in “capture errors.”
Reason (1979) describes a person who, while walking across his back porch
on the way to his car, began putting on his boots and jacket for working in
the garden. Perhaps you can recall a similar situation from your own personal
experience. Momentary lapses of attention seem to correspond to reduced
activity or monitoring in the SAS.
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So where in the brain are the different components of this model located?
The left anterior frontal lobe is the probable location for the SAS. As mentioned
above, lesions in this region are associated with difficulties in solving Tower of
London problems. Damage to this region would explain the patterns of symp-
toms we see in executive dysfunction, where patients have trouble with problem
solving but little difficulty in performing well-learned tasks. This would also
explain environmental dependency syndrome. Here, the contention scheduling
system is clearly operating, as environmental stimuli automatically trigger their
learned responses. These responses are out of place, however, as they cannot be
overridden by the supervisory system. It could also be that schemas or some
aspects of schematic knowledge may be stored in the frontal lobes. This would
follow, as disruptions to the frontal areas result in the failure to apply and use
schemas and a consequent deficit in problem solving ability.

Stuss and Benson (1986) offer a second theory of executive function involv-
ing controlled and automatic attention. In their view, there is a three-tiered
hierarchy of attentional systems. The automatic system that corresponds to the
lowest level makes associations between sensory representations and other rep-
resentations and is governed by posterior brain areas. The supervisory system
that corresponds to the middle level runs executive processes and is used in
problem solving. It resides in the frontal lobe. In addition, Stuss and Benson
postulate a metacognitive system that corresponds to a third level. Metacognition
refers to any process that monitors, regulates, or controls any aspect of cogni-
tion. Metacognitive regulation includes planning, resource allocation, check-
ing, and error detection and correction (Brown, Bransford, Ferrara & Campione,
1983). The prefrontal cortex is believed to be the site of the metacognitive
system. In a problem solving situation, metacognitive processing would evalu-
ate whether a particular strategy is working and, if it decided that it was not
working, would initiate consideration of another strategy. Individuals lacking
metacognitive control would persist in their applications of inappropriate
strategies; they would get stuck on one approach to a problem and fail to con-
sider other options.

Overall Evaluation of the Neuroscience Approach

Part of neuroscience’s job is a straightforward description of the human brain
and the brains of other animal species that includes microscopic level descrip-
tions of individual neurons and larger scale descriptions of brain structures.
Although we have not mentioned it, comparative neuroscience compares these
structures across species to see how evolutionary pressures have changed
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them. In this sense, neuroscience and the evolutionary approach go very well
together.

Physical structure of course cannot be divorced from function, and neuro-
science also addresses physiology. But physiology is best described within
some organizing framework. In recent years, that framework has become cog-
nitive processes, and so we see the birth of a cognitive neuroscience that
attempts to map cognitive function onto brain structure. Just as with the cog-
nitive approach, we have seen, in the neuroscience approach, the creation of
various models. These neuroscience models differ from their counterparts,
described in the previous chapter, in that they specify the locations in the
brain where information is represented and processed. They also specify the
pathways by which information is passed from one processing center to
another. The integration of the two types of model is a fruitful procedure for
future investigations.

In Depth: Binding and Neural Synchrony

You may recall our previous discussion of the dorsal and ventral streams that
process information concerning an object’s location or motion, in the former
case, and individual object features such as shape or color, in the latter case. If
we were looking at a car going by in the street, the dorsal stream would con-
tain representations of the car’s location in space and its direction of motion.
But the form and color of the car would be coded for by neurons in the IT cor-
tex of the ventral pathway. This means that the information that represents
an object is distributed across disparate areas of the brain. How does all this
information come together to produce a unified perceptual object? This ques-
tion of how to recombine the various features of an object is called the
binding problem.

One solution has been posed by a group of German researchers (Engel et al.,
1992; Singer, 1996). These researchers suggest that an object is represented
by the joined and coordinated activity of a constellation of cells—a concept
known as neural synchrony. Distinct cell subgroups of this constellation stand
for individual features and may be separated by relatively large physical dis-
tances in the brain, but the dynamic activities of all of them represent an entire
object. The same groups of neurons that code for a particular feature can par-
ticipate in multiple constellations or cell assemblies and thus stand for the same
feature as it is presented in other objects. For example, a network of cells rep-
resenting the color red can participate in one assembly, for example, when one
is looking at a red car. The same cells would then participate in another assem-
bly, for example, when one is perceiving a tomato.

202 COGNITIVE SCIENCE

06-Friedenberg-4747.qxd  8/22/2005  3:41 PM  Page 202



A problem with the existence of a group of functionally distinct cell
populations in the brain is how they could stand out amid all the other ongo-
ing activity. Singer (1999) proposes three solutions. First, other neurons not
participating in the assembly can be inhibited. Second, the amplitude or
strength of the cells in the assembly can be increased. Third, the cells in the
assembly can synchronize their firing rates. This temporal synchrony means
that all the participating neurons would fire at the same time. It is helpful to
use an analogy here. Imagine a group of drummers in a band that has many
musicians. If all the drummers banged out different rhythms they wouldn’t
stand out much. But, if the other musicians played more softly, the drummers
played louder and, most importantly, began beating the same rhythm, we
would then hear the drums as a salient ensemble.

There are some problems with temporal synchrony (von der Malsburg,
1981; Singer et al., 1997). Not all cells coding for features fire at the same rate.
The processing speeds of these networks are also reduced. To overcome these
difficulties, it was postulated that single or partial discharge rates of neurons,
rather than their entire pattern of activity, can be synchronized (Gray, Konig,
Engel, & Singer, 1989; Singer & Gray, 1995). In this scheme only one cell out-
put or a small number of outputs that are part of a given sequence of outputs
is timed to coincide with others. Returning to our musical example, it would
be like having every fourth beat of one of the drummers coinciding with every
fourth beat of the other drummers. Alternatively, two drummers could syn-
chronize recurrent clusters of beats. This partial discharge synchrony would
allow the drummers to play at different rates yet still coordinate their activity.

Although controversial, there is evidence to support the synchrony hypoth-
esis. Engel et al. (1992) measured the electrical activity of spatially separated
cells in the primary visual cortex. These cells respond individually to lines of a
given orientation (Hubel, Wiesel & Stryker, 1978; Hubel, 1982). In this case
both cells responded to vertical lines. When each cell was stimulated individu-
ally with a vertical line, the cells showed moderately correlated activity. But
when a single prominent vertical line was used to stimulate both, they showed
a much stronger coordinated activity. They fired short-lived bursts of output
at the same time, alternating with periods of lowered activity. This implies that
these two cells firing out of synchrony represent parts of an object, but firing
synchronously are part of a larger assembly that codes for the entire object.

Minds On Exercise: Neural Functions

In this exercise, one group will work on attentional function. Another group will
work on memory function. Additional groups may be formed for visual object
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recognition and executive function—however, we have not surveyed all the areas
that are involved in these processes and they would require additional research.

Each person in a group will represent one of the major structures involved in that
function. In the case of attention, six individuals would represent the six major
regions.All persons need to be able to answer the following questions:Where in the
brain are they located? From what other brain structure(s) do they receive input?
To what other brain structure(s) do they send outputs? What is the nature of these
inputs and outputs; that is, what kind of information is it? Illustrate the information
flow throughout the entire system using a concrete example.

Food for Thought: Discussion Questions

1. Why should faces be a class of visual object so important that a part of the
brain seems devoted to perceiving them? Why is it important to be able to
recognize and distinguish between faces? Think of the survival value of face
processing for men, women, and children.

2. A picture of an apple is presented to the right visual field of a subject whose
corpus callosum has been surgically cut.Would this patient be able to explain
verbally what he or she has just seen? Could he or she identify an actual apple
with one of his or her hands? Which hand? What if the image were displayed
to the left visual field?

3. W. S., a 73-year-old man, has suffered a stroke. He can copy drawings of every-
day objects successfully, but is unable to name these objects.What type of dis-
order does he suffer? How is his disorder different from others in its class?

4. You look at your cat “Scruffy” and reach over to pet him.This causes the cat
to start purring. Where in your cortex is Scruffy’s shape and color repre-
sented? His location and movement? The tactile sensation from stroking his
fur? The motor command given to initiate the petting? The sound of the
purring? How might all this information be brought together?

5. Based on the neurological evidence that is presented in this chapter, how
many separate types of working memory do you think there are? What
processes other than storage and rehearsal are associated with each?

6. In what ways (other than those already discussed) is the brain like a musical
orchestra? In this analogy, what aspect of mind do the musicians stand for?
The conductor? The music?

Go to the following website:
http://web.psych.ualberta.ca/~iwinship/studyguide/brain_study.htm
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Run through the tutorial of the major brain structures, visible from a midsagittal
section.What is the location of the hypothalamus in relation to the other structures?
What functions does it perform? How does the hypothalamus maintain homeosta-
sis? To what other brain area is it highly connected?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“The more the mind receives, the more does it expand.”

—Seneca the Younger, 5 B.C.E.

The Network Perspective

The network approach is influenced by the principles of operation and orga-
nization of real world brains. All biological brains are made up of cells, called
neurons, that are wired up to one another in a complicated fashion. Activity in
one neuron or set of neurons in turn activates other neurons through these con-
nections. It is this activity that underlies all mental operations—whether it be
recognizing your cousin’s face, calculating the tip on a restaurant bill, or decid-
ing which law school to attend. Connectionism is a field of study in the net-
work approach. Connectionists try to understand how the mind performs these
kinds of operations via the construction of an artificial neural network (ANN),
which is a computer simulation of how populations of actual neurons perform
tasks. Semantic and propositional networks constitute another field of study
under the network approach and are discussed later in this chapter.

The use of ANNs brings up a host of interesting issues in cognitive science.
Perhaps the most interesting of these is the issue of knowledge representation.

The Network Approach:
Mind as a Web
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The dominant paradigm in cognitive science is the use of symbols to represent
information. These symbols are then represented, stored, and operated upon
by cognitive or computer processes. In the case of ANNs, information is rep-
resented not in the form of a symbol, but as a pattern of activation in the net-
work. The classical symbol representational view and the connectionist view
differ also in their functional architecture. Traditional notions in cognitive psy-
chology and machine intelligence have processing occurring in stages, whereby
information is pulled from one relatively large-scale system and fed to another.
In the network approach, by contrast, processing events occur in parallel and
are mediated by many small processing units.

In the second part of this chapter we discuss knowledge representation in a
new light. Most ANNs are capable of only limited representation—enough to
enable the carrying out of tasks such as pattern recognition and classification.
These limited representations do not adequately reflect the complexity and the
considerable interrelatedness of the human conceptual faculty. To accommo-
date this limitation a different kind of network is needed, one that is capable
of storing and using knowledge in the broadest sense. Semantic networks
therefore model how information in a permanent memory store, such as
human long-term memory, might be structured. They do this through their use
of a rich set of interconnected concept and concept property nodes to represent
information.

Principles Underlying Artificial Neural Networks

Traditional computers are serial processors. They perform one computation at
a time. The result of a particular computing unit can then serve as the input to
a second computation, whose new result serves as the starting point for yet
another computation, and so on (see Figure 7.1). The brain as well as ANNs
rely on a completely different processing strategy. Here, large numbers of com-
puting units perform their calculations in parallel. One computing unit does
not need to wait for another to finish its computation before it can begin its
work. As shown in Figure 7.1, these units that operate in parallel are also not
limited to receiving inputs from only a single unit: they can receive and process
multiple inputs and transmit multiple outputs. This type of architecture is referred
to as parallel distributed processing.

Researchers in the field of artificial intelligence and more generally in com-
puter science solve a particular problem by constructing an algorithm, or pro-
cedure for solving it. Every detail and step of the procedure is planned or
anticipated ahead of time. One conceptualizes the problem and its solution in
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terms of symbolic representations and transformations of these symbolic rep-
resentations. This is referred to as the knowledge-based approach to problem
solving, and it is used in many artificial intelligence approaches. In contrast,
researchers using ANNs are more concerned with the overall behavior of a net-
work. They leave the computational details up to the network itself and don’t
pay much attention to symbolic representations or rules. This is known as the
behavior-based approach to problem-solving.

ANNs are pretty good at solving certain kinds of problems. Among them
are problems of classification. These involve producing a learned label for a
stimulus (pattern recognition) and assigning stimuli to categories (a form of
concept formation). ANNs are also fairly adept at solving control problems,
for example, the programming of the movements of a robot arm, and problems
of constraint satisfaction, for example, the devising of airline schedules. In
these situations, the data are often “noisy,” the problem is usually ill-defined,
and the outcome may be unclear. There are, though, many scenarios in which
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the input it receives.The result of the computation is transmitted as an
output to another processing unit. Unit B cannot start its computation until
it receives its input from unit A. In the bottom panel is a parallel processing
architecture. Each processing unit can be connected to every other.
Computation in the units occurs simultaneously
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the problem is well-defined and the solution process is clearly understood. In
these scenarios, a conventional rule-based system like the ones used in artificial
intelligence is preferred.

But let’s get back to the issue of symbols. Why is it apparently O.K. for con-
nectionists to ignore them? After all, it seems impossible that any kind of prob-
lem could be solved without concepts being represented in some fashion. The
answer is that representations are inherent in ANNs, but do not exist in them
in the form of symbols. They exist in most networks as a pattern of activation
among the network’s elements. This is known as a distributed representation.
To illustrate, the idea of “banana” in a connectionist model might be repre-
sented by the simultaneous activity of the different elements or nodes A, B, and
C and the connections among them. However, having said this, some ANNs
do represent concepts via activity in single nodes. In these networks, activity in
node A alone would represent, let’s say, “apple.” This is a form of local rep-
resentation. In either case, though, we need not employ the idea of a symbol,
such as a letter, to stand for the concept. The concept is instead represented as
the activity of the nodes or node.

One advantage of neural nets is that they are capable of learning. That is,
they can adaptively change their responses over time as they are presented with
new information. However, it should be noted that ANNs are not the only
form of simulated cognition capable of learning. Learning is also evidenced in
machines that use symbolic methods. The acquisition of new information or a
new skill usually requires repetition. For example, a child learning the multi-
plication tables will repeat them over and over to herself. If she makes a mis-
take, she must correct herself and then repeat the new information. Neural
networks operate on these same principles. They learn over a series of trials to
perform a task or to come up with an answer to a question. If they produce a
wrong answer, the correct answer can be “shown” to them. This feedback is
then used to adjust the performance of the network until it produces the cor-
rect answer.

Characteristics of Artificial Neural Networks

Real neural networks exist in the brain in the form of neurons and the con-
nections between them. The artificial networks constructed by connectionists
exist only as software simulations that are run on a computer. Each neuron, or
basic computing unit in an artificial network, is represented as a node and the
connections between nodes are represented as links. A node, if it is stimulated,
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sends out a signal, represented as an activation value, which runs along the link
that connects it to another node or nodes. A node follows a set of internal rules
that “decide” if it is to fire. The simplest of these rules is: the node fires if the
input it receives exceeds a threshold value. If the input is greater than or equal
to the threshold, it fires. If the input is less than the threshold, it does not.

Links in a neural network have weights, which specify the strength of the
link. A weight can be positive, negative, or zero. The numeric value of a weight
runs between 0 and 1.0: the higher the numeric value, the heavier the weight.
The net output of a unit is its activation value multiplied by the weight of the
relevant link. So, for example, a unit with an activation value of 1 passing
along a link that has a weight of 0.5 will have a net output of 0.5. It will pos-
itively stimulate the node to which it is connected by a factor of 0.5. The
greater the value of a node’s net output in the positive direction, the more likely
it is that the nodes it is connected to will fire.

A unit with an activation value of 1 passing along a link that has a weight
of −0.5 would have a net output of −0.5, which would negatively stimulate
whatever nodes it feeds to. The greater the value of a node’s net output in the
negative direction, the less likely it is that the nodes it is connected to will fire.
Negative output thus serves the function of dampening or shutting down the
activity of other nodes. This is similar to the role of inhibition in biological
networks, whereby one neuron can “turn off” or slow down another. The out-
put of any node that is part of a link that has a zero weighting is of course zero,
meaning that there is no effect on any downstream nodes. If a node receives
two or more outputs from other nodes, it takes these outputs and, in effect,
summates them to determine whether it should fire. Figure 7.2 shows a simple
neural network with activation values, weights, and net outputs.

The amount of stimulation a given node receives is specified by a basis func-
tion. It receives the input signal, which can be in the form of an input to the
network or the output of another node. The basis function calculates a simple
summation of all the inputs the node receives. This can be described by the
following equation:

Sj =

∑n

i=0

ai wji

where wji = the weight associated with the connection between processing
unit j and processing unit i, and ai is the value of the input signal i. The results
are summed over all inputs to the given node.

The basis function next sends its input signal to an activation function.
This function maps the strength of the inputs a node receives onto the node’s
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output. Most activation functions are sigmoidal (S-shaped) and are
specified as:

f (x) =

1

(1 + e−x)

where x is the input value. Figure 7.3 shows the shape of the sigmoid activa-
tion function.

Early Conceptions of Neural Networks

Warren McCulloch and Walter Pitts were the first researchers to propose how
biological networks might function, in 1943. They made a few simple assump-
tions about how neurons might operate. They assumed that each neuron had
a binary output, that is, it could either send out a signal, corresponding to its
being “on,” or not send out a signal, corresponding to its being in an “off”
state. Whether or not a neuron would fire was determined by a threshold
value. The weights of the connections between neurons, in their model, were
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Figure 7.2 A simple neural network.Activation values are shown inside each node.
Weights are indicated on the links and net outputs at the endpoint of each
connection. Node A has an activation value of 2 and a weight of +0.6. Its
net output is thus 1.2. Node B’s activation value is 1 and its weight is −0.3,
yielding a net output of −0.3.These outputs are summated at node C so
that it has an activation value of +0.9.The activation value of node C
multiplied by its weight of 0.4 produces an output of +0.36
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additionally assumed to be at a fixed value. Networks operating under these
rules are capable of computing simple logical operations, such as OR, AND,
and NOT. A neuron programmed to compute a NOT operation will fire if it
receives activation at or above threshold. It won’t fire if it receives inhibitory
input. Digital computers of the sort that sit on our desks perform calculations
that are based on these simple logical functions. This means that a neural
network capable of performing these calculations can in theory do anything a
digital computer can.

Donald O. Hebb (1949) was the first person to propose how changes
among neurons might explain learning. According to the Hebb rule, when one
cell repeatedly activates another, the strength of the connection between the
two cells is increased. In this fashion, pathways or circuits among neurons are
formed. These circuits are believed to be the neural foundation of learning and
memory. Imagine being at a party and trying to remember someone’s name.
How would you do it? Imagine at the party you are trying to remember a
phone number you had been given. If you could not write the number down,
you would repeat it over and over—a process called rehearsal. Each repetition
would correspond to a new activation of the circuit, strengthening it further.
The circuit itself, once strong enough, would represent the telephone number.
Retrieval of the number at a later date would then be equivalent to a reactiva-
tion of the circuit.
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Hebb defined two types of cell groupings. A cell assembly is a small group of
neurons that repeatedly stimulate each other. A phase sequence is a group of con-
nected cell assemblies that fire synchronously or nearly synchronously (see Figure
7.4). If a cell assembly coded for a simple perceptual quality, such as “red” or
“round,” then these qualities could become linked so as to form a phase sequence
during learning and code for a higher order concept such as “apple.”

Beginning in the 1950s, research on neural nets focused less on logical oper-
ations and more on mimicking real biological function. An artificial nervous
system called the perceptron was introduced (Rosenblatt, 1958). Perceptrons
are neural nets designed to detect and recognize patterned information about
the world, store this information, and use it in some fashion. Perceptrons are
also characterized by their ability to learn from experience: they can modify
their connection strengths by comparing their actual output to a desired out-
put called the teacher. The ANN networks discussed in subsequent parts of this
chapter constitute different types of perceptrons.

The earliest perceptron was an artificial retina called the “Mark I”
(Rosenblatt, 1958). This network could recognize simple visual patterns, such
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as vertical and horizontal lines. It was capable, with training, of producing a
desired output for each different type of visual pattern. The first perceptrons
were quite simple. Each contained a single layer of input units or an input and
an output layer (see Figure 7.5). The limitations of these fledgling perceptrons
soon become clear. A major flaw was their inability to distinguish among cer-
tain patterns (Minsky & Papert, 1969). This was in part due to their relatively
weak computing power. A single layer or two layers and the connections
between them do not provide for much in the way of complexity and flexibil-
ity. The solution, of course, was to build more complicated networks.

Back Propagation and Convergent Dynamics

In a three-layer network, the computing units or nodes are organized into three
distinct groups. A representation of the stimulus is presented to the input layer.
These units send signals to a hidden layer, which in turn feeds activation energy
to an output layer. The output layer generates a representation of the response.
Figure 7.6 depicts a three-layer network. For a detailed description of a three-
layer network that learns through back propagation, read about NETtalk in
the In Depth section.

Here’s how a three-layer network designed to recognize letters works: The
capital letter “A” activates the nodes in the input layer. These nodes send acti-
vation energy via links to the hidden layer. The nodes in the hidden layer send
signals via their links to nodes in the output layer. The pattern of activation in
the output layer is the network’s initial response to the letter. This response is
then compared to the target response, represented by the teacher. The differ-
ence between the actual and desired outputs, the error signal, then feeds back
to the output layer. The network uses the error signal to modify the weights of
the links. Figure 7.7 shows these different steps that are part of the training of
a three-layer perceptron. The modified weights allow the network (the next
time it “sees” the letter “A”) to generate a response that is closer to the desired
one. After repeated presentations of the stimulus in the presence of feedback,
the network is able to produce the target response. It has, in effect, learned to
recognize the letter. This kind of training based on error feedback is called the
generalized delta rule or the back-propagation learning model.

Using the simplest perceptron learning rule, a constant is added to or sub-
tracted from the appropriate weights during learning:

wji = wji + C (tj − xj)ai

new old
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Input units Output units

Figure 7.5 An example of an early perceptron with two layers. Notice each input unit
maps onto every output unit
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Figure 7.6 A three-layered neural network with input, hidden, and output layers
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The term C is a constant, usually set at below 1. It is equivalent to the
“learning rate.” The greater the value of C, the greater the size of the adjust-
ment made to the connection weight on any given round of computation. The
term t is the target value for output unit j following presentation of the pattern,
and x is the actual value of the output of output unit j following presentation
of the pattern. There must be a difference between these two terms for any
error correction to occur. This formula also requires that the input unit be
active before a weight is changed. The term a represents the activity of the
input unit and is either 1 or 0. If there is no activity, a’s value is 0 and no
change is made to the weight.
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One rough way of considering ANNs is according to their convergent
dynamics (Braspenning, 1995). This refers to how the state of the network—
essentially the values of its weights—changes over time. It turns out that net-
works display three basic types of dynamic:

1. Convergent. Most ANNs exhibit convergent properties. There is a sig-
nificant amount of activity in the network at first. This activity then
slows down until the network settles into a stable state.

2. Oscillatory. Here, the weights fluctuate periodically—they both increase
and decrease—in a fairly regular fashion over time.

3. Chaotic. In this dynamic, the network’s activity varies in a chaotic fash-
ion; it shows periodic and non-periodic fluctuations.

A deficiency of some ANNs concerns this dynamic behavior. In some net-
works, the activity level settles down too soon. One way of assessing this is to
plot a loss function—the change in the error signal over the set of learning tri-
als. In some cases, we might then see that the error level drops very quickly.
If this occurs, the network is not able to perform its task and is caught in what
is called a local minimum. There are various ways to correct for local minima.
They include restarting the learning process at a different point and using noise
to “shake” the network state out of its problem state.

Artificial Neural Network Typologies

Over the past several decades, a plethora of different types of networks have
been developed. A variety of organizing schemes are used to classify these
different types. Hudson and Potsma (1995), Maren et al. (1990), and Dayhoff
(1990) all use different ordering criteria. To simplify the matter, we first list
the criteria or major characteristics of the various types of networks and then
describe prominent examples of these types. Each of the examples is described
here in summary fashion. The interested reader is asked to consult the source
material to learn more.

1. Supervision. Networks can be put into two broad categories, based on
the way they learn. Supervised networks are presented with target
answers for each pattern they are given as input. That is, the network
“knows” what the right answer is in each training trial. In unsupervised
networks, the network must determine the answer on its own, without
the benefit of an answer.
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2. Layers. Networks vary in the number of layers they contain. Broadly,
they can be categorized as either single-layer, in which case they have
only one layer of nodes, or multi-layer, in which case they have two,
three, or more layers.

3. Information Flow. Information in a network is either feed-forward or
recurrent. In a feed-forward network, the flow of activation is in one
direction only—forward; flow is from units in an input layer to units in
other layers. Information in feedback or recurrent networks can flow in
two directions, both forward and backward. The backward flow, for
example, can be from output layers to hidden or input layers.

Perceptrons have already been described. They are supervised networks,
as the teacher provides the correct response and allows for error adjustment
of the weights during learning. They are multi-layer: they contain either two or
three layers of nodes. In back-propagation networks, even though the results
of forward signal passing may be used to correct the weights of the links of pre-
vious nodes, the operations of the net are strictly feed-forward. Perceptrons are
the typical network of choice for the task of pattern classification. Three-layer
perceptrons acquire the ability to recognize the more general features of their
input patterns. Their weakness is that they often require long training periods.

Hopfield-Tank networks are a type of supervised, single-layer, laterally con-
nected networks (Hopfield and Tank, 1985). Because there is only one layer,
these nodes, by default, can only be connected to one another. Most are fully
connected, meaning that each node is connected to every other node. These
networks are autoassociative—they are good at regenerating clean versions of
patterns they have prior experience of when presented with noisy or incom-
plete versions of those patterns as input. Hopfield-Tank nets are also good
at solving optimization problems, which involve coming up with the right
solution in the presence of a large number of possible combinations. In their
unmodified state, they have trouble avoiding local minima.

We now turn to unsupervised networks. A Kohonen network is an example
of a two-layer network (Kohonen, 1990). These nets are also called feature
maps. They are able to create a topological map or spatial representation of the
features that are present in the stimulus input. These maps or representations
are quite similar to the topological maps that exist in the brain. The primary
visual cortex, for instance, represents various characteristics of visual input,
including ocular dominance columns, which process information from each
eye, and orientation columns, which represent different line orientations. The
actual architectures that a Kohonen network and the brain use to accomplish
this, however, are different.
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The Adaptive Resonance Theory network (ART) is an example of an
unsupervised, multi-layer, recurrent network (Carpenter and Grossberg,
1988). It is able to classify input patterns and put them into different categories
in the absence of a teacher. It does this by employing a resonant dynamic, in
which the patterns in the first and second layers stimulate each other repeat-
edly, until the pattern in each layer settles into a stable state. A disadvantage
of the ART network is that individual nodes represent categories. This local
representation makes the net particularly susceptible to degradation with damage,
i.e., when the nodes representing categories are destroyed, information about
the categories is lost.

Evaluating the Connectionist Approach

Advantages

The connectionist approach has many strengths. The most important one is
the similarity between network models and real live neural networks—what is
termed biological plausibility (Stillings, Weisler, Chase, Feinstein, Garfield &
Rissland, 1995). This plausibility can be demonstrated in three fundamental
ways. First, artificial networks share general structural and functional correlates
with biological networks. Second, and as pointed out previously, artificial
networks, like their biological cousins, are capable of learning. Third, artificial
networks react to damage in the same way that human brains do. In this section,
these advantages and other advantages of networks are discussed in depth.

Many of the elements of artificial networks have their counterparts in
biological networks. The nodes are equivalent to neurons, whereas the links
are analogous to axonal and dendritic connections. The functioning of con-
structed neural networks is also very biological. At a microscopic scale, the
decision rules that specify when and how an individual node fires are based on
neuron physiology. At a macroscopic scale, the parallel, distributed processing
of connectionist networks is also found in the brain.

Learning in connectionist models takes place via the adjustment of the
weights of the links between nodes. Work in neurophysiology shows that this
process, at least in simulation, is not too far off from what happens in real
brains. Recall from the preceding chapter our discussion of synaptic plasticity
and of how it is mediated by long-term potentiation. If two cells in a circuit are
simultaneously active, the synapse between them is strengthened. This increase
in synaptic strength corresponds to a numerical increase in the weight of a
connection between nodes in an ANN.
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A third argument in support of the biological plausibility of connectionist
models is the way they respond to damage. Neural networks demonstrate
graceful degradation. This is a gradual decrease in performance with increased
damage to the network. In graceful degradation, small amounts of damage
engender only small reductions in performance, whereas greater damage
produces correspondingly larger deficits. Human patients who have sustained
brain damage show evidence of the same phenomenon. Graceful degradation
is a property of a parallel computing architecture. If some nodes are destroyed,
others can “take over.” In other words, the network can adapt to the damage
by calling on its distributed function across the existing nodes and links. Of
course, this advantage holds only for nets with distributed representations.
Those networks with localized representations, such as the ART net, are more
subject to failure in the event of damage.

Connectionist networks display two other interesting “psychological”
phenomena: interference and generalization (Green & Vervaeke, 1996).
Interference refers to instances in which two sets of information that are simi-
lar in content interfere with one another. If a student were studying Spanish
and Italian at the same time, he might forget words from one language that are
similar in sound to words in the other. Small networks trained to learn large
numbers of patterns show signs of interference: they have difficulty in distin-
guishing similar patterns. Generalization is represented by the ability to apply
a learned rule to a novel situation. If one assumed that any animal that had
wings was a bird and then saw an animal for the first time that also had
wings and called it a bird, he or she would be generalizing. Rumelhart and
McClelland (1986) trained a network to learn the past tenses of verbs. The net-
work learned to conjugate new verbs. It was able to produce “wept” for
“weep” because it had been trained to associate “slept” with “sleep.” The
network was capable of bona fide generalization.

Problems and Disadvantages

We have looked at the many advantages of the connectionist approach, but
it is also limited, in a number of respects. What at first seems like its primary
strength, biological plausibility, should also be viewed as problematic. If we
make a more detailed comparison of ANNs and actual brains, we discover a
number of significant differences. First, real neurons are massively parallel—
they exchange signals with thousands of others. It is not yet possible to simu-
late parallel processing of this magnitude; such processing would require
simply too many nodes and connections and too much processing power. It is
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likely that some of the emergent characteristics of the brain arise from massive
parallelism. Until we are able to build ANNs of this complexity, we may not
be able to understand these emergent characteristics.

Second, most networks, as stated earlier, show a convergent dynamic. The
activity of such a network eventually dies down and reaches a stable state. This
is not the case for brain activity. Real neural networks are oscillatory and
chaotic—their states fluctuate over time and do not settle. Neural activity in
the hypothalamus, for example, is oscillatory. As regards this type of dynamic,
it is a fascinating but difficult question to determine where in the network a
representation exists. In convergent networks, the presentation of a stimulus
pattern reliably elicits the trained response. This response is the network’s dis-
tributed representation of the correct answer in the form of a pattern of acti-
vation among nodes. But in oscillatory and chaotic networks, there is no such
representation. The network, because it is constantly changing, has not formed
any specific pattern of activation that can be linked to a stimulus. Represen-
tations in these systems might correspond to more global characteristics, such
as the frequency or phase of the network’s activity.

Dawson (1998) points out an additional problem. He discusses Elman’s
recurrent-type network (1990), which has difficulty in analyzing inputs that
are staggered in time. Dawson speculates that the problem lies either in the
architecture of the network itself or in the learning rule. In the case of Elman’s
network, it turned out to be the latter, because in instances in which a new rule
was implemented, the network was adequate to the task (Kremer, 1995). We
see here another difficulty, which is that networks may have inadequate learn-
ing rules. The error correction procedures for adjusting weights that are cur-
rently in use represent only one of many possible ways of training a network.
A subject for future research would be the exploration of alternate learning
methodologies.

One specific problem that arises in network learning is the stability-plasticity
dilemma. It states that a network should be plastic enough to store novel input
patterns; at the same time it should be stable enough to prevent previously
encoded patterns from being erased (Grossberg, 1987). This apparent conflict
is analogous to the phenomenon of psychological interference, discussed pre-
viously. The fact that ANNs show evidence of being caught in this dilemma is
useful, because it may offer some insights into human interference. But it
becomes a real problem when one is attempting to implement artificial net-
works. Catastrophic interference occurs in instances in which a network has
learned to recognize a set of patterns and then is called upon to learn a new set
(French, 2001). The learning of the new set modifies the weights of the net-
work in such a way that the original set is forgotten. In other words, the newly
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learned patterns suddenly and completely (“catastrophically”) erase the network’s
memory of the original patterns. A variety of solutions to the problem have
been proposed, ranging from the introduction of “novelty vectors” to a reduc-
tion in the internal overlap of representations, to pre-training the network
with random samples of patterns (French, 1992; Kortge, 1990; McRae &
Hetherington, 1993).

We should discuss learning a bit further. In supervised networks, a
“teacher” or training pattern is necessary in order for the network to learn. But
where does this teacher come from? Humans and other animals learn in many
instances in which there is no right answer provided, or in which the answer is
less accurately provided (Barto, Sutton, & Anderson, 1983). Also, there is no
evidence that biological networks feed an error signal back to “previous” units
to modify connection strengths, as in the back-propagation model (Bechtel &
Abrahamsen, 1991). This is simply a convenient engineering solution to the
problem, but fails to address how an analogous process in actual brains might
occur.

Semantic Networks: Meaning in the Web

There is another class of network models that have many features in common
with neural nets. Nodes, links, thresholds, and summation of input also char-
acterize these networks. They are semantic networks. But in semantic net-
works, each node has a specific meaning. Semantic networks therefore employ
the local representation of concepts. Semantic networks have been adopted
primarily by cognitive psychologists as a way to explain the organization and
retrieval of information in long-term memory. In this section, we will discuss
the characteristics of such networks, drawing on experimental results from
cognitive psychology.

One motivation for studying semantic networks centers on representational
capacity. The distributed representations formed in convergent ANNs are very
simple and fail to capture the richness of human conceptual capacity. Even
if it were to turn out that humans store concepts as distributed patterns in a
neural circuit, it would be unclear as to how this kind of storage might account
for the complexity of our concepts. When we think of a concept such as “dog,”
we are doing much more than coming up with a label. Our concept of “dog”
goes beyond pattern recognition to include semantic content—what dogs look
like, what they do, what our own experience of dogs is, and so on, and is inti-
mately tied up with other concepts we possess. Semantic networks allow us to
represent and understand these more complex aspects of concepts.
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Characteristics of Semantic Networks

In semantic network models, a node’s activity can spread outward along links
to activate other nodes. These nodes can then activate still others—a process
called spreading activation. An assumption of some models is that activation
energy decreases with increasing distance, since it is believed that the activation
energy encounters resistance as it passes through succeeding links and nodes.
This means that spreading activation may lose strength as it travels outward
from its point of origin. Another characteristic of these networks is that the
distance between two nodes is determined by their degree of relatedness.
Concepts such as “automobile” and “truck” are semantically related and
hence fairly close to each other, whereas concepts such as “automobile” and
“flower” are less related and are farther apart. It is therefore easier to activate
the “truck” node via the “automobile” node than it is to activate the “flower”
node in this way.

Spreading activation is thought to underlie retrieval of information from
long-term memory. For example, suppose a test question in history class asks
for the names of major western European nations. While you were studying,
you had memorized these nations in several ways: on the basis of their geo-
graphic locations, whether they fought each other in wars, how related their
languages are, and so on. You start by naming Germany, then Italy. At the end,
you realize you’ve left out a country, but can’t think of what it is. Finally, it
comes to you. You remember that the country is France—because while you
were studying, you realized that France and Germany fought each other dur-
ing the two world wars. Although you were not able to retrieve France on the
basis of the Mediterranean characteristics it shares with Italy, you were able to
retrieve it on the basis of its historical relation with Germany. This underscores
an important principle of effective studying: it is best to associate a concept
with as many other related concepts as possible, to ensure a higher likelihood
of retrieval. In this way, there exists a greater number of alternative pathways
that lead to a given node. If one nodal connection fails to activate the target
item, spreading activation will ensure that some other pathway does. These
alternate associations that facilitate recall are also called retrieval cues. Figure 7.8
illustrates how a semantic network might represent knowledge of western
European countries.

An important characteristic of semantic networks is priming. In priming, the
processing of a stimulus is facilitated by the network’s prior exposure to a
related stimulus. A study by Meyer and Schvaneveldt (1971) demonstrates this
phenomenon. The participants in their study were presented with pairs of letter
strings. Each letter string was either an actual word or a nonsense word.
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Participants were asked to push a button when they encountered actual words.
The button push recorded how long it took them to respond. If both words in
a pair were meaningful and related, the participants were faster to respond cor-
rectly to the second word in the pair. So, if the first word was “Nurse” and the
second “Doctor,” responses were faster than if the first word was “Nurse” and
the second “Butter.” The explanation goes as follows. The “Nurse” node in
long-term memory becomes activated first. Through spreading activation,
it activates other, semantically related nodes, such as “Doctor.” A short time
later, when the participant’s response to “Doctor” is required, the response time
is reduced because that node is already partially activated. This technique can
be used to map out the structures of semantic networks. The larger the priming
effect, the closer together the relevant nodes should be (McNamara, 1992).

A Hierarchical Semantic Network

A classic study by Collins and Quillian in 1969 suggests that semantic net-
works may have a hierarchical organization, with different levels representing
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concepts ranging from the most abstract down to the most concrete. They used
a sentence verification task. Participants were asked to respond to individual
sentences that appeared on a computer screen. If they judged a sentence to
be true, they hit one button. If they judged it to be false, they hit another.
Examples of true sentences were “A canary is a bird” and “A canary is an
animal.” Response times were recorded.

Collins and Quillian theorized that a correct response to one of these
sentences required overlap of spreading activation. To know whether a canary
is a bird would require the activation of both a “canary” node and a “bird”
node. Recognition of both concepts would activate these nodes. Activation
would then radiate outward through the network from each node until each
individual unit’s activation would mutually affect one another. When the acti-
vation of these two nodes overlaps, the participant knows that the two are
related and can then confirm the sentence. If the nodes have a close semantic
relation, they should be in proximity to each other in the network and
responses will be fast because spreading activation will have less distance to
cover. If the nodes are less related, the distance between them will be greater
and response times will be longer.

Based on the set of reaction times they obtained in the study, Collins and
Quillian sketched out a hypothetical memory structure for knowledge of
animals. This is shown in Figure 7.9. The hierarchical nature of the network
is immediately clear. The concept “animals” and its properties, such as “eat
food,” “breath,” and “have skin,” are at the top of the hierarchy. Because the idea
of animals is abstract and encompasses all known types of animal, “animals” con-
stitutes a superordinate category. At the next lower level we have examples of
classes of animals, such as “birds,” “cats,” and “dogs,” accompanied by nodes
corresponding to their characteristics. For birds, these would be “can fly” and
“lays eggs.” Because these different classes of animal are at a moderate level of
specificity, they are ordinate categories. At the bottom of the hierarchy are nodes
that are even more concrete, corresponding to exact species of animals; these
animal species are subordinate categories. Properties of these animal species are
also at this same level. A node corresponding to “canary” would have links at the
subordinate level connecting it to “can sing” and “is yellow.”

Figure 7.10 depicts a graph of the reaction times that led to the model’s being
proposed. Responses for which spreading activation occurs entirely within a
level were quite fast. It took participants about 1,000 milliseconds, on average,
to confirm that “A canary is a canary.” In this instance no effective spreading
activation is required, the statement is self-referential, and only the canary node
is active. To confirm “A canary is a bird” took slightly longer—about 1,200
milliseconds. Presumably, the longer time is owing to the fact that both the
canary and bird nodes must be activated and spreading activation must travel
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along a link, between the subordinate and ordinate levels. Verification of the
statement “A canary is an animal” took even longer. In this instance, the canary
and animal nodes are activated and spreading activation must travel along two
links, from the subordinate level to the superordinate level.

Finally, you will notice that response times for property statements follow
this same function. But the verification of these statements is apt to take even
longer. Sentences like “A canary can sing” were quickly verified, because the
“can sing” node that defines canary properties is at the same level as the
“canary” node. Sentences like “A canary can fly” were verified less quickly,
because the property node “can fly” is attached to the “bird” node at the ordi-
nate level. In general property statements take more time because activation
must spread from property nodes to concept nodes—within a level as well as
between concept nodes that occupy different levels.

Evaluating the Hierarchical Model

The hierarchical model is intuitively appealing but fails to account for
several findings (McCloskey & Glucksberg, 1978). Participants are faster to
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make the correct response to “A dog is an animal” than to “A dog is a
mammal,” even though “animal” is farther away from “dog” in a hierarchical
scheme. Evidently, people tend to think of dogs more as animals than as mam-
mals, even though “mammals” is a subset of animals and should have greater
proximity to the concept of dog than does “animals.” Also, the sentence
“A robin is a bird” is responded to more quickly than “An ostrich is a bird,”
even though the two sentences are equivalent and ostriches and robins are both
subordinate to the bird category. This suggests that some birds are more “typ-
ical” than others, and that concepts may be represented by prototypes that rep-
resent generic or idealized versions of those concepts. If this were the case, then
the network would need restructuring and the “robin” node would have to be
moved—so that it was closer to “bird” than was the “ostrich” node. These
results imply that the hierarchical organization of the sort seen in the Collins
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and Quillian model may be overly contrived and may represent only one of the
ways in which we organize concepts.

A final criticism of the hierarchical model has to do with the principle
of cognitive economy. This principle states that nodes should not have to be
coded for more times than is necessary. Collins and Quillian attempted to pre-
serve cognitive economy by placing property nodes only at their appropriate
levels in the hierarchy. For instance, “can fly” is positioned as a property of
birds only, even thought it could be linked to the canary node and to nodes
representing every other kind of bird as well. The advantage of cognitive econ-
omy is obvious. It eliminates redundancy and frees up resources in a memory
system. But research has found no difference in the response times for the sen-
tences “A bird has feathers” and “A canary has feathers.” So the property “has
feathers” seems to be attached to our concept of canary as well as that of birds.
Like the network hierarchy, cognitive economy seems to work better in princi-
ple than in reality.

Propositional Semantic Networks

Semantic networks of the sort described above are fine for representing
simple factual properties of objects in the world. They can represent a category
relationship, which is depicted by an “isa” link. The connection between the
“bird” and “animal” nodes would be this type of link, as “A bird isa animal.”
They can also represent a property type relationship with a “hasa” link. The
“bird” and “feathers” nodes would be connected by a hasa link, since “A bird
hasa feathers.” But how would we set up a network to stand for more com-
plicated relationships among concepts? What would the network that could
encompass the sentence “The dog chased the cat” look like?

The answer is a new class of network, designed to code for propositions.
John Anderson has developed such a network as part of his ACT* model of
cognition, which was discussed in the cognitive psychology chapter. ACT* is
thus a hybrid model: it specifies how multiple memory systems interact and
how explicit knowledge is represented. A proposition is the smallest unit
of knowledge that can be verified, that is, proven either true or false. Propo-
sitional networks allow for a greater variety of relationships among concepts,
including actions. Figure 7.11 shows a propositional network that might
underlie someone’s understanding of his or her friend Bob. Each ellipse denotes
a proposition. The proposition is defined by the arrow links that radiate
away from it and point to concepts. There are different links that stand for
different parts of the proposition. An agent link specifies the subject of
the proposition, the one performing some action. An object link denotes the
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object or thing to which the action is directed. The relation link characterizes
the relation between agent and object. The proposition “Bob likes Sally”
would thus have “Bob” as its agent, “Sally” as the object, and “likes” as the
relation.

Anderson’s ACT* model can also account for the specific memories each of
us has as part of our experience, episodic knowledge, and traditional factual
world knowledge. His model does this via its creation of two classes of nodes.
A type node corresponds to an entire category. The node that corresponds to
“dogs” in general is a type node. Token nodes correspond to specific instances
or specific items within a category. The node that represents “Fido,” where
Fido is the name of your dog, is a token node. In this way, the network can
code for general world knowledge as well as personal memories.

Evaluating Semantic Networks

Semantic network models can be implemented as computer simulations
and then put to the test to see if they account for human-like like memory
processes. This has been done, and although many of the simulations can
reproduce aspects of performance in limited domains, there is no associative
network that successfully simulates all of human memory.

A phenomenon that presents a challenge to these network models is called
the T.O.T. phenomenon, the acronym standing for “tip of the tongue.” Try to
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recall the name of the navigational device used by sailors that measures the
positions of the stars. You may find yourself frustrated in trying to recall the
word, as many people can come up with the first letter and the number of syl-
lables but not the word itself (Brown, 1991). A person who gets stuck trying to
remember the word is, in a manner of speaking, in the vicinity of the node or
network that codes for the word, because he or she has some knowledge of the
word. He or she has also presumably activated nodes that are in proximity to
that of the concept in question, because he or she is devoting a great deal of time
and effort to recalling the word. So why doesn’t spreading activation activate
the appropriate node? Semantic networks cannot easily explain these sorts of
retrieval blocks. By the way, if you couldn’t get it, the word is “sextant.”

The phenomenon opposite to the T.O.T. phenomenon is the situation in
which we can successfully retrieve an item from memory despite the fact that
there are no close connections between retrieval cues and the target. Reisberg
(2001) gives a good example when he asks us to think of the node that repre-
sents “water.” Because water is an eminently familiar concept, it has connec-
tions to many others. The water node thus ought to have multiple links that
radiate outward toward other nodes—a high degree of fan. In contrast, the
concept “xylophone” has a low degree of fan, at least for most people, as we
don’t often think about this musical instrument. Assuming that the water node
has links to 100 other nodes, probably a conservative estimate, then spreading
activation would, in just one step, activate all 100. Assuming that each of these
100 nodes is, in turn, connected to 100 other nodes, then 10,000 (100 × 100)
nodes would be activated in a memory search after only two steps. The number
of activated nodes increases tremendously with increasing numbers of steps.
This process is inefficient from a computational standpoint. It is also counter-
intuitive. It certainly doesn’t feel as if we think of a million or more things when
we are trying to remember the capital of Texas.

A solution to the problem of excessive activation would be the implementa-
tion of an inhibitory network. Here, the links are inhibitory, so activation of a
given node causes it to dampen the activity of its neighbors. In this model the
greater a node’s activity, the more it will inhibit the nodes to which it is imme-
diately linked. Nodes that receive several inputs are more highly activated and
thus stand out in the crowd, since they can suppress their neighbors more pow-
erfully. Concepts with multiple inputs are probably the ones we are searching
for, because these input pathways are what are activated during the retrieval
process. To go back to our earlier example, if we are trying to remember
“France,” this node ought to stand out among the others in an inhibitory net-
work. This is because it is activated in two ways: on the basis of the “com-
monly taught languages” path, and on the basis of the “fought with Germany”
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pathway. Inhibitory networks thus dampen activity in nodes that are unlikely
candidates in a memory search, and increase activity in nodes that are likely
candidates.

One of the nice things about semantic networks is that the search for an
item takes place automatically. All one needs to do is hear a question and the
answer seems to pop into one’s head. The relative ease with which we recall,
at least much of the time, is in accord with the idea of spreading activation.
The question triggers nodes that are near the desired node; activation then
spreads across the network until the target item is sufficiently activated. But,
as we all know, recall is not always this easy. Sometimes, as in the T.O.T. phe-
nomenon, we must expend effort in trying to remember something. If some-
body asked you what you did on your last birthday and it didn’t immediately
come to mind, you might engage in a guided search—one governed by intelli-
gence and reasoning. You would think of your friends and members of your
family who might have been at the party, what kinds of presents you received,
and where the party was held. All of these could serve as retrieval cues or asso-
ciated nodes, and as such are elements in the network. But they weren’t trig-
gered automatically. Instead, you had to willfully and deliberately reconstruct
what happened on your last birthday, based on what you know of your past
birthdays in general. This type of reconstructive memory is used quite often
and has been shown to be influenced by environmental cues, such as how the
question is phrased (Loftus, 1979). But the important point here is that recon-
structive memory constitutes a separate process of retrieving items, one that
does not rely on spreading activation and the inherent, automatic characteris-
tics of the network.

Overall Evaluation of the Network Approach

The network approach has received its share of criticism. Criticisms leveled
against connectionism are that its architectures are too simple and that its learn-
ing rules are inadequate. Semantic and propositional networks have their own
problems related to organization and the proper role of inhibition. Having said
all this, the network approach is still a strong perspective, both in terms of its
theoretical assumptions and methodology. Connectionist networks are good at
simulating learning and have biological plausibility, at least in the gross sense of
the term. Semantic and propositional networks probably come the closest to
representing certain features of the way knowledge is represented in memory.

The network approach poses a number of challenges to the classic informa-
tion processing view. Several differences need to be reconciled. These have to
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do with the numbers and sizes of processing units, and include the argument
of serial processing vs. parallel processing, as well as the argument of knowl-
edge based vs. behavior based approaches. What is needed then is a way of
integrating the opposing views. New computers with parallel processing archi-
tectures are being developed. These machines may yield new insights that
will help to bridge the gap between the classic and connectionist perspectives.
Another way to bridge this gap would be to have network researchers work-
ing with practitioners of other cognitive science disciplines in model building.
Network models seem to constitute a “middle ground” between the actual bio-
logical structures studied in neuroscience and the more abstract representations
of cognition and artificial intelligence. Model building that represents a coop-
eration between these disciplines might resolve some of the discrepancies.

In Depth: NETtalk

NETtalk is an ANN designed to read written English (Sejnowski & Rosenberg,
1986). It is presented with written letters of the alphabet. Its output is the cor-
rect pronunciation of the sounds represented by the letters, which is then fed
to a speech synthesizer for production of the sounds. Unlike programs that
existed at the time it was developed, NETtalk actually learned to make cor-
rect pronunciations after it had been supplied a given number of examples.
Although the network could not understand what it was reading, it serves as a
good demonstration of what networks of its kind are capable of and how they
can serve as models of human learning.

The NETtalk system consists of three layers. The input layer has seven
groups, each containing 29 individual units. The overall activity of these
29 units specifies one letter. NETtalk thus processes seven letters at a time.
It focuses, though, on the fourth and middle letters of these seven. It is these
target letters that the network attempts to pronounce. The other surrounding
letters serve as context and to help disambiguate the correct pronunciation,
due to the fact that in English, the sound of any given letter depends heavily
on the adjacent letters. Figure 7.12 shows a diagrammatic representation of the
network.

The input units next connect to a hidden layer of 80 nodes, which effect
a partial recoding of the input data. These in turn connect to 26 nodes in the
output layer, whose pattern of activation represents the system’s initial response
to the letters. This response is in effect the network’s first guess at pro-
nouncing the target letter. The guessed pronunciation is then compared to the
correct response, specified by a teacher. Weights are then adjusted using the
back-propagation algorithm. Finally, the “window” or read-head that viewed
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the seven letters at a time would move one letter to the right, to process the
next letter in the text. The total number of weighted links that directly connect
one node to another in NETtalk is 18,829, so this is a fairly large network by
most standards.

How does NETtalk perform? After fifty passes through a sample text, which
corresponded to about 250,000 letter-to-pronunciation pairings, it achieved a
95 percent accuracy rate. When the network was then tested on a new sample
text without further training, it performed at 78 percent accuracy. This rela-
tively impressive performance on the new text demonstrates the network’s
capacity for generalization; the network had extended its abilities to new
words and letter combinations. NETtalk was also found to perform well after
simulated damage. The simulated damage was in the form of changes made to
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the weights: every weight was changed to a new random value that was within
some prespecified range of the old value. When the randomized values were
less than 65 percent of the average, performance was hardly affected—
showing that the network is resistant to degradation.

Minds On Exercise: Free Association

In this exercise, you will be presented with some words and asked to write down
whatever the words make you think of. Don’t censor or inhibit your thoughts; just
write down whatever comes to mind.This technique is called free association and
is used by psychoanalytic therapists to assess the contents of the unconscious mind.
We will be using free association to explore the structure of your long-term memory.

To begin, take out a piece of paper and a pen. Number three lists from one to
ten.At the top of the first list write the word “ocean.” Now take a minute to write
down the first ten words that come to mind. When you are finished, write down
the word “fish” at the top of the second list and again take a minute to jot down the
first ten words that pass through your mind. Finally, write down “toothbrush” at the
top of the third list, and do the same.

You may have noticed that the words “ocean” and “fish” are semantically related,
and that “toothbrush” is somewhat unrelated to either. Did your first two lists con-
tain any of the same words? Did you find it easier to think of words that had to do
with “fish”? If so, that was probably due to priming.Was it more difficult to jot down
words you associated with “toothbrush”? Why?

Turn the page over and sketch out a semantic network for each of the words.
Represent each word as a node and draw connections between it and related nodes.
Group related words by placing them close together.What is the structure of these
networks? Is there any hierarchical organization? Were there any relationships
between nodes that don’t conform to the kinds of relationships that were discussed
in this chapter, such as subject,object,or relation? Did certain nodes cluster together?
How were the nodes in a cluster related? Compare one of your networks to that of
a classmate. In what ways are they the same? In what ways are they different? Do you
think different networks reflect different thinking styles or personality traits?

Food for Thought: Discussion Questions

1. Sketch out an ANN that performs arithmetic, reasons logically, or carries out
some other mental process not discussed in this chapter.What is the input to
this system? What functions do the input, hidden, and output layers perform?
What is the output? How would the network learn?
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2. Does a neural network have to be limited to three layers? Design one that
has additional layers.What would the roles of these layers be?

3. We discussed several ways, such as the back-propagation algorithm, in which
a neural network can learn. Can you come up with other learning algorithms?

4. Research on semantic networks shows that concepts cluster together based
on shared characteristics.These include possession or belongingness, as found
in the hierarchical model. In what other ways might concepts cluster together
in a semantic network model? One approach to this problem is to free asso-
ciate and then see what the relations are between successive words.

5. There are several different types of relation links that connect nodes in
propositional networks.A relation can be an action, such as “chased.” Can you
think of others? Is there a problem with having so many possible relations?

6. Draw the propositional network that would represent a complex sentence
such as “My friends hiked to the bottom of the Grand Canyon in August.” How
does one code for linguistic elements such as “of” or “the”? For pronouns?
Adverbs?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“I have called this principle, by which each slight variation, if
useful, is preserved, by the term of natural selection.”

—Charles Darwin, 1859

The Evolutionary View

In this chapter, we will examine the evolutionary approach and its relation to
cognitive science from three perspectives. The first perspective, evolutionary
psychology (EP), is concerned with how the human mind came into existence.
It attempts to describe the forces in our ancestral past that could have given
rise to mental structures. The second perspective, evolutionary computing (and
the related discipline of artificial life), emerged from areas of study in artificial
intelligence. They look at evolutionary processes as a form of adaptive prob-
lem solvings and can help us to understand human mental functioning. The
third perspective, called Neural Darwinism, has its roots in neuroscience and
sees evolutionary forces as being behind the creation of neural circuits. These
circuits underlie our capacity to learn from and respond to the world.

The Evolutionary Approach:
Change Over Time
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Other approaches in cognitive science have adopted and used evolution. In
the psychology chapter we saw functionalists asking the same questions that
evolutionary psychologists ask. These functionalists wondered why we have
certain mental abilities, to what purpose is a given ability, and how a specific
mental ability may have come to be. Evolutionary principles are used also in
contemporary robotics, in which generations of robots are bred to produce
robot offspring that are best adapted to the tasks for which they’ve been
designed.

A number of important themes are touched on in this chapter. Evolutionary
psychologists argue that many of our cognitive mechanisms are innate. This
argument echoes the Nativist position that we are born with rather than
acquire knowledge. Evolutionary psychologists also argue that the mind con-
sists of a set of special-purpose devices or evolved psychological mechanisms
that are activated only within specific environmental contexts. This runs counter
to a tenet of artificial intelligence that states that the mind is a general-purpose
computing device, capable of solving virtually all kinds of problems equally
well. The fields of evolutionary computing and Neural Darwinism postulate
that evolutionary forces can explain the operation and formation of mental
processes within the lifespan of a given individual. This is in contrast to the
classical notion of evolutionary forces operating at the species level over much
longer stretches of time.

Evolutionary Psychology

We humans don’t look like much. We are thin-skinned—and almost gawky-
looking when we stand upright. To a passing predator, we must seem like a
particularly easy kill. We have no armor, fangs, or claws with which to defend
ourselves. Nor are we particularly strong or fast in comparison to other ani-
mals. So what has enabled humans to survive and thrive in a harsh world? The
answer, in a word, is our minds. Homo sapiens possesses the most sophisti-
cated mental faculties of any species on earth. Our capacities to think, to use
language, and to solve problems outstrip those of any other animal. It is our
minds that set us apart. An advanced mind allows for planning, communica-
tion, social cooperation, and the development of technology, which give us a
tremendous competitive survival advantage.

But how did the human mind come into existence? What processes formed
it? These are some of the questions asked by the evolutionary approach. In
evolutionary theory, changes in an environment give rise to corresponding
physical changes in an animal species that better enable the members of that
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species to survive. Giraffes, to use an often-cited example of this kind of
adaptation to an environment, have over many generations developed longer
necks to better enable them to get at treetop vegetation. Similarly, we can con-
sider the mind to be such a body structure—comparable to the giraffe’s
neck—and one that has been shaped by evolutionary processes. EP not only
attempts to describe these forces that are believed to have fashioned the
human mind, but is also concerned with understanding the mind’s organiza-
tion and function, and with how interaction with an environment produces
observable behaviors.

Evolutionary psychologists face a fundamental problem. They need to
understand the selection forces that gave rise to mental structures, but cannot
know precisely what these were because they correspond to events that were
taking place far back in human prehistory. It is believed that the period of
time during which many human psychological mechanisms evolved was the
Pleistocene era, which began approximately two million years ago. This period
is referred to as the Environment of Evolutionary Adaptation (EEA) (Bowlby,
1967). Because we cannot go back in time to study what occurred during this
period, we must make inferences about the physical and social environment of
that time, based on evidence of various types. Buss (1999) describes the types
of evidence used to test evolutionary hypotheses. These include archeological
records, data from studying hunter-gatherer societies, systematic observation
of human behavior, and self-reports in the form of interviews and question-
naires. EP also relies on a variety of methods for the testing of its hypotheses.
Among these are comparisons across species, comparisons of males and females
within a species, and experimentation (Buss, 1999). The evolutionary approach
thus adopts a wide variety of methods, rather than rely exclusively on the
scientific method.

