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 Preface 
 
 This book is intended for use by Junior-level undergraduates, Senior-level 
undergraduates, and Graduate students in electrical engineering as well as practicing 
electrical engineers and hobbyists and seeks to provide a gentle introduction to embedded 
systems programming with the Microchip PIC16F877 microcontroller.  After introducing 
the PIC16F877 and its programming, this book covers the fundamental techniques and 
advanced level techniques of embedded systems programming in a general sense.  The 
general sense ESP techniques can be applied to any microcontroller.  There is also an 
introduction to the fundamentals of digital signal processing (DSP) using the PIC16F877. 
 
 I would like to thank Dr. Dan Simon of the Cleveland State University Electrical 
Engineering Department for his kind and valuable help and suggestions in the 
preparations for this book.  I would also like to thank John R. Owerko and James R. 
Jackson, both of A.R.F Products, Inc., for their expertise in the security systems market.  
I owe them both a great debt for my knowledge of security systems and for expanding my 
knowledge of the techniques of embedded systems programming in general. 
 
 Special thanks also go to Sister Renee Oliver who proofread the manuscript and 
offered many helpful suggestions.  Thanks go to my friends Damian Poirier, Jim Strieter, 
Greg Glazer, Zarif Bastawros, Brian McGeever, Ted Seman, and Jim Chesebrough who 
offered many helpful suggestions. 
 
 Any errors that remain in the text are mine and I will correct them in the next 
edition. 
 
 Timothy D. Green 
 November 2005 
 Cleveland, Ohio 
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Chapter 1:    Introduction to ESP and the PIC 
 
 
 An embedded system is a product which uses a computer to run it but the product, 
itself, is not a computer.  This is a very broad and very general definition.  Embedded 
systems programming, therefore, consists of building the software control system of a 
computer-based product.  ESP encompasses much more than traditional programming 
techniques since it actually controls hardware in advance of real time.  ESP systems often 
have limitations on memory, speed, and peripheral hardware.  The goals of ESP 
programmers are to get the “maximum function and features in the minimum of space 
and in minimum time”. 
 
 Embedded systems are everywhere!  Name almost any appliance in your home or 
office and it may have a microprocessor or a microcomputer to run it.  A watch, 
microwave oven, telephone, answering machine, washer, dryer, calculator, toy, robot, test 
equipment, medical equipment, traffic light, automobile computer, VCR, CD player, 
DVD player, TV, radio, and printer all have computers in them to run them. 
 
 These examples of embedded systems are simple but the concept of embedded 
systems applies to much larger systems as well.  Overall, there are four levels of size, 
option, and complexity in embedded systems.  These levels are: 
 

1) High Level 
2) Medium Level 
3) Low level with hardware 
4) Low level without hardware 

 
A good example of a high level embedded system is an air-traffic control system.  

It would use a main-frame computer with many terminals and many users on a time-
sharing basis.  It would connect to several smaller computers, run the radar, receive 
telemetry, get weather information, have extensive communications sub-systems, and 
coordinate all of these function in an orderly, systematic way.  It is necessarily  a high-
reliability system and may, therefore, have extensive backup systems.  It would have a 
custom-built operating system that would be completely dedicated to controlling air-
traffic. 
 
 An example of a medium level embedded system is a typical automatic teller 
machine (ATM) at any bank or bank terminal.  It may use a more advanced 
microprocessor with many peripheral functions.  Consider that it contains a video 
terminal, a keyboard, a card-reader, a printer, the money-dispensing unit, a modem, and 
many input/output ports.  The ATM probably doesn’t use a custom operating system but 
would use something off the shelf, like Unix or Linux.  The controlling software is 
probably written in a high-level language like C or C++. 
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 The appliances and other things given on page 11 are all examples of the low-
level-with-hardware embedded systems.  They do not use microprocessors but do use 
microcontrollers, which are complete computers on a single chip.  Microcontrollers have 
a CPU, RAM, ROM, and, typically, several peripheral hardware modules which are built-
in and are under software control.  The PIC16F877 is such a microcontroller.  Any of the 
example products and applications on page 11 could be controlled by the PIC.  They 
could be programmed in C or C++ but care would be needed so as not to use too much 
RAM or ROM inadvertently.  The process or program also must not need very high speed 
operation – it should not be timing-critical.  More control, stability, memory 
management, and speed can be gained by programming in assembly languages.  The 
programming at the low-level will interact with the hardware in much finer detail than in 
the medium-level or the high-level systems. 
 
 The low-level-without-hardware embedded systems are almost identical to the 
low-level-with-hardware systems and can run exactly the same products, devices, and 
applications.  The differences which are present in the low-level-without-hardware 
systems are that the microcontroller and the system have an absolute minimum of 
hardware peripheral functions.  At this level, the software must mimic the desired 
hardware peripheral functions.  This puts a much greater challenge on the ESP 
programmer.  (Assembly language is a MUST.) 
 
 There are several characteristics in ESP that separate it from traditional 
programming techniques.  They are as follows: 
 

1) ESP is all about process control and control systems.  ESP is what runs a 
given product. 

2) ESP systems must run in “real-time”.  The program must keep pace or stay 
ahead of the real world and its timing.  For example, a telephone answering 
machine may use a complex algorithm to compress, expand, encode, and 
decode speech signals.  The ESP program must be able to run these processes 
as speech is coming in or going out.  There must be no delays.  A traditional 
program would not be sensitive to the requirements of speed that are needed 
here. 

3) ESP software must run with infinity-loops.  If they didn’t, the products could 
not run at all!  In contrast, infinity-loops are the cardinal sin of traditional 
programming. 

4) ESP software often uses “event-driven” techniques, especially at the low-
levels.  These techniques are highly structured and save operating time.  
Traditional programming may also use “event-driven” techniques but it is not 
critical. 

5) Low-level ESP software systems must sometimes mimic the hardware that the 
product needs.  There is no parallel to this in traditional programming. 

6) Embedded systems usually have far less memory than traditional 
programming environments.  This eliminates heavy nesting of subroutines and 
recursive subroutine calls. 
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7) The arithmetic/logic unit of a microcontroller is much smaller than ones in a 
traditional setting, and, consequently, ESP is not as mathematically oriented 
as a traditional program. 

 
Embedded systems programming at the low levels is necessarily a multi-disciplinary 
field.  The programmers and designers must consider hardware issues, manufacturing 
issues, electromagnetic interference/electromagnetic compatibility problems, and noise 
limitations. 
 
 Low-level code doesn’t just consist of algorithms but the code, itself, is, at times, 
a great function of the code geometry.  Getting optimum performance of low-level 
embedded code depends very much on how the instructions are placed in program 
memory. 
 
 The C/C++ language may be used in low-level embedded systems programming 
but not where “fine controls” or “high speeds” are required.  The blanket statement that a 
“C compiler can produce code that is nearly as good as an assembly language program” 
is OK for traditional programs, high-level ESP, and medium-level ESP.  It is not true for 
low-level ESP!  Low-level ESP is special and has very exacting demands on its code.  
(This fact will be explained in detail in Chapter 6.) 
 

The overall scope of this book is to show the reader how to program the PIC,  
use its peripheral functions, and provide the fundamentals of general ESP techniques. 
 
 The plan of this book is as follows: 
 
 Chapter 2 introduces microcontrollers in general and details the basic structure of 
the PIC16F877. 
 
 Chapter 3 introduces the most fundamental elements of programming the PIC in 
assembly language using a simple circuit and program.  Several instructions are 
introduced here.  (Chapter 3 is the “Hello World” Chapter.) 
 
 Chapter 4 covers the first half of the PIC instruction set by considering the design 
of a very simple home security system.  This method illustrates not only what the 
instructions are but, also, how to use them in a practical way. 
 
 Chapter 5 covers  the rest  of the  PIC instruction set in the same way as in 
Chapter 4 with a more advanced security system design which includes a keypad and a 
digit display interface. 
 
 Chapter 6 covers the fundamentals of general ESP and shows the reader the style, 
technique and art of ESP.  These techniques and ideas apply to all processors and are the 
main-stay of all of low-end embedded systems programming.  Examples of coding and 
programs are given in the PIC assembly language. 
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 Chapter 7 covers more advanced ESP techniques, such as sine-wave generation, 
DTMF signaling, data compression, pulse-width modulation, and testing techniques. 
 
 Chapter 8 covers the PIC peripherals with complete examples of how to use them.  
These include counters, timers, interrupts, the analog-to-digital converter, the pulse-width 
modulators, measurement hardware, and event generation hardware. 
 
 Chapter 9 covers the PIC peripherals for serial data communications.  These are 
the USART, a shift-register interface, and the “Inter-Integrated Circuit” serial interface. 
 
 Chapter 10 is an introduction to the fundamentals of Digital Signal Processing 
(DSP) in an intuitive way and with detailed examples.  Filter designs and programs are 
given in a cookbook fashion.  Some advanced and exotic DSP applications and 
techniques are given. 
 
 Appendix A is a detailed view of the PIC instruction set. 
 
 Appendix B is a set of useful C++ programs which help the reader design projects 
for the PIC. 
 
 Appendix C is a list of special-function registers and their bit-settings. 
 
 Appendix D is a register-file map. 
 
 Appendix E shows the PIC16F877 external pins and their functions. 
 
 Appendix F shows the sequence of instructions to save registers and restore them 
when doing a processor interrupt. 
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Chapter 2:  Microcontrollers and the PIC16F877 
 
 

2.0 Chapter Summary 
 

Section 2.1 covers the types of memories used in the general sense and their  
organization with respect to the data and addressing.  Section 2.2 discusses the memories 
used in the PIC.  Section 2.3 introduces the most fundamental elements of programming 
at the assembly language level. 
 
 
 
 2.1   Memory and Memory Organization 
 
 A microcontroller is a complete computer system on a single chip.  It is more than 
just a microprocessor:  It also contains a Read-Only Memory (ROM), a Read-Write 
Memory (RAM),  some input/output ports, and some peripherals, such as, 
counters/timers, analog-to-digital converters, digital-to-analog converters, and serial 
communication ports. 
 
 The internal view of a typical microprocessor is shown in Figure 2-1 and is 
composed of three things:  an arithmetic/logic unit (ALU) which performs calculations on 
data; a set of registers which hold the user’s data and the system’s data; and a control unit 
which orchestrates everything and interprets and executes the user’s instructions.  As far 
as the microprocessor is concerned, it assumes that there are sets of data memories and 
program memories (RAM and ROM) in the system.  The only thing the microprocessor 
has to do is run a cycle of getting new instructions and executing them from the 
memories. 
 
 Both the RAM and the ROM are organized as indexed sets of data words, where 
each “index” is the “address” of its corresponding data.  Both the data and its address 
codes are numbers represented in binary or hexadecimal. 
 
 The RAM is a read-write memory which can rapidly read and write the data.  It is 
a volatile memory which means that it loses its memory when power is removed (turned 
off).  The ROM is for program memory and is “read-only” except in modern variants, 
such as Electrically Erasable Programmable Read Only Memory (EEPROM) and Flash 
Memory, which allow data words to be written as well as read.  The writing of an 
EEPROM is not the same as a RAM since the data-writing time of the EEPROM is about 
ten thousand times as long as the data-writing time of the RAM.  The ROM and its 
variants are non-volatile memories that preserve their memories when the power is 
removed (turned off). 
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To Address
System
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Microprocessor

Figure 2-1
uP Internal View
Block Diagram

 
 
 2.2   The PIC16F877 
 
 The PIC16F877`s internal block diagram is shown in Figure 2-2.  The PIC 
contains an ALU, which does arithmetic and logic operations, the RAM, which is also 
called the “register-file”, the program EEPROM (Flash Memory), the data EEPROM, and 
the “W” register.  The “W” register is not a part of the register-file but is a stand-alone, 
working register (also called an “accumulator”). 
 
 The ALU, the RAM, the “W” register, and the data EEPROM each manipulate 
and hold 8-bit-wide data, which ranges in value from zero to 255 (or, in hexadecimal, 
from 0x00 to 0xFF). 
 
 The program EEPROM (Flash Memory) works with 14-bit-wide words and 
contains each of the user’s instructions. 
 
 It is not uncommon for microcontrollers to have different sizes of data memory 
and program memory (in the PIC: 8-bits for data and 14-bits for program words).  More 
than that, the key is that the data and program memories occupy separate spaces.  This  
allows access to each at the same time. 
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Figure 2-2  PIC16F877 Internal Block Diagram

 
 
 
 The PIC’s RAM addresses range from zero to 511 but the user can only access a 
RAM byte in a set of four “banks” of 128 bytes each and only one bank at a time.  Not all 
of this RAM is available to the user as read-write memory, however.  Many addresses are 
dedicated to special functions within the processor but they “look-like” RAM and are 
accessed the same way. 
 
 The PIC’s program EEPROM (Flash Memory) has addresses that range from zero 
to 8191 (0x1FFF).  The user’s program occupies this memory space. 
 
 
 2.3     Programming The PIC 
 
 All types of computer programs can be broken-down into four main sets of 
actions: 
 

1) Top-Down Execution 
2) Conditional Branching 
3) Loops 
4) Subroutine Calls 
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Programming the PIC in assembly language is no exception but it is more difficult to 
work with than high-level languages, like BASIC and C++. 
 
 Assembly language uses a one-to-one correspondence  of mnemonic words with 
the binary machine codes that the processor uses to code the instructions.  The user writes 
the program using the mnemonic words called the “source” program and gives this to the 
program on the PC called the “assembler” which converts it  into the machine code of the 
PIC in the form of a list of hexadecimal numbers.  This set of numbers is called the 
“object” program.  The user then writes the object program into the PIC in the 
downloading process of programming the PIC.  When this is done, the PIC is ready to run 
its new program. 
 
 Understanding how to code a program in assembly language is contingent upon 
understanding how the PIC works at the machine level. 
 
 The PIC executes instructions from program memory in sequential addresses, 
starting from address zero, when the PIC is reset upon power-up.  The address of the 
current instruction being executed is given in a special register called, the “program-
counter” (PC).  The PIC’s control unit automatically increments the program-counter 
(PC), gets the next instruction, decodes that instruction, and then executes it.  If this is 
done on sequential addresses, this is called, “top-down” execution.  There are also ways 
to do non-sequential-address executions.  This is done with special instructions which 
load new addresses into the program-counter.  This is how conditional-branching, loops, 
and subroutines are done at the machine language level. 
 
 Each line of source program code in assembly language has up to four parts: A 
label, an op-code, an operand, and a comment.  This is shown as follows: 
 

LABEL: OPCODE OPERAND(S)  ; COMMENT 
 
The label is an arbitrary name the user picks to mark a program address, a RAM address, 
or a constant value.  If the label has its first character (a letter) that starts in column one of 
the text, the colon is optional.  Otherwise, the colon separates the label from the “Op-
Code”.  The “Op-Code” is short for, “Operation-Code”, and is the mnemonic name for 
the instruction to be executed.  The operand or operands are the data or the address that 
the instruction uses when it is to be executed.  This is where labels come into play such as 
when an instruction needs a new address.  Comments are optional and must begin with a 
semi-colon.  Comments are for documenting the source program so that it will be easy to 
read and understand.  For example, the following lines are valid source program code 
lines: 
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LOOP: BSF  FLAGS,2  ; Set Alarm Flag Bit 
 
MAIN: CALL  SORT_SUB ; Sort the Data 
 
  DECFSZ TEMP,F 
 
; This is an example of a line which consists of only a comment 
 
MAIN  CALL  SORT_SUB ; Sort the Data (No Colon in Label) 
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 Chapter 3:    Simple PIC Hardware 
       & Software (“Hello World”) 

 
 
 3.0     Chapter Summary 
 
 Section 3.1 introduces a simple PIC system and analyzes its controlling program.  
It looks at each instruction, examines its structure and coding, and sets a foundation for 
proper usage of assembly language.  Section 3.2 summarizes the instructions and 
concepts covered in Section 3.1. 
 
 

3.1 A Simple Example System 
 
 An external view of the PIC with its pins is shown in Figure 3-1.  This is the most 
basic view of the PIC’s functions.  Most pins have a second use, or, even a third use: to 
run the PIC’s peripherals, such as the ADC, the timers, and the serial ports, to name a 
few.  These other functions will be shown later as they are needed. 
 
 The basic function of these pins is for digital inputs and digital outputs.  The 
individual bits on each of the input/output ports (A-through-E) can each be selected as 
“input” or “output” by special configuration registers in the RAM.  The software must set 
these bits before the ports can be used.  This will be shown in more detail shortly. 
 
