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Abstract

The Kaczmarz method for solving linear systems of equations is an
iterative algorithm that has found many applications ranging from com-
puter tomography to digital signal processing. Despite the popularity
of this method, useful theoretical estimates for its rate of convergence
are still scarce. We introduce a randomized version of the Kaczmarz
method for consistent, overdetermined linear systems and we prove that
it converges with expected exponential rate. Furthermore, this is the
first solver whose rate does not depend on the number of equations in
the system. The solver does not even need to know the whole system,
but only a small random part of it. It thus outperforms all previously
known methods on general extremely overdetermined systems. Even
for moderately overdetermined systems, numerical simulations as well
as theoretical analysis reveal that our algorithm can converge faster than
the celebrated conjugate gradient algorithm. Furthermore, our theory
and numerical simulations confirm a prediction of Feichtinger et al. in
the context of reconstructing bandlimited functions from nonuniform
sampling.
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1 Introduction and state of the art

We study a consistent linear system of equations

Ax = b, (1)

where A is a full rank m×n matrix with m ≥ n, and b ∈ C
m. One of the most

popular solvers for such overdetermined systems is Kaczmarz’s method [26],
which is a form of alternating projection method. This method is also known
under the name Algebraic Reconstruction Technique (ART) in computer to-
mography [22, 28], and in fact, it was implemented in the very first medical
scanner [25]. It can also be considered as a special case of the POCS (Projec-
tion onto Convex Sets) method, which is a prominent tool in signal and image
processing [32, 3].

We denote the rows of A by a∗
1, . . . , a

∗
m and let b = (b1, . . . , bm)T . The

classical scheme of Kaczmarz’s method sweeps through the rows of A in a
cyclic manner, projecting in each substep the last iterate orthogonally onto
the solution hyperplane of 〈ai, x〉 = bi and taking this as the next iterate.
Given some initial approximation x0, the algorithm takes the form

xk+1 = xk +
bi − 〈ai, xk〉

‖ai‖2
2

ai, (2)

where i = k mod m + 1 and ‖ · ‖ denotes the Euclidean norm in Cn. Note
that we refer to one projection as one iteration, thus one sweep in (2) through
all m rows of A consists of m iterations.

While conditions for convergence of this method are readily established,
useful theoretical estimates of the rate of convergence of the Kaczmarz method
(or more generally of the alternating projection method for linear subspaces)
are difficult to obtain, at least for m > 2. Known estimates for the rate of
convergence are based on quantities of the matrix A that are hard to compute
and difficult to compare with convergence estimates of other iterative methods
(see e.g. [6, 7, 14] and the references therein).

What numerical analysts would like to have is estimates of the convergence
rate in terms of a condition number of A. No such estimates have been known
prior to this work. The difficulty stems from the fact that the rate of con-
vergence of (2) depends strongly on the order of the equations in (1), while
condition numbers do not depend on the order of the rows of a matrix.

It has been observed several times in the literature that using the rows of
A in Kaczmarz’s method in random order, rather than in their given order,
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can greatly improve the rate of convergence, see e.g. [28, 3, 24]. While this
randomized Kaczmarz method is thus quite appealing for applications, no
guarantees of its rate of convergence have been known.

In this paper, we propose the first randomized Kaczmarz method with
exponential expected rate of convergence, cf. Section 2. Furthermore, this rate
depends only on the scaled condition number of A and not on the number of

equations m in the system. The solver does not even need to know the whole
system, but only a small random part of it. Thus our solver outperforms all
previously known methods on general extremely overdetermined systems.

We analyze the optimality of the proposed algorithm as well as of the de-
rived estimate, cf. Section 3. Section 4 contains various numerical simulations.
In one set of experiments we apply the randomized Kaczmarz method to the
reconstruction of bandlimited functions from non-uniformly spaced samples.
In another set of numerical simulations, accompanied by theoretical analysis,
we demonstrate that even for moderately overdetermined systems, the ran-
domized Kaczmarz method can outperform the celebrated conjugate gradient
algorithm.