A Little Background: Natural Selection and Genetics

Before delving specifically into the evolution of mental structures, it is helpful
to review some basic concepts of biological evolution. The biologist Charles
Darwin (Figure 8.1), in his classic work On the Origin of Species (1859),
outlines the basic principles of his theory of natural selection, which is a
description of the process by which animal species change over time. Darwin
noticed that animals vary (within a species as well as from species to species)
in all sorts of ways—they have longer or shorter legs, bigger or smaller ears,
or different coloration. The fact that animals differ in their physical traits is
known as variation. Second, parent organisms pass on some of their gene-based
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characteristics to their offspring. This process is called inheritance. A change
in environmental conditions can make it more likely that animals that possess
a specific trait will survive. Those that do not possess this trait will perhaps
die. This process, whereby a particular attribute or attributes promotes sur-
vival under altered conditions, is known as selection.

Variation, inheritance, and selection together are the vital ingredients of
species change. Looking at the fossil record, we can see that there had been
alterations in the foot structure of horse-like animals. Early progenitors of
the horse had feet with several toes. Figure 8.2 shows that, over time, these
toes became fused and the hooves of modern-day horses came into being.
Originally, the members of this progenitor species varied with respect to
toe structure. Some animals had toes that were closer to each other and less
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distinct anatomically. These animals were perhaps better able to run in
an emerging grassland environment, as their feet were likely to have given
them better support and locomotive power on flat terrain. Presumably
these horses ran faster and so were able to escape predators more easily.
They were more likely to survive and pass on their adaptive trait to future
generations.

Natural selection is concerned with survival in the strictest sense: whether
an organism lives or dies. Animals that possess an adaptive trait are better
equipped to deal with a changed or changing environment. They are better at
escaping predators, locating food, keeping warm or keeping cool, and so are
likely to survive. Sexual selection, in contrast, refers to reproductive success—
the ability to attract a mate and thereby produce offspring. Some traits that
are selected for naturally are not always also selected for sexually. Females of
some beetle species consider the presence of large horns on males of the
species to be attractive. The males with these large horns mate more often and
pass this trait to future generations more often. However, very large horns are
also an impediment to survival. If they are too big, the males cannot easily
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Figure 8.2 Evidence from the fossil record showing the evolution of the hoof from a
toed foot in horse species
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escape predators such as birds. In this case, the optimum horn size represents
a compromise between the two types of selection trading off against
each other.

Evolved Psychological Mechanisms

Evolutionary biology focuses on all aspects of an animal’s makeup. It is
concerned with how selection forces came to shape the individual parts of
an organism and how these parts became integrated. The scope of EP is
narrower—it examines the impact that these forces have had on specifically
psychological mechanisms only. Whereas evolutionary biology looks at
organs and organ systems, EP looks only at a single organ—the brain. This
perspective views the mind as a collection of psychological mechanisms that
have evolved and attempts to describe how each came to be and how each
operates.

The traditional view in cognitive psychology is that the mind is a general-
purpose processor. This processor can be “fed” a problem in any format and
come up with a solution by applying a known set of rules. Modern computers
operate in this way. The advantage of this process is that it can solve all prob-
lems of a given kind assuming the correct values of the problem’s variables are
mapped onto the algorithm designed to solve the problem correctly. The evo-
lutionary perspective adopts a very different view. It argues that the mind is
not general in any way, but instead a grab bag of many specific capacities.
Cosmides and Tooby (1992) refer to the mind as a “Swiss army knife.” In
this analogy, each part of the knife unfolds to solve a different problem: the
corkscrew takes out corks, the scissors cut paper, and so on. Likewise, each
mental mechanism is assumed to have evolved in response to the need to solve
a specific problem of adaptation and is activated by the contextual information
of that problem alone. Evolved psychological mechanisms are examples of
modules. The general characteristics of modules are discussed in Chapter 4
(The Cognitive Approach I).

Buss (1999) defines an evolved psychological mechanism as one of a set of
processes inside an organism, each characterized by the following six properties:

1. An evolved psychological mechanism exists because it contributed to the
solution of a specific problem of survival or reproduction (the mechanism
is the product of natural or sexual selection). Arachnophobia, the
fear of spiders, is an example of an evolved psychological mechanism
(see Figure 8.3). Arachnophobia, as a mechanism, solves a very specific
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survival problem: how to avoid being bitten by a poisonous spider.
Humans who harbored this fear avoided spiders, were not bitten, and so
were more likely to survive and pass the trait on to future generations.

2. Evolved psychological mechanisms are designed to take in only a nar-
row band of information. In biological evolution an organ such as the
eye can only process a limited range of inputs—in the case of the eye,
only those corresponding to the visible light spectrum. An eye is not
capable of processing information that is, in effect, outside this range,
for example, information that corresponds to the infrared or ultravio-
let part of the electromagnetic spectrum. Similarly, psychological mech-
anisms are triggered by and can only process very particular types of
input. As part of the psychological mechanism just described, only the
image of a spider with its body parts and eight legs will elicit this par-
ticular fear—not an image of, for example, another creature, such as
an ant. 

3. The input of an evolved psychological mechanism communicates to an
organism the particular adaptive problem it is facing. When con-
fronted with a spider, an individual knows that he or she is dealing
with a survival problem: the bite of the spider could be fatal. The
person in question understands the spider does not pose some other
adaptive problem, say, one related to food selection or the choice of a
mating partner.

4. The input of an evolved psychological mechanism is transformed by
decision rules into output. The image of a spider automatically triggers
a response, such as avoiding the spider. This and similar responses can
be thought of as decision rules that are in the form of “if-then” state-
ments: if I see a spider, then I should run away.

5. The output of an evolved psychological mechanism can be physiological
activity, information that will serve as input for other psychological
mechanisms, or a behavior. Arachnophobes, upon seeing a spider, may
become physiologically aroused. Their heart rate and respiration rate
may increase, and they may begin to perspire. They may also use the
information about the spider to help them to decide on their next course
of action. If the spider is on the far side of a room, it makes sense to run
away; but if the spider is on their shoulder, it might make more sense to
brush it off. The decision-making process is another mechanism that
operates by drawing on the information that has been received from the  

245The Evolutionary Approach: Change Over Time

08-Friedenberg-4747.qxd  8/22/2005  3:14 PM  Page 245



arachnophobic mechanism. The ultimate outcome is the behavior itself:
running away, freezing, or another response.

6. The output of an evolved psychological mechanism is directed toward
the solution to a specific adaptive problem. The behavior that results
from seeing a spider is intended to solve the problem of how to avoid
being bitten. Running away removes the person from the problem,
ensuring that the spider does not pose a threat. 

To sum up, EP views the mind not as a “one size fits all” machine, but as a
collection of functionally distinct mechanisms. Each of these mechanisms was
created by evolutionary forces operating over vast periods of time. Each was
expressly “designed” to solve a problem our ancestors faced during the EEA.
It is important to keep this multiple-mechanism view in mind as we describe
specific examples of cognitive processes. For every possible cognitive process,
it is not the brain as a whole that is acting (according to this perspective), but
a particular component of the brain. Thus, when we talk about the evolution
of memory or of logic, we are talking about specific mechanisms that may con-
stitute only a part of the brain’s memory or logic systems.
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Figure 8.3 A reticulated python. Fear of snakes such as this one and of other animals,
such as spiders, may be the result of an evolved psychological mechanism.
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Evolution and Cognitive Processes

In the following sections, we describe specific evolutionary hypotheses that per-
tain to several domains in cognition and the evidence that supports them (Gaulin
& McBurney, 2001; Palmer & Palmer, 2002). These hypotheses concern cogni-
tive processes only, which include categorization, memory, logical reasoning,
judgment under uncertainty, and language. We also offer a discussion of cognitive
differences between the sexes. The motivation that underlies this research is the
desire to arrive at an evolutionary account of how these cognitive processes arose.
In other words: Why is it that we categorize and remember things the way we do?
Why are we so poor at reasoning logically and making judgments under uncertain
conditions? How is it that human beings alone of all the species on earth have
developed such a complex linguistic ability? How can we account for the subtle
differences between the sexes with respect to spatial and verbal abilities?

Categorization

Research conducted by Eleanor Rosch shows that people form mental cate-
gories not in an “either-or” fashion, but in a continuously graded way (Rosch,
1973, 1975). Why should this be the case? Why do we not lump things
together into one group on the basis of a single characteristic, for example,
“red objects” or “curved objects”? The organization of concepts, it turns out,
is governed by “fuzzy” categories, whereby a particular item can be more or
less representative of the category. In this section we will examine why humans
form concepts in this way. Recall the finding, from the chapter on networks,
that a bird such as a robin is thought of as being more representative or pro-
totypical of the category of birds than another type of bird, for example, the
penguin. This is because robins tend to come closer to our idea of what a bird
is—something that is small, sings, flies, and so on. Robins are thus more typi-
cal of “birds” than penguins, and participants in studies respond more quickly
when they are asked to make judgments that have to do with robins—the so-
called typicality effect (Rips, Shoben & Smith, 1973). See Figure 8.4.

Categories of the sort found in nature are almost always continuous: they
contain items that span the entire spectrum of typicality: items that range from
being very representative and prototypical to ones that are quite unrepresenta-
tive and perhaps easily mistaken for items that belong to another category. The
categories that result from human categorization processes therefore mirror the
distribution of natural objects in the world. This suggests an evolutionary
process whereby we came to acquire concepts and a sense of their relatedness
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on the basis of how the items that these concepts represented were ordered in
the natural environment. Further evidence in support of this notion comes
from Boster and d’Andrade (1989). They found that professional ornitholo-
gists as well as those who had little experience and/or knowledge of birds all
grouped stuffed bird specimens in similar ways. Their groupings demonstrated
typicality and hierarchical effects reflective of what exists in nature.

What purpose do typicality-based categories serve? They must have pro-
vided us with some sort of selective advantage, otherwise they would not have
arisen. The advantage is this: if we know something about an item of which we
have had experience, then it becomes possible to form judgments that have to
do with related items (Rips, 1975). Imagine encountering for the first time a
plant with four leaves and purple spots. After eating this plant you become ill.
Several months later you stumble across a plant with three leaves and reddish-
purple spots. Would you eat it? Probably not. There is a good chance that the
two species of plant, because they are similar, share properties. Typicality cat-
egories thus allow us to capitalize on past experience. We generalize from what
we know to what we don’t know.

Memory

Other approaches in cognitive science tend to study basic memory
processes. Cognitive psychologists, you will recall, are concerned with, among
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Figure 8.4 Which of these birds looks more like a bird? What does this tell you about
your concept of bird?
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other things, how information is transferred from short-term to long-term
memory. Neuroscience can identify the brain structures that underlie this
transfer. Connectionists can then create artificial networks to model the
process. EP, on the other hand, cares less about memory function per se and
more about the purposes our memories serve. EP researchers want to know
why our memories are the way they are. Specifically, they want to know how
the demands of our ancestral environment have shaped memory and have
made our memories operate the way they do. In this section, we examine one
aspect of memory: the relationship between the frequency of contact with an
item in one’s environment and recall.

Every day, we are bombarded with a tremendous amount of information.
Only a small fraction of it is actually remembered. This is a good thing, as most
of the information is trivial. For instance, can you remember the color of the
shirt your best friend was wearing last Monday? It would make sense, then, for
us to remember only the information that may be of some benefit to us, and to
forget that which doesn’t benefit us. But what constitutes beneficial informa-
tion? What things should we be better at remembering? An evolutionary
account avers that information that we encounter more often should be better
remembered. The more often we encounter an item, the greater its relevance to
our daily life and our survival. The less often we encounter an item, the smaller
is its relevance to our survival. Remembering your roommate’s name is important—
because he can help you in a variety of ways. You would also be likely to hear
your roommate’s name quite often, as you see him practically every day.
Remembering the name of your niece who lives in another country is less
important to you, as you are far removed from interacting with her on a daily
basis. Correspondingly, you would very rarely hear her name, assuming it is
not the same name as that of someone else you know better.

One way to test this hypothesis is to compare the frequency of our encoun-
ters with specific items with our ability to remember them. Clearly, this rela-
tionship will be positive: the more frequently we encounter items, the better
our memory of them. In addition, the relationship is described by a power
function. For our purposes, we only need to know that a power function is a
specific kind of mathematical relationship. This specific relationship is repre-
sented when we plot on a graph our ability to remember items versus how
often we encounter them.

Anderson and Schooler (1991) tested this relationship. They examined sev-
eral real-world sources of information and determined for each type of infor-
mation the function for the frequency of occurrence and recall. That is, they
determined the mathematical relationship specifying how many times a piece
of information occurred and how accurately it was remembered. They used
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newspaper headlines, utterances made by parents to their children, and names
of authors of e-mails that were received by one of the researchers over an
approximate four-year period. For all of these sources, the probability that a
particular utterance or word would crop up a second time was a decreasing
function of the number of days since its last appearance. For example, if the
word “north” appeared in a newspaper headline yesterday, there would be a
relatively good chance that it would appear again today, presumably because
it was part of an ongoing news story. If “north” had been in the paper last
week, the chances it would appear again today would be much lower. The
researchers then measured memory for these items and found that the function
that described probability of recall over time was in accordance with proba-
bility of occurrence. This shows that our memory for items is directly propor-
tional to how often we encounter them in the environment. Our memories
are better for items that we encounter more often and poorer for those we
encounter less often. This finding supports the notion that our memories have
evolved such that they retain items only to the extent that we need them. From
an evolutionary point of view this makes sense. We should remember those
things that we encounter frequently as it is very likely that they are of importance
to us, and forget those things that we encounter infrequently, as it is likely that
they are of not much use to our survival.

Logical Reasoning

Recall from the chapter on philosophy that deductive reasoning involves the
application of logical rules to a set of premises. A conclusion is then derived.
If the premises are true, then an application of the rules will always yield a cor-
rect conclusion. Deductive thought is thus a valid way of garnering new infor-
mation about the world. Logic is used in other approaches to cognitive science.
Connectionists use the rules of logic to describe how neural units interact.
Researchers in artificial intelligence create computer programs that use logic to
generate new information from existing data and to solve problems. In the evo-
lutionary approach, investigators want to know why we as humans are so bad
at thinking logically and to relate this deficiency to the kinds of social condi-
tions our early ancestors may have faced.

If you have ever taken a course in logic, you may have wondered why the
subject is so difficult. The rules of logic are straightforward. All one has to do
is memorize the forms of these rules and then plug into them the relevant
aspects of the problem. In this fashion, one can then apply the forms to any
problem and be assured of obtaining a correct solution. Unfortunately, it is not
as easy as it sounds. Most people find it difficult to reason logically. Interestingly,
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however, there is an exception. People can reason logically under certain con-
ditions. The evolutionary approach can tell us why we are so bad at logical
reasoning in general, and what the exception is.

The Wason Selection Task is designed to measure a person’s logical think-
ing ability. Figure 8.5 gives an example of such a task. Take a minute now and
try to solve this problem. You probably found that it was quite difficult. Next,
try to solve a different version of the problem, shown in Figure 8.6. When you
have finished—or if you are having trouble—consult Figure 8.7 for the correct
solutions. If you are like most people, you found the “bouncer” version of the
problem much easier. Why is this? Both versions have the same underlying log-
ical structure and should be of equal difficulty.

According to Cosmides and Tooby (1992), the bouncer problem is easy
because it involves cheater-detection, the ability to discern who has taken as
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E G 4 8

Figure 8.5 You have been hired as a clerk.Your job is to make sure that a set of documents is
marked correctly, according to the following rule:“If the document has an E rating, then
it must be marked code 4.” You have been told that there are some errors in the way
the documents have been coded, and that you need to find the errors. Each document
has a letter rating on one side and a numerical code on the other. Here are four
documents.Which document(s) do you need to turn over to check for errors?

vodka Pepsi 30 yrs 17 yrs

Figure 8.6 You have been hired as a bouncer in a bar and you must enforce the following rule:“If a
person is drinking vodka, then he must be over twenty years old.” The cards depicted in
the figure contain information about four people in the bar. One side of each card lists a
person’s age and the other side specifies what he or she is drinking.Which card(s) do
you need to turn over to make sure that no one is breaking the law?
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his own something he does not deserve. They argue that during the EEA,
human societies were characterized by reciprocal altruism, the sharing of hard-
won resources among group members. In this kind of social cooperative it is
important to detect “freeloaders,” those who take more than their fair share.
Cosmides and Tooby believe that this social environment shaped our reasoning
abilities such that when we are presented with a logic problem that involves
cheating, we can solve it. If a logic puzzle possesses the element of a cheater,
then the evolved psychological mechanism for cheater-detection is activated.
This mechanism “understands” the rules of logic and can apply them, but only
in this specific context. Notice that this understanding stands in stark contrast
to that which maintains that the mind is a general-purpose processor that can
solve logic problems of any sort.

There is abundant experimental evidence in support of the cheater-detection
model of reasoning. One study comes from Gigerenzer and Hug (1992). They
presented participants with two Wason Selection tasks, both of which entailed a
social contract of the sort: “If you stay overnight in a mountain shelter, you must
help out by carrying up some firewood to add to the supply.” Both of these tasks
were roughly equivalent with respect to content and logical structure. The only
real difference between the two was that one of the tasks involved cheating, while
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Figure 8.7 Solutions to the “clerk” and “bouncer” problems

Solution to the “clerk” problem.
Rule: E-rated documents must be marked code 4.
Step 1: Check E-rated documents to see if they meet the coding criterion.
Step 2: Check any documents not matching the coding criterion (e.g., code 8) to see if

they are E-rated.
No more checking necessary:
G ratings (paired with any code) could not violate the rule.
Code 4 documents do not have to be E-rated.

Solution to the “bouncer” problem.
Rule: Vodka drinkers must be over twenty years old.
Step 1: Check vodka drinkers to see if they meet the age criterion.
Step 2: Check anyone who does not meet the age criterion (e.g., 17 years old) to see if

they are drinking vodka.
No more checking necessary:
Pepsi drinking (at any age) could not violate the rule.
People over twenty do not have to drink vodka.
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the other did not. The results showed that 78 to 90 percent of the participants
were able to solve the cheating version. Only about half as many participants
were able to solve the non-cheating version. This shows that the framing of a
logic problem as a social contract alone is not enough to elicit problem solving
skill; it is elicited by a social contract that specifically involves cheating. In
another study, it was discovered that even children a little older than two years
of age seem to have this cheater detecting capacity (Cummins, 1999).

Judgment Under Uncertainty

In many situations in life, we have to make a decision in the absence of com-
plete information. What are the chances that Mary will go out with me? What
is the likelihood that I will make the high school swim team? As is the case with
logical reasoning, most people are quite poor at solving problems of this type—
problems that involve probability (Nisbett & Ross, 1980; Tversky & Kahneman,
1974). Why is this? One reason is that humans facing these kinds of problems
rely on heuristics. A heuristic is a mental “rule of thumb” or strategy that is a
fast and easy way of solving a problem. The problem with heuristics is that
they aren’t always right. Heuristics can lead us to commit ourselves to fallac-
ies, fundamental misunderstandings of statistical rules. The role that evolution
has played in shaping our thinking in this situation is discussed below.

Tversky and Kahneman (1974) were the first to study heuristics and fallac-
ies. In one study, they gave participants a description of a person. Participants
were also told that this person belonged to a set of 100 people. There were two
conditions in the experiment. In the first, participants were told that the set
consisted of 30 lawyers and 70 engineers. In the second, they were told that the
set contained 70 lawyers and 30 engineers. Here is a sample description: “Jack
is a 45 year old man. He is married and has four children. He is generally con-
servative, careful, and ambitious. He shows no interest in political and social
issues and spends most of his free time on his many hobbies, including home
carpentry, sailing, and mathematical puzzles.” Is Jack a lawyer or an engineer?
The participants answered overwhelmingly that Jack was an engineer, even in
the condition in which engineers made up only 30% of the set. Tversky and
Kahneman argue that this kind of error is due to a representativeness heuris-
tic, the tendency to judge an item on the basis of its perceived similarity to
other items. Because the description of Jack fits the stereotype of the engineer,
we consider it very likely that he is one. The representativeness heuristic in this
case is accompanied by the base-rate fallacy, ignorance of the base rates that
define the set of 100 people.
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Here is another example of our difficulty with making judgments under
uncertainty (Tversky & Kahneman, 1974). Consider the following description:
“Linda is 31 years old, single, outspoken, and very bright. She majored in phi-
losophy. In college, she was involved in several social issues, including the envi-
ronment, the peace campaign, and the anti-nuclear campaign.” Which of these
statements do you think is more likely: “Linda is a bank teller,” or “Linda is a
bank teller and is active in the feminist movement”? Most people overwhelm-
ingly choose the latter sentence, even though it cannot possibly be the more
likely of the two, since there are always going to be more tellers than feminist
tellers (see Figure 8.8). Participants again rely on the representativeness of
Linda’s description, which fits the stereotype of the feminist. In this instance,
participants ignore the conjunction rule, which states that the probability of
encountering those who are both feminists and tellers is lower than the prob-
ability of encountering those who are one or the other. The making of this
error is known as the conjunction fallacy.

So, is it fair to say that humans cannot think in terms of probability or
uncertainty? From an evolutionary standpoint, one would guess that this is not
a fair statement, as uncertainty is an inherent characteristic of the natural
world. Gigerenzer and Hoffrage (1995) argue that the difficulties that human
beings have in this area, which are documented in the literature, stem not from
a fundamental inability on our part, but from the way that these types of
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Bank tellers

Feminist bank tellers

Feminists

A BC

Figure 8.8 A Venn diagram illustrating the conjunction rule. Circle A represents all
bank tellers. Circle B represents all feminists.The region C, the region of
overlap between the two circles, represents feminist bank tellers and will
always be smaller than the regions that correspond to the number of bank
tellers or feminists, considered separately
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problems are usually structured. Many of these problems entail probabilities that
are expressed as fractions or percentages, rather than as frequencies, expressed
as numbers of occurrences. Probabilities are more complex numerically as they
require dividing one number by another. They also are the rather recent inven-
tion of mathematicians. We encounter frequency data, on the other hand, as part
of our daily existence. We can think easily of how many times we’ve eaten today
or how many games the New York Yankees have won this season.

It makes sense, then, that the psychological mechanism that underlies uncer-
tain reasoning should be sensitive to frequency data. It turns out this is indeed
the case. Gigerenzer and Hoffrage (1995) assessed a number of uncertainty
problems and converted them from a percentage to a frequency format. They
found that roughly three times as many participants answered correctly. Their
finding, similar to the findings of the logical reasoning study, illustrated earlier,
is another example of how problem solving is narrowly tuned to a particular
type of information. This attunement to a particular type of information is the
second major characteristic of evolved psychological mechanisms and again
runs contrary to the notion of the mind as a general-purpose processor—at
least within these problem-solving domains.

Yet another example of poor probabilistic reasoning is the gambler’s fallacy.
Do you think it is more likely that someone who has played the slot machines
for a longer period of time will win? Do you think that a fair coin that has
come up “heads” eight times in a row is more likely to come up “tails” on the
next toss? If you answered yes to either of these questions, then you have been
taken in by the gambler’s fallacy. It is the belief that the probability of an event
is influenced by how often it has occurred in the past. If a particular outcome
has turned up quite often in the recent past, people are apt to believe that there
is an increased likelihood that another outcome will occur. In reality, the prob-
ability of each event in these cases is independent. The chances of winning at
slots the one-hundredth time are exactly the same as for the first. The chance
of getting a “heads” in a fair coin flip is 0.50 on every flip.

Why then do we persist in holding such beliefs? One explanation is that
independent outcomes are typically the product of artificially engineered devices
that are not encountered in the natural world, such as dice or roulette wheels
(Pinker, 1997). In nature, the past often is the best predictor of the future. If it
was sunny yesterday, there is a good chance that it will be sunny today. If a
herd of mammoth migrated through a particular region last year at this time,
chances are that they will do it again this year. Natural events tend to have reg-
ular time courses and shared causes, and therefore some knowledge of the way
an event unfolded in the past is informative about the way that similar events
will unfold in the future.
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Language

Language is so important in cognitive science that it is a separate field of
study. Linguists study the organizational rules of language and how language
is acquired. They also construct models of language processing. From an evo-
lutionary standpoint the focus again is not so much on processing but on how
language came to be. Because language possesses a social function, evolution-
ary researchers want to know what aspects of early human social life might
have given rise to its development.

One of the most obvious things that sets Homo sapiens apart from other
species is language. Other animals can communicate and primates can be
taught rudimentary linguistic skills, but nowhere else in the animal kingdom
do we see such a sophisticated use of and widespread reliance on language as
in the human species. The evolution of language is believed to have catalyzed
the development of intelligence, social cooperation, and other phenomena, in
the process of which human beings derived great benefit (see In Depth: A Stage
Theory of Evolution). Researchers in this area have argued that language is an
evolved trait and have provided several theoretical explanations for how it
could have arisen. Non-evolutionary accounts of language are discussed in
Chapter 9 (The Linguistic Approach).

Converging lines of evidence point to the fact that human language ability
has evolved (Palmer & Palmer, 2002). First, languages share a number of uni-
versal commonalities (Hockett, 1960). Among these are meaningfulness, the
ability of those who possess language to communicate about things not physi-
cally present, and the ability of those who possess it to produce an infinite
number of new meanings via the combination of existing elements. All babies
progress through the same developmental language stages, in the same order,
and on roughly the same time schedule. Children also acquire the rules of lan-
guage faster than they could possibly acquire them through formal learning.
Finally, there are specific brain areas devoted to language. Most individuals are
left hemisphere dominant with respect to language and have localized sites
within this hemisphere that are devoted to linguistic comprehension and lin-
guistic performance. These observations strongly imply that language capacity
is prespecified and is present at birth. This in turn means that language capac-
ity is genetically coded and has been shaped by selection forces that were oper-
ational at some time in our ancestral past.

Robin Dunbar (1996) has developed a fascinating theory of language evo-
lution. He notes that there is in hominids a positive correlation between group
size and the size of the neocortex. The neocortex underlies cognitive function
and is quite large in humans. This brain region processes social information,
for example, information that has to do with which members of a group are
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our friends and which are our enemies. These kinds of social computations
become more complex with increases in group size.

Most primates form alliances by grooming one another—by picking para-
sites and dirt from the fur of one another. This feels good to them and is a form
of social bonding. But grooming, because it is a one-on-one activity, imposes a
limit on how many individuals in a group can bond. Once a group becomes
large enough, not every member of the group can be groomed. Language is also
a form of social bonding and a way for individuals who possess this capacity
to form alliances within groups. These alliances are forged primarily through
the equivalent of gossip, wherein small groups communicate in both positive
and negative ways about other group members. Because one can speak com-
fortably to a larger number of other individuals at once, language may have
driven the formation of larger groups in early proto-human societies.

The coming into being of larger groups prompted further innovations,
which were adaptive in nature. Larger groups are better able to defend them-
selves against predators in an open savanna environment. Language allows for
complex, coordinated social behavior. Language would have facilitated hunt-
ing, foraging, childcare, and other crucial survival behaviors. The development
of language may have received an additional boost from sexual selection.
Assuming females recognize verbal skill is a rough indicator of intelligence,
then they might have chosen to mate with males who were good “talkers,” as
their intelligence would have made them better partners.

Sex Differences in Cognition

Married couples may sometimes be aware of the existence of cognitive differ-
ences between the sexes. Perhaps one partner gets lost, while the other is
forgetful. Research has shown that, in the human species, there are small but
consistent cognitive differences between males and females. The evolutionary
approach tries to provide explanation for them in terms of the difference in the
selection pressures that were acting on the two sexes during the EEA.

Important cognitive sex differences are attributed to an early human sexual
division of labor, according to which men hunted and women gathered
(Silverman & Eals, 1992; Silverman & Phillips, 1998). The hunting process,
which was apt to require navigation across large distances and novel terrain for
days at a time, is believed to have selected for enhanced spatial abilities in men
(Figure 8.9). Women, for whom communication with one another and with
their children was a part of the gathering process, are believed to have devel-
oped superior verbal abilities (Figure 8.10). Indeed, such differences between
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the sexes are observable today. On average males outperform females on tests
of spatial relations and image rotation (Levy & Heller, 1992). In these tests, a
participant is usually asked to determine whether a letter of the alphabet, dis-
played in a variety of orientations, is the same as another. Females generally
score higher than males on tests of verbal fluency, reading speed, reading com-
prehension, and spelling (Notman & Nadelson, 1991). One might also deduce
that, as women were specialized at gathering, they should be adept at specific
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Figure 8.9 Men who are part of a traditional society hunting. What cognitive skills do
you think hunting requires? 

Source: Photo courtesy of AnthroPhoto.
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kinds of spatial tasks, namely, object location memory. Memory for object
location is imperative to the task of gathering, as one would need to recall the
locations of perhaps widely disseminated food sources. Silverman and Phillips
(1998) discovered that women outperform men in their ability to remember the
locations of objects, both natural and artifactual (see Figure 8.11). Their study
suggests that our conceptions of spatial and verbal abilities are crude and that
there are perhaps multiple domains within these abilities that may point the
way to additional sex differences.

A second theory that accounts for the differences between men and women
with respect to spatial and verbal abilities has been advanced. According to this
hypothesis spatial ability became enhanced in males not as a result of hunting
activity, but as a result of longstanding mate-seeking practices. The males of
polygynous animal species must travel comparatively greater distances to meet
up with and mate with females. Data indicate that the males of polygynous
species—for example, the meadow vole—make fewer errors than females when
given maze navigation tasks (Gaulin & FitzGerald, 1986, 1989). These sex
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Figure 8.10 Women engaged in gathering. What cognitive skills make for a good
gatherer?

Source: Photo courtesy of AnthroPhoto.
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Figure 8.11 A stimulus set that can be used to test for object and location memory
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differences disappear in the prairie vole, which is a monogamous species and
neither sex of which ranges very far. It should be noted that there is nothing
special about “maleness” or spatial ability. Rather, it is the environmental
demands that are placed on one sex or the other of a particular species that are
pivotal. In the brown-headed cowbird, there is a greater need for spatial prob-
lem solving among females, who show evidence of spatial ability that is supe-
rior to that of the males (Sherry et al., 1993). Among humans, it is possible that
the enhanced spatial ability of males developed first as a result of mate-seeking
and was later co-opted for hunting activities.

Evolutionary Computing

So far, we have been considering evolutionary processes in relation to how they
may have shaped psychological mechanisms. However, an understanding of
the process of evolution can also be applied to describing the way in which
those mechanisms themselves function. In this section, we will detail how
evolution is an analogy for some mental operations and can be used as a tool
to help us to understand how the mind operates—not just how it came into
being. That is, we will consider evolution as a process that is equivalent to
some mental operations, rather than simply as a collection of historical events
that may have given rise to these operations.

Recent years have seen the introduction of a new field of study that is
known as evolutionary computing (EC). It is a collection of computational
methods that have been modeled on the principles of biological evolution
(Mitchell, 1996). EC serves three basic purposes. It solves real world problems,
including problems having to do with financial forecasting, computer program
design, and robot learning—the last of which is discussed in the chapter on
robotics. EC is also used to model and further understanding of natural evolu-
tionary systems that exist within fields such as economics, immunology, and
ecology. Third, and most important for our purposes, it serves as a metaphor
for the operation of human thought processes.

EC has three methodologies. These are genetic algorithms, evolutionary
strategies, and evolutionary programming. Some genetic algorithms have been
implemented specifically as artificial neural networks. Regardless of the meth-
ods used, all forms of EC share the same general approach to problem solving,
which consists of several stages. These are:

1. The generation of possible solutions or “candidate solutions”—that
is, a population of “individuals” who possess a range of features or
characteristics.

261The Evolutionary Approach: Change Over Time

08-Friedenberg-4747.qxd  8/22/2005  3:14 PM  Page 261



2. An evaluation of the fitness of the solutions—of how well each solves the
given problem.

3. A selection of the solutions that have the highest fitness values, based on
some predetermined fitness threshold.

4. The production of a new generation of “offspring” from the solutions
that have the highest fitness values. The offspring are made to “repro-
duce” via a crossover of “genetic material” from two or more “parents.”
These offspring can also undergo random mutations.

5. Steps 2–4 are repeated, until the optimum solution is obtained.

To illustrate this approach: one could use EC to design a new protein, per-
haps to combat some disease. Proteins are strings of amino acids—there being
20 amino acids in all. If our plan was to engineer a protein that consisted of a
string of 14 amino acids, then the total number of possible strings we could
obtain—the total number of candidate solutions—would be 2014. The number
of candidate solution proteins would become reduced with each successive
iteration of the program, until we ultimately ended up with a protein that
possessed the desired characteristics.

EC cannot solve all problems well. For some types of problems, there are
other computing techniques that are faster and more efficient. John Koza
(1992) describes a genetic algorithm that was designed to solve a problem that
involved the stacking of blocks. The program computed a solution—but one
that required 2,319 block movements! The programmers had not specified that
a good solution was one with few movements and that the best solution was
the one with the fewest movements. This illustrates the importance of selection
criteria in the identification of fitness values.

In general terms, the human approach to problem solving sometimes seems
evolutionary. We are apt to generate a number of ideas, or solutions to a prob-
lem, initially. The common term for this is “brainstorming.” We then evaluate
those ideas on the basis of merit, perhaps using a variety of criteria. We select
one idea or solution as being the best and then make additional selections in
an attempt to refine the original selection. We can apply this method to the
everyday scenario of deciding which kind of food to eat for lunch. One could
imagine eating Chinese, Indian, or Italian. In the evaluation phase, we might
decide against Chinese, because we had eaten it yesterday, and against Italian,
because it is too expensive. Having decided on Indian food, we might then
choose between two Indian restaurants, and select one, because it had better
service. Evolution is then a metaphor that helps us to understand the human
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decision-making process, wherein the generation of ideas is followed by the
staged pruning of those ideas.

Artificial Life

Artificial life (A-Life) is the study of man-made systems that have been
designed to behave in ways that simulate the behavior of natural living systems
(Langton, 1989). A-Life researchers produce artificial “creatures” that inhabit
virtual environments. They then study the behavior of these creatures and how
they interact with each other and with aspects of their environments. What
makes A-Life interesting and relevant to cognitive science is that, although the
rules that govern the creatures are often quite simple, the emergent behavior of
these creatures is complex and can be considered intelligent. We discuss A-Life
in this chapter because these creatures learn and adapt via the use of evolu-
tionary principles.

A good starting point for a discussion of A-life is Animat (Wilson, 1985).
Animat is a single animal that lives in a simple environment. Its world consists
of a square computer screen taken up by food items, which Animat can eat,
and trees, which are obstacles Animat needs to navigate around. Animat can
sense its environment; it is aware of the objects that are in its immediate vicin-
ity. It can also act on its environment by moving one step at a time in one of
the eight directions that are specified by the points of a compass (N, NE, E, SE,
and so on).

Animat is initially endowed with a set of rules that govern its performance.
These rules are in the form of classifiers, templates that match an environmental
condition that Animat is subject to at a given moment to an action. Classifiers
are really a modified version of if-then production rules. Each classifier has an
associated strength or fitness. Classifiers with greater strength values are more
likely to be utilized by Animat, as they promote Animat’s survival. Animat’s
actions also have consequences. A good action is one that promotes its sur-
vival, such as its moving to a location where there is food. Good actions are
rewarded by increases in the strengths of their classifiers. Neutral actions, ones
that have no effect on the well-being of Animat, such as bumping into a tree,
engender no change in classifier strength.

Animat is “born” with a collection of classifiers. These classifiers, along
with their strength values, are randomly determined and as such give Animat
no inherent advantage. These starting classifiers may be considered as equiva-
lent to the genetic variation that exists among individuals or the members of a
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species and that is shaped by selection forces. As Animat moves around its little
world, classifiers are chosen and their strength values are altered on the basis
of a system of reinforcement in such a way that survival-enhancing actions
become more likely. However, this system alone is not enough to ensure
Animat’s survival. What Animat needs is a way of creating new classifiers that
will better attune it to its world. This is where evolution comes in.

Wilson (1985) has equipped Animat with an evolutionary algorithm. Two
classifiers that correspond to the same general type of action are selected.
Individual components of these classifiers are then swapped. Segments of each
classifier are randomly picked and exchanged, then used to create new classi-
fier offspring. This is of course analogous to sexual reproduction in which
genetic material from both parents is used to create children. Wilson, however,
also allows for asexual reproduction. In this case, individual classifiers are
cloned (reproduced in their entirety) to have random mutations.

The result of all this is that Animat’s behavior becomes gradually more
adaptive. Rather than modify the probabilities of its selections that represent
its existing genetic endowment, it is able to generate entirely new actions, at
least some of which will have beneficial results. It has been shown that these
Animats, along with some more recent versions, learn quite rapidly. In one
simulation, Animat was able to find food in only four steps, compared to a
chance level performance in which it did the same in forty-one steps.

Other A-Life programs demonstrate greater complexity. Ackley and Littman
(1992) have created an entire population of creatures. Some are herbivores that
eat plants. Others are carnivores that hunt and eat herbivores. Over time the
herbivores learned to “climb” trees to avoid predators, while the carnivores
learned to cannibalize their fellow carnivores who died of starvation! Other
emergent social behaviors of A-Life creatures include parasitism, symbiosis,
and flocking.

A-Life simulations show that evolution-based software entities interacting
in a diversified environment are capable of complex behavior. If we define
intelligence as one’s ability to modify one’s behavior in an advantageous way
over time in the pursuit of goals, then Animat and other A-Life creatures may
be labeled as intelligent. There is, however, no generally accepted definition of
intelligence; therefore the issue of whether such creatures possess it remains
unresolved.

The field of A-Life is closely tied to the study of artificial intelligence. One
of the key differences between the two fields is that A-Life attempts to model
the behavior of the entire organism, rather than the functioning of the mind or
some specific mental process (Beer, 1990). Because the behavior of A-Life crea-
tures is reactive, they lack an “understanding” of their world; they have no
means of representing knowledge. Another criticism of A-Life has to do with
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the difference between simulation and realization. It is one thing to simulate
life (some say), but another thing altogether to actually instantiate or create it
in a true physical sense. Much of real life’s complexity, exemplified by the abil-
ity to perceive and to move around, is given to A-Life creatures in the form of
default abilities, in the absence of any real explanation as to how they may
have arisen in these creatures.

Neural Darwinism

Gerald Edelman (1989) has developed a theory of Neural Darwinism; it
applies the idea of evolutionary processes to neural learning. The theory is
worth reviewing because it shows that the rudiments of natural selection, that
is, selection and variation, are capable of forging neural circuits. Evolutionary
forces may therefore be at work both at the level of thinking and problem solv-
ing, as suggested by EC studies, and at the level of neural circuit formation,
which in fact underlies our thought processes.

In this view, new connections between cells are formed in three ways. First,
there is the formation of connections and neural structures that occurs as part
of embryonic development. These structures contain a great deal of variability
and lay the groundwork for later learning. The result of this neural development
is what is called a primary repertoire of neuronal groups. Second, the organism’s
eventual interaction with the environment prompts the differential modifica-
tion of synaptic strengths, wherein strong connections among existing collec-
tions of neurons are forged. These modifications, which correspond to a
selection of certain pathways over others, allow the organism to respond adap-
tively to its environment. The result is a secondary repertoire of neuronal
groups. The third way in which connections are made involves reentrant sig-
naling, or correlated activity, between maps that represent information that
is received from the different sensory modalities. To illustrate, the visual map
would receive inputs from the eyes and represent an image of your grand-
mother’s face. The auditory map would receive inputs from the ears and rep-
resent the sound of your grandmother’s voice. Because these two maps are
always active when you are in the presence of your grandmother, their activi-
ties become correlated and a higher-order neural circuit that links them would
come into being. This circuit would then conflate the different features of your
grandmother into a single coherent representation.

The theory of neuronal group selection is significant because it suggests that
many cognitive processes are not hardwired or pre-specified at birth. It asserts
that, instead, we are born with a tangled and variable web of neural circuits,
which are pruned and selected by experience. Note that this understanding
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contrasts with that promoted by EP, which posits the existence of innate
mental modules. By now this argument should sound familiar, as it corre-
sponds to another argument—that of the nativist position versus the empiricist
position with respect to knowledge, discussed previously in Chapter 2 (The
Philosophical Approach). You will recall that nativists believe that we are born
possessing knowledge, whereas empiricists think that knowledge is acquired. It
is probably fair to say that cognitive abilities are influenced to varying degrees
by innate and experiential factors, and that it is the job of future studies to
determine the relative contributions of each. Some of the details of the nature-
nurture debate are provided in the next section.

Evaluating Evolutionary Psychology

Because we have already alluded to some of the problems that attach to EC,
we concern ourselves here with a critique of EP. EP as a formal discipline is a
recent addition to the ranks. As such, it has received both fervent acclaim and
fervent criticism. Its strengths are its methodological variety and its attempt to
develop an objective science of human behavior that is grounded on a single,
powerful theoretical model. The evolutionary model has already proved to be
fruitful in biology and its use in psychology links the two disciplines. The
evolutionary perspective also reshapes psychology such that it becomes a uni-
fied discipline, as opposed to the disjointed one that it tends to be currently
(Buss, 1999). Modern psychology consists of multiple disciplines, each charac-
terized by a unique theoretical perspective and a unique focus. For example,
cognitive psychology focuses on information processing, social psychology
focuses on interpersonal relationships, and developmental psychology focuses
on growth and change in an organism over its entire lifespan. EP cuts across
these different theoretical perspectives and can provide a coherent, unified
approach to the study of mind and behavior. But EP has its problems. Even
adherents of the theory of natural selection and of biological evolution have
attacked its assumptions.

One of the fundamental assumptions behind the evolutionary approach is
that evolved psychological mechanisms are adaptive responses to survival-
related or reproduction-related problems. But this need not always be the case.
There are at least two other kinds of phenomena, in addition to selective
processes, that can produce novel biological function (Dover, 2000). The first
of these is exaptation or neutral drift. In this instance, random mutations in an
organism’s genome result in new genes that have little or no consequence for
reproduction. These genes can become disseminated in a population, and at
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some point may assume a new adaptive function that represents a response to a
change in the environment. The second is molecular drive, in which a copy of a
gene can mutate. There are known cases in which genes that code for proteins
become duplicated; the duplicated genes then diverge to serve another function.
These genes and the characteristics they give rise to have not been selected for.

The evolutionary scholar Stephen Jay Gould proposes that many of an
organism’s attributes may arise via nonselectionist mechanisms. He refers to
these attributes as “spandrels” (Gould, 2000). A spandrel is the triangular
space between the exterior curve of an arch and the rectangular frame that
encloses the arch (see Figure 8.12). A spandrel serves no design purpose; it
exists solely as a consequence of an architect’s surrounding an arch with
a frame. Similarly, many psychological mechanisms may themselves be
spandrels— they may be byproducts of an adaptation that was subsequently
co-opted for useful purposes. The ability to read and write are probably
byproducts of an earlier linguistic capacity—the capacity to comprehend and
produce speech. Once these earlier capacities were in place, neural connections
to visual and manual parts of the brain that were already in existence would
then have enabled the later-arriving capacities.

The job of the evolutionary psychologist is a difficult one, as he or she must
start with a given mental mechanism and come up with a purpose for it. The
purpose corresponds to the adaptive problem the mechanism was intended to
solve. This process is called reverse engineering, because one begins with the
final product and thinks back to what it was that may have compelled its gen-
esis. This is more difficult than the conventional engineer’s job, which consists
of starting with a desired function (getting a car over a valley) and designing
a product (a bridge) that will enable that function. It is also the case that evo-
lutionary psychologists can easily be wrong in making the assumption that a
particular psychological mechanism came into being as a response to a particular
problem. It may have evolved in response to an entirely different problem.

What makes reverse engineering so difficult is the paucity of available evi-
dence with which one might reconstruct crucial past events. Tools, bones, and
other fragments of the archeological record allow us to make certain infer-
ences, but they are insufficient to inform us about crucial aspects of prehistoric
times, for example, kinship relations, group size, social structure, and the activ-
ities of males and females (Gould, 2000). These aspects of culture and behav-
ior cannot be easily revealed through the fossil record.

In the traditional evolutionary view biology is shaped by selection. Biology
then gives rise to psychology. Psychology in turn generates culture—the larger
environment in which humans live (Tooby & Cosmides, 1995). This scheme
can be turned upside-down, however, in that culture can also shape
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psychology. A large body of evidence shows that environments exert a strong
influence on our thoughts and behaviors. Culture, primarily via the medium of
learning, is thus another force that is capable of generating psychology.

Dynamical or ecological models of cognition, because they postulate the exis-
tence of learning, pose a threat to evolutionary theory (Karmiloff-Smith, 2000).
In these models mental abilities arise through learning processes. That is, they
come into being as the result of an individual’s social, verbal, perceptual, and
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manipulative interaction with his or her environment—all taking place within
the lifespan of the individual. In this account, what would seem to be an evolved
psychological mechanism may in fact have been acquired by the individual as
he or she went about his or her business. This runs contrary to the evolutionary
view that evolved psychological mechanisms are coded for by genes that were
shaped by selection pressures and that were present at birth, fully formed, and
just waiting to be activated by the appropriate stimulus inputs.

An alternative account has genes laying down the groundwork for a capacity
that develops at a later stage as a result of experience. Stereoscopic vision, the
ability to perceive depth via a combination of the information that is received
from the two eyes, is an instance of this kind of capacity. Stereoscopic vision is
not present at birth, and develops fully only after an organism has perceived the
world with both eyes. The brain mechanisms that underlie such abilities cannot
exist in their entirety at birth, as developmental experience forges their basic
neural connections and circuits—a process termed “post-natal neural assembly.”

Karmiloff-Smith (2000) distinguishes between two developmental models.
In the mosaic model of development, a brain mechanism is determined almost
entirely by genes, operates quickly (i.e., is a reflex or fast perceptual process),
and its components or parts develop independently of one another. Such
mechanisms operate well under typical conditions—those “designed” to trigger
their operation. They must, however, be completely specified in advance and
are limited in how complex they can be. Evolutionary psychologists believe
that evolved brain mechanisms are, in a word, mosaic. In contrast, in the reg-
ulatory model of development brain mechanisms are only partially determined
by genes, operate more slowly (i.e., are deliberative cognitive processes), and
their parts develop interdependently. This type of mechanism is flexible and
capable of altering its function under varying conditions, and only the broad
outlines of such a mechanism need be specified at birth. These mechanisms are
also more complex. Research suggests that regulatory development is the norm
for the growth of cortical abilities—those that underlie higher-order cognitive
abilities. Mosaic development occurs in many animal species, and in humans is
likely to govern several non-cortical brain areas.

Overall Evaluation of the Evolutionary Approach 

Evolution is a powerful theoretical framework. It can be used to explain how
virtually every natural process comes into existence. As such, it rests squarely
within Marr’s computational level of description, which attempts to provide
explanation for a given process by identifying its purpose. Knowing why a
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structure exists gives us many clues as to its structure and function and can
help us to decipher problems that come into view at other descriptive levels.
The evolutionary approach, as we noted earlier, meshes well with neuro-
science. Collaboration between these disciplines should focus on finding the
neural bases of evolved psychological mechanisms, and on providing a fuller
understanding of the selection pressures that created them.

One bone of contention between evolution and the cognitive and artificial
intelligence perspectives is the issue of general-purpose vs. domain-specific pro-
cessing. Is the mind a general-purpose computer or a “Swiss army knife”? As
is the case with many other debates that are apt to pit the proponents of one
extreme against proponents of the opposite extreme, it may be that both are
correct. Some cognitive processes may indeed qualify as evolved psychological
mechanisms, by their being in accordance with all of the defining criteria.
Others may be general-purpose. There is a need for studies that will focus on
this important distinction and on the role of complex developmental factors.

In Depth: A Stage Theory of Evolution

Merlin Donald, in his book Origins of the Modern Mind (1991), proposes a
detailed three-stage model of how the human mind may have evolved. He
believes that primordial humans were at first not very different from other
primates such as chimpanzees. Primate cognition is characterized by episodic
memory, the representation of information that is concrete or time-bound.
Animals with episodic ability are limited to processing information that per-
tains to their direct experiences—those experiences linked to a specific location
and time. An ape can understand and remember that it was groomed by its
comrade yesterday, but would have trouble thinking about hypothetical or
abstract situations, for example, that it would need to eat a large quantity of
food before setting off on a long trip. This would suggest that apes, unlike
humans, do not possess semantic memory. Semantic memory, as discussed ear-
lier in the section on memory, corresponds to the ability to represent general
world knowledge, which would include facts like “Dogs have four legs.”

Episodic ability, though, allows for a wide variety of adaptive skills.
Primates are capable of learning through observation and imitation, as this
requires only the representation of a specific event and the execution of a
response. They also use simple tools. Chimpanzees can take a stick, poke it into
an ant or termite nest, and then pull it out and eat the insects that cling to the
stick. A number of non-human primates have been taught language-like abili-
ties. Some have been taught American Sign Language, and others have been
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able to communicate via pictorial representation. Although primates can learn
basic linguistic skills from human instructors, they don’t consistently use the
skills on their own, teach them to other primates, or generate novel sentences.
These issues are discussed at greater length in the chapter on language.

According to Donald, the first stage in the development of the human mind
was the emergence of mimetic skill, the ability to convey or act out informa-
tion via voluntary motor actions. Donald defines mimetic skill as the ability to
produce self-initiated representational acts that are intentional but not linguis-
tic. These acts are not mimicry or simple copying. Mimetic skill includes facial
expression, manual signs and gestures, posture, and whole body movements. It
is used to communicate information about an event to others. It thus serves as
a precursor to speech. Mimetic skill has many language characteristics, includ-
ing generativity, the capacity to generate an unlimited number of meanings.
Mimetic skill, like language, serves a social function. It allows for communica-
tion among individuals in a group. It imparts a tremendous survival advantage,
because group members can then engage in cooperative social behavior, for
example, planning a hunt and sharing information that is related to the hunt.

In stage two, human societies have undergone transition and become mythic
cultures. A myth requires the construction of a conceptual model of the human
universe. Myths are present in the history of nearly every major culture. They
tell stories about the creation of the universe, heroic adventures, and war.
Myths are oral and therefore require spoken language, the ability to speak and
listen. This form of storytelling is vocal or phonological and does not rely on
an external storage system such as writing. Myths are represented solely in the
minds of those who have heard them and are transmitted from generation to
generation. A myth integrates multiple events in a temporal and causal frame-
work. Its primary level of representation is thematic, rather than event-based.

Humans capable of myth have taken a large cognitive leap. They possess
spoken language ability and can represent events and complex ideas not lim-
ited to one place or time. These skills are built upon the strong survival advan-
tage that has been bestowed by mimesis and include improved social coordination,
tool manufacture, shelter construction, and food acquisition. Improved social
exchange in all likelihood also led to more complex social and political struc-
tures and the laying down of rules and regulations having to do with marriage
customs, property ownership, and the resolution of conflicts.

The third stage in human cognitive development, says Donald, is embodied
by the creation of an external symbolic storage system. The first such systems
were pictographic, for example, Babylonian cuneiform and Egyptian hiero-
glyphics. These systems were succeeded by alphabets. They heralded a
new human capacity—that of reading and writing. We see here a shift from
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internal to external storage, from information that resides only in the biology
of the human brain to its being represented via an external device that entails
technology. There has also been a shift from narrative to paradigmatic thought
(Bruner, 1986). Narrative thought is subjective and holistic. It is employed
more often in the arts and humanities. Paradigmatic thought is objective and
analytical and is implemented more often in the sciences. Donald believes that
the development of symbol systems and the formal manipulation of symbols
catalyzed the development of theory, objectivity, logic, and reason in humans.
These skills are themselves adaptive, as they allow for greater understanding of
and technological control of the natural world.

Minds On Exercise: Memory for Object Location

Pair up with a friend of the opposite sex. One of you will then select five objects
from Figure 8.11, without telling the other member of the pair what they are.The
other member of the pair will then study the figure for one minute. He or she will
then describe the locations of the five objects. Now switch places, and repeat the
exercise, using a different set of five objects.How did each of you provide an answer?
Did males describe the locations of the objects using frame of reference terms such
as “above” and “to the right of”? Did females code object position by using land-
marks, that is, by referring to other nearby objects? Which sex did better overall?

Food for Thought: Discussion Questions

1. Are all mental capacities evolved psychological mechanisms? Can you think of
some that might not be? Consider the “six properties” of evolved psycholog-
ical mechanisms. Do these properties describe the mental capacities that
you’ve chosen?

2. The psychologist Paul Ekman (1989) proposes five basic human emotions.
They are anger, disgust, fear, happiness, and sadness.What do you think were
the selection pressures that led to each? What adaptive purposes do these
emotions serve? Do they continue to be adaptive in modern society?

3. Clinicians identify anxiety, depression, sociopathy, bipolar disorder, and schizo-
phrenia as major categories of psychological disorder. Do these disorders
represent breakdowns in normal mental functioning or were they selected
for during the EEA? Could any of these disorders have served an adaptive
function?
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4. What are the selection pressures, other than those discussed in this chapter,
that may have led to the development of human intelligence? Formulate a
stage model for the evolution of intelligence.

5. There is evidence to suggest that females are better than males at under-
standing facial expressions and at responding to other social and emotional
cues.What do you think is the evolutionary explanation for this?

6. Women rely more on landmarks when finding their way around a new envi-
ronment (Sandstrom, Kaufan & Huettel, 1998). Men rely more on frames of
reference, such as the directions “north” and “south” or “left” and “right.”
What do you think is the evolutionary explanation for this difference?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“How very commonly we hear it remarked that such and such
thoughts are beyond the compass of words! I do not believe that
any thought, properly so called, is out of the reach of language.”

—Edgar Allan Poe, 1846

The Linguistic Approach:The Importance of Language

Linguistics is the study of language. There are many different kinds of linguis-
tics studies—each with its own theoretical perspectives and methodologies.
Some of these adopt a neuroscience approach and use the case study method;
the researchers study the language-related deficits of patients who have suf-
fered brain damage. Others implement various network models of how lan-
guage information is represented and processed. Some linguists take on a
developmental orientation: they examine how language ability grows and
changes with time during the development of the individual. Still others who
study linguistics are philosophers who ask questions about the nature of lan-
guage and of the relationship between language and thought. In fact, language
can be studied from the vantage point of every field of study that has been

The Linguistic Approach:
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described in this book and more. What makes linguistics unique, then, is not
the perspective or the tools it brings to the table, but the subject matter of the
investigation—language itself.

Linguistics studies attempt to answer many questions. Language is so com-
plex that much of the research that has been conducted in this area has been
directed toward an understanding of the structure of language (in addition to
how it is used). These studies have focused on grammatical rules that specify
allowable combinations of linguistic elements. Another interesting issue is
whether humans are unique in using language, or whether some animals pos-
sess language ability. Languages of course cannot be learned overnight, and
many linguists have studied language acquisition—how it is acquired during
development. Linguistics is truly interdisciplinary, and in this chapter we
survey the approaches to the study of language that are represented by the
disciplines of philosophy, cognitive psychology, neuroscience, and artificial
intelligence.

The Nature of Language

With this in mind, we begin our discussion of the linguistics approach with an
exploration of the nature of language. There has been much debate about what
language is, exactly—and there is no agreed-upon definition. It is easier to list
its most important characteristics (in lieu of providing a definition). According
to Clark and Clark (1977), language has five characteristics:

1. Communicative. Language allows for communication between individu-
als. Communication refers to the production, transmission, and compre-
hension of information.

2. Arbitrary. A language consists of a set of symbolic elements. Symbols, as
we noted in Chapter 1, are referential, they stand for or refer to some-
thing. Linguistic symbols can be almost anything. Most commonly, these
symbols are sounds, pictures, or words. The defining hallmark of these
symbols is that they are completely arbitrary. Virtually any sound, pic-
ture, or word could be chosen to represent a particular thing. The sound
of the word that represents “house” in English is different from the
sound of the word that represents the same item in Spanish.

3. Structured. The ordering of the symbols in a language is not arbitrary,
but is governed by a set of rules. The rules specify how the symbols may
be combined. In English, we place the adjective before the noun, as in the 
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phrase: “the big house.” In Spanish, this same proposition is expressed
via a different set of rules: the adjective follows the noun, as in: “la casa
grande.”

4. Generative. The symbolic elements of a language can be combined to
create a very large number of meanings. Just think of how many six-
word sentences one would be able to generate in English. If we start with
the sample sentence “The fox jumped over the fence,” we could then
substitute “dog,” “cat,” “deer,” and words for many other animals, for
“fox.” Likewise, we can substitute “bottle,” “can,” or “tire” for the word
“fence.” So the number of variations on just this one sentence is large.
Every day, we utter new sentences that we have never uttered before.
The generative property of language makes language very powerful, as
virtually any idea that can spring to mind can be expressed.

5. Dynamic. Languages are constantly changing as new words are added
and grammatical rules altered. Only thirty years ago, there was no word
for the concept that “e-mail” represents—because it didn’t exist.

There is a fundamental distinction to be made that has to do with the type
of linguistic representation: whether that representation is auditory, visual, or
having to do with another sensory domain. Spoken language is naturally pro-
duced via the faculty of speech and is understood via listening. Speech and lis-
tening to speech can of course be transformed into their equivalents within the
visual domain—writing and reading. Beyond this, there are also languages that
consist of motoric gestures, such as American Sign Language (ASL), and tactile
languages, such as Braille. If we consider spoken language, the most common
form of language usage, we must then describe two important elements of spo-
ken language. These are the phoneme and the morpheme.

A phoneme is the smallest unit of sound in the sound system of a language.
A phoneme has no meaning. Phonemes correspond in a rough way to the
letters of an alphabet; in some instances multiple phonemes correspond to
a single letter. The phoneme for the letter “a” as it is pronounced in “father”
corresponds to the “ah” sound, whereas the phoneme for “a” as it is pro-
nounced in the word “cane” corresponds to the sound “ay.” There are about
45 phonemes in the English language. Some instances are shown in Table 9.1.
The smallest number of phonemes reported for a language is 15. The largest is 85.
Phonemes, like letters, are combined to form the spoken versions of words.

Morphemes are the smallest units of spoken language that have meaning.
They roughly correspond to words, but can also be parts of words. Thus, the
sound of the spoken word “apple” is a morpheme, but so is the sound of “s”
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denoting the plural form. If we want to change the form of “apple” from
singular to plural, we add “s” to form “apples,” which changes the meaning.
Similarly, there is the morpheme that corresponds to the sound “ed,” which,
when added to the root form of many verbs, forms the past tense. Considering
that there are about 600,000 words in the English language, the number of
morphemes that the language has is quite large.

In addition to the elements of language, there are the rules that allow for
their possible combinations. There are multiple sets of rules. Phonology refers
to the rules that govern the sound system of a language; morphology, to the
rules that govern word structure; syntax, to those that govern the arrange-
ments of words in sentences; and semantics, to those that have to do with word
meanings. Collectively, these rules are known as the grammar of the language.
It is important to distinguish between the meaning of the word as it is used
most commonly and its more esoteric meaning (used in linguistics studies).
Prescriptive grammar is the formal and proper set of rules for the use of lan-
guage, in which we all received training at school. Descriptive grammar refers
to the underlying rules, which linguistic researchers infer from the way people
actually use language. We will come back to the subject of grammar and how
it is used to describe the hierarchical structure of sentences in our discussion of
Noam Chomsky’s theory of language.