 An example circuit which uses the input/output (I/O) ports “B” and “C” is shown 
in Figure 3-2.  This is a simple, bare minimum, PIC example circuit that serves to 
introduce some simple software and instructions.  Port “B” has a set of 8 DIP switches 
with resistor pull-ups on it to allow data from these switches to be read into the PIC.  Port 
“C” drives a set of 8 LEDs through resistors to allow the PIC to send out and display its 
data.  The power supply must drive both sets of power pins as shown in Figure 3-2.  The 
clock input, OSC1, is driven by an external oscillator module as shown.  Also, a 10K 
Ohm pull-up resistor is used on Pin 1 (/MCLR) to keep the PIC out of its “Reset” state. 
 
 The following program can be used to run the circuit of Figure 3-2: 
 
 LIST  P = 16F877 
 INCLUDE “P16F877.INC” 
 
 ORG  0x0000 ; Program starts at address zero. 
 NOP 
 BANKSEL PORTC ; Select Bank Zero 
 MOVLW B’00000000’ ; Reset PORTC 
 MOVWF PORTC 



 21

 BANKSEL TRISC ; Select Bank One 
 MOVLW B’00000000’ ; Make PORTC All Outputs 
 MOVWF TRISC 
 MOVLW B’11111111’ ; Make PORTB All Inputs 
 MOVWF TRISB 
 BANKSEL PORTC ; Select Bank Zero 
MAIN: 
 MOVF  PORTB,W ; Read DIP Switches into W-Register 
 MOVWF PORTC ; Write W-Register to LEDs 
 GOTO  MAIN  ; Loop To Address “MAIN” 
 END 
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Figure 3-1 Simple Hardware View (Ports Only)

 
 After setting up Port “C” as an “output” and Port “B” as an “input”, this program 
reads the value of the switches on Port “B” and sends it back out to the LEDs on Port “C” 
in a continuous loop.  This may seem like a very trivial program but it is still useful as a 
test and a simple demonstration of the PIC. 
 
 This program is an example of an assembly language program.  The MPLAB 
assembler on the IBM-PC takes this ASCII coded text and converts it into machine code 
for the PIC to use. 
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 The major part of this program uses the I/O ports and their configuration registers 
and we can now look at the RAM or register-file bytes in extensive detail.  Appendix D 
shows the addresses and names of the registers and RAM bytes used by the PIC. 
 
 The RAM or Register-File is divided into four banks of 128 bytes each.  Only one 
bank can be used at a time.  Not all of the bytes in a bank can be used as user memory 
because some bytes have special purposes, such as I/O ports.  However, all of these bytes 
work like RAM:  They can be read from, and written to, just like a memory byte. 
 
 Each register-file byte has a unique address within its bank which ranges from 
zero to 127 (0x00 to 0x7F).  The register, PORTC, for example, is located in Bank zero 
and has the address 0x07.  Notice that some register-file bytes in Appendix D are 
repeated across each of the banks at the same corresponding addresses.  For example, 
STATUS, PCL, FSR, PCLATH, and INTCON all occupy the same line addresses in each 
of the four banks.  This is so that they can be accessed and have the same values 
contained in them independent of the bank which is currently selected.  For the other 
registers which are not repeated, the proper bank must be selected before they can be 
used.  For example, storing data in the register byte at address 0x30 in Bank Zero, 
changing the current bank to Bank One, and then trying to read the right data in the 
register byte at address 0x30 will not give the same data that was stored even though the 
addresses were both 0x30.  Bank Zero must be selected again as the current bank to get 
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the right data.  However, the RAM addresses from 0x70 through 0x7F can be used in any 
bank to reference the same data without switching banks.  This is a very valuable feature! 
 
 The usage of the register files will be made more clear as we analyze the program 
and consider how the instructions are coded and used. 
 
 The program starts with the statements, “LIST” and “INCLUDE”.  These are not 
instructions in that they are not translated into machine code.  They are “assembler 
directives” which tell the assembler (MPLAB) where to get information about the PIC 
chip being used (PIC16F877).  All of your programs must start with these statements, in 
this order, as shown. 
 
 The statement, “ORG  0x0000”, is an assembler directive which tells the 
assembler at what address the following instructions will start.  Here they will start at 
address zero where "0x0000” indicates “hexadecimal zero”. 
 
 The next statement is the “NOP” instruction.  It is a true instruction that gets 
translated into machine code.  “NOP” stands for “No Operation” (it does nothing).  It is 
coded as 14 zero bits, or, 0x0000 in hexadecimal.  Remember that all of the instructions 
are each 14 bits long. 
 
 The next statement is “BANKSEL   PORTC”.  This is not a true instruction, per 
se, but it does get translated into two machine instructions which select the current 
register file bank to be used.  Here, “PORTC” is interpreted as “Bank Zero”.  Later 
“BANKSEL   TRISC” will be interpreted as “Bank One”.  In general, the operand of 
BANKSEL will select the lowest bank number where the operand name is found in 
Appendix D. 
 
 The next statement is the “MOVLW” instruction which means “move the literal 
value that follows into the W register”.  Remember that the W register is not a part of the 
RAM but is an “accumulator” or “working register” within the PIC.  The instruction: 
 
  MOVLW B’00000000’ 
 
Says, “move the binary value of all zeros to W”.  The general machine coding of the 
“MOVLW” instruction is: 
 
  11 0000 kkkk kkkk 
 
where the “k”s are the single binary bits of the literal data (the data byte).  The 
instruction: 
 
  MOVLW B’00000000’ 
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Would be coded as: 
 
  11 0000 0000 0000     or   0x3000. 
 
Later in the program is the instruction 
 
  MOVLW B’11111111’ 
 
Which is coded as: 
 
  11 0000  1111 1111     or   0x30FF. 
 
 
 The next instruction is, “MOVWF   PORTC”, which means, “move the value in 
the W register to the register-file byte at the address given (address given here is 
PORTC)”.  That is, “Move W to RAM”.  In general, this is coded as: 
 

00 0000  1fff  ffff 
 
where the “f”s are the binary bits of the address for the desired register-file byte.  Since 
Port C has the address 0x07 the coding of “MOVWF   PORTC” would be: 
 
  00  0000  1000  0111   or  0x0087. 
 
It would be perfectly legal in the assembly language program to say, “MOVWF  7” to 
mean, “MOVWF   PORTC” and it would be translated in exactly the same way.  
However, it would be very confusing to anyone who tried to read the program and, for 
this reason, it is better to let the assembler keep track of the register-file names and let the 
assembler translate them to the proper addresses.  In general, it is best to let the assembler 
translate all of the label names (RAM or ROM) in the program to their values.  Never use 
translated numbers directly in the ASCII text of the program.  Always use label names.  
This is a very good programming practice. 
 
 At the bottom of the program there is the label, “MAIN”, and the instruction, 
“MOVF  PORTB,W”.  The label “MAIN” is there to mark the address of the “MOVF” 
instruction so that we can come back to that address.  The “MOVF” instruction stands 
for, “move the register-file byte value to the W register”.  Specifically, it moves the value 
in Port B to the W register.  (It is also possible to say, “MOVF  PORTB,F”, which would 
mean, “move the value in Port B to Port B”.  This sounds absurd but there is a reason that 
this is allowed.) 
 
 The next new instruction is the, “GOTO   MAIN”, which means, “put the address-
value at MAIN into the program-counter to transfer to that address”.  This causes a 
“loop” to occur in the program.  The instruction at the address “MAIN” is the “MOVF”. 
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 The last statement is the, “END”, which is an assembler directive that means, 
“end the program”. 
 
 Now that the program directives and instructions are understood, we can come to 
a better understanding of how the program works. 
 
 The first step in the program is to send zeros to Port C in preparation for setting 
up Port C to be an output port.  This may seem backwards (sending data to a port before 
it is declared to be an output port) but there is a good reason for it:  When the declaration 
is made as “output”, whatever data that is in the port output buffer is immediately sent 
out.  If there is garbage in the port output buffer, that garbage will be the first output from 
the port.  This is why zeros were sent to the port first. 
 
 The next steps are to declare Port C and Port B to be as “output” and “input”, 
respectively, by using the TRISC and TRISB registers.  If a “1” is sent to a TRISC bit, 
the corresponding Port C bit will be an “input”.  If a “0” is sent, the Port C bit will be an 
“output”.  This rule applies to all of the ports (A, B, C, D, and E) and their corresponding 
TRIS registers.  (Ports “A” and “E” need additional configurations, however.) 
 
 In the “MAIN” loop, the data from the DIP switches on Port B is moved to the W 
register as an intermediary and is then moved to Port C to display the data on the LEDs.  
Then the “GOTO” closes the loop to form an infinite loop. 
 
 The thing for you to do now is to enter this program in an ASCII text editor and 
run a simulation of it in the MPLAB.  See if you can enter and run this program. 
 
 
 3.2   Summary of Instructions and Concepts 
 

1) When you are using MPLAB, your programs must start with: 
LIST    P=16F877 
INCLUDE “P16F877.INC” 

2) The register-file map in Appendix D shows where each special function 
register-file is and which RAM banks restrict its use. 

3) RAM addresses from 0x70 through 0x7F may be freely used by the user and 
are accessible as the “same” data in any bank. 

4) The “ORG” assembler directive tells the program where the current program 
memory address is.  Use, “ORG   0xhex-number”. 

5) The “NOP” instruction means “No Operation”.  It does take time for the PIC 
to run it, however. 

6) The “BANKSEL” directive selects the RAM bank for the current use.  
Consult Appendix D to get the right RAM bank. 

7) The “MOVLW” instruction means “Move the Literal value that follows into 
the W register”. 

8) The “MOVWF” instruction means “Move the W register’s data into RAM”.  
The data in the W register remains unchanged after doing this instruction. 
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9) The “MOVF” instruction means “Move data from the RAM into the W 
register”. 

10) The “GOTO” instruction “Loads the Program Counter with the address (label) 
that follows” to “Jump” to a new, non-sequential address in program memory. 

11)  Labels are used to reference addresses in program memory so that “GOTO” 
instructions can use them. 

12) The “END” directive is the last line of any program and is used to signal the 
end of the assembly process. 

13) Always use label-names to reference RAM or program memory. 
14) Send zeros to a port before you declare the port as “output” so that garbage 

will not initially corrupt the port’s output. 
15) Use the appropriate “TRISx” register to declare a port as “input” or “output”. 
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 Chapter 4:   The PIC Instruction Set (Part I) 
 
 
 4.0    Chapter Summary 
 
 Section 4.1 covers the PIC instruction set by building a simple security system.  It 
covers the RAM and ROM in more detail, looks at instruction timing, and introduces the 
use of subroutines.  Section 4.2 summarizes the instructions and concepts. 
 
 
 4.1   The PIC16F877 Instruction Set 
 
 The PIC16F877 only has 35 instructions and it would be easy to list them all at 
once.  It would, then, be harder to explain them and give examples of how they are used.  
A much more natural way is to pick a specific application for the PIC then illustrate the 
instruction set, show how the instructions are used, and show how a program uses 
sequences of instructions to accomplish the desired tasks. 
 
 Let’s consider the design of a home security system or a burglar alarm using the 
PIC.  A simple security system circuit is shown in Figure 4-1.  The main alarm sensor 
that is used in this system is the magnetic reed switch.  Figure 4-1 shows five of these in 
series, tied to ground, and connected with a pull-up to the PIC input port pin.  Suppose 
that Port B is configured as an input port and that this line connects to RB0 (bit zero).  
The magnetic reed switch has two parts:  The switch, itself, which is mounted to a door 
frame or a window frame, and a magnet, which is mounted to the door or the window.  
When the door or the window is closed, the magnet holds the reed switch “ON” or 
“shorted”.  When the door or the window is moved, the magnetic field is broken and the 
reed switch turns “OFF” or “open”.  This is the mechanism that trips the alarm. 
 
 The software segment that would sense an alarm is: 
 
  ALARM_TEST: 
   BTFSS PORTB,0 
   GOTO  ALARM_TEST 
 
Where “BTFSS” means, “Bit-Test-File-Skip-if-Set”.  That is, if Port B, bit zero (RB0) is 
sensed as a “one” (“set”), the next instruction will be skipped.  When each reed switch is 
closed, the Port B, bit zero line will read as “zero” since it is tied to ground.  When any 
reed switch is opened, the Port B, bit zero line will be pulled high (“one”) and this will be 
the alarm condition. 
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Figure 4-1  A Simple Security System
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 The general format for the “BTFSS” instruction is: 
 
  BTFSS  Register-File,Bit-Number 
 
Where the bit-number selects one of eight (8) bits as 0-through-7.  There is also a 
“BTFSC” instruction that is identical to “BTFSS” except that it skips when the tested bit 
is “Clear” (“zero”). 
 
 When the alarm condition is sensed, the alarm will be activated by setting Port C, 
bit one (RC1) to a “one” (“1”) as: 
 

BSF PORTC,1 
 
Which means, “Bit-Set-File”.  This will turn the transistor “ON”, turn the relay “ON”, 
and the relay contacts will switch on the alarm.  The alarm can be reset with: 
 

BCF PORTC,1 
 
Which means, “Bit-Clear-File”.  Both “BSF” and “BCF” specify one of eight (8) bits as 
0-through-7 for any RAM byte or register-file. 
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 The alarm circuit has two other hardware elements that need to be controlled.  
One is an “Arm/Disarm” switch input on Port B, bit one (RB1) and the other is a “Ready-
To-Arm” LED on Port C, bit zero (RC0). 
 
 The software that would control this system is as follows:   
 
  LIST  P=16F877 
  INCLUDE “P16F877.INC” 
 
 REED: EQU 0 ; Reed Switch is PORTB, Bit Zero 
 ARM:  EQU 1 ; Arm/DisArm Switch is PORTB, Bit One 
 LED:  EQU 0 ; “Ready-To-Arm” LED is PORTC, Bit Zero 
 ALARM: EQU 1 ; Alarm is PORTC, Bit One 
 
  ORG  0X0000 
  NOP 
  BANKSEL PORTC ; Send Zeros to Output Port 
  MOVLW 0X00  ; Before Set-Up 
  MOVWF PORTC 
  BANKSEL TRISB 
  MOVLW 0XFF  ; Port B is to be Input 
  MOVWF TRISB 
  MOVLW 0X00 
  MOVWF TRISC ; Port C is to be Output 
  BANKSEL PORTB 
 
 MAIN: 
  BTFSS PORTB,REED; Test Reed Switches, Skip if “Open” 
  GOTO  READY 
 RESET: 
  BCF  PORTC,LED ; Reset “Ready-To-Arm” LED 
  BCF  PORTC,ALARM ; Reset Alarm 
  GOTO  MAIN 
 
 READY: 
  BSF  PORTC,LED ; Set “Ready-To-Arm” LED 
  BTFSS PORTB,ARM ; Test “Arm/DisArm” Switch, Skip if Set 
  GOTO  MAIN 
 
 ALARM_SENSE: 

BTFSS PORTB,REED; Test Reed Switches, Skip if “Set”  
  ; (Alarm) 

 
  GOTO  ALARM_SENSE 
 
  BTFSS PORTB,ARM ; Test “Arm/DisArm” Switch, Skip if Set 
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  GOTO  MAIN 
 
 SET_ALARM: 
  BSF  PORTC,ALARM ; Activate Alarm 
  BTFSC PORTB,ARM ; Test “Arm/DisArm” Switch…. 
  GOTO  SET_ALARM ; ---- Still Set, Stay in Alarm 
  GOTO  RESET ; ---- Not Set, Reset Alarm 
  END 
 
 
 
 This program uses a new assembler directive called, “EQU”, or “Equate” to 
define constants, such as bit positions and data, as label names.  Its usage is: 
 
 Label:  EQU “data” 
 
It is good programming practice to use EQUs to make programs more readable. 
 
 This alarm system program is fine if the “Arm/DisArm” switch and the “Ready-
To-Arm” LED are located on the outside of the house.  If they are located on the inside of 
the house, this program has a serious problem:  It is impossible to leave the house after 
the system is armed since the alarm will be tripped when the door is opened! 
 
 This problem is usually solved by adding a delay of thirty (30) seconds before 
activating the alarm so that the user can leave the house and not trip the alarm.  An 
external timer could be attached to the PIC to provide this delay but the better solution is 
to let the PIC generate its own delays in software. 
 
 The PIC runs with a clock frequency of 4 MHz and this controls instruction 
execution speed.  The instruction execution speed is one-fourth  of the clock frequency.  
Each instruction executes in one or two instruction cycles, or, in one or two 
microseconds.  Each instruction that “skips”, such as, “BTFSS”, executes in two 
instruction cycles when it “skips” and one instruction cycle when it doesn’t.  The 
“GOTO” instruction always executes in two instruction cycles. 
 