Condition numbers. For a matrix A, its spectral norm is denoted by
‖A‖2, and its Frobenius norm by ‖A‖F . Thus the spectral norm is the largest
singular value of A, and the Frobenius norm is the square root of the sum of
the squares of all singular values of A.

The left inverse of A (which we always assume to exist) is denoted by A−1.
Thus ‖A−1‖2 is the smallest constant M such that the inequality ‖Ax‖2 ≥
1
M
‖x‖2 holds for all vectors x.
The usual condition number of A is

k(A) := ‖A‖2‖A−1‖2.

A related version is the scaled condition number introduced by Demmel [5]:

κ(A) := ‖A‖F‖A−1‖2.

One easily checks that

1 ≤ κ(A)√
n

≤ k(A). (3)

Estimates on the condition numbers of some typical (i.e. random or Toeplitz-
type ) matrices are known from a large body of literature, see [1, 5, 8, 9, 10,
30, 31, 35, 36] and the references therein.
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2 Randomized Kaczmarz algorithm and its rate

of convergence

It has been observed in numerical simulations [28, 3, 24] that the convergence
rate of the Kaczmarz method can be significantly improved when the algo-
rithm (2) sweeps through the rows of A in a random manner, rather than
sequentially in the given order. In fact, the improvement in convergence can
be quite dramatic. Here we propose a specific version of this randomized Kacz-
marz method, which chooses each row of A with probability proportional to its
relevance – more precisely, proportional to the square of its Euclidean norm.
This method of sampling from a matrix was proposed in [13] in the context of
computing a low-rank approximation of A, see also [29] for subsequent work
and references. Our algorithm thus takes the following form:

Algorithm 1 (Random Kaczmarz algorithm). Let Ax = b be a linear sys-

tem of equations as in (1) and let x0 be arbitrary initial approximation to the

solution of (1). For k = 0, 1, . . . compute

xk+1 = xk +
br(i) − 〈ar(i), xk〉

‖ar(i)‖2
2

ar(i), (4)

where r(i) is chosen from the set {1, 2, . . . , m} at random, with probability

proportional to ‖ar(i)‖2
2.

Our main result states that xk converges exponentially fast to the solution
of (1), and the rate of convergence depends only on the scaled condition number
κ(A).

Theorem 2. Let x be the solution of (1). Then Algorithm 1 converges to x
in expectation, with the average error

E‖xk − x‖2
2 ≤

(

1 − κ(A)−2
)k · ‖x0 − x‖2

2. (5)

Proof. There holds
m

∑

j=1

|〈z, aj〉|2 ≥
‖z‖2

2

‖A−1‖2
2

for all z ∈ C
n. (6)

Using the fact that ‖A‖2
F =

∑m
j=1 ‖aj‖2

2 we can write (6) as

m
∑

j=1

‖aj‖2
2

‖A‖2
F

∣

∣

∣

〈

z,
aj

‖aj‖2

〉
∣

∣

∣

2

≥ κ(A)−2‖z‖2 for all z ∈ C
n. (7)
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The main point of the proof is to view the left hand side in (7) as an expectation
of some random variable. Namely, recall that the solution space of the j-th
equation of (1) is the hyperplane {y : 〈y, aj〉 = bj}, whose normal is

aj

‖aj‖2
.

Define a random vector Z whose values are the normals to all the equations of
(1), with probabilities as in our algorithm:

Z =
aj

‖aj‖2
with probability

‖aj‖2
2

‖A‖2
F

, j = 1, . . . , m. (8)

Then (7) says that

E|〈z, Z〉|2 ≥ κ(A)−2‖z‖2
2 for all z ∈ C

n. (9)

The orthogonal projection P onto the solution space of a random equation of
(1) is given by Pz = z − 〈z − x, Z〉Z.

Now we are ready to analyze our algorithm. We want to show that the error
‖xk − x‖2

2 reduces at each step in average (conditioned on the previous steps)
by at least the factor of (1−κ(A)−2). The next approximation xk is computed
from xk−1 as xk = Pkxk−1, where P1, P2, . . . are independent realizations of
the random projection P . The vector xk−1 − xk is in the kernel of Pk. It is
orthogonal to the solution space of the equation onto which Pk projects, which
contains the vector xk − x (recall that x is the solution to all equations). The
orthogonality of these two vectors then yields

‖xk − x‖2
2 = ‖xk−1 − x‖2

2 − ‖xk−1 − xk‖2
2.