Language Use in Primates

Animals in the wild communicate with one another. A monkey species that
lives on the African savannah has a specialized series of cries that signify dif-
ferent kinds of threats. The monkeys use these cries while they are feeding to
warn each other of impending danger. If one monkey in a group spies an eagle
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Table 9.1 Selected English consonant and vowel phonemes

Consonants Vowels

p (pill) i (beet)
w (wet) e (baby)
s (sip) u (boot)
r (rate) o (boat)
g (gill) a (pot)
h (hat) ^ (but)
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circling overhead, it emits one type of cry, which sends the members of the
groups scattering into the trees for cover. If it spots a snake it emits another
cry, which impels the monkeys to stand up on their hind legs and look around
so that they can try to locate the snake. Each of the cries has a specific mean-
ing. Each stands for a particular danger to the group. The meaning of the cry
is understood by the rest of the group, as indicated by their reactions. This is
communication, because information about an event was produced, transmit-
ted, and comprehended. But this natural form of communication is not lan-
guage. The cries are not arbitrary, there is no use of a grammar to arrange
them into anything like sentences, and they are not combined to create new
meanings.

This raises an interesting question. If animals don’t use language naturally
on their own, can we teach it to them? Do they have the same capacity for lan-
guage that we do? Research in this area has focused on primates, such as chim-
panzees and gorillas, because of their relatively advanced cognitive capacities.
Let’s summarize some of this research and evaluate the results.

Early investigations of the linguistic abilities of primates focused on lan-
guage production. Animals evidenced rudimentary language skills after being
trained in one of several linguistic systems that included ASL, as well as a sym-
bolic system employing plastic tokens and one that used geometric patterns
called lexigrams. Starting in the 1960s Beatrice and Allen Gardner raised a
chimp named Washoe. They taught her to use ASL. Their method was to get
Washoe to imitate or reproduce the hand formation that stood for a particu-
lar object (Gardner, Gardner & Van Cantfort, 1989). Washoe learned 132
signs and seemed to show evidence of spontaneous language use. Upon seeing
a toothbrush in the bathroom, she made the sign for it without being prompted.
A similar technique was used to teach ASL to a gorilla named Koko (Patterson,
1978). Koko learned an even larger repertoire of signs and was reported to
have used syntax and to have made signs spontaneously. Her trainer claims she
even told jokes!

David Premack has used a different approach. He used plastic tokens
instead of hand signals as he attempted to teach language skills to a chimp
named Sarah (Premack, 1976). The tokens had different shapes and colors and
stood for individual words as well as relationships. There were tokens that
stood for nouns (“apple”), for verbs (“give”), for adjectives (“red”), and for
relationships (“same as”). Sarah produced the “same as” token when she was
presented with two apple tokens, and the “different” token when shown an
apple and an orange token. She seemed to have a rudimentary understanding
of sentence grammar, as she was apparently able to tell the difference between
two sentences such as “David give apple Sarah” and “Sarah give apple David.”
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Savage-Rumbaugh et al. (1993) studied a chimp named Kanzi who
appeared to have learned the meanings of lexigrams. In addition, Kanzi was
apparently able to understand single-word and simple-sentence utterances
made by humans. Kanzi’s abilities seemed quite advanced. Of his own accord,
he would use lexigrams to identify objects, to make requests for food items,
and to announce a particular action he was about to undertake. Following
more structured language training, Kanzi’s abilities were compared to those of
a two-and-a-half-year-old child named Alia. Both were given novel commands
that required them to move objects. In terms of comprehension, the two
showed nearly identical abilities: they both demonstrated approximately 70%
compliance with the commands. Kanzi’s language production skills were more
limited—they corresponded only to those of a one-and-a-half-year old child
(Greenfield & Savage-Rumbaugh, 1993).

Evaluating Language Use in Primates

At this point we can examine some of the criticisms that have been leveled
at this research. Some of the animals described so far were trained via the use
of positive reinforcement. They were given a reward, usually a food item, for
making the correct sign or using the appropriate token or lexigram. A problem
with this is that the animals may have been associating a symbol with a con-
cept because they had been trained to do so, and may not have had any aware-
ness that the symbol actually stood for something. If this were the case, these
animals fail to demonstrate the arbitrariness aspect of language—that the sym-
bol can be anything and still stand for its referent. An animal’s choosing an
apple token when presented with an apple does not demonstrate arbitrariness.
But using an apple token to refer to an apple when an actual apple is not per-
ceptually present does. This aspect of language, in which users refer to some-
thing that is removed in space or time, is called displacement.

Savage-Rumbaugh (1986) presents some evidence of displacement in chimps.
She employed a technique known as cross-modal matching wherein chimps
who viewed a lexigram were then required to select the object the lexigram rep-
resents via the use of touch from a box that was filled with objects. The chimps
were able to do this, which indicated they understood what the lexigrams
represented. A note of caution is in order, however. Arbitrariness and dis-
placement capabilities were shown for a comprehension task only, where the
animals were interpreting the symbols. Earlier studies in which chimps used
ASL and tokens have generated less evidence that primates understand the
meanings of symbols when they produce them.
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What about the structured aspect of language? Do animals understand the
syntax that underlies the formation of sentences? The investigations that have
been conducted thus far show that primates comprehend and produce very
simple sentences—sentences that are on the order of two or three words long.
An understanding of the rules of syntax is demonstrated by the ability to
rearrange words in new combinations that express new meanings—the gener-
ative criterion, defined above. If animals could do this, it would indicate a
comprehension of syntactical rules.

The researcher Herb Terrace provides us with evidence that refutes the idea
that some animals may have a rudimentary understanding of or the ability to
use syntax (Terrace et. al., 1979). Terrace was skeptical that chimpanzees like
Washoe truly understood the meanings of the signs and symbols they used. As
alluded to above, he believed that chimps used hand signals or presented
tokens because they had been reinforced for doing so. To test the idea, he stud-
ied a chimpanzee whom he had jokingly named Nim Chimpsky. Nim was
raised in a human family and taught ASL. Rather than use food as reward,
Terrace gave approval that centered on things that were important to Nim.
Under this system Nim did seem to have some grasp of the meanings of his
signs, as he was found using them in the absence of their referents. He also
appeared to use signs spontaneously to express his desires. For example, he
would make the sign for “sleep” when he was bored. However, Terrace con-
cludes that Nim was never able to combine his signs so as to form sentences
and express novel meanings. He did this only when he was directly imitating
combinations of signs that had been produced by his trainers. Figure 9.1 shows
Nim Chimpsky learning a sign.

So at this point we can sum up the work on the language abilities of pri-
mates. Primates appear to possess some arbitrariness and displacement capa-
bilities because they can comprehend the meanings of a limited number of
symbols independent of their referents. This is true whether they are trained
directly (with food) or indirectly (with approval) using positive reinforcement
techniques. But here is where their linguistic skills seem to come to an end, for
primates seem to understand very little in the way of syntax, especially when
it comes to language production. They know that some aspects of word order
affect meaning. However, most primates tend to repeat the sentences they were
taught or produce only small variations on them. They do not come anywhere
near to possessing human generative capability. Also, unlike humans, primates,
once they have acquired language skills, fail to teach the skills to other
members of their species. Unfortunately, the “Doctor Doolittle” scenario of
our conversing with animals the way we do with one another just doesn’t seem
possible.
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Language Acquisition

Clearly, a human being is not born with an ability to speak his or her native
language fluently. This ability develops over time. Linguists adopting a devel-
opmental perspective have studied the acquisition and development of lan-
guage skills, from birth through infancy, childhood, and into adolescence. They
have shown that human beings pass through a series of stages, each one
marked by the acquisition of new linguistic skills.

Early in the first year, infants start to utter a wide variety of sounds. All
infants do this. At this stage they begin to exercise their vocal cords and
mouths—major parts of the vocal apparatus, the use of which they must mas-
ter in order to articulate the sounds of the language they are just beginning to
acquire. This period of development is known as the cooing stage. Figure 9.2
shows an infant communicating with her caregiver.

At around six months, the number of sounds a baby produces has shrunk.
The sounds produced at this stage are consonant-vowel pairs, such as “mama”
and “dada.” The majority of the utterances made at this time are more phone-
mic than morphemic in nature. They correspond to sound units rather than
fully pronounced words. However, the intonations of these utterances at this
point begin to match those of the language the child is learning. Intonation
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Figure 9.1 Nim Chimpsky signs “black.” 

Source: Photo courtesy of AnthroPhoto
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refers to the rises and falls in pitch and changes in other acoustic properties of
one’s speech. For example, for most speakers there is usually a rise in pitch at
the end of a question. These abilities arise during the so-called babbling stage.

Following the babbling stage and just a few months shy of the child’s first
birthday, we see the advent of one-word utterances. At this point children are
able to successfully articulate entire morphemes. These morphemes, or words,
may not be prescriptively accurate. A child may say “unky” instead of “uncle,”
but the utterance is being used in a meaningful way. The children are thus
beginning to use language in a symbolic and semantic fashion. This is the one-
word stage.

Following this, during the two-word stage, children produce two-word
utterances. It is at this point that they will say things like “see kitty” or “want
toy.” Because words are now being arranged into simple sentence-like struc-
tures, the two-word stage marks the emergence of rudimentary syntactical
skills. After the two-word stage, babies will string together more complicated
utterances, speaking out the equivalent of sentences composed of three or more
words that convey increasingly complex meanings.
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Figure 9.2 Early in development, infants will spontaneously babble phonemes
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There are no clearly identifiable stages that follow the two-word stage. But
this period is characterized by a steady growth in vocabulary and syntax. Also
during this period, children exhibit some interesting patterns of development,
especially in regard to their learning of past tense forms (Kuczaj, 1978; Marcus
et al., 1992). Studies of this type of learning show that children first imitate
past tense forms correctly. For the irregular verb “to go,” the past tense form
is “went.” After children have learned the general rule of past tense formation,
they apply it correctly to regular verbs, but then overextend the rule to include
irregular verbs as well, saying, for example, “goed” instead of “went.” Finally,
they learn the exceptions to the rule, for example, using “went” only when it
is appropriate. This intriguing U-shaped pattern of development indicates the
presence of several learning strategies in children: they start out with purely
imitative copying, proceed to an understanding of a rule, and ultimately progress
to the learning of the exceptions to that rule.

Evaluating Language Acquisition

One of the first questions that springs to mind in discussions of language
acquisition is whether language ability is innate or learned. This is of course one
of the nature-nurture debates. We have previously addressed this question in
regard to language. In the introduction to Chapter 4 (The Cognitive Approach
I) we said that the fall of behaviorism was due in part to its inability to account
for an environmental theory of language acquisition. Researchers found that
children learn words and syntax far more quickly than could be explained by
imitation or reinforcement. Also, in the section on language in Chapter 8 (The
Evolutionary Approach), we presented evidence that language is an evolved
capacity. This evidence includes the universality of some characteristics of lan-
guage, the linguistic stages that all babies progress through, and the existence of
specialized brain areas devoted to language processing. This preponderance of
evidence indicates that many aspects of language are genetically specified. It
does not mean that the environment plays no role in language acquisition, only
that we must work to uncover the interplay between environmental conditions
and the operation of any innate mechanisms.

Language Deprivation

What, then, is the role of environment in language acquisition? One very basic
approach to this question is to examine language ability in the absence of expo-
sure to language. If experience of language is necessary and innate linguistic
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mechanisms are dependent on it, we should see language deficits in the absence
of exposure to a normal linguistic environment. If, on the other hand, experi-
ence and stimulation have little to do with language development, then lan-
guage ability should remain relatively intact in their absence. Studies that have
investigated this issue have demonstrated the existence of a pivotal time in
development during which language must be learned. Children not exposed to
language during this time, called the critical period, may never acquire it or
may suffer severe language impairments.

There is abundant evidence in support of the idea of a critical period. Let’s
examine some of it. The first evidence comes from studies of birds. It turns out
that some birds (as well as human beings) are among the few animals that need
to be exposed to the communicative sounds of their own species in order to be
able to produce them (Doupe & Kuhl, 1999). Both birds and human beings
are better able to acquire communicative ability early in life. Marler (1970)
showed that white-crowned sparrows after the age of 100 to about 150 days
were unable to learn new songs by listening to a “tutor” bird. This was true
for birds that were raised with such tutors or were exposed to taped examples
of bird song, as well as those that were raised in acoustic isolation.

Another line of evidence that supports the existence of a critical period
comes from studies of the acquisition of second languages. So far, we have
been discussing first-language acquisition, wherein a single language is learned.
It is often the case of course that people learn to speak more than one language.
Researchers can study the difficulty with which an individual acquires a sec-
ond language in relation to the time of onset of the exposure to the second lan-
guage. One such study found that native speakers of Chinese and Korean (for
whom English was a second language) received scores on tests of English gram-
mar that bore a relation to the time of onset of their exposure to English: the
later their age at time of arrival in the United States, the lower were their scores
(Johnson & Newport, 1989). Figure 9.3 shows the results of this study.

The most emotionally compelling evidence that supports the existence of a
critical period consists of individual case studies of persons who were deprived
of language experience during early development. These cases are tragic but
provide a unique opportunity to examine the effects of this kind of deprivation
in humans. One famous historical case study is that of the wild boy of Aveyron,
who was discovered in a French forest in 1797 (Lane, 1976). The boy, named
Victor, had apparently lived much of his childhood completely alone and
had very little language ability. He came under the supervision of a physi-
cian, Dr. Jean-Marc-Gaspard Itard (1775–1838), who studied him inten-
sively and attempted to teach him language. Despite Dr. Itard’s best efforts,
Victor never acquired more than the most basic comprehension and produc-
tion skills.

285The Linguistic Approach: Language and Cognitive Science

09-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 285



A more recent case study is that of a girl named Genie. Genie spent much of
her early life in social isolation. The evidence suggests that the period of her
deprivation began when she was 20 months old and lasted until she was “dis-
covered,” at the age of 13 years and 9 months. During this time, Genie was
kept in a small room, where she was tied to a potty chair for much of the day
and night or confined to an infant crib. The door to the room was almost
always closed and the windows were closed and covered with curtains. Except
for her quick feedings, Genie received almost no parental care. She was not
spoken to and there was no radio or TV in the household. Thus she was
exposed to little or no spoken language. Furthermore, Genie was beaten for
making any sounds of her own.

Given this extreme and prolonged lack of exposure to any sort of linguistic
stimulation, what were Genie’s abilities like? A number of researchers have
chronicled her progress (Fromkin et al., 1974; Jones, 1995). Upon initial exam-
ination, she was found not to vocalize at all. Within a few days, she began to
respond to the speech of others and to imitate single words. Within a year or
so, she was able to understand and produce some words and names. Despite
these modest gains, it was clear at the end of the testing period that Genie pos-
sessed minimal grammatical ability. Following a period of several years’ worth
of further evaluation and training, Genie did show signs of simple grammatical
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comprehension. For example, she was able to distinguish between the singular
and plural forms of nouns, and between negative and affirmative sentences.

At eight months after discovery, Genie uttered two-word phrases such as
“yellow car.” Later, she was able to produce three- and four-word strings, such
as “Tori chew glove” and “Big elephant long trunk.” She also demonstrated
generativity—she was able to express new meanings by combining words in
novel ways.

These capacities show that Genie was able to acquire language in the after-
math of the deprivation period and that the stages of her development, such
as her use of progressively longer sentences, paralleled language acquisition in
nondeprived children. However, Genie’s abilities deviate from those of control
children in several ways. Her grammatical ability at the time of early testing
was equal to that of a two-and-a-half-year-old child and her speech production
capacity was limited. In addition, Genie’s rate of language development was
slowed in comparison to that of controls. She had difficulty using language to
express questions, and many of the hallmarks of language mastery in adults,
such as the use of demonstratives, particles, rejoinders, and transformation
rules, were absent (Fromkin et al., 1974). In summary, Genie shows that lan-
guage acquisition following extended deprivation is possible, but that it is
severely impaired. To date, Genie has not, and probably will not, develop
complete adult language skill.

Evaluating Language Deprivation

Case studies of language-deprived children yield a wealth of information
about the individuals under study. They do, however, suffer from a number of
problems. To begin with, it is difficult to make generalizations from evidence
acquired from a single person or small number of persons. The findings of case
studies do not necessarily generalize to a larger population. Second, the condi-
tions that shaped these subjects are often unknown. In the case of Victor, we
do not know the duration of his social isolation, or even if he was isolated at
all. Some have speculated that he may simply have had a learning disability or
had suffered brain damage. With regard to Genie, it is not clear exactly what
kind of language information she was exposed to during her formative years,
nor the extent to which she may have vocalized to herself.

Research that has investigated the critical period shows that, although there
may be an innate language-learning mechanism, it is dependent on environ-
mental input for its proper functioning. If this input is absent, the ability to use
language fully never appears. Exposure to and practice in the use of a language
is thus a component essential to the development of language. This is true
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regardless of the amount of or sophistication of the neural machinery dedicated
to language processing in an individual that may be in place from birth.

Philosophy and Linguistics:The Linguistic Relativity Hypothesis

A principal focus of this book is the nature of thought. If thought is represen-
tational, as it most surely seems to be, then what is its form? In Chapter 1, we
described several forms that thought could take. These included images, propo-
sitions, and analogies. Assuming we can think in all of these different formats,
then thoughts may assume multiple forms—thoughts may be sometimes pic-
tures, sometimes propositions, sometimes other symbolic representations.

But if we were to vote for the form that we believed thoughts are in most of
the time, language would probably win. When we think, it is as if we can hear
ourselves talking—what is called implicit speech. In contrast to the imagery
that occupies “the mind’s eye,” implicit speech seems to occupy “the mind’s
ear.” This supposed mental primacy of language has led some to conclude that
thought and language are so similar that it may be impossible to express the
thoughts generated in one language in another language. This is the strong ver-
sion of the linguistic relativity hypothesis, which also goes by the name of the
Sapir-Whorf hypothesis, after the linguist Edward Sapir (1884–1939) and his
student, Benjamin Lee Whorf (Whorf, 1956). The weak version denies that
such translation is impossible, but admits that the language a person speaks
influences the way he or she thinks.

Whorf studied the Hopi language, a Native American language, and found
that the Hopi experience time as a discrete series, with each unit of time, say
days, considered unique and different from the others. This differs from the
Western conception of time, wherein time is experienced as an undifferentiated
continuous flow. Thus, a Hopi individual would not say “I stayed five days,”
but “I left on the fifth day” (Carroll, 1956, p. 216). The strong version of the
linguistic relativity hypothesis would argue that the Hopi are incapable of
thinking of time as continuous because they lack the words to express the con-
cept in their language. The weak version would argue that the Hopi can under-
stand this concept of time, but that such an understanding would require a
re-expression of it that used a completely different set of Hopi words.

So which version of the linguistic relativity hypothesis is correct? Investiga-
tion of the hypothesis has proceeded along two avenues. The first has focused
on color perception, the second on counterfactual reasoning.

Davies and Corbett (1997) conducted research that tested English, Russian,
and Setswana speakers. Setswana is a language spoken in Botswana, Africa.
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Davies and Corbett gave the participants colored chips and asked them to
arrange the chips into groups based on chip similarity in any way they wanted.
If the strong version of the hypothesis were correct, the Russians would place
light and dark blue chips in separate groups, as their language has distinct
color terms for light and dark blue. The Setswana speakers would group green
and blue chips together, because they have a single term for green and blue.
Their study and a follow-up study showed that all participants tended to group
the chips in pretty much the same way, regardless of their linguistic back-
ground (Davies, Sowden, Jerrett, Jerrett & Corbett, 1998). The studies, there-
fore, fail to support the strong version of the hypothesis.

A counterfactual statement is a hypothetical one. It asks us to imagine what
would happen if something were true. Counterfactuals can be expressed in two
ways. One way is through the use of the subjunctive mood. The statement “If
you bought your ticket now, you would save money” is an example of a state-
ment that uses the subjunctive mood. The use of the word “would” is part of
the subjunctive application and signals that it is an imaginary scenario that is
being expressed. Other forms of the subjunctive use “were to” or “ought.” The
other way to express counterfactual statements is through the use of “if-then”
constructions. “If it is hot today, then I will go swimming” is an instance of
this construction.

Bloom (1981) set out to test the linguistic relativity hypothesis by taking
advantage of the fact that English speakers and Chinese speakers have differ-
ent ways of expressing the counterfactual (see Figure 9.4). English has both
subjunctive mood forms and if-then constructions, whereas Chinese has only
if-then constructions. He predicted that Chinese speakers would therefore have
greater difficult in understanding the counterfactual. He presented both groups
of speakers with a hypothetical scenario and found that Chinese speakers
failed to grasp the nature of the scenario, while the English speakers did not
have difficulty. The results of his study support the hypothesis.

Both the color naming and counterfactual reasoning studies have been crit-
icized on the grounds that tests for either color naming or counterfactual rea-
soning represent bad ways of testing the linguistic relativity hypothesis. Color
perception is in large part the result of the physiology of the visual system,
which is the same in everybody. This means that the way we see determines the
names we have for colors—not the other way around. Consistency in color
naming across populations and cultures supports this idea (Berlin & Kay,
1969). Bloom’s original study has also been criticized on the grounds that the
scenario it employed was not translated well into Chinese (Au, 1983; 1984).
When better translations were provided, Chinese speakers’ comprehension of
the scenario improved dramatically.
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Evaluating the Linguistic Relativity Hypothesis

In summary, the two avenues of investigation fail to provide emphatic
support for the strong version of the linguistic relativity hypothesis. How-
ever, more recent investigations of the mental representations of numbers
(Miura et al., 1993) and the use of classifier words such as “this” and “that”
(Zhang & Schmitt, 1998) do provide limited support for the weak version of
the hypothesis. More research is needed to establish a definitive answer to
this issue. Currently, most investigators believe that languages are powerful
enough and flexible enough to express any number of ideas. We can con-
clude that languages influence, but don’t necessarily determine, the way we
think.

We should keep in mind that language is but one way of thinking. As men-
tioned above, there are other forms of mental representation that are not lin-
guistic and that are not governed by linguistic syntactical rules. The formation
and processing of visual images seems to constitute an entirely non-linguistic
code for thinking. Mathematical thinking and the mental representation of and
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computation of numerical quantities, although language-like, may not rely on
language mechanisms to operate and could constitute another distinct format
for thought. The same can be said for the mental processing of music. Just
because language is powerful and flexible doesn’t mean it holds a monopoly
on thought. If one idea cannot be expressed in terms of another linguistically,
this might be achieved via the use of one of these other formats.

Cognition and Linguistics:The Role of Grammar

We said earlier that grammar is a set of rules that governs how words can be
arranged in sentences. Grammar is important because it tells us what is a
proper way of expressing something in a language, and what is not. If there
were no rules or constraints on expression, we could string words together in
practically any order and it would be impossible to convey anything. Let’s
delve a little further into grammar—how it puts constraints on what can be
said and how it illuminates several interesting cognitive principles.

Sentences have distinct parts that are hierarchically related. This organization
is called a phrase structure and can be illustrated via the use of tree diagrams.
Figure 9.5 is a tree diagram for the sentence “The big dog chased the black cat.”
At the highest level, the entire sentence (S) is represented. Moving down one
level, the sentence is composed of two parts, a noun phrase (NP) and a verb
phrase (VP). Moving down another level, we see that the noun phrase is made
up of a determiner (D), an adjective (A), and a noun (N). Determiners are words
like “a” or “the.” The verb phrase is made up of a verb (V) and another noun
phrase that, itself, contains another determiner, adjective, and noun.

There is a grammar that governs the use of phrase structures. This phrase
structure grammar imposes certain limitations on how a legitimate sentence
can be put together. One phrase structure rule is that all sentences are com-
posed of a noun phrase and verb phrase. A second rule is that noun phrases
consist of a determiner followed by a noun. Verb phrases can be expressed a
bit more flexibly, as a verb followed by a noun phrase, another sentence, or
other elements.

A phrase structure grammar is useful for understanding the organization of
sentences, but it doesn’t tell us how we can rearrange a sentence to express new
meanings. Noam Chomsky (1957) was the first to point this out. He notes that
a given sentence can be changed in three ways. First, we can turn an active sen-
tence into a passive one, as when “The man read the book” becomes “The
book was read by the man.” Second, we can turn a positive statement into a
negative one, by modifying this original sentence to become “The man did not
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read the book.” Third, we can convert the assertion into a question, as in “Did
the man read the book?”

In order to account for these changes, we need a new grammar that allows
us to transform one sentence into another. Chomsky’s solution was a trans-
formational grammar, a set of rules for modifying a sentence into a closely
related one. By using these rules, we can reorder “The man read the book” into
“The man did not read the book,” as follows:

NP1 + Verb + NP2 → NP1 + did not + Verb + NP2

where NP1 is “The man,” the verb is “read,” and NP2 is “the book.”
Similarly, the conversion of “The man read the book” to “The book was read
by the man” is denoted as:

NP1 + Verb + NP2 → NP2 + was + Verb + by + NP1

An important aspect of a transformational grammar is that one can use it to
express two sentences that have different phrase structures but identical mean-
ings. “The man read the book” and “The book was read by the man,” above,
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have different hierarchical organizations, but they have the same semantic
content. To account for this Chomsky proposed two levels of analysis for
sentences. The surface structure is the organization of the sentence in the form
that it is expressed—how the sentence would be heard if it were spoken or read
if it were written. The surface structure is variable and can be rearranged by
transformational grammar. The deep structure is the underlying meaning of a
sentence and remains constant regardless of the specific form in which it is
expressed.

You may have been wondering whether our discussion so far applies only to
English or whether it applies to other languages as well. It is true that languages
have different specific rules, but cross-cultural linguistic analyses have shown
that languages have a number of elements in common. These commonalities are
summed up in the concept of a universal grammar, which comprises the features
that are instantiated in the grammars of all natural languages (Chomsky, 1986;
Cook, 1988). In this view, each individual language at a fundamental level is
not really different from others, but represents merely a variation on a theme.
Universal grammar is considered as a collection of language rules, hardwired
into our brain from birth. In this sense, it is a modular aspect of mind and has
all the characteristics of a mental module. It is innate, genetically pre-specified,
domain-specific, and independent of other cognitive capacities.

What are the universal properties of all languages then? One is a phonolog-
ical rule that specifies the ordering of syllables in a word. According to the
maximal onset principle, consonants usually precede vowels: more frequently
than not, they constitute the onset of syllabic groupings. This feature is found
in all languages. Another universal is syntactical and concerns the ordering
of the subject and object in sentences. In 98% of the world’s languages, the
subject precedes the object (Crystal, 1987). Thus we say “John kicked the
ball,” not “A ball John kicked”—even though the latter form is technically
acceptable in English.

Universal grammar may be what is responsible for our ability to acquire lan-
guage so quickly. Language acquisition requires the mastery of a large number
of grammatical rules at different levels. There are actually sets of rules, that
include phonology, to determine acceptable combinations of phonemes; mor-
phology, to determine which morphemes go together; syntax, for the ordering
of words in sentences; transformation rules, for changing the forms of sen-
tences; and so on. The ease and rapidity with which this process occurs in
humans can be explained if it is true that at least some generic versions of these
rules are already present in the head at birth. A child would then adapt these
general linguistic rules to the particularities of the specific language he or she
grows up in (Bloom, 1994).
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Evaluating Universal Grammar

The idea of a universal grammar or “language organ” as originally formu-
lated by Chomsky has not gone unchallenged. To begin with, there is little evi-
dence to support the notion of specific genes for language. If one looks at other
body organs, there are few that owe their existence to individual genes. So it is
unlikely that there are specific genes devoted to language processing. There is
also doubt about the domain specificity of any proposed language module. The
rules governing language use may be more general; they may manifest them-
selves in other non-linguistic cognitive capacities. One possibility is that lin-
guistic universals are just the product of general biological mechanisms,
implying that language is not “special” in any sense.

Neuroscience and Linguistics:The Wernicke-Geschwind Model

Paul Broca (1824–1880) was a French surgeon who worked with patients who
had suffered brain damage as a result of stroke or injury. The patients demon-
strated various kinds of language deficits, called aphasias. Several of his patients
had severe difficulty in articulating speech. One famous patient was capable only
of uttering the word “tan” over and over. For the most part, these patients could
understand what was being said to them, indicating that the faculty of compre-
hension was intact, but they had problems in pronouncing and producing speech.
This deficit is called Broca’s aphasia. It is also known as nonfluent aphasia.

Patients with Broca’s aphasia produce what is called “agrammatic speech.”
They generate strings of nouns and some verbs, but without any of the filler
words such as “the” or “is.” They also fail to make words plural or to use verb
tenses. Their sentences are short and broken up by many pauses, which has
sometimes earned this kind of speech the nickname “telegraphic” or “nonflu-
ent” speech. The following is an example of the speech of a patient talking
about a visit to the hospital for dental surgery:

Yes . . . ah . . . Monday er . . . Dad and Peter H . . . , and Dad . . . er . . .
hospital . . . and ah . . . Wednesday . . . Wednesday, nine o’clock . . . and
oh . . . Thursday . . . ten o’clock, ah doctors . . . two . . . an’ doctors . . . and
er . . . teeth . . . yah (Goodglass & Geschwind, 1976, p. 408)

Post mortem examination of the brains of patients who suffered from
Broca’s aphasia has revealed damage to the lower portion of the left frontal
lobe (see Figure 9.6). This region is believed to be at least partly responsible for
language production capacity and has been named Broca’s area.
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A second area, named after Carl Wernicke (1848–1905), mediates language
comprehension. This area is located in a posterior region of the left hemisphere
(see Figure 9.6). Patients with damage to Wernicke’s area suffer from Wernicke’s
aphasia. They produce rapid, fluent, and seemingly automatic speech that has
little meaningful content. For this reason, this aphasia is also referred to as flu-
ent aphasia. This type of speech sounds normal in the sense that its rate, into-
nations, and stresses are correct, but it is lacking in content or meaning. These
patients have major problems with comprehending speech and also demon-
strate difficulty in reading and writing. Here is an example of the speech of a
patient with Wernicke’s aphasia:

Oh sure, go ahead, any old think you want. If I could I would. Oh I’m tak-
ing the word the wrong way to say, all of the barbers here whenever they
stop you it’s going around and around, if you know what I mean, that is
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tying and tying for repucer, repuceration, well, we were trying the best
that we could while another time it was with the beds over there the same
thing. (Gardner, 1974)

The Wernicke-Geschwind model was first formulated by Wernicke and
expanded in the 1960s by Norman Geschwind (Geschwind, 1972). It specifies
the functional roles of the different brain areas that are involved in language pro-
cessing, as well as their connections and interactions. Because an understanding
of the model relies heavily on an understanding of different cortical areas, we
must first introduce these anatomical regions. You may wish to refer back to the
neuroscience chapter at this point for a refresher on basic brain anatomy.

Figure 9.6 shows these cortical areas that play the key roles in language pro-
cessing—as described in the model. For starters, there is the primary motor
cortex, located in the frontal lobes in the anterior part of the brain. Commands
that originate here send impulses to muscles, causing them to contract and
therefore initiating movement; this includes the muscles of the mouth, which
must be moved as part of the operation of speaking. The primary visual cortex
is located at the back of the brain in the occipital region. It is where visual
information is first processed. This area becomes active during reading and
writing. The primary auditory cortex is situated in the temporal lobes. It is here
where sounds striking the ears are first processed. The arcuate fasciculus is a
pathway that connects Broca’s area and Wernicke’s area. Damage to this part
of the brain results in an individual’s difficulty in repeating words that he or
she has just heard, known as conduction aphasia. Finally, there is the angular
gyrus, located behind Wernicke’s area. Damage to this part of the brain pro-
duces alexia, an inability to read, and agraphia, an inability to write.

According to the model, these areas and the pathways that connect them sub-
sume language comprehension and production with respect to both the auditory
and visual modalities. There is an activation of neural pathways that is the basis
of listening and speaking, as follows: The perceptual characteristics of speech
sounds would first be processed in the primary auditory cortex. The output of
this processing would then be passed to Wernicke’s area, where the content of
what has been said is processed and understanding is born. A reply is then ini-
tiated. From here, the information that will become the reply is passed along the
arcuate fasciculus to Broca’s area. The information is converted into a motor
code, or program of articulation, within Broca’s area. This code is then passed
to the primary motor cortex, where commands to move the muscles of the
mouth and produce the speech that constitutes the reply are executed.

A second pathway meditates reading and writing. In this pathway the pri-
mary visual cortex processes inputs that have originated from the words on a
printed page. This information is then output to the angular gyrus. The visual
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representation of what has been read is converted into an auditory code within
the angular gyrus, which then sends the code to Wernicke’s area. The remain-
der of this pathway, responsible for producing behaviors such as reading out
loud or writing, coincides with the final portion of the pathway described in
the preceding paragraph. The information flow would be from Wernicke’s
area via the arcuate fasciculus to Broca’s area, and then to the primary motor
cortex, where muscular action is initiated.

Evaluating the Wernicke-Geschwind Model

The Wernicke-Geschwind model has been criticized on a number of counts.
It is considered by some to be an oversimplification of the neural basis for lan-
guage. To begin with, the areas specified by the model are not completely asso-
ciated with their hypothesized function. Although in most patients damage to
Broca’s area or Wernicke’s area results in the corresponding aphasias, this is
not always the case. Lesions to Broca’s area alone produce a transitory apha-
sia—one that presents with only mild symptoms several weeks after the event
that precipitated the injury (Mohr, 1976). More troublesome to the theory are
the records of patients with Broca’s aphasia who have not sustained damage
to Broca’s area (Dronkers et al., 1992). The same is true for patients with
Wernicke’s aphasia (Dronkers, Redfern & Ludy, 1995).

The areas that are specified by the model are characterized as being
modality-specific, with Broca’s area being a motor-only area that codes for
speech articulation, and Wernicke’s area being an auditory, sensory-only area
devoted to speech comprehension. However, brain-imaging techniques show
that these regions are the sites of processing activities that underlie sign-
language use (Bavelier et al., 1998). This suggests that they may represent more
abstract, modality-independent language ability. In other words, these areas
may contain knowledge of syntax that can be applied to any language system,
regardless of the modalities involved.

Another criticism of the model centers on its original assumption that these
areas are devoted exclusively to linguistic processing. Swinney et al. (1996) have
found that lesions in aphasic patients, even those suffering “classic” syndromes
such as Broca’s aphasia and Wernicke’s aphasia, may have disrupted basic pro-
cessing resources used by the language system. If this were true, damage to the
brain areas thought to subsume language only may also lie behind disruptions
of other systems that language depends on, such as memory and attention.

Another problem with the Wernicke-Geschwind model is methodological.
It was based largely on evidence obtained from clinical case studies of brain-
damaged patients assembled after their deaths. Modern science relies more on

297The Linguistic Approach: Language and Cognitive Science

09-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 297



brain imaging in live patients. The use of brain-imaging techniques has shown
that there are many other brain areas that contribute to language function.
We can list a few of them here. The insula lies beneath the frontal, temporal,
and parietal lobes. Most patients with Broca’s aphasia also have lesions in the
insula (Vanier & Caplan, 1990). The left inferior prefrontal cortex, just ante-
rior to and ventral to Broca’s area, is activated during semantic retrieval
(Peterson et al. 1988). The basal temporal areas, at the bottom of the left
temporal lobe, and the cingulate gyrus are also involved in word retrieval.
The anterior superior temporal gyrus, anterior to the primary auditory cortex,
is implicated in sentence comprehension. These areas are just beginning
to be understood. They are believed to interact as parts of a complex net-
work. There is as yet no overarching theory that can describe this interaction.
Until then, the Wernicke-Geschwind model provides a useful, if somewhat
outdated, understanding of what goes on in the brain during language
processing.

Artificial Intelligence and Linguistics:
Natural Language Processing

Natural languages are those that have evolved in human societies and are used
by human beings, such as English, Spanish, and French. These are in contrast
to formal computer languages such as C++, or linguistic expressions of logic.
There are two kinds of natural language processing. Understanding a natural
language involves an individual’s assimilation of linguistic expression in some
form, such as speech or writing, extracting its meaning, and then undertaking
some action that constitutes a response to this meaning. Understanding is
what a computer would need to do if it were to interpret a spoken human
command and act on it. Generation is the reverse of this process. It involves
taking a formal symbolic representation of an idea and converting it to an
expression in English or some other natural language. For example, the idea
“It is a sunny day” may initially be stored in a particular format in a com-
puter. A computer would be generating language if it could transform this
idea into a spoken utterance that a human being could understand. These two
processes are thus the computer equivalent of natural language comprehen-
sion and production. In this section, we will concern ourselves exclusively
with natural language understanding, as that is the area in which research has
been concentrated.

Cawsey (1998) outlines four stages of natural language understanding. We
will preview each of them, in the order that they occur:
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1. Speech recognition is the first step in the process, whereby the acoustic
speech signal is analyzed to determine the sequence of spoken words.

2. In syntactic analysis the word sequence is analyzed via the use of knowl-
edge of the language’s grammar. This yields the sentence structure.

3. Following this, the sentence structure and the meanings of the words are
used to derive a partial representation of the meaning of a sentence. This
is the semantic analysis stage.

4. Pragmatic analysis, the final stage, produces a complete meaning for the
sentence via the application of contextual information. This information
includes data that has to do with the time and location of the utterance,
who was saying it, and to whom it was said.

Speech Recognition

Speech recognition by machine is a laudable aspiration. Wouldn’t it be nice
to be able to talk to our computers instead of having to type in commands or
use a mouse? Humans use language quickly and effortlessly to communicate
ideas to one another. To be able to communicate in a similar way with com-
puters would usher in a new age of efficiency and productivity. Unfortunately,
the task of getting a machine to understand speech is much more difficult than
it may seem. Let’s review some of the steps that speech recognition by machine
would have to include and talk about the problems involved.

Any attempt at speech recognition starts with a speech spectrogram. A
speech spectrogram is a visual representation of the speech signal; it is a graph
that displays the component frequencies of a speech sound over time (see
Figure 9.7). From this, a computer program then attempts to extract the
phonemes from the segment of speech under analysis. If a phoneme is ambigu-
ous, the segment of the speech signal that it occupies can be matched against
similar utterances that have been recorded and analyzed to “fill it in.” The
phonemes are then assembled into their corresponding words. This is accom-
plished in part by a statistical analysis that factors in the probabilities that spe-
cific words will crop up in speech, that specific phonemes will crop up in specific
words, and that specific words will be surrounded by other specific words.

Phoneme-to-word assignment is difficult for two main reasons. The first
of these concerns word boundaries. In turns out that there are no pauses
in-between words in spoken speech. This makes it hard to tell where one
word starts and another ends. To compound the problem, there are often
pauses within words. So pauses cannot serve as reliable indicators of word
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boundaries. The second major issue is phoneme variability. If each phoneme
were pronounced clearly and uniformly, speech recognition would be much
easier. This is not the case. Speakers vary tremendously with respect to the
pitches and durations of their phonemes. They are apt to pronounce a given
phoneme variably, and in ways that depend on which phonemes precede it and
which come after it. This is known as coarticulation. Additional complicating
factors are the presence of background noise and the fact that in English a
single sound, for example, that represented by “bear” and “bare,” can belong
to more than one word.

People resolve these difficulties by taking into account the overall mean-
ing of a sentence. In one classic study, Warren and Warren (1970) presented
participants with recordings of sentences in which a cough sound was substi-
tuted for a phoneme. One of the sentences was “It was found that the *eel was
on the axle. (The asterisk indicates where the cough sound was inserted.) In other
versions of the sentence, the word “axle” was changed to “shoe,” “orange,”
and “table.” Asked to interpret the four sentences, the subjects heard the
ambiguous word as “wheel,” “heel,” “peel,” and “meal,” respectively. This
clearly demonstrates that the meanings of words in a sentence that have
already been understood provide a framework for understanding the words
that have yet to be understood. It also shows that in human speech perception,
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recognition is top-down as well as bottom-up, as the meaning of the entire sentence
is pulled together simultaneously with the meanings of individual words.

Humans also have the benefit of visual cues when they are taking in speech.
We can look at a speaker’s lips as he or she is speaking. The positioning of the
lips can help us to interpret difficult phonemes or morphemes. Because some
deaf individuals can understand speech by way of lip reading, there is obvi-
ously more than enough information in the visual aspect of speech to enable
comprehension. Most computer speech recognition systems in use today must
rely on auditory information as their only input and so do not have visual
cues. The In Depth section describes a cognitive model of how humans might
recognize words presented to them either visually or verbally, get at their
meanings, and produce responses.

Syntactic Analysis

Once the individual words and their order have been determined we can
analyze the speech stream at the sentence level. This analysis entails the use of
grammar. We have already discussed the various grammars that govern sen-
tence structure. Syntactical analysis programs perform the equivalent of using
a phrase-structure grammar to evaluate a sentence and to break it down into
its hierarchical constituents. An understanding of this structure is necessary if
we are to get at the sentence’s meaning.

Semantic Analysis

The string of phonemes that make up a word are sometimes enough to
reveal the word’s meaning. This is achieved by a comparison of the phonemic
string to an internal database of sounds. If a match is obtained, the word’s
meaning is derived. But many times, there isn’t a perfect match and much
ambiguity remains as to a word’s meaning. In this case, the syntactical struc-
ture of the sentence can be useful.

In compositional semantics, the entire meaning of a sentence is derived from
the meanings of its parts. A syntactical analysis identifies the type of word for
each word in the sentence. This gives us information about how those words are
related. For example, if a given word is identified as a noun, we know that it can
be an agent of or instigator of an action. If a word is identified as a verb, we
know that it represents an action. The structure of the sentence can then tell us
whether that noun was the agent of that action. If a verb phrase is linked at the
next higher level in the phrase structure to a noun phrase that immediately precedes
it, there is a good chance that the action represented by the verb is brought
into being by that noun. This structure has thus told us that the noun is an
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agent—additional information that has to do with the word’s meaning. Similarly,
it is clear that the adjective inside a noun phrase is a descriptor that applies to that
noun and not any other. The structure has again helped us to decipher meaning.
We know that this word describes the noun in the phrase and not any other.

Consider the following:

“’Twas brillig, and the slithey toves did gyre and gimble in the wabe.”

What makes this sentence interesting is that it uses imaginary words, yet fol-
lows proper grammatical rules. Even though most of these words are mean-
ingless, we can still glean some understanding of what is happening by drawing
on our knowledge of grammatical construction. You have probably guessed
that the “toves” are the noun and “slithey” is the adjective that describes them.
You may also have intuited that “gyre” and “gimble” are verbs that describe
the actions performed by the “toves” and that they are doing it in the “wabe.”
Now consider this:

“Colorless green ideas sleep furiously.”

Here we have an example of another sentence that follows grammatical
rules. It differs from the one above in that it is composed of meaningful words.
This time, however, the words are used in a nonsensical way. Ideas cannot be
green, and if they could be, they could not also be colorless. Likewise, ideas
can’t sleep, and if they could, they couldn’t do it furiously. This sentence is
even more confusing than the one above because despite the fact that the words
fit the “slots” that make up a proper phrase structure, their meanings conflict
with one another.

So we see that grammar does more than tell us what a correct or incorrect
sentence is. Grammar specifies the abstract relationships between words in a
sentence. These relationships are important clues in our deciphering of indi-
vidual word and overall sentence meaning.

Pragmatic Analysis

Human language is a social construct. Individuals use it to communicate
with one another. We communicate for all sorts of reasons. Sometimes the
purpose of a linguistic utterance is simple conveyance of information, as when
we say “This pillow is soft.” But linguistic utterances can serve many other
purposes—ones that require an action on the part of the listener, for example.
It is sometimes not apparent what action should be undertaken by the listener,
as many sentences invite action on the listener’s part without directly issuing a
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command. Pragmatics are the social rules that underlie language use, as well as
the strategies used by speakers to make themselves clear. Pragmatics helps us
to understand what actions we should take in response to spoken sentences.

Searle (1979) outlines five different types of spoken statements. Each type
demands a different response from the listener.

1. Assertives are spoken statements in which the speaker asserts his or her
belief. An example would be: “It is hot in here.” The statement suggests
that we should open the window or turn on a fan or an air conditioner.

2. Directives are instructions dispatched from the speaker to the listener.
They are direct commands and don’t require an inference on the part of
the listener with respect to what the desired action is. “Turn down the
radio” is such a command.

3. Commissives commit the speaker to a later action, as when a child says,
“I will take out the garbage later.” We would then need to verify that
the garbage had indeed been taken out or had not, and we would possi-
bly impose a reward or punishment, depending on the outcome.

4. Expressives describe the psychological states of the speaker. “I apologize
for yelling at you” indicates sorrow or regret, and implies that the
speaker probably continues to trust the person being spoken to.

5. Declaratives are spoken statements in which the utterance itself is the
action. “You are fired” means we have to look for a new job.

In each of these statements, we see that a speaker has used language to get
the listener to perform an action. This is the case even in instances in which the
sentence has not been phrased specifically as a command. Understanding
the meaning of a statement is not enough here: one must infer what action the
statement has asked for (directly or indirectly). Social context plays an impor-
tant role in this process of establishing intent. “Do you know the time?” asked
by someone waiting at the bus stop means that the speaker genuinely wants to
know the time to find out if the bus is late. This same question asked of some-
one who has arrived late to an important meeting has a different intent. It is a
criticism of that someone’s lateness and not a request for the time.

Evaluation of Natural Language Processing

Computers are good at dealing with formal languages wherein everything
is specified. They are not so good at dealing with natural languages that can
be inherently ambiguous. Although recent years have seen advances in the
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creation of machines that can understand speech, we still have a long way to
go before we will be able to talk to our computer the way that Captain Kirk
talks to the spaceship’s computer in the TV show Star Trek. Speech recogni-
tion systems still have problems in dealing with noise, differences in pronunci-
ation, and word ambiguity. Also, semantic analysis cannot rely on grammatical
structure alone in the decipherment of meaning. This analysis must take into
account real-world knowledge and social context. These bodies of knowledge
are extensive and enormous. They include knowledge of objects, their uses,
and the actions and lives of people, living and deceased. The ability to under-
stand speech in a general way thus requires a very large database. Currently,
speech recognition systems are only capable of understanding much more lim-
ited domains.

Overall Evaluation of the Linguistic Approach

Hopefully, this chapter has given you a sense of the importance and complex-
ity of language. Linguistics resembles cognitive science as a whole in that it
brings multiple perspectives to bear on a single topic. Instead of mind, its topic
is language. Linguistics uses a varied set of theories and methods in its attempt
to answer questions about language. The common thread that runs through its
investigations is the subject matter, and not any one technique or orientation.

We have made great strides in expanding our understanding of language in
the past few decades. Grammatic analysis has been used to expand our com-
prehension of language structure. We have elucidated the linguistic abilities of
animals and we know the developmental stages that all children pass through
as they acquire language. But there is yet much to learn. The relationship
between language and thought is still murky, and we await further research
that will shed light on the ways in which language influences thinking. The
Wernicke-Geschwind model will in all likelihood be revised in favor of a new,
comprehensive model that will be more detailed and will be able to specify the
neural basis of processes such as retrieval from the mental lexicon. There will
also be advances in computer-based language comprehension.

In Depth:The Logogen Model of Word Recognition

How is it that we recognize words? Every day we perform this task rapidly and
effortlessly, while reading and while listening to the sound of a spoken voice.
Yet this process is complicated and involves a number of processing steps.
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Several models have been advanced to explain word recognition. One of these
is a network model called TRACE (McClelland & Elman, 1986). Because it is
in some respects similar to the NETtalk model, described previously, we will
not discuss it here. Instead we will sketch out a long-standing cognitive infor-
mation-processing model of word recognition, known as the logogen model
(Morton, 1969, 1979). We will then contrast this model with more current
neurological studies of the lexicon.

A logogen is a word representation. In the original formulation of this
model, there is a logogen for every word. That means there is a logogen that
corresponds to the word “elephant” and another that corresponds to the word
“wet,” and so on. These logogens are stored in a lexicon, a mental dictionary
in which specific word features are represented. Morton (1979) specifies two
lexicons—one for auditory word representations and another for orthographic
or visual word representations (see Figure 9.8). The logogens that make up
these lexicons are activated by sensory inputs from the corresponding sensory
modalities. Sounds taken in while one is listening to speech first undergo
acoustic analysis. The result of this analysis then triggers the activation of
logogens in the auditory input lexicon. When one reads, the sight of words,
after undergoing orthographic analysis, triggers the activation of logogens in
the orthographic input lexicon.

Sometimes one’s perceiving a word is insufficient to call forth its meaning. In
these instances, contextual information, such as the meanings of the surround-
ing words and general world knowledge, is called into action. We referred to
this earlier as representing the difference between bottom-up and top-down pro-
cessing. In the logogen model, these two-way influences on word recognition
are mediated not only by relations between words in the sensory inputs, but also
by world knowledge that resides in the cognitive system. “Cognitive system”
refers to other systems such as long-term memory. In Figure 9.8, arrows that lie
between the cognitive system and the input lexicons point in both directions,
indicating that both bottom-up (perceptual) and top-down (conceptual) infor-
mation can drive the activation of word representations.

We have described the comprehension aspects of the logogen model and have
shown how words are recognized while one is listening to speech or reading. The
model can also explain production—how words are used to generate language
during the operation of talking. This is achieved via a logogen output system.
Activation of output logogens produces a phonological code. This code is fed to
an articulatory apparatus, which enables the production of speech. One’s think-
ing of something to say would activate the output logogens. This is represented
in the model by the arrow that originates from the cognitive system and points
to the logogen output system. Morton also speculates that output logogens can
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be activated directly by their input analogs in the lexicons. This could occur, for
example, when we are listening to what someone has just said and we make an
automatic response. The arrows originating from the lexicons and pointing to
the output system are used to represent this type of occurrence.

It is important to note that the activation of logogens does not necessarily
call forth their meanings. In other words, the logogen for a particular word
might be active in an individual’s consciousness, and he or she might still not
know its meaning. This is the case when we recognize an unfamiliar word, but
don’t know what it stands for. In this model information about word meaning
is contained in the cognitive system, not in the logogens. This meaning (along
with sensory inputs) is what influences word recognition.

To illustrate how the model works, consider the following sentence:
“The carp swam in the pond.” The logogen for “carp” that resides in the
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orthographic input lexicon would be activated first by one’s encounter with the
printed word. Let’s assume that you have seen the word carp before but don’t
know what it means. Upon continued reading, the meanings of other words in
the sentence would help to disambiguate “carp.” The word “swam” indicates
that “carp” is probably a fish, since fish swim. The word “pond” would also
suggest that it is a fish, since fish are often found in ponds. The utilization of
one’s knowledge of swimming and ponds represents the functioning of top-
down activation within the cognitive system that helps to stimulate the carp
logogen.

Modern Conceptions of the Lexicon

The logogen model is a nice way of conceptualizing some of the important
issues in word recognition. It accounts for speech and reading comprehension
via its postulation of two distinct pathways for the processing of acoustic and
orthographic inputs. It takes into consideration the top-down and bottom-up
effects that derive from a two-way interaction between the cognitive system
and sensory inputs. It also explains how word representations are used in the
output system that enables language production. However, there have been
many studies of the lexicon and word recognition since the formulation and
subsequent revision of this model. We will look at some of this work as a way
of helping us to evaluate the older logogen ideas.

In cognitive science, the lexicon is considered to be a collection of the mor-
phemes, both words and word-parts, that make up a language. Each morphemic
entry is believed to contain three bits of information (Grimshaw, 1999). The
first is semantic. It is the meaning of the morpheme and can be thought of as its
definition; a morpheme within a lexicon has its definition in much the same way
that a dictionary has a definition for every word. The second is the expression
of the morpheme’s syntactical function, for instance, how it is used in a sen-
tence. Syntax here includes the kinds of grammatical relations the morpheme
has with other morphemes. Finally, the morphemic entry is thought to possess
morphological or phonological information that specifies its pronunciation. In
the next few paragraphs, we will consider the neurological evidence that shows
that the lexicon contains these and other types of information.

Patients who present with the aphasic deficit known as anomia are unable
to remember the names of things, people, or places, but have some ability to
define them (Kay & Ellis, 1987). This shows that the brain damage that these
patients have sustained has disturbed the “labels” or forms of words but not
their meanings. Conversely, other brain-damaged patients cannot define words,
but their remaining lexical knowledge is intact, demonstrating that only the
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semantic aspects of entries are affected. Both of these groups show evidence of
widespread damage to their left temporal, parietal, and frontal lobes.

Yet another set of patients have difficulty with the spelling of words (the
orthographic forms) or with their phonological characteristics. These people
have no difficulty with word meaning. This suggests that these two attributes,
spelling and phonological characteristics, are coded for separately and inde-
pendently of semantic properties. These data provide some support for the
logogen model, which postulates that the phonological, orthographic, and
semantic components of words are parts of separate systems.

The deficits seen in these types of aphasias can be even more specific. There
are patients who have difficulty processing words that represent items belong-
ing to distinct categories, such as animals, plants, and constructed artifacts
(Caramazza & Shelton, 1998; Gainotti & Silveri, 1996; Martin, Wiggs,
Ungerleider & Haxby, 1996). For instance, a patient might be able to say
“giraffe” upon his or her seeing a picture of that animal. Additionally, they
would have no trouble identifying other animals represented in pictures. But
this patient might not be able to identify pictures of tools and could have dif-
ficult identifying a drawing of a hammer or screwdriver. Additional category-
specific deficits have also been found for nouns and verbs (Damasio & Tranel,
1993). This demonstrates that words that represent items or actions that
belong to distinct categories are also coded for separately.

In conclusion, more recent investigations of the lexicon show us that it is
distributed throughout the left hemisphere. Distinct areas of this hemisphere
code for distinct aspects of lexical knowledge. These include the form of a
word, its meaning, spelling, and sound. Furthermore, representations of words
that belong to distinct word categories appear to be localized to distinct neural
regions. These categories correspond broadly to living and non-living things
and to noun-verb distinctions. Additional research will probably yield even
more refined representational distinctions.

Minds On Exercise: Conversational Pragmatics

This exercise requires three people.Two will sit facing each other and engage in a five-
minute conversation.A third will monitor the conversation and record the number
of sentences that fall into the five categories of speech outlined by Searle (1979).
Alternately, the observer can record the conversation and make a more careful tran-
scription of the conversation at a later time. What types of speech were used the
most? The least? Why? Were there any sentences that one partner in a conversational
pair found difficult to comprehend? How did the speaker clarify his or her intent?
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Food for Thought: Discussion Questions

1. Imagine that you have been trying to teach a chimp named Bongo to com-
municate with you.What kind of sentences could Bongo produce? What kind
of sentences would he be unable to produce? Why?

2. What are the three stages that a child might go through in coming up with
the past tense form of the verb “to run”? Give an explanation for each stage.

3. Draw a tree diagram for the phrase structure of the following sentence:“The
police chased the men who robbed the bank.” Do the same for: “The men
who robbed the bank were chased by the police.” Are the phrase structures
different? Do the sentences have the same meaning?

4. Sketch out the components of the Wernicke-Geschwind model and the path-
ways that mediate information flow between them. Now go through and
knock out one region at a time, simulating the damage that might be sustained
by that area as a result of stroke. Describe the resulting signs and symptoms.
For example, what kind of language deficits would a patient with damage to
the angular gyrus have? In each case, describe why the patient would exhibit
those deficits.

5. Make a telephone call to an automated voice recognition service.These are
commonly used by some customer service departments of telephone com-
panies and by services that sell movie tickets. In what ways is the system rigid?
Why is it so difficult to get a computer to process natural language?

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“Artificial stupidity may be defined as the attempt by computer
scientists to create computer programs of a type normally associ-
ated with human thought.”

Wallace Marshal

Introduction

I propose to consider the question “Can machines think?” This should
begin with definitions of the meaning of the terms “machine” and “think.”

With this provocative question and challenge, Alan Turing began his semi-
nal paper Computing Machinery and Intelligence (1950). Turing’s proposal
evolved into what he called an ultimate test of intelligence. If a machine were
able to pass the test—discussed in detail in this chapter—in its most refined
form, it would enable one to make the argument that the “intellectual”
responses of a machine were indistinguishable from those of a human being.
Turing’s contributions have produced an avalanche of passionate debate and
research in the 50 years since the signal moment at which he so eloquently

Artificial Intelligence I:
Definitional Perspective
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articulated the central questions of Artificial Intelligence (AI). In this chapter
we will bring together the elements of technology and behavioral and cognitive
models that provide the basis for the possibility of creating a machine-based
intelligent agent—a goal that has intrigued humanity for several millennia. In
short, we seek to develop a definition of AI.

To accomplish this goal, we will briefly review the philosophical and tech-
nological streams whose convergence now comprises the basis for AI. The con-
cepts of strong AI, applied AI, and cognitive simulation—and the distinctions
between them—will be defined and demarcated. The use of the characteristics
of intelligence as a cornerstone of AI will be explored, as will human learning
paradigms. The two fundamental approaches to AI—top-down and bottom-
up—will be defined. The digital computer as the foundation for the modern
intelligent agent will be introduced, including an explanation of its “linguistic”
or programming strictures.

Turing will be revisited in considerably more detail, as will the arguments of
his detractors in this ongoing debate regarding machine intelligence and the
“battle lines” of the current disputes on the subject of the future of AI. As in
other chapters in this text, an In Depth discussion will be provided—in this
instance we consider the contributions of Ned Block and behaviorism.

Historical and Philosophical Roots

Witness the fascination that we have for store windows full of mechanical dis-
plays, particularly around the Christmas holiday season. Often, very elaborate
scenarios and stories are played out by innovative, humanlike automata dis-
playing motions that parallel our own behavior. As applied here, the term
“automata” refers to mechanisms that can move or act of themselves. One
of the most popular robotic “toys” of 2005 was “Robosapien”—a computer-
based automaton that, according to its creators, achieves fast, dynamic, two-
speed walking and turning, performs 67 pre-programmed functions (e.g.,
kicks, dances, and exhibits several scatological capabilities), is fully program-
mable by remote control, and is capable of fluid “international caveman
speech.” Although we do not consider such toys to be human, they are demon-
strations of our long-held desire to create a machine “in our own likeness”—
an automaton that would exhibit such lifelike qualities that we would no
longer be able to discern any differences between machine and human behav-
iors. The advent of the electronic digital computer has altered the focus of our
search from the mechanical to the intellectual capacities of humans.
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The Quest for “Mechanical Life”

AI would not be possible without the advancements accruing from mechan-
ical technology. The history of mechanical dolls can be traced back at least
2,000 years, to a time when the Greeks used wind and water to power moving
statues and introduced manmade singing birds. During medieval times, mechan-
ical birds and moving dolls appeared in India and Arabia. People in these
places viewed them as magical and fearsome, while religious groups con-
demned them as devilish and sought to banish them from daily life. Some
examples from history include:

• Louis XII of France receives a mechanical lion from Leonardo Da Vinci
(1509). It can move the length of a long hall, stop in front of the king,
and place a fleur-de-lys at his feet.