 Let’s see how to build a 30-second software delay.  The first step is to build a 
one-millisecond delay as follows: 
 

MOVLW D’250’  ; Load W with Decimal 250 
  MOVWF TIME  ; Initialize RAM “TIME” 

LOOP_ONE_MS: 
  NOP    ; (1) Cycle 
  DECFSZ TIME,F ; (1) Cycle 
  GOTO  LOOP_ONE_MS   ; (2) Cycles 
 
This program segment uses the “DECFSZ” instruction, which means, “Decrement-File-
Skip-if-Zero”.  When the Byte’s data is decremented, it may be stored back in the RAM 
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or it may be stored in the W register.  Specify the RAM as the destination with the “F” or 
specify the W register with the “W”.  This instruction decrements the RAM byte 
(“TIME”, in this case) and skips the next instruction if the result was zero.  The initial 
value of “TIME” is 250 and the loop has a length of four instruction cycles.  As the loop 
counts down from 250 each count adds four microseconds of delay which, when 
multiplied by 250, gives a total time of about one millisecond. 
 

A loop can then be formed around this loop that counts down from 250 to give a 
delay of 250 milliseconds.  Then another loop can be placed around it that counts down 
from 120 to give a total delay of 30 seconds! 
 
 (There is also an “INCFSZ” instruction which increments a register-file and skips 
the next instruction if the result is zero.  Either “INCFSZ  file,F” or “INCFSZ file,W”.) 
 
 The total nested-loop structure for a 30-second delay is: 
 

MOVLW  D’120’ ; Count 120 of 250 millisecond delays 
  MOVWF TIME2 
 LOOP_30_SEC: 
  MOVLW D’250’  ; Count 250 of one millisecond delays 
  MOVWF TIME1 
 LOOP_250_MS: 
  MOVLW D’250’  ; Count of 250 Loops of four cycles 
  MOVWF TIME 
 LOOP_ONE_MS: 
  NOP 
  DECFSZ TIME,F 
  GOTO  LOOP_ONE_MS 
 
  DECFSZ TIME1,F 
  GOTO  LOOP_250_MS 
 
  DECFSZ TIME2,F 
  GOTO  LOOP_30_SEC 
 
 This code must be put into two places in the alarm software: Once just before the 
“ALARM_SENSE” loop and once just after it.  This will allow the user 30 seconds to 
enter and leave before the alarm goes off. 
 
 This is a lot of code to make two copies of and insert into a relatively simple 
software loop.  The resulting code would be much more complicated, much more 
difficult to follow, and the probability of making a mistake would be much higher.  Are 
there any easier alternatives? 
 
 There are.  The solution is to use subroutines with the “CALL” and “RETURN” 
instructions.  The “CALL” instruction works just like a “GOTO” instruction except that 
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the PIC automatically saves the address of the next instruction after the “CALL” in a 
special memory.  This action is automatic and invisible to the user.  When you are 
finished with the subroutine, you use the “RETURN” instruction to tell the PIC to go 
back to the part of the program where you left off.  That is, to get the address out of the 
special memory and “GOTO” it automatically.  The “CALL” and “RETURN” 
instructions each take two instruction cycles to execute. 
 
 For example, the one-millisecond delay can be accomplished with the following 
subroutine: 
 
 
 DELAY_ONE_MS: 
  MOVLW D’250’  ; Count 250 Loops 
  MOVWF TIME 
 LOOP_ONE_MS: 
  NOP    ; Four Cycle Loop 
  DECFSZ TIME,F 
  GOTO  LOOP_ONE_MS 
  RETURN 
 
This would give a delay of one millisecond each time it was called, as follows: 
 
  CALL  DELAY_ONE_MS 
 
 We could also make a 250-millisecond delay subroutine as follows: 
 
 DELAY_250_MS: 
  MOVLW D’250’  ; Count 250 Milliseconds 
  MOVWF TIME1 
 LOOP_250_MS: 
  CALL  DELAY_ONE_MS 
  DECFSZ TIME1,F 
  GOTO  LOOP_250_MS 
  RETURN 
 
Notice that this subroutine calls the “one-millisecond” subroutine 250 times.  There is no 
law that says you can’t have one subroutine that calls another subroutine – you can – it’s 
called “nesting” subroutines.  The PIC allows you to nest subroutines up to only eight (8) 
levels, however. 
 
 The 30-second delay can then be formed as the following subroutine: 
 
 DELAY_30_SEC: 
  MOVLW D’120’  ; Count 120 of 250-Millisecods 
  MOVWF TIME2 
 LOOP_30_SEC: 
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  CALL  DELAY_250_MS 
  DECFSZ TIME2,F 
  GOTO  LOOP_30_SEC 
  RETURN 
 
 
 4.2   Summary of Instructions and Concepts 
 

1) Subroutines may be nested up to eight (8) levels deep. 
2) Each instruction takes either one or two instruction-cycles to run. 
3) Each instruction-cycle time runs in the period of the PIC’s oscillator 

frequency, Fosc, divided by four (4).  If Fosc = 4 MHz, each instruction-cycle 
will run in one microsecond. 

4) The “EQU” directive is used to make user-defined labels for RAM addresses, 
constants, and bit-positions. 

5) The “GOTO”, “CALL”, and “RETURN” instructions each take two 
instruction-cycles to run.  Also, anytime an instruction “skips” it takes two 
instruction-cycles to run. 

6) New Instructions Covered: 
BTFSS    file,bit 
BTFSC   file,bit 
BSF        file,bit 
BCF        file,bit 
 
DECFSZ     file,destination 
INCFSZ      file,destination 
CALL          address 
RETURN 

 
 
 



 34

 
 

 Chapter 5:    The PIC Instruction Set (Part II) 
 
 5.0     Chapter Summary 
 
 Section 5.1 discusses the need for a more advanced security system.  Section 5.2 
introduces the keypad and display interfaces.  Section 5.3 introduces the processor status 
flags.  Section 5.4 details the keypad software.  Section 5.5 details the LED digit display 
software.  Section 5.6 explains indirect RAM addressing.  Section 5.7 covers more 
advanced general features of the PIC processor.  Section 5.8 shows how the keypad and 
the display software work in harmony with each other.  Section 5.9 is a last look at the 
security system.  Section 5.10 summarizes the instructions and concepts of Chapter 5. 
 
 
 5.1     Introduction 
 
 The basic PIC instructions were introduced in Chapter 4 with an example of a 
simple security system.  In a similar way, the remaining instructions will be introduced 
with an example of a more complex security system. 
 
 A more complex system is needed for a large house or an industrial user.  If there 
are many rooms, doors, and windows, a single “Ready-To-Arm” LED is not enough to 
give the location of the “insecure” site when the user desires to set the alarm.  Also, a 
single “Arm/DisArm” switch presents no difficulty to a thief who knows where the 
switch is and wants to disable the alarm.  The security system should also offer the user a, 
“Home/Away” setting so that a remnant of the system can still work while the user is at 
home (i.e., when he or she is asleep or wants to use the bathroom without triggering the 
alarm). 
 
 These problems could be solved by having many “Ready-To-Arm” LEDs and 
many “Arm/DisArm” switches but this is not practical when flexible and compact 
software is available.  The solution is to use a twelve-key keypad and a set of seven-
segment LED digits to get and display more complex information to run the security 
system.  For example, the LED digits could display a message like, “Zone 3 Not Ready 
To Arm”, or, “Office 407 Not Ready”.  These messages could be static, or constantly 
displayed, or they could repeatedly scroll across the display over a few seconds.  Code 
numbers could be entered on the keypad to set-up and run the system.  An 
“Arm/DisArm” switch is not a problem for a would-be thief but entering a four-digit 
security-code that could be changed daily is much more formidable! 
 
 Before we can introduce more instructions and show the software that could do 
these things, we need to show how the keypad and the LED digits are interfaced to the 
PIC. 
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 5.2   Keypad And Display Interface 
 
 A twelve-key keypad usually consists of a matrix of twelve switches, as shown in 
Figure 5-1.  Three lines connect the columns while four lines connect the rows.  When a 
key is pressed, one column and one row are connected.  The PIC must use its software to 
scan each column-line and look for a row-line that is connected, if, and when, a switch is 
pressed.  The PIC keypad interface circuit is shown in Figure 5-2. 
 

Column 1 Column 2 Column 3

Row 1

Row 2

Row 3

Row 4

"1" "2" "3"

"4" "5" "6"

"7" "8" "9"

"*" "0" "#"

Figure 5-1  Twelve-Key Matrix Keypad
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Column 2
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10 K Ohms +5 Volts

PORT D

RD0 through RD3
Are Inputs

RD4 through RD6
Are Outputs

RD3

RD2

RD1

RD0

RD4

RD5
RD6

Figure 5-2  PIC Matrix Keypad Interface Circuit

 
 
 A typical seven-segment LED digit is shown in Figure 5-3.  The digit consists of 
eight (8) LEDs:  Seven for the segments and one for the decimal point.  The LEDs are 
connected together in a “common-anode” or a “common-cathode” form.  If only one digit 
is to be used, the common-cathode is tied to ground or the common-anode is tied to five 
volts, and the PIC would drive each segment LED through a 470 Ohm resistor, as shown 
in Figure 5-4.  If more than one digit is to be used, the digits are usually multiplexed, as 
shown in Figure 5-5.  Multiplexing digits is a way of saving PIC output port lines by 
time-sharing them.  Let’s see how this works. 
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C

C

D

D
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F
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G
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DP

Common Cathode

Common Anode

OR

Figure 5-3  Seven Segment LED Digit Display
In Common Cathode and Common Anode Forms

LEDs

LEDs

 
 
 For digit multiplexing, the corresponding segments of each digit are wired 
together in parallel, as shown in Figure 5-5.  Each common-anode or common-cathode of 
a single digit is driven by a transistor.  The idea is to turn on one transistor at a time and 
supply that digit’s segments for a few milliseconds at a time and then turn it off.  Then 
repeat this for each transistor and digit’s segments for the whole display, over and over.  
The overall effect on the human eye is that all of the digits appear to be “on” at the same 
time!  Each digit gets the right information and there is no blurring or garbage. 
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PIC16F877

PORT B, 8-Lines To Segments (A,B,C,D,E,F,G,DP)

(8) (8) (8) (8)
LEFT LEFT 2 LEFT 3 RIGHT
DIGIT DIGIT DIGIT DIGIT

PORT C

RC3

RC2

RC1

RC0

1 K Ohm 1 K Ohm 1 K Ohm 1 K Ohm

Figure 5-5a  Multiplexed LED Digit Drives for Common Cathode Form
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PIC16F877

PORT B, 8-Lines To Segments (A,B,C,D,E,F,G,DP)

(8) (8) (8) (8)
LEFT LEFT 2 LEFT 3 RIGHT
DIGIT DIGIT DIGIT DIGIT
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RC3

RC2
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RC0
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+5 Volts +5 Volts +5 Volts +5 Volts

Figure 5-5b  Multiplexed LED Digit Drives for Common Anode Form

 
 
 5.3    The STATUS Register and Flag Bits 
 
 We are almost ready to begin a full discussion of how the keypad and the LED 
digits are run in software.  First, is should be noted that the instructions that are needed to 
do this affect flag bits in the status register.  Three flag bits are affected automatically as a 
result of doing each of these instructions. 
 
 The STATUS register is shown in Appendix C.  The bits RP1 and RP0 are set by 
the user to select one of the four banks of the RAM registers.  This can be done with the 
BCF and BSF instructions or with the BANKSEL directive.  The BANKSEL directive 
produces the right combinations of BCF and BSF instructions for the STATUS register to 
select the appropriate RAM bank. 
 
 The three flag bits that interest us most are the “Z”, the “DC”, and the “C” bits.  
The “Z” bit is set if the instruction produces a result of zero.  The “C” bit is the “carry” 
bit and shows the carry-out of the seventh bit of the result (The result bits range from 
zero-through-seven).  The “DC” bit shows the “carry-out” of the third bit of the result 
(this is used for binary-coded-decimal arithmetic).  A complete list of which instructions 
affect the flag bits, and how, can be found in Appendix A.  The “MOVF  f,d” instruction 
is the only instruction that we have seen so far (Chapter 3) that affects a flag bit.  
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Specifically, it only affects the “Z” bit, showing if the value or data that is moved is zero 
(Z = 1) or not (Z = 0). 
 
 We are now ready to write the software to control the keypad and the LED digits. 
 
 
 5.4   The Keypad Software 
 
 
 Look again at Figure 5-2.  The row lines are pulled-up to five volts (Logic “1”) 
and are connected through the key-switches to the column lines.  The idea is to set the 
column lines low (Logic “0”), one-at-a-time, and search for a low (Logic “0”) on the row 
lines.  If a row line is low, a key has been pressed, and the scanning software subroutine 
returns a number code corresponding to the key.  If no key is pressed, the routine returns 
a code of zero. 
 
 The scanning subroutine is as follows: 
 
 KEY_SCAN: 
  BCF  PORTD,4 ; Column 1 = LOW 
  BSF  PORTD,5 ; Others = HIGH 
  BSF  PORTD,6 
 
  BTFSS PORTD,0 ; Row 1 
  RETLW 1  ; Key = “1” 
  BTFSS PORTD,1 ; Row 2 
  RETLW 4  ; Key = “4” 
  BTFSS PORTD,2 ; Row 3 
  RETLW 7  ; Key = “7” 
  BTFSS PORTD,3 ; Row 4 
  RETLW 10  ; Key = “*” 
 
  BSF  PORTD,4 
  BCF  PORTD,5 ; Column 2 = LOW 
 
  BTFSS PORTD,0 ; Row 1 
  RETLW 2  ; Key = “2” 
  BTFSS PORTD,1 ; Row 2 
  RETLW 5  ; Key = “5” 
  BTFSS PORTD,2 ; Row 3 
  RETLW 8  ; Key = “8” 
  BTFSS PORTD,3 ; Row 4 
  RETLW 11  ; Key = “0” 
 
  BSF  PORTD,5 
  BCF  PORTD,6 ; Column 3 = LOW 
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  BTFSS PORTD,0 ; Row 1 
  RETLW 3  ; Key = “3” 
  BTFSS PORTD,1 ; Row 2 
  RETLW 6  ; Key = “6” 
  BTFSS PORTD,2 ; Row 3 
  RETLW 9  ; Key = “9” 
  BTFSS PORTD,3 ; Row 4 
  RETLW 12  ; Key = “#” 
  RETLW 0  ; No Key Pressed 
 
 The new instruction used in this subroutine is “RETLW  k”, which means, 
“Return from subroutine with the W register containing the eight-bit value, k”.  Thus, 
when KEY_SCAN returns, the key-code will be in the W register.  The “RETLW” 
instruction runs in two instruction cycles. 
 
 The KEY_SCAN routine can be improved by eliminating the repeated code to 
scan the rows and replacing them with subroutine calls to a “ROW_SCAN” routine.  
Notice that each of the row scans in KEY_SCAN return values as: 
 
 (1,4,7,10)   (2,5,8,11)  and (3,6,9,12). 
 
These are additions of zero, one, and two on the base values of (1,4,7,10).  Assume that 
the ROW_SCAN routine will also return a zero if no keys are pressed.  The improved 
KEY_SCAN routine is as follows: 
 
 KEY_SCAN: 
  BCF  PORTD,4 ; Column 1 = LOW 
  BSF  PORTD,5 ; Others = HIGH 
  BSF  PORTD,6 
 
  CALL  ROW_SCAN ; (W) = Code 
  ADDLW 0  ; Add Zero to Set Zero Flag 
  BTFSS STATUS,Z 
  RETURN   ; (W) = 1,4,7,10 
 
  BSF  PORTD,4 
  BCF  PORTD,5 ; Column 2 = LOW 
 
  CALL  ROW_SCAN ; (W) = Code 
  ADDLW 0  ; Add Zero to Set Zero Flag 
  BTFSC STATUS,Z 
  GOTO  KEY_SCAN2 
 
  ADDLW 1  ; Adjust (W) 
  RETURN   ; (W) = 2,5,8,11 
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 KEY_SCAN2: 
  BSF  PORTD,5 
  BCF  PORTD,6 ; Column 3 = LOW 
 
  CALL  ROW_SCAN ; (W) = Code 
  ADDLW 0  ; Add Zero to Set Zero Flag 
  BTFSS STATUS,Z 
  ADDLW 2  ; Adjust (W) 
  RETURN   ; (W) = 3,6,9,12  OR  (W) = 0 
 
 
 ROW_SCAN: 
  BTFSS PORTD,0 
  RETLW 1  ; Key “1” 
  BTFSS PORTD,1 
  RETLW 4  ; Key “4” 
  BTFSS PORTD,2 
  RETLW 7  ; Key “7” 
  BTFSS PORTD,3 
  RETLW 10  ; Key “*” 
  RETLW 0  ; No Key Found 
 
 
 The new instruction used in the new KEY_SCAN routine is, “ADDLW  k”, 
which means, “Add the W register and the eight-bit value, k, and put the result in the W 
register”.  The “ADDLW” instruction affects the “Z”, “DC”, and “C” status flag bits. 
 