To complete the proof, we have to bound ‖xk−1 − xk‖2
2 from below. By the

definition of xk, we have

‖xk−1 − xk‖2 = 〈xk−1 − x, Zk〉

where Z1, Z2, . . . are independent realizations of the random vector Z. Thus

‖xk − x‖2
2 ≤

(

1 −
∣

∣

∣

〈 xk−1 − x

‖xk−1 − x‖2
, Zk

〉
∣

∣

∣

2)

‖xk−1 − x‖2
2.

Now we take the expectation of both sides conditional upon the choice of the
random vectors Z1, . . . , Zk−1 (hence we fix the choice of the random projections
P1, . . . , Pk−1 and thus the random vectors x1, . . . , xk−1, and we average over
the random vector Zk). Then

E{Z1,...,Zk−1}‖xk − x‖2
2 ≤

(

1 − E{Z1,...,Zk−1}

∣

∣

∣

〈 xk−1 − x

‖xk−1 − x‖2
, Zk

〉
∣

∣

∣

2)

‖xk−1 − x‖2
2.
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By (9) and the independence,

E{Z1,...,Zk−1}‖xk − x‖2
2 ≤

(

1 − κ(A)−2
)

‖xk−1 − x‖2
2.

Taking the full expectation of both sides, we conclude that

E‖xk − x‖2
2 ≤

(

1 − κ(A)−2
)

E‖xk−1 − x‖2
2.

By induction, we complete the proof.

2.1 Quadratic time

Theorem 2 yields a simple bound on the expected computational complexity
of the randomized Kaczmarz Algorithm 1 to compute the solution within error
ε, i.e.

E‖xk − x‖2
2 ≤ ε2‖x0 − x‖2

2. (10)

The expected number of iterations (projections) kε to achieve an accuracy ε is

E kε ≤
2 log ε

log(1 − κ(A)−2)
≈ 2κ(A)2 log

1

ε
, (11)

where f(n) ∼ g(n) means f(n)/g(n) → 1 as n → ∞. (Note that κ(A)2 ≥ n by
(3), so the approximation in (11) becomes tight as the number of equations n
grows).

Each projection can be computed in O(n) time. If A is well-conditioned,
say k(A) = O(1) (see Section 4 for examples), then κ(A)2 = O(n) by (3),
and in this case the algorithm will take O(n2) operations to converge to the

solution. This should be compared to the Gaussian elimination, which takes
O(mn2) time (independently of the condition number of A). Strassen’s algo-
rithm and its improvements reduce the exponent in Gaussian elimination, but
these algorithms are, as of now, of no practical use.

Of course, we have to know the (approximate) Euclidean lengths of the
rows of A before we start iterating; computing them takes O(nm) time. But
the lengths of the rows may in many cases be known a priori. For example, all
of them may be equal to one (as is the case for Vandermonde matrices arising in
trigonometric approximation) or tightly concentrated around a constant value
(as is the case for random matrices).

The number m of the equations is essentially irrelevant for our algorithm.
The algorithm does not even need to know the whole matrix, but only O(n)
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random rows. Such Monte-Carlo methods have been successfully developed
for many problems, even with precisely the same model of selecting a random
submatrix of A (proportional to the squares of the lengths of the rows), see
[13] for the original discovery and [29] for subsequent work and references.

3 Optimality

We discuss conditions under which our algorithm is optimal in a certain sense,
as well as the optimality of the estimate on the expected rate of convergence.

3.1 General lower estimate

For any system of linear equations, our estimate can not be improved beyond
a constant factor, as shown by the following theorem.

Theorem 3. Consider the linear system of equations (1) and let x be its

solution. Then there exists an initial approximation x0 such that

E‖xk − x‖2
2 ≥

(

1 − 2k/κ(A)2
)

· ‖x0 − x‖2
2 (12)

for all k = 1, 2, . . .