• King Gustavus Adolphus of Sweden receives a cabinet in which two well-
dressed dolls dance together (1632).

313Artificial Intelligence I: Definitional Perspective

Figure 10.1 Mechanical somersault doll, eighteenth century, Edo Period 

Source: Reprinted with permission of the Kyoto Museum.

10-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 313



• Louis XIV receives a miniature horse-drawn carriage complete with
attendant servants. It travels over a table, stops in front of the king; a doll
emerges and presents the king with a petition. The doll returns to the
carriage, which then drives off.

• Pierre Joquet-Droz is invited to the court of Louis XVI and Marie
Antoinette to display “The Writer,” which can write sentences. Another
automaton can draw pictures, and yet another can play the clavichord.

The eighteenth century was perhaps the golden age of the “philosophical
toy.” And, one of the most colorful technicians of this age was Jacques
de Vaucanson. His magnificent creations were admired all over Europe. The
French philosopher Voltaire referred to him as a “new Prometheus.” When de
Vaucanson was very young, his mother would take him to church, where he
was left alone while she went to confession. To pass the time, the young boy
noted every detail of a clock in an adjoining room and he produced a perfect
copy of the mechanism at home. He eventually went on to study with a Jesuit
order (l’Ordre des Minimes) but ultimately found this life to be too confining
and he fashioned a profitable livelihood from his automata. A brief list of his
mechanical constructions would include the following:

• The Flute Player: a mechanism that could play the flute. The automaton
was fashioned after a famous statue by Antoine Coysevox; it was life-size,
a tune was generated by fingers and breath was produced by varying
amounts of air blown into the flute in a manner that depended on the
shaping of the lips. To produce the sounds, nine bellows were attached to
the chest. The bellows were attached to different weights so as to give out
varying degrees of air. The pipes were conjoined in a kind of trachea and
from there the air passage widened to form a throat and mouth cavity.
The machine could play 12 different melodies. It mimicked the means by
which a man would make the sounds and there was a mechanism to cor-
respond to each relevant muscle.

• Pipe-and-drum figure: it played a pipe at a speed faster than any living
person could achieve.

• The incontinent duck: his most famous device. This remarkable duck
ate food from an exhibitor, swallowed it, digested it, and, yes, produced
excreta. Voltaire thought that this contribution echoed the glory of
France. It was similar in size to a duck, drank water with its beak, quacked,
could rise up and settle back on its legs, and, most amazingly, it swal-
lowed food with a realistic gulping action of its flexible neck.
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Because Louis XV was an admirer of the duck, he appointed de Vaucanson an
inspector of silk manufacture. De Vaucanson set to work automating the looms
of the region, and as a result there was great upheaval in the silk mills of Lyon. In
retaliation against the scorn of the millworkers, he built a loom that could be
operated by a donkey—to prove that “a horse, an ox or an ass can make cloth
more beautiful and much more perfect than the most able silk workers.” The
anecdote provides an example of an instance in which humans were threatened
by the possibility of their replacement by machines—an issue of increasing impor-
tance for contemporary societies in which machines are increasingly capable of
completing tasks that have been considered the exclusive domain of humans.

In England, automata began to appear for general public consumption
during the Victorian Era, roughly 1837–1901, corresponding to the reign of
Queen Victoria. Mechanical monkeys, drinking tea and smoking, were dis-
played in shop windows, to attract customers. By 1880, small steam engines and
battery-operated boats as well as trains and fire engines were much in evidence.

Philosophical Origins—Man as a Machine

The philosophical distinction between mind and body was first introduced
in Chapter 2 (The Philosophical Approach), where it was explored in detail.
While the debate can be traced to the Greeks, it is in the seminal work of René
Descartes (1596–1650) that we find the first systematic account of the mind/
body relationship. Descartes was known to have attempted to build automata
in his life. In connection with this, the philosophical questions introduced by
Descartes are: “What is the difference between a person and a machine? Where
is the line between the animate and the inanimate, between life and death? Is
there a difference between reason and ‘randomness’?”

Are such questions simply matters of philosophy? Until the nineteenth cen-
tury, “philosophy” included all branches of science. But science has moved us
from an age of alchemy to one in which alchemy and other magic arts have
been replaced by mechanics, astronomy, and so on, and in which scientific
information is abundant and widely available. (It is reported that Descartes
“entertained” the sick with mathematics.) The modern equivalent of these
developments can be found in academic courses that have titles such as
“Physics for Poets”—courses that enjoy considerable popularity on college
campuses. What came about as the central idea of Descartes’ age was simply
that man is a machine and should be understood as such. Descartes’ “Treatise
on Man” includes a comparison between a human being and a hypothetical
“statue or machine” that operates like a clock or a hydraulic fountain. The
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difference, as proposed by Descartes, is that a human being possesses a
“rational soul,” whereas an animal is not capable of reasoning. His famous
quotation, “I think therefore I am,” epitomizes this difference.

Evaluating Descartes’ Approach

Descartes evoked an opposing principle in the mind/body debate. The athe-
ist philosophers of the eighteenth century took great issue with the idea that a
“soul” separates us from the machinelike model that describes other animals.
Consider Jaquet-Droz’s automaton (currently in NeuchActel, Switzerland),
described as being able to write “I think therefore I am.” Yet, it is also capable
of coming up with a more ironic tribute to Descartes: “I do not think . . . do I
therefore not exist?” The writer (automaton) is able to declare that it cannot
think. If it can communicate that it cannot think, is it possible that it really can
think after all? Is the machine lying—a most human activity?

In his treatise, Descartes carefully avoids the conflict; the machine is not a
man, only a “statue or machine . . . which God forms with the explicit inten-
tion of making it as much as possible like us.” Descartes’ machine includes
both a body and a soul—he intended to describe each separately—but the por-
tion of the treatise that deals with the soul has been lost, and only a mecha-
nistic interpretation survives:

“I desire . . . that you should consider that these functions follow in this
machine simply from the dispositions of the organs as wholly natural as
the movements in a clock or other automaton follow from the disposition
of its counterweights and wheels.”

The overarching quest to imitate human beings stretches to the arts.
Standing out among numerous works of art and art forms, the opera “The
Tales of Hoffman” by Jacques Offenbach tells the story of the poet Hoffman
and his ill-fated three loves. His first love, Olympia, is a mechanical doll cre-
ated by Coppelius (an incarnation of the devil). Hoffman falls in love with the
doll, which is eventually smashed by its angry creator.

Mechanical Computation

The history of AI, which includes the philosophical considerations proposed
by Descartes, would not be complete without consideration of mechanical
computation. A part of human intelligence rests on our ability to perform
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calculations (as distinct from our ability to abstract information and represent
it in numerical form). Interest in machine computation has, in part, paralleled
the development of mechanical dolls. Table 10.1 traces a few of the develop-
ments in the history of mechanical computation.

As noted in the table, primitive but seminal mechanical measurement is
traceable back to more than 30,000 years ago. Improvements in counting—a
significant part of mechanical computation—were embodied in the Chinese
abacus (ca. 2600 B.C.E.). Calculators that incorporate a measure of automa-
tion can be traced to Leonardo da Vinci (with later contributions made by
Pascal and Leibniz) and particularly to Charles Babbage. The modern age of
automation received an enormous boost from the capabilities of the electronic
vacuum tube (and subsequently from the transistor and the integrated circuit).

Mechanical calculators are considered to be automata capable of “imitat-
ing” human intelligence on what one could call a “primitive” level. Two
examples of such calculators are shown below. The abacus is shown in Figure
10.2, and a fragment of Charles Babbage’s Difference Engine is shown in
Figure 10.3.

The abacus was developed some 4,000 years ago. In some remote parts of
China and Japan such calculators are still in use. One can also find these “cash
registers” in some grocery stores within the Chinese neighborhoods of large
cities in the United States. Well-trained abacus users will often have better
results than those using a mechanical or electrical calculator, when both are
adding the same column of numbers.
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Table 10.1 Events in the Development of Mechanical Computation

Year

30,000 B.C.E.

2600 B.C.E.

1500

1642

1670

1822

1936

Event

Paleolithic people in central Europe record numbers by notching tallies.

The Chinese introduce the abacus. (Used in China as recently as 1982.)

Leonardo da Vinci invents the mechanical calculator.

Blaise Pascal invents the first usable, hand-turned calculator for
addition and subtraction (which he names Pascaline).

Gottfried Leibniz enhances Pascaline with multiplication, division, and
square root functions.

Charles Babbage invents the Difference Engine (mechanical calculator),
capable of adding and subtracting.

Konrad Zuse creates a programmable digital computing machine (with
vacuum tubes and a binary number–based architecture).
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Some argue that Charles Babbage actually conceived the “digital” computer
that dominates our daily activities of living. Babbage (1792–1871) was an emi-
nent scientist of his day. He was the Lucasian Professor of Mathematics at the
University of Cambridge. This Chair has also been held by such notables as Sir
Isaac Newton and, most recently, Stephen Hawking. Babbage first developed
a mechanical calculator, the Difference Engine. He subsequently designed, but
never built, an “Analytic Engine,” whose architecture (or organization) greatly
resembles the modern personal computer (PC). The Difference Engine (1821)
was the world’s first programmable, automatic, digital calculating machine.
The only human intervention that was required was the setting of initial para-
meters (constants), followed by the turning of its handle. It was designed to
solve mathematical equations known as polynomial equations. Such equations
were used in navigation systems (whose calculations, when made by hand,
were prone to error). The Difference Engine used a numerical technique known
as the Method of Differences. (A discussion of this technique is beyond the
scope of this book.) The design of the Analytical Engine, according to many,
anticipated virtually every aspect of present-day computers. Babbage envisioned
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Figure 10.2 A sketch of one form of an abacus indicating how decimal numbers are
represented. Each bead below the bar represents 1; each bead above the
bar represents 5. In addition, beads are weighted according to their decimal
position.Thus bead A, when moved to the bar, has a value of 10, while bead
B has a value of 500.The number represented by the dotted-line beads is
therefore 510
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a massive, steam-powered, general-purpose, mechanical computer. Regrettably,
he failed to persuade prospective backers to provide the funds that would have
been needed for its actual construction. Its relevance to the modern computer
is reflected by the fact that one can participate in its actual operation by using
an available emulator, written in the Java programming language; it works
exactly as designed by Babbage and you can ask it to solve problems. (An emulator
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Figure 10.3 Photo of Charles Babbage’s Difference Engine. This is only a fragment, as the
complete calculator was never built.

Source: Reproduced with permission of the Science & Society Picture Library, The Science Museum,
London, England

NOTE:
DIGITAL RIGHTS HAVE NOT BEEN CLEARED.
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is a program that allows software intended for one computer platform or one
type of hardware to be run on another platform or type of hardware.) With the
appropriate PC software, one can run the Analytic Engine emulator, found at
www.fourmilab.ch/babbage/applet.html).

Defining Artificial Intelligence (AI)

In setting out to define artificial intelligence, we recognize three levels of intel-
ligence. An ant has intelligence of a very primitive level, higher-order animals
(and simple robots) can be considered to have a qualitatively higher level of
intelligence. At the top of the intelligence pyramid is the human agent. It is a
defining objective of AI scientists to build an automaton that is capable of
behaviors that would correspond to intelligence at this highest level, such that
the automaton would be indistinguishable from a human being. Definitions of
AI are numerous and have their different emphases that support their authors’
special interests. (Refer to the discussion of AI in Chapter 1.) Consider one
discussion that is sometimes cited in arguments that center on the varying def-
initions of intelligence. To a great extent, airplanes are controlled by the “auto-
matic pilot,” but would we conclude that an automaton is flying the plane?
How does one, or can one, distinguish between a highly deterministic control
system and a human intellect? Externally, the control systems perform the
same sorts of actions that human beings would perform in similar circum-
stances. In fact, in some circumstances the automatic systems perform better
than human operators. With respect to the limited environments in which they
operate, do we conclude that these automatic systems have intellect equivalent
to that of a human being? One could make analogies similar to this one that
have to do with our activities of daily living.

Although we can identify a number of common themes within definitions of
AI, each definition emphasizes an aspect of AI that its author considers impor-
tant to his or her purposes. William Rapaport (of the Center for Cognitive
Science at the State University of New York at Buffalo) has compiled a number
of these definitions. A sampling of his definitions includes the following:

“The goal of work in artificial intelligence is to build machines that per-
form tasks normally requiring human intelligence.” (Nils J. Nilsson, 1971)

“ . . . Studying the structure of information and the structure of problem
solving processes independently of applications and independently of its
realization in animals or humans.” (John McCarthy, 1974)
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“Artificial intelligence is concerned with the attempt to develop complex
computer programs that will be capable of performing difficult cognitive
tasks.” (Basil Blackwell, 1990)

From these attempts at definition, it emerges that AI can be recognized as
an important branch of engineering, of computer science—and as a distinct
branch of cognitive science. In short, there may not be any simple definition.
What are not provided in definitions of AI are the criteria that would enable
us to know if an automaton exhibits “intelligence.” In fact, one of the great
debates of science is summed up in the question “what is intelligence?” A key
element of this debate is to be able to determine whether or not an automaton
represents “true intelligence,” or whether it is simply a sophisticated machine
capable of deterministic control of some logical process. (Many of the criti-
cisms of the AI approaches and AI applications described in this text are cen-
tral to this fundamental philosophical argument.) Some investigators consider
automata to be nothing more than electronic equivalents of the mechanical
dolls discussed previously. Whether or not an automaton is capable of things
that would reflect true intelligence is a difficult question to resolve. Historical
developments in the twenty-first century may resolve this question. To a great
extent we rely on historical, “fashionable,” or popular conclusions to come up
with answers to this question. To move us closer to an answer, we emphasize
the goals of AI science.

• The engineering goal of AI is to assemble systems that use a computer’s
facilities and inventory of knowledge in order to solve real-world problems.

• The (cognitive) scientific goal of AI is to codify knowledge, and meta-
knowledge, in order to assemble systems that will shed light on and even
explain various sorts of intelligence and consciousness. (“Meta-knowledge”
refers to facts about knowledge itself, such as the rules we have for using
such knowledge.)

Historically, if the paradigm on which the machine is crafted was related to a
similar model within the human, it has been cast as an AI. (A paradigm is a set
of assumptions and techniques that characterize an approach to a class of prob-
lems.) This principle has led to a classification scheme, according to which there
are three general classes of AI: Expert Systems, Fuzzy Logic, Neural Networks.
Expert Systems seek to emulate the abstract thinking and logic that humans use
in order to solve problems; Fuzzy Logic (see Chapter 11) has origins similar to
those of Expert Systems but seeks to account for the defects in human logic and
the bad choices that human beings often make; Neural Nets (see Chapter 7) can
be compared to a simple model of the neural system (the brain).
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The potential uses for such automata are thought-provoking:

• In farming: computer-controlled robots that will be able to control pests,
prune trees, or selectively harvest mixed crops.

• In manufacturing: AI-based robots that will perform dangerous, dull, or
dirty (“3D”) operations.

• In medicine: machine intelligence that will be able to diagnose disease,
monitor patients, operate on patients (including telesurgery—performed
by a surgeon at a distance), manage treatments, rehabilitate neurologi-
cally impaired individuals, make beds, provide care for the elderly and/or
disabled.

• In activities of daily living (ADL): computers that will be able to advise
on cooking and perform routine household chores.

• In education: computers that will be able to understand why students
make mistakes (as opposed to simply reacting to those mistakes) and
provide students with detailed information on topics taken from many
disciplines, such as music, history, and the sciences.

• In research: machines that will be able to devise theories based on exper-
imental observations.

These are all instances in which machine operation would have a striking
(complementary) resemblance to human judgment, thinking, and logic. However,
all of the preceding must be viewed as long-term objectives because we cur-
rently do not know how to design computers that will possess the comprehen-
sive capabilities of perception and reasoning and the repertoire of actions of
human beings. Some argue that some AI-based machines that exist presently
do, in fact, possess the perception and reasoning capabilities of a human being,
although they were not designed with these qualities in mind. For example, a
neural net can “extract” the essential associative rules regarding input and
response that humans are not able to discern.

Evaluating the Concept of AI

Can a mind be constructed? This is the critical question that best identifies
the ultimate disposition of AI. AI research is roughly divided into three distinct
categories: “strong” AI, applied AI, and cognitive simulation.

Strong AI: Advocates of this concept seek to build machines whose intellec-
tual ability cannot be distinguished from that of a human being. Joseph
Weizenbaum (of the MIT AI Laboratory) presents this view in its most
compelling form. In his representation, the goal of AI is “nothing less than to
build a machine on the model of a man, a robot that is to have its childhood,
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to learn language as a child does, to gain its knowledge of the world by sensing
the world through its own organs, and ultimately to contemplate the whole
domain of human thought” (Weizenbaum, 1976). John Searle (of the
University of California at Berkeley) introduced the term “Strong AI” in 1980;
he is a strong critic of the Turing Test, briefly noted above and described
in detail below (Searle, 1984). Many prominent theorists of the 1950s (e.g.,
Marvin Minsky and Seymour Papert) were excessively optimistic about achiev-
ing the ideal set forth in the strong AI model. Their optimism gradually receded,
as they began to appreciate the extreme challenges to be surmounted (Minsky,
1982). Building a “true android” may be the most difficult technological
undertaking ever attempted by science. An android is a robot or mechanical
device that resembles a human being and performs automated tasks. (See
Chapter 12 for a discussion of robots.) Some argue that we have not yet built
a machine that possesses the intellectual capability of an ant, and that the
prospect of an AI worthy of the designation of “human” remains an elusive
dream. However, the dream is alive, and scientists such as Hans Moravec
(Professor of Robotics at Carnegie Mellon University in Pittsburgh) and
Rodney Brooks (Director of the Artificial Intelligence Laboratory at MIT)
believe that a human being is nothing more than a fancy machine, and that
as technology advances, it will be possible to build a machine with human
features. Is there anything magical about the brain and biological flesh? As
Moravec notes, “I’m confident we can build robots with behavior that is just
as rich as human being behavior. You could quiz it as much as you like about
its internal mental life and it would answer as any human being” (Brooks,
2002; Moravec, 1999). Others (e.g., David Chalmers, Professor of Philosophy
and Director of the Center for Consciousness Studies at the University of
Arizona) argue that consciousness is an inexpressible trait and it may be use-
less to try to pin it down. Chalmers, however, is open to the idea that machines
“might eventually become conscious.” Chalmers writes: “There may not be
anything fundamentally different between a creature of flesh and blood and
one of metal, plastics, and circuits” (Chalmers, 1997).

Applied AI: This concept of “intelligent” machines has enjoyed the most suc-
cess. It is also referred to as “advanced information-processing.” Its aim is to
produce commercially sustainable “smart machines,” some of which have been
noted above. Chapter 11 focuses on key elements of applied AI.

Cognitive simulation and natural language communication: The focus within
cognitive science (CS) is to understand how the mind works. CS was first intro-
duced in Chapter 4 (The Cognitive Approach I), where it was explored at some
length. Research in this area has included studies that have focused on how we
recognize faces or other objects, or how we solve abstract problems. Within CS,
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an algorithm in the form of a computer program is tested against the actions or
thinking of a human being. Computer simulations have contributed to both
psychology and neurophysiology. (See the discussions of connectionism as well
as Neural Nets.) Consider the following results of a program generated by the
Stanford psychiatrist Kenneth Colby that first appeared in 1966 (Colby, 1975).
The program simulated responses by a human paranoiac. The program, called
Parry, was capable of carrying on conversations that bore an eerie resemblance
to real conversations, and psychiatrists who were asked to decide whether they
were communicating with the machine (program) or a human paranoiac were
often unable to. In what follows, a psychiatrist is generating questions that are
presented to Parry by the “Interrogator,” while Parry provides the responses:

Interrogator: Why are you in the hospital?

Parry: I shouldn’t be here.

Interrogator: Who brought you here?

Parry: The police.

Interrogator: What trouble did you have with the police?

Parry: Cops don’t do their job.

Interrogator: What do they do instead?

Parry: Cops arrest the wrong people.

Interrogator: They arrest the right ones sometimes.

Parry: The law should get those Italian crooks.

Interrogator: Are you Italian?

Parry: My background is British but I was born in this country.

Interrogator: Do you know any Italian crooks?

Parry: I try to avoid the underworld.

It is true that the Parry program depended on pre-constructed responses
devised by the programmer and stored in the computer’s memory. These were
“finagled” by skilled computer programming in such a way that Parry was able
to participate in dialog. The interaction noted above was able to “fool” a
human expert.

No discussion of AI would be complete without considering the question:
“Is Strong AI Possible?” We consider strong AI issues with the psychological
mind-body discussion acting as a backdrop and describe the goals of strong AI.

An ability to use language, the ability to plan, and the ability to reason
characterize human behaviors; these reflect underlying cognitive abilities. The
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goal of strong AI is to duplicate these human intellectual abilities. One of the
problems associated with this controversial goal has to do with the harvest
from prior research efforts in this area—which has been disappointing, to say
the least. Over the years, exaggerated claims of success have been reported
in scientific journals as well as in the popular press. Although some success
has been achieved in Robotics (see Chapter 12), after some five decades of
research, attempts to “scale up” modest levels of “intelligent” machine perfor-
mance (e.g., performance that has to do with obstacle avoidance, gaze control,
and object manipulation—building structures made up of blocks) have failed
to produce machines that live up to standards of human behavior to any sig-
nificant degree. Connectionists cannot yet claim to have a working model of
even the simplest of living things. For example, Caenorhabditis elegans is a
worm with some 300 neurons and a known interconnectivity, yet connection-
ist models have failed to mimic this “simple” nervous system. Moreover, by
the admission of the fabricators of these models, connectionist “neurons” are
gross simplifications of the animal counterpart. While the actualization of
strong AI may be terribly difficult, it remains a realistic objective for many
researchers in AI.

Can a machine possibly be intelligent, think and understand? In the first
instance, such a question may not be relevant; Noam Chomsky suggests that it
is a question of decision, not fact. We must ultimately agree on what consti-
tutes and defines intelligence, thinking, and understanding (Chomsky, 1968).
As a simple illustration of the problem: we conclude that airplanes “fly” but
that ships do not “swim,” even if the ships are able to navigate in water just as
animals (e.g., humans) do when they swim. While this may be an oversimplifi-
cation, it is essential to determine the criteria and conditions that machines
must satisfy in order to allow us to conclude that they can achieve the con-
sciousness and understanding of the human model. As regards this point, we
have not reached consensus. Some invoke the Turing Test (TT) as a “defini-
tion” of intelligence—a machine is intelligent if and only if the test fails to dis-
tinguish between human performance and machine performance. However,
Turing himself noted that this test couldn’t define intelligence. A computer
could be considered to be intelligent in spite of the fact that it had failed such
a test (i.e., simply because it failed to “imitate” a human being). Should we
require that an extremely intelligent machine designed for a particular task—
designed, say, to perform surgical operations with intelligence comparable to
that of a skilled surgeon—meet the requirements of the TT?

Alternatively, if a computer should pass an “intelligence” test, would we impart
intelligence to that machine? Claude Shannon and John McCarthy (1956) noted
that one could “stack the deck”: design a program with pre-programmed
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responses to questions that the program would be apt to encounter while it was
being put to the test. Like Parry, it would simply look up appropriate responses
from its database. A number of people have championed this point of view
(Ned Block, Stephen White, and Jack Copeland). A system with “no intelli-
gence” at all might pass an arbitrary test similar to the TT.

Currently, AI has no universally accepted definition of intelligence to which
it might anchor itself. Thus, there is no way of telling which research results
do, in fact, demonstrate “intelligence.” At the moment, such a definition is a
“moving target” among professionals and non-professionals alike. Consider a
program that can summarize newspaper articles, or a program that can beat
a chess champion. Critics are quick to point out: “That’s not intelligence”—
although these are often the same critics who had previously maintained that
a machine could “never do that” because it was not “smart enough.”

One of the most eminent AI researchers, Marvin Minsky, points out that
“intelligence” is our name for whichever problem-solving mental processes we
do not yet understand. Making an analogy, he equates intelligence to the idea
of “unexplored regions of Africa”: such an unexplored region disappears when
we discover it. Turing made the same point: “One might be tempted to define
thinking as consisting of those mental processes that we don’t understand.”
The problem of coming up with a clear set of criteria that would provide the
basis for determining success in AI research remains. Can we even come up
with criteria that would provide the basis for conclusive evidence of human
intelligence?

Although several definitions of AI have been proposed, one broad definition
describes AI as the science of making computers do things that require intelli-
gence when done by humans. To understand the complexity of building such
an automaton, some understanding of what is meant by “human intelligence”
is necessary. In particular, there are several elements that seem to constitute the
essential characteristics of intelligence: learning, reasoning, problem solving,
perception, and language understanding. (Each of these is discussed in what
follows.) AI machines whose design has focused on these components have
garnered the most successes. These are among the same components that are
considered in mainstream psychology to be essential to human intelligence.

Although relatively simple human behavior is considered to be intelligent,
complex behaviors performed by insects are often designated as unintelligent.
One species of wasp (Shex ichneumoneus) carries on an elaborate behavior
when bringing food to its burrow; the behavior is designed to ensure that the
activity will be completed successfully. The female wasp first deposits the food
on the threshold of the burrow, goes inside to check for intruders, returns to
the threshold, and, assuming that there have been no intruders, finally brings
the food inside. If a researcher moves the food while the wasp is checking the
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nest, she will repeat the entire procedure, starting from scratch. This behavioral
response, which seems remarkable to us, can be repeated in excess of forty
times. It appears that “intelligence” is conspicuously absent. A key element of
intelligence is clearly missing, namely, the ability of the wasp to adapt its
behavior to fit new circumstances.

Learning, in the context of a behaviorist or functional approach, can take sev-
eral forms: trial-and-error; rote learning; operant conditioning. The simplest
learning is trial-and-error. When a computer program has tried chess moves at
random until it finds one that achieves checkmate, it will remember that move—
such that the problem is immediately solved if and when the same circumstances
present themselves a second time. This description of trial-and-error learning
parallels a similar mechanism in humans. Rote learning involves direct associa-
tion between a stimulus and a response; memorizing a list of items is an example
of rote learning and is easy to implement on a computer. However, learning
involves the ability to generalize in such a way that the intelligent agent (e.g.,
human or computer) will perform satisfactorily when a novel situation is encoun-
tered. For example, a computer can learn the past tenses of regular English verbs
in a rote fashion. However, it would be impossible for the computer to generate
the past tense of “jump” unless it had been presented with “jumped” at least
once in the past. An “intelligent” program—one that can generalize—will
employ the “add-ed” rule and produce the correct response even though it has
not previously encountered the verb. AI machines have had reasonable successes
with respect to this type of generalization.

Operant conditioning is a highly developed form of learning; additional dis-
cussion can be found in Chapter 3 (The Psychological Approach). Consider the
case in which a human operator learns to slow a car when approaching a red
light. Although it may first appear that this is a case of rote learning, further
analysis reveals that it is something else: one should not immediately apply full
pressure to the brake, as rote learning might imply. Rather, a sequence of
learning steps is required such that one gradually develops the braking skill
associated with an experienced driver. Automated operant conditioning sys-
tems are a relatively new development in AI. Automata have been developed
to assist therapists in rehabilitating individuals afflicted with neurological dis-
orders of movement, for example, stroke (Silverman, et al., 1991; Silverman,
2001). A generalized machine-based algorithm that can implement operant
conditioning (i.e., positive and negative reinforcements) for learning behavioral
skills is depicted in Figure 10.4. In this model, the mind and its deep complex-
ities or its operational details are not part of knowledge/skill acquisition.
Rather, the model reflects the views of behavioral psychologists. In this sense
it has an “engineering” flavor, since engineers are often interested in modeling
relationships between stimuli (inputs) and responses (outputs).
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Figure 10.4 A machine-based algorithm for skill learning. Rectangles represent actions
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The operation of this algorithm is exemplified by the following illustration:
We build a highly advanced robot and provide it with the rule that “cats may
be petted.” Upon encountering a tiger, the robot is severely damaged. Once we
have rebuilt the robot, the rule should be specialized to include a precondition,
such as, “small cats may be petted”; the rule has been made more “complex”
and less “general.” As another example, recall the discussion in Chapter 9 (The
Linguistic Approach) in which it was said that English language acquisition
requires a refinement of the generalized “add-ed” rule for irregular verb past
tense formation (e.g., “go-ed” becomes “went”). This learning model could
also describe the study of linguistic cognition itself, whereby a theory evolves
(e.g., the Wernicke-Geschwind model based on language deficits) and is subse-
quently refined or specialized on the basis of its failures (e.g., a lack of corre-
lation between neurological foundations and hypothesized functionality). In
this case a teacher would normally provide the reinforcement needed to correct
the flawed behavior (e.g., a parent).

Reasoning is the ability to draw inferences appropriate to the facts and the
situation. It is embodied in logical thinking and includes deductive, inductive,
and abductive reasoning. A simple illustration will help to explain deductive
logic. The machine is provided with the following predicates:

“Jane is either in the library or in class.”

“Jane is not in class.”

Computer programs are able to conclude that:

“Jane is in the library.”

Even though computers have demonstrated considerable success in this
regard, one would not conclude that they can “reason” based solely on their
ability to draw correct inferences. Reasoning includes the ability to draw infer-
ences that are relevant to the circumstances. One of the most difficult problems
that confront AI scientists is the need to develop algorithms that can distin-
guish between the relevant and the irrelevant. Consider the circumstance in
which an intelligent computer agent is called on to diagnose a disease or deficit
on the basis of a given set of symptoms it has received as input. The computer
may come up with a number of possible causes of the symptoms, many of
which may be irrelevant. An experienced physician would know how to filter
out some of the symptoms so as to zero in on a diagnosis. The computer may
not have the ability to weigh the relative importance of each symptom.
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Problem solving is yet another key element of intelligence. A machine may
be presented with a photograph of an individual; can it identify the person
in the picture? A robot is presented with a task; can it devise a strategy to
complete the assignment? There are two problem-solving methods: special-
purpose, and general-purpose. A special-purpose solution relies on the circum-
stances that pertain to the task. The general-purpose solution can be applied to
a broad variety of problems.

One technique employed in AI is known as means-ends analysis. Consistent
with this method, the machine assesses the current state of the system and
chooses an action that will reduce the difference between the current state and
the goal state. For example, a robot may be able to perform operations such as
pickup, putdown, moveforward, and so on. From this set of operations it will
pick that action that reduces the difference between the current state of the sys-
tem and the goal state. This algorithm mirrors similar mechanisms that are
used by human intelligence when human beings are faced with the same task
that the robot has been given. The topic was raised in some detail in Chapter
5 (The Cognitive Approach II).

Perception is achieved when the intelligent entity, animal or machine, scans
or samples the environment using the sensory equipment it has at its disposal,
and the information is processed by internal processing mechanisms and con-
verted to a set of abstractions that is made up of some combination of objects,
features, and relationships. This can be difficult for a machine, as different
views of the same object or scene must be correctly interpreted. Contemporary
robotic machines are sufficiently advanced to the point where they can carry
out the complicated tasks for which they’ve been designed (e.g., deliver mail in
corporate offices, assemble parts, perform cleaning tasks, etc.) But such
automata are far from maturation, as described in Chapter 12 (“The Robotics
Approach”).

Some argue that using language to communicate comprises the highest form
of intelligence. It is relatively easy to write computer programs that enable
machines to respond rather fluently, say, in English, to questions and state-
ments. (See the discussion of Parry, above.) Responses may be fluid to the point
where the computer’s linguistic behavior is indistinguishable from that of a live
human being. Can we conclude that the computer possesses any linguistic
understanding? Conventional wisdom on this question would require that the
intelligent entity, person or machine, had learned the language while it was a
part of a linguistic community—had learned it interactively, with other users
of the language. In the case of machines, this is not likely to happen until
strong AI has been achieved.

330 COGNITIVE SCIENCE

10-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 330



AI Methodologies

Two methodologies, top-down and bottom-up, characterize AI research. Top-
down approaches treat machine intelligence as a “high-level” phenomenon
that does not depend on how the computer implements detailed or “low-level”
operations. Such low-level operations would include such things as adding
numbers or comparing numbers. In top-down methodology, we can ignore the
neurological interconnections within the brain or, in the case of the computer,
the electrical interconnections. The bottom-up model provides an alternative
approach to the study of machine intelligence. Generally, this approach uses
the neural network model that is used by the connectionist community. In this
methodology, scientists explore the aspects of cognition that can be recreated
via the use of neural nets. Figure 10.5 depicts the differing methodologies in AI
research.
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To illustrate the difference between these two approaches: A machine has
been programmed to recognize letters of the alphabet. The letters will be sup-
plied to the machine in script form and presented to an electronically sensi-
tive tablet similar to those found in modern handheld personal business
notebooks. A top-down machine would include a database of the symbols
and/or characteristics that correspond to each letter of the alphabet. As text
is entered, a program within the device would compare this input against the
database of parameters that define each of the letters. The device would
make comparisons between the two on the basis of such things as the rela-
tive angles of the strokes, the lengths of the lines, and the intersections of the
segments. It would then select the letter whose symbols and/or characteris-
tics best match the input. It has made its decision on the basis of abstract
considerations.

A bottom-up automaton would be wired in a way that resembled the neural
configuration of the retina. The network would have 26 outputs (or more),
depending on the number of characters it is to recognize. The pattern that is
generated on the input tablet is presented to the machine (the program). As the
machine was receiving the input, the output that responded more vigorously
than the other 25 would become the appropriate result. In short, a bottom-up
methodology would depend on “neural activity,” while a top-down system
would depend on descriptions, lists, or a database of knowledge that in some
way defined the task.

The top-down methodology enjoyed early renown within the AI commu-
nity. During the 1970s, Newell and Simon used the terms “symbolic AI” and
“the Physical Symbol System Hypothesis” to describe the approach. Such ter-
minology emphasizes the concept that the processing of structures (ordered
arrangements of information) as well as symbols by a digital computer consti-
tutes the essence of AI. Newell and Simon also maintained that the processing
of symbols by the human brain is the basis of human intelligence. It is to be
noted that in the decades since the Newell-Simon approach was at the height
of its popularity, successes that have been owing to the use of the connection-
ist (bottom-up) model have tended to eclipse symbolic AI. However, as we
shall see, Fuzzy Logic has recently provided new support for a (quasi-)top-
down model. (See Chapter 11, Artificial Intelligence II: The Operational
Perspective).

In summary, a top-down approach to AI is a problem solving approach
that is based on the descriptions of the relevant features of the task, whereas
the bottom-up approach depends on the neural activity of the intelligent
agent.
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The Computer as the Tool of AI Research

Whether by conscious design or not, the organization or architecture of the
modern computer, especially the PC, parallels brain organization. (Or is it
the reverse—have cognitive scientists modeled the brain and its functions on
the basis of the computer model?) As noted in Chapter 1, cognitive science can
be viewed as the study of the mind. Within the brain—the primary “seat of
intelligence”—key elements of its organization include computation, memory,
and communication. This model readily describes the modern digital com-
puter. A functional view of the computer is shown in Figure 10.6.

The functional elements of the digital computer shown in Figure 10.6
include the Central Processing Unit, the Memory, the Input/Output, and the
Communication Bus:

The Central Processing Unit or CPU executes the PC’s set of instructions,
and controls the order or sequence in which the individual instructions are exe-
cuted. Performing calculations, logical operations, and data comparisons are
fundamental capabilities of the computer. Calculations include operations such
as adding, subtracting, multiplying, and dividing. Logical operations are
employed by the computer to test the truth or falsity of a statement (e.g., “Is
the patient’s temperature exactly 98.6 degrees?”). Logical operations are
important for determining the sequence of program steps. For example, if
elapsed time (as determined by a clock) is greater than 10 seconds, then the
next instruction to be implemented might inform a user that an answer to a
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Figure 10.6 Functional diagram of a digital computer
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question has not been received within the prescribed interval and would cause
the computer to “jump” to another sequence of instructions that would
address the failure to respond. The operative phrase here is “greater than,”
wherein a comparison between the actual time and the time at which the ques-
tion was initially presented to the user is made. Although cognitive philoso-
phers have, to various degrees, identified processes similar to those described
above that take place in the brain, they have not identified a comprehensive
structure within the brain that precisely implements the precisely defined prop-
erties of the CPU.

Memory functions include: storing the instructions to be executed, partial
computational results, and final results. Memory is generally divided into
main memory (short-term, volatile memory segments) and long-term memory
(non-volatile elements, that is, the “disk” or “hard drive”). For example, the
CPU may be instructed to update a series of patient records. As each record
is modified, the partial results are retained in the PC’s memory. Once all mod-
ifications have been completed, the new information may be permanently
stored on the hard drive and a printed (“hard”) copy of the results may be
generated.

The Input/Output (I/O) provides all the electronic hardware and software
resources that enable the computer to interact with the external world. “The
external world” may refer to the human user, who interacts with the computer
via an appropriate device, such as a microphone. Additionally, the PC can be
connected to an external device such as another computer, or other type of
electronic device (e.g., a digital camera).

The Communication Bus is the channel of communication among the afore-
mentioned elements through which signals and data pass.

It is noted that the architecture represented in Figure 10.6 is a basic formu-
lation of the computer. A number of alternative arrangements are possible,
such as arrangements that include multiple processors, each having its own
CPU, Memory, and I/O facilities. Such arrangements can greatly increase the
speed at which programs are executed. The rate at which tasks or “jobs” are
completed is referred to as the computer’s throughput. Such architectures will
not be discussed.

Evaluation of the Computer as a Model of Brain Organization

Some physiological psychologists maintain that the functioning of the
body is too complicated to be supported by a “single computer.” According to
these scientists, the analogy of the brain as the repository of a “CPU” must
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inevitably fail, as such a living CPU could not support the inordinate amount
of neurological information processing that must go on if homeostasis (i.e.,
equilibrium) is to be maintained. Dworkin (1993) suggests a distributed model.
A simple example of information processing that goes on in the absence of
direct brain involvement is seen in human reflexes—for example, when we
reflexively remove our hand from a very hot surface. Additionally, the con-
nectionist approach (see Chapter 7, The Network Approach) considers pro-
cessing and knowledge representation to be distributed.

Programming

The series of instructions that a computer programmer devises that enables the
computer to run is called a program. One functional element of the computer
that is not depicted in Figure 10.6 is the computer program, or software, that
has usually already been pre-installed on your PC. This program allows all the
functional elements of the computer to operate in a smooth or cooperative
manner; it is referred to as the PC’s Operating System. Originally, programs
had to be entered into the machine as series of numbers. A computer cannot
“understand” textual data; it can only understand numbers, and binary numbers
in particular. Entering numbers proved to be time-consuming, and vulnerable
to the introduction of error, especially for programs of any length. Numerical
programs were replaced by those made up of mnemonic equivalents for
numbers, and this proved to increase the efficiency with which programs could
be written and installed on the computer. These mnemonic representations
were called assembly language programs. And still later, programs made up of
“English-like” statements, closer to those of natural languages, replaced assem-
bly programs. Thus, to add two numbers a programmer could write the fol-
lowing instruction:

C = A + B

The computer is instructed to “go to” the location that stores quantity A,
add to it the quantity that has been residing in location B, and store the result
in a location named C. Languages built on statements such as this are called
High Level Languages (HLL), because of their resemblance to natural lan-
guages. Modern programming has evolved in the direction of visual program-
ming, in which icons or symbols replace operational notation. As computer
capabilities approach those of humans, it may soon be possible to develop pro-
grams using spoken natural language commands. A programmer would issue
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a spoken command to the computer to carry out an instruction (e.g., “add
A to B” or “please add the quantity A to the quantity B”). AI would enable the
computer to interpret such instructions. The highly abstract nature of AI that
uses top-down methodological tools provides us with a means for attacking the
problems that attend natural language programming.

Evaluation of Programming Languages

Early on, investigators who were trying to develop AI programs noted that
the HLLs that were available to them were cumbersome. The software struc-
tures and facilities available in the existing HLLs did not lend themselves to the
problems they were facing. Newell, Simon, and Shaw found it difficult to write
instructions, in HLLs that were available to them, for an application that they
were developing (i.e., the General Problem Solver, or GPS, that is discussed in
detail in Chapter 5, The Cognitive Approach II). GPS uses lists of conditions
to describe the current state of the world as well as the goals to be achieved. A
process known as means-ends analysis is used to reduce the difference between
the existing state of a system and the goal state. Newell, Simon, and Shaw sub-
sequently developed the Information Processing Language (IPL) that was better
suited for AI programming. An historical perspective of AI programming lan-
guages is provided in Table 10.2.

Application-oriented software packages that support AI activities such as
Fuzzy Logic (MatLab tool) and Neural Net (Brainmaker) are currently avail-
able for research and development.

Alan Turing and the Great Debate

In Turing’s seminal paper of 1950, he recognizes the difficulty inherent in
attempting to define “thinking” and cleverly reformulates the task into an
“imitation game” (IG).1 As originally conceived, the IG included three people:
an “interrogator” of either sex, a man, and a woman. This reformulation of
the original question “what is thinking?” in the form of the IG has become
known as the Turing Test (TT). Although more recent versions of the test have
come into being, its original formulation sheds light on the culture that helped
to spawn it, such as it was at the time of the formulation. For example, note
the placement of the word “woman” in the following description:

The new form of the problem can be described in terms of a game which
we call the “imitation game.” It is played with three people, a man (A),
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a woman (B), and an interrogator (C) who may be of either sex. The inter-
rogator stays in a room apart from the other two, and cannot hear their
voices. The object of the game for the interrogator is to determine which
of the other two is the man and which is the woman. He knows them by
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Table 10.2 AI Programming Languages.

Date

1956

1960

1973

1990s

Program

Newell, Shaw, Simon (RAND, Carnegie Institute of Technology)
introduce the Information Processing Language (IPL). Features of the
program include: lists, associations, schemas (frames), dynamic memory
allocation, data typing, recursion, associative retrieval, function argu-
ments, streams, multitasking. Newell specified the language syntax,
Shaw acted as system programmer, and Simon was the application
programmer/user. IPL pioneered the concept of list processing. The first
application was to demonstrate that the theorems in Principia
Mathematica (Russell, Whitehead) could be proven by machine. While
the recent version of IPL still runs today on readily available PCs, it
has generally bean replaced by Lisp, with similar features but simpler
syntax and automatic garbage collection.

John McCarthy combines elements of IPL with elements of lambda
calculus to produce LISP (LISt Processor). The lambda calculus was
devised by Alonzo Church (Princeton logician) while he was studying
the decision problem for predicate logic. (This was the same issue being
studied by Turing when he described the Turing Machine.) LISP
remains a fashionable language among AI investigators.

PROLOG (from PROgrammation en LOGique) is conceived by Alain
Colmerauer (University of Marseilles) and subsequently developed by
Robert Kowalski (Edinburgh University). It implements a theorem-
proving technique known as “resolution.” This technique originates
in 1963 (Alan Robinson, Argonne National Laboratory, Illinois).
(PROLOG and LISP are used extensively in the Natural Language
Computing Project at NYU.) PROLOG can determine whether or not
a given statement follows logically from other given statements. For
example, given “All logicians are rational” and “Robinson is a
logician,” a PROLOG program would answer “Robinson is rational.”
PROLOG is used in Tokyo (Institute for New Generation Computer
Technology). Computers employing such programming elements are
referred to as belonging to the “Fifth Generation” technology.

Application-oriented software packages that support newer AI
technologies and research interests such as Fuzzy Logic (MatLab tool)
and Neural Net (Brainmaker) are extensively used in research.
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labels X and Y, and at the end of the game he says either “X is A and Y
is B” or “X is B and Y is A.” The interrogator is allowed to put questions
to A and B. [Italics added.]

The task of the man is to convince the interrogator that he is the
woman. The woman, on the other hand, should follow a strategy of help-
ing the interrogator and of answering questions honestly. Thus, she might
add qualifiers to her answers such as “I am the woman, don’t listen to
him.” A simple exchange might have the following narrative:

Interrogator to X: Please tell me the length of his or her hair.

X replies [when X is actually a man]: My hair is shingled, and the longest
strands are about nine inches long.

[X, the man, is attempting to mislead the interrogator.]

Turing takes this a step further when he asks the question: “What will
happen when a machine takes the part of A (the man) in this game?”

The passionate debate that sprang up in the wake of Turing’s paper has
led to the current representation of the TT, which is generally agreed to have
the following formulation. The test consists of: a human interrogator, one
human responder, and a second “person”—actually a machine. The partici-
pants are separated by screens or partitions: they cannot see one another. This
form of “neutral” communication precludes the introduction of clues such as
the sounds of the voice and/or the idiosyncrasies of a participant’s handwriting,
as Turing had stipulated. The task of the interrogator is to find out which of the
two candidates is the machine and which is the human being. The interrogator
is to arrive at this conclusion solely on the basis of the answers he or she receives
to his or her questions. If the machine can “fool” the interrogator, it is defined
as “intelligent.” Some people have described this version of the test as the ulti-
mate “imitation game” (IG). The sketch in Figure 10.7 depicts the TT.

As per the test conditions, interactions between participants are expressed
in natural language—an insurmountable obstacle for machine intelligence such
as it existed at the time the test was proposed (as well as today, as the discus-
sion in Chapter 9 [The Linguistic Approach] attests to). At the end of a speci-
fied amount of time, if the human interrogator cannot tell which of the
candidates is the machine and which is human, the machine would be said to
have passed the test and would be considered “intelligent.” To understand the
difficulty inherent in interpreting test results, consider that the interrogator
could simply make a guess at the end of each trial and be correct in his or her
judgments 50% of the time. Thus the machine would need to confound the
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interrogator considerably in order to compensate for the biasing of the results
in the interrogator’s favor that is owing to the fact that correct answers may
be produced by guessing.

The IG as depicted in Figure 10.7 is but a single instance of this type of
game. For example, the game could be played according to its original format
(i.e., the players are the interrogator, a man, and a woman). The objective of
the interrogator is to determine which of the two participants is the woman (or
man), whereas the objective of one of the participants is to confuse the inter-
rogator into thinking that the sexes of the two participants have been reversed.
It is now generally understood that the TT tries to assess if machine intelligence
can imitate a human being, rather than imitate a woman specifically. (Did
Turing believe that women could be imitated by machines but that men could
not? But, this is something of a digression.)

Turing sought to differentiate between the “physical” and “intellectual”
capacities of humans. Covering an intelligent machine with artificial flesh
would provide no advantage. Moreover, this kind of action was not feasible
when Turing was developing his thinking. Turing also proposed that the dia-
log take the form of a series of questions and responses, as it provided the
opportunity for introducing any topic from the human experience. A typical
fragment (from his paper) has the following form:
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Figure 10.7 A sketch of the Turing Test
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Question: Please write me a sonnet on the subject of the Forth Bridge.

Answer: Count me out on this one. I never could write poetry.

Question: Add 34957 to 70764.

Answer: (Pause about 30 seconds and then give an answer) 105621.

Question: Do you play chess?

Answer: Yes.

Question: I have K (king) at my K1 (location of the king) and no other
pieces. You have only K at K6 and R (rook) at R1. It is your move.
What do you play?

Answer: (After a pause of 15 seconds) R–R8, (check) mate.

If the machine were designed satisfactorily, then it could easily eliminate the
strong objection that it could not imitate human traits such as slowness and
inaccuracy; Turing thus rejects this argument. Turing limits the “machines”
that may participate to “digital computers.” He recognizes that the computers
that existed in 1950 might not fare well in the IG, but envisions that “there are
imaginable computers which could do well.”

Turing’s paper, the IG, and his ideas in general have been discussed, attacked,
and defended since their inception. Within the cognitive and philosophic commu-
nities, the attitudes have ranged from profound admiration (the TT represents the
birth of AI and passing the IG is the ultimate goal of AI) to extreme condemna-
tion (the TT and the IG are useless and even detrimental to the goal of achieving
machine intelligence). Turing’s paper has given rise to arguments that center on
consciousness (e.g., what is it?), behaviorism, and intelligence (e.g., what are its
preconditions and prerequisites?). It has given rise to a contest: the awarding of
the Loebner Prize, a gold medal and $100,000 that goes to the chatbot that passes
the TT. (A chatbot is a program designed to generate text that is imitative of
human conversation.) Each year a competition awards $2,000 (and a bronze
medal) to the program that seems most human. The passion of the overall debate
may spring from the recognition that a machine capable of humanlike perfor-
mance would convince us that humans may indeed be nothing more than
“machines”—a conclusion that goes against millennia of cultural tradition.

Turing made predictions that reflected his belief that a “thinking machine”
was possible:

• In about 50 years [that would have meant around the year 2000], it will
be possible to program computers that have a storage capacity of about
109 memory locations in which information (predicates and rules) can be
retained, and this will permit them to play the imitation game so well that 
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an average interrogator will have not greater than 70% odds of making
the correct identification after five minutes of questioning.

• At the end of the century [also around the year 2000], the use of phrases
such as “thinking machine” will have become almost commonplace and
will be used without the user’s expectation of immediate rejection.

Evaluation of the Turing Test (TT) and Turing’s Detractors

Turing anticipated arguments against his IG and persevered in his belief in
the inevitability of a successful “thinking machine.” He was considerate of the
arguments that were opposed to his thinking. Table 10.3 summarizes these
arguments and Turing’s rebuttals.

The table lists arguments (which fall into eight categories) that summarize
the various opinions that have emerged since Turing’s paper first appeared.
Turing’s position can be viewed from a few perspectives: religious (Theolo-
gical), cognitive (Heads in the Sand, Consciousness, Extra-sensory perception),
behavioral (Disabilities), and Scientific (Nervous system continuity, Mathe-
matical). Each of the arguments is summarized and Turing’s rebuttals are
given. He anticipated the arguments of potential detractors and rebutted those
arguments.

Battle Lines:The Future of the TT

The TT has remained an icon of AI ever since its introduction in 1950.
While many scientists and engineers have chosen to focus their efforts in AI-
related areas and have been able to demonstrate numerous achievements in AI
(as we shall see in the next chapter), success in the IG remains the “Holy Grail”
of AI. Arguments (and counter-arguments) over TT have raged over the past
half-century and we provide a brief overview of them (Saygin, Cicekli, and
Akman, 2000).

The TT as an Operational Definition of AI

Turing proposed the TT as a “definition” of machine intelligence.
Consider, for example, Searle’s Chinese Room argument (see Chapter 2, “The
Philosophical Approach”), which describes an IG scenario in which a set of
input/output rules might appear to exhibit “intelligence”; however, this
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Table 10.3 Arguments Against Turing’s Proposals

Opinion

Theological 

Heads in the
Sand

Mathematical

Consciousness

Argument

Thinking is a function of
man’s (God-given)
immortal soul. No animal
or machine can think.

The consequences of
machines thinking would
be too dreadful. 

Gödel, Church, Kleene,
Rossen, and even Turing
himself have developed
mathematical logic results
demonstrating the
limitations of discrete-state
machines (i.e. computers).
(In any sufficiently
powerful logic system,
there are some theorems
that can neither be proved
nor disproved.) Hence, the
kind of machine that
Turing proposes is not
possible.

No machine can write a
sonnet, compose a concerto
from thoughts and
emotions (or know that it
created such works), or
experience grief, flattery,
be made miserable by
mistakes, be charmed by
sex, or be angry or
depressed.

Turing Rebuttal

This argument is a serious restriction of
the omnipotence of the Almighty. He has
the freedom to confer a soul (as well as a
brain befitting thinking) on an elephant if
He sees fit.

This is the most extreme formulation of
this type of argument. If Man is superior
to the rest of creation then a commanding
position (over machines) will be
sustained. Most likely intellectual people
feel threatened by machines because they
value the power of thinking more highly
than others. Turing suggests that
consolation is more appropriate to such
thinkers and that believers might find
solace in the transmigration of souls.

While these mathematical results are
valid, this argument implies (without
proof) that no such limitations apply to
the human intellect. Man might be
cleverer than any given machine, but then
again there might be other machines
cleverer again (than man), and so on.

According to the most extreme form of
this view, the only way by which one
could be sure that a machine thinks is to
be the machine and to feel oneself
thinking. The only way to know what a
man thinks is to be that particular man; it
is the solipsist point of view. “A” is liable
to believe “A thinks but B does not,”
while “B” believes “B thinks but A does
not.” Instead of arguing continually over
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Opinion

Disabilities

Lady Lovelace

Nervous system
continuity

Extra-sensory
perception.

Argument

Machines can do what you
say but you will never be
able to make one do “X”
(where X might refer to
kindness, resourcefulness,
beauty, friendliness, having
initiative, having a sense of
humor, telling right from
wrong, and so on).

Babbage’s biographer
noted that the Analytical
Engine had no pretensions
to originate anything. It
could only do “whatever
we know how to order it
to perform” (her italics). A
variant of this objection: a
machine can never do
anything really new.

The nervous system is not
a discrete-state machine. A
small error in information
can make a large difference
in output. Therefore, a
machine cannot mimic
nervous system behavior.

Telepathy, clairvoyance,
precognition, and psycho-
kinesis cannot be replicated
by machine.

Turing Rebuttal

this point, it is common to follow the
polite convention that everyone thinks.
(In other words, how do you define
“thinking” and how do we know when it
is achieved?)

Man continuously sees machines of
limited purpose and therefore cannot
conceive of a machine with greater
capabilities. Many limitations
(“disabilities”) are associated with the
very small capacity of most machines (of
the time). Some of the limitations must be
considered to be frivolous. For example,
a machine might be made to “enjoy”
strawberries and cream, but any attempt
to make one do so would be idiotic.
(How does one define the “friendliness”
between a man and a machine, as
compared to friendliness between a white
man and a white man, or between a
black man and another black man?)

This can be parried with the statement,
“There is nothing new under the sun.”
Who can be certain that “original work”
is not simply the growth of the seed
planted by teaching, or the effect of
following well-known general principles?

Within the context of the IG, the
interrogator will not be able to take any
advantage of this difference (the resolution
of the analog brain). A digital computer
(within the IG) could be programmed to
produce results indicative of a continuous
organization (an organism).

Statistical evidence for such phenomena
is, at the very least, not convincing. Many
scientific theories remain workable in
practice in spite of clashing with extra-
sensory phenomena.
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designation of intelligence is at variance with concepts espoused by many in the
cognitive community. Aunt Bubbles (Block, 1995) provides an attack on the
TT as a behaviorist approach to intelligence. (Aunt Bubbles is an example of a
dumb machine that would appear to pass the TT. The interrogator enters some
statement or question. The computer searches its database and produces
a response that the programmers have deemed appropriate. The interrogator
now enters a second question and the computer produces a new response that
is consistent with the second question and the computer’s first response. The
machine can do well with regard to the TT, but it is basically considered to
have the intelligence of a juke-box.) The arguments in support of, and in oppo-
sition to, the TT are basically philosophical. The reason for this is to be found
in the following argument: if a machine passes the TT, then by definition it
should be labeled as “intelligent”; if a machine fails the test, we cannot say for
certain whether it does, or does not, think in an intelligent manner. We can
agree, however, that the TT tests for “human-like” intelligence. We might use
the TT as a means for gathering inductive evidence about machine intelligence
as well as information that will help to resolve the cognitive mind-body issue.
It remains to be seen whether a realistic and objective method of assessing
the test regarding successful machine implementation will be developed any
time soon.

The TT and Behaviorism

TT-like tests seem to be the best methodology we have for forming conclu-
sions about machines’ “minds,” even though such tests may intuitively support
a behaviorist viewpoint. We currently grant intelligence to humans on the basis
of considerations of behaviors, so why not do so for the machine? Behavioral
evidence is the best evidence we have for other minds. If, someday, our basic
understanding of human intelligence becomes altered, then an alternative test
could be developed for the machine. If a machine passes the TT some day, we
will have to accept the fact of machine evolution in the same way that we have
accepted animal evolution.

Is the TT Too Easy or Too Difficult?

Some researchers criticize the test as being too easy (Bringsjord, 1994), using
the argument that it enables only the assessment of “verbal” intelligence. It is
incumbent on those who promote this view to design an “acceptable” test, and
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if the machine were to pass such a test, to make clear why the machine does
not deserve to be called intelligent. If a machine were to pass the test because
it had used, essentially, a “bag of tricks” (as in Searle’s Chinese Room, for
example), should we consider that the human mind is also a bag of tricks?
After fifty years of trying, we have developed only rudimentary natural lan-
guage processing systems (Weizenbaum, 1996). One example is the chatbot,
which can carry on conversations with people via the Internet. None of the nat-
ural language processing systems passes the TT. Yet, other researchers declare
that the TT is too difficult. The Internet alternative that can find information
possesses a level of “behavioral” intelligence that would seem to approach the
TT level. One of the main problems is our limited understanding of natural
language processing and generation in humans. If it turns out to be the case
that human natural language processing is fairly impervious to our analysis,
it will be impossible to model such processing on computer functioning in a
successful manner, if at all. However, deficiencies in the TT do not preclude
machine intelligence. Modern computers now perform many tasks that we
would not hesitate to say had required intelligence if the tasks had been exe-
cuted by humans. (Some of these will be discussed in the next chapter,
Artificial Intelligence II: Operational Perspective.) A natural language machine
answering inquiries on a well-defined topic is clearly quite remarkable. We
should not dismiss the machine as “lacking intelligence” if it fails the TT. A
machine’s passing the TT can be considered to be a sufficient condition of or
proof of its intelligence; we should not dismiss practitioners of AI as not being
able to build intelligent machines.

Overall Evaluation of the AI Concept:
Summarizing the Meaning of AI

Alan Turing’s predictions have failed to materialize in the fifty years since his
treatise appeared. Most agree: his bold challenge has left us with an extremely
difficult task. Initial enthusiasm has given way to pessimism regarding the ulti-
mate goal—not just an intelligent agent that passes the TT, but one that pos-
sesses the capabilities of its human creator. Critics have expected too much too
early. Perhaps the TT is the “Holy Grail,” and, like the solution to Fermat’s
Last Theorem, its attainment may take centuries. (Fermat scribbled a mathe-
matical theorem in one of his personal books, as well as a statement that he
had a solution, but the solution would not fit in the margin of his book. The
solution actually required some 200 pages of mathematics.). To create a suc-
cessful TT, we will have to answer the following questions:
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What is the language/cognition relationship?

Is language autonomous with respect to other cognitive abilities?

Can computers “understand” language?

What is a simulation?

Psychologists, computer scientists, engineers, philosophers, and linguists
have wrestled with these questions and similar questions for many years. A
successful TT may be a sort of culmination that follows on the heels of a
number of other related accomplishments.