 Addition can also be done between a RAM byte (register-file) and the W register 
with the “ADDWF  f,d” instruction.  This does, “W = (file) + W” or “(file) = (file) + W” 
and it also affects the “Z”, “DC”, and “C” status flag bits. 
 
 Using the “ADDLW” instruction it is possible to make more improvements in the 
KEY_SCAN and ROW_SCAN routines.  In the original KEY_SCAN each set of row 
value codes had a difference of three (i.e., From “1”,  “4” = “1” + 3,  “7” = “4” + 3, …).  
What if the ROW_SCAN routine were called with the first row code in W and each time 
the key test failed, we add three to W?  Also, the “Z” flag can be set within the 
ROW_SCAN routine so we don’t have to check it in the KEY_SCAN routine.  Can you 
write an improved version of the KEY_SCAN and ROW_SCAN routines using these 
techniques?  Can you think of even more improvements? 
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 5.5     The LED Display Software 
 
 
 Let’s now look at the software controls for the four-digit, multiplexed, seven-
segment display shown in Figure 5-5a.  Port B of the PIC controls the segments while 
Port C, bits (0,1,2,3), control the digit-drives. 
 
 The display subroutine software is as follows: 
 
 DISPLAY: 
  CLRF  PORTC ; Turn Off All Segments and Digits 
  CLRF  PORTB 
  MOVF  LEFT_DIGIT,W ; Get Left Digit’s Segment Codes 
  MOVWF PORTB ; Set-Up Segments for Activation 
  BSF  PORTC,3  ; Activate Digit-Drive 
  CALL  DELAY_5_MILLISECONDS 
 
  CLRF  PORTC ; Turn Off All Segments and Digits 
  CLRF  PORTB 
  MOVF  LEFT_DIGIT2,W ; Get Left2’s Segments 
  MOVWF PORTB 
  BSF  PORTC,2 
  CALL  DELAY_5_MILLISECONDS 
 
  CLRF  PORTC ; Turn Off All Segments and Digits 
  CLRF  PORTB 
  MOVF  LEFT_DIGIT3,W ; Get Left3’s Segments 
  MOVWF PORTB 
  BSF  PORTC,1 
  CALL  DELAY_5_MILLISECONDS 
 
  CLRF  PORTC ;Turn Off All Segments and Digits 
  CLRF  PORTB 
  MOVF  RIGHT_DIGIT,W ; Get Right-Digit’s Segments 
  MOVWF PORTB 
  BSF  PORTC,0 
  CALL  DELAY_5_MILLISECONDS 
  CLRF  PORTC 
  CLRF  PORTB 
  RETURN 
 
 One new instruction used is, “CLRF  f”, which means, “Clear Register-File  f”.  
There is also, “CLRW”, which means, “Clear W”.  Both of these set the “Z” (Zero) flag 
so that Z = 1.  The “C” and “DC” flags are not affected. 
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 The “DISPLAY” routine must not have very much delay between calls, otherwise 
the digits will appear dim or flicker. 
 
 The use of the “DISPLAY” routine presupposes that the proper display codes are 
already in the digit RAM spaces (LEFT_DIGIT, …, RIGHT_DIGIT).  What are these 
display codes and how do we get them?  Each display segment shown in Figure 5-3 
corresponds to a bit position on Port B as: 
 
 Segment Port B Bit 
      “a”       0 
      “b”       1 
      “c”       2 
      “d”       3 
      “e”       4 
      “f”       5 
      “g”       6 
      “d.p.”      7 
 
If we were to make a table of base-ten digits to display and their display codes, it would 
look like: 
 
 Digit  Display Code 

0 0x3F 
1 0x06 
2 0x5B 
3 0x4F 
4 0x66 
5 0x6D 
6 0x7D 
7 0x07 
8 0x7F 
9 0x6F 

 
This table would be used, directly, by the following subroutine: 
 
 GET_DISPLAY_CODE: 
  ADDWF PCL,F  ; Add (W) to PCL, With Result in PCL 
  RETLW 0x3F  ; “0” 
  RETLW 0x06  ; “1” 
  RETLW 0x5B  ; “2” 
  RETLW 0x4F  ; “3” 
  RETLW 0x66  ; “4” 
  RETLW 0x6D  ; “5” 
  RETLW 0x7D  ; “6” 
  RETLW 0x07  ; “7” 
  RETLW 0x7F  ; “8” 



 45

  RETLW 0x6F  ; “9” 
 
When this routine is called, the user puts the digit to find in the W register.  The first 
instruction, “ADDWF  PCL,F”, adds the digit in W to the low-half of the program-
counter, PCL, and puts the sum in PCL.  In effect, this does a “GOTO”-like instruction 
and goes to the corresponding RETLW instruction where W is filled with the proper 
display code upon returning. 
 
 For example, suppose that W = 1 when “GET_DISPLAY_CODE” is called.  
When control is transferred to the “ADDWF  PCL,F” instruction, the whole program-
counter is incremented, automatically, to get to the next instruction, and then W is added 
to the low-half of the program-counter to point to the proper RETLW instruction.  This is 
the, “RETLW   0x06”, which has the display code for “1”, and this code is in the W 
register when the subroutine returns. 
 
 Remember that the program counter is the register where the PIC keeps track of 
the address of the current instruction being executed.  It is actually composed of two 
registers: A “high” half and a “low” half.  This is because the PIC can address 8 K of 
program memory and it needs 13 bits to do this.  These must be split into two 8-bit bytes.  
When the program counter is incremented, the low half is incremented first, and, if a 
carry is generated, it is automatically added to the high half.  The low half is the register 
“PCL”.  The high half is not directly accessible but it can be set-up through the register 
“PCLATH” (We will see more of this later.) 
 
 Any table look-up routine, like “GET_DISPLAY_CODE”, can be used with a 
number of entries up to or equal to 255.  Some care must be taken, however, for any 
table, large or small.  The “ADDWF  PCL,F”  instruction only adds to the low-half of the 
program-counter.  There is no carry propagation to the high-half.  If, for example, the 
“ADDWF  PCL,F” instruction is located at the address 0x01FC and the table extends for 
ten entries, a value in W equal to four (4) will transfer control to the address 0x0100 and 
whatever is in that location will be treated as if it were an instruction (it may be) and the 
program will continue there!  You must make sure, by using the “ORG” directive, to set 
an address that allows a large enough space to fit the table. 
 
 If the CALL to a table look-up routine is not within the same 256-byte address 
block as the table itself, the table’s high-half address must be loaded into the PCLATH 
register before the CALL is made.  For example, 
 
  ORG  0x0100 
  ------ 
  ------ 
  MOVLW HIGH  GET_DISPLAY_CODE 
  MOVWF PCLATH 
  MOVF  DIGIT,W 
  CALL  GET_DISPLAY_CODE 
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  ----- 
  ----- 
  ORG  0x0380 
 GET_DISPLAY_CODE: 
  ADDWF PCL,F 
  RETLW 0x3F 
  ----- 
  ----- 
 
This code gets the high-address of the GET_DISPLAY_CODE routine into the PCLATH 
register before the CALL.  The CALL is in the 0x01 block while the routine is in the 
0x03 block. 
 
 
 
 5.6     Improved DISPLAY and Indirect Addressing 
 
 In actual practice, the “DISPLAY” routine would be done differently to improve 
its usage of delay timings.  The five-millisecond delay routine was called four times – 
once for each digit.  This eats up too much time.  It would be better to call the 
“DISPLAY” routine once every five milliseconds and let the program keep track of 
which digit is to be displayed.  This requires an addressing technique called, “indirect 
addressing”. 
 
 Indirect addressing allows you to use a RAM location to index the address of 
another RAM location.  The index RAM location is called, “FSR”, and the RAM address 
to be indexed is put into the “FSR” register-file.  With the address of the RAM to use, in 
place, in the “FSR” register, the user works with a RAM location called, “INDF”.  See 
Figure 5-6 for more information and explanation of the concept of indirect addressing. 
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 Suppose we are in Bank Zero and we want to index 16 Bytes in a row in RAM     
   starting from Address = 0x30 to Address = 0x3F.  This will be a RAM Data Array. 
 

1) Move the Address Value = 0x30 into the FSR register. 
2) Work with any instruction that references a RAM Byte, where “INDF” is  
       used in place of the desired RAM Byte.  For example: 
 

INCFSZ    INDF,F     will increment the Byte at Address = 0x30 
And skip if zero. 
 
MOVF      INDF,W    will move the data in Address = 0x30 into W. 
 
BSF           INDF,2     will set bit two of the Byte at Address = 0x30. 

 
 3)   If we increment the “FSR” register (by doing  INCF   FSR,F) and do the  

       examples above, we are now working with the Data at Address = 0x31. 
 
 
Suppose we want to Clear this Array.  Do: 
 
  MOVLW 0x30  ; Set-Up the Start of the Array 
  MOVWF FSR  ;--- Start in FSR 
  MOVLW D’16’  ; Count Out 16 Bytes 
  MOVWF COUNTER 
LOOP: 
  CLRF  INDF  ; Clear the Byte at FSR’s Address 
  INCF  FSR,F  ; Increment FSR’s Address 
  DECFSZ COUNTER,F 
  GOTO  LOOP 
 
 
 
 
 

Figure 5-6   Illustration of Indirect RAM Addressing 
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 For this to work in the example program, the RAM locations for the digits (the 
segment codes) must be in increasing sequential order as: LEFT_DIGIT, LEFT_DIGIT2, 
LEFT_DIGIT3, and RIGHT_DIGIT. 
 
 Let’s see how this works in an improved version of the “DISPLAY routine as 
follows: 
 
 DISPLAY2:  ; Call this subroutine once every 5 milliseconds. 
  CLRF  PORTB ; Blank The Display 
  CLRF  PORTC 
 
  MOVF  DIGIT_INDEX,W ; Get The Current Address 
  MOVWF FSR   ;    For Display 
  MOVF  INDF,W  ; Get The Digit’s Segment Codes 
  MOVWF PORTB  ; Display the Segments 
  MOVF  DIGIT_POSITION,W ; Get The Digit to Drive 
  MOVWF PORTC   ; Activate the Drive 
 
  INCF  DIGIT_INDEX,F ; For Next Time, Increment  

; Address 
  BCF  STATUS,C  ;      Shift to Next Digit to Drive 
  RRF  DIGIT_POSITION,F 
  BTFSS STATUS,C  ; Check Limits 
  RETURN 
 
 INITIALIZE_DISPLAY: 
  MOVLW LEFT_DIGIT  ; Put the ADDRESS of LEFT_ 
       ; DIGIT into W (Not the DATA) 
 
  MOVWF DIGIT_INDEX ; Set-up with LEFT_DIGIT 
  MOVLW 0x08   ; Set Digit Drive for Left Digit 
  MOVWF DIGIT_POSITION 
  RETURN 
 
 
 At the start, the segments and digits were blanked (cleared) to prevent flickering 
when a new digit is set-up.  Then we get the value in “DIGIT_INDEX”, which is the 
RAM address of the digit’s segment codes to be displayed, and put this into the “FSR” 
register.  Using this RAM address in “FSR”, we get the data at this address (the segment 
codes) using the “MOVF   INDF,W” instruction and send it to Port B.  Next, we get the 
“DIGIT_POSITION” and send it to Port C to drive the digit transistor. 
 
 This completes the part of the “DISPLAY2” routine which uses indirect 
addressing.  The rest of the routine must set up the next digit to be displayed when the 
routine is called the next time.  This introduces two new instructions.  The first is,   
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“INCF   f,d”, which increments a register-file (RAM byte) and can store the result in the 
RAM or in the W register.  There is also a, “DECF   f,d”, instruction which decrements a 
register-file.  Both the “INCF” and the “DECF” have the same operation format and both 
affect the “Z” (Zero) flag.  The “C” and “DC” flags are not affected. 
 
 The next new instruction is the, “RRF  f,d”, which does a bit-wise rotate-right on 
a register-file.  There is also a, “RLF  f,d”, instruction which does a bit-wise rotate-left.  
The actions of these instructions are best seen in Figure 5-7.  The only flag bit affected in 
both of these instructions is the “C” (Carry) flag. 
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Figure 5-7  Diagram of RLF and RRF Instructions

 
 
 
 To set-up the next digit for display, the “DIGIT_INDEX” is incremented to point 
to the next sequential RAM address.  If that was “LEFT_DIGIT”, its increment would be 
“LEFT_DIGIT2”.  The “DIGIT_POSITION” is then rotated right, after clearing the carry 
bit, to set the next digit-drive bit.  The sequence of digit-drive bits on Port C looks like: 
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 Bit 3      Bit 2      Bit 1    Bit 0 
   1     0             0         0        ----  LEFT_DIGIT 
   0            1             0         0        ----  LEFT_DIGIT2 
   0            0             1         0        ----  LEFT_DIGIT3 
   0            0             0         1        ----  RIGHT_DIGIT 
 
If the current digit-drive bit is as (0 0 0 1) and this gets rotated right, the “C” (Carry) flag 
will be set (=1).  This indicates that the data must be re-initialized and set-up for the 
LEFT_DIGIT.  The instruction, “MOVLW   LEFT_DIGIT”, moves the RAM address 
into the W register and this is placed in the “DIGIT_INDEX” RAM byte. 
 
 
 5.7     Odds & Ends 
 
 
 One remaining point in using indirect addressing of RAM is the STATUS register 
bit, “IRP” (Bit 7), which selects which banks of RAM to use.  Direct addressing of RAM 
used the STATUS bits, “RP1” and “RP0”, to select among four banks of seven-bit-
addressable RAM locations.  Since indirect addressing uses 8-bit addresses in the “FSR” 
register, only one extra bit, “IRP”, must be set-up to select pairs of RAM banks.  It is as 
follows: 
 
 IRP = 0   for  Bank 0  and  Bank 1 
 IRP = 1   for  Bank 2  and  Bank 3. 
 
 In the security system, the KEY_SCAN routine is good for when only one key-
press is needed.  If the system requires multiple key-presses, such as when entering a 
multi-digit number, the software must check for the key to be released before looking for 
the next key to be pressed.  This will avoid a “string” or “run” of a single key being 
interpreted as “several keys”. 
 
 Once a key is pressed, released, and recognized as “valid”, it must be decoded 
into a number or digit.  This may require another look-up table.  Suppose that a two-digit, 
decimal number is to be entered.  The most-significant digit must be multiplied by ten 
and added to the least-significant digit to form the complete binary number.  Or, suppose, 
that a three-digit, decimal number (less than 256) is to be displayed on the LED digits.  
How would a binary number be converted to a set of decimal digits? 
 
 To multiply a four-bit number by ten you could use a look-up table or you could 
multiply it by four, add it to itself to get a “multiply by five”, and then multiply the result 
by two, to get a “multiply by ten”.  This is as follows: 
 
  MOVWF TEMP1 ; Save W 
  MOVWF TEMP2 ; Save W 
  BCF  STATUS,C ; Prepare to Rotate 
  RLF  TEMP2,F ; Multiply By two 
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  RLF  TEMP2,W ; Multiply By Two, Again (4*W) 
  ADDWF TEMP1,F ; Add W to (4*W) to Get  (5*W) 
  BCF  STATUS,C ; Prepare to Rotate 
  RLF  TEMP1,W ; Multiply By Two, To Get (10*W) in W 
 
 Converting from a binary byte to a three-digit, decimal number can be done with 
division or by repeated subtraction.  For example, use a counting-loop and count the 
number of times that ten or one hundred can be subtracted from the number without 
going over.  There are two subtraction instructions in the PIC.  The first is,          
“SUBWF  f,d”, which means, “subtract W from the register-file (RAM)” or: 
 
    W  =  (file)  -  W 
      Or  (file) =  (file)  - W. 
 
The second is, “SUBLW  k”, which means, “Subtract W from the eight-bit value, k, and 
put the result in W”.  That is: 
 
 W   =   k   -  W. 
 
In both of these, the STATUS flag bits  “Z” (Zero), “C” (Carry), and “DC” (Digit Carry) 
are all affected. 
 