Proof. For this proof we can assume without loss of generality that the
system (1) is homogeneous: Ax = 0. Let x0 be a vector which realizes κ(A),
that is κ(A) = ‖A‖F‖A−1x0‖2 and ‖x0‖2 = 1. As in the proof of Theorem 2,
we define the random normal Z associated with the rows of A by (8). Similar
to (9), we have E|〈x0, Z〉|2 = κ(A)−2. We thus see span(x0) as an “exceptional”
direction, so we shall decompose Rn = span(x0) ⊕ (x0)

⊥, writing every vector
x ∈ R

n as
x = x′ · x0 + x′′, where x′ ∈ R, x′′ ∈ (x0)

⊥.

In particular,
E|Z ′|2 = κ(A)−2. (13)

We shall first analyze the effect of one random projection in our algorithm.
To this end, let x ∈ Rn, ‖x‖2 ≤ 1, and let z ∈ Rn, ‖z‖2 = 1. (Later, x will be
the running approximation xk−1, and z will be the random normal Z). The
projection of x onto the hyperplane whose normal is z equals

x1 = x − 〈x, z〉z.
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Since
〈x, z〉 = x′z′ + 〈x′′, z′′〉, (14)

we have

|x′
1 − x′| = |〈x, z〉z′| ≤ |x′||z′|2 + |〈x′′, z′′〉z′| ≤ |z′|2 + |〈x′′, z′′〉z′| (15)

because |x′| ≤ ‖x‖2 ≤ 1. Next,

‖x′′
1‖2 − ‖x′′‖2 = ‖x′′ − 〈x, z〉z′′‖2

2 − ‖x′′‖2
2

= −2〈x, z〉〈x′′, z′′〉 + 〈x, z〉2‖z′′‖2
2 ≤ −2〈x, z〉〈x′′, z′′〉 + 〈x, z〉2

because ‖z′′‖2 ≤ ‖z‖2 = 1. Using (14), we decompose 〈x, z〉 as a + b, where
a = x′z′ and b = 〈x′′, z′′〉 and use the identity −2(a + b)b + (a + b)2 = a2 − b2

to conclude that

‖x′′
1‖2

2 − ‖x′′‖2
2 ≤ |x′|2|z′|2 − 〈x′′, z′′〉2 ≤ |z′|2 − 〈x′′, z′′〉2 (16)

because |x′| ≤ ‖x‖2 ≤ 1.
Now we apply (15) and (16) to the running approximation x = xk−1 and

the next approximation x̃ = xk obtained with a random z = Zk. Denoting
pk = 〈x′′

k−1, Z
′′
k 〉, we have by (15) that |x′

k − x′
k−1| ≤ |Z ′

k|2 + |pkZ
′
k| and by (16)

that ‖x′′
k‖2

2 − ‖x′′
k−1‖2

2 ≤ |Z ′
k|2 − |pk|2. Since x′

0 = 1 and x′′
0 = 0, we have

|x′
k − 1| ≤

k
∑

j=1

|x′
j − x′

j−1| ≤
k

∑

j=1

|Z ′
j|2 +

k
∑

j=1

|pjZ
′
j| (17)

and

‖x′′
k‖2

2 =

k
∑

j=1

(

‖x′′
j‖2

2 − ‖x′′
j−1‖2

2

)

≤
k

∑

j=1

|Z ′
j|2 −

k
∑

j=1

|pj|2.

Since ‖x′′
k‖2

2 ≥ 0, we conclude that
∑k

j=1 |pj|2 ≤
∑k

j=1 |Z ′
j|2. Using this, we

apply Cauchy-Schwartz inequality in (17) to obtain

|x′
k − 1| ≤

k
∑

j=1

|Z ′
j|2 +

(

k
∑

j=1

|Z ′
j|2

)1/2(
k

∑

j=1

|Z ′
j|2

)1/2

= 2

k
∑

j=1

|Z ′
j|2.