Many within the cognitive scientific community adhere to the belief that
humans cannot, and should not, be viewed merely as machines. Yet, humans
have an abiding fascination with the idea of building machines that recreate the
entire human experience, including consciousness (even though it is a complex
concept with no universally agreed-upon definition). Consider the contempo-
rary interest in “cloning.” And, as we were developing material for this text,
the latest science fiction adventure movie made its appearance. The name of
the movie: “I, Robot.”

Although there are many definitions of AI, common themes or elements are
evident in these competing definitions, which depend on the underlying inter-
ests of the researchers:

In engineering, AI is using knowledge to solve real-world problems.

In cognitive science, AI is a codification of knowledge that will finally
explain intelligence.

Using the modern computer (PC), workers—no matter what their special-
izations—seek to reproduce (simulate) nothing less than human intelligence
and mental processes.

The modern computer has the capacity to recreate “human-like” behavior
for limited-environment problems. Alan Turing signaled a seminal test of
machine intelligence in 1950. Some consider the TT to be detrimental to AI
(Hayes and Ford, 1995; Whitby, 1996). AI’s objective is to make computers
perform “intelligent” tasks and thus make life easier. If that is the principal
purpose of AI, then successful TT programs would not be terribly useful. The
TT may be a game; our trying to develop computers that can communicate
with humans using natural language may lead to seminal insights into how the
human mind works. With very few exceptions, cognitive scientists as well as
philosophers consider this a noble outcome.
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In Depth: Behaviorism and Ned Block

One of the more vocal participants in the TT debate has been Ned Block
(1981), who notes that the judges in the IG can be fooled. (Searle’s Chinese
Room argument is similar to Block’s scenario.) “Mindless” machines given the
TT rely on simple tricks to pass it. Block’s hypothetical machine, which was
designed to pass the TT, would have been designed in the following way
(and such machines do not require sophisticated information processing
algorithms):

• All possible conversations of some given length are stored in the com-
puter’s memory (database or knowledge base).

• At least one participant in the TT is “making sense” (is not irrational) in
the natural conversations such machines can carry out.

• The set of conversations that can be carried out in a fixed amount of
time—one of the parameters (constraints) of the test—is finite.

• Although an inordinate number of these conversations exist, they can be
stored in the memory of the hypothetical machine, and then the game
might proceed as follows:

Judge: types in a character string; call this sequence A
Machine: Finds a conversation that begins with string A and proceeds
to generate a second sentence in the “conversation.” Call the machine’s
response string B.
Judge: Types in string C in response to B.
Machine: Finds a conversation with ABC as its sequence and types out
response D.

The game would proceed in this manner until the conversation is termi-
nated, at which point the judge must decide if the machine is human (i.e., has
exhibited human”intelligence”). In Block’s view, the processing capability of
such a machine is akin to that of a jukebox. Since he believes that the machine
in the scenario will pass the test, he concludes that the test is an inadequate
measure of intelligence. The problem, according to this line of debate, lies in
the “behaviorist” approach inherent in the TT. Block therefore defines a con-
cept which he names psychologism, wherein intelligent behavior depends on
the character of the internal information processing that produces the observed
results. What follows from this concept is depicted in Figure 10.8.

As shown in the figure, both systems produce the same behaviors, yet
System 1 may be granted intelligence, whereas System 2 may be judged to be
devoid of any intelligence by virtue of its different information processing
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structure. It is possible for both systems to exhibit intelligence, as might occur
if we encountered “Martians” who could engage in creative activities. Block
would not preclude Martian intelligence just because Martians are “different”—
have unique processing systems. Regrettably, we as humans often assume a
xenophobic attitude toward people of other cultures and are prone to deny
them any “intelligence.” Because an information processing mechanism is
completely different from a human processing model does not mean that the
“alien” entity lacks intelligence. Block is not critical of the TT in its own right.
Rather, he is using the TT as a focus for his argument against a behaviorist
approach to intelligence. Thus, he concludes that the embodiment of intelli-
gence in tests such as the TT may lead one to find intelligence in an entity
entirely lacking in such intelligence and to the possibility that we deny intelli-
gence to a truly intelligent system. He concludes, “We should specify, in a non-
question-begging way what it is for a sequence of responses to verbal stimuli
to be a typical product of one or another style of intelligence.” Block’s formu-
lation of the TT becomes:
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“Intelligence (or more accurately, conversational intelligence) is the
disposition to produce a sensible sequence of verbal responses to a sequence
of verbal stimuli, whatever they may be.”

Good questions are not required; the system would have the capacity to
emit sensible responses to anything that the interrogator might say, not just
what is said.

Evaluating the Block Approach

The modified (neo-TT) conception of intelligence is still not sufficient to save
it from a behaviorist label. The previously noted jukebox would still qualify as
intelligent because it has the capacity to emit sensible verbal output to any ver-
bal input. The intelligence that it exhibits belongs to the programmers, not to
the machine itself. Machines that can learn and solve problems could qualify as
being intelligent, because it could be argued that the “intelligence” belonged to
the machine, not to the programmers. Consider an AI built on the Connectionist
Model (described in Chapter 7) that learns to recognize patterns.

Block’s argument is vulnerable in yet another way. Richardson (1982)
doubts that Block’s machine can imitate known conversational abilities.
Humans understand and produce sentences that they have never heard or pre-
viously uttered. They can adapt to novel situations and maintain coherence
during a discourse. The brain is not a repository of responses; it must be able
to build a virtually unlimited set of sentences out of a finite list of words. If
such a database of utterances is unlimited (over a lifetime), how can a team of
humans gather these utterances and enter them into the computer’s memory (in
a finite amount of time)? According to Richardson, if list-searches satisfy the
neo-TT, the test must be too weak. Given the present state of understanding of
human cognition, based on current cognitive and linguistic research, it may be
unlikely that Block’s approach can succeed in modeling the human mind.
There may come a time when Block’s “sensible” strings of sentences can be
enumerated and we will then judge intelligence on the basis of the neo-TT.
However, on that day we would have all the psychologistic information that
we require and we would no longer be interested in any sort of TT.

Block’s argument is useful because it sheds light on the weakness of the
behavioral approaches inherent in Turing’s proposals. We may receive better
insights as to how the mind works and therefore a better means to judge
another entity’s cognitive capacities. Until then, we have little that is more
comprehensive than behavior on which we might base such judgments.
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Minds On Exercise: Play the IG 

Play the IG. Form a group of three: one will act as an interrogator, one will play the
role of the male, and one the role of the female.To reproduce Turing’s formulation,
the team should communicate using one of the Internet “chat” tools or a software
application such as Blackboard.The length of the period of interrogations should be
agreed upon in advance.After the interrogations have taken place, the interrogator
should decide which participant is playing the part of the male and which is playing
the part of the female. Compile statistical results for all groups to determine what
percentage of choices was accurate. Can you draw any conclusions from the results
of this experiment? (If there is sufficient statistical data, the group might attempt to
resolve a null hypothesis, such as, “The TT can measure intelligence.” This would
require some knowledge of statistical hypothesis testing.).The game should be struc-
tured in such a way that it is in accordance with the TT as it is viewed currently. For
example, the group should set down the “rules” regarding what kinds of questions
can be asked, such as by deciding what kinds of categories should be permitted (e.g.,
politics, history, weather, etc.).

Food for Thought: Discussion Questions

1. Could a computer replace one of the participants in the Minds On Exercise?

2. Explore the life of the atheistic physician, Julien Offroy de La Mettrie, one
of the most radical proponents of the man-machine thesis of the eighteenth
century.

3. Come up with examples, similar to the automatic pilot, of automata that do
not “think” in the manner a human being thinks in the same or a similar
domain. Look for other examples in the arts (e.g., plays) that deal with
automata and their implications for machine intelligence.

4. Develop an example in inductive logic and evaluate the accuracy of the
conclusion.

5. What’s wrong (or not wrong) with the following argument?

“If each man had a definite set of rules of conduct by which he regulates his life,
he would be no better than a machine.

There are no such rules.

Therefore, men cannot be machines.”
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As you discuss the logical problem, try to identify the mental processes you are
using. Is this “intelligence”? Could a computer be programmed to produce similar
results?

6. Does consciousness have to precede intelligence? Develop arguments for
both affirmative and negative answers to this question.

7. Go to the website http://alicebot.org.A number of conversational computer
programs have appeared since Weizenbaum first developed ELIZA. One of
the more engaging and remarkable examples is ALICE. “A.L.I.C.E.” is an
“Artificial Linguistic Computer Entity” capable of intelligent conversation. If
you were to interact with ALICE and did not know better, you might think
that the program was really a human correspondent. The foundation sup-
porting this enterprise, the ALICE A.I. foundation, is dedicated to the devel-
opment and adoption of AIML (Artificial Intelligence Markup Language). On
the website, locate the line “Free Live Chat: with the award winning A.I. chat
robot A. L. I. C. E.” By clicking on “A. L. I. C. E.,” you will initiate an inter-
active conversation with ALICE. You can introduce yourself to ALICE (e.g.,
Hello, my name is John.), or ask ALICE any number of questions. See if ALICE
knows what the word “algorithm” means.Try to determine what constitutes
“cased-based reasoning.” Ask ALICE about the concepts discussed in this
text (e.g., connectionism). Can ALICE learn and/or remember what you tell it
during the conversation? Do you think that ALICE is an intelligent agent?

Note

1. Alan Turing’s seminal 1950 paper, Computing machinery and intelligence, should
be read in its entirety; it is nothing less than a tour-de-force of issues in AI. The reference
is readily found in several places on the Internet (www.abelard.org/turpap/ turpap.htm
being one such site). The paper includes an intriguing description of a “human com-
puter,” which likens a cognitive model to the architecture of a digital computer.

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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“Artificial intelligence is the science of how to get machines to do
the things they do in the movies.”

—Astro Teller

Introduction

As a direct consequence of human aspirations to be godlike, our history is
replete with examples of attempts to create artificial beings or machines that
imitate them (McCorduck, 1979). Long ago, Plato gave voice to the idea that
our ability to be rational—to think logically—was closely tied to intelligence.
This has been a driving force in AI.

From a practical point of view, AI is concerned with developing machines
that solve real-world problems, particularly those requiring an intelligent agent
(e.g., deciding the best travel route to take between two cities). The closely
related disciplines of engineering and computer science have provided the
hardware and software organizations that best implement AI within computer-
based automata. AI has been defined in Chapter 10 and cognitive elements of
intelligent agents (e.g., humans) have been discussed throughout the text.
Underscoring this operational viewpoint are several well-defined subjects:

Artificial Intelligence II:
Operational Perspective
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machine-based representation of knowledge (knowledge representation, or
KR), formalized methods of logic and reasoning, and the associated topic
of Expert Systems (ESs), Fuzzy Logic, and Artificial Neural Nets (ANNs). We
begin by discussing the nature of the abstract representation of information in
order to understand how such organizations accommodate to the strictures
imposed by the computer. We then explore some reasoning methods that par-
allel human cognitive processes. KR and reasoning are integrated within ESs,
which imitate some forms of human intelligence. After the limitations of ESs
are considered, an alternative approach to the design of machine intelligence
provided by Fuzzy Logic systems will be explored. ANNs will be briefly con-
sidered in light of the more comprehensive treatment previously provided in
Chapter 7 (The Network Approach). Finally, an overall evaluation of such
machines will summarize current issues that face those who undertake the
design of intelligent agents with machine implementation.

The Practical World of Artificial Intelligence

The world that we inhabit has grown increasingly complex and to an increas-
ing extent we have come to rely on machines to make efficient use of our mate-
rial and human resources. While some express fear that the economic goal of
AI is to replace human workers with machine equivalents, we should remain
aware of some attractive prospects afforded to us by such machines. In some
activities that humans believe are intelligent, (e.g., chess playing, computing
math problems) machines may already outperform humans. However, the
problems that weigh on replacing a human worker with a machine remain cur-
rently insurmountable—computers are not close to achieving the perceptive,
finely-honed reasoning, and manipulative capabilities of adult humans. From
an AI perspective, machines can currently demonstrate the intellect of a low
order insect in some aspects of perception and information processing. Pursuing
the study and development of machines capable of true AI has another positive
outcome: the more we try to replicate human intelligence the more we may
learn to appreciate and understand human intelligence.

Goals of Practical Machines

The criteria for success in machine-based AI can be summarized as follows:

• Does the application have a clearly defined task?
• Does the application solve a real problem?

354 COGNITIVE SCIENCE

11-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 354



• Are extensions to new opportunities possible?
• Does the solution embody a well-defined architecture or organization, or

is the result impressive but ad hoc and suitable only in a limited number
of cases?

A small sampling of the exciting practical opportunities within AI include:
the mining of information (i.e., data identification and interpretation), resource
allocation, uncovering relationships that exist between scientific variables or
rules that describe those variables, developing effective control and problem
solving strategies, improving the design of products that we use for activities
of daily living, explaining decisions of all kinds, and identifying risks. These
uses extend to the practice of medicine, commercial enterprise, law, social
organization, and scientific investigation. The “intelligent computer” can be of
enormous help to us.

However, designing computer-based machines that are intelligent is not the
same as building computers that simulate intelligence.

We should not be obsessed with mimicking human intelligence. At the same
time we should not reject methods that science tells us are involved in human
intelligence. Here are some samples of the ways in which cognitive theories
help to create useful machines:

Help experts to solve analytical problems in mathematics, theorem proving,
and symbolic calculations, and in the study of the equations of complex
object interactions. Cognitive models for problem solving are discussed in
Chapter 5 (The Cognitive Approach II).

Help to design new devices. Find new ways to reduce the number of com-
ponents in a design. (See, for example, Brooks, 2002.)

Help us to learn from examples. Experience-oriented learning provides an
example of how to extract conclusions about new experiences using past
knowledge. This parallels one aspect of human learning, and ANNs (see
Chapter 7, The Network Approach) reflect mechanisms for drawing con-
clusions about an unknown stimulus. For situations involving greater
abstraction, programs can examine databases to extract regularities. One
such example is the ID3 system—discussed below—that examined thou-
sands of databases and was able to produce identification rules in instances
such as credit assessment and disease diagnosis (Quinlan, 1986).

Help to answer questions using structured or free format. START (Katz,
1997) is a system that enabled journalists and scientists to make inquiries
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about the Voyager spacecraft, its journey to Neptune, and the solar system.
One such question (and the answer) is noted:

Query: What color is Neptune?

START response: When you look at a photograph of Neptune, you see the
planet’s atmosphere and the tops of clouds. Neptune is
bluish because the methane in its atmosphere reflects the
blue and green frequencies of light. The methane absorbs
red and yellow frequencies of sunlight.

Approaches to the Design of Intelligent Agents

Figure 11.1 depicts various approaches to the design of intelligent machine-
based agents and they parallel cognitive models that are explored in other
chapters.

The “top-down” approach in the figure reflects the idea that we can build
a machine that “imitates” our concept of how human beings think at their
most abstract level. It is a machine-based cousin of cognitive functionalism (see
Chapter 2). This approach has given rise to ESs and historically these machines
were the first to achieve practical success.
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The “bottom-up” approach uses the idea that we might literally build a
neuronal model of the brain and see if we can train it to think and make deci-
sions as humans do. This is a direct outgrowth of research in the neurosciences
(see Chapter 6) as well as in the area of cognitive networks (see Chapter 7).

In this chapter we will concentrate on the basic concepts of KR, machine
logic, ESs, and Fuzzy Logic as machine implementations of cognitive concepts.
Comprehensive technical descriptions of ESs and Fuzzy Logic can be found
in numerous texts, of which the Principe and Barr texts are representative
(Principe et al., 2000; Barr et al., 1982).

Machine Intelligence, Knowledge, and Machine Reasoning

One of the goals of AI is to create a machine that performs computations mod-
eled on human mental processes (i.e., an ES). In order to appreciate an ES, we
need describe two important elements of such systems: KR and machine rea-
soning. A typical session with such a machine includes the following steps:

• A statement or question is submitted;
• The machine translates this into an internal representation or abstraction

with minimal—ideally no—redundancy;
• Using an internal representation of the fact or question, relational state-

ments (production rules), and the rules of logic, the machine arrives at
results;

• The machine translates the results (e.g., an answer or explanation) from
internal representations to forms (e.g., language, visual, auditory) that
can be readily interpreted by a human user.

Machine Representation of Knowledge

The Cyc Project

To give you a sense of the scope and complexity of the task of attempting
to represent knowledge within a machine, we describe one example of an
ambitious attempt to do so. The name “Cyc” (for what is likely the largest
experiment in symbolic AI) comes from the word “encyclopedia.” In 1984,
Doug Lenat, at the Microelectronics and Computer Technology Corporation
in Texas, started a project in which he undertook to assemble a comprehensive
database of everyday common-sense knowledge. The knowledge base (KB) is
now the property of Cycorp, Inc. If it achieves its objectives, the KB will serve
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as a foundation for ESs. Such systems equipped with “common sense” might
be able to achieve a high level of performance and would be less prone to
errors where “common sense” is lacking. For example, in one such ES, the pro-
gram might attempt to diagnose a bacterial cause for symptoms stemming
from a gunshot wound in which the patient was bleeding to death. (The sys-
tem might draw this inappropriate conclusion because the user failed to include
the fact that the patient had suffered an entry wound in his/her abdomen.) In
another instance, the ES might prescribe an absurd drug dosage when the
patient’s weight and age were accidentally interchanged.

In the AI community, “common sense” refers to the very large body of
worldly knowledge that humans use in their daily lives. Describing simple
activities requires a mass of knowledge to convey an accurate representation of
our environment. Consider some examples of common activities: one can pull
an object with a string but cannot normally push an object with a string; an
object resting on another object being moved usually moves with the object;
water flows downhill; people who live in cities usually do not go outdoors
when undressed; and cause precedes effect. Computers intended to reason must
avail themselves of millions of facts. As one investigator, Terry Winograd of
MIT, notes, “It has long been recognized that it is much easier to write a pro-
gram to carry out abstruse formal operations than to capture the common
sense of a dog.”

Basically, the Cyc project requires data entry for millions of assertions—a
formidable task in itself. During its first six years of existence, Cyc built a
knowledge base (KB) of one million assertions. Lenat has estimated that it will
take 100 years for two people entering such assertions to accumulate 100 mil-
lion assertions. This is estimated to be the magnitude of the KB that would
need to be assembled before Cyc might be truly useful. At any given moment,
one may encounter 30 Cyc personnel entering data—they are referred to as
“cyclists.” These people examine newspapers, magazines, advertisements,
encyclopedia articles, and other source material and extract information that
is subsumed in the various publications. What Lenat had in mind was a KB
that people or machines would have to have if they were to be able to under-
stand an encyclopedia. One problem immediately comes to mind for this mech-
anism: Can we trust the cyclists to truly understand or interpret the underlying
prerequisites that they are studying?

Cyc uses its common sense knowledge to draw inferences. For example, a
statement such as “John is wet” could be deduced from the fact that “John has
completed running the marathon” and three other facts: that running in such
an event requires considerable exertion, that people sweat after great exertion,
and that sweating produces a wet result. Typical of the entries are such things
as “Every tree is a plant” and “Plants eventually die.” In response to a query
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such as “Will trees die?,” the inference engine could conclude the obvious and
respond correctly. Cyc has its own language, which is based on concepts
related to computation with predicates and a syntax that is compatible with
one of the so-called “AI languages” (Lisp). Knowledge engineering remains a
focus of work being carried out in conjunction with Cyc, with particular atten-
tion being given to providing the Cyc system with the ability to communicate
with its users in “natural language” as well as expediting the knowledge for-
mation process.

Evaluation of the Cyc Project

The goal of trying to represent large amounts of knowledge leads to diffi-
culties for Cyc. For example, Cyc has trouble in automatically searching for
information that is “relevant” to a given problem. For symbolic reasoning as
embodied in AI, the process of updating, searching, and manipulating a large
structure of symbols in realistic time frames, as envisioned in Cyc, is not feasi-
ble. The underlying problem is one of scaling small databases into those large
enough for genuinely intelligent systems. Critics believe that Cyc will succumb
to this problem before it will be able to achieve human levels of knowledge.
Other problems that confront Cyc are those related to knowledge representa-
tion. For example: how are basic concepts such as those that have to do with
causation to be analyzed and represented within the KB? At present a signifi-
cant part of the development effort is devoted to finding ways to search,
update, reason, and learn (and particularly to learn through analogizing).
Some maintain that this is the wrong approach—it “puts the cart before the
horse.”

Objectives of Knowledge Representation (KR)

Internal representation or abstractions of information are key elements of
the interaction described above. The machine translates the natural language
formulation of input from a user into a stylized, virtual equivalent. When the
machine has developed a response, it must translate the abstract information
into some natural format (e.g., auditory). Information within such machines
consists of stylized or abstracted versions of the world. Such descriptions are
called representations and were formally introduced in Chapter 1.

With respect to machine representation of knowledge, practitioners within
AI concern themselves with questions such as:

• What is knowledge?
• How is knowledge to be represented?
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• What is the relationship between mind, consciousness, and intelligence?
• What is the structure of language, and how does it relate to the recon-

struction or initiation of thoughts?

Such questions have been addressed in other chapters in this work. In par-
ticular, the cognitive aspects of information representation were discussed in
the main in Chapter 1 (categories of knowledge representation), Chapter 2 (the
knowledge acquisition problem), and Chapter 4 (Neisser and cognitive psy-
chology). In this chapter we will examine how information may be represented
within a computer.

Early attempts to represent knowledge paralleled the way that it is repre-
sented in our cognitive centers. This is a problem, as we are still trying to fully
understand how knowledge is represented in the human mind. One approach
is to consider that intelligence is accessible via searches for heuristic informa-
tion. (Note the discussion of the Cyc Project, above.) That is, we can resolve a
problem or question by searching for the appropriate facts with the help of
some general guidelines. As Marvin Minsky noted in 1982, “Everyone knows
that if you try enough different things at random, eventually you can do any-
thing.” This would require extraordinary amounts of information and, in addi-
tion, it would take too much time to solve even relatively simple problems
(Minsky, 1982). Currently, we recognize two kinds of knowledge: domain-
specific knowledge, such as information within medicine, finance, or psychol-
ogy, and general background knowledge. We have been able to provide com-
puters with domain-specific knowledge; but as yet, the problem of organizing
general background knowledge does not have a satisfactory solution because
this kind of knowledge cannot be easily arranged in a systematic way as com-
pared, say, to statements about a disease in medicine.

Knowledge representation is a central challenge for AI and is far from a triv-
ial problem. (See Chapter 1 for a discussion of the cognitive dimensions of this
problem.) Organization of knowledge within machine reasoning systems must
address a range of issues, including how to store and manipulate information
in a formal way so that it can be used by mechanical reasoning systems as well
as be accessible to human users.

Characteristics of KR

KR provides us with a way to view objects in the world. Our representation
impacts the ways in which we can draw inferences (Davis et al., 1993).
Practically speaking, several KR organizations can be found within the mod-
ern ES. Whatever the specific architecture, these models address the roles that
KR plays.

360 COGNITIVE SCIENCE

11-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 360



First, and foremost, a KR is a substitute or surrogate for the object or idea
it seeks to symbolize. It should enable a computer to draw inferences via rea-
soning or thinking rather than acting. For example, if we were developing an
AI to design bicycles, we would need to describe objects such as wheels, chains,
handle bars, and so on. We would also need to put into it concepts such as the
action (“process”) that a wheel can take. Our descriptions are ghostlike or vir-
tual images of these objects that only truly exist in the real world. In this view,
reasoning itself is a surrogate for action in the world. A good surrogate must
consider two things:

• What is it to be used for? There must be a correspondence between the
surrogate and its equivalent in the real world.

• How good is the surrogate? Perfect correspondence is not possible. For
example, the object in the real world may have a location that is not (and
should not be) specified in our representation.

It should be noted that because surrogates are, of necessity, flawed, the
inferences are inevitably flawed. However, a good representation can minimize
(or even eliminate) error for a specific intended task.

In addition, a KR answers the question: “How shall we think about the
world?” In other words, it represents a set of ontological features. Ontology
is that part of philosophy (metaphysics) that is concerned with the nature of
being, reality, or existence. Representations are views of the world. Like
human vision, they may clearly focus on specific relevant elements, but this is
accomplished at the expense of other parts becoming blurred—humans have
reduced peripheral vision. In engineering, we represent the world in terms of
very specific components. However, this is often accomplished without refer-
ence to the dynamic interaction of these components. On the other hand,
medical diagnosis is viewed in terms of rules (see MYCIN, below) and these
rules are different from the rules used in other medical ESs (e.g., the frames
approach taken in INTERNIST; frames use prototypical descriptions—as
opposed to the rules of MYCIN—and are described below).

A KR will include an inherent fragment of intelligent reasoning. A specific
entry can include the set of inferences or operations that are sanctioned. For
example, with an appropriate representation, we may imply or conclude that
an ape “is an” animal. (An example of a hierarchical isa structure is shown in
Figure 7.9.) Using descriptors such as age, weight, gender, and spouse, we may
infer that man is a person or alternatively that our pastor is a person. This role
that a KR plays follows from our conception that the representation is
intended to provide an insight into how people reason. The reasoning fragment
is implicit in the way we structure the KR technologies.
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A KR is a medium for efficient computation. If we are to use a representa-
tion in any feasible way, we should be able to compute with it. Therefore, com-
putational efficiency is strongly tied to KR. For example, we can include
several kinds of information within our structure, such as elements of a stereo-
typical situation (e.g., going to a birthday party), as well as how to use the
information, and what one can expect to happen next (e.g., in a restaurant we
may expect to be seated and given a menu).

Finally, a KR is a medium of human expression or a language in which we
say things about the world. The upshot of this characteristic is that we give
consideration to questions such as: How well does the representation function
as a medium of expression? How general is it? How precise is it? Does it pro-
vide for expression? These questions all relate to an overriding concern with
the “ease of use.”

Knowledge Representation Technologies

Several representations that have been designed with these characteristics in
mind have emerged: predicates, semantic networks, frames, cases, and scripts.
(Cognitive network topologies are discussed in Chapter 7, The Network
Approach.) Basically, they differ in the ways that these representations are
implemented (i.e., in their details). Each leads to a different set of properties
that we may want a representation to have. Taken together, these comprise KR
technologies. Each technology addresses the roles described above. KR tech-
nologies differ primarily in the emphasis that they place on the various objec-
tives within KR.

Predicates

A predicate is an assertion of a fact about one or more entities or subjects.
Predicates are just like the assertions that we make about subjects in grammar.
Predicates, like all of the technologies currently in use, must be unambiguous,
and word-sense ambiguity must be eliminated in order for them to be proper
surrogates for the objects or ideas to be represented.

In the first instance, internal representations must eliminate all referential
ambiguity. The computer must be able to correctly identify the “object” with-
out confusion (e.g., one avoids such inputs as “He has a pain in his lower
back”—who is the “he?”). This is not necessarily an easy thing to accomplish.
For example, to represent the individual “Mary Johnson” in the machine, you
could simply use “Mary,” but there are many people with the name “Mary.”
You could choose “Mary Johnson,” but once again there may be some number
of “Mary Johnson(s).” An appropriate solution is to make up names. These
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unique names are called instances or tokens (e.g., Mary-1, Mary-2, etc.). They
are not English words but rather identification symbols and are useful for
symbol manipulation, which is the computer’s primary forte. These are
surrogates for the person or object.

Suppose that the machine, after translating a natural language submission
from a user, is “told” that:

“Mary-1 caught ball-10,” and

“John-3 caught cold-5”

Subsequently, a user enters the query

“Who is ill?”

Because we have not further resolved the meaning of “caught,” we might
expect the machine to respond with

“Mary-1 caught ball-10 and John-3 caught cold-5”

To eliminate this word-sense ambiguity, we should introduce a distinct
meaning for each instance of caught:

(a) catch-illness

(b) catch-object

The new internal representation (for Mary) would thus become:

“Mary-1 catch-object ball-10”

This appears to be a rather contorted representation of the simple fact that
“Mary caught a ball,” but without such formalities the machine becomes vir-
tually useless as a symbolic processor.

Internal representations are called formulas, and when they are stored with
other formulas, as in a database, are also called assertions. Thus, (Mary-1
catch-object ball-10) would be an assertion if it appeared with other formulas
in a database.

Organization of the mind, particularly as it relates to how we represent the
world, is a key concept in cognitive science. Recall from Chapter 1 that a basic
form of mental representation included two fundamental elements: a concept
or idea that represented a class of things that have been grouped together, and
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production rules or conditional statements (e.g., “If (x is true) then (y follows),”
where “x” and “y” are propositions or predicates whose truth or falsity can
therefore be determined). Concepts and rules are replaced by symbols that we
use to reason and bear a resemblance to corresponding linguistic elements.
Intelligence of this sort is reflected in language, and once we have a linguistic
representation of an idea, reasoning about it becomes a process of symbol
manipulation; consequently machine computation can be considered to be a
metaphor for reasoning. A computer is an excellent machine for processing
symbols. Computers may therefore be admirable candidates for representing
intelligent agents (Poole et al., 1998). Formal representations of cognitive
information (i.e., facts and rules) together with some form of logical reasoning
constitute essential elements of an ES.

Semantic Networks

A semantic model of data representation includes nodes and arcs, where
nodes represent particular concepts or elements of the world and arcs represent
relationships between the concepts or elements. They are easily understood by
humans and can be adopted for use in automated processing systems. A repre-
sentative semantic network for a vacuum cleaner is shown in Figure 11.2.

With such an arrangement, an automated system could answer questions
such as “How does power get to the motor?” and “What is the purpose of the
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Figure 11.2 Simple semantic network for a vacuum cleaner
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motor?” (Sowa, 1984). This network description has a number of similarities
with the semantic networks as described in Chapter 7. That is, it includes
nodes as well as arcs wherein the node’s activity spreads outward to activate
other nodes. In Chapter 7, semantic networks were used to describe informa-
tional organization within memory. (This discussion is a direct parallel with
the material in that chapter, in which semantic networks include individual
nodes that represent meaningful concepts and provide an understanding of the
ways in which information can be retrieved from long-term memory.)

Frames

This is also a useful knowledge representation system with easy accessibil-
ity for humans and machines. Marvin Minsky—a name that appears repeat-
edly in the history of AI—introduced it. A frame can be considered a
convenient way to represent a set of predicates. It will include a place to store
attributes or properties of the concept (e.g., a slot for each attribute) and
actions (i.e., procedures) that can be applied to the concept. As an example,
suppose that we hope to represent a genealogical tree or semantic network as
follows:
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William and Harriet are parents of

Howard Brigid Erica

The frame describing William might be stored as:

William:

Sex: male

Mate: Harriet

Child: (Howard Brigid Erica)

In this case, sex, mate, and child are slots. To complete the genealogical tree,
seven frames would be included: William, Harriet, Howard, Brigid, Erica,
male, and female. One example of such frames is:

Sex (William, male)

Mate (William, Harriet)
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Child (William, Howard)

Child (William, Brigid)

Child (William, Erica)

Each of the entries just noted is a predicate.

Cases

A record is an instance of an activity or event. Records are very similar to
frames in that they require consistent index identifiers that allow cases to be
compared to each other. A case—sometimes called a record—with information
about a specific car sale would include data on the buyer, the specific product
purchased, price, and so on. A car dealer could use a collection of such cases
in many circumstances (e.g., identify market/product trends, etc.).

Scripts

Scripts seek to capture our expectations. They are similar to frames in that
the object being defined is organized by attributes and associated procedures.
The most important characteristic of a script is that it is applied to a particu-
lar situation or story. Thus, the ontological aspects of this technology are its
important characteristics. The classic example of a script describes what hap-
pens when we go to a restaurant. We expect to see tables, chairs, utensils, wait-
ers, and menus; we do not normally expect to see an ocean. When we attend a
birthday party we do not expect to be eaten by a wild animal. A much-cited
example follows along the following lines:

John went to a restaurant.

John ordered a hamburger.

When the hamburger came, it was overcooked.

John left the restaurant without paying.

A reasoning system would be able to infer that John did not eat the ham-
burger even though there weren’t any details about what he did, or did not, eat
(Schank & Abelson, 1977).

Frames as well as scripts provide a diverse and productive basis for repre-
senting clusters of knowledge about everyday situations and specialized situa-
tions. They “imitate” a recurrent feature of our own thinking processes; we
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often interpret new situations on the basis of familiar stereotypes that provide
us with the ability to build up an understanding of the circumstances without
starting from scratch.

Machine Reasoning

Predicate Calculus

A sub-goal of “thinking machines” of the type being described (and of
human cognition) is to draw inferences. To draw an inference is to come to
believe a new fact on the basis of other information.

Predicate calculus is a way of calculating (by symbol manipulation) the
truth or falsity of propositions and includes a language for expressing propo-
sitions and rules by which to infer new facts from those that are given.

The idea of a predicate calculus was first introduced in Chapter 1. Figure 11.3
is a diagram of the predicate language.

In addition to the elements shown in Figure 11.3, other resources permit us
to increase the capabilities of predicate calculus. These include:

Connectives: We can build more complicated formulas by combining simple
or “atomic” formulas using connectives (and, or, not, if [implication]).

A variable is an object or token.

Universal quantifiers certify that something is true for all possible values of
a variable (e.g., “all (women),” or “all(x)” where “x” would be replaced by
an instance of “women”).

One way in which connectives are used is illustrated by the following example:
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All birds have wings and a robin is a bird

“All” is a universal quantifier “birds” is a variable “and” is a connective

The predicate language is the basis for internal representations of the real
world. As an example, suppose we want to represent a relatively simple set of
circumstances; namely, that Professor Smith is currently located in room 300
(r300) of Memorial Hall. Figure 11.4 shows how this might be represented
in three distinct contexts: conceptually, in Professor Smith’s own mind;
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physically, in the real world; and within a computer that has been programmed
to represent the same information.

There are three distinct representations in Figure 11.4:

• The physical view or facts and circumstances in the real world, including
Memorial Hall and room r300, with the Professor in the room;

• The cognitive view or the Professor’s self-perception of the situation rep-
resented in his mind, whereby he “understands” several abstract ideas
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Figure 11.3 A Diagram of the Predicate Language
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representing the real world: the concept of a room; the concept of what
it means to be within a room; the concept that a room can be part of or
within a building; his self-awareness (i.e., consciousness of himself); his
awareness of a particular room (r300) together with what makes this
room unique among the general class of rooms; his awareness of the
building (Memorial Hall).

• Finally, the computer representation of the facts that Professor Smith—a
particular instance of something or someone being within another entity
(r300)—is in room r300, and that room r300 is part of Memorial Hall
(“Mem”). Once again this last fact is a particular instance of an entity
“being part of” a second entity. In addition, the computer includes a rule;
this rule states that

if (an entity (“Z”) is part of a second entity (“Y”)
and entity “X” is in entity (“Z”)) then (one can

conclude that entity (“X”) is in entity (“Y”))

The computer does not have to be “told” that the Professor is in the room;
it concludes that with its own “reasoning.”

Logical Reasoning (Deduction,Abduction, Induction)

Logic is formal; truth or falsity of propositional statements can be inferred
with given forms (syntax or linguistic elements) and logical manipulation.
Using true or false outcomes, conjunction, and predication, an expressive logic
can be built and more subtle ideas can be represented. A properly formed state-
ment or proposition has one of two possible values, true or false. Simple
examples of propositions include:

“Seven plus six equals twelve,” and

“John is Mary’s uncle.”

Disjoint or stand-alone propositions are not very interesting. Take, for
example, the proposition noted above, “John is Mary’s uncle.” While it may
be true that John is Mary’s uncle, we might have more information if we knew
that “John drives a bus.” This information could be represented as “John is
Mary’s uncle and John drives a bus.” This enhanced information is obtained
by using the and connective. Combining propositions with the connectives
that are available to us provides the basis for predicate calculus. As shown in
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Figure 11.4, the computer can conclude that Professor Smith is in room r300;
it does not have to be told this piece of information. Although this piece of
information might have been entered into the computer as a fact, our machine
would be quickly overwhelmed by the amount of data to be stored and would
therefore not be particularly useful.

The connectives are critical to logical reasoning and are defined in Table 11.1.
The table shows how two variables—objects or tokens, such as surrogates for
Professor Smith—would be combined to compute a resultant logical value. To
interpret entries in the table, consider the following example: If a variable
having the identifier (name) “X” with a true (“T”) value is combined with a
variable whose identifier (name) is “Y” (also with a value of “T”) using the
and connective (operator), the resulting phrase will also be “T.” Tables of this
kind define the logical operators and are called Truth Tables.

An example that is closer to our everyday experience would be a proposi-
tion such as:

Clearance to enter the parking garage = (light is green) and (entry gate is up)

Following the entries in the Table 11.1, let X refer to the condition of the
light. If the light is green, then X has a value of true (T); if the light is red, then
it is not green and X (the condition of the light being green) is false (F). The
same reasoning would be applied to the second variable—the condition of the
gate. If the gate is up, the variable Y (representing the condition of the gate) is
T; if the gate is down, then Y is F. The truth or falsity of the entire proposition
“clearance to enter the parking garage” can be determined by following the
entries in the table in the column marked “And operation result.” The result
of this analysis is repeated below, with X and Y replaced by their respective
meanings.
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Table 11.1 Truth Table for logical operators

Logical Logical And Or X 
Value for Value for operation operation X implies Y Not X equivalent 

X Y result result result result(1) to Y

T T T T T F T
T F F T F F F
F T F T T T F
F F F F T T T

(1) not operator includes only one operand (variable)
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Light green gate up Result of logical and operation
(clearance to enter parking garage)

T T T

T F F

F T F

F F F

Thus, the only instance in which the logical result is true (based on the
meaning of the logical and operation, as defined in the Truth Table) occurs
when both the light is green (T) and the gate is up (T). All other conditions for
the light and the gate result in a false state and “clearance to enter the garage”
is denied (F).

The logical concepts depicted in the Truth Table may reflect the way in
which our neurons are interconnected. If two neurons are arranged in serial
fashion, then both must “fire” in order for the signal to pass to the next neu-
ronal plateau. If the two neurons have a parallel arrangement, then the signal
will pass to the next neuronal plateau if either one of the neurons “fires.”
These conditions are depicted in Figure 11.5.

Drawing Inferences

A goal of the designers of machine intelligence is to have those machines (of
the type being considered here) draw inferences. To draw an inference is to
come to believe a new fact on the basis of other information. There are several
types of logical inference. We limit discussion to the most prominent of rule-
based reasoning systems: forward reasoning or Forward Chaining, backward
reasoning or Backward Chaining, and inductive reasoning.

Forward Chaining. This is built on deductive logic; it was originally cited in
Chapter 1 and is repeated below for convenience.

If p then q

p is true

Therefore q is true.

A typical example of such logic from everyday experience is the following
logical sequence:
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All birds have wings

A robin is a bird

Robins have wings.

Our early development and education are built on such thinking and reflect
the way we think in many situations—on the basis of facts that we have stored
in our memory. Figure 11.6 is a schematic of the formal methodology that
illustrates how Forward Chaining is accomplished.

Rule-based systems using Forward Chaining are “data-driven.” Such sys-
tems follow the data antecedents (the “p” portion of the production rule “If
p then q”), and determine the consequences or assertions that follow (the “q”
portion of the production rule “If p then q”). The methodology used by
Forward Chaining systems shown in Figure 11.6 is applied to a simple
example, shown in Figure 11.7.

In this example we are given a number of facts, all pertaining to an auto-
mobile: the battery is good—fact A; the spark plugs are good—fact B; the car
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Figure 11.5 Neuronal organization for logical operations
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has gas—fact C; and the car has good tires—fact D. In addition, there are four
production rules as follows:

Rule 1: If (the battery is good) then (the car has electricity).

Rule 2: If (the car has electricity and the spark plugs are good) then (the
spark plugs will fire).
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Rule 3: If (the spark plugs fire and the car has gas) then (the engine runs).

Rule 4: If (the engine runs and the car has good tires) then (the car moves).

It should be recognized that many other conditions must be satisfied for the
car to move; this is a greatly simplified demonstration of Forward Chaining. A
reasoning machine could have had one production rule that would have imme-
diately confirmed the fact that the car would move. (The reader is encouraged
to define this single rule.) However, by developing four production rules in
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Rule 2 
If (Electricity and B) 

then plugs fire

Rule 3 
If (plugs fire and C) 
then engine runs

Rule 4 
If (engine runs and D) 

then car moves

Rule 2 
If (electricity and B) 

then plugs fire

Rule 3 
If (plugs fire and C) 
then engine runs

A is true

Rule 4 
If (engine runs and D) 

then car moves

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Electricity is available B is true (given)

Given: Battery is good (A)
           Spark plugs are good (B) 
           Car has gas (C) 
           Car has good tires (D)

The car moves

Plugs fire C is true (given)

Engine runs D is true (given)

Rule 1 
If A then electricity

To prove: 
the car moves

Figure 11.7 Example of Forward Reasoning (Chaining)
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place of a single principle, a system takes on much greater versatility—as such
rules can be used in other reasoning situations. Using forward chaining, a
machine is able to prove that the car can move.

Forward chaining utilizes causative agents to establish their corresponding
effects. Therefore, starting with fact A (that the battery is good), the machine
would immediately explore Rule 1, because its causative phrase contains this
fact. In other, more complex examples, fact A may appear in many production
rules, and the machine would therefore have to examine each of these possi-
bilities. In the present circumstances there is only one rule that has A as its
causative phrase. The remaining sequence is readily followed in Figure 11.7.

Backward Chaining. Logical structures of this kind follow from abductive
logic. The following sequence demonstrates abductive logic:

If p then q

q is true

Therefore p is true.

While it is easy to demonstrate that such logic is flawed, it is a kind of logic
that we often use.

If (birds have wings) then (they can fly)

birds can fly

Therefore (birds have wings).

This type of reasoning is characteristic of abductive logic. Humans often use
such reasoning when known facts do not immediately account for the obser-
vations. Therefore, we cannot apply forward (i.e., deductive) reasoning to
draw conclusions. In such circumstances we seek to develop a theory for what
we see. This is very characteristic of the way your physician develops a diag-
nosis. He or she evaluates the symptoms and then decides which disease or
deficit is apt to be the source of these symptoms. Scientists use backward
reasoning to develop theories that are consistent with the observations.
Psychology is a science where this is a common occurrence.

Backward chaining starts with the desired goal. It then proceeds to find
whatever evidence is needed to prove the goal. This evidence becomes what is
called a sub-goal. (There may be more than one sub-goal.) These sub-goals lead
to yet other sub-goals, until ultimate sub-goals are readily confirmed by facts.
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By “reversing the chain” of circumstances that have been resolved, the original
proposition is ratified. A simplified diagram of the methodology for such
reasoning is shown in Figure 11.8, and a solution corresponding to the prob-
lem diagrammed in Figure 11.7 is found in Figure 11.9. Backward Chaining
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starts with the effective phrases of production rules and establishes the corre-
sponding causative phrases of those rules as one or more sub-goals. The machine
continues this process until all sub-goals have been confirmed, thereby estab-
lishing the original target goal.

It is to be noted that in Figure 11.9, Rule 4 contains the goal (i.e., the car
moves) that we seek to establish. The machine thus proceeds to establish that
the “engine is running” and that “the car has good tires.” This latter element
has been posted as a fact; therefore the machine must determine that “the
engine is running.” As the reader can readily determine, this can be accom-
plished using Rule 3 and its consequences.
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Rule 2 
If (Electricity and B) 

then plugs fire

Rule 3 
If (plugs fire and C) 
then engine runs

Rule 4 
If (engine runs and D) 

then car moves

Iteration 1
Iteration 2

Given: Battery is good (A)
           Spark plugs are good (B) 
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           Car has good tires (D)
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Figure 11.9 Example of Backward Reasoning (Chaining)
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Inductive Reasoning

One final reasoning mechanism worth noting is that of induction. The most
common form of this is:

From: (P a), (P b), (P c), . . .

Infer: (for all (x) (P x))

(P a), (P b), (P c), and so on all signify that objects whose properties are a,
b, c, and so on belong to the category identified as P. We therefore conclude
that any object whose properties are similar to those of a, b, c, and so on
belong to the category identified as P.

All of this is best illustrated with a simple example.

From: (if (inst leaf-1 leaf)(color leaf-1 green))

(if (inst leaf-2 leaf)(color leaf_2 green))

Infer: (forall (x) (if (inst x leaf)(color x green)))

Using many observable instances that have to do with leaves, the machine
reasoning system has concluded that leaves are green. This type of reasoning is
known more commonly as “learning.” Learning is a fundamental competence
among our cognitive abilities. It has proven to be one of the most difficult
things for computers to do.

Evaluation of Rule-Based Reasoning

Abstracting the real world has a number of inherent difficulties. For rea-
soning and communication to be robust, we must be able to translate or map
facts into equivalent internal machine representations and back again so that a
user can readily interpret the information. In a system, we might map “Spot is
a dog” into (inst spot-1 dog). If, somewhere in the reasoning system, we had
the additional fact that all dogs have tails, then, using deductive logic, we could
conclude that Spot has a tail. Internally this might appear as (“hastail spot”).
If the mapping function were reliable, a user would see “Spot has a tail.”
However, converting natural language facts into internal representation may
not be so easy. Consider two statements:

1. All dogs have tails.

2. Every dog has a tail.
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Statements 1 and 2 might represent the same information to humans.
However, there might be two internal interpretations for statement 1. It might
mean that every dog has at least one tail; it might also be internalized to mean
that each dog has several tails.

Procedures for resolving axioms (e.g., theorems) may not come to a computa-
tional conclusion if the proposed statement is not a theorem. Reasoning systems
must make provisions for avoiding such difficulties. These may include the impo-
sition of a limit to the number of iterations that can take place in the absence of
finding an answer or a limit to the amount of time allotted to the query.

When machine intelligence is built on simple facts as well as the inference
mechanisms described above, useful results are possible. Unfortunately, the
real world is not easily described using these limited representations. For
example, they do not indicate how one object is related to other objects. In
addition, a description of the world needs to include not only “static” descrip-
tions but also “dynamic” representations or typical sequences of events.

Expert Systems

KR and machine-based reasoning methods described above constitute the
foundations for Expert Systems (ESs). An ES uses information that is restricted
to a specific knowledge domain and is dedicated to solving problems and
giving “expert quality” advice to users in that application area. It originates
from the “top-down” paradigm of AI; it is the oldest and most advanced area
of AI and has a successful record of commercial application, as well as a record
of achievement that frequently matches or exceeds the performances of human
experts. Figure 11.10 depicts the modules and organization of an ES.

The designer of the ES will accumulate information for the KB through dis-
cussions with human experts. The designer, often referred to as the Knowledge
Engineer, must be skilled in information technology, as he or she must limit or
filter the intelligence until it becomes intelligence that represents the essential
features of the specific domain. As the system matures, additions and subtrac-
tions to the KB are standard practice. The KB is a complement of both the the-
oretical and practical (heuristic) information. Information of the latter variety
includes: “tricks,” shortcuts, and so-called “rules-of-thumb” accumulated by
experts via problem solving experiences. An ES will emulate the methodologies
of its human counterpart.

Expert Systems in Action

Do you think that it is possible for a computer to help you determine what’s
wrong with your vacuum cleaner? You may be familiar with call-in centers for
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people with technical problems seeking advice. Figure 11.11 depicts a very
simple KB for analyzing problems associated with vacuum cleaner problems.

The KB has a tree-like appearance and node A is considered to be the root
of the search tree; all searches start at the root node. (By virtue of tradition, the
root is at the top rather than at the bottom of the tree.) Terminating nodes
(e.g., N, O, L, and M) are considered to be the leaves of the tree. An ES can
examine this structure in one of two ways.

Breadth-First Searching. In this mode, the searching for proper advice to give
the user starts with the root node and descends level by level. All nodes at a
particular level are tested before the search proceeds to the next level. In this
example, breadth-first searching would examine nodes A, B, C, D, E, F, G, H,
I, J, K, L, M, N, and O, in that order.

Depth-First Searching. An alternate search scheme goes deeper into the search
space whenever it is possible. Only when there are no dependents (leaves) of a
state to be evaluated are sibling nodes—those on the same level—considered.
In the current example, searching would test the nodes A, B, E, G, I, K, N, O,
J, L, M, H, C, and finally F. Depth-first search systems use backward reason-
ing; the process is called back-tracking. When a “NO” node is reached and
there are no further ways to further descend the tree, the search will proceed
to the next accessible branch of the tree.
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Breadth-First versus Depth-First tradeoffs. There are no simple answers to the
Breadth-First versus Depth-First questions. The Breadth-First search scheme
seeks to explore all analyses in parallel until they either succeed or fail. The
machine, using a Breadth-First scheme, must keep a number of alternatives “in
mind” concurrently and will require more memory space in the computer, and
thus Breadth-First is more difficult to implement from a programming per-
spective than the Depth-First alternative. However, Breadth-First parsing gen-
erally gets to the shortest solution more efficiently than Depth-First programs.
Depth-First searches are easier to implement. However, a Depth-First search
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can become time-consuming when it is faced with problems of ambiguity.
Search times are prolonged because constituents are built that do not con-
tribute to the final solution. Partial solutions need to be undone and possibly
rebuilt several times as backtracking develops. Broadly speaking, if we include
the fact that one is interested in general knowledge, then a Breadth-First
approach is signaled, whereas interest in specific knowledge might lead one to
a Depth-First examination of the KB.

MYCIN

A far more interesting ES is among the first to have been developed—
namely, the MYCIN system. It was first developed at Stanford in the 1970s
and it has had a significant impact on the design of commercial ESs. Physicians
have been reluctant to use MYCIN because of the ethical and legal implica-
tions of computers in medicine. (If something goes wrong, “whom do you
sue?”) On some occasions, however, it has outperformed faculty members of
the Stanford Medical School. MYCIN modeled the (infectious) world as a set
of IF-THEN rules with accompanying certainty factors. One of the rules, for-
mulated in natural language, went as follows:

IF the infection is primary bacteremia

AND the site of the culture is one of the sterile sites

AND the suspected portal of entry is the gastrointestinal tract

THEN there is suggestive evidence (certainty 0.7) that the
infection is bacteroid.

MYCIN was developed using the LISP programming language and is basi-
cally a goal-directed system that relies on the backward reasoning strategy. A
series of heuristics that was superimposed on this structure was used to man-
age the search for a solution to the inquiry. An interactive fragment from a
contemporary medical ES that is similar to MYCIN is shown below.

(Doctor)

Please enter findings ;The program asks for facts about the
*sex male ;patient.
*race white ;There is a fixed vocabulary of symptoms
*alcoholism chronic ;that must be followed
*go ;This instructs the ES to proceed
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Disregarding: ;The ES finds a set of suspected diseases
Exposure to rabbits ;Symptoms not explained by these diseases
Leg weakness ;are put aside.
Creatinine blood increased
Considering: ;The ES explains its reasoning
Age 26 to 55
Ruleout: ;and rules out certain disease.
Hepatitis chronic
Alcoholic hepatitis
Abdomen pain generalized? ;It requests additional information to
*no ;further refine its findings.
Abdomen pain right quadrant?

(*indicate physician responses, what follows “;” are explanatory comments)

This fragment does not represent a complete interactive session. The user
would need to supply additional information to obtain a potential diagnosis.
An excellent demonstration of such systems can be found on the Internet:

http://dxplain.mgh.harvard.edu/dxp/dxp.sdemo.pl?/login=dems/cshome

Evaluations of Expert Systems

Although ES technology has led to many useful applications, it was early on
confronted with an inherent problem—how to determine what is “true” and
what is “false.” Contemporary ESs take this into account in a variety of ways;
it remains one obstacle that greatly complicates application software. An ES is
built on reasoning that relies on a human being or a machine’s being able to
conclude with certainty whether a phrase is true or false. An example: How
do we evaluate the term “too fast” in an expression such as “the train is
approaching the station at a rate that is too fast”? ESs as well as humans
require a definitive answer, even though there may not be one. There are ways
to deal with this within an ES, for example, using a probabilistic approach or
a heuristic (i.e., judgmental) alternative.

ESs are limited by the information in their KBs and the process for putting
that information into the KB. ESs cannot report conclusions that are not
already implicit in their KBs. The trial-and-error method of eliciting informa-
tion, programming, and testing is likely to produce inconsistent and incom-
plete KBs. An ES may exhibit important gaps in knowledge at unexpected
times. ESs are unlikely to have complete, clear functional specifications, and
designers are unable to predict their behavior in situations that are not fully
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tested. Testing of KBs of any useful size is realistically not possible. Large KBs
may be difficult to modify and maintain.

Software that is heuristically developed (i.e., via trial-and-error) is less
reliable than software developed from precise specifications. To produce a
reliable program that solves a problem requires one to study the problem.
This is not an easy task because we cannot rely on people who simply “dis-
close the way that they solve it.” As an example, consider that to distinguish
among objects in a picture, one studies the characteristics of the objects as
well as aspects of the photographic process (e.g., lighting, orientation, etc.). If
the designer simply asks “experts” for the rules, a reliable program is an
unlikely result. The expert may not be truly aware of the methods that he or
she uses. The knowledge engineer is like an investigative reporter—and from
your own experience you know that such people do not always ask the “right
questions.” Testing is an unreliable way to find errors in programs. Such test-
ing may reveal the presence of problems or bugs but cannot reveal the absence
of bugs. Furthermore, the “correct” behavior of an ES in a particular situa-
tion is often a matter of opinion. While ESs cannot be trusted as autonomous
agents, they can be particularly useful as “intelligent assistants,” especially
when accompanied by human supervision. We should not ascribe “thinking”
to ESs as they do not possess the same sort of “intelligence” as that of a human
being. They can, however, “imitate” a number of processes that humans
employ when solving problems. Peter Jackson (Jackson, 1999) has explored
this in greater detail.

Counterarguments. Complete testing of an ES may not be feasible. The best
that we can hope to achieve is a system that imitates human experts; such indi-
viduals are themselves imperfect. One does not expect a physician to correctly
diagnose every set of pathologic symptoms. Mathematical proofs for large pro-
grams are meaningless because one cannot tell whether the specifications are
complete or accurate. A prudent alternative with useful applicability: We can,
and often do, build machines that overcome human limitations.

One of the great advantages possessed by the modern computer is its abil-
ity to explore many alternatives in a short time. Based on its evaluations of
these alternatives, the machine can prioritize choices similar to those that
experts are likely to suggest. One may conclude that whatever “artificial”
mechanism such programs employ, the results support the idea that they may
be imitating “thinking” processes within the human expert.

The concept of precise specification for human processes may itself imply
an oxymoron—what is it that an expert does anyway? Despite the presence
of numerous limitations, a number of highly successful ESs have evolved.
The most successful are ESs based on well-understood models of diagnostic
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processes that are used for diagnosing faults. The rules can be organized into
a hierarchy of modules that correspond to decision points in the diagnostic
process, as in MYCIN. Their completeness and consistency can be evaluated
with respect to the model. The goal is to devise models of other problem-solving
processes and to use them in a similar (hierarchical) fashion. AI cannot yet
replace real intelligence. Alan Perlis of Yale notes, “Good work in AI concerns
the automation of things we know how to do, not the automation of things we
would like to know how to do.”

Fuzzy Logic

Fuzzy Logic has emerged as a way to deal with some of the criticisms that
have been leveled against ESs. Natural language is the embodiment of cognition
and human intelligence. It is very evident that natural language includes an
abundance of vague and indefinite phrases and statements that correspond to
imprecision in the underlying cognitive concepts. Terms such as “tall,” “short,”
“hot,” and “well” are extremely difficult to translate into knowledge represen-
tation, as required for the reasoning systems under discussion. Without such
precision, symbolic manipulation within the computer is bleak, to say the least.
However, without the richness of meaning inherent in such phrases, human
communication would be severely limited, and it is therefore incumbent upon
us to (attempt to) include such facility within reasoning systems such as ESs.

In 1965, Lofti Zadeh (Zadeh, 1965), building on historical developments in
mathematical logic, developed a concept he christened Fuzzy Logic (Lukasiewicz,
1967; Black, 1937). It gave rise to a new category of AI automaton— the Fuzzy
Logic machine. The defining term represents an obvious extension of machines
built on formal models of logic; decision making, particularly for humans, is
“fuzzy” in nature. Like ESs, it is related to the “top-down” model but provides
for greater flexibility in defining elements in the worldview. Fuzzy Logic pro-
vides us with a facility that enables a relatively precise measure of such infor-
mation. The methodology permits us to translate measurements from the real
or physical world into equivalent linguistic representation, to solve the resulting
“word” problems, and finally to develop a precise or “crisp” result on which
we can act. The Fuzzy Logic process is depicted in Figure 11.12.

Fuzzy Logic systems, as depicted in Figure 11.12, have value for both con-
tinuous-control and discrete-input applications. Continuous situations require
the machine to apply the methodology in an ongoing “continuous” manner.
Examples of continuous control applications include: managing the level of
chlorine in a public swimming pool, maintaining the stability of an ocean liner,
providing “zero-gravity” control of a passenger train so that it starts or stops

386 COGNITIVE SCIENCE

11-Friedenberg-4747.qxd  8/22/2005  3:15 PM  Page 386



without jolts, and maintaining the level of anesthesia during a surgical opera-
tion. These are all challenging tasks for a traditional engineering control system
because they do not respond well to sudden changes in the physical world; nor
can they take into account subtle distinctions such as the one embodied in the
phrase “too fast” (as in the case where we wish to control the starting or stop-
ping of a train). With respect to discrete-input examples, Fuzzy Logic can be an
integral part of an ES in that it can “interpret” the expert’s view of the world.
For example, as part of proper medical care, the strength of a prescription will
bear a strong relation to the physician’s sense of the relative “strength” of the
patient’s symptoms, as well as the physical characteristics of the patient (e.g.,
weight, age). Fuzzy Logic can greatly enhance the richness of the data as well
as the manipulation of the information when a physician queries the Fuzzy
Logic Expert System.

Representation of Information in the Fuzzy World

When representing subjective or relative information in a Fuzzy computer,
we assign a numerical value to the “degree of belief” that we believe describes
the level of significance or validity of a specific property of an object that is
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part of the KB. Each datum represents a single instance of the broad class of
knowledge to which it belongs. Thus, when referring to a person’s height, we
might use the terms “tall,” “medium,” or “short” as qualifiers or classifica-
tions of a person’s height. However, linguistic richness is increased if we can
further qualify each of these descriptors, for example, “not too tall.” All such
descriptions of “being tall” can be transcribed into a series of “membership
classes.” Although we can define a great many such classes for the sake of
greater resolution and linguistic refinement, Fuzzy Logic systems may exhibit
optimal performance when these classes are restricted to some parametric
maximum. Some Fuzzy application software suggests a maximum of five such
classes for each object being defined. Figure 11.13 shows membership func-
tions reflecting a belief system in which a person may be tall, medium, or short,
according to his or her height.