 In addition to the arithmetic instructions there are six logic instructions as follows: 
 
 ANDWF     f,d       Logical “AND” with register-file 
 ANDLW      k        Logical “AND” with eight-bit data 
 
 IORWF       f,d       Logical “OR” (“Inclusive OR”) with register-file 
 IORLW         k       Logical “OR” (“Inclusive OR”) with eight-bit data 
 
 XORWF      f,d       Logical “XOR” (“Exclusive OR”) with register-file 
 XORLW       k        Logical “XOR” (“Exclusive OR”) with eight-bit data. 
 
Each of these affect only the “Z” (Zero) flag. 
 
 The logical “AND” function is used to force zeros (zero-bits) into data bytes.  
That is, it is used to mask off unwanted data bits.  For example, suppose you wanted the 
lowest three bits of the W register and you wished to mask off the rest of the bits (make 
them zero).  You could say, “ANDLW   0x07”, to retain only the three lowest bits.  If W 
contained 0xC6, doing the “AND” with 0x07 would give W = 0x06. 
 
 The logical “OR” function is used to force ones (one-bits) into data bytes.  For 
example, suppose you wanted to put ones in the upper four bits of the W register.  You 
could say, “IORLW   0xF0”.  If W contained 0xC3, doing this “OR” would give W = 
0xF3. 
 



 52

 The logical “XOR” function is useful for toggling bits “on” and “off”.  This could 
be used for making LEDs blink or flash.  It is also useful for selectively complementing 
bits in memory or in the W register.  For example, if you had W = 0x01 and you 
“XOR”ed it with 0x03, the result would be W = 0x02.  If you “XOR”ed it again with 
0x03, you would get W = 0x01.  Two successive XORs cancel each other out. 
 
 Another logic instruction is, “COMF   f,d”, which forms the one’s complement of 
a register-file (RAM).  The “COMF” instruction only affects the “Z” (Zero) STATUS 
flag.  To form the one’s complement of the W register, you could use, “XORLW  0xFF”. 
 
 The last instruction to study in this chapter is, “SWAPF   f,d”, which does a 
swapping of the upper and lower four-bits of a register-file (RAM).  For example, if the 
location “TEMP” contained 0xA9, doing a “SWAPF   TEMP,F” would put 0x9A in 
“TEMP”.  “SWAPF” does not affect any flags. 
 
 The PIC has three more instructions which we will cover in Chapter 8.  These 
instructions will not be covered, now, since they are special and more background is 
needed to understand them. 
 
 Adding or subtracting multi-byte numbers is more difficult in the PIC since there 
are no “add” or “subtract” instructions which include the “C” (Carry) STATUS flag at the 
start of the add/subtract.  Other processors have an “add-with-carry” and a “subtract-
with-borrow” instructions to make multi-byte arithmetic easier.  
 
 Suppose there are two, two-byte numbers to be added to get a two-byte result 
(sum).  Let these RAM locations be defined as follows: 
 
 (IN_1_HIGH     IN_1_LOW)        (IN_2_HIGH    IN_2_LOW) 
 
 (SUM_HIGH     SUM_LOW)        (CARRY_HOLD). 
 
The program to add these two-byte numbers is as follows: 
 
  MOVF  IN_1_LOW,W ; Load first number (low) 
  ADDWF IN_2_LOW,W ; Add second number (low) 
  MOVWF SUM_LOW  ; Store Sum (low) 
  CLRF  CARRY_HOLD ; Reset Carry-Hold Byte 
  BTFSC STATUS,C  ; Test If Carry Set 
  BSF  CARRY_HOLD,0 ; Set Carry-Hold if so 
  MOVF  IN_1_HIGH,W ; Load first number (high) 
  ADDWF IN_2_HIGH,W ; Add second number (high) 
  ADDWF CARRY_HOLD,W ; Add Carry to High Sum 
  MOVWF SUM_HIGH  ; Store Sum (high) 
 
A double-byte subtraction is similar, but if the “C” (Carry) is set, a “one” is subtracted 
from the high-byte of the difference. 
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 Another “odds & ends” point that needs to be covered is memory paging in the 
program memory.  The “CALL” and “GOTO” instructions only have eleven (11) address 
bits, which gives a range of destinations only in a 2048 (2K) block of program memory.  
The PIC16F877 has a full program memory space of 8192 (8K).  How can we get beyond 
the 2K limit? 
 
 The answer is to directly set or clear the upper-most bits in the high-half of the 
program-counter, “PCLATH”, using the “BCF” and “BSF” instructions, prior to doing a 
“CALL” or “GOTO” instruction.  These bits do not take effect immediately upon doing 
the “BCF” or “BSF” but are delayed or postponed until after the PIC gets the “CALL” or 
“GOTO” instruction to go to a higher memory beyond the 2K limit.  In the case of a 
“CALL” instruction, the corresponding “RETURN” does not need to adjust the 
“PCLATH” bits since the full return-address is saved (Just do a “RETURN”). 
 
 For example, consider the following program segment: 
 
  ORG  0x0100 
  BSF  PCLATH,4 ; Set Most Significant ADDR Bit 
  BSF  PCLATH,3 ; Set 2nd Most Significant ADDR Bit 
  CALL  HIGH_SUB 
 
  ORG  0x1827 
 HIGH_SUB: 
 
  RETURN 
 
This would call the “HIGH_SUB” subroutine in the upper 2K block of the 8K program 
memory. 
 
 Just as there is the “BANKSEL” directive, there is also the “PAGESEL” 
directive.  The “PAGESEL” directive simplifies the set-up of the PCLATH register prior 
to doing a GOTO or a CALL.  Its syntax is, “PAGESEL   program-address”.  For 
example, the above CALL to “HIGH_SUB” could be done more easily as: 
 
  PAGESEL HIGH_SUB 
  CALL  HIGH_SUB 
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 5.8      Using KEY_SCAN and DISPLAY Together 
 
 Let’s see how KEY_SCAN and DISPLAY can be used together so that the user’s 
keystrokes will appear in the LED digit display. 
 
 First, assume that the KEY_SCAN routine has been modified to de-bounce the 
keys and allow only one key at a time to be recognized.  This will be shown in principle 
with the techniques of Chapter 6.  Also, assume that a RAM location called 
“SKIP_CODE” has been filled with either 0x01 or 0xFF when the KEY_SCAN routine 
returns.  As before, assume that the KEY_SCAN routine returns with the key-code 
number in the W register. 
 
 Let the following instructions be executed every five milliseconds and in this 
order: 
 
  CALL  KEY_SCAN 
  DECFSZ SKIP_CODE,F 
  CALL  PROCESS_THE_KEY 
  CALL  DISPLAY 
 
If the “SKIP_CODE” RAM byte contained 0xFF, then the “DECFSZ” would not skip 
and the “PROCESS_THE_KEY” routine would be called.  The KEY_SCAN routine 
must do this only when there is a valid key-press.  Otherwise, a value of 0x01 must be 
used in “SKIP_CODE” to skip over the “PROCESS_THE_KEY” routine when no key is 
pressed. 
 
 Since the DISPLAY routine displays only whatever is in the display-RAM bytes, 
the job of the “PROCESS_THE_KEY” routine would save the raw key-code, shift the 
display-RAM bytes to the left by one digit, convert the raw key-code to a display-code, 
and then fill in the new display-code on the right-hand digit. 
 
 This would be done as follows: 
 
 PROCESS_THE_KEY: 
  MOVWF SAVE_KEY ; Save the raw key-code 
  BSF  USER_FLAGS,KEY_IS_READY  ; Tell Program “Key” 
 
  MOVF  LEFT_DIGIT2,W ; Shift Over One Digit to the Left 
  MOVWF LEFT_DIGIT 
  MOVF  LEFT_DIGIT3,W 
  MOVWF LEFT_DIGIT2 
  MOVF  RIGHT_DIGIT,W 
  MOVWF LEFT_DIGIT3 
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  MOVF  SAVE_KEY,W 
  SUBLW D’10’   ; Check if = “*” 
  BTFSS STATUS,Z 
  GOTO  NOT_STAR 
 
  CLRF  RIGHT_DIGIT ; Put Blanks in Right-Digit on “*” 
  RETURN 
 
 NOT_STAR: 
  MOVF  SAVE_KEY,W 
  SUBLW D’12’   ; Check if = “#” 
  BTFSS STATUS,Z 
  GOTO  NOT_POUND 
 
  CLRF  RIGHT_DIGIT ; Put Blanks in Right-Digit on “#” 
  RETURN 
 
 NOT_POUND: 
  MOVF  SAVE_KEY,W 
  SUBLW D’11’   ; Check if = “0” 
  BTFSS STATUS,Z 
  GOTO  NOT_ZERO 
 
  CLRW 
  CALL  GET_DISPLAY_CODE 
  MOVWF RIGHT_DIGIT 
  RETURN 
 
 NOT_ZERO: 
  MOVF  SAVE_KEY,W 
  CALL  GET_DISPLAY_CODE 
  MOVWF RIGHT_DIGIT 
  RETURN 
 
 
 (This program will do the trick to set-up the right display codes but it is not the 
best way to do it.  Can you think of a better way?). 
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 5.9      A Last Look at the Advanced Security System 
 
 The main body of the security system code would look like this: 
 
  LIST  P=16F877 
  INCLUDE “P16F877.INC” 
 
  ORG  0x0000 
  CALL  INITIALIZE 
 
 MAIN_LOOP: 
  CALL  DELAY_FIVE_MILLISECONDS 
  CALL  KEY_SCAN 
  DECFSZ SKIP_CODE,F 
  CALL  PROCESS_THE_KEY 
  CALL  DISPLAY 
  CALL  SCROLL_MENU 
  CALL  MENU_MODE 
  GOTO  MAIN_LOOP 
 
 MENU_MODE: 
  MOVF  MODE_CODE,W 
  ANDLW 0x07   ; Restrict to eight values 
  ADDWF PCL,F   ; Start of “JUMP” Table 
  GOTO  RESET 
  GOTO  IDLE 
  GOTO  SET_ZONES 
  GOTO  ARM_HOME_AWAY 
  GOTO  SET_ENTRY_CODES 
  GOTO  CHECK_FOR_ACTIVE_ALARMS 
  GOTO  SET_ALARM_CALL_POLICE 
  GOTO  READY_TO_ARM 
  ------- Body of Code ------------------------ 
  END 
 
Most of the main-loop code runs the keypad and the display.  The major modes of 
operation of the security system are controlled by the “MENU_MODE” routine.  The 
configuration of a table look-up that contains only “GOTO” instructions is very common 
in assembly language programs.  It is called a “Jump-Table”.  The RAM byte 
“MODE_CODE” selects what part of the program is active at any one time.  Since there 
are only eight (8) codes that are used, as (0,1,2,…,7), the “ANDLW  0x07” instruction 
will restrict any code to this range.  This is done for safety reasons so as not to over-index 
the table look-up. 
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 Each section of code in the various “modes” would have its own messages and 
prompts for the user’s inputs.  There must be very little delay in each of the modes and 
they must all return to the main-loop.  The techniques in Chapter 6 will show you how to 
do this. 
 
 This method of design keeps the body of the code short and simple.  It is easy to 
understand both conceptually and practically. 
 
 
 
 
 5.10     Summary of Instructions and Concepts 
 

1) The STATUS register contains the RP0 and RP1 bits which select the RAM 
banks in the direct addressing mode and the IRP bit which selects the RAM 
banks in the indirect addressing mode.  It also contains the “Z”, “DC”, and 
“C” flags, which are set-up as the results of arithmetic/logic instructions and 
the “MOVF” instruction. 

2) The BANKSEL directive manipulates the RP0 and RP1 bits of the STATUS 
register. 

3) The “ADDWF   PCL,F” instruction is a “GOTO”-like instruction and is the 
basis of all table look-ups, including “Jump-Tables”.  The table-data must fit 
squarely within a 256-word block of program memory. 

4) Indirect addressing of RAM allows for the manipulation of data arrays.  The 
RAM address is placed in the “FSR” register and the instruction which is to 
use indirect addressing must reference the memory pointed-to by the “FSR” 
by using a reference to the “INDF” register. 

5) The “CALL” and “GOTO” instructions are limited to a 2 K block of program 
memory, in themselves.  Bits “4” and “3” of the “PCLATH” register must be 
manipulated before doing a “CALL” or “GOTO” whose target address is 
beyond the current 2 K block.  These bits do not take immediate effect when 
they are set-up but are postponed until after the “CALL” or “GOTO” is 
executed.  The “PAGESEL” directive simplifies this process. 

6) A “RETURN” or a “RETLW” instruction does not need to manipulate the 
“PCLATH” register bits prior to returning from the subroutine. 

7) An “Add” or “Subtract” instruction will generate a carry-bit (“C”) but there is 
no way to include the carry-bit at the start of the “Add/Subtract” instruction. 

8) If a CALL is made to an “ADDWF  PCL,F” table look-up subroutine which is 
not in the same 256-word block of memory as the “CALL”, the high-half of 
the subroutine’s address must be loaded into the PCLATH register before the 
“CALL” is made.  (See pages 45 and 46.) 

9) The following instructions were introduced in Chapter 5: 
a)   RETLW    data 
b)   ADDLW    data 
c)   ADDWF     file,destination 
d)   CLRF          file 
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e) CLRW 
f) INCF          file,destination 
g) DECF         file,destination 
h) RRF            file,destination 
i) RLF            file,destination 
j) SUBLW      data 
k) SUBWF     file,destination 
l) ANDWF    file,destination 
m) ANDLW    data 
n) IORLW      data 
o) IORWF      file,destination 
p) XORLW    data 
q) XORWF     file,destination 
r) COMF        file,destination 
s) SWAPF      file,destination 

 
10) Three remaining instructions have not yet been introduced. 

 
 
 This concludes Chapter 5.  A complete list of all of the PIC16F877’s instructions 
and how to use them is contained in Appendix A. 
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Chapter 6:     Fundamental ESP Techniques 
 
 
 6.0     Chapter Summary 
 
 Section 6.2 covers software readability.  Section 6.3 covers software 
maintainability.  Section 6.4 discusses the most general fundamentals of embedded 
systems software.  Section 6.5 discusses the background routine.  Section 6.6 covers the 
theory of the watch-dog timer.  Section 6.7 discusses event driven software.  Section 6.8 
covers the theory of processor interrupts.  Section 6.9 discusses slow inputs and outputs.  
Section 6.10 covers software time measurement techniques.  Section 6.11 discusses 
hashing techniques.  Section 6.12 covers the software methods of waveform encoding.  
Section 6.13 covers waveform decoding techniques.  Section 6.14 discusses the 
fundamental tradeoffs of time, program memory, and RAM and how these affect program 
size and execution speed.  Section 6.15 discusses “ROM states” which are useful for high 
speed operation.  Section 6.16 discusses the limitations of C/C++ in low end embedded 
systems programming. 
  
 
 6.1     Introduction 
 
 Programming for embedded applications involves more than just programming in 
the traditional sense.  Embedded systems programming embodies total systems design.  
The programming part requires an active understanding of the electronics and mechanics 
of the system. 
 
 Even so, programming for embedded systems has a style, technique, art, and 
science of its own.  It is always true that each individual engineer and programmer has a 
style of programming that is uniquely his or hers, but there are sets of common practices 
in the industry which unify the goals of embedded systems programming in general.  This 
chapter will give guidelines and the common practices for embedded systems 
programming in a general sense. 
 
 
 6.2   Software Readability 
 
 
 It is generally true that all programs need sound documentation but this is 
especially true for embedded systems programming since there is such a strong 
connection to the hardware.  Often the documentation should explain the hardware 
connections that parallel the software constructs.  Such things as gates, memories, LEDs, 
switches, motors, and other devices have wiring conventions of their own which become 
important when they are interfaced to the PIC.  The documentation should clearly state 
how these devices are to be used and which parts of the PIC will control them. 
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 Other aspects of documentation are similar to traditional programming in that it 
should clearly define the software operations that are used and fully explain the 
programmer’s intent in using combinations of instructions to accomplish a given task. 
 
 Software readability should give another programmer a solid idea of what the 
program is about, without ego getting in the way.  This is another aspect of writing with 
the intent of being understood.  This is also important when you, as the programmer, 
leave the program alone for a few years and then come back to it when you need it.  Your 
documentation should give you a clear picture of your program even after you are away 
from it for years.  You should state all of the “hidden” secrets in the documentation 
without trying to carry them in your head.  The documentation should be complete in 
every way. 
 
 
 6.3     Software Maintainability 
 
 Maintainability is the art of building complex software systems out of simple 
components that are easy to modify and make the software easily adaptable to new, but 
similar, applications.  Products and systems rarely “stand alone” after they are created 
and are dynamic.  New markets and new applications will come into being and the 
software systems must meet these future uses without having to be completely 
redesigned.  Maintainability is the art of designing for the future as well as the present. 
 