Since all Zj are copies of the random vector Z, we conclude by (13) that
E|x′

k − 1| ≤ 2k E|Z ′|2 ≤ 2k/κ(A)2. Thus E‖xk‖ ≥ E|x′
k| ≥ 1− 2k/κ(A)2. This

proves the theorem, actually with the stronger conclusion

E‖xk − x‖2 ≥
(

1 − 2k/κ(A)2
)

· ‖x0 − x‖2.

The actual conclusion follows by Jensen’s inequality.
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3.2 The upper estimate is attained

If k(A) = 1 (equivalently, if κ(A) =
√

n by (3)), then the estimate in Theorem 2
becomes an equality. This follows directly from the proof of Theorem 2.

Furthermore, there exist arbitrarily large systems and with arbitrarily large
condition numbers k(A) for which the estimate in Theorem 2 becomes an
equality. Indeed, let n and m ≥ n be arbitrary numbers. Let also κ ≥ √

n
be any number such that m/κ2 is an integer. Then there exists a system (1)
of m equations in n variables and with κ(A) = κ, for which the estimate in
Theorem 2 becomes an equality for every k.

To see this, we define the matrix A with the help of any orthogonal set
e1, . . . , en in Rn. Let the first m/κ2 rows of A be equal to e1, the other rows of
A be equal to one of the vectors ej , j > 1, so that every vector from this set
repeats at least m/κ2 times as a row (this is possible because κ2 ≥ n). Then
κ(A) = κ (note that (6) is attained for z = e1).

Let us test our algorithm on the system Ax = 0 with the initial approxi-
mation x0 = e1 to the solution x = 0. Every step of the algorithm brings the
running approximation to 0 with probability κ−2 (the probability of picking
the row of A equal to e1 in uniform sampling), and leaves the running approx-
imation unchanged with probability 1 − κ−2. By the independence, for all k
we have

E‖xk − x0‖2
2 =

(

1 − κ−2
)k · ‖x0 − x‖2

2.

4 Numerical experiments and comparisons

4.1 Reconstruction of bandlimited signals from nonuni-

form sampling

The reconstruction of a bandlimited function f from its nonuniformly spaced
sampling values {f(tk)} is a classical problem in Fourier analysis, with a wide
range of applications [2]. We refer to [11, 12] for various efficient numerical
algorithms. Staying with the topic of this paper, we focus on the Kaczmarz
method, also known as POCS (Projection Onto Convex Sets) method in signal
processing [37].

As efficient finite-dimensional model, appropriate for a numerical treat-
ment of the nonuniform sampling problem, we consider trigonometric poly-
nomials [18]. In this model the problem can be formulated as follows: Let
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f(t) =
∑r

l=−r xle
2πilt, where x = {xl}r

l=−r ∈ C2r+1. Assume we are given the
nonuniformly spaced nodes {tk}m

k=1 and the sampling values {f(tk)}m
k=1. Our

goal is to recover f (or equivalently x).
The solution space for the j-the equation is given by the hyperplane

{y : 〈y, Dr(· − tj)〉 = f(tj)},

where Dr denotes the Dirichlet kernel Dr(t) =
∑r

k=−r e2πikt. Feichtinger and
Gröchenig argued convincingly (see e.g. [11]) that instead of Dr(· − tj) one
should consider the weighted Dirichlet kernels

√
wjDr(·−tj), where the weight

wj =
tj+1−tj−1

2
, j = 1, . . . , m. The weights are supposed to compensate for

varying density in the sampling set.
Formulating the resulting conditions in the Fourier domain, we arrive at

the linear system of equations [18]

Ax = b, where Aj,k =
√

wje
2πiktj , bj =

√
wjf(tj), (18)

with j = 1, . . . , m; k = −r, . . . , r. Let use denote n := 2r + 1 then A is an
m × n matrix.

Applying the standard Kaczmarz method (the POCS method as proposed
in [37]) to (18) means that we sweep through the projections in the natural
order, i.e., we first project on the hyperplane associated with the first row of
A, then proceed to the second row, the third row, etc. As noted in [11] this is a
rather inefficient way of implementing the Kaczmarz method in the context of
the nonuniform sampling problem. It was suggested in [3] that the convergence
can be improved by sweeping through the rows of A in a random manner, but
no proof of the (expected) rate of convergence was given. [3] also proposed
another variation of the Kaczmarz method in which one projects in each step
onto that hyperplane that provides the largest decrease of the residual error.
This strategy of maximal correction turned out to provide very good conver-
gence, but was found to be impractical due to the enormous computational
overhead, since in each step all m projections have to be computed in order
to be able to select the best hyperplane to project on. It was also observed
in [3] that this maximal correction strategy tends to select the hyperplanes as-
sociated with large weights more frequently than hyperplanes associated with
small weights.