Consider the figure’s competing interpretations of shortness. Each choice
represented in the figure is simply one of many possibilities. Each of us may
have a different interpretation of what it means to be short, medium, or tall.
One of the challenges that confront Fuzzy systems is the need to determine
class membership, and only slightly different membership functions will pro-
duce significant differences in a system’s responses. There are several alterna-
tives for determining class membership functions (e.g., neural networks can be
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used), but this level of technical complexity will not be introduced in this text.
From the figure we note a very strong or “certain” belief—given a belief or
membership value of 1.0—that people below five feet are “short.” As we go
from a height of five feet to a height of six feet, we encounter decreasing belief
that a person is short. When we go above five-and-a-half feet, we totally dis-
believe—a belief or membership value of 0.0—that a person is considered to
be “short.” Corresponding interpretations are applied to “medium” and “tall”
people.

Fuzzy Logic Rules

Having described how nonprecise information can be represented in a
machine in a quantitative manner, we introduce the Fuzzy Logic rules that
underlie rule-based decision making in such automata. These are modifications
of the connectives, as defined in the Truth Table (see Table 11.1, above), and
represent the contribution that Zadeh made to AI in 1965. Despite the fact that
such thinking has been around for a long time, it is a relatively new field of AI,
and the influence of Fuzzy Logic in our world is just beginning to find voice as
well as application. Table 11.2 summarizes the connective rules of Fuzzy
Logic.

Notice that the traditional and connective operation no longer produces a
true (1) or false (0) result. Instead, when connecting two Fuzzy variables using
the and operation, the result will be the smaller of the defining belief values.
The result for the or connective is the larger of the defining values. For
example, in determining if a six foot person is “medium or tall,” we get a result
of 0.3, because our belief that a person who is six feet tall is “medium” has a
value of 0.0, whereas our belief that a six foot person is “tall” has a value of
0.3 (approximately), as determined from Figure 11.13. The larger of these two
values is 0.3, as required by the Fuzzy or operation. The Fuzzy rules as shown
in Table 11.2 follow from mathematical concepts that are beyond the limits of
our present discussion. What is significant from the AI perspective is the appli-
cation of these rules, as shown below.
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Fuzzy Advice for Decision Making or Management

A straightforward example will provide a small taste of the potential power
of Fuzzy Logic (Klir & Folger, 1988). As may happen to you at various points
in your life, you could be deciding which of four job offers to accept. Your
decision may rest on several factors: salary is a strong consideration but other
things may also matter. These include your interest in the job and the job’s
location (travel convenience). You have assigned ratings for these two charac-
teristics to each of the four opportunities and generated a class membership
profile. These are summarized in Figure 11.14. In this case the membership
functions do not have a continuous appearance; instead, each of the parame-
ters has a discrete value for the system of beliefs. For example, the salary mem-
bership value—or merit (“attractiveness”)—for job offer number 1 has a value
of 0.875, and the interest in job offer 3 has a value of 0.8. Evaluating the fol-
lowing function would tell you which offer to accept:

Accept an offer = (job attractiveness and job interest and job convenience)

For each job offer we choose the smaller membership value of the two, as
that is what the Fuzzy rule for the and operation specifies. These results are
sketched in Figure 11.15.

Figure 11.15 reflects the “verbal” answer to the decision-making problem.
That is, the answer reflects a measure of the extent to which each job offer belongs
to the class of “acceptance of the offer.” We must now specify a way to convert
this verbal offer (membership) into an action. There are several techniques for
doing so in Fuzzy Logic systems. One of these methods—and the one that we will
discuss here—is choosing the “most likely value.” In this case the system recom-
mends choosing job offer 2. Notice that this is not the offer with the highest
salary. The other factors had an influence on the ultimate decision.

Evaluation of Fuzzy Logic Systems

Not everyone has embraced Fuzzy Logic; many critiques have arisen in
response to the exuberant suggestions from its defenders about its potential.
Historically, one of its severest critics has been Susan Haack (Haack, 1979).
Haack argues that there are very few true decision-requiring candidates for
which Fuzzy Logic is a potentially useful resource. The computer complica-
tions that follow from Fuzzy reasoning calculations therefore serve no useful
purpose. (The job offer example provided above could have been resolved
using principles from probability.) Haack argues that Fuzzy Logic depends
on “truth” and “falsity” being continuous values and not discrete ones; if
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continuity were the case, Fuzzy Logic might be justified. However, Haack
maintains that truth and falsity are indeed discrete concepts. For example, a
statement such as “the sky is blue” is either true or false. In Fuzzy Logic, as
well as linguistically speaking, one would refine the concept of a “blue sky”
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(e.g., “how blue”). For Haack, a “blue sky” is simply a matter of definition
and not “degree.”

J. Fox (Fox, 1981) has rebutted this line of reasoning by noting that there
are three broad usages wherein Fuzzy Logic can produce benefits: in describ-
ing real-world relationships that are “fuzzy,” as a prescription for those cases
in which data are fuzzy and therefore require fuzzy calculations, and in instances
in which some inferential circumstances are inherently fuzzy. Fox also notes
that Fuzzy Logic and classic logic need not be competitive. Rather they can be
complementary. Many of Haack’s objections originate from deficiencies in
semantic clarity. Ultimately, Fuzzy statements may be translatable into phrases
that classical logicians would accept.

Fuzzy Logic supports so many practical applications with great success that
it is likely that machine development in this area will continue at an acceler-
ated pace. Fuzzy Logic has been shown to be potentially useful in ESs, in part
because the domains of such systems are inherently fuzzy. Recall from Chapter 8
(The Evolutionary Approach) the connection that Eleanor Rosch makes to
human reasoning. According to Rosch, human thinking is generally continu-
ous in nature and without clear categorical boundaries. In other words, human
reasoning elements are “fuzzy” and the AI systems designed on this basis seem
to reflect our thinking in a direct way.

Artificial Neural Nets (ANNs)

Although Fuzzy Logic has great value and has given rise to many practical
devices, scientists within AI remain frustrated because the ultimate challenge of
building an automaton that behaves like a human being remains elusive. This
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frustration gave rise to a third category of AI—the Artificial Neural Net
(ANN) machine. ANN research has a long history, going back to the time
when neuroscientists developed models of nervous systems. The ANN concept
in its most basic form is very “simple”: build a machine that replicates the
human brain and just “let it think” and learn on its own. Could we teach the
machine just as parents teach infants? As with other avenues of scientific inves-
tigation, numerous challenges confront ANN technology. (See the discussions
of the associative cognitive model in Chapter 7.)

Overall Evaluation of the Operational Perspective

For the past several thousand years, machines that imitate life have fascinated
humans; AI remains the contemporary embodiment of these endeavors and
continues to stir our imaginations. While the workings of the brain are only
gradually being revealed, scientists have moved forward with machines that
imitate human reasoning. Among the various AI technologies, only neural net
architectures—connectionist machines—have attempted even a simplistic imi-
tation of the physiological workings of the brain. Over the past few decades
commercially viable machines have emerged that have proven to be useful in
assisting human enterprise in its varied forms. Of particular note are those
capable of logical inference: ESs and Fuzzy Logic systems. Neural nets are par-
ticularly helpful for pattern recognition (e.g., vision systems) and have been
discussed in relation to the connectionist view of cognitive science.

Despite ongoing debate about the relationship of these systems to human
intelligence, development of new devices continues apace. For example, mod-
ern automobiles are being fitted with Fuzzy Logic devices that determine road
conditions in real time and adjust the car’s suspension system to maximize
passenger comfort. Moreover, development of such machines may provide
insights for cognitive scientists and provoke research into new understanding,
or confirmation, of theories regarding human intelligence (Silverman, 2005).
Such machines will undoubtedly create new stresses on our social and eco-
nomic organizations (e.g., the impact of automation on employment). For
better or worse, development of automata built on models of human intelli-
gence is a continuing fact of life.

In Depth:The ID3 Algorithm

One of the significant challenges facing an ES is the need for a KB that is
pertinent to the domain of interest. Traditionally this required a knowledge
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engineer to elicit information from the expert. J. Ross Quinlan has developed
a program that can elicit knowledge directly from the expert. This program—
ID3 and its successors, including the latest version (C5.0), released in May
2004—was built on a concept known as Concept Learning System, or CLS.
The goal of this program (as well as of KB building) is to develop a classifica-
tion scheme so that the computer can readily respond to inquiries in an effi-
cient and effective manner. Simply stated, ID3 is a classification algorithm in
which a decision tree is built from a fixed set of examples. The result can be
used to classify future samples. A relatively well-known ES built on such a
structure is the one that banks use to decide whether or not to issue a loan to
an applicant. Such a decision tree is shown in Figure 11.16.

As shown in the figure, a tree consists of branch nodes representing choices
or alternatives and leaf nodes representing classifications or decisions. ID3
builds a decision tree from a fixed set of examples. The examples have several
attributes and belong to a class such as yes or no. The basic CLS algorithm pro-
ceeds over a set of training instances as follows:

• If all instances are positive, then create a YES node and stop.
• If all instances are negative, create a NO node and stop.
• Otherwise, select a feature of the sample and create a decision node.

Next,

• Partition the training instances into subsets according to the values of the
feature, noted above.

• Repeat the steps (recursively) on each of the subsets.

ID3 uses this algorithm, but improves on it by adding a feature-selection
heuristic. ID3 searches through the attributes of the training instances and
extracts the attribute that best separates the given examples.

How does ID3 decide which attribute is the best? It uses a statistical prop-
erty, called information gain, according to the overall level of uncertainty,
derived from the formula:

−

∑
Plog2P

where P is the probability of occurrence of each attribute of a node, and the
log of P is calculated to base 2.

In other words, for each attribute of a node, ID3 determines its probability
of occurrence, multiplies this number by the log of the probability, and sums
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all these products to obtain a final value for the information gain. This formula
can be used to determine the attribute that contains the most information—
the attribute that makes the strongest contribution to the ultimate decision.
Subsequent attributes are based on the possible values that the root node can
have. In Figure 11.16, salary is the root node and it has three possible values:
less than $40K, between $40K and $75K, and more than $75K. Each of these
possible choices—children of the root node—is evaluated using the informa-
tion gain formula to determine yet additional layers of the tree. This procedure
continues until all attributes reach terminal (i.e., yes or no) values.

Experience with ID3 indicates that it is “user-friendly” and effective. Its pri-
mary goal is to replace the expert who would normally build a classification
tree by hand. Information theory is the basis on which the ID3 family of deci-
sion tree induction algorithms decides on the sequence of attributes that will
be used to split the data. Attributes are chosen repeatedly in this way until
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Figure 11.16 A simple loan decision tree for a banking ES
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a complete decision tree that classifies every input is obtained. Subsequent
inquiries are automatically determined according to the tree that has been
constructed. It is possible that variations in the samples can lead to misclas-
sification, but ID3 algorithms include features that can be used to prune
the decision tree with a reduction in classification errors. These algorithms
learn at a reasonable rate, and the speed of the resultant decision tree classi-
fication is very high. An important aspect of ID3 is its ability to “replace the
expert.”

Minds On Exercise: Decision Making

Repeat the Minds On exercise found in Chapter 2 (The Philosophical Approach).
Using small student groups similar to those described in that exercise, evaluate a list
of ten graduate schools on the basis of: prestige, location, student-teacher ratio,
library resources, and other qualifications. In the current exercise, use the tech-
niques of Fuzzy Logic to order the resulting list.

1. How do the fuzzy choices compare to the algorithms devised with respect to
solving the problem presented in Chapter 2?

2. Are any of the algorithms described for the original problem similar to those
of Fuzzy Logic?

3. Do the formalisms in Fuzzy Logic implicitly reflect how humans think?

Food for Thought: Discussion Questions

1. Is it possible to develop a set of criteria to enable one to determine when to
use depth-first and when to use breadth-first search methods?

2. ID3 systems can replace “experts.” Are ID3 systems intelligent or simply a
matter of clever programming? When does “clever programming” become
“intelligence”?

3. Discuss the societal (e.g., economic, social) implications of ESs.

4. Have we subconsciously designed ESs to imitate our own cognitive processes?
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C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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Robotics:The Ultimate
Intelligent Agents

“When robots finally take over the world (assuming they haven’t
already), we will not be able to say we weren’t warned.”

—A.O. Scott, New York Times, Friday, July 16, 2004
(in a review of the movie I, Robot)

Introduction

We define a robot here as a mechanical creature that can function
autonomously. By “autonomously” we mean that the robot:

• functions without recourse to a human operator
• is able to adapt to a changing environment
• continues to function when one of its own less important parts breaks
• moves within, and changes, its world circumstances

These are truly challenging requirements for machines, and we must assume
that to achieve such objectives a computer in the mechanism is required. In
some real senses, the computer must have the intelligence that replicates the
aptitude of a human being. Through a process of consolidation and synthesis,
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Table 12.1 Highlights in Robotic History

Date

400 B.C.E.

1500s

1600s

1700s

1890

Early 1900s

1942

1954–1956

1966

1971

1973

1975

1979

1984

1989

1996

1996

Event

Archytas of Tarentum (mathematician) builds a wooden dove that flaps
its wings and flies.

Humanlike creations that can play musical instruments.

Continued development of mechanisms that fly, or perform in a play.

De Vaucanson’s duck that can drink, eat, and digest food.

Nikola Tesla creates a remote-controlled vehicle.

Development of electronic devices leading to the first electronic
computers.

Industrial telemanipulator that translates motions on one end into
corresponding motions on the other end in order to handle dangerous
(radioactive) materials.

George Devol and Joe Engelberger create the first industrial robot.
Unimation introduces a robotic arm for industrial purposes (spray
painting).

Shakey, the first AI robot. Developed at Stanford Research Institute
(SRI) for the Defense Advanced Research Projects Agency (DARPA).
Although the device can reason about its surroundings, its limitations
are obvious.

The Apollo 15 mission includes a semi-autonomous explorer for
extra-vehicular activity (EVA).

Freddy II—demonstrates that a robot can assemble objects
automatically from a heap of parts.

Puma—Programmable Universal Manipulation Arm; widely used for
industrial purposes.

Hans Moravec develops the Stanford Cart, an autonomous vehicle that
can avoid obstacles.

Doug Lenat’s Cyc project. A KB to help robots understand the
worldview.

Rodney Brooks introduces robots based on the subsumptive
architecture.

Michael Triantafyllou (MIT) develops a robotic fish.

Honda unveils the P-2 humanoid robot that can walk, climb stairs, and
carry loads.
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a system for designing and analyzing these machines has evolved. We will
explore this paradigm in this chapter.

In Chapter 10 (Artificial Intelligence I) we noted that the desire to create
an automaton in our own image has existed for a thousand years. Today, that
appetite has reemerged, fired by advances in computer technology; according
to some we are within sight of achieving that ultimate goal. The word “robot”
was coined by Czech writer Karel Capek in 1921, who used the word in his
play, R.U.R. (Rossum’s Universal Robots). It comes from the Czech word
meaning “menial labor.” Capek presented these machines as smart enough to
replace a human in any job. In science fiction literature, robots are viewed as
humanlike servants made of mechanical parts. While a mechanical humanlike
form can readily be constructed, an ultimate intelligent agent incorporating
the intellectual and physiological attributes of a human has not yet appeared
in our culture. In recent decades, robotic researchers (roboticists) have there-
fore chosen to approach the problem from a more modest perspective. In
particular, many robotic creations have taken the form of insects, dogs, and
even fish, with the level of intelligence of these creations imitative of their
natural models. Table 12.1 summarizes some historical highlights in robotic
development.

^

^
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Date

1997

1998

1999

2000

2001

2005

Event

NASA’s Pathfinder robot lands on Mars and carries out
semi-autonomous experiments.

Cynthia Breazeal (MIT) introduces the Kismet robot that mimics the
emotional behavior of a baby.

Sony introduces Aibo—a robotic dog.

Sandro Mussa-Ivaldi (Northwestern Medical School) connects
neurons within the lamprey brain to sensors in order to control
a robot.

Global Hawk robotic spyplane charts its own course from California
to Australia.

Scientists at Duke as well as Cal Tech develop technologies that will
enable primates (and ultimately humans) to operate machines
exclusively through brain signals. At Cal Tech, scientists have been
able to decode conscious intent.
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Some Robotic Achievements

Some of the more recent achievements in robotics trace their origins to the
dawn of the modern nuclear age, when humans attempted to manipulate
dangerously radioactive materials in a safe manner. As with many other
advances, war, or the preparation for war, has led to advances in robotics. The
devices that came into being featured mechanical “extensions” of our own
limbs, permitting us to manipulate material at a safe distance. They were far
from autonomous, but we learned much from the design of artificial limbs that
approximated human counterparts. In particular, the artificial limbs could imi-
tate movements of joints and could transmit the “feel” of the limb movements
to the human operator. Over time, design of such manipulators was refined
using the concepts of control that were popularized by Norbert Wiener (Wiener,
1965).1 The industrial community came to view such machines as highly desir-
able for circumstances wherein jobs were dirty, dangerous, or dull—the “3D’s”
of robotics. Figure 12.1 sketches the timeline of robotic development, particu-
larly as it relates to recent history.

The space exploration and exploitation projects initiated by John F.
Kennedy and NASA in 1960 renewed the need for truly autonomous robots.
Autonomous robotic explorers have been a keen area of research and development
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Separate 
developmental paths

Robotics for manufacturing continues to
develop machines capable of exquisitely
precise and repeatable operation for automation
within the workplace. These include computers
with primitive “intelligence.”

Robotics for space: planetary rovers capable 
of autonomous operation geared to react to
“unexpected” situations. Sensory inputs married
to onboard computers geared to partially
unknown environments require “intelligence.”
Partial intelligence was augmented by remote
human control – teleoperation.

20001990198019701960

Computer vision

Mechanical
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Figure 12.1 Recent developmental paths in robotics
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since the start of the Space Age. One ambitious example of this kind of robot
is shown in Figure 12.2. It is representative of many autonomous robotic
designs of the late twentieth and early twenty-first centuries.

FIDO is designed to sample rock and soil on a remote planet (e.g., Mars).
Its capabilities include the potential analysis of planetary material, as well
as intelligence for surface rendezvous with natural and manmade objects.
Ultimately, such vehicles would be able to gather and return samples from
remote bodies. NASA supports the Jet Propulsion Laboratory (JPL) at the
California Institute of Technology.
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Figure 12.2 The Field Integrated Design and Operations (FIDO) rover
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The development of robots for industrial purposes has continued to be more
concerned with such applications as providing intelligence that will adjust to
circumstances within a manufacturing environment, in which parts being fab-
ricated may not turn up in the correct orientation. Historical developments in
robotics have avoided the need to understand the ultimate meaning of “intelli-
gence.” Instead, focus has been on some of the generally recognized character-
istics of intelligence, such as learning, planning, reasoning, problem solving,
knowledge representation, and sensing (e.g., computer vision). Recent devel-
opments have shifted the focus to the fundamental understanding of functional
intelligence within the human (e.g., “How do humans react to unanticipated
situations?”). In this regard we cite the work of the Artificial Intelligence
Laboratory at MIT, which will be discussed later in this chapter.

Evaluating Robotic Potentials

Consider for a moment some of the aspects of human versatility that a
robot would need to recreate in order to approach equivalent capabilities: it
would need to understand speech, have vision capability, be able to plan and
reason, represent a world model (environment), and learn. Clearly these are
awesome challenges and we are only at the dawn of replicating these capabili-
ties; our accomplishments to date would be considered crude by most robotic
experts, despite some very sophisticated creations, such as the one shown in
Figure 12.2.

Biological and Behavioral Foundations of Robotic Paradigms

Rodney Brooks notes that people who visit the AI Lab at MIT will interact
with the various robots in very human ways (see the list of Suggested
Readings). After one such visit, Professor Sherry Turkle, observing the robot
named “Cog,” noted the following in her book Life on the Screen (1995): 

Cog “noticed” me soon after I entered its room. Its head turned to follow
me and I was embarrassed to note that this made me happy. I found myself
competing with another visitor for its attention. At one point, I felt sure
that Cog’s eyes had “caught” my own. My first visit left me shaken—not
by anything that Cog was able to accomplish but by my own reaction to
“him.” For years whenever I had heard Rodney Brooks speak about his 
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robotic “creatures,” I had always been careful to mentally put quotation
marks around the word. But now, with Cog, I had found the quotation
marks had disappeared. Despite myself and despite my continuing skepti-
cism about this research project, I had behaved as though in the presence
of another being. [Italics added.]

Professor Turkle’s experience is not unique. Many people have a tendency
to ascribe human characteristics to robots, even those that exhibit only rudi-
mentary behaviors. We tend to treat machines as if they had intentions like our
own. It can therefore be useful for us to inquire: What are the important prin-
ciples that can be extracted from a consideration of the physiological and psy-
chological origins of natural intelligence? And prior to considering the major
paradigms of the robotic world, we will review some important foundations of
several theories about the origins of intelligence. Physiologists have been able
to visualize and precisely measure animal neural and physiological signals since
the early part of the twentieth century. During the late 1970s and early 1980s,
Michael Arbib began to investigate abstract models of animal intelligence,
including both biological and cognitive elements, in order to gain insights
into robotics (Arbib, 1981). Also worthy of historical mention is the work of
Valentino Braitenberg, who proposed a series of hypothetical vehicles of increas-
ing complexity with capabilities that “mimicked” the course of evolution in pri-
mates (Braitenberg, 1984).

Studies in biology can help us in the design of robots as well as of other
machines; the biological world can teach us much. For example, all parts of an
airplane’s wing structure are inspired by, and imitative of, a bird’s wing and
the functioning of a bird’s wing (except wing flapping). The study of intelligent
biological agents unquestionably has value in our quest to understand how
humans may function, as well as in our desire to produce a robot. Animals—
even lower ones—function in an open world paradigm. Insects, fish, and frogs
exhibit exceedingly intelligent behavior, even though they have virtually no
brain. By an open world, we mean a world in which the actions of the agents
alter the world and force those agents to establish a revised view of that world.
Once a frog snatches a fly, that insect is no longer in the frog’s visual field. An
alternative paradigm for robotic applications is the closed world viewpoint,
which assumes that the world model contains everything the robot needs to
know—there are no surprises.

Our daily activities can be viewed from a variety of perspectives. Consider
a very brief list of the activities of daily living: walking across a street, eating
a meal, phoning a friend, and crying. Scientists have sought to explain or
describe such phenomena using different models. Crossing a street might be
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described in terms of the firing of nerves that, in turn, innervate muscles. If
these signals are coordinated in time, our legs carry us across the street. The
same activity need not be viewed with references to anything within the
body. If we see a green light—a stimulus—we respond by crossing the street.
Five distinct ways of studying our actions are possible: neurobiological,
behavioral, cognitive, psychoanalytical, and phenomenological (humanistic).
The premise of this text is that the mind processes information that it receives
and transforms it into new forms, and that this processing of information is
the foundation of the cognitive approach to describing our actions. One ele-
ment of these processes is the relationship of brain activity to events in the
peripheral nervous system and its consequent implication for our actions: this
is the neurological description and has been included as appropriate in this
text. (See Chapter 6, The Neuroscience Approach.) The basic assumption of
the psychoanalytic approach is that our actions stem from processes that
are unconscious (i.e., thoughts, fears, and wishes, of which we are unaware
but which influence our actions). The phenomenological approach focuses
on subjective experience or the individual’s perception and interpretation of
events.

Of particular importance for robotics and the potential to create an intelli-
gent robotic agent is the behavioral approach. Robotic models attempt to sim-
ulate the observable activities of an organism—the behavioral paradigm. One
of the early advocates of this approach was John B. Watson (Watson, 1919).
This approach is the current focus of research in robotics. Watson’s model is
founded on the stimulus-response model of simulation—we see a green light
(stimulus), we cross the street (response). As described below, this is an impor-
tant component of robotic modeling.

From our perspective, observable biological behavior is a fundamental
building block of natural intelligence. A behavior is considered to be a map-
ping (translation) of sensory inputs onto a pattern of motor actions whose
purpose is to complete a given task. Behavior can be viewed from a number of
perspectives. This is depicted in Figure 12.3.

The “N-gram” is a map or transformation of the sensory data into motor
action. N-grams are representations of sequences of “elementary” actions that
are stored in our brain, such as the transformation of notes in a musical score
into our fingers’ positions and actions in relation to a musical instrument.
Reflexive responses last as long as the stimulus that produced them, and the
magnitude or intensity of the response is proportional to the stimulus intensity
(e.g., removing one’s hand from a hot surface). Reflexive behaviors further
include fixed-action patterns of response, wherein the response persists for a
longer duration than the duration of the stimulus. Consider cases in which
animals flee predators even though the danger may have ceased. Reactive
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responses are learned behaviors and consolidated such that they are executed
without conscious thought. Subsets of such responses include taxes, where
the organism moves to a particular orientation. For example, hatching turtles
move toward the ocean using reflected moonlight. Deliberative behavior
includes a conscious component, where previously developed behaviors may be
strung together (e.g., assembling a robot). In summary, behavior is a coupling
of perception and action, an integration of external and internal stimuli. The
fact that we can often quantify animal behavior suggests that computer pro-
grams can be written to reproduce such activities.

The ability to quantify human behavior is a foundation for the development
of computer programs that emulate intelligence. Such behavioral classifications
are directly applicable to the design of robots; they can be simulated (and fab-
ricated) and tested. Moreover, robotic demonstrations permit us to gather
understanding of the advantages or deficiencies of corresponding behavioral
paradigms. Cognitive psychology (human thinking and knowledge representa-
tion) and ethology (the study of animal behavior) are important to an under-
standing of, and the design of, intelligent agents such as robots. Within this
book, a great many ideas about human thinking and knowledge representation
have been described.

The psychologists Konrad Lorenz and Niko Tinbergen are considered to
be the fathers of ethologic scientific investigation (Lorenz, 1980; Tinbergen,
1972). Using the results of their work with terns and other animals, they have
proposed that there are four ways in which animals acquire behavior:
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• Innate: The animal is born with a single, comprehensive behavior (e.g.,
feeding behavior).

• Innate, sequential: Each step in the behavior sequence is triggered by the
combination of the internal state of the animal and the environment in
which it is functioning. (An example would be the mating cycle of digger
wasps, wherein mating is followed by nest building, which is followed by
egg laying.)

• Innate with memory: A behavior is present in some form at the birth
of the animal, but it is one that requires some initial stimulus to cement
the behavior. (The navigational behavior of bees is an example of such
behavior. The baby leaves the hive and travels short distances; these dis-
tances are gradually increased.).

• Learned: A new behavior evolves from existing behaviors. (An example is
hunting, which is composed of sub-behaviors such as searching, stalking,
chasing, etc.)

If we were to reproduce an intelligent agent (robot) according to the strong AI
model, it would behoove us to develop an automaton along the lines suggested
by Lorenz and Tinbergen. They proposed an innate reasoning mechanism (IRM)
that is depicted in Figure 12.4. An IRM is similar to a reflex but operates in an
open world, whereas a reflex operates in a predetermined environment.

An IRM is demonstrated when a frog reaches for its prey (e.g., a fly) with
its tongue as the prey crosses its field of vision. The motor sequence (tongue
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action) is released by the presence of the fly (i.e., the releaser). Releasers can be
compound, as when feeding occurs in an animal when food is available and the
animal is hungry. In addition, behaviors can be chained (sequenced) by their
releasers (Silverman & Dworkin, 1991). Simple behaviors that are independent
may appear to an outside observer as a complex sequence of actions. (Rodney
Brooks radically changed the design of robots using this idea [Brooks, 1999].
His contribution is explored later in this chapter.) The concurrent execution of
two or more IRMs can explain such behavioral phenomena as:

• Equilibrium: circumstances in which behaviors balance each other out.
An outside observer would note indecision on the part of the animal
during such activity.

• Dominance: circumstances in which one IRM prevails—a kind of “winner-
takes-all” phenomenon. An animal will flee from a predator regardless of
where it was in a feeding behavioral sequence.

• Cancellation: in which a fight or flight situation can initiate a third
behavior—the animal withdraws from both fight or flight alternatives.
(Male stickleback fish build another nest when their territory happens to
overlap that of a neighbor. Rather than either attack the neighbor or
defend his own territory, the stickleback builds a new nest!)

Evaluation of the Lorenz/Tinbergen Approach

The models proposed by Lorenz and Tinbergen provide numerous insights
into behavior. However, they fail to adequately account for the dynamic
aspects of behavior. Their models reflect a “top-down” philosophy and do not
sufficiently account for perception. A perception is a releaser of behavior; this
is evident in an IRM. However, perception should also include guiding mech-
anisms. For example, a predator may trigger a flee(ing) response in an animal.
But it must also trigger the animal’s extraction of the information needed to
accomplish the fleeing action (i.e., the safe exit). Therefore Ulric Neisser as well
as J. J. Gibson—psychologists whose work led to an “ecological approach”—
contributed to an alternative dynamic for describing behavior (Neisser, 1976;
Gibson, 1986). Their action-perception cycle for describing animal behavior is
depicted in Figure 12.5.

Neisser, using neurophysiological data, postulated two perceptual systems in
animals. The first—the direct perception system—consists of structures in the
more primitive regions of the brain and account for affordances. Affordances
are perceivable potentialities within the environment that serve as triggers of
an action. For example, for baby arctic terns, a red color is perceivable and
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represents the potential for feeding, because that is the color of the mother’s
beak. The second perceptual system is the recognition system. This is associ-
ated with the higher-order parts of the brain where problem solving and other
cognitive activities take place. This is where top-down, model-based perception
occurs. Affordances are important for roboticists because they are directly per-
ceivable; they don’t require (higher-order) memory, inference, or interpreta-
tion, and resulting actions can execute rapidly. (Additional discussion of
sensory-motor perception as well as the view of Gibson are presented in
Chapter 13; see, in particular, Figure 13.3.)

Transferring Behavioral Models to Robotics

Roboticists have adopted a number of behavioral concepts from physiolog-
ical psychologists and their research. Robotic designs that incorporate these
concepts are the basis for a true intelligent agent—machines with complex
actions that are integrated formulations of (simple) independent behaviors,
with tightly coupled sensing and acting. These lead to designs that operate in
an inherently parallel manner and are distributed, as opposed to the intelligent
agent’s being a single central processing element. A robot programmed to fol-
low a path defined by an edge could use several sensors, processes, and actua-
tors. These might include:

Sensors: sonar (sound), camera (vision), inclinometer (detect grade)

Processes: Path following; obstacle avoidance; speed control; camera position

Actuators: drive motor; steering motor; camera pan motor
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An agent should rely on Boolean activation mechanisms, characterized by
the presence or absence of a stimulus, such as IRMs. The presence of an obsta-
cle in the path of a robot will immediately trigger an avoidance process. The
existence of the obstacle would be signaled by the presence of a variable such
as information arriving at a vision sensor.

To simplify sensing, a perception mechanism will filter stimuli and consider
only what is relevant to the behavior. This is summarized as action-oriented
perception. For example, variation in information hitting a sensor might be
due to fluctuations in light intensity. Such interferences must be eliminated if
the intelligent agent is to obtain the true signal.

Direct perception (affordances) reduces the computational complexity of
sensing, and can trigger action without extensive memory, logic, or reasoning.
For robots with articulated legs, the stability of the mechanism would be gov-
erned by a direct stimulus-response process, rather than the transmission of
this information to a central computational element that must concurrently
control a number of activating motor elements.

Behaviors should be activated in an independent manner. The interaction of
competing behaviors can be enhancing or inhibiting, as when a resolution of
the competition is necessary for appropriate action. A robot designed to rescue
people from dangerous situations would need to establish priorities in the
event that there is more than one individual in danger.

Evaluation of the Biological Basis of Robotics

Unfortunately, natural intelligence is not fully understood at this point in
time. What biologists and psychologists do not fully understand are clearly
challenges for robotic design. Physiological psychologists cannot account for
a number of phenomena that, if understood, would greatly help in the design
of robots. Some elements of robotic design that are particularly difficult to
achieve include: concurrent behavior conflicts, missed affordances, and the
ability for the robot to learn through experience.

For example, robots may be asked to look for fire in a burning building and
rescue people in a concurrent manner. How shall these be handled? Should the
robots choose the dominant process? Combine these requirements? Cancel
them and introduce another process? The handling of concurrent behaviors is
a problem for humans and robots alike.

Direct perception and its associated sensory-action activities are efficient. In
some circumstances it is not always clear when some knowledge and its asso-
ciated memory requirements have been overlooked. For example, a human
observer might immediately recognize a brand of soda by the color of the
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container. However, a robot using its complement of sensors might perceive
the angle between the container and the robot and the size of the container. In
effect, the robot must perform additional operations before it can extract the
key characteristic of the container (i.e., the color). The robot has missed an
affordance.

Higher-order animals have the ability to generate complex behaviors through
a process of learning. Understanding of these processes is not fully resolved
among cognitive scientists. Until this is resolved, it will remain a significant
challenge for roboticists.

Foundations of Robotic Paradigms

A paradigm is a philosophy or approach for developing theories and for ana-
lyzing and evaluating a class of problems, including appropriate analytical
tools and associated techniques. Each of the prominent robotic paradigms
includes a series of primitive functions: SENSE, PLAN, and ACT. These are
depicted in Figure 12.6.

In brief, sensing includes that part of a robotic system that converts elements
of an environment into information that other parts of the system use. The
devices underlying this conversion are analogous to our own sensing facilities
(e.g., eyes and ears). Sensing may also include some information processing
features. These are summarized in Figure 12.7.

As shown in the figure, information from the sensing units may be
“primitive” (i.e., “raw”), meaning that no further processing occurs. In such
instances, whatever element receives such information may bring to bear its
own methods to the data. Alternatively, the sensor may contain additional
“intelligence” and produce data representing a more complete view of the
environment—the global or world model extracted from the raw data. (Some
animals have primitive visual systems, but the output from their visual sensors
together with some local neuronal interconnections, in fact, reflect the world
model that they need for survival.)

Planning elements (see Figure 12.6) correspond to one model of our own
cognitive and reasoning capabilities, and actuating elements are consistent with
our motor elements (e.g., muscles and the associated afferent neural struc-
tures). The fundamental robotic elements are intended to emulate the funda-
mental cognitive as well as the biological processes of humans. It is theorized
that by interconnecting several robotic systems based on these foundation ele-
ments, it may be possible to recreate an intelligent agent that rivals human
beings.
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Evaluation of Paradigm Foundations

Most roboticists (as well as cognitive scientists) accept the sense, plan, and
act “primitives” of robotic paradigms as reflecting elements of human intelli-
gence. As such, they would constitute corresponding processes within an intel-
ligent (machine) agent. As noted above, the ability to learn is a biological
feature of more advanced animals. A growing number of roboticists believe
that a new primitive needs to be added to robotic architectures, namely a
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Sensing primitive: a function that takes in information from a robot’s sensors
(e.g., sound) and sends useful output that can be used by other functions 
(e.g., the direction of the sound)

output to other
robotic functions

sensors SENSE

Act primitive: produces commands to the motivating (e.g., wheels) or other
actuators (e.g., a microphone boom) of the robot.

Directives from 
other functions

sensed

Commands to
actuators

ACTOR

Planning primitive: takes in information from a sensor or from a KB (e.g., a plan
of the environment in which the robot is to function) and generates a set of tasks
for the robot to execute (e.g., go down the hall for 10 meters and turn left).

Information
(sensed

or cognitive)

sensors

Knowledge of the world

robotic tasks to be
performed

PLANOR

Figure 12.6 The primitive robotic functions
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learn(ing) process. However, there are presently no formal architectures in
which a learn(ing) process has been well integrated. When this happens, there
will surely be a paradigm shift and an accompanying expansion of the types of
automata within the literature, as well as within the public domain.

Robotic Paradigms

Robotic paradigms seek to replicate the behaviors identified within the animal
world and fall into one of three categories: the Hierarchical Paradigm, the
Reactive Paradigm, and the Hybrid Paradigm.

Hierarchical Paradigm

Also referred to as the “top-down” approach to robotic design, this para-
digm reflects how humans include “planning” as a key element in their com-
pletion of given tasks. Robotic models that used this paradigm received a good
deal of attention from about 1967 to 1990. (Murphy, 2000). The basic archi-
tecture is shown in Figure 12.8.

This top-down paradigm is highly sequential. The robot senses the world
and constructs a map—a global view—of the world, including everything that
its sensors can detect. Sensing, in this instance, thus includes additional pro-
cessing, as seen in Figure 12.7. This worldview, together with additional infor-
mation that may be stored in the robot’s (computer) memory, is used to create
a plan by which the robot intends to reach its goal. Information within the
memory may include cognitive rules, for example, knowing that to go from
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Figure 12.7 Sensory information processing in robotic systems
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one room to another may require an open door. The plan(ing) algorithm will
send a series of directives to any onboard robotic actuators (e.g., a motor). The
robot will proceed to carry out the first directive, which may be a “complex
directive” that reflects a series of subgoals. With each directive, the robot
reevaluates the worldview. This refined information is then recombined with
the system’s cognitive elements to reconfigure the plan, producing yet another,
or altered, set of actuator directives. This sequential (“loop”) organization con-
tinues until the robot completes its task.

The classical robot designed according to this principle was named
“Shakey.” (It got its name from the type of motion that it exhibited.) It was
developed at the Stanford Artificial Intelligence Laboratory (SAIL). The algo-
rithm that was employed, called Strips, was a variant of the General Problem
Solver (GPS). (See Chapter 5 for a discussion of GPS.) Strips uses means-ends
analysis: if the robot’s goal cannot be achieved by a single directive, the planner
chooses a sub-task that will reduce the difference between the current state of
the robot and the goal state. For example, if the robot is located in California
and it must be able to end up in New York, one could envision the distance
between location and target (i.e., 3,000 miles) as the “difference” parameter to
be reduced. The program could then decide that flying was the best method to
reduce this difference. This choice would be included in its cognitive KB. The
planner would then develop a series of subgoals to complete the flight.

Evaluation of the Hierarchical Paradigm

The hierarchical paradigm would seem to be a simple, straightforward
representation of how humans function. Within the hierarchical organization,
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Figure 12.8 Basic architecture of the Hierarchical Paradigm
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PLAN was to reflect the way people “think.” However, do people really (or
usually) “think” about some action in a “conscious” sense? They may, for
example, have a repertoire of default schemes for completing a task. Consider
the “N-gram” model noted in Figure 12.3. (A skilled musician does not have
to “stop and think” about each note in a score. Physiologically speaking, it
would not be possible to see a note, and, using the position of the note on the
instrument, develop a plan for finger action, and then execute the action in a
timely manner. There must be a more direct path between the printed score
and the finger [or voice] action.). The Hierarchical Paradigm in Figure 12.8
lays out robotic (as well as human) tasks as a horizontal decomposition
(Brooks, 1986). Ethological literature describes behavior as a vertical organi-
zation in which an agent starts with primitive survival behaviors and builds
upon such facilities to develop new ones. The building process may reuse prim-
itive behaviors, may inhibit such behaviors, or create parallel tracks of more
advanced behaviors. The resultant functional architecture of this arrange-
ment has a vertical (parallel) appearance and has given rise to the Reactive
Paradigm.

An additional limitation of the hierarchical model derives from its single
global model of the world. Generic global world models do not handle “sur-
prises” very well. For example, if the position of the target has changed or
unexpected obstacles were to appear, a great many prior directives would be
voided. Thus, Shakey, as well as the Hierarchical Paradigm itself, encountered
the frame problem head on. (See Chapter 11 for a discussion of frames.) A sta-
tic worldview does not lend itself to adaptability easily. Moreover, the closed
world assumption precludes the possibility of the dynamic circumstances usu-
ally encountered by humans. The rise of the Reactive Model significantly
reduced interest in the Hierarchical approach.

The Reactive Paradigm

The Reactive Paradigm has developed from the idea that complex behaviors
grow out of simple behaviors that operate in a concurrent manner. For
example, Brooks built insect-like robots using a combination of simple sense-
action processes. (This approach is known as subsumption.) This idea is illus-
trated in Figure 12.9.

In developing this concept, Rodney Brooks actually rejected a principal ele-
ment of AI; he eliminated the “reasoning” process. There were to be no chains
of thought in his robots. He would build robots with “unthinking activity.”
There would be direct connections between perception (sensory information)
and action. He decomposed robotic behavior into a series of simple elements.
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These would be implemented in low cost processing units that would take a
few milliseconds (1 millisecond = 0.001 second) to complete a computation.
But certainly, behavior is far more complex than the simple operations
managed by these processors. To develop robots capable of more intelligent
behaviors, he added control systems that made use of the simple, primitive
capabilities of the older microprocessors. The control systems used appropri-
ate sensors to invoke an appropriate combination of behaviors, as shown
in Figure 12.9. (This model “mimics” biological systems in which “complex
capabilities are built on top of simpler capabilities, often through the addition
of new neurons.” See Chapter 4 for the cognitive models of the brain.) In 1985
he devised a robot with three behavioral layers. The first control system would
include collision avoidance. Using sonar (sound) detectors, the robot would
“shy away” from objects that it detected, even if they were moving. A second
control system caused the robot to simply wander about without any serious
purpose, as if it were exploring. The third control system was designed for
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purposeful exploration. The robot—Allen, named in honor of Allen Newell,
one of the originators of AI—could do remarkable things at the time primarily
because of the speed at which it could travel (half a meter per second). It had
no internal description of the world, hence it could not PLAN; it used the world
as its own model. It could move down a corridor without colliding with walls,
and it went around oncoming pedestrians. This became the platform for many
other robots that included more and more capabilities (e.g., picking up objects).

The characteristics and connotations of reactive behaviors include:

• Speed: Rapid execution because of the direct connection (“tight coup-
ling”) between the SENSE and ACT primitives.

• Simplicity: Absence of “memory” in the traditional sense. There is a
direct connection between the SENSE and ACT primitives. (It should be
noted that one could consider the “permanent” connection between
SENSE and ACT to constitute a type of memory; it is, however, not
easily alterable, as in the computer, as shown in Chapter 10.)

• “Small world”: Such reactive agents are situated in an ecological niche
formed by the goals, the world in which they operate, and their percep-
tion of the world. They are an integral part of the world and their actions
change their world. They receive feedback from the changed world and
generate a new cycle of actions.

• Simple programming: Constructing a robotic system under the Reactive
Paradigm is achieved by programming a particular behavior. The funda-
mental component of an implementation is a behavior. All actions are
accomplished through behaviors.

• Built on choice: Reactive architectures provide mechanisms for triggering
behaviors and must determine what happens when multiple behaviors are
active at the same time. (For example, the robot might have to choose
between “fleeing” and simple “avoidance.”) The rules for combining
behaviors are often heuristic (ad hoc) and may include Fuzzy Logic meth-
ods (see Chapter 11) or “winner-take-all” algorithms.

The Reactive Paradigm described here reflects Brooks’s Subsumptive
Architecture. An alternative scheme involves potential field concepts, where
sensors find “attractive” pathways to some goal. (An example of this can be
seen when water flows around a rock in a stream; the flow is disturbed and this
disturbance can be detected.) However, a complete description of this some-
what technical subject is beyond the scope of this text.

The Colorado School of Mines developed a small, unmanned vehicle about
the size of a golf cart that had to navigate around an outdoor course of white
lines painted on grass. The design won first prize in a 1994 Unmanned Ground
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Robotics Competition. A key feature of this design was the effective use of a
few behaviors, incrementally developed, and the use of affordances combined
with an understanding of the ecological niche. The vehicle could follow a path
that had hairpin turns and avoid stationary obstacles in its path as well as a
sand pit. Using a simple algorithm that enabled it to follow the white line, the
robot was able to traverse the course despite some unforeseen mishaps. This
case provides an archetypical example among purely reactive motor schema to
assign one sensor per behavior. That is, one optical sensor could detect the
white line that produced a “following” action (schema) for the motors, while
a second sensor signaled the presence of an obstacle (by “bumping” it), which
triggered a second motor action (schema) that “went around” the obstacle.

Evaluation of the Reactive Paradigm

The Reactive Paradigm lends itself to those situations in which tasks can be
decomposed into reflexive behaviors. Direct perception can be readily com-
mitted to hardware for such niche circumstances as obstacle avoidance.
Whether such architectures can be ported (reused) to new applications is an
open question. For example, they are not easily transferred to domains where
planning or reasoning about resource allocation is essential. Navigation in a
hallway is not the same as negotiating a terrain with an ill-defined geography.
At the very least, some modifications of the SENSE-ACT primitives would be
needed.

An additional limitation emanates from the genuine lack of robustness in
such systems. Because of the necessity of reducing the complexity of such
systems, they generally do not have any redundancy (e.g., a second or backup
sensing system). If a sensor fails there is generally no backup available for this
device and it also fails. If the software process (program) that coordinates the
SENSE-ACT primitives suffers some form of degradation (e.g., a problem in
the program that shows up when it encounters data that were not previously
tested), the robot may still function at a reduced level using its primitive
operations for survival. This is described as “graceful degradation.” But the
Reactive Paradigm has no mechanism for detection of such degradation (e.g.,
if the robot has a malfunctioning joint). Humans can adjust for deficits in or
insults to brain functioning in a far more effective manner. 

The detailed design of Reactive robots is an art minus the well-defined basis
used in the finite state machine architectures, in which the programs detect the
current state of the system and are programmed to carry out the next opera-
tion based on what is (hardwired) in their memory. The sequences of steps
within Reactive robots are generally implementations of very simple ad hoc rules
of behavior without the benefit of large amounts of memory. The assemblages
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of behaviors depend heavily on the programmer. Designs of robots that are
truly reflective of human intelligence should be “smart enough” to be able to
select the necessary behaviors to achieve a particular goal and to generate an
appropriate execution sequence.

The Hybrid Deliberative/Reactive Paradigm

Robots that evolved under the Reactive Paradigm (up to the end of the
1980s) had no provisions for planning optimal trajectories (path planning),
making maps, monitoring their own performance (learning), or selecting the
best behaviors for accomplishing a task (general planning). It was thus desir-
able to retain the benefits inherent in the reflexive character of the Reactive
designs while (re)introducing planning and deliberation as important elements
of robotic design. In the late 1980s, Ron Arkin and his colleagues introduced
cognitive functions into a behavioral system that essentially emulated the evo-
lution of intelligence (Arkin et al., 1987).

One starting point for the Hybrid Deliberative/Reactive Paradigm is the
bottom-up architecture that characterizes the Reactive Paradigm. (Bottom-up
organizations were described in Chapter 10—see, in particular, Figure 10.5.)
Upon this structure roboticists have superimposed one or more cognitive lay-
ers for planning. This school of design has been called reactive planning.
Another approach employs a design more reflective of the top-down, hierar-
chical methodology. Regardless of the approach, designs that use a combina-
tion of reactive behaviors and planning or other cognitive components have
come to be known as the Hybrid Deliberative/Reactive Paradigm. (It will be
referred to as the Hybrid Paradigm in this chapter.) Initially, the Hybrid
Paradigm did not have much to recommend itself. The advice that a researcher
might receive went something like:

• If the agent was to be designed to operate in an environment that was
easy to model, the Hierarchical Paradigm was the organization of choice.

• Alternatively, if the environment was unstructured, the Reactive Paradigm
was recommended.

Hybrids were originally thought to be inferior approaches because they
were viewed as marrying the incompatible features of the Hierarchical and
Reactive worlds—as employing the fast execution of the Reactive world with
the latencies inherent in the Hierarchical architecture. Hybrid agents have been
able to resolve these seeming conflicting characteristics in good part because of
changes in software organizations. In particular, processing techniques known
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as multi-tasking and threading permit deliberative functions to execute
independently of reactive behaviors.2 Planning activities can compute the next
navigational goal at a slow pace—for example, at the same time that the cur-
rent goal is being rapidly achieved—using a Reactive philosophy. In addition, soft-
ware has become a highly modular enterprise, such that self-sufficient program
modules (objects) can be easily mixed or matched as circumstances require.

Hybrid agents are characterized by the sequence of operations shown in
Figure 12.10.

The PLAN component is understood to include deliberative processes and
worldview modeling as well as task formulation. Using a global worldview
the mission strategy would be generated and a set of behavior instructions for
the SENSE-ACT elements issued. These would be executed until the goal is
achieved or until a new set of behaviors was required. Planning combines long-
range considerations with knowledge of the world that may be found in a KB.
The PLAN component is considered to execute independently of the real-time
SENSE-ACT modules.

Combining a deliberative and reactive element has led to a proliferation of
Hybrid examples and arrangements. Thus, generalizations about such archi-
tectures do not readily lend themselves to easy encapsulation. However, some
common characteristics can be noted.

• In the Hybrid model behavior includes not just reflexive behaviors but
also innate and learned behaviors. This may be termed a skill set.

• Hybrid implementations use assemblages of behaviors sequenced over
time rather than primitive behaviors.

• Hybrid models normally include a deliberative portion within its archi-
tecture comprised of Path planning and Map making.

• Hybrid models may include a Behavioral Management component that deter-
mines the behaviors to use as well as the order in which they are to be used. 

• Hybrid models may include Performance Monitoring: to see if the robot
is actually making progress, diagnose deficits (e.g., the robot is stuck in
the mud; a sensor has failed). Other sensors may be used to corroborate
these observations.

In order to classify the variety of Hybrid architectures, three attributes
might be considered:

What is the deliberative portion vs. the reactive portion?

What is the architecture of the deliberative portion?

How does overall behavior manifest itself?
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Hybrid architectures include a number of variations within the Reactive seg-
ment. These are beyond the focus of this text but are simply mentioned here with-
out elaboration for completeness: Voting organization; Fuzzy responses; Filtering.
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Figure 12.10 The PLAN, SENSE-ACT operations of Hybrid agents

12-Friedenberg-4747.qxd  8/22/2005  3:16 PM  Page 422



Table 12.2 summarizes functional components that may be found in Hybrid
architectures.

Additionally, organizational styles of Hybrid systems fall into one of three
categories, as shown in Table 12.3.

Evaluation of Hybrid Architectures

It is difficult to evaluate Hybrid organizations because systems are still
evolving and the deliberative component is expanding even as this text is being
written. Even though individual instances may not lend themselves to criticism,
an evaluation scheme is possible.

Consider modularity. Each is highly modular and most are divided into
layers, which are then subdivided into modules. As the software agent pro-
gramming for AI becomes more popular, more architectures will implement
deliberative modules devised by independent specialists. Currently, none of the
architectural styles is particularly superior. Each must be considered in light of
the application for which it is used.

Hybrids tend to have a high degree of niche targetability. Hybrids can be
used for applications not appropriate for purely Reactive systems.
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Table 12.2 Attributes of Hybrid Architectures

Hybrid Attribute

Mission Planner

Cartographer

Sequencer Agent

Resource Manager

Performance Monitor
and Problem Solver

Explanation

Interacts with humans and translates commands into
robotic terms; constructs a mission plan.

Responsible for creating, storing, and maintaining maps or
spatial information about the robot’s environment or task
domain.

Generates the set of behaviors to use in order to accomplish
a subtask.

Allocates resources to behaviors—e.g., a robot may have
stereo vision, sonar(s), infrared (IR) sensors, all to detect
range. The Resource Manager determines the circumstances
in which to use each. (In Reactive architectures, resources
for a behavior are often hardwired.)

Allows the robot to notice if it is making progress and/or to
adjust for hardware problems within itself.
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Consider robustness. Many designs attempt to make provision for monitor-
ing performance and to replace or adapt reactive behaviors as needed.

On a global level, one has to ask the questions: “Are Hybrid designs really
unique?” “Are they merely variations of Hierarchical architectures?” “Is the
only difference between them ‘how they achieve the same ends’?” Hybrids
explicitly take advantage of the principles of software engineering. The two
paradigms reflect different attitudes toward world modeling.

In Hybrid systems, global models are used for symbolic functions. The
frame problem does not exist for the Hybrid because:

1. Execution is reactive and therefore well-suited for unstructured
environments.

2. Software agents can use agent-specific abstractions to exploit the structure
of an environment in order to fulfill their particular role in deliberation.

Global models reflect a closed world, but closed at the deliberative level.
The robot can think in terms of a closed world, while it acts in an open world.

Another basis of comparison between Hybrid and Hierarchical models con-
cerns the difference in the roles played by planning and execution. Shakey—the
embodiment of the Hierarchical model—planned every move down to the low-
est level of granularity and had problems confirming that an action had been
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Table 12.3 Organizational Styles of Hybrid Robotic Systems

Style

Managerial style

State hierarchies

Model-oriented

Explanation

Subdivides the deliberative portion into layers based on the
managerial responsibility of each deliberative portion (e.g.,
a Mission Planning element could be responsible for
navigation).

Uses the knowledge of the robot’s state to distinguish
between reactive and deliberative activities:
Reactive functions have no state or self-awareness; they
function only in the present.
Deliberative functions require knowledge of the past (e.g.,
where the robot has been) or knowledge of the future
(e.g., mission and path planning).

Characterized by behaviors that have access to portions of
a world model; these architectures are close to purely
Hierarchical robots.
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accomplished. Modern planners often produce only partial plans, then execute
that part of the plan, note the results, and plan the next step. It is not clear
whether a SENSE, PLAN, ACT sequence (with a more suitable planner) would
produce more intuitively appealing robot architectures.

The final distinction may rest on the influence of biology. The Hybrid
Paradigm has its roots in ethology, and provides a framework for exploring
cognitive science. The Hierarchical Paradigm is less clearly cognitively plausi-
ble, although both share the same cognitive motivation. Both may suffer from
limitations in computing capacity and an associated paucity of planning intel-
ligence. In one instance, as an autonomous rover approached an unanticipated
boulder, its wheels first turned sharply to the right (in an avoidance behavior),
then turned sharply to the left, and finally drove the vehicle directly forward
straight into the boulder! In this case the robot resolved behavioral conflict
by mutual cancellation and selection of a new behavior. Unfortunately, this
behavior was inappropriate.

Overall Evaluation of Robots as Ultimate Intelligent Agents

Rodney Brooks, Director of the AI Laboratory at MIT, suggests the possibility
that within twenty years the computational power of the PC will surpass that
of a human brain. Taking this into account (as well as the expanding use of the
surgical procedures for embedding silicon and steel inside human beings to com-
pensate for lost capabilities), one can question our mortality as well as what it
means to be human. Just as it took centuries for people to accept the fact that
our universe is not earth-centered, as well as the theory of evolution (and ani-
mal intelligence that is comparable to ours, in many ways), the equivalence of
man and machine may some day be accepted. When we look back, the PLAN-
SENSE-ACT architectures (and their variations) will seem primitive, to say the
least. Consider some recent developments in robotics that do not conform to
any of the historical architectures. At Georgia Tech, researchers seek to create
computing systems that perform more like the human brain. To this end, they
have developed a small robot that moves about using the brain signals of a
rat—they call this device the Hybrot. It is a hybrid of living and robotic parts
that connects laboratory cultures containing living neurons to computers in
order to create a simulated animal. A droplet containing a few thousand living
neurons from rat cortex is placed on a petri dish instrumented with an array
of 60 microelectrodes. The neurons can be kept alive in a specially designed
incubator for up to two years. The neural network is connected to a body in the
form of a mobile robot. The robot moves under the command of the neural
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activity that it receives, and information from the sensors is sent back to the
cultured net as electrical stimuli—it is a kind of neural net that has been previ-
ously discussed. The Georgia Tech group hopes that some day these neural
interfacing techniques can help people to control prosthetic limbs directly from
their brain. In yet another application, scientists have been able to decode
intended hand trajectories from motor cortical neurons and, using these signals,
have been able to control external devices (Musallam et al., 2004).

The field of AI robotics has produced a large number of examples of
machines with physical properties and navigational ability that are primitive
resemblances of human behaviors. We find examples in health care as well
as entertainment. Originally conceived to perform dirty, dull, and dangerous
tasks, the machines are now viewed as personal assistants. A question that per-
vades research is: “Will such machines become truly intelligent agents in our
lifetime?” There is no definitive answer to this intriguing question, but the fol-
lowing quotations from two individuals with the same affiliation summarize
the alternatives.

“The body, this mass of biomolecules, is a machine that acts
according to a set of specific rules . . . I believe myself and my
children all to be mere machines.”

Rodney Brooks,
Director of the MIT AI Laboratory

“The reason there are no humanlike robots is not that the very idea
of a mechanical mind is misguided. It is that the engineering problems
that we humans solve as we see and walk and plan and make it
through the day are far more challenging than landing on the moon
or sequencing the human genome. Nature, once again, has found
ingenious solutions that human engineers cannot yet duplicate.”

Steven Pinker, Director of the Center
for Cognitive Neuroscience at MIT

In Depth:Autonomous Robot Architecture (AuRA)

AuRA traces its origins to 1988, at which time Ron Arkin published his
research on how to add more cognitive functions to a behavioral system
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(Arkin, 1998). His work included the first of the type of robot design that used
Hybrid architecture, and was conceived during his tenure at the Georgia
Institute of Technology. AuRA is based on schema theory. A schema is a tem-
plate for doing some activity. For example, there may be a bike riding schema
that includes the data one would need to ride the bicycle, as well as the meth-
ods for riding a bicycle. It is a template because a person can ride different
bicycles without starting the learning process from the beginning. The type of
bicycle, the height of the seat, and the position of the handlebars can be sup-
plied at the time that we wish to create a particular instance (case) of a bicycle.
A behavior can be viewed as a schema that is composed of a motor schema
and a perceptual schema. The motor schema is the template for physical
activity; the perceptual schema embodies the sensing. Releasers would then
activate the behavior. As regards human experience, vision is the default per-
ceptual schema to navigate out of a room and the navigation process is the
motor schema.

There are five identifiable subsystems within AuRA, as indicated in
Figure 12.11.

AuRA, like other Hybrid systems, inherits its deliberative elements from
the Hierarchical Paradigm. PLAN elements in the Hierarchical Paradigm are
decomposed into three different categories that reflect how a human agent
might devise a plan. In the Hierarchical Paradigm these elements are Mission
Planner, Navigator, and Pilot. These functions are summarized below.

The Mission Planner receives a mission assignment from a human agent; it
may also generate a mission on its own. For example, the mission might be to
pick up rocks from a site on the moon or other planetary body, or perhaps to
retrieve some suspicious object. It has the responsibility for translating the mis-
sion into terms that other parts of the software system can understand. It
might, for example, generate a symbol for a particular rock as follows: “rock
= R1.” Using a map of the terrain, the Navigator generates a path from the
robot’s current location to its destination (e.g., the return vehicle, if this is a
planetary mission to recover minerals). The Navigator creates a set of points
arranged to create a (theoretically) straight line that the robot is to follow; the
Pilot receives these path segments. Using this information, the Pilot determines
which actions the robot must take. It might, for example, require the robot to
turn 30 degrees to the left on the next leg of its path. Suppose however that the
robot encounters an unexpected obstacle. In this case, the low-level (detailed)
Reactive elements are able to adjust for this unanticipated occurrence.