 6.4    Software Fundamentals 
 
 Embedded software should be modular and should have a simple “main-loop”.  
The main-loop should be “small” or at most two pages long.  It should call subroutines as 
the functional, modular blocks to perform each major task.  Each task should be free of 
overhead and its subroutine should do its tasks in as simple a way as possible.  The 
security system software example at the end of Chapter 5 is a good example of a simple 
main-loop and a simple and maintainable software structure. 
 
 Subroutines should also be “small” if possible.  They should have multiple entry-
points and serve multiple purposes.  This is contrary to high-level programming practices 
which emphasize “one entry-point, one function” subroutines.  It may be necessary, due 
to memory constraints, to squeeze as many functions as possible into the smallest space. 
 
 Subroutines that work as modules must be careful when the subroutines they call 
take too long to run.  There must be no or, very little, time delays or bottlenecks that 
would interfere with the timely operation of the system.  Generally, it is wise to avoid 
recursive subroutine calls. 
 
 Another good programming practice is “information-hiding”.  Subroutines should 
be classed into layers of low-level, medium-level, and high-level functions.  This does 
not mean that they should be nested this way.  It means that information should be 
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processed in separate layers.  For example, in a security system, a low-level function 
would read the raw data, such as, switch closures and voltages, set LEDs and other bit-
level outputs and put the results in RAM.  A medium-level function would set-up alarm 
conditions from the low-level data and put its results in RAM.  The high-level functions 
would, then, perform the “command-and-control” tasks such as setting and reporting an 
alarm.  Since each level puts its intermediate data into RAM, there is no need to nest 
these routines.  Information and processes can be “hidden” from the upper levels and 
make the overall program more compartmentalized and make it more maintainable. 
 
 
 6.5    The Background Routine 
 
 One large subroutine should be called from the main-loop to do housekeeping 
tasks.  This is called the “background” routine.  It consists of common tasks which can 
remain invisible to the rest of the program, such as keeping a time-of-day clock and 
calendar, refreshing port settings, servicing slow inputs and outputs, sampling a keypad,  
running an LED digit display, and, in the case of a robot, running stepper motors. 
 
 
 6.6     The Watch-Dog Timer 
 
 Microprocessor and microcontroller systems are not as stable as other digital 
hardware due to the fact that they are more complex and they work with flexible 
software.  It is easy for such a system to get “locked-up” in infinite software loops due to 
a noise spike or unanticipated data.  As a programmer, you try to account for all of the 
possible input data that can come into your system and all of the possible results of the 
calculations on that data, but in reality, you can’t.  An unexpected situation may arise and 
put the processor into an infinite software loop. 
 
 The watch-dog timer is typically a hardware device external to the processor that 
has the power to reset the processor over-and over if the watch-dog timer itself is not kept 
in reset by the processor’s software.  Its job is to break the software out of any infinite 
software loops if they should occur.  The software must be active all of the time and it 
must not have any substantial delays.  It must reset the watch-dog timer on a regular basis 
and, if it doesn’t, the watch-dog will keep resetting  the processor over-and-over. 
 
 The PIC16F877 has a built-in watch-dog timer which is built into the chip, but it 
operates or can operate independently from the other PIC hardware.  It can be enabled 
and disabled from software with an adjustable time-out time, and the PIC has a special 
instruction, “CLRWDT”, which resets the watch-dog timer.  The specific details of its 
use will be covered in Chapter 8 (PIC Peripherals). 
 
 Other processors may not have a built-in watch-dog timer and it may be necessary 
to get a watch-dog timer chip to use in the system.  An industrial product cannot do 
without one!  It is a MUST!  One watch-dog timer chip available from Maxim is the 
MAX690CPA.  It is also possible to make your own watch-dog timer from all-digital 
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gates as shown in Figure 6-1.  The microprocessor’s port-pin drives the clock input of a 
“one-and-only-one” pulse circuit which in turn drives the counter’s reset line.  If there are 
no watch-dog resets, the counter will reset the microprocessor.  The clock input of the 
pulse circuit is an edge-triggered input.  This is critical.  The watch-dog timer must not be 
reset with a level signal so that it cannot be accidentally left in “reset”.  The software 
must always toggle the port-pin line. 
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 The command or command sequence to reset the watch-dog timer should be 
placed once-and-only-once in a program.  It should be placed in the main-loop since the 
software must always come back to the main-loop.  The time-out time of the watch-dog 
timer should be about one second for most applications.  A good rule of thumb for the 
watch-dog’s period is about ten times the longest software delay in the main-loop. 
 
 
 6.7     Event-Driven Software 
 
 Event-driven software is the central unifying concept in embedded systems 
programming.  It is the main idea which separates ESP from traditional programming. 
 
 Event-driven software uses flags and counters in RAM to mark the progress of an 
input.  When there are changes to the input, the flags and counters are updated to reflect 
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these changes.  Event-driven software can control many delays and many arbitrary 
processes at once without waiting in loops.  There are no bottlenecks in event-driven 
code. 
 
 An example program will show the structure and function of event-driven code.  
This example is for de-bouncing a push-button switch.  This software routine looks for 
the contact and the release of the switch before declaring that the data is valid.  The 
flowchart for this process is shown in Figure 6-2. 
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 Assume that the following routine is called every five milliseconds at a time: 
 
 PUSH_BUTTON: 
  BTFSC FLAGS,PRESSED ; Test if the button is de-bounced 
       ;      AND “ON” (Pushed) 
  GOTO  WAIT_FOR_RELEASE 
 
  BTFSC PORTB,PUSH_BTN ; Test the raw button state 
  GOTO  WAIT_FOR_SET ; =   Pushed (“ON”) 
  GOTO  RESET_COUNTER ; =  “OFF”, Reset De-Bounce  

;    Timer 
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 WAIT_FOR_SET: 
  DECFSZ WAIT_COUNTER,F ; Delay for De-Bounce 
  RETURN 
  BSF  FLAGS,PRESSED ; Set “De-Bounced, ON” 
  GOTO  RESET_COUNTER 
 
 WAIT_FOR_RELEASE: 
  BTFSC PORTB,PUSH_BTN ; Test raw button state 
  GOTO  RESET_COUNTER ; =   Pushed (“ON”) 
 
  DECFSZ WAIT_COUNTER,F ; = “OFF”, wait for De-Bounce 
  RETURN 
  BCF  FLAGS,PRESSED ; De-Bounce Cycle Done! 
  BSF  FLAGS,DATA_READY  ; Done! Data is Ready! 
 RESET_COUNTER: 
  MOVLW WAIT_TIME  ; Fill Initial Value of Counter 
  MOVWF WAIT_COUNTER 
  RETURN 
 
 At the start of the routine, the software checks if the push-button has been pressed 
and has passed the de-bouncing in the “ON” state.  If it has, the software goes to look for 
the release of the push-button.  If not, the raw state of the switch is checked.  If it is 
pressed (“ON” ), the counter loop is run to satisfy the de-bouncing condition.  If it is not 
pressed, the counter is reset.  If the “ON” state de-bouncing is satisfied, the “PRESSED” 
flag is set, the counter is reset, and the routine will then look for the de-bouncing in the 
released state.  Once the release is complete, the “DATA_READY” flag is set to register 
a complete “press and release” of the push-button. 
 
 At no time does this routine do any waiting.  It is called, it checks for conditions, 
it performs its actions, and in each case, it exits. 
 
 The time the routine takes to run is negligible and many similar routines can be 
run with the illusion of being simultaneous. 
 
 Event-driven software can also be used with internal events, such as for flashing 
LEDs and for generating waveforms. 
 
 An application that is event-driven will spend 99 percent of its time doing 
nothing!  It acts only on the change of internal and external events and has no waiting 
loops.  Event-driven techniques make working with the watch-dog timer easy and the 
resulting program is very maintainable! 
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 6.8     Interrupts 
 
 Interrupts are a hardware process whereby a piece of hardware can cause the 
processor to execute a subroutine at a special address.  The process makes the CPU drop 
whatever it is doing at the time and run the subroutine.  The PIC16F877 has a total of 14 
interrupts related to its peripheral functions.  The mechanics of how to use them will be 
shown in Chapter 8 (PIC Peripherals). 
 
 Many processors (including the PIC) allow the interrupts to be “enabled” and 
“disabled” under software control.  In some processors, there are interrupts which cannot 
be disabled and will respond “knee-jerk” fashion at all times.  Interrupts must be used 
with extreme care and can cause many severe software/hardware problems if they are 
abused. 
 
 Why are interrupts used?  An interrupt is the fastest way to get the processor’s 
attention to work on an urgent problem.  It should be used only in this case.  If a timer or 
counter is set to run as a time-base for the system (the PIC can also do this), an interrupt 
is an ideal way to respond to the timer/counter and re-initialize it.  If there is a peripheral 
that must be serviced very quickly and there is no other way to do it, then an interrupt 
must be used. 
 
 I regard interrupts as “the method of last resort” in any programming situation.  
The potential for abuse when using interrupts is very severe.  The problems they can 
cause can be extremely difficult to track-down and solve.  If you can avoid using 
interrupts, I strongly advise that you do not use them.  Event-driven techniques are far 
easier to work with in every way. 
 
 One particularly nasty abuse of interrupts is to use them for keypads and switch 
de-bouncing.  This is the most inappropriate use of interrupts.  There is no way that a key 
needs an interrupt to process it, since it works at millisecond speeds and a human key 
operator is much slower. 
 
 Interrupts and their service-subroutines should NEVER be used to reset the watch-
dog timer.  The interrupt is a “knee-jerk” response and a subroutine.  If the service-
subroutine is called from an infinity loop, it will return to that infinity loop upon its return 
from the interrupt, thereby defeating the whole purpose of having the watch-dog timer in 
the first place! 
 
 6.9      Slow Inputs and Outputs 
 
 As a general rule of thumb, an input or an output is “slow” if changes to or from it 
occur in one millisecond or more time.  Such things as DIP switches, push-button 
switches, telephone-ringing sensors, LEDs, multiplexed LED digits, relays, motors, 
temperature sensors, and heating elements are considered “slow” I/O. 
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 Slow inputs and outputs should be sampled in one, and only one, place in the 
software, and, preferably, should be done in the background routine. 
 
 All slow inputs should be buffered, processed, and sorted by special routines 
before their information is made available to the rest of the program.  All slow outputs 
should do the same before being presented to the outside world. 
 
 There are several reasons for doing this.  If there were design changes to the 
hardware where the input or output port-pins are swapped, only these special routines 
would have to be changed instead of the whole program!  These routines could de-
scramble the inputs and outputs so that they are in uniform order (e.g., Input-0 = Bit-0, 
Input-1 = Bit-1, …).  Some inputs and outputs may be active-low or active-high.  These 
routines can convert every input and output to an “active-high” state.  This is another 
example of layered software and information hiding. 
 
 After the slow inputs are buffered, processed, sorted, and made uniform, the 
results should be put into RAM.  Any time that the program needs the information, it can 
check these RAM bytes.  The program should never check the bit directly at the port.  
The slow outputs, in a similar way, should be buffered, processed, sorted, and made 
uniform from a RAM location when it is to be sent to the output port.  Changing a bit in 
these RAM locations is equivalent to sending it out to a port.  Only the background 
routine and the special input/output routines should interface with the port directly. 
 
 6.10     Software Time Measurement 
 
 Although the PIC and other processors have hardware for measuring time-delays 
and pulse-widths, it is still useful to have software techniques for doing these things, in 
that they can be made more fault-tolerant than the hardware versions. 
 
 A simple software time-measurement loop is as follows: 
 
 TIME_MEASURE: 
  CLRW    ; Reset Time-Measure Counter 
 TIME_LOOP: 
  BTFSC PORTB,EVENT_SENSE  ; Look For The Event 
  RETURN 
  MOVWF TEMP 
  INCF  TEMP,W ; Increment (W) Time-Measure Counter 
  BTFSS STATUS,Z ; Check for End of Loop 
  GOTO  TIME_LOOP 
  RETLW 0xFF 
 
The time-measurement is returned in the W register.  The total loop-time in this routine is 
seven instruction cycles. 
 
 A faster and higher resolution software time-measurement process is as follows: 
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 TIME_MEASURE: 
  BTFSC PORTB,EVENT_SENSE  ; Look for Event 
  RETLW 0 
  BTFSC PORTB,EVENT_SENSE 
  RETLW 1 
  BTFSC PORTB,EVENT_SENSE 
  RETLW 2 
 ---- And So On For The Desired Time Length ----- 
 
This “non-loop” has a resolution of only two instruction cycles instead of seven in the 
first loop.  It takes up much more space, but it runs very quickly and has very high time  
resolution. 
 
 
 6.11     Hashing 
 
 Hashing is a table-search technique that uses the input data directly as the address 
or index of the table item to find.  Actually, we have already seen hashing in action 
through the look-up tables in Chapter 5.  It is not only fast, but it also runs in uniform-
time (i.e., the time it takes to find a table entry is the same for each table entry).  The 
security system at the end of Chapter 5 also introduced us to “jump tables”.  This is a 
very important concept since it gives you the ability to “GOTO” a variable address in 
program memory. 
 
 Conversion tables for converting from ASCII to seven-segment codes are very 
common in all programs.  Also, rapid scrambling or de-scrambling of data can be done in 
these tables.  The key is to use the data as the index of the table.  Whole waveforms can 
be stored in these tables for the production of music and other sounds. 
 
 An improved jump table is as follows: 
 
 DO_JUMPS: 
  MOVWF TEMP  ; Multiply (W) by three 
  BCF  STATUS,C 
  RLF  TEMP,F 
  ADDWF TEMP,W 
  ADDWF PCL,F  ; Index the Jump Table 
  BCF  PCLATH,4 ; (We could use PAGESEL here) 
  BSF  PCLATH,3 
  GOTO  SOME_HIGH_JUMP1 
  BSF  PCLATH,4 
  BSF  PCLATH,3 
  GOTO  SOME_HIGH_JUMP2 
 ----- And So On For More Long Jumps ----- 
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This allows you to do “GOTO”s to any memory location. 
 
 
 6.12     Waveform Encoding 
 
 In some applications a microprocessor or a microcontroller may need to be used 
as a modem and must generate a coded waveform.  This is an excellent example of where 
software can be used to mimic hardware.  If the waveform is a “burst”, or, short packet of 
a bit-stream, the routine to do it can be a short loop.  If the waveform is to be a 
continuous, running stream of data, the routine must use event-driven techniques. 
 
 For example, consider a Frequency-Shift-Keying (FSK) burst encoder that uses 
two frequencies as 2400 Hz and 2250Hz for logic “1” and logic “0”, respectively.  
Assume that the data rate is 150 Baud and that the data structure is:  A preamble of ten 
“1”s, a “0”, twenty-five (25) data bits, and an end bit, for a total of 37 bits to send.  In this 
timing a “1” will be sent as 16 cycles of 2400 Hz and a “0” will be sent as 15 cycles of 
2250 Hz.  This time delay between bits is not critical but the frequency stability is critical 
and is set as a half-cycle as a “delay then complement output line state”.  This gives 32 
half-cycles of 2400 Hz and 30 half-cycles of 2250 Hz. 
 
 The following routine will do the above FSK: 
 
 FSK: 
  MOVLW DATA_BIT_ARRAY  ; Get Address of Data 
  MOVWF FSR    ; Set-Up Indirect ADDR 
 SEND_2400: 
  MOVLW 32 ; Do 32 Half-cycles of 2400 Hz 
  MOVWF COUNT 
 LOOP_2400: 
  CALL  DELAY_SEND_2400 ; Do Half-Cycle 
  DECFSZ COUNT,F 
  GOTO  LOOP_2400 
  MOVF  INDF,W ; Get Next Bit To Send 
  INCF  FSR,F  ; Point To Next Bit To Send 
  ADDWF PCL,F  ; Look-Up Table: Do Next Bit 
  GOTO  SEND_2250 ; 0 = Send Zero Bit 
  GOTO  SEND_2400 ; 1 = Send One Bit 
  RETURN   ; 2 = DONE, Return 
  RETURN   ; 3 = DONE, Return 
 
 SEND_2250: 
  MOVLW 30 ; Do 30 Half-Cycles of 2250 Hz 
  MOVWF COUNT 
 LOOP_2250: 
  CALL  DELAY_SEND_2250 ; Do Half-Cycle 
  DECFSZ COUNT,F 
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  GOTO  LOOP_2250 
  MOVF  INDF,W ; Get Next Bit to Send 
  INCF  FSR,F  ; Point To Next Bit To Send 
  ADDWF PCL,F  ; Look-Up Table: Do Next Bit 
  GOTO  SEND_2250 ; 0 = Send Zero Bit 
  GOTO  SEND_2400 ; 1 = Send One Bit 
  RETURN   ; 2 = DONE, Return 
  RETURN   ; 3 = DONE, Return 
 
 The Data Array would contain the sequence of bits starting from the preamble, 
and going to the end-bit.  After the end-bit would be a code of “2” or “3” to stop and 
return. 
 