Equipped with the theory developed in Section 2 we can shed light on the
observations mentioned in the previous paragraph. Note that the j-th row of
A in (18) has squared norm equal to nwj. Thus our Algorithm 1 chooses the
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j-th row of A with probability wj . Hence Algorithm 1 can be interpreted as
a probabilistic, computationally very efficient implementation of the maximal
correction method suggested in [3].

Moreover, we can give a bound on the expected rate of convergence of the
algorithm. Theorem 2 states that this rate depends only on the scaled condi-
tion number κ(A), which is bounded by k(A)

√
n by (3). The condition number

k(A) for the trigonometric system (18) has been estimated by Gröchenig [17].
For instance we have the following

Theorem 4 (Gröchenig). If the distance of every sampling point tj to its

neighbor on the unit torus is at most δ < 1
2r

, then k(A) ≤ 1+2δr
1−2δr

. In particular,

if δ ≤ 1
4r

then k(A) ≤ 3.

Furthermore we note that our algorithm can be straightforwardly applied
to the approximation of multivariate trigonometric polynomials. We refer to [1]
for condition number estimates for this case.

In our numerical simulation, we let r = 50, m = 700 and generate the
sampling points tj by drawing them randomly from a uniform distribution
in [0, 1] and ordering them by magnitude. We apply the standard Kaczmarz
method, the randomized Kaczmarz method, where the rows of A are selected
at random with equal probability (labeled as simple randomized Kaczmarz in
Figure 1), and the randomized Kaczmarz method of Algorithm 1 (where the
rows of A are selected at random with probability proportional to the 2-norm
of the rows). We plot the least squares error ‖x − xk‖2 versus the number of
projections, cf. Figure 1. Clearly, Algorithm 1 significantly outperforms the
other Kaczmarz methods, demonstrating not only the power of choosing the
projections at random, but also the importance of choosing the projections
according to their relevance.

4.2 Comparison to conjugate gradient algorithm

In recent years conjugate gradient (CG) type methods have emerged as the
leading iterative algorithms for solving large linear systems of equations, since
they often exhibit remarkably fast convergence [16, 19]. How does Algorithm 1
compare to the CG algorithms?

The rate of convergence of CGLS applied to Ax = b is bounded by [16]

‖xk − x‖A∗A ≤ 2‖x0 − x‖A∗A

(k(A) − 1

k(A) + 1

)k

, (19)
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Figure 1: Comparison of rate of convergence for the randomized Kaczmarz
method described in Algorithm 1 and other Kaczmarz methods applied to the
nonuniform sampling problem described in the main text.

where1 ‖y‖A∗A :=
√

〈Ay, Ay〉.
It is known that the CG method may converge faster when the singular

values of A are clustered [34]. For instance, take a matrix whose singular
values, all but one, are equal to one, while the remaining singular value is very
small, say 10−8. While this matrix is far from being well-conditioned, CGLS
will nevertheless converge in only two iterations, due to the clustering of the
spectrum of A, cf. [34]. In comparison, the proposed Kaczmarz method will
converge extremely slowly in this example by Theorem 3, since κ(A) ≈ 108.

On the other hand, Algorithm 1 can outperform CGLS on problems for
which CGLS is actually quite well suited, in particular for random Gaussian
matrices A, as we show below.

Solving random linear systems Let A be a m×n matrix whose entries are
independent N(0, 1) random variables. Condition numbers of such matrices

1Note that since we either need to apply CGLS to Ax = b or CG to A∗Ax = A∗b we
indeed have to use k(A) =

√

k(A∗A) here and not
√

k(A). The asterisk ∗ denotes complex
transpose here.
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are well studied, when the aspect ratio y := n/m < 1 is fixed and the size n of
the matrix grows to infinity. Then the following almost sure convergence was
proved by Geman [15] and Silvestein [33] respectively:

‖A‖2√
m

→ 1 +
√

y;
1/‖A−1‖2√

m
→ 1 −√

y.