The Cartographer contains all the information needed for navigation and
corresponds to the KB of the Hierarchical model. The Pilot sends the Motor
Schema Manager a list of the behaviors that are essential to the successful com-
pletion of the current part of the navigational assignment. Using schemas
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within the sensing system, the actuators will be instructed to respond with the
appropriate action.

One final component of AuRA is the Homeostatic Control, which is part
deliberative and part reactive. It must oversee the current state of the robot and
make appropriate changes in the operation. For example, suppose that the
robot has spent too much time carrying out a task and that an external dead-
line is rapidly approaching (e.g., the return vehicle must leave the planet at
a predetermined point). The Homeostatic Control could override the instruc-
tions provided by the Pilot. Homeostatic Control approximates biological
behavior; animals modify their behaviors on the basis of internal conditions.
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Increasing hunger is a great releaser for increasing attention to food at the
exclusion of other behaviors.

Evaluation of AuRA

AuRA, like other robotic systems, may be less suitable to a particular appli-
cation or mission. (Robots have their specialized “talents” as do humans.)
AuRA, in its original configuration, did not make provision for dealing with
sensor failures. AuRA is representative of the managerial style of design. As an
alternative, state hierarchies use knowledge of the robot’s state; these distin-
guish between reactive and deliberative activities. Reactive behaviors are con-
sidered to act only with current information; these behaviors have no awareness
of the robot’s past or about the future (mission and path). This leads to a lay-
ered organization of design that employs a Planner, a Sequencer, and a Skill
Manager in one instantiation of the State-Hierarchy architecture. These archi-
tectures have advantages (e.g., speed) in cases such as planetary rovers, under-
water vehicles, and robotic assistants for astronauts.

Minds On Exercise: Relational Graphs

A relational graph seeks to represent the world as a graph or network of nodes and
edges. Nodes represent gateways, landmarks, or goals. Edges represent a navigational
path between two nodes. (The two nodes have a spatial relationship.) Such graphs
can be very useful for the Navigator process within a Planner.Additional information
can be attached to the edges, such as direction (e.g., North), approximate distance,
terrain type, or behaviors needed to navigate that path. Build a relational graph rep-
resentation that labels the distinctive places and local control strategies using gate-
ways for a floor of a building on campus.A gateway represents an opportunity for a
robot to change its overall direction of navigation. For example, an intersection of
two hallways is a gateway because the robot can choose to go straight ahead, turn
to the right, or make a left turn.

Food for Thought

1. Social and moral questions raised by robotics would include: Is it acceptable
to use robots to fill roles in instances in which it is hard to get workers at
any price? Where do we draw the line? Discuss the moral implications of the
accidental death of an animal caused by a robot as opposed to a human.
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2. Can ethology (animal behavior) and cognitive psychology (human knowledge
representation and thinking) be integrated and applied to robotics? Provide
arguments for both possible answers.

3. How would the Mission Planner of an intelligent agent construct a mission
plan to “Go and bring the sheriff to me”?

4. Do the Performance Monitor and Problem Solver imply some kind of robotic
self-awareness?

5. Are humans nothing more than very clever machines (robots)? Can we build
a robot that will eventually surpass humans in intelligence? Will such a
machine pass the Turing Test? What are the implications of recent research in
which animal intentions have been detected and used to control equipment?

6. Consider how a collection of robots—a team of intelligent agents—can be
used to complete a task.As an example, discuss this within the context of a
series of robots that might be used for surveillance.

7. Should robotic behavior be hardwired (preprogrammed), or should robots
include a process for learning from elemental procedures?

Notes

1. Wiener suggested that human communication should be the model for human-
machine and machine-machine interactions. His theory—known as cybernetics, from
the Greek word for “steersman”—was intended to improve the quality of our lives
within the technological world, which is characterized by its reliance on machines and
where interactions with machines are the norm.

2. Multi-tasking is a programming technique for sharing a single computer proces-
sor among several independent software tasks or jobs. Multi-threading is similar to
multi-tasking, but with low processing time and with limited protection (independence),
because all threads or program segments share the same memory.

C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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Suggested Readings

Aylett, R. (2002). Robots: Bringing intelligent machines to life. Hauppauge, NY:
Barron’s.

Brooks, R. (2002). Flesh and machines: How robots will change us. New York: Vintage
Books.

Gardner, H. (1987). The mind’s new science. New York: Basic Books.
Murphy, R. (2002). Introduction to AI Robotics. Cambridge, MA: MIT Press.
Shelley, M. (1818; 2003). Frankenstein. New York: Penguin Books. (See, particularly,

the descriptions of the robotic monster’s awakening to the world environment.)
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“Observe the invincible tendency of the mind to unify. It is a law of
our constitution that we should not contemplate things apart with-
out the effort to arrange them in order with known facts and ascribe
them to the same law.”

—Ralph Waldo Emerson, 1836

The Benefits of Cognitive Science

Cognitive science has made an indelible stamp on the way people now think
about mind. Prior to its appearance, there was a plethora of different theoret-
ical approaches to mind. One only needs to look at psychology to see this.
Psychology, throughout most of the first half of the twentieth century, gener-
ated a profusion of theories on what the mind is and how it should be studied.
There was very little common ground that researchers in different theoretical
camps could stand on. A psychoanalyst’s conception of mental processes was
qualitatively different from that of a Gestalt researcher. A behaviorist would
have little to say to a structuralist.

The adoption of the cognitive view has meant progress in the area of bring-
ing these diverse theoretical perspectives together. The influence of cognitive

Conclusion:Where
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theory can be seen in the ways it has influenced what were formerly consid-
ered separate disciplines. There are now cognitive theories of development,
social behavior, personality, therapy, and education. Another indication of
the integrating character of the cognitive approach can be seen in the ascent
of concepts that are implemented across disciplines. The concept of a schema,
for example, has equal import in both cognitive psychology and artificial
intelligence.

Aside from theory, cognitive science has yielded a multitude of practical
applications. Research in artificial intelligence has given us impressive pro-
grams that can recognize speech and diagnose complex medical and engineer-
ing problems. In the area of robotics, we see the development of new and more
sophisticated robots capable of executing complex tasks, ranging from assem-
bly line production to bomb disarmament. These applications have a long-term
positive economic impact, as they allow businesses to operate more efficiently
and can result in the creation of new industries.

There are practical results that have come out of other cognitive science dis-
ciplines as well. Advances in the neurosciences often result in new treatments
for disorders such as autism, Parkinson’s disease, and Alzheimer’s disease. The
formulation of cognitive theories in psychology has provided new therapies for
the treatment of anxiety and depression. Cognitive insights have also had an
impact in education, having led to new methods in the teaching of reading,
writing, and other subjects.

Working Memory:An Example of
an Integrated Program of Study

In this section we take a single cognitive process and illustrate how it would be
studied by each of the different approaches. We do this for several reasons.
First, this kind of focus demonstrates how the cognitive science perspective can
provide an innovative approach that cannot be achieved by the exercise of sep-
arate and independent disciplines. Second, it is a nice illustration of the unique
contributions of each approach. Third, it shows what cross-disciplinary links
in the study of a specific topic should be like. We do not restrict ourselves to
simply describing how each individual approach would study the process, but
also explain how each would do so in an integrative manner. The importance
of integration is discussed later. The process we choose here is working mem-
ory, because it has already been well investigated. It is important to keep in
mind that we imply no hierarchy of importance in this exercise; no individual
approach has precedence over another.
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The Philosophical Approach

A philosophical study of working memory would ask critical questions
about the nature of its representations and processes: Is working memory
restricted to verbal and spatial representations or can it accommodate others?
How are numbers represented? Do any of these representations have meaning?
If so, do they have the same sort of meaning as information utilized by other
cognitive processes? What are the different functions of the central executive?
Can it perform other functions that have not yet been studied? Is there a sin-
gle central executive used by working memory or are there multiple executives
utilized by other processes?

Notice that these sorts of questions need not pertain only to the actual rep-
resentations and processes that are known to researchers. This is the strength
of the philosophical approach. It can address issues that go beyond the delim-
ited boundaries of the phenomenon as specified by the other disciplines.
Philosophers are free to ask questions concerning abstract levels of description,
beyond even the computational level. These might include metaphysical and
ethical inquiries.

The Psychological Approach

How would a psychologist study working memory? We use the term “psy-
chologist” here in the broader sense, referring to researchers and theorists
working outside of cognitive psychology. In this case, it would be informative
to see what long-standing theoretical traditions have to say on this topic. Using
Gestalt theory, we could legitimately ask whether working memory creates
Gestalts during problem solving. If so, by what process is a Gestalt formed?
Are the Gestalts that are part of visual perception the same as those that are
part of the “Aha!” experience that can occur during insight learning?

The Cognitive Approach

Methodology would play a key role in the cognitive approach to working
memory. Experiments could be used to test the assumptions of various process
models. These models could then be revised on the basis of this feedback and
results from other methods, such as computer simulations and brain imaging
studies. In Chapter 6 (The Neuroscience Approach) we saw that researchers
using PET imaging had discovered new information about the nature of
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working memory. This information could then be used to modify existing
models.

The cognitive approach lends itself best to explanations at the algorithmic
level. Its strength lies in its formulation of detailed process models that show
how information is represented and transformed by a cognitive structure
devoted to a particular processing task. Witness the large variety of such process
models that this field has produced. But these models are for simplicity’s sake
restricted to a single domain. A new integrative approach would consist of jux-
taposing process models and observing how they mutually constrain each
other (see Figure 13.1). For example, one could place a model of working
memory next to a model of long-term memory and make connections between
the two. Matching up the inputs and outputs between them might by itself
necessitate structural changes in one or both models.

This technique of model comparison is like putting together the pieces of a
jigsaw puzzle. Knowing that the pieces must fit together might require a change
in the shape of the pieces themselves. It might also cause us to rethink the nature
of modularity. As a result of this sort of exercise, we might find that some
processes are quite independent and modular, and that others are more diffuse,
with a significant number of interconnections and processing dependencies.
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The Neuroscience Approach

The obvious goal for neuroscience in this exercise is to map out completely
the anatomy and physiology of the neural systems that underlie working mem-
ory. It might seem that this is self-contained knowledge, but as regards com-
parative neuroscience, a cross-species analysis provides us with a much larger
picture. In the neuroscience chapter we saw that the locations for working
memory in monkeys and in humans were not the same. The examination of
such differences can lead us to infer the functional demands of the environ-
ments that have shaped brain structure. A closer examination of the difference
between cognitive demands placed on monkeys and those placed on humans,
in terms of language, memory load, and so forth, might explain the anatomi-
cal differences.

Neuroscience plays another important integrative role—one that we have
already mentioned. It places limits on the formation of models designed to sim-
ulate some aspect of brain function. Creators of these models would attempt
to map the components of the models onto corresponding neural sites. Infor-
mation processing centers or modules in the models logically map onto nuclei
or localized regions of neural tissue where neurons have a high degree of inter-
connectivity. Connections between modules in turn map well onto tracts of
neuronal axons that conduct information from one center to another.

The Network Approach

A network approach to working memory would consist of building network
architectures that reproduce various aspects of its function. One could, for
example, implement an artificial neural network that reproduces the storage
and rehearsal of verbal information. Other networks could simulate the rota-
tion of mental images or the central executive. Larger networks that might
integrate these smaller networks into a complete representation of working
memory could then be constructed. Although semantic networks are best used
in understanding the layout of information in long-term memory, they might
also prove useful toward the understanding of some aspects of working mem-
ory function.

Like process models, artificial and semantic network models are dynamic.
They must undergo modification in response to new discoveries made in other
disciplines. The architecture and processing capacities of network models
should be altered in response to relevant results from neuroscience and other
experimental data.
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The Evolutionary Approach

The evolutionary approach puts working memory squarely into the compu-
tational level of description. Evolutionary psychologists would ask what pur-
pose different working memory functions serve. They would want to know
what adaptive roles these functions play and how they have contributed to the
survival of the species over long stretches of time. Evolutionists would of course
see working memory as a “bundle” of domain-specific processes or modules,
each having evolved to solve a context-specific problem. This way of thinking
would stimulate a healthy debate and hopefully an investigation into the issue
of whether working memory is a general purpose or domain-specific processor.

The Linguistic Approach

A linguistic perspective on working memory would by definition center on
verbal processes. It would examine the role of working memory in language
comprehension and production. Because linguistics is such a wide-ranging dis-
cipline, it provides multiple perspectives for the study of working memory. A
linguist could adopt a developmental perspective, investigating how working
memory changes in response to the growth of language ability. In keeping with
the linguistic relativity hypothesis, a linguist would investigate if working
memory operated differently in speakers of different languages or speakers of
more than one language. Linguistic processing in working memory may also be
governed or influenced by grammatical rules.

The Artificial Intelligence Approach

Computers already have the equivalent of a working memory. It is RAM, or
Random Access Memory, and is used by the machine as a temporary holding
buffer for information drawn from a storage or input device. It is no accident
that computers and biological organisms must rely on some form of working
memory, and this attests to working memory’s functional import. An exami-
nation of the differences between these systems—those that were designed and
those that evolved—and of the different roles they play is needed. It may give
us new leads into the computational significance of working memory and may
suggest that there are general purpose categories of function.

Artificial intelligence researchers could of course generate algorithms of
working memory designed to simulate human or animal capability. They could
also design algorithms to solve problems that were apt to be encountered by a
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working memory system, for example, that of coming up with the best way to
search for a target among the items of a list, or how to match two items against
one another. Solutions to these kinds of problems may prove to be optimal
from an information processing point of view and may be implemented uni-
versally in biological brains.

The Robotics Approach

The role of the physical environment comes into play during the course of
robot design. A robotics investigation of working memory would therefore be
concerned with how working memory aids in the execution of a complex, real-
world task. Working memory in robotics would manifest itself as an interface
between perception and action. It could be used, for example, in the service of
navigation. Working memory could enable a robot to form a visual represen-
tation of a cluttered room and to plot a path that would go from its present
position to some goal location. The requirements of a robotic working mem-
ory would change with the particular task demands, but in general would sub-
sume an ability to negotiate effectively with the physical environment.

Issues in Cognitive Science

Cognitive science has made new inroads into the understanding of mind.
However, there are a number of issues that cognitive science needs to address
more completely. One general issue concerns the extent to which cognitive
science provides a coherent, unified theory of mind. Also, you may have
noticed that cognition is concerned primarily with thoughts as they occur
inside a single computing device, biological or machine. Other aspects of mind
(for example, emotions and consciousness), the larger context in which mental
operations occur, and the significance of physical and social environments all
warrant greater attention. In addition, cognitive science gives preference to
universal characteristics of information processing systems over individual
differences, even though an understanding of the latter is both useful and
worthwhile.

A General Issue: Lack of a Single Unified Theory

E. O. Wilson, in his book Consilience: The Unity of Knowledge (1999),
echoes a sentiment felt by many scientists. He believes that all the sciences
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should be unified within a single framework. Cognitive science is a step in
this direction. It gives researchers a common set of assumptions. However,
cognitive science is not yet a complete, unifying theory of mind. The exact
nature of mental representation and computation is still debated. The differ-
ent approaches still use theories that emphasize different causal and explana-
tory factors. So, although researchers across disciplines may agree in a
general way that the mind is an information processor, they might argue the
specifics.

The multidisciplinary approach, while making important advances, has yet
to give us definitions of basic terms. For instance, what is mental representa-
tion? What is mental computation? The classical information processing view
of cognitive science believes representation is symbolic and infers that only
select types of transformations on these symbols may occur. The connection-
ist sees mental representation in a different light. To connectionists, represen-
tations are distributed connection strengths in a network and computations
result from the activation of nodes and the spreading of activity between
them.

The conflict between the classical and connectionist perspectives is a funda-
mental issue that cognitive science must address. But there are disagreements
that crop up when we compare explanations across other disciplines as well.
In the evolutionary approach, cognitive processes are explained according to
selection pressures acting on multiple generations of a species. In psychology,
these same processes can be explained according to developmental, learning, or
environmental influences acting within the lifespan of a single individual. So
the multidisciplinary approach produces some conflict over the exact nature of
mind and how it operates, as well as how to best go about providing explana-
tions for such things. Theoretical diversity, it turns out, is a two-edged sword:
what it affords in insights it can take away in overall coherence.

Specific Issues Facing Cognitive Science

Thagard details several challenges to cognitive science. In his book Mind
(2000) he discusses six problems of cognitive science and possible ways that
cognitive science as it exists presently can respond to them. These issues have
to do with emotions, consciousness, physical environments, social environ-
ments, dynamic systems, and mathematical knowledge. In this section, we
spend time exploring some of the questions that Thagard raises. We do not
discuss dynamic systems or mathematical knowledge, as they are beyond the
scope of this text. We do, however, address the issue of individual and cultural
differences because of their close relationship to the role of environments.
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Emotions

This book has been concerned with thought processes such as memory,
attention, and language. But the mind consists of more than just thoughts. We
are capable of experiencing a wide range of emotional states, for example, hap-
piness, sadness, anxiety, anger, and so on. Cognitive science has been censured
for having insufficiently accounted for this important dimension of conscious
experience. This is actually not the case. Recent years have seen cognitive
science beginning to grapple with the topic of emotion. In a recent book, the
neurologist Antonio Damasio summarizes a wide variety of case studies (Damasio,
1995); he concludes that emotions are part and parcel of rational thinking and
that the absence of emotion can interfere with rationality and can render intel-
ligent decision making impossible. There is extensive ongoing research in the
cognitive neuroscience of emotion in which the anatomy and physiology of the
structures involved in emotion are being studied in terms of their associations
with cognitive processes, for instance, in terms of how emotions are regulated
and experienced (Lane & Nadel, 2002).

The evolutionary perspective also offers us an explanatory framework for
emotion. According to this view emotions and the capacity for emotion evolved
to solve specific problems of survival or reproduction. Fear is a response that
motivates us to flee or to avoid dangerous situations (see Figure 13.2). Anger,
on the other hand, draws attention to an interfering event and motivates
behavior that will contribute to its elimination (Buss, 1989). These two oppo-
site emotional reactions accompany the sympathetic nervous system arousal
that occurs during the “fight or flight” response. Similarly, there are theoreti-
cal accounts for other emotions. Disgust, for instance, has been interpreted as
an evolved mechanism that promotes the avoidance of substances bearing
disease-causing agents (Rozin & Fallon, 1987). If these accounts are correct,
emotional mechanisms evolved and exist alongside cognitive ones. Just as there
seem to be cognitive modules for language or problem solving, there may be
emotion modules that mediate action in a specific context. The task for cogni-
tive science, then, is to incorporate these emotion modules into models of mind
and to specify how the new models interact with the cognitive models already
postulated.

One problem with this formulation of new models concerns the qualitative
differences between cognitions and emotions. Thoughts seem to be subjectively
“neutral” and lend themselves well to symbolic representation and computa-
tion. Emotions, though, seem to be a completely different breed of animal. The
feeling of what it is like to be angry or sad seems far removed from the con-
scious experience of a thought. This means that emotions may not be best
represented in the ways thoughts are—in the form of propositions, images,
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analogies, and so on. This poses a challenge for model making, because, as we
saw in our discussion of analog versus digital representations, the form of the
representation to some extent determines the way it is processed. Assuming
that emotions do require a different kind of representation, they in all likeli-
hood require a different set of computational rules.

Emotions differ from thoughts in several other important respects. Emotional
responses involve the body and not just the brain. These physical changes
include alterations in body temperature, hormonal secretion, heart rate, and
muscle tension (Levenson et al., 1992; Witvliet & Vrana, 1995). Any account
of emotions must therefore take into consideration the wider physiological
changes that occur outside the brain. This could be achieved by introducing
models that allow for bodily feedback during the processing of emotion.
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Figure 13.2 Fear is an adaptive emotional response. It motivates us to avoid dangerous
situations. Emotions like fear interact with and influence our cognitions
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Thagard (2000) also brings up the issue of neurotransmitters in regard to
emotions. Many emotions rely on particular neurotransmitters. Low serotonin
levels, for example, are implicated in clinical depression and feelings of sadness.
The administration of the SSRI drugs (Selective Serotonin Reuptake Inhibitors)
or other antidepressant medications boosts serotonin activity, producing an
alleviation of symptoms. It appears that there are other neurotransmitters that
play specific roles in the expression of or experience of particular emotions.
Current artificial neural network models assume that all neurons act in the
same way. These simplified assumptions need to be discarded if we are to
take into account the differential effects of separate neurotransmitter systems.
This could be implemented in an artificial neural network model by giving dif-
ferent operating characteristics to subsets of nodes corresponding to different
transmitters.

Consciousness

In Chapter 2 (The Philosophical Approach) we defined consciousness,
roughly, as the subjective experience of our mental states. Cognitive science,
with its emphasis on representation and computation, is good at describing the
kinds of structures and processes that underlie thought. But it is now turning
its attention to investigating what it is like to be in possession of those struc-
tures and processes. As we saw in Chapter 2, there are now a number of
theories of consciousness. There has also been work on the topic that has
emerged from a variety of perspectives, ranging from evolution to cognitive
psychology to neuroscience (Blackmore, 2004). The subjective phenomenon of
consciousness, it turns out, is amenable to being studied scientifically and
objectively.

One way of explaining consciousness is to equate it with attention. In this
view conscious experience is where attentional resources are allocated, whereas
subconscious or unconscious processing happens without attention. Johnson-
Laird (1983) proposes that consciousness is like the operating system of a com-
puter that diverts processing resources to the most important tasks. In human
(and other) minds consciousness may play a similar role, shifting attention to
what needs to get done right now. One can see the need for such a central exec-
utive, given the brain’s highly parallel and divided processing nature.

The idea of consciousness as a central executive that coordinates other men-
tal activities already exists in several cognitive models. Think back to the exec-
utive in Baddeley’s model of working memory. Specifying the role of a central
processor is one way of supplementing other cognitive models. The introduc-
tion of the executive could take the form of adding in an executive function
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control box that could turn other functions on or off and regulate their
activity in various ways.

An alternate way of dealing with consciousness is to equate it with brain
activity. As discussed in Chapter 2, Crick and Koch (1995) posit the existence
of specialized consciousness neurons. We also saw in that chapter another neu-
roscience model for conscious experience that was based on a thalamo-cortical
circuit (Churchland, 1995). In that model, consciousness is the activation of
a neural circuit. This of course is a monistic, materialist, and functionalist
answer, since it says that conscious experience, like any other thought process,
boils down to brain activity. This neuroscience view requires us to adopt a
philosophical stance that, in the opinion of some, is not a solution because it
defaults to one side of the debate.

Physical Environments

An important comment on cognitive science is that minds, unlike comput-
ers, exist in the context of a complex physical world. In this conception, men-
tal activity does not occur in a vacuum, isolated from the surrounding world.
Much of our thinking is directly connected to sensory inputs and motor out-
puts. It is devoted to interacting with the “outside,” as opposed to operating
only on complex forms of representation and computation generated from the
“inside.” This idea is known as embodiment. Figure 13.3 shows cognition as
one aspect of a world-interaction process. External stimuli that are interpreted
by perception can lead to action directly (as when we reflexively catch a ball
that is coming at us) or indirectly through cognition (as when we deliberately
make a decision to throw a ball). The actions, in turn, alter our perceptions,
which further alter our actions (once the ball is thrown we can track it to see
where it has gone). This idea is in contrast to a static view of the senses, accord-
ing to which they just passively take in information. The action-perception
cycle of Figure 12.5 in Chapter 12 (Robotics) depicts a similar idea.

The physical environment argument, for some tasks at least, seems to do
away with the idea of representation. Dreyfus (1992) contends that intelli-
gence, and consequently the performance of efficacious action, do not require
formal symbolic representation. Much of what we do can happen as the result
of an interaction between an agent and the world. For instance, imagine pick-
ing up a pen from a desk. This need not require a visual image or linguistic rep-
resentation of the pen in memory. The perception of the pen generated from
the sensory systems is enough to guide an arm toward the pen to grasp and lift.
Simple learning principles based on such sensory-motor experiences are enough
to allow for sophisticated interaction with a complex environment. We have
seen this idea already. Brooks’s (1991) Subsumption Architecture, discussed in
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Chapter 12, is based on the idea of learning through interaction. The robots
constructed with this architecture have been quite successful in locomoting
about the world.

Perception is a good example of where the representational-computational
and sensory-motor views contrast. The dominant view of perception is that
it is computational. All the theories that were summarized in Chapter 4 (The
Cognitive Approach I) involved a complex series of stages where features were
extracted and used to reconstruct an internal representation of an object. This
process is inferential and indirect because the cognitive system must recognize
or infer some property of the object through a time-consuming set of processes.

James Gibson (1986) proposes instead that perception is direct and imme-
diate. He argues that perception results from the interplay of an organism with
the world. In his view, the visual system uses information in the image directly
in its carrying out of perceptual tasks, without resort to representations and
computations. For instance, our ability to judge our position in space while
moving comes from optic flow, whereby surfaces move in the visual field in
a coherent fashion (see Figure 13.4). Our ability to judge the sizes of objects
relies on where they are cut off by the horizon line, which in effect equals our
eye height. Properties such as optic flow and eye height are examples of infor-
mation that is directly available to us. They do not require inferences or
extended computation. As such they can be considered the perceptual analog
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of heuristics in problem solving. They provide quick and, in this case, accurate
solutions to perceptual “problems.” Gibson’s work established the field of eco-
logical perception. This approach provides an alternate framework for describ-
ing perceptual processes.

Social Environments

There is a famous quote that goes: “No man is an Island, entire of itself;
every man is a piece of the Continent, a part of the main” (from a poem by
John Donne written in 1624). By this Donne meant that we live in a social
environment in which we interact with family members, friends, coworkers,
and others on a regular basis. A social environment from a cognitive point of
view is one where individual minds exchange information.
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Figure 13.4 Forward locomotion produces a global optical expansion of texture in the visual field,
indicated here by these arrows. Information about speed is provided by the rate of
expansion
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In these sorts of environments cognition takes place to some extent outside
the individual. Novel information or the solution to a problem often arises
from group interaction. We see this in the business world, where a new mar-
keting campaign or a sales strategy results from a company team working
collaboratively on a project. The concept of thought emerging as a result of
information exchange between individuals is known as distributed cognition.
If you can imagine the boxes in Figure 7.1 (from Chapter 7) replaced by indi-
vidual minds, you will have a general idea of what a distributed cognitive
architecture is like.

The computer analog to social cognition is distributed artificial intelligence.
Here, individual computers with separate processing capabilities are linked and
communicate with one another in a cooperative fashion. If the individual com-
puters have different specializations or computing strategies, they can usually
solve problems together that none of them could solve alone. Similarly a group
of individual persons, each having his or her own knowledge and ways of
thinking, is more likely to arrive at a solution than any one of those persons in
isolation.

These examples from the human and computer domains show us the power
of cooperative computing. But what constitutes the “individual” unit in an
information processing system? Marvin Minsky, cofounder of the MIT AI lab-
oratory, proposes that the mind is itself the product of countless smaller pro-
cessing units—what he calls agents. Each agent performs a very limited and
specific task, but working together, they give rise to more complex cognitive
capacities. In his book The Society of Mind (1985), Minsky describes how
cooperative agents can produce many cognitive phenomena, including pattern
recognition, memory functions, and language. See the In Depth section for
more on his theory and its relation to multiagent systems.

The concept of a society of mind is echoed in the parallel processing archi-
tecture of the brain and in Dennett’s (1991) Multiple Drafts model of con-
sciousness. It forces us to rethink what we mean by mind. Is mind a single
unitary entity or just a collection of smaller computing units? It also forces us
to consider the hierarchical structure of mind, wherein computational elements
are nested one inside the other. Going downward toward the microscopic,
mind is made of neural circuits and neurons. Going upward toward the macro-
scopic, we can now see that it is made of physical and social environments.

A way of folding the social environments challenge into the cognitive science
view is through the use of shared representations. These are representations
that can be processed by more than one user. Language is the medium by
which shared representations exist. The written and spoken forms of language
allow people to hold the same sets of ideas in common. Language converts
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representations that may exist only in one person’s mind into a form that can
be transmitted to and comprehended by others.

We can now begin to elaborate on what models of a social cognitive science
would be like. They would have to indicate the individuals in a group and the
representations and computations each could perform. This much is already in
place. Additionally, they would have to formalize the representations shared
by individuals and how they are processed differently. They would also have
to indicate how the results of an individual computation could produce new
shared representations. This is especially important, because it is the differen-
tial processing and subsequent re-communication of shared representations
that give rise to emergent ideas.

Individual and Cultural Differences

Two other issues, related to the role of environments, are individual and cul-
tural differences. One of the first and most obvious conclusions that we draw
after interacting with others is that they are different from us. Individuals have
unique and in some cases radically different ways of thinking. This begs many
interesting questions: How is it that people come to think differently? Is there
a better or worse way of thinking? What is it that makes an acknowledged
genius in a field different from the average person?

This phenomenon on a larger level comes into view when we start to com-
pare societies, cultures, or countries. Of course, differences exist here as well.
Segall, Campbell & Herskovits (1966) found that Americans and Europeans
were more prone than other world populations to experience several visual
illusions, and they attributed this difference to the exposure of Europeans and
Americans to “carpentered” environments that contain many rectilinear forms.
There is some evidence to suggest that cultural experience plays a role in the
perception of space (Deregowski, 1989). There are also fundamental personal-
ity differences among those living in different cultures. The Japanese and
Chinese, in comparison to people from western cultures, are shyer toward
strangers and exhibit greater concern for social harmony and loyalty (Bond,
1988; Triandis, 1994). These studies suggest that culture plays an important
role in shaping perception and cognition.

The historical trend in cognitive science has been the study of universal char-
acteristics—what all people or cognitive devices share in common. Research
efforts have traditionally focused on solving problems that every information
processor in a particular domain must solve, such as the object constancy prob-
lem in vision or the consolidation problem in memory. Cognitive science has
devoted less attention to the way these processes may be carried out in a lone
individual.
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One way to study cultural differences is anthropology. Anthropologists
investigate when and where humans first appeared on the earth and why they
have varied with respect to some physical traits. They are also interested in
how and why societies vary in their customary ideas and practices (Ember &
Ember, 1985). Because of its focus anthropology is a useful adjunct to the
evolutionary perspective. This discipline can also tell us a lot about which
thought processes are universal and which are particular to specific cultures.
Anthropology can help us to elucidate the factors that account for such differ-
ences. Anthropologists who have made significant contributions to our under-
standing of mind include Lucien Levy-Bruhl, Franz Boas, Claude Levi-Strauss,
and Dan Sperber (Gardner, 1985).

The quest to understand universal phenomena is certainly important and is
arguably the first goal of an emerging science. A prime motivation for this
quest is that it helps us understand the basic processes involved. The details can
be worked out afterward. However, it is sometimes these very same details that
can illuminate the operation of the more basic processes. For example, under-
standing why some people are so much better at math than others can proba-
bly tell us a lot about basic mathematical ability and the function of working
memory (see Figure 13.5). Research on universals and particulars, therefore,
ought to proceed in parallel. In this fashion each can inform the other.

Enhancing Cognitive Science

In the previous section, we discussed some of the general and some of the more
specific problems facing cognitive science. Included in this discussion were sug-
gestions for how the field as a whole might benefit. For instance, we decided
that if emotions are a fundamental aspect of mind and influence cognition,
then cognitive science ought to take them into account by generating new
forms of representation and computation to accommodate them. In this section
we review a number of additional suggestions for how cognitive science might
be enhanced. We first discuss theory and outline five criteria for evaluating
theory. We then move to a discussion of integration of various kinds: across
levels of explanation, disciplines, and methodologies.

Evaluating Cognitive Science Theories

An important issue in cognitive science centers on how we go about evalu-
ating different theories. Since cognitive science is such a far-ranging endeavor
that spans multiple approaches, the number of theories that are generated is
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quite large. The field could therefore benefit from an efficient method for
determining what is a good or bad theory, as well as what is an unacceptable
theory. Thagard (2000) proposes five criteria by which we can evaluate
theories of cognitive representation. These criteria are equally effective guide-
lines for judging theories of mind. Let us define and discuss each of these
briefly. Notice that there is one discipline that is best suited to the use of each
criterion.

1. Representational power. How well does the theory account for the wide
variety of cognitive representations? As we have seen, representations come in
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Figure 13.5 The physicist Albert Einstein. Isn’t it worth understanding how his mind
differs from that of the ordinary person?
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many forms. Images are good at representing spatial layout and lend themselves
naturally to certain types of processing, such as navigational computation. But
images have a hard time representing abstract concepts such as “democracy.”
These concepts are best captured using linguistic forms of representation that
are inherently superior for other sorts of computation such as logical reasoning
and inference. Philosophy can give us good insights into the nature of represen-
tations and their role in different types of processing. A good cognitive science
theory is one that can account for different types of representations.

2. Computational power. How well can the processes specified by the theory
under consideration perform a given computation? For any given cognitive prob-
lem or task, there may be several ways to achieve a solution. The effectiveness of
a given solution can be evaluated on the basis of its speed and flexibility. In gen-
eral, speedier algorithms that can complete their operations faster are better. So
are those that can solve a greater variety of problems and are not just restricted
to one domain. Computer science and artificial intelligence are fields that excel
in the evaluation and testing of different algorithmic solutions. We have to be
careful at this point to distinguish between practicability and plausibility. A fast
and flexible algorithm may be of great use in software application, but have no
bearing on how the processes the software executes are performed in humans or
animals. For this, we must turn to considerations of plausibility.

3. Psychological plausibility. How likely is it that the processes specified by
the theory are actually carried out? This question can be answered by rigorously
weighing theoretical assumptions against empirical evidence. Experimental psy-
chology is good for this. Data from experiments can rule out incorrect mental
models and suggest which types of mental computation are being performed.
We cannot, however, rely solely on experimental psychology to test plausibility.
This is because the results from these experiments can only validate theoretical
constructs at an abstract, information processing level of description—Marr’s
computational and algorithmic levels. To get an implementational or hardware
level of description we need to take biology into account.

4. Neurological plausibility. How are the mental processes physically
carried out in a neural substrate? An elegant theory that can explain all of the
psychological data is hollow if it cannot be implemented biologically. The neu-
roscience and network approaches fill this gap. Brain scanning studies tell us
which overall parts of the brain are involved in performing a cognitive task.
Network models give us a more local account of how information may be
represented and computed.
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5. Practical applicability. How can the knowledge gained from a cognitive
science theory be put to use in the real world? This issue reflects the longstand-
ing difference between theoretical and applied science. Theory is important for
understanding natural phenomena. The knowledge gained from theory can then
be used to solve social problems in engineering, education, medicine, and other
areas. A good theory is one that will yield good practical applications.

The Role of Integration

We have seen, throughout this book, that each cognitive science approach,
by itself, yields a substantial quantity of information about mind. We have also
seen that an integrative approach, in which the disciplines work collaboratively
together on a common problem, is an even more powerful tool for investigat-
ing phenomena of mind. The working memory example described above
demonstrates just this. But this form of integrative research isn’t easy. This is
because the different disciplines vary with respect to explanatory constructs
and methodology. In this section, we propose kinds of integration from which
cognitive science research could benefit. These are integrations across levels of
description, disciplines, and methodologies.

Integration Across Levels of Description

Recall again David Marr’s three levels of description that make up the tri-
level hypothesis. These are the implementation level, corresponding to a hard-
ware explanation of a cognitive process; the algorithmic level, at which how
information is processed is specified; and the computational level, at which a
definition of the problem and its solution are given. These levels, in the order
given, correspond roughly to three basic questions about a cognitive process:
Where is it taking place? How is it taking place? Why is it taking place?

It is rare in cognitive science to find a theory that provides an explanation at
all three levels. Rather, different approaches tend to emphasize one level over
another. Neuroscience and robotics focus on the implementational level, since
they either study the brain’s existing architecture or design new mechanical and
electronic architectures. The cognitive and artificial intelligence approaches,
because of their models and programs specifying information flow, emphasize
the algorithmic level. The philosophy and evolutionary approaches focus on the
computational level, since they provide richer explanations for the purposes of
cognitive processes.

What is needed, then, are more theories or models that integrate across all
three levels. The levels would then mutually constrain one another, leading to
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better and more accurate formulations. For instance, in the neuroscience
approach, we saw that the Treves and Rolls (1994) model of hippocampal
function was based on what we know of the anatomy of the region. This is an
instance of integration across the implementation and algorithmic levels.
Evolutionary accounts of hippocampal function could further enhance their
model. Knowing why the hippocampus evolved and under what specific con-
textual circumstances it operates would provide further constraints.

Integration Across Disciplines

It is difficult to formulate a cognitive science theory that satisfies all five of
the theoretical constraints discussed earlier, and few researchers actually try.
One reason is that most investigators are specialists. They are trained in the
knowledge and tools of their own discipline, but lack understanding of other
allied disciplines. An artificial intelligence researcher may be adept at devising
search algorithms to locate information in a database, but not be familiar with
the literature on human memory search (an area of expertise reserved for
a cognitive psychologist). Similarly, a neuroscientist may know which brain
areas underlie memory retrieval, but not be able to implement a neural net-
work model of the process (a skill possessed by someone working within the
network approach).

There are two solutions to this. The first is to train individual researchers in
the interdisciplinary perspective. Scientists who possess an understanding of
cognitive science fields outside their own can then formulate more appropriate
theories. This solution has its limitations, however. Scientific practice requires
a high degree of specificity and focus, and researchers cannot be expected to
acquire more than rudimentary training in multiple alternative disciplines. The
most that can be expected is some degree of familiarity with the literature and
techniques of disciplines outside one’s own specific area.

A second solution (mentioned in the introductory chapter) is inter-
disciplinary cooperation. Here, investigators from different disciplines work
together on a common project. For instance, a team made up of investigators
from different disciplines might focus its research efforts on a single topic,
such as the motor action of grasping. Each investigator can then contribute
the unique strengths of his or her discipline’s theoretical insights and method-
ology. The intercommunication that results can lead researchers to ideas they
might not have had otherwise. Recently formed interdisciplinary cognitive
science research centers sometimes employ philosophers, cognitive psycholo-
gists, computer scientists, and neuroscientists. Studies at these centers have
yielded findings unlikely to have been obtained by departments operating
autonomously.
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Integration Across Methodologies

Many of the disciplines employ distinct methods. Philosophy uses logical
reasoning; psychology and others, the scientific method; cognitive psychology,
artificial intelligence, and the network approach use modeling; neuroscience
utilizes a combination of case studies, the lesion method, and brain imaging,
whereas robotics builds and tests machines in a real-world environment. Each
of these techniques has its strengths and weaknesses. A computer simulation of
a cognitive process may yield solutions to the problem of how to best represent
information and of how to solve a problem in the smallest number of process-
ing steps. This simulation, however, would ignore empirical data at its own
risk, since nature may have evolved a different or better solution.

In Chapter 4 we discussed several models of attentional selection—some
favoring early selection, others favoring late selection. Different models were
formulated over time, with models being modified to accommodate new exper-
imental data. This is a good example of integration across two methodologies—
modeling and experimentation. Although in this case the models were modified
in response to experimental results, the relationship is really two-way, with
models providing the impetus for designing new experiments as well.

The Future

A few parting words. Cognitive science is unique in the history of science in
that it puts under one umbrella such a large number of disciplines. This pro-
vides an unparalleled opportunity for these disciplines to work together in new
ways. Cooperation and competition among the various approaches are both
necessary to the advancement of our understanding of mind.

But what does the future hold in store for cognitive science? Where are we
going from here? Progress in any area of science relies on a number of factors.
Among these are theoretical breakthroughs that reorganize our understanding
of facts as well as technological advances. Cognitive science, perhaps more
than some other disciplines, is dependent on new tools for measuring or simu-
lating mental processes. Recent years have seen the development of such tools,
including artificial neural networks and fMRI imaging techniques. It is likely
that other new tools like these are on the way. It is not unrealistic to imagine
brain-imaging devices that will be able to record the individual neuronal activ-
ity of large cell populations or instruments that will be able to measure quan-
tum fluctuations at the atomic level. The use of such tools may open up a
whole new vista of mental territory rife for exploration. The future in cogni-
tive science is bright indeed.
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In Depth: Multiagent Systems

An agent is a component module of a computer system that is endowed with
the ability to perform some task. Collections of different agents interacting
with each other form a multiagent system (Wellman, 1999). Although individ-
ual agents considered in isolation follow fairly simple rules, the system as a
whole is capable of sophisticated information processing activity and may be
considered intelligent. Distributed artificial intelligence systems are in fact a
type of multiagent system (Bond & Gasser, 1988).

Agents interact with each other based on an interaction mechanism that
specifies the kinds of information they can exchange and their method of doing
so. In some cases the mechanism allows for cooperative agent interaction,
meaning that the agents all have the same goals, although they may differ in
the roles they play as they try to achieve them. Agents in a cooperative system
negotiate with one another: they exchange information in order to accomplish
their tasks.

There are also noncooperative systems in which agents have different goals.
In these systems the agents still cooperate, but only when it is in their own
“best interest.” That is, an individual agent will negotiate with another only
when such negotiation furthers its own unique objectives. Agents in noncoop-
erative systems are usually programmed to act in accordance with principles of
rational decision-making. They choose from among a set of possible alterna-
tives, ordered by preference. Economists study this type of decision-making
process in order to understand phenomena such as consumer choice (Henderson
& Quandt, 1980).

The hallmark of a multiagent system is decentralized decision making.
Groups of agents at one level or location in the system can make a decision or
solve a problem using partial information. This is in contrast to a centralized
system, in which a central executive performs these duties after having all
available information fed to it. A decentralized organization makes multiagent
systems more robust and more resistant to damage than centralized systems.
For this reason, they operate effectively in network applications, such as tele-
phone and computer systems. In these systems, if part of the network goes
down, agents in the remaining portion can determine how to reroute signals.

The most obvious metaphor for a multiagent system is a human society in
which the agents are individual persons who make decisions and then act on
them as a result of communication with others. Individuals can of course
be cooperative or noncooperative and may have shared or individual goals.
Human societies can also be centralized, as in a military dictatorship, or decen-
tralized, as in a democracy. The emergent behavior of a multiagent system, as
we have seen, can solve problems and act as if it were intelligent. Similarly, the
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cumulative actions of a human society can also be conceptualized as solving
“problems” of law, commercial exchange, and military conflict.

Multiagent systems are a theory of mind, because the mind, like a society,
may be considered as having interactive agents (Minsky, 1985). But what are
these mental agents? The modules we have discussed throughout this book
are one candidate, although, because of their functional independence, they are
limited in the extent of their interaction. Other agents could be neural circuits
that control a specific function. This is what Marvin Minsky suggests agents
are. He lists four agents that would allow us to pick up a cup of tea: a “thirst”
agent that makes us want to drink the tea, a “move” agent that wants to get
the cup to our lips, a “grasp” agent that enables us to maintain our hold on
the cup, and a “balance” agent that wants to keep the tea from spilling out.

Notice that the agents in the preceding example reside in different systems—
some for motivation, others for motor action. These agents also call on each
other in a variety of ways, both linear and hierarchical. The “move” agent
could call on another “reach” agent that would then call on the “grasp” agent.
The “grasp” agent would then call on lower-level agents that move the fingers,
and so on. Figure 13.6 shows the relationship between agents in a hierarchi-
cal organization. This example shows that the complexity of behavior that
emerges from multiagent systems comes not from the agents themselves, which
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Figure 13.6 Agents by themselves and in a hierarchical relationship that opens a door
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have very little actual computational power. It comes from the way they are
connected to and control one another. The distributed processing nature and
high degree of connectivity in the human brain certainly give it the potential to
act as a multiagent system.

Minds On Exercise: Evaluating Theories of Mind

Pick an important cognitive process such as visual object recognition and describe
how it would be studied from each of the approaches in this book. Do some of the
approaches seem to lend themselves well to the study of the process? Why? Are
there some approaches that make it difficult to study the topic? Why? Describe what
a cross-disciplinary study of the process would be like.You can do this by picking any
two approaches at random and detailing what a collaborative effort between them
would be like.

Food for Thought: Discussion Questions

1. What is an emotion? Would you make a decision differently if you were angry
(versus being sad)? How would it be different?

2. Does cognitive science need to concern itself with the issue of conscious-
ness? Is it enough to explain mental processes objectively, or do we need to
account for their subjective character as well? Would you be satisfied with a
science of mind that could explain every mental event perfectly but not what
it is like to experience them?

3. Do you think it would be possible for a mind to develop without interacting
with a physical or social environment? Could a computer ever become con-
scious or intelligent via direct programming from its creators and in the
absence of being allowed to learn, compete, and grow in response to the
demands of an environment?

4. Take any one of the theories of mind from this text and evaluate it using
Thagard’s five criteria. In what areas is it strong? In what respects is it weak?
Modify the theory to improve it.

5. In what way is a city like a multiagent system? List some of the possible agents
in a city and how they might interact with each other. Organize the agents into
different groups based on their functions.Which agents or groups interact with
each other? Which ones do not? What kinds of “problems” must a city solve?
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C H A P T E R  R E V I E W  A N D  E X T E N S I O N S

Log on to the student study site at http://www.sagepub.com/csstudy for
electronic flashcards, review quizzes, and a list of Web resources to aid you
in further exploring the field of cognitive science.
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Glossary

Acoustic code A memory code based on the sound of the items.
Act A robotic primitive that pertains to the actuating or motor elements of an intelli-

gent agent.
Action potential The electrical signal that results when the inputs to a neuron exceed

its threshold of excitation.
Action schemas In the Norman and Shallice model of attention, units that govern the

execution of context-specific actions.
Activation function A function that maps the strength of the inputs a node receives

onto its output.
Adaptive Resonance Theory (ART) network An unsupervised multilayer recurrent

network able to classify input patterns into different categories without a teacher.
It does this by employing a resonant dynamic, in which the patterns in the first and
second layers repeatedly stimulate each other until the pattern in each layer settles
into a stable state.

Affordance Perceivable environmental elements that are suitable triggers for an
action.

Agent link A link in a propositional network that specifies the subject of the sentence,
the one performing some action.

Agents A component module of a cognitive system that is endowed with the ability to
perform some specific task.

Agraphia A deficit in writing.
Alexia A deficit in reading.
Algorithm A formal procedure or system that acts on informational representations.
Analog representations A form of representation in which information is coded in a

continuous way.
Analogy A mental representation used to compare known information with new

information to which it is similar.
Android A robot or mechanical device that resembles a human being in all respects,

including the cognitive attributes.
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Angular gyrus A brain area located posterior to Wernicke’s area. Damage to this area
can produce problems in reading and writing.

Anomia A form of aphasia in which patients can recognize and define words but are
unable to name them.

Anterior A direction indicating toward the front.
Anterograde amnesia An inability to remember new information after a traumatic

incident.
Anthropology The discipline that studies cultural differences by investigating when

and where humans first appeared on the earth and why they have varied in some
physical traits. Anthropology is also interested in how and why societies vary in
their customary ideas and practices.

Aphasia A neurological language deficit.
Apperceptive agnosia A type of agnosia in which people cannot assemble the pieces

or features of an object into a meaningful whole.
Appropriate causal relation The relation between sensory inputs, motor outputs, and

the representations that come between them.
Arbitrary The property that there need be no relationship between linguistic symbols

and their referents. Any symbol could be used to stand for any concept.
Architecture Functional organization of an entity, possibly a computer.
Arcs Represent relationships between concepts or elements.
Arcuate fasciculus A pathway that connects Broca’s and Wernicke’s areas.
Arousal The extent of physiological activation reflected in measures such as cardiac

and respiratory rate.
Articulatory loop A system in the working memory model where speech and sound-

related information are rehearsed.
Artificial life The study of manmade systems that behave in ways characteristic of

natural living systems.
Artificial neural network (ANN) A computer simulation of how populations of real

neurons might perform some task.
Assertives A type of speech in which the speaker asserts his or her belief.
Associative agnosia A type of agnosia in which people perceive a whole object but

have difficulty assigning a name or label to it.
Attention Concentrated mental activity in which processing resources are allocated to

information sources.
Automatic attentional processes Processes that do not require conscious attentional

control.
Autonomous Being able to function without recourse to a human operator.
Axon A long, tubular structure that projects outward from a neuron cell body and

serves to transmit the action potential over distance.
Babbling stage A stage in language development where infants produce many sounds

occurring in the languages of the world.
Basal ganglia A collection of brain areas involved in voluntary motor responses.
Base-rate fallacy A neglect of the probability that an item belongs to a particular

category.
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Basis function A function specifying the amount of stimulation a given node receives.
It is determined by multiplying each weight by the amount of activation it receives
and then summating.

Behavior A mapping or translation of sensory inputs into a pattern of motor actions
intended to complete a task.

Behavior-based approach A type of problem-solving method in which a network is
allowed to produce a solution on its own. This does not involve the use of sym-
bols. It is representative of the connectionist approach in cognitive science.

Binding problem The issue of how to recombine the various features of an object that
have been processed by distributed brain areas.

Biological plausibility The idea that artificial neural networks effectively represent
and model characteristics of real-world brains.

Bottleneck theories Theories that describe why it is that of all the information pre-
sented to us, only a small amount actually gets through to conscious awareness.

Brain imaging A technique that allows researchers to see the static three-
dimensional organization of brain areas and the dynamic activity of these areas
over time.

Breadth-first search A methodology for exploring a knowledge base in which one
level of the information is completely exhausted before proceeding to the next,
more-specialized level.

Broca’s aphasia A language deficit in which comprehension is intact but there are
impairments in speech pronunciation and production.

Broca’s area A region in the left frontal lobe that underlies language production.
Damage to this area results in Broca’s aphasia.

Bus Informal designation of a computer’s communication system.
Capacity theories Theories that conceptualize attention as a limited resource that

must be spread around to different informational sources.
Cartographer A software structure that contains all the information needed for

robotic navigation—the Knowledge Base of the Hierarchical Model.
Case (Record) An instance of an activity or event.
Case study A method in neuroscience in which researchers examine the relationship

between brain damage and behavior in individuals.
Catastrophic interference This occurs when a network has learned to recognize

an old set of patterns and then is called on to learn a new set. The learning of
the new set modifies the weights of the network in such a way that the old set is
forgotten.

Cell assembly According to Hebb, a small group of neurons that repeatedly stimulate
themselves.

Central processing unit (CPU) That part of a computer that executes the instructions
and controls the sequence of instructions to be carried out.

Cerebral hemispheres The two halves of the cortex, each with corresponding func-
tional specializations. The left hemisphere is more analytic, serial, and logical. The
right hemisphere is more synthetic, parallel, and relational.

Cheater detection The ability to detect who has undeservedly received a benefit.
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Chinese room scenario A hypothetical situation in which a man uses a set of instruc-
tions to produce replies to questions in Chinese. It argues that the man can never
learn to understand Chinese.

Chunking The grouping of items together into a single meaningful whole in short-
term memory.

Cingulate cortex A region of the cortex that is implicated in selecting a response,
especially when that response requires inhibiting or ignoring another alternative
response.

Class membership The extent to which, or belief that, an entity belongs to a given
class.

Classical conditioning A form of learning in which two repeatedly paired stimuli
become associated so that one that formerly did not elicit a response now
does.

Classical dualism The belief that both mental and physical realms are possible where
the mind controls the body.

Clearness The clarity of a sensation determined by the amount of attention paid to it.
Closed world paradigm References environments in which a model of the world is

self-contained.
Closure The perceptual principle stating shapes forming closed objects go together.
Coarticulation Differential pronunciation of a given phoneme based on the phonemes

that come before or after it.
Cocktail party effect The ability to automatically hear one’s name spoken at a dis-

tance even though one’s attention is focused on the immediate surroundings.
Cognitive architectures Specify the structure and function of many different cognitive

systems and how they interact.
Cognitive economy The principle that concepts should not have to be coded for more

times than is necessary.
Cognitive map A mental representation that can explain learning without resorting to

pure stimulus-response associations.
Cognitive neuroscience The study of the physiological structures and processes under-

lying cognitive function.
Cognitive penetration When one’s knowledge, beliefs, goals, or other cognitive states

alter performance of a mental task.
Cognitive psychology The study of human knowledge representation and use.
Cognitive science The scientific interdisciplinary study of the mind.
Commissives A type of speech that commits the speaker to some later action.
Communication The production, transmission, and comprehension of information

between individuals in a language.
Compatibilism The belief that free will and determinism can be reconciled or made

compatible with each other.
Complex ideas Ideas formed from the active mental combination of simple ideas.
Compositional semantics When the entire meaning of a sentence is derived from the

meaning of its parts.
Computation The transformation or manipulation of information.
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Computational level An abstract level of analysis that asks what type of problem a
computation solves and how it may have arisen.

Computer axial tomography (CAT) A brain imaging technique in which beams of
x-rays pass through the skull and are picked up by a detector on the opposite
side. By collecting the information from each of these beams, two- and three-
dimensional views of the underlying tissues can be reconstructed.

Concept An idea that represents a class of entities that have been grouped together.
Conceptually driven process A process where context and higher-level knowledge aid

in recognition.
Conditioned response (CR) In classical conditioning, a response elicited by a condi-

tioned stimulus.
Conditioned stimulus (CS) In classical conditioning, a stimulus that elicits a response

only after being repeatedly paired with an unconditioned stimulus.
Conduction aphasia Results from damage to the arcuate fasciculus. Characterized by

a difficulty repeating words that have just been heard.
Conjunction fallacy A neglect of the conjunction rule, which states that the probabil-

ity of simultaneously being a member of two categories is always less than the
probability of being a member of either category alone.

Connectionism The study of mental operations through the construction and testing
of artificial neural networks.

Conscious That aspect of mind that contains those thoughts and feelings of which we
are aware and can directly access.

Consciousness The subjective quality of experience.
Consolidation The process by which information is transferred from working or

short-term memory to long-term memory.
Contention scheduling The scheduling that governs routine habitual performances.
Contralateral Refers to the opposite side of the brain or neural structure.
Control group The group in an experiment that does not receive the independent

variable.
Controlled attentional processes Processes that require conscious attentional control.
Convergent dynamics The state of a network represented by how the values of its

weights change over time.
Cooing stage The earliest period in language development when infants exercise their

vocal cords and mouths prior to articulation.
Coronal plane A cut through the brain that separates it into a front and back piece.
Corpus callosum A collection of fibers that connects the two cerebral hemispheres.
Creative synthesis A principle by which the mind actively organizes mental elements

together such that the resulting whole contains new properties. These new proper-
ties cannot be explained by the characteristics of the individual elements themselves.

Critical period A period of development during which linguistic experience is crucial
for future language use. If a child is not exposed to language during this time, he
or she may never acquire it or may suffer severe language impairments.

Data-driven process A process that is driven entirely by the physical characteristics of
a stimulus and fails to take into account the larger context or meaning.
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Decay The loss of information over time from memory.
Declarative knowledge Knowledge that represents facts.
Declarative memory Memory for knowledge about facts and events. It is demon-

strated by saying and occurs with conscious recall.
Declaratives A type of speech where the utterance itself is the action.
Deductive reasoning The application of the rules of logic to statements about the world.

If the premise statements are correct, than the concluding statement must be as well.
Deep representations A type of image structure that consists of information in long-

term memory that is used to generate a surface representation.
Deep structure The underlying meaning of a sentence that remains constant, regard-

less of the specific form in which it is expressed.
Defense mechanisms Constructs of the ego that reduce or redirect anxiety in various

ways.
Degree of fan A concept that is related to many others has a high degree of fan. The

node representing the concept will subsequently have many links radiating outward
from it to other nodes.

Deliberative behavior Actions that are comprised of previously developed behaviors
that are integrated into a resultant behavior and may include external and internal
stimuli.

Deliberative/Reactive Paradigm (Hybrid) A robotic architecture that employs a com-
bination of reactive behaviors and planning or other cognitive components.

Demand characteristics When participants in a study do what the stimuli, task, or
experimental situation seems to demand of them.

Dendrites Branching protrusions of the neuron that receive messages from other neurons.
Dependent variable A factor measured or observed by the experimenter to see if a

change has taken place.
Depth-first search A methodology for exploring a knowledge base in which informa-

tion is examined in an increasingly specialized manner.
Determinism The view that all physical events are caused or determined by the sum

total of all prior events.
Dichotic listening task A task used to study selective attention. It requires a partici-

pant wearing headphones to listen to two different messages played over each ear
simultaneously while paying attention to only one.

Digital representation A form of representation in which information is coded in a
discrete way with set values.

Directives A type of speech in which a command is issued.
Displacement The ability of language to refer to something that is removed in space

or time.
Distributed artificial intelligence A field of artificial intelligence in which individual

computing agents are linked together and communicate with one another cooper-
atively. If the agents have specialized computing strategies, then they can solve
problems in tandem that neither one of them could alone.

Distributed coding/representation A coding in which an object or feature is repre-
sented by a pattern of activation among a group of cells or nodes.
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Distributed cognition The view that cognition can be considered as information
processing both within and between individuals.

Divided attention A form of attention that can be split or divided among several alter-
native information sources.

Domain-general mechanisms Those that can operate on any type of information.
Domain-specific mechanisms Those that are tuned to perform special operations on

only a certain type of information.
Dorsal A direction indicating toward the top.
Dorsal visual pathway A pathway that travels upward to the parietal lobe, where

information about motion and location is extracted.
Dual-code hypothesis The idea that the mind collectively uses both digital/symbolic

and image representations.
Dualism The belief that the mental and physical consist of different states or

substances.
Duration How long a sensation persists.
Dynamic The characteristic that languages are constantly changing as new words are

added and grammatical rules altered.
Early selection model Models of attention where information is selected early, based

on physical stimulus characteristics.
Echoic memory Auditory sensory memory.
Ecological models of cognition Models of cognitive processes that are acquired

through learning.
Ecological perception The theory that perception is immediate and direct, not requir-

ing representation or computation.
Ego The aspect of mind that balances the competing demands of the id and superego.

It operates on the reality principle.
Electrical stimulation A method where an electrical current is passed through a bipolar

electrode causing the neurons in a localized area of brain tissue to become active.
The resulting activity and behavior are observed.

Electroencephalogram (EEG) A measure of the brain’s gross electrical action.
Embodiment The idea that cognitive processes exist within and interact with an exter-

nal environment through sensory inputs and motor outputs.
Emergent property A property that is realized through the interaction of a system’s

parts.
Empiricism The view that knowledge is acquired through experience.
Emulator A software program that allows one computer to mimic a second computer

for the purposes of running the programs that are compatible with the second
computer.

Encoding The name of the process by which information is taken in and converted
into a usable mental form.

Enduring disposition Refers to automatic influences on where attention gets directed.
Engram A physical change in a specific location of the brain associated with learning.
Entity model of causation A theory of causality that says entities with specific identi-

ties are the cause of actions.
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Environment of evolutionary adaptation (EEA) The period of time during which
many human psychological mechanisms are believed to have evolved.