 
 Another burst-type data transmission technique is the Manchester code.  This is 
best seen in Figure 6-3.  This works as a kind of “differential phase-shift keying” (DPSK) 
on one cycle of a square wave.  It is a polar waveform and it can only be used where the 
transmission medium can support edges and pulse-widths without distortion.  Its timing 
in all of its parts is very critical and only a strict ratio of pulse widths as 2:1 are allowed.  
Assume for the following example that the data structure is:  A preamble of ten “1”s, a 
“0”, and sixteen (16) data bits.  The Manchester Code waveform routine is as follows: 
 
 TEMP:  EQU 0x20 
 FLAGS:  EQU 0x21 
 DATA_ARRAY: EQU 0x30 
 
 OUTPUT_BIT: EQU 0 ; PORTC, Bit 0 
 SAMPLE_FLAG: EQU 1 ; Mark Half-Cycle Where To Sample  

;    Data 
 INHIBIT_FLAG: EQU 0 ; If Set, Inhibit State-Complement 
 
 MANCHESTER_WAVE: 
  BCF  PORTC,OUTPUT_BIT ; Reset Output Bit 
  BSF  FLAGS,SAMPLE_FLAG ; Sample on Odd Cycles 
  BCF  FLAGS,INHIBIT_FLAG ; Assume For Start,  

;    Preamble 
  MOVLW DATA_ARRAY 
  MOVWF FSR    ; Indirect ADDR 
 
 MANCHESTER_LOOP: 
  CALL  DELAY   ; Delay For Half-Cycle 
  CLRF  TEMP    ; Set-Up TEMP with 
  BCF  TEMP,OUTPUT_BIT ; Complement of INHIBIT 
  BTFSS FLAGS,INHIBIT_FLAG ; In Position of 
  BSF  TEMP,OUTPUT_BIT ; Output Bit of PORTC 
  BCF  FLAGS,INHIBIT_FLAG 
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  MOVF  TEMP,W   ; Then, XOR This Bit 
  XORWF PORTC,F   ; With Output Bit 
 

BTFSS FLAGS,SAMPLE_FLAG ; See If Sample 
  GOTO  DELAY_COMPENSATION ; No, Do Delay Comp 
  BCF  FLAGS,SAMPLE_FLAG ; Do Sample Now 
  MOVF  INDF,W   ; Get Data To Send 
  BCF  STATUS,C 
  MOVWF TEMP    ; Multiply By Two 
  ADDWF TEMP,W 
  ADDWF PCL,F    ; Look-Up Table 
  BCF  FLAGS,INHIBIT_FLAG ; 0 = Send “Same” Data 
  GOTO  MANCHESTER_LOOP 
  BSF  FLAGS,INHIBIT_FLAG ; 1 = Change Phase, Data 
  GOTO  MANCHESTER_LOOP 
  RETURN     ; 2 = 3 = DONE, Return 
  RETURN 
  RETURN 
  RETURN 
 
 DELAY_COMPENSATION: 
  BCF  FLAGS,INHIBIT_FLAG ; No Phase Change 
  BSF  FLAGS,SAMPLE_FLAG ; Sample Next Time 
  NOP 
  NOP 
  NOP 
  NOP 
  GOTO  MANCHESTER_LOOP 
 
 
 Whenever there is a change of data, the INHIBIT flag performs the phase-change 
by inhibiting the state-change on Port C, Bit zero. 
 
 Also notice that both the FSK and the Manchester encoders use one RAM byte 
per bit to send which is wasteful of RAM.  Usually single bits in a small number of RAM 
bytes are used for the bits to send.  Can you think of some schemes to use indirect 
addressing and use single bits in each byte?  It could be “destructive” in that the byte got 
rotated and filled with zeros or it could be “non-destructive” and just sense the bits as 
they are.  Try to think of several ways to do this. 
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Figure 6-3  Manchester Code Waveform

 
 
 6.13     Waveform Decoding 
 
 Waveform decoding is the process of recovering data from an encoded, 
modulated waveform.  The FSK signal in the previous section can be decoded with a 
phase-locked loop (PLL), where the control-voltage feeds the PIC’s analog-to-digital 
converter input.  Samples on the ADC are taken several times over the space of one bit to 
eliminate noise. 
 
 The Manchester Coded waveform can be decoded by following the highs and 
lows of the digital waveform.  This requires getting into synchronization with the wave, 
measuring the pulse-widths, counting the pulses, and recovering the data by judging the 
phase-reversals.  This process is shown in detail in Figure 6-4. 
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Figure 6-4  Decoding the Manchester Waveform

 
 
 
 Both the FSK and Manchester data recovery processes must use hashing to place 
the data bits that are decoded. 
 
 A detailed example program of the Manchester decoding process is as follows: 
 
 MANCHESTER_DECODE: 
  CALL  TIME_LOW  ; Start of Synchronization 
  ADDLW 0   ; See If W = Zero 
  BTFSS STATUS,Z 
  GOTO  DO_HIGH_MEAS ; Was In LOW, Look At Full HIGH 
  CALL  TIME_HIGH  ; Was In HIGH, Complete HIGH 
  CALL  TIME_LOW  ; Do Full LOW 
 
 DO_HIGH_MEAS: 
  CALL  TIME_HIGH ; Measure HIGH Pulse W = Count 
  MOVWF TIME 
  CALL  TIME_LOW  ; Measure LOW Pulse W = Count 
  ADDWF TIME,F  ; Average These Counts 
  RRF  TIME,W 
  MOVWF SHORT_BASE ; Save SHORT Pulse Width 
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  ADDWF SHORT_BASE,W ; Mult By Two 
  MOVWF LONG_BASE ; Save as LONG Pulse Width 
 
  MOVF  SHORT_BASE,W ; Form Threshold = 
  ADDWF LONG_BASE,W ; Average(SHORT,LONG) 
  MOVWF THRESH 
  RRF  THRESH,F 
 
  MOVLW NINE   ; Track The Preamble Pulses (9) 
  MOVWF PREAMBLE_CNT 
 PREAMBLE_LOOP: 
  CALL  TIME_HIGH ; Measure HIGH Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
  ADDWF PCL,F 
  GOTO  STILL_PREAMBLE ; 0 = SHORT, Still in PREAMBLE 
  GOTO  GET_THE_DATA ; 1 = LONG, Start of Data 
  RETLW 2   ; 2 = ERROR in Timing 
 
 STILL_PREAMBLE: 
  CALL  TIME_LOW  ; Measure LOW Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
  ADDWF PCL,F 
  GOTO  DEC_PREAMBLE ; 0 = SHORT, Do Loop DEC 
  RETLW 1   ; 1 = LONG, Polarity ERROR 
  RETLW 2   ; 2 = ERROR in Timing 
 
 DEC_PREAMBLE: 
  DECFSZ PREAMBLE_CNT,F ; Decrement Counter 
  GOTO  PREAMBLE_LOOP 
  RETLW 3   ; ERROR Time-Out 
 GET_THE_DATA: 
  MOVLW N_DATA_BITS ; Count Number Of Data Bits 
  MOVWF BIT_COUNT 
 
 IN_A_ZERO: 
  CALL  TIME_LOW  ; Measure LOW Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
  ADDWF PCL,F 
  GOTO  STILL_IN_ZERO ; 0 = SHORT, Still In a ZERO 
  GOTO  TRANSIT_TO_ONE ; 1 = LONG, Go To ONE LOOP 
  RETLW 2   ; 2 = ERROR in Timing 
 
 STILL_IN_ZERO: 
  CALL  PLACE_ZERO_BIT ; Hash Store Data Bit = ZERO 
  CALL  TIME_HIGH ; Measure HIGH Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
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  ADDWF PCL,F 
  GOTO  DO_DEC_ZERO ; 0 = SHORT, Dec Zero Loop 
  RETLW 1   ; 1 = LONG, ERROR Pulse 
  RETLW 2   ; 2 = ERROR in Timing 
 
 TRANSIT_TO_ZERO: 
  CALL  PLACE_ZERO_BIT ; Hash Store Data Bit = ZERO 
 
 DO_DEC_ZERO: 
  DECFSZ BIT_COUNT,F ; Decrement Bit Counter 
  GOTO  IN_A_ZERO 
  RETLW 0   ; DONE, OK 
 
 IN_A_ONE: 
  CALL  TIME_HIGH ; Measure HIGH Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
  ADDWF PCL,F 
  GOTO  STILL_IN_ONE ; 0 = SHORT, Still in a ONE 
  GOTO  TRANSIT_TO_ZERO ; 1 = LONG, Data is a ZERO 
  RETLW 2   ; 2 = ERROR in Timing 
 
 STILL_IN_ONE: 
  CALL  PLACE_ONE_BIT ; Hash Store Data Bit = ONE 
  CALL  TIME_LOW  ; Measure LOW Pulse W = Count 
  CALL  SORT_TIMES ; Classify Count 
  ADDWF PCL,F 
  GOTO  DO_DEC_ONE ; 0 = SHORT, Do Dec Loop 
  RETLW 1   ; 1 = LONG, ERROR Pulse 
  RETLW 2   ; 2 = ERROR in Timing 
 
 TRANSIT_TO_ONE: 
  CALL  PLACE_ONE_BIT ; Hash Store Data Bit = ONE 
 
 DO_DEC_ONE: 
  DECFSZ BIT_COUNT,F ; Decrement Bit Counter 
  GOTO  IN_A_ONE 
  RETLW 0   ; DONE, OK 
 
 This routine calls several subroutines to measure time, classify the times, and 
place the data bits into RAM.  The time measuring routines, TIME_LOW and 
TIME_HIGH, work just like the seven-cycle loop of the “Time Measurement” section.  
The “TIME_LOW” routine returns when the input is sensed “high”, while the 
“TIME_HIGH” routine returns when the input is sensed “low”.  The data placement 
routines work by hashing the bit counter.  That is, the bit counter is multiplied by two and 
looked-up in a table with “BCF”s or “BSF”s and a “RETURN”.  The time classifier 
compares the time against the threshold and then tests the time as “Short” or “Long” to 
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within an absolute value difference of two using the “SORT_TIMES” routine.  Then it 
returns with codes for, “Short”, “Long”, and “Error”. 
 
 
 6.14     RAM, ROM, and Time Tradeoffs 
 
 There are three major tradeoffs of memory and time in embedded systems 
programming.  These are: 
 

1) “RAM vs. ROM” 
2) “ROM vs. Time” 
3) “Run-In-ROM vs. Run-In-RAM” 

 
In the “RAM vs. ROM” tradeoff, the usage of RAM and ROM tends to vary inversely.  
For example, a calculation subroutine may use more RAM to figure intermediate values 
or it may use more ROM in the form of a look-up table.  Event-driven programs tend to 
be RAM-intensive since they use flags and counters to track input and output signals. 
 
 In the “ROM vs. Time” tradeoff, the size of the ROM code varies inversely with 
the code-speed execution.  For example, the short-loop time measurement scheme used 
only seven cycles of time and eight ROM words.  The “non-loop” scheme could use up to 
512 ROM words but had a resolution of only two cycles.  The short-loop could measure 
times as long as 1.75 milliseconds but the “non-loop” could measure only half a 
millisecond. 
 
 In the “Run-In-ROM vs. Run-In-RAM” tradeoff, a processor that has the 
capability of running its programs from RAM has a speed and versatility advantage over 
processors that only run their programs in ROM.  For example, if a high-speed waveform 
is to be sent out, the processor that only runs in ROM may not be fast enough to run it.  If 
a processor that can run its programs in RAM uses the ROM program to synthesize a 
short subroutine in RAM and call it from ROM, it can run at the highest possible speeds!  
The PIC cannot do this exactly, but it does have field-programmable data and program 
memories that can exploit some of these tricks.  (These will be shown in Chapter 8.) 
 
 
 6.15     ROM States 
 
 The idea of a “ROM State” is to make a program that “remembers” previous data 
values by being in different parts of the program in the program memory or ROM.  That 
is, where you are in the program is a reflection of what the previous data was.  This 
technique is used only for “high-speed” or “high-efficiency” applications since “ROM 
State” subroutines get very large for complex tasks. 
 
 An example application which uses ROM States for its most efficient coding is a 
“median filter”, which will be discussed in full in Chapter 10 (DSP Fundamentals).  The 
idea of a median filter is to keep five samples of data in the order they were received, 
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transfer them to a second data array, sort the second data array into order, and send out 
the middle point (the median) as the “output”. 
 
 The time-optimal way to do this using ROM States is to keep part of the previous 
order in the second array and, when a new sample comes in, fit that sample into the 
mostly-sorted array so that the whole array is sorted again.  First, find the oldest sample 
(which will be discarded) in the sorted array and mark its position in the array by doing 
one of five “GOTO” instructions.  At the target addresses of each of these “GOTO”s the 
new sample is tested against the other four sorted positions and, depending on where the 
new sample will fit in, five more “GOTO” instructions are used to mark the new position.  
In each of these program parts, in turn, only the smallest number of shifts in the data 
array are used to insert the new sample into the new sorted order.  Twenty-five “GOTO” 
instructions, as above, are used altogether but the code is not redundant.  The code is 
specific to the tasks to be done. 
 
 If the median filter is done without ROM States, in the traditional way, the 
running-time is 113 instruction-cycles and the subroutine takes up about 80 program 
memory words.  If the median filter does use ROM States, the running-time is 57 
instruction-cycles and the subroutine uses 320 program memory words.  Using ROM 
States cuts the running-time in half but quadruples the program size. 
 
 
 6.16     Limitations of C/C++ 
 
 The major selling-point of using a C/C++ compiler is that it is said to produce 
object code that is very nearly like that of an assembly language program while allowing 
the user to write in machine-independent code.  While this is true for traditional 
programs, high-end ESP programs, and medium-end ESP programs, it is not true, in 
general, for low-end ESP programs. 
 
 
 The C/C++ language can be used successfully in low-end embedded programs 
which are not timing-critical.  Low-end systems that need to work at high speeds or high 
efficiencies cannot use C/C++ because the compiler produces code which is far inferior 
to assembly language code.  Optimum-time low-end code is necessarily a function of the 
code geometry and is by no means “just an algorithm”. 
 
 For example, how would a C/C++ compiler for the PIC16F877 fill a twenty-
element RAM array with zeros when it is given the statement: 
 
  “for(k=0;k < 20;k++) Array[k] = 0;” ? 
 
It would probably produce a loop that counts to twenty and stores zeros in the array by 
using indirect addressing.  This is fine for an application which is not timing-critical but it 
is useless for one that is.  What would be the fastest way to fill a twenty-element array in 
RAM with zeros using the PIC assembly language?  Use twenty “CLRF  ARRAYn” 
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statements in a row!  How many standard C/C++ compilers will produce twenty 
“CLRF”s in a row when given the “for”-loop above?  None!  In general, how many 
standard C/C++ compilers for the PIC can make the distinction between making “slow-
code” for one part of the program and “fast-code” for another part?  None! 
 
 If special instructions, keywords, or classifiers were added to the C/C++ language 
specifically for use in low-end systems to tell the compiler what “speed” of code to use,  
the resulting compiler would still need some advanced artificial intelligence software to 
get the right code.  The blanket statement that, “C/C++ produces object code just like 
assembly code”, when it is applied to low-end systems, is absurd! 
 
 Someone will say to me, “All your examples use the 4 MHz PIC when there is a 
20 MHz PIC available.  Why not go with the 20 MHz PIC and stop complaining about 
C/C++?”  That reply is OK for “all-digital” systems or ones that have shielding and filters 
(at some extra cost).  But what if the product has sensitive analog circuits or it is to be 
used in an RF-sensitive environment?  The RF noise produced by a 20 MHz PIC may be 
prohibitive!  A 4 MHz system may work marginally, but a 20 MHz system may not work 
at all! 
 
 Another idea is to use a 20 MHz PIC and under-clock it to run at, say, 5 MHz, to 
increase the speed of the system if the maximum speed of 20 MHz cannot be used.  This 
too may have problems. 
 