Hence

k(A) → 1 +
√

y

1 −√
y
. (20)

Also, since ‖A‖F√
mn

→ 1, we have

κ(A)√
n

→ 1

1 −√
y
. (21)

For estimates that hold for each finite n rather than in the limit, see e.g. [10]
and [9].

Now we compare the expected computation complexities of the random-
ized Kaczmarz algorithm proposed in Algorithm 1 and CGLS to compute the
solution within error ε for the system (1) with a random Gaussian matrix A.

We estimate the expected number of iterations (projections) kε for Algo-
rithm 1 to achieve an accuracy ε in (11). Using bound (21), we have

E kε ≈
2n

(1 −√
y)2

log
1

ε

as n → ∞. Since each iteration (projection) requires n operations, the total
expected number of operations is

Complexity of randomized Kaczmarz ≈ 2n2

(1 −√
y)2

log
1

ε
. (22)

The expected number of iterations k′
ε for CGLS to achieve the accuracy ε

can be estimated using (19). First note that the norm ‖ · ‖A∗A is on average
proportional to the Euclidean norm ‖z‖2. Indeed, for any fixed vector z one
has E‖z‖2

A∗A = E‖Az‖2
2 = m‖z‖2

2. Thus, when using CGLS for a random
matrix A, we can expect that the bound (19) on the convergence also holds
for the Euclidean norm.
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Consequently, the expected number of iterations k′
ε in CGLS to compute

the solution within accuracy ε as in (10) is

Ekε ≈
log 2

ε

log K(A)
where K(A) =

k(A) + 1

k(A) − 1
.

By (20), for random matrices A of growing size we have K → 1/
√

y almost
surely. Thus

Ekε ≈
2 log 2

ε

log 1
y

.

The main computational task in each iteration of CGLS consists of two matrix
vector multiplications, one with A and one with A∗, each requiring m × n =
n2/y operations. Hence the total expected number of operations is

Complexity of CGLS ≈ 4n2

y log 1
y

· log
2

ε
. (23)

It is easy to compare the complexities (22) and (23) as functions of y,
since n2 and log(1/ε) are common terms in both (using the approximation
log(2/ε) ≈ log(1/ε) for small ε), cf. also Figure 2. A simple computation
shows that (22) and (23) are essentially equal when y ≈ 1

3
. Hence for Gaussian

matrices our analysis predicts that Algorithm 1 outperforms CGLS in terms
of computational efficiency when m > 3n.

While the computational cost of Algorithm 1 decreases as n
m

decreases, this
is not the case for CGLS. Therefore it is natural to ask for the optimal ratio
n
m

for CGLS for Gaussian matrices that minimizes its overall computational
complexity. It is easy to see that for given ε the expression in (23) is minimized
if y = 1/e, where e is Euler’s number. Thus if we are given an m×n Gaussian
matrix (with m > en), the most efficient strategy to employ CGLS is to first
select a random submatrix A(e) of size en × n from A (and the corresponding
subvector b(e) of b) and apply CGLS to the subsystem A(e)x = b(e). This will
result in the optimal computational complexity 4en2 log 2

ε
for CGLS.

Thus for a fair comparison between the randomized Kaczmarz method and
CGLS, we will apply CGLS in our numerical simulations to both the “full”
system Ax = b as well as to a subsystem A(e)x = b(e), where A(e) is an en × n
submatrix of A, randomly selected from A.

In the first simulation we let A be of dimension 300 × 100, the entries
of x are also drawn from a normal distribution. We apply both, CGLS and
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Figure 2: Comparison of the computational complexities (22) (randomized
Kaczmarz method) and (23) (conjugate gradient algorithm) as functions of
the ratio y = n

m
(the common factors n2 and log(1/ε) in (22) and (23) are

ignored in the two curves).