Environmental dependency syndrome A symptom of executive dysfunction in which
an environmental stimulus can automatically trigger an associated behavior.

Epilepsy A disorder in which neurons fire uncontrollably, producing muscle spasms
and seizures.

Epiphenomenalism The school that allows the physical to cause the mental but
prohibits causation in the other direction.

Episodic memory A type of declarative memory containing knowledge of episodes or
personally experienced events.

Epistemology The branch of philosophy devoted to the study of knowledge.
Equipotentiality The principle that many different parts of the brain seem to partici-

pate in memory storage.
Error signal In artificial neural networks, the difference between the actual and

observed output. The error signal is used to alter connection strengths and train the
network.

Ethology Study of animal behavior.
Event-related potentials (ERPs) An EEG recording of brain activity in response to a

particular event.
Evolutionary computing (EC) A collection of computational methods modeled on the

principles of biological evolution.
Evolutionary psychology (EP) A field of psychology that studies how evolutionary

forces have shaped human mental capacities.
Evolved psychological mechanism A cognitive process that has evolved to solve a

specific adaptive problem.
Exaptation or neutral drift Random mutations that produce new genes with little or

no consequence for reproduction. They can spread in a population and at some
point may assume a new adaptive function to a subsequent environmental change.

Executive control system A system in the working memory model whose function is
to initiate and control ongoing processes.

Executive dysfunction A disorder characterized by a broad number of deficits includ-
ing a difficulty in performing goal-directed behaviors as a result of frontal lobe
damage.

Executive function Cognitive operations involved in planning, sequencing of behav-
ior, flexible use of information, and goal attainment.

Exhaustive search When a memory search process continues matching all the way to
the end of a list, even if the target has already been located.

Experimental group In an experiment, the group receiving the independent variable.
Expert system A software program that is dedicated to solving problems and provid-

ing “expert quality” advice to users.
Explanatory gap The gulf between an objective and subjective description of mental

phenomena.
Explicit response A response such as a motor action that is directly observable.
Expressives A type of speech that describes the psychological states of the speaker.
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Extensity The extent to which a sensation fills or occupies space.
Fallacies A fundamental misunderstanding of a statistical rule that can result from

applying a heuristic.
Feed-forward network In an artificial neural network, flow of activation that is in one

direction only, forward from units in an input layer to units in other layers.
Field theory The idea in physics that objects are acted on by forces in fields.
Fissure A large spacing or separation between two areas of brain tissue.
Focused attention stage A later stage in pattern recognition that requires concentrated

attention under voluntary control.
Formal symbol manipulator A system that operates on contentless symbols based on

a set of rules.
Formula (assertion) A database or internal computer representation of a fact.
Frame A collection of information that represents a simple concept. It includes a place

to store attributes of the concept (slot) and a place for actions that can be applied
to the concept (procedure).

Free association What happens when one is presented with an idea and asked to pro-
duce whatever related ideas come to mind without censoring or inhibiting.

Frontal lobe Located on the anterior portion of the cerebral hemispheres. It is impli-
cated in problem-solving and motor behavior.

Functional kinds Things that are distinguished by their actions or tendencies.
Functional magnetic resonance imaging A variation of MRI that is used to show

changes in brain activity over time.
Functionalism The view that mental states are not just physical states but the func-

tioning or operation of those physical states.
Fundamental utilities of consciousness The role consciousness plays in the survival of

the organism.
Fusiform face area (FFA) Pictures of faces activate cells in this area, located in the

temporal lobe.
Fuzzy logic A methodology for translating uncertain knowledge into equivalent, but

precise, linguistic representation and drawing conclusions on which to act.
Gambler’s fallacy The belief that probability outcomes are not independent, that the

probability of an event can be influenced by its past history.
General-purpose processor The view that the mind can solve any type of problem

equally well. It is based on the notion that a problem is solved by context-
independent symbol representation and computation.

Generalization The ability to apply a learned rule to a novel situation.
Generalized delta rule or back-propagation A way of training a network by repeat-

edly applying error feedback to alter connection strengths. The feedback is the dif-
ference between the actual and desired output.

Generative The property of language whereby symbolic elements can be combined to
create a large number of meanings.

Geon A basic volumetric shape, such as a cube or a cylinder, that may be used in
recognizing an object.

Gestalt The idea that a whole is more than just the sum of its parts.
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Goal The desired end state or solution to a problem.
Graceful degradation A slow and gradual decrease in the performance of a network

with increased damage.
Grammar The collection of all the rules governing a language.
Guided search A forceful or willed search for a memory item based on intelligence

and reasoning.
Gyrus A ridge or fold of neural tissue.
“Hasa” link A link in a propositional network that represents property relationships.
Hebb rule States that if two connected neurons are both active simultaneously, the

synapse between them will be strengthened.
Heuristic This is a mental “rule of thumb” or strategy that acts as a fast and easy way

of problem solving. Heuristics are right most, but not all, of the time.
Hidden layer The second layer of a three-layer network. This is where the input layer

sends its signals. It performs intermediary processing.
Hierarchical organization A semantic network where concept nodes are arranged in

different levels along a continuum from abstract to concrete.
Hierarchical paradigm A highly sequential robotic architecture in which planning is a

key element of its design. It is also referred to as a “top-down” approach to robotic
design.

Homeostatic control Oversees the current state of the robot and makes changes in the
operation as needed.

Homunculus A hypothetical “little man” inside the mind who interprets and under-
stands information.

Hopfield-Tank networks Supervised single-layer networks where each node is usually
connected to every other node. Good at regenerating clean versions of patterns and
at solving optimization problems.

Horizontal plane A horizontal cut through the brain separating it into a top and
bottom piece.

Hypothesis A statement derived from a theory that concerns potential outcomes in an
experiment.

Iconic memory Visual sensory memory.
Id The aspect of mind that contains unconscious impulses and desires such as sex and

hunger. It operates on the pleasure principle.
Idealism The belief that only mental entities are real, that the universe is essentially

nonphysical.
Idealistic principle Motivates the individual to do what it considers proper.
Illumination A flash of insight, a sort of “aha” experience where a solution comes

suddenly to awareness.
Image generation Occurs when the encodings in long-term memory are used to form

an image in the visual buffer.
Image inspection Occurs when an individual is asked some question about an image.

It consists of a number of distinct operations such as “zoom,” “pan,” or “scan.”
These operations preserve the image while extracting information from it.
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Image transformation Refers to an operation performed on an image such as a
mental rotation. These operations alter the image.

Immediate experience An individual’s direct awareness of something.
Implementation level A “hardware” level of analysis that specifies the physical processes

that carry out a computation.
Implicit response A response that occurs inside an organism and is therefore difficult

to observe.
Incompatibilism The belief that free will and determinism are irreconcilable.
Incubation The period of time during which a problem is put aside. During this

period there are no conscious attempts at problem solving but the unconscious
mind may be attempting or have discovered a solution.

Independent variable In an experiment, a factor manipulated or altered by the exper-
imenter to see if it will cause a change.

Inductive reasoning A form of thinking in which commonalities about specific
instances in the world are noticed and used to draw conclusions.

Information gain A measure of the uncertainty of an event related to the probability
of the event’s occurrence.

Inheritance The process by which parents pass on some of their genetic characteris-
tics to their offspring.

Innate Reasoning Mechanism (IRM) Similar to a reflex but operates in an open world
as contrasted to a reflex that operates in a predetermined environment.

Input layer The first layer of a three-layer network that receives stimulus input and
where the stimulus is represented.

Input/Output (I/O) The functional parts of a computer that enable such machines
to interact with the external world.

Insight learning The apparent spontaneous understanding of relationships that
produces a solution to a problem.

Intensity The strength of a sensation.
Intentionality The relationship between a representation and what it stands for.
Interactionism The belief that allows the physical and mental to causally influence

one another.
Interference The inability of a network to distinguish similar patterns from one

another.
Intervening variables Variables that mediate between initiating causes and a behavior.
Intraparietal sulcus Located in the parietal lobe, it may be responsible for the alloca-

tion of attentional resources and the binding of features in visual search.
Introspection The process of “looking inward” to experience and describe mental

objects or states.
Ipsilateral Refers to the same side of the brain or neural structure.
“Isa” link A link in a propositional network that represents relationships of

belonging.
Isomorphism The correspondence between the psychological or conscious experience

on the one hand and the underlying brain experience on the other.
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Knowledge-based approach A type of problem solving method in which one concep-
tualizes the problem and its solution in terms of symbols and transformations on
the symbols. Representative of the traditional or classical approach in cognitive
science.

Kohonen network An unsupervised two-layer network able to create a topological
map or spatial representation of the features present in the stimulus input.

Late selection model Models of attention where information is selected late, based on
semantic stimulus characteristics.

Latent learning An animal’s ability to acquire behaviors through experience without
being subject to any reinforcement.

Lateral A direction indicating toward the side.
Lattices Regularly arranged matrices of parts used to demonstrate the principles of

perceptual organization.
Leaf (Leaves) Terminating nodes for a knowledge-base-searching algorithm.
Learning When some event causes a change in the nervous system that in turn causes

a change in behavior.
Lesion study A method in neuroscience where researchers deliberately destroy brain

areas in animals and examine the resulting behavioral deficits.
Lexicon A mental dictionary representing specific word features such as their sound,

appearance, and meaning.
Lexigrams Geometric patterns that can be used to create a language system.
Libertarians Those who believe that people have free will and that it is not compati-

ble with determinism.
Linguistic relativity hypothesis Also known as the Sapir-Whorf hypothesis. The strong

version states that thought and language are so similar that it may be impossible to
express the thoughts of one language in another. The weak version denies this but
admits that the language a person speaks influences the way he or she thinks.

Linguistics The study of language.
Links The connection between each node in an artificial network.
Literal encodings Encodings that contain lists of coordinates detailing where to place

points in the surface matrix to depict the represented object.
Lobes Cortical regions with different functional specializations.
Local minimum When a network is not able to perform its task because the error level

drops too quickly. It is characterized by an early low point on the loss function.
Local representation Representation in the form of activation or activity in a single

node in a network.
Logogen A word representation used in the logogen model.
Long-term potentiation (LTP) The enduring facilitation of synaptic transmission

that occurs following activation of a synapse by repeated intense high-frequency
stimulation.

Loss function The change in the error signal over a set of learning trials.
Magnetic resonance imaging (MRI) A brain imaging technique in which a patient is

placed inside a tube containing a powerful magnet. Protons align themselves in this
magnetic field. A radio-wave pulse is then applied to the brain or other part of the
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body undergoing the scan. The radio signals are bounced back and picked up by a
detector unit.

Maximal onset principle The principle that consonants usually precede vowels and
typically form the onset of syllabic groupings. A feature found in all languages.

Means-ends analysis A reasoning paradigm in which the intelligence notes the current
state of a system and chooses some action that will reduce the difference between
the current state and a specified goal state.

Medial A direction indicating toward the middle.
Mediate experiences Experiences that come from mental reflection about an object.
Memory The capacity to retain information over time; also the part of a computer

that stores the instructions to be executed, partial computational results, and final
results.

Mental operations How a mental process operates, what it accomplishes, and under
what conditions it occurs.

Metacognition Any process that monitors, regulates, or controls a cognitive process.
Metaphysics The branch of philosophy that examines the nature of reality.
Mimetic skill The ability to represent knowledge through voluntary motor acts.
Mission planner A robotic component that receives a mission assignment from a

human—or initiates such a mission of its own—and translates the requirements
of the task into terms that other parts of the robotic software understand.

Modal memory model An early model of memory showing how information is trans-
ferred between sensory, short-term, and long-term memory.

Modularity of mind A theory that states the mind is made up of innate and function-
ally distinct modules.

Molecular drive Occurs when a copy of a gene mutates and serves an adaptive func-
tion even though it was not selected for.

Momentary intention Refers to the conscious decision to pay attention to something.
Monism The belief that the mental and physical consist of a single type of state or

substance.
Morphemes Units of spoken language that have meaning.
Morphology The rules governing the word structure of a language.
Mosaic model of development A model in which brain mechanisms are almost

entirely determined by genes, operate quickly, and the parts of the system develop
independently.

Multiagent system A collection of specialized interacting agents.
Multilayer network A network that has two or more layers of nodes.
Multimode model of attention The view that selection can be based on multiple stim-

ulus characteristics such as the physical and semantic.
Multiple-unit recording A brain recording technique where an electrode is used to

measure the collective electrical activity of a group of neurons.
Narrative thought This is a type of thought that is subjective and holistic and is

employed more in the arts and humanities.
Nativism A belief that a significant body of knowledge is innate or “built into” an

organism.
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Natural languages Languages that have evolved in humans and are used by them.
Examples include English, Spanish, and French.

Nature-nurture debate A controversy that centers on the relative contribution of biol-
ogy and experience in determining any particular capacity.

Navigator This software process creates a path (e.g., set of points defining a straight
line) that a robot is intended to follow.

Neural Darwinism A theory that applies evolutionary processes to neural learning.
In this view, neuronal circuits that are active survive and those that are not
die out.

Neural synchrony A theory that suggests an object is represented by the joined and
coordinated activity of a constellation of distributed cells. It is one solution to the
binding problem.

Neurons Cells that receive and transmit electrical impulses. They form the basic units
of the nervous system.

Neuroscience The study of nervous system anatomy and physiology.
Neurotransmitters Molecules released from the terminal button that travel across the

synaptic cleft and attach to receptor sites on the surface of another cell.
Node A representation of a concept or element of the world.
Nonreductive physicalists Physicalists who believe physical processes can give rise to

emergent and irreducible mental phenomena.
Object-centered description An object representation that is described relative to the

object itself and can be recognized from a variety of perspectives.
Object constancy The ability to recognize an object even though it is hardly ever

viewed from the same perspective twice.
Object link A link in a propositional network that denotes the object or thing to

which an action is directed.
Occipital lobe Located on the posterior portion of the cerebral hemispheres, it medi-

ates visual processing.
One-word stage A stage in language development where words are first used in a

symbolic and semantic fashion.
Open world paradigm References environments in which actions of intelligent agents

alter objects within their domain and thus require a resulting modification of the
environment.

Operant conditioning A form of learning in which reward and punishment shape the
behavior of an entity (e.g., human).

Operator A process that is applied to the problem-solving situation and that trans-
forms it.

Ordinate A level of concept category organization of moderate specificity.
Output layer The third layer of a three-layer network. This generates a representation

of the response based on inputs from the hidden layer.
Pandemonium model A feature detection model of pattern recognition in which

“demons” are used to represent different aspects of a stimulus.
Paradigm A philosophy or approach for developing theories for, analyzing, and eval-

uating a class of problems.
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Paradigmatic thought This is a type of thought that is objective and analytical and is
implemented more often in the sciences.

Parallel distributed processing (PDP) A type of information processing where large
numbers of computing units perform their calculations simultaneously. Computa-
tional units can receive and process multiple inputs and transmit multiple outputs.

Parallel memory search A memory search in which all the items in a list are matched
against a target all at once.

Parallel search Visual search where all the items in the display can be matched for the
target at once.

Parallelism The belief that the mind and body are distinct and isolated from each
other.

Parietal lobe Located dorsally, it is implicated in somatosensory, attention, and spa-
tial processing.

Partial-report condition A condition in iconic memory studies in which participants
are cued to remember only one row of letters in the display.

Pattern recognition The ability to identify objects in the environment.
Perception The process by which we gather and interpret information from the out-

side world via the senses; within a mechanical environment, perception refers to the
process of scanning an environment and converting the resultant information into
a set of abstractions comprising objects, features, and relationships.

Perceptron Artificial neural networks that detect and recognize information about the
world, store this information, and use it in some fashion. They are characterized
by the ability to learn from experience and can alter their connection strengths.

Perceptual categorization deficit A difficulty in recognizing objects when they are
viewed from an unusual angle or are lit unevenly.

Pessimists Theorists who argue that moral free will is impossible to prove.
Phase sequence According to Hebb, a group of connected cell assemblies that fire

together or close in time.
Phenomenal concept of mind The idea of mind as a conscious experience.
Phenomenology Refers to subjective experience rather than objective description.
Philosophy A discipline concerned with the search for wisdom and knowledge.
Phoneme The smallest unit of sound in a language.
Phonology The rules governing the sound system of a language.
Phrase structure The hierarchical organization of a sentence. Represented using a tree

diagram that shows the relationships between words.
Phrase structure grammar The grammar that governs the use of phrase structures.
Physical kinds Things that are identified by their material composition only.
Physicalism Also known as materialism; the belief that the universe is entirely

physical.
Pilot This software process determines the actions that a robot must complete to

follow the path specified by the Navigator.
Plan A robotic primitive element encompassing the corresponding human attributes

of reasoning and cognition.
Pleasure principle Motivates the immediate satisfaction of desires.
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Pop-out A perceptual phenomenon that occurs when a target is easy to find because
it differs from the surrounding distracters along a single stimulus dimension such
as color.

Positron emission tomography (PET) A brain imaging technique in which blood flow
through the brain is measured while a participant carries out a cognitive task. This
is accomplished using radioactive isotopes attached to tracer molecules such as glu-
cose or oxygen. Brain areas that are more active will use more of the tracer mole-
cules. This increase in resulting activity can then be detected.

Posterior A direction indicating toward the back.
Pragmatic analysis The last stage of natural language processing in which a complete

meaning for a sentence is determined by applying contextual information.
Pragmatics The social rules underlying language use and the strategies used by speak-

ers to make themselves clear.
Pragnanz Meaning “good figure,” the Gestalt principle stating parts that are simple

will group together.
Preattentive stage An early stage in pattern recognition that happens automatically

and effortlessly. It does not require conscious focused attention.
Preconscious That aspect of mind that we can bring into awareness with effort.
Predicate An assertion of a fact about one or more entities or subjects.
Predicate calculus A general system of logic that accurately expresses a large variety

of assertions and modes of reasoning.
Prediction The scientific view that if all states of a physical system are known, the

actions that occur in them can be anticipated.
Preparation An understanding of and preliminary attempts to solve a problem.
Primacy effect The phenomenon that more words are remembered at the beginning of

a list.
Primary motor cortex Located on the precentral gyrus, it contains a spatial represen-

tation or map of different body areas used to control motor behavior.
Primary somatosensory cortex Located on the postcentral gyrus, it contains a spatial

representation or map of different body areas used to process sensory information
from the body surface.

Priming Occurs when processing of a stimulus is facilitated by the prior presentation
of a related stimulus.

Principles of perceptual organization Ways in which visual parts group together to
form objects.

Proactive interference Occurs when information that is learned earlier interferes with
remembering information learned later.

Problem-solving A type of behavior that involves deciding that a problem exists and
considering one or several solutions to the problem. Special-purpose solutions
depend on the circumstances of a particular task. General-purpose solutions can be
applied to a broad variety of problems.

Problem space The initial, intermediate, and goal states of the problem.
Procedural knowledge Knowledge that represents skills.
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Procedural memory Memory for skill knowledge. It is demonstrated by doing and
occurs without conscious recall.

Process model A diagrammatic model that represents the way human information
is processed. In the model, boxes are used to designate each stage or step in an
information-processing sequence.

Production Rule (Conditional statements) Propositions or predicates whose truth or
falsity can be determined.

Program A series of instructions that an intelligence devises for the computer to
execute.

Proposition A statement or assertion typically posed in the form of a simple sentence.
Propositional encodings Abstract, language-like representations, similar to declara-

tive statements. They contain information about an object’s parts, its location, and
size.

Propositional hypothesis Mental representations that take the form of abstract,
sentence-like structures.

Prosopagnosia An inability to recognize faces, despite the capacity to recognize other
types of visual stimuli and the presence of generally intact intellectual functioning.

Prototypes A generic or idealized representation of a conceptual category.
Proximity The principle stating parts that are close to one another in the visual field

are perceived as a whole.
Psychoanalytic psychology The view that the mind is made up of distinct components,

each competing with one another and vying for control of behavior.
Psychological concept of mind The idea of mind as mental states that cause and

explain behavior.
Psychological inertia A symptom of executive dysfunction characterized by listless-

ness and an inability to stop some action once it is started.
Psychologist’s fallacy The idea that one person’s subjective response to a perception

does not guarantee that the same response will exist in the mind of anyone else who
experiences the same perception.

Psychology The scientific study of mind and behavior.
Psychophysical relations The relation between the psychological mind and the

physical body.
Punishment Any consequence that decreases the frequency of a preceding behavior.
Qualia The felt or experienced character of mental states.
Quality The characteristic that distinguishes sensations from each other.
Rationalism The belief in the existence of innate ideas.
Raw primal sketch An image represented in terms of its distribution of intensity

values or areas of light and dark.
Reactive paradigm (Subsumption) A robotic architecture characterized by direct con-

nection between perceptive elements (sensory information) and actuating elements
(sense-action processes).

Reactive responses Learned, consolidated behaviors that are executed without con-
scious thoughts.
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Reagent A substance added to a mixture to produce a particular chemical reaction.
Reality principle Motivates one to act in a rational and pragmatic fashion.
Reasoning The ability to draw inferences appropriate to the facts and circumstances

of the situation.
Recency effect The phenomenon that more words are remembered at the end of a list.
Receptors Structures on the surface of a neuron to which neurotransmitters attach.
Reciprocal altruism A characteristic of early human society involving the sharing of

hard-won resources between group members.
Reconstructive memory When recall of an item from memory is based on guided

search and subject to bias by subsequent information.
Recurrent networks This is when information in a network can flow in two direc-

tions, both forward and backward.
Reductionism The idea that an understanding of parts can completely account for the

behavior of a whole.
Reductive physicalism A school of physicalism that states that mental phenomena can

be explained by the brain’s physical makeup and processes.
Referent The thing or things in the external world that a representation stands for.
Reflex A behavior in which a stimulus triggers sensory neurons that activate interme-

diary neurons. These in turn activate motor neurons, causing a simple motor
response.

Reflexive responses Actions that last as long as the stimulus that produced them and
whose magnitude is proportional to the intensity of the stimulus. Fixed action
responses continue for a longer time duration than the stimulus.

Regulatory model of development A model in which brain mechanisms are only
partially determined by genes, operate more slowly, and the parts of the system
develop interdependently.

Rehearsal The repeated activation of a circuit that increases the strength of the con-
nections between its nodes.

Reinforcement Any event that increases the frequency of a preceding response.
Relation link A link in a propositional network specifying the type of relation

between agent and object.
Replication The scientific view that if all states of a physical system are known, the

actions that occur in them can be reproduced.
Representativeness heuristic The tendency to judge an item based on its perceived

similarity to a category label.
Repression A defense mechanism that banishes anxiety-arousing thoughts and feel-

ings from consciousness.
Reticular activating system (RAS) A network of about 100 nuclei that control the

brain’s overall arousal and alertness level.
Retrieval The act of accessing needed data from memory and making it available for use.
Retrieval cues A phenomenon in which an item related to one that was memorized

can lead to successful recall.
Retroactive interference Occurs when information that is learned later interferes with

remembering information learned earlier.
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Retrograde amnesia An inability to remember information acquired prior to some
traumatic event.

Reverse engineering The process of starting with an end-product and analyzing it to
determine its intended function.

Robot A mechanical agent that can function autonomously.
Roboticist A scientist whose research interest is the study of robots.
Root node The starting conceptual point for searching a knowledge base.
Rote learning Learning characterized by a direct association between stimulus and

response.
Sagittal plane A vertical cut through the brain separating it into a left and right half.
Schema Knowledge of how to act as well as the computational processes by which to

accomplish the activity (algorithm).
Scientific method A process of studying natural phenomena that involves observation

and the testing of hypotheses through the use of experiments.
Script A type of schema that acts as a stored framework or body of knowledge about

some topic.
Selection A change in environmental conditions that results in differential inheritance

of traits in a population.
Selective attention A form of attention that can be focused onto one source of infor-

mation and away from another.
Self-terminating search A memory search process that stops as soon as a positive

match between a list item and target occurs.
Semantic The meaning of a representation.
Semantic analysis The third step of natural language understanding where the sen-

tence structure and the meaning of the words are used to derive a partial represen-
tation of the meaning of a sentence.

Semantic code A memory code based on the inherent meaning of a stimulus.
Semantic memory A type of declarative memory containing knowledge of facts.
Semantic network A network where each node has a specific meaning and therefore

employs local representation of concepts.
Semantics The rules for deriving meaning in a language.
Sense A robotic primitive includes that part of a robotic system that converts elements

of an environment into information that is made available to other parts of the
robotic system.

Sensory memory A short-term repository for incoming sensory information.
Sentence verification A procedure in which participants judge the truth or falsity of

sentences by pushing one of two buttons.
Serial memory search A memory search in which each item in a list is matched against

a target one at time.
Serial processors A type of information processing where one computation is per-

formed at a time. The results of one computation typically serve as the input for
the next.

Serial search Visual search where each item in a display must be scrutinized one after
the other until the target is located.
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Sexual division of labor A division of labor between the sexes that is believed to have
existed in early human societies where males hunted and females gathered.

Sexual selection A differential inheritance of traits based on mate selection and com-
petition instead of a change in the environment.

Shared representations Representations that can be processed by more than one user.
Language is a common medium of shared representations.

Shiftability The idea that attention can be shifted back and forth between different
sources.

Similarity The perceptual principle stating parts that are similar in lightness, color,
shape, or some other characteristic group together.

Simple ideas Ideas derived through sensory input or simple processes of reflection.
Single-cell recording A brain recording technique where a fine microelectrode is

inserted either into a single neuron or into the extracellular fluid adjacent to it.
Changes in that cell’s electrical conductivity or its rate of firing are then measured.

Single-layer A network with only one layer of nodes.
Solipsism The belief that the universe exists only in one’s mind.
Spandrel An architectural feature formed by the triangular space between the exterior

curve of an arch and the rectangular frame enclosing it. In evolution, it is used to
designate a byproduct of an adaptation that may serve a useful purpose.

Specificity coding A coding in which activity in a single neuron represents an object
or feature.

Speech recognition The first step in the process of natural language processing by
which the acoustic speech signal is analyzed to yield the sequence of spoken words.

Speech spectrogram A plot that displays the different frequency components of speech
and how they change over time.

Spreading activation The activity that spreads outward from nodes along links to acti-
vate other nodes.

Stability-plasticity dilemma A scenario where a network should be plastic to store
novel input patterns. At the same time it should be stable to protect previously
encoded patterns from being erased.

Stimulus error Confusing our true experience of an object for a description of the
object based on language and past experience.

Storage Information that is represented but not currently activated for use.
Stream of consciousness The notion that the mind is a process undergoing continuous

flow or change.
Structuralism A theory that emphasizes studying the structure or basic elements of

mind and how they combine.
Structured A property of language in which rules specify how symbols can be

combined.
Subgoal An intermediate goal along the route to eventual solution of a problem.
Sublimation A defense mechanism that transforms unacceptable impulses into

socially valued motivations.
Subordinate The most concrete or specific form of conceptual category organization.
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Substantive thought Occurs when the mind slows down, perhaps through the focusing
of attention.

Sulcus A smaller spacing or separation between two areas of brain tissue.
Superego The aspect of mind that is responsible for our ethical sense of right and

wrong. It operates on the idealistic principle.
Superior colliculus A brain area responsible for the moving of visual attention from

one object or position in space to another.
Superordinate The most abstract form of conceptual category organization that

encompasses all examples of the concept.
Supervised networks These are networks that are presented with target answers for

each pattern they receive as input. The network “knows” what the right answer is
on each training trial.

Supervisory Attentional System (SAS) A set of schemas that govern only nonroutine
actions that require controlled attentional processes. These schemas are designed
to be more general purpose and applicable to a wide variety of different problem
types.

Surface representation A quasi-pictorial representation that occurs in a spatial
medium. It depicts an object or scene and underlies our experience of imagery.

Surface structure The organization of a sentence in the form that it is expressed. How
a sentence would be heard if it were spoken or read if it were written.

Sustainability The idea that attention can be maintained over time.
Symbol A representation that stands for something else.
Synaptic cleft The space in between neurons across which neurotransmitter molecules

travel. Typically found between the terminal button of one cell and the dendrite of
another.

Synaptic plasticity A change in the structure or biochemistry of a synapse that occurs
during learning.

Syntactic analysis The second step of natural language processing where the word
sequence is analyzed using knowledge of the language’s grammar. This produces
sentence structure.

Syntax The rules that govern the arrangement of words together in sentences.
Teacher, The A corrective mechanism that compares actual to desired output and

generates an error signal.
Template An internal mental representation of a stimulus to which an image gener-

ated from an external stimulus is matched.
Temporal lobe Located laterally on each hemisphere. It mediates auditory processing,

pattern recognition, and language comprehension.
Terminal button A bulb-like structure found at the end of the axon. It releases

neurotransmitters.
Thalamus This brain structure serves as a relay center, forwarding incoming messages

from the different senses to parts of the cortex specialized for processing them.
Theory A set of statements that organizes facts and aids in understanding how the

world works.
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Theory of natural selection The theory proposed by Charles Darwin that accounts
for changes in animal species over time. It involves species variability, inheritance
of traits through reproduction, and selection due to environmental change.

3-D sketch A three-dimensional image representation in which object parts are linked
together by axes of symmetry and elongation.

Threshold The minimum amount of activation required to produce conscious aware-
ness of a stimulus.

Threshold of excitation The minimal change in a neuron’s normal resting electrical
state that will initiate the creation of an electrical signal (action potential).

Token Referring to a specific instance of a category.
Token (instance) An identification symbol that is useful for symbolic manipulation of

knowledge.
T.O.T. phenomenon This is an acronym for “tip of the tongue” in which one feels

familiarity with an item but cannot quite recall it.
Transformational grammar A set of rules for modifying a sentence into a closely

related one.
Transitive thought The flow of thought that occurs during less focused and more

associative forms of reasoning.
Trial-and-error learning Learning that proceeds from random responses to a behav-

ior that satisfies the requirements of the task.
Tridimensional theory of feeling A theory stating that all feelings can be character-

ized by three dimensions: pleasure-displeasure, tension-relaxation, and excitement-
depression.

2 1/2-D sketch An image representation that includes information about surfaces and
layout.

Two-word stage A stage in language development in which children first produce
two-word utterances.

Type Referring to an entire category.
Typicality effect The phenomenon that human participants are faster to judge stereo-

typical members as belonging to a category.
Unconditioned response (UCR) A response elicited by an unconditioned stimulus.
Unconditioned stimulus (UCS) A stimulus that elicits a response on its own.
Unconscious That aspect of mind of which we are completely unaware.
Universal grammar The features that are instantiated in the grammars of all natural

languages.
Unsupervised networks Networks that must determine the answer on their own with-

out any benefit of a corrective response.
Variation Refers to the differences in traits between animals.
Ventral A direction indicating toward the bottom.
Ventral visual pathway A pathway that travels downward to the temporal lobe and

carries data about color and form.
Verification A stage in problem solving where an insight is confirmed and one checks

to see that it produces a correct solution.
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Viewer-centered description An object representation that is particular to the viewer’s
point of view.

Visual agnosia A deficit resulting from brain damage in which an individual has
difficulty in recognizing objects visually.

Visual buffer The spatial medium of the surface representation. The buffer is a sur-
face matrix consisting of an array of points.

Visual code A memory code based on the visual appearance of a stimulus.
Visual image A mental representation of an object or scene that preserves metric

spatial information.
Visual search The task of identifying a target item located in a field filled with non-

target items or distracters.
Visuo-spatial sketchpad A system in the working memory model that is specialized

for the processing of visual information.
Voluntarism A movement that viewed the mind as consisting of elements and stressed

that these elements are assembled into higher-level cognitive components through
the power of the will.

Wason Selection Task A task designed to measure a person’s logical thinking ability.
It involves applying the abstract rules of logic to a specific example.

Weights Values on links that determine the strength of the connection between nodes.
They can range in value from −1.0 to +1.0.

Wernicke’s aphasia A language deficit in which speech production is intact but there
are impairments in comprehension.

Wernicke’s area A region in the left temporal lobe that underlies language compre-
hension. Damage to this area results in Wernicke’s aphasia.

Whole-report condition A condition in iconic memory studies in which the task is to
remember the entire letter display.

Working memory A short-term memory store used to represent and transform
information.

Zeigarnik effect The phenomenon of remembering more information following an
interruption.
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Conduction aphasia, 296
Conjunction fallacy, 253
Connectionism, defined, 207
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Connectionist, 66
Connectionist approach:

advantages of, 221–222
evaluating, 221
problems and disadvantages of,

222–224
Connectives, 367
Conscious, 82
Consciousness:

artificial intelligence (AI) and, 56
Cartesian theater explanation of,

60–61
cognitive science (CS) and,

443–444
defined, 49
Freud’s three-tiered system of, 82
fundamental utilities of, 76
mind as emergent property, 52
mystery of, 49–52
neurocomputational theory of, 55
neurons, 54
neuroscience and, 54–56
nonmaterial, 53
what-it’s-like argument, 50–52

Consciousness Explained
(Dennett), 60

Consilience: The Unity of Knowledge
(Wilson), 439

Consolidation, 135, 190
Constancy problem, 120
Contention scheduling, 200–201
Contralateral side of brain, 174–175
Control group, 68
Controlled attentional processes, 199
Convergent dynamics, 215–219
Conversational pragmatics

exercise, 308
Cooing stage, 282
Coronal plane, 173
Corpus callosum, 174
Cortex, 172–174, 196
Counterfactual statement, 289
CPU. See Central Processing Unit (CPU)
CR. See Conditioned response (CR)
Creative synthesis, 71
Critical period, 285
CS. See Cognitive science (CS)
CS. See Conditioned stimulus (CS)

Culture:
cognitive science (CS) and, 448–449
learning and, 268
mythic, 271
psychology and, 267–268

Cyc Project, 357–359

Data-driven processes, 104
Decay, 127
Decision demon, 13
Decision tree, 393, 395
Declarative knowledge, 24
Declarative memory, 131, 136, 196
Declaratives, 303
Deductive reasoning, 15
Deep representation, 142
Deep structure, 293
Defense mechanism, 84
“Degree of belief,” 387–388
Degree of fan, 232
Deliberative behavior, 407
Demand characteristics, 147
Dendrites, 170–171
Dependent variable, 68
Deprivation, language, 284–288
Depth-first search, 381–382
Descartes approach, and mind/body

debate, 316
Descriptionalist, 148
Determinism, 41–45, 84
Dichotic listening task, 113
Difference Engine, 318–319
Digital computer, 332–333
Digital representation, 6–7
Directives, 303
Displacement, 280
Dissociative identity disorder, 49
Distributed artificial intelligence, 447
Distributed coding, 181
Distributed cognition, 447
Distributed network models, 186–187
Distributed representation, 210
Dividend attention, 112
Divisible, 112
Doctrine of innate ideas, 47
Domain-general mechanisms, 48
Domain-specific mechanism, 48, 438
Dorsal, 172–173
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Dorsal visual pathway, 176
Draw inferences, 367, 372
Dual-code hypothesis, 7–8
Dualism, 31–32

critiques of, 36–38
epiphenomenalist, 34–35
interactionism, 35–36
parallelism, 34
technology and, 37

Duration, 73
Dynamic, 277
Dynamic system, 80

Early selection model, 115
EC. See Evolutionary computing (EC)
Echoic memory, 126
Echolocation, 50–51
Ecological models of cognition, 268–269
Ecological perception, 446
EEA. See Environment of Evolutionary

Adaptation (EEA)
EEG. See Electroencephalogram (EEG)
Efficient computation, 365
Ego, 83–84
Electrical stimulation technique, 169
Electroencephalogram (EEG), 166–167
Elephant, as metaphor, 14
Embodiment, 444
Emergent property, 52–59
Emotions, cognitive science (CS) and,

441–443
Empiricism, 46
Emulator, 319
Encoding, 135
Enduring disposition, 118–119
Engineering goal of artificial

intelligence (AI), 321
Engram, 187
Entity model of causation, 43
Environment:

physical, 444–446
social, 446–448

Environmental dependency syndrome,
197, 201

Environment of Evolutionary
Adaptation (EEA), 241, 252

EP. See Evolutionary psychology (EP)
Epilepsy, 190

Epiphenomenalist, 34–35
Episodic memory, 132, 270
Epistemology, 30
Equipotentiality, 188
ERP. See Event-related potential (ERP)
Error signal, 215, 218
ESs. See Expert Systems (ESs)
Ethology, 407
Event-related potential (ERP), 116, 167
Evolution:

stage theory of, 270–272
theory of language, 256

Evolutionary computing (EC), 20, 239
defined, 261
methodologies, 261–263

Evolutionary psychology (EP),
19–20, 48, 240–241

artificial life (A-Life), 263–265
categorization, 247–248
cognitive processes and, 247–257
defined, 239
evaluating, 266–269
evolutionary computing, 261–263
evolved psychological mechanisms,

244–246
judgment under uncertainty,

253–257
language, 256–257
logical reasoning, 250–253
memory, 248–250
natural selection and genetics,

241–244
Neural Darwinism, 265–266
overall evaluation of, 269–270
overview, xx
sex differences in cognition, 257–261
working memory and, 438

Evolved psychological mechanism,
244–246

Exaptation, 266
Executive control system, 137
Executive dysfunction, 197
Executive function, 197–201

defined, 197
theories of, 199–201

Exhaustive search, 160
Experiment, 144
Experimental group, 68
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Expert Systems (ESs), 321, 354,
380–386

breadth-first searching, 381–382
depth-first searching, 381–382
evaluation of, 384–386
Fuzzy Logic, 386–392
in action, 380–383
MYCIN system, 383–384
organization of, 381

Explanatory gap, 52
Explicit response, 86
Expressives, 303
External symbolic storage system,

271–272
Eye, illus., 101

Face perception, 180–181
Facial expressions, 273
Fallacies, 253–255
Feature demon, 103
Feature detection theory, 103–105
Feature integration theory, 108–111
Feed-forward network, 220
FFA. See Fusiform face area (FFA)
FIDO. See Field Integrated Design and

Operations (FIDO)
Field Integrated Design and Operations

(FIDO), 403
Field theory, 67, 80
Fissure, 174
Fixed-action patterns of response, 406
fMRI. See Functional magnetic

resonance imaging (fMRI)
Focus, 44
Focused attention stage, 108
Formal logic, 356
Formal symbol manipulator, 12
Formula, 11, 363
Forward Chaining, 372–376
Frame, 362, 365–366
Free association, 236
Free will, 41–45
Freud, Sigmund:

defense mechanisms, 84
ego, 83
iceberg model of mind, 83
id, 82–83
idealistic principle, 83

pleasure principle, 83
reality principle, 83
repression, 84
sublimation, 84
superego, 83
three-tiered system of

consciousness, 82
Frontal lobe, 173–174, 182
Functionalism, 38–40, 74–77

critics of, 40
defined, 38
evaluating, 76–77
schools of thought in, 39

Functional kinds, 38
Functional magnetic resonance imaging

(fMRI), 168–169, 181
Fundamental assumptions, 266
Fundamental utilities of

consciousness, 76
Fusiform face area (FFA), 181
Fuzzy Logic, 321, 332, 354, 356,

386–392
decision making or management, 390
defined, 386
“degree of belief” and, 387–388
evolution of, 390–392
knowledge-base (KB) and, 388
methodology, 387
rules, 389

Gambler’s fallacy, 255
Gathering process, communication

and, 257
Gender:

exploring environment, 273
spatial ability and, 259
understanding facial expressions, 273

General and fortress problem, 25
Generalization, 222
Generalized delta rule, 215
General Problem Solver (GPS),

153–154, 415
General-purpose processor, 244
General-purpose solutions, 330
Generation, of language, 298
Generative, 277
Genetics, 241–244
Geons, 121–122
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Gestalt psychology, 16
evaluating, 81–82
field theory, 67, 80
focus of, 66, 77–82

Gestalt theory, 435
GPS. See General Problem Solver (GPS)
Graceful degradation, 222
Grammar, 278

phrase structure, 291–292
role of, in linguistics, 291–294
transformational, 292
universal, 293

Guided search, 233
Gyrus, 174

“Hasa” link, 230
Hebb rule, 188–189, 213
Heuristic, 151–152, 253
Hidden layer, 215, 217–218, 220
Hierarchical isa structure, 361
Hierarchical organization, 226–227
Hierarchical paradigm, 414–416, 427
Hierarchical semantic network,

226–230
High Level Languages (HLL), 335–336
Hippocampal system, 189–193
History of Modern Psychology, A

(Schultz and Schultz), 68
HLL. See High Level Languages (HLL)
Homeostatic Control, 428
Homo sapiens, 240, 256
Homunculus problem, 61
Hopfield-Tank network, 220
Hopi language, 288
Horizontal plane, 173
Human behavior, 43. See also

Behaviorism
Human emotions, five basic, 27
Humean model of causation, 41–42
Hybrid deliberative/reactive paradigm,

420–425
Hybrid model, 421–422
Hybrid paradigm, 420–421
Hybrot, 425
Hypothalamus, neural activity in, 223
Hypothesis, 7–9, 67–68. See also entries

for individual hypotheses
Hypothetic-deductive approach, 67

Iceberg model of mind, 83
Iconic memory, 126
Id, 82–84
ID3 algorithm, 393–394
Idealism, 33
Idealistic principle, 83
IG. See Imitation game (IG)
Illumination stage, 89
Image demon, 103
Image generation, 142
Image inspection, 142
Image processes, 142–147
Imagery, xvi, 140. See also Visual

imagery
Imagery debate, 147–149
Images, as processed spatially, 148
Image transformation, 144
Imitation game (IG),

336, 338–341, 350
Immediate experience, 70
Implementational level, 11
Implicit response, 86
Incompatibilism, 45
Incubation stage, 89–90
Independent variable, 68
Inductive reasoning, 15, 379
Infants, 47
Inferotemporal cortex (IT), 180
Information Processing Language

(IPL), 336
Information processor, 3, 97–98
Inherent fragment of intelligent

reasoning, 361
Inheritance, 22
Innate behavior, 47–48
Innate reasoning mechanism (IRM),

408–409
Input layer, 215–218, 220
Input/Output (I/O), 333–334
Insight learning, 78, 89–90
Integrated program of study, for

working memory, 434–439
Integration, role of cognitive science

(CS) in, 452–454
Intelligent agents, design of, 356–357
Intensity, 73
Intentionality, 4–5
Interactionism, 35–36
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Interdisciplinary perspective:
artificial intelligence approach, 20–21
cognitive approach, 17–18
evolutionary approach, 12–21
linguistic approach, 20
network approach, 18
neuroscience approach, 18
philosophical approach, 15–16
psychological approach, 16–17
robotics approach, 21
See also entries for specific approaches

Interference, 130, 222
Internal perception, 70
Intervening variables, 88
Intraparietal sulcus, 184
Introspection, 70
IPL. See Information Processing

Language (IPL)
Ipsilateral side of brain, 175
IRM. See Innate reasoning

mechanism (IRM)
“Isa” link, 230
Isomorphism, 4, 80, 139–140
IT. See Inferotemporal cortex (IT)

Jet Propulsion Laboratory (JPL), 403
JLP. See Jet Propulsion Laboratory (JPL)
Judgment, xvi
Judgment under uncertainty, 253–257

KB. See Knowledge-based (KB)
approach

Knowledge, machine representation of,
357–367

Knowledge acquisition problem, 45–49
Knowledge-based (KB) approach, 209,

357–358, 380
Knowledge representation (KR), 19, 354

assertions, 363
characteristics of, 360–362
concept, 363
frames, 365–366
in formulas, 363
objectives of, 359–360
predicates, 362–364
production rules, 364
technologies, 362

Kohonen network, 220

Kosslyn and Schwartz Theory,
146–147

KR. See Knowledge representation (KR)

Language, 99
as digital mental representation, 6
behaviorist theory of, 96
characteristics of, 276–277
cognitive psychology and, 17
computer, 335–336
evolutionary psychology and,

256–257
generation of, 298
grammar of, 278
importance of, 275–276
nature of, 276–278
shared representations, 447–448
symbolic elements of, 277
use of, in primates, 278

Language acquisition, 282–284
Language deficits, 36, 294
Language deprivation, 284–288
Language-deprived children, 287
Language evolution, theory of, 256
Latent learning, 88
Lateral, 172
Late selection model, 116
Lattices, 78–79
Learning:

basal ganglia role in, 197
culture and, 268
defined, 188
in context of behavior, 327
machine-based algorithm

for skill, 327
memory and, 188–189
operant, 327
rote, 327

Left parietal cortex, 189
Lesion study, 165
Letters, as symbols of language, 6
Lexicon, 305

modern conceptions of, 307–308
morpheme within, 307

Lexigrams, 279–280
Libertarians, 45
Life on the Screen (Turkle), 404
Limbic cortex, 196
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Linguistic approach:
importance of language, 20, 275–276
language use in primates, 278–281
overall evaluation of, 304
overview, xxi
working memory and, 438
See also Language; Linguistics

Linguistic relativity hypothesis, 288–291
Linguistics:

artificial intelligence (AI), 298–304
cognition and, 291–294
defined, 275
neuroscience and, 294–298
philosophies and, 288–291

Links, 210–211, 230
Literal encodings, 142
Lobes, 174. See also specific types

of lobes
Local minimum, 219
Local representation, 210
Logic, 22–23
Logical reasoning, 250–253, 370–378

Backward Chaining, 376–378
draw inferences, 372–378
evaluation of rule-based reasoning,

379–380
Forward Chaining, 372–376
inductive reasoning, 379
sub-goal, 376–377

Logogen, 305–308
Logogen model of word recognition,

304–308
Long-term memory, 131–133, 155, 436

computer, 334
neural substrates of, 196–197

Long-term potentiation (LTP), 189
Loss function, 219
Louis XV, 315
LTP. See Long-term potentiation (LTP)

Machine, man as, 315–316
Machine reasoning, 367–370
Machine representation of knowledge,

357–367
“Magical number seven,” 129
Magnetic resonance imaging (MRI),

18, 97, 168–169
Main memory, 334

Man as machine, 315–316
Man Who Mistook His Wife for a Hat,

The (Sacks), 176
Marijuana, and altered mental states, 36
“Mark I,” 214
Materialism, 33
Maximal onset principle, 293
Means-ends analysis, 151–152, 330
Mechanical calculators, 317
Mechanical computation, 316–320
Mechanical dolls, 313–314
Mechanism, 82–85
Medial, 172
Medial temporal lobe, 196
Mediate experience, 70
Medium of human expression, 362
Medulla, 183
Memory, xvi

ACT* model of, 135–137
brain areas that form part of, 189
computer, 333–334
declarative, 131, 136, 196
defined, 125
echoic, 126
episodic, 132, 270
evolutionary psychology and,

248–250
iconic, 126
learning and, 188–189
location in brain for, 187
long-term, 131–133, 196–197
modal model of, 134–135
models of, 133–139
neural substrates of long-term,

196–197
primary and recency effects

exercise, 161
procedural, 131, 196
production, 136
reconstructive, 233
semantic, 131–132, 270
sensory, 126–127
SOAR model and long-term, 155
See also Working memory

Memory selection model, 116–117
“Mental force fields,” 80
Mentality of Apes, The (Kohler), 78
Mental operations, study of, 76
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Mental representation, categories of,
22–24

Mental rotation, 140
Message attenuation, 115
Metacognition, 201
Metacognitive regulation, 201
Meta knowledge, 321
Metaphor, elephant as, 14
Metaphysics, 30
Method of Difference, 318
Mimetic skill, 271
Mind:

as black box, 85–88
as emergent property, 52–59
as information processor, 97–98
as “Swiss army knife,” 244
brain vs., 30
Freud’s iceberg model of, 83
modularity of, 98–100
operation of, 66
theory of, xv

Mind (Thagard), 440
Mind: Introduction to Cognitive Science

(Thagard), 22
Mind/body debate, 316
Mind-body problem, 30–34
Missionary-Cannibal problem, 154
Mission planner, 427
Modal memory model, 134–135
Model-building approach, 119–120
Model of brain organization, computer

as, 334–335
Models of attention, 185–187
Models of mind, xv
Modular approach, and brain-damaged

patients, 99–100
Modularity of mind, 17
Modularity of Mind, The (Fodor), 99
Molecular drive, 267
Molecules, illus., 13
Momentary intention, 119
Monism, 31, 33–34
Morphemes, 277, 307
Morphology, 278, 293
Mosaic model of development, 269
MRI. See Magnetic resonance imaging

(MRI)
Multiagent system, 455–457

Multi-layer network, 220
Multimode model of attention, 116–117
Multiple Drafts Theory of

Consciousness, 60–63
Multiple-unit recording, 166
MYCIN system, 383–384
Myth, 271
Mythic cultures, 271

Narrative thought, 272
NASA, 402–403
Nativism, 46
Natural language, 298–299
Natural language communication,

cognitive simulation and, 323–324
Natural language processing, 298

evaluation of, 303–304
speech recognition, 299–303

Natural selection, 19, 241–244
Nature-nurture debate, 49
Navigator, 427
Neocortex, and language evolution, 256
Neo-Freudian, 82, 84
Nervous system, structural levels of

analysis in, 13
NETtalk, 234–236
Network approach, 18–19, 207–237

artificial neural network (ANN),
207–221

overall evaluation of, 233–234
overview, xx
working memory and, 447
See also Connectionist approach

Neural Darwinism, 20, 239, 265–266
Neural functions exercise, 203–204
Neural group selection, 265
Neural net, 356
Neural network, 321

illus., 13
simple, 211
See also Artificial neural network

(ANN)
Neural processing model. See Working

memory
Neural substrates:

of long-term memory, 196–197
of spatial working memory, 194
of working memory, 193–197
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Neural synchrony, 202–203
Neurocomputational theory of

consciousness, 55
Neuron, 2, 54

anatomy of, 170–171
illus., 13

Neuron anatomy, 170
Neuropsychology, 163
Neuroscience, 18, 437

linguistics and, 294–298
brain anatomy, 170–175
consciousness and, 54–56
defined, 163
models of attention, 185–187
neuron anatomy and physiology, 170
of attention, 181–187
of executive function and problem

solving, 197–201
of memory, 187–196
of visual object recognition, 175–181
overall evaluation of, 201–202
overview, xix
perspective, 163–164
semantic network, 224–223

Neuroscience methodology, 164–189
brain recording techniques, 166–169
electrical stimulation technique, 169
techniques for study of brain damage,

164–166
Neurotransmitters, 170
Neutral drift, 266
Node, 210–212, 220, 231–232, 364
Nonfluent aphasia, 294
Nonmaterial consciousness, 53
Nonreductive physicalist, 33

Object-centered description, 106
Object constancy problem in

perception, 106
Object link, 230–231
Object recognition, xvi, 436
Object representations, 106–107
Occam’s razor, 36
Occipital lobe, 173–174
One-word stage, 283
On the Origins of Species (Darwin), 241
Ontology, 361
Open world paradigm, 405

Operant conditioning, 87, 327
Operating system, of personal

computer (PC), 335
Operational perspective, 394–396
Operator, 150
Ordinate category, 227
Origins of the Modern Mind

(Donald), 270
Oscillatory dynamics, 219, 223
Output layer, 215–218, 220

Pandemonium model, 103
Paradigm, 321
Paradigmatic thought, 272
Parallel distributed processing, 208
Parallelism, 34
Parallel memory search, 159
Parallel search, 108
Parietal lobe, 55, 174, 184
Parry, 324
Partial-report condition, 127
Partial results, 334
Pattern recognition, 100,

120–122, 209
PC. See Personal computer (PC)
Perception, 100, 330

object constancy problem in, 106
representational-computational vs.

sensory-motor view of, 445
Perception and Communication

(Broadbent), 113
Perceptrons, 214–216, 220
Perceptual categorization deficit, 178
Perceptual organization, principles of,

78–79, 81
Perceptual pop-out, 108–109
Personal computer (PC), 318
Pessimists, 45
PET. See Positron emission tomography

(PET) scan
Phase sequence, 214
Phenomenal concept of mind, 50
Phenomenology, 77
Philosophical approach, 15–16, 29–64

as non-empirical approach, 59–60
dualism, 34–38
free will-determinism debate, 41–45
functionalism, 38–40
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knowledge acquisition problem,
45–49

mind as emergent property, 52–59
mind-body problem, 30–34
monism, 33–34
Multiple Drafts Theory of

Consciousness, 60–63
mystery of consciousness, 49–50
overall evaluation of, 59–60
overview, xviii
working memory and, 435

Philosophy, 15
defined, 29
linguistics and, 288–291

Phoneme, 277, 293, 299
Phonology, 278, 293
Phrase structure, 291–292
Phrase structure grammar, 291–292
Physical environments, cognitive science

(CS) and, 444–446
Physicalism, 33–34
Physical kind, 38
Physical Symbol System Hypothesis, 332
Physiology, 170
Pictorialist, 148
Pineal gland, 35
Plan, 421–422, 427
Pleasure principle, 83
Pons, 183
Pop-out, 108–109
Positron emission tomography (PET)

scan, 18, 97, 167–168, 193
Posterior, 172–173
Posterior parietal lobe, 182
“Post-natal neural assembly,” 269
Pragmatic analysis, 299, 302–303
Pragmatics, 303
Pragnanz, 78
Preattentive stage, 108
Preconscious mind, 82
Predicate calculus, 8
Predicate language, diagram of, 368
Predicates, 362–364
Prediction, 42
Preparation stage, 89
Primary effect, 161
Primary motor cortex, 173–174
Primary somatosensory cortex, 173–174

Primates:
American Sign Language (ASL)

and, 270, 279
language use in, 278–282

Priming, 225
Principia Mathematica (Russell,

Whitehead), 337
Principle of closure, 78
Principle of proximity, 78, 81
Principle of similarity, 78, 81
Principles of perceptual organization,

78–79, 81
Proactive interference, 130
Problem solving, xvi, 149–158, 330, 436

artificial intelligence (AI), 150
behavior-based approach, 209
characteristics of, 150
defined, 149
general problem solver model (GPS),

153–154
heuristic, 151–152
neuroscience of executive function

and, 197–201
SOAR model, 155

Problem space, 150–151
Procedural knowledge, 24
Procedural memory, 131, 196
Procedures, 365
Process model, 98
Production memory, 136
Production rule, 23, 364
Program language, artificial

intelligence (AI), 337
Programming. See Computer

programming
Proposition, 3, 22–23, 370
Propositional encodings, 142
Propositional hypothesis, 8
Propositional representations, 8–9
Prosopagnosia, 180–181
Prototype, 229
Proximity, principle of, 78, 81
Psychoanalysis, 67
Psychoanalytic psychology, 16, 82

anxiety, 85
evaluating, 84

Psychological approach, xviii, 65–93
evaluation of, 88–89
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functionalism, 74–77
Gestalt movement, 71–72
insight learning, 89–91
structuralism, 72–74
to working memory, 435
voluntarist movement, 68–72

Psychological concept of mind, 50
Psychological disorder, major

categories of, 272
Psychological inertia, 197
Psychological relations, 76
Psychologism, 347–348
Psychologist’s fallacy, 75
Psychology:

behaviorism, 85–88
culture and, 267–268
defined, 65–67
mechanism and psychoanalytic, 82–85
mind as black box, 85–88
scientific method and, 65, 67–68

Punishment, 87
Putamen and globus pallidus, 189

Qualia, 40, 51
Quality, 73
Quasi-pictorial, 148

RAS. See Reticular activating system
(RAS)

Rationalism, 46
Raw primal sketch, 106
rCBF. See Regional cerebral blood flow

(rCBF)
Reactive paradigm (subsumption), 416
Reactive response, 406
Reagent, 73
Reality principle, 83
Reasoning, xvi, 329
Recency effect, 161
Reciprocal altruism, 252
Recognition-by-components, 120–122
Recognition of stimulus object, 101
Reconstructive memory, 233
Record, 366
Recurrent network, 220, 223
Rediscovery of Mind, The (Searle), 52
Reductionism, 33, 53
Reductive physicalism, 33

Referents, 4–5
Reflexes, 47–48
Reflexive responses, 406
Regional cerebral blood flow (rCBF), 198
Regulatory model of development, 269
Rehearsal, 128, 213
Reinforcement, 87
Relational graphs exercises, 429
Relation link, 231
Replication, 42
Representation, 3–9

as semantic, 4
as symbolic, 4–5
crucial aspects of, 4
defined, 359
digital, 6–7
dual-code hypothesis, 7–8

Representational-computational, vs.
sensory-motor views of
perception, 445

“Representation bearer,” 4
Representativeness heuristic, 253
Repression, 84
Reticular activating system (RAS),

182–183
Retrieval, 135
Retrieval cues, 225
Retroactive interference, 130
Retrograde amnesia, 190
Reverse engineering, 267
Robot, 323, 399
Roboticist, 401, 410
Robotic paradigm, 412–414

hierarchical, 414–416
hybrid deliberative/reactive paradigm,

420–425
reactive paradigm, 416–420

Robotics, 21, 399–431
achievements in, 402–404
action-oriented perception, 411
Autonomous Robot Architecture

(AuRA), 426–429
behavior and, 406
biological and behavioral foundations,

404–412
deliberative behavior, 407
evaluation of biological basis of,

411–412
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fixed-action patterns of response, 406
highlights in history of, 400–401
overall evaluation of, 425–426
overview, xxii
primitive functions, 412–413
reactive responses, 406
reflexive responses, 406
transferring behavioral models to,

410–411
working memory and, 439

Rote learning, 327
Rule, 3, 23–24
Rule-based reasoning, 379–380
Russell, Bertrand, 1

Sagittal plane, 173
SAIL. See Stanford Artificial Intelligence

Laboratory (SAIL)
SAS. See Supervisory Attentional System

(SAS)
Schema, 199–200, 427–428
Scientific goal of artificial

intelligence (AI), 321
Scientific method, 67–68
Scientific model, 16
Scripts, 200, 362, 366–367
Selection, 242
Selection theory, 19
Selective attention, 112
Self-terminating search, 159–160
Semantic, 4, 278
Semantic analysis, 301–302
Semantic code, 131
Semantic memory, 131, 270
Semantic model of data representation,

364–365
Semantic network, 19, 362, 364–365

characteristics of, 225–233
defined, 224
evaluating, 231–233
hierarchical, 226–230
propositional, 230–233

Sensations, attributes of, 73
Sense, 421–422
SENSE-ACT modules, 421
SENSE-ACT primitives, 419
SENSE-PLAN-ACT primitives,

412–413, 415–419

Sensory memory, 126–127
Sensory-motor views of perception,

representational-computational
vs., 445

Sentence verification rule, 227
Sequencing, 197–198
Serial memory search, 159
Serial processors, 208–209
Serial search, 110
Sex differences, in cognition, 257–261
Sexual division of labor, 257
Sexual selection, 243
Shared representation, language,

447–448
Shiftability, 112
Shift transformation, 144
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