Algorithm 1. We apply CGLS to the full system of size 300×100 as well as to
a randomly selected subsystem of size 272×100 (representing the optimal size
en × n, computed above). Since we know the true solution we can compute
the actual least squares error ‖x − xk‖ after each iteration. Each method is
terminated after reaching the required accuracy ε = 10−14. We repeat the
experiment 100 times and for each method average the resulting least squares
errors.

In Figure 3 we plot the averaged least squares error (y-axis) versus the
number of floating point operations (x-axis), cf. Figure 3. We also plot the
estimated convergence rate for both methods. Recall that our estimates pre-
dict essentially identical bounds on the convergence behavior for CGLS and
Algorithm 1 for the chosen parameters (m = 3n). Since in this example the
performance of CGLS applied to the full system of size 300 × 100 is almost
identical to that of CGLS applied to the subsystem of size 272×100, we display
only the results of CGLS applied to the original system.

While CGLS performs somewhat better than the (upper) bound predicts,
Algorithm 1 shows a significantly faster convergence rate. In fact, the random-
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ized Kaczmarz method is almost twice as efficient as CGLS in this example.
In the second example we let m = 500, n = 100. In the same way as

before, we illustrate the convergence behavior of CGLS and Algorithm 1. In
this example we display the convergence rate for CGLS applied to the full
system (labeled as CGLS full matrix) of size 500× 100 as well as to a random
subsystem of size 272 × 100 (labeled as CGLS submatrix). As is clearly vis-
ible in Figure 4 CGLS applied to the subsystem provides better performance
than CGLS applied to the full system, confirming our theoretical analysis. Yet
again, Algorithm 1 is even more efficient than predicted, this time outper-
forming CGLS by a factor of 3 (instead of a factor of about 2 according to our
theoretical analysis).
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Figure 3: Comparison of rate of convergence for the randomized Kaczmarz
method described in Algorithm 1 and the conjugate gradient least squares
algorithm for a system of equations with a Gaussian matrix of size 300× 100.

Remark: An important feature of the conjugate gradient algorithm is that
its computational complexity reduces significantly when the complexity of the
matrix-vector multiplication is much smaller than O(mn), as is the case e.g.
for Toeplitz-type matrices. In such cases conjugate gradient algorithms will
outperform Kaczmarz type methods.
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Figure 4: Comparison of rate of convergence for the randomized Kaczmarz
method described in Algorithm 1 and the conjugate gradient least squares
algorithm for a system of equations with a Gaussian matrix of size 500× 100.

5 Some open problems

In this final section we briefly discuss a few loose ends and some open problems.

Kaczmarz method with relaxation: It has been observed that the conver-
gence of the Kaczmarz method can be accelerated by introducing relaxation.
In this case the iteration rule becomes

xk+1 = xk + λk,i
bi − 〈ai, xk〉

‖ai‖2
2

ai, (24)

where the λk,i, i = 1, . . . , m are relaxation parameters. For consistent systems
the relaxation parameters must satisfy [23]

0 < liminfk→∞λk,i ≤ limsupk→∞λk,i < 2 (25)

to ensure convergence.
We have observed in our numerical simulations that for instance for Gaus-

sian matrices a good choice for the relaxation parameter is to set λk,i := λ =
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1+ n
m

for all k and i. While we do not have a proof for an improvement of per-
formance or even optimality, we provide the result of a numerical simulation
that is typical for the behavior we have observed, cf. Figure 5.
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Figure 5: Comparison of rate of convergence for the randomized Kaczmarz
method with and without relaxation parameter. We have used λ = 1 + n

m
as

relaxation parameter.

Inconsistent systems: Many systems arising in practice are inconsistent due
to noise that contaminates the right hand side. In this case it has been shown
that convergence to the least squares solution can be obtained with (strong
under)relaxation [4, 20]. We refer to [20, 21] for suggestions for the choice of
the relaxation parameter as well as further in-depth analysis for this case.

While our theoretical analysis presented in this paper assumes consistency
of the system of equations, it seems quite plausible that the randomized Kacz-
marz method combined with appropriate underrelaxation should also be useful
for inconsistent systems.
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