 When I did embedded systems programming and system-design in the security 
systems industry, our company tried to use our radio receiver with another company’s 
security panel.  When we hooked the receiver up to the panel we got a transmitting range 
of about two inches!  The panel used a microprocessor with what was then a fast speed of 
12 MHz  and its busses were multiplexed.  It turned out that the chip they used to 
demultiplex the busses had signal rise-times of two-nanoseconds!  This alone produced 
enough RFI to block our signal.  We substituted a slower demultiplexer chip and we got 
ranges of about 25 feet!  The 12 MHz clock speed never changed.  This is why fast chips 
may be just as bad as high clock speeds. 
 
 Embedded systems design, especially at the low-end, is inherently a multi-
disciplinary field.  Electromagnetic interference and electromagnetic compatibility 
(EMI/EMC) problems must be considered at the start of the design process.  Often the 
easiest way to get rid of noise and EMI/EMC problems is to recognize the potential for 
them at the start of the design process and prevent them from happening in the first place! 
 
 Never assume that a system that works at a “low” speed will also always work at 
a “high” speed. 
 
 The special techniques in this chapter are used for “high-speed” operations.  In 
cases where a low clock-speed is used, these are the software techniques that are time-
optimal.  They make the most efficient use of the processor’s time.  Using fast chips and 
C/C++ in a low-end system may not be practical. 
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Chapter 7:    Advanced ESP 
 
 
 7.0    Chapter Summary 
 
 Section 7.2 discusses sine wave generation by the direct digital synthesis method.  
Section 7.3 uses section 7.2’s results to generate Touch Tone/DTMF signals.  Section 7.4 
covers software generation of pulse width modulation.  Section 7.5 covers ADPCM data 
compression method.  Section 7.6 discusses ideas for testing and practical embedded 
systems.  
 
 
 7.1     Introduction 
 
 This chapter will look at some useful techniques, tools, testing methods, and 
system ideas for advanced ESP.  A technique for generating sine waves is developed and 
is an essential part of an embedded systems programmer’s tool-kit.  A data compression 
technique for speech signals is also developed.  Testing methods and system ideas are 
discussed in full. 
 
 
 7.2    Sine Wave Generation 
 
 
 One way to generate high-quality sinusoidal signals is to use the Direct Digital 
Synthesis method (DDS).  This process, also called the “phase-addition method”, can 
generate high frequencies with high resolution and high spectral purity.  It requires a 
digital-to-analog converter (DAC) and an analog low-pass filter to shape the sine wave.  
The DDS process can be done in hardware or in software. 
 
 To develop this technique, consider a look-up table with 256 entries containing a 
complete sine wave.  If one value were taken and sent out to a DAC with a low-pass filter 
at the DAC output, and this was repeated with a table-increment of one (1) at a rate of ten 
kilohertz (10 kHz), there would be a sine wave at the filter output of about 39 Hz or 
roughly 10000 Hz / 256.  If the table-increment were increased to two (2), instead of one 
(1), the resulting output sine wave frequency would be 78.125 Hz or roughly 
10000 Hz / 128.  We could also say Freq = 10000 Hz / (256 / 2). 
 
 What would happen if the table-increment were fifteen (15)?  What frequency 
would be produced and would it still be a sine wave?  First, it would still be a sine wave.  
Though the sequence of values in the look-up table would be “choppy”, the low-pass 
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filter would smooth-out the “chop” and produce a clean sine wave.  Its frequency would 
be as follows: 
 
 Freq = 10000 / (256 / Table-Increment) 
         =  10000 / (256 / 15) 
         =  585.9375 Hz 
         =  15 * (39 Hz), roughly. 
 
 What would be the largest possible frequency that could be produced in this 
system?  It turns out that the largest frequency is exactly one-half of the ten-kilohertz data 
rate.  The minimum number of points needed to produce a sine wave is only two (2).  
(These points must be at the positive and negative peaks of the sine curve to get the 
maximum amplitude at the output.)  The corresponding table-increment for this case is 
128 and gives a frequency of 10000 / (256 / 128) = 5 kHz.  (The formal name for the 
statement that “the maximum output frequency is half of the data rate” is the Nyquist 
Sampling Theorem.  We will see this again in Chapter 10 (DSP Fundamentals).) 
 
 Is it possible to produce a frequency less than the 39 Hz?  Yes!  What if we did a 
table-increment of one (1) as before but at every other time step?  This would effectively 
give a table-increment of “one-half”.  This would produce a frequency of half of the 39 
Hz or 19.53 Hz.  If the table-increment of one (1) were done at every fourth time step, the 
output frequency would be one-fourth of the 39 Hz or 9.766 Hz. 
 
 Is it possible to produce a frequency that is half way in between the 39 Hz and its 
double, 78 Hz?  Yes!  Repeat the following sequence of table-increments over-and-over:  
Do a table-increment of one (1) at one time step then a table-increment of two (2) at the 
next time step.  This would give an effective table-increment of “one-and-a-half” and an 
output frequency of  10000 / (256 / 1.5) = 58.594 Hz. 
 
 Let’s generalize this idea. 
 
 Suppose that the sine-table, the DAC, the filter, and the ten-kilohertz data rate are 
all the same as before.  Suppose now that there is a 16-bit register that holds the result of 
each “sum-of-table-increments” (an “Accumulator”).  Suppose that only the upper eight 
bits of this accumulator will be used to index the sine wave look-up table.  Suppose that 
there is also a 16-bit register that holds the table-increment value which may now be a 
16-bit number.  The process is now to repeatedly add the 16-bit table-increment value to 
the 16-bit accumulator over-and-over but let only the upper eight bits of the accumulator 
do the indexing of the sine wave look-up table.  The effect of the lower eight bits of the 
16-bit table-increment and the 16-bit accumulator is to provide what would be 
“fractional” table-increments, relative to the previous “whole-value/alternate time-step” 
scheme of before. 
 
 For example, if the 16-bit table-increment is 0x0100, this would only increment 
the upper eight bits of the accumulator, and the output frequency would be 39 Hz.  Also  
if the 16-bit table-increment is 0x0180, the following sequence of values would be 
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produced in the 16-bit accumulator:  0x0000, 0x0180, 0x0300, 0x0480, 0x0600, … and 
so on.  The series of table-increments in the upper eight bits of the accumulator is 0, 1, 3, 
4, 6, … and so on.  This corresponds to the alternate steps of one and two in the previous 
examples and the output frequency would be 58.594 Hz. 
 
 In general, we can get the ratio of “Frequency-to-Increments” as: 
 
 F-to-I = Data Rate / Maximum-Number-of-Register-Values 
            =  10000 Hz / (2 ** 16) 
            =  10000 Hz / 65536 
            =  0.152588  Hz/Inc. 
 
This value is also the lowest frequency that can be produced by this system.  (This 
corresponds to a Table-Increment of 0x0001.) 
 
 We can use this ratio to figure out how much of a table-increment we need to 
produce any frequency.  For example, suppose we want a frequency of 777 Hz: 
 
 Increment = 777 Hz / F-to-I 
       =  5092.1 
       =  5092  (Rounded Down). 
 
Therefore, the frequency for this table-increment is Freq = 5092 * F-to-I = 776.98 Hz. 
 
 Here is one example of how this algorithm could be coded on the PIC: 
 
 SINE_DDS: 
   MOVLW DELAY_LOW 
   MOVWF TIME_LOW  ; Set Fixed Duration 
   MOVLW DELAY_HIGH ; For Sine Wave 
   MOVWF TIME_HIGH 
 SINE_LOOP: 
   CLRF  CARRY  ; Reset Store for Carry Bit 
   MOVF  INC_LOW,W  ; Get Low-Half of INC 
   ADDWF ACCUM_LOW,F ; Add to Low ACCUM 
   BTFSC STATUS,C  ; Get Carry Bit 
   INCF  CARRY,F 
   MOVF  INC_HIGH,W ; Get High-Half INC 
   ADDWF CARRY,W  ; Add Carry Bit 
   ADDWF ACCUM_HIGH,F ; Add to High ACCUM 
   MOVF  ACCUM_HIGH,W 
   CALL  SINE_LOOK_UP 
   MOVWF DIGITAL_TO_ANALOG 
   CALL  DELAY 
   DECFSZ TIME_LOW,F ; Decrement Duration 
   GOTO  SKIP   ; In Constant Time 
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   DECFSZ TIME_HIGH,F 
 SKIP: 
   GOTO  SINE_LOOP 
   RETURN 
 
 The total running-time of this loop must be 100 microseconds to get the ten 
kilohertz data rate of the example (10 kHz). 
 
 
 
 7.3     Dual-Tone-Multi-Frequency (DTMF) Signaling 
 
 
 Telephones in the USA use DTMF dialing signals or “Touch Tone” signals.  As 
its name implies, this scheme uses two tones at a time to represent a symbol to dial.  The 
DTMF tones are split into a “high” frequency group and a “low” frequency group and the 
two tones that are sent are as “one tone from each group”.  The symbols and their 
frequencies are as follows: 
 
 Symbol Low Frequency High Frequency 
      0   941 Hz   1336 Hz 
      1   697 Hz   1209 Hz 
      2   697 Hz   1336 Hz 
      3   697 Hz   1477 Hz 
 
      4   770 Hz   1209 Hz 
      5   770 Hz   1336 Hz 
      6   770 Hz   1477 Hz 
      7   852 Hz   1209 Hz 
 
      8   852 Hz   1336 Hz 
      9   852 Hz   1477 Hz 
      * (Star)  941 Hz   1209 Hz 
      # (Pound)  941 Hz   1477 Hz 
 
Each of these tones must fit in a bandwidth of two-percent (2%) in order to be recognized 
by the telephone company. 
 
 The DTMF tones can easily be generated by using the DDS technique.  Two DDS 
processes are run in parallel and the two sine values they produce are added together and 
sent to the DAC.  The same sine wave table is used but with half the maximum amplitude 
as before so that the adding of the two sine values will not need a “divide-by-two” to fit 
the DAC.  The code for the DTMF DDS process is as follows: 
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 DTMF_BY_DDS: 
   MOVLW DELAY_LOW 
   MOVWF TIME_LOW  ; Set Duration of DTMF 
   MOVLW DELAY_HIGH 
   MOVWF TIME_HIGH 
 DTMF_LOOP: 
   CALL  DO_HIGH_TONE_DDS 
   CALL  SINE_LOOK_UP 
   MOVWF SINE_HOLD 
   CALL  DO_LOW_TONE_DDS 
   CALL  SINE_LOOK_UP 
   ADDWF SINE_HOLD,W 
   MOVWF DIGITAL_TO_ANALOG 
   CALL  DELAY 
   DECFSZ TIME_LOW,F 
   GOTO  SKIP 
   DECFSZ TIME_HIGH,F 
 SKIP: 
   GOTO  DTMF_LOOP 
   RETURN 
 
The DDS process is abbreviated here but is the same as before in every way. 
 
 
 7.4     Pulse-Width Modulation 
 
 
 A simple way to get around the need for a DAC in many applications is to use 
pulse-width modulation (PWM).  A PWM signal represents an analog value by varying 
the duration of digital pulses.  Just as a DAC uses variable voltages over constant time to 
express analog values, PWM uses digital pulses over variable time.  Integrating the DAC 
signal and the PWM signal over time will give the same results.  A PWM output needs 
only a single digital output pin.  An analog low-pass filter is still required, however. 
 
 The PIC16F877 already has two built-in hardware PWM units.  Even so, it is 
useful to know how to do PWM in software in case the processor you are using does not 
have a hardware PWM unit.  The basic PWM program is as follows: 
 
 PWM_ROUTINE: 
   MOVWF SAMPLE1 ; Call with W = PWM Output 
   MOVWF SAMPLE2 
   BSF  PORTC,OUTPUT_BIT   ; Assume This Output 
 PWM_LOOP1: 
   DECFSZ SAMPLE1,F ; Send “High” for Duration W 
   GOTO  PWM_LOOP1 
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   BCF  PORTC,OUTPUT_BIT 
 PWM_LOOP2: 
   INCFSZ SAMPLE2,F ; Send “Low” for  

;     Duration 256 – W 
   GOTO  PWM_LOOP2 
   RETURN 
 
The total time this routine takes to run is about 770 microseconds.  If each PWM DAC 
value took this long, the data rate would be 1300 Hz.  Accordingly, only frequencies up 
to 650 Hz could be represented.  If the total time were only 100 microseconds, a signal of 
five kilohertz (5 kHz) could be represented, but the total range and resolution in the 
above software loop would be only 32 steps.  That is a maximum value of 32 could be 
sent as an output value. 
 
 This is the main problem and tradeoff in using PWM.  It does not matter if the 
PWM is done in hardware or in software.  The same problem and tradeoff exists for both 
cases.  It is a fundamental problem. 
 
 The software PWM process can be improved by using different software 
techniques such as the “non-loop” time-delay process demonstrated in Chapter 6.  This 
will allow for a 100 microsecond data rate and a range and resolution of one hundred 
(100).  The full range of values is from zero to 100.  This PWM program is as follows: 
 
 PWM_PROCESS: 
   MOVWF LOW_DURATION 
   SUBLW D’100’   ; Form W = 100 – W 
   ADDWF PCL,F   ; For High Duration 
   BSF  PORTC,OUTPUT_BIT 
   BSF  PORTC,OUTPUT_BIT 
   BSF  PORTC,OUTPUT_BIT 
  ---- Continue “BSF”s for a total of 100 “BSF”s ------ 
   BSF  PORTC,OUTPUT_BIT 
   MOVF  LOW_DURATION,W 
   ADDWF PCL,F 
   BCF  PORTC,OUTPUT_BIT 
   BCF  PORTC,OUTPUT_BIT 
   BCF  PORTC,OUTPUT_BIT 
  ---- Continue “BCF”s for a total of 100 “BCF”s ----- 
   BCF  PORTC,OUTPUT_BIT 
   RETURN 
 
For example, if W = 90 when this routine was called, the “ADDWF  PCL,F” after the 
“SUBLW” would do a “GOTO” to the point only ten steps away.  This would allow 90 of 
the “BSF”s to run.  When the “Low Duration” value of 90 is given to the “ADDWF”, this 
would do a “GOTO” to a point of 90 steps away, and allow only ten “BCF”s to run.  This 
solution is another example of the “ROM vs. Time” tradeoff in embedded systems 
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programming.  It is much longer and uses more than 200 ROM words, but it is faster and 
allows the greatest resolution. 
 
 There is an assembly directive that can simplify the fast PWM process called 
“FILL” which fills in repeated instructions in program memory.  Its form looks like: 
 
  FILL (assembly instruction),number-of-times 
 
For example,  “FILL   (NOP),20” will fill in twenty “NOP”s into program memory. 
 
 
The fast PWM loop can be re-coded as follows: 
 
  PWM_PROCESS: 
   MOVWF LOW_DURATION 
   SUBLW D’100’ 
   ADDWF PCL,F 
   FILL  (BSF PORTC,OUTPUT_BIT),100 
   MOVF  LOW_DURATION,W 
   ADDWF PCL,F 
   FILL  (BCF PORTC,OUTPUT_BIT),100 
   RETURN 
 
 
 Before the sound cards came out for the IBM-PC, PWM was used by some 
companies to send speech to the PC’s built-in speaker attached to a digital output port 
pin.  The data rate was high enough that the speaker could not respond at that frequency 
and it did not emit a high-pitched squeal.  Clear speech came out of the PC’s speaker. 
 
 
 7.5      ADPCM Data Compression 
 
 
 ADPCM is a coding technique that allows an easy way to compress speech 
signals in real-time by a factor of 2:1 or better.  The compression allows some loss of the 
exact information, however.  ADPCM stands for “Adaptive Differential Pulse Code 
Modulation”. 
 
 ADPCM encodes the difference between successive signal samples and a running 
approximation to the signal.  It is also adaptive in that if the signal is too large or too 
small relative to the approximation of the signal, the range or scale is changed for the 
next sample.  Changes in volume are automatically compensated for and are reflected in 
the coding.  The encoding does introduce some noise, but there are filtering techniques 
that can remove the noise and give very clear speech in the output (these filtering 
techniques will be shown in detail in Chapter 10 --- DSP Fundamentals). 
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 Suppose that speech is sampled at an appropriate data rate and is read as 8-bit 
samples.  After the ADPCM process, the data can be reduced to four-bits and then two of 
these four-bit samples can be packed into one byte.  The approximation to the signal is 
stored in an 8-bit accumulator initially set to zero.  When a signal value comes in, the 
difference between it and the accumulator is found and is tested against a range of 
allowed values.  The best-fit of the difference to those values is found and a “code” or an 
“index” is used to represent the best-fit value.  If the best-fit value is at the maximum or 
the minimum of the range of values, the range of values is doubled or halved, 
respectively, for the next input sample when it is read the next time.  The value of the 
accumulator is updated with the best-fit value in the table by adding it to the accumulator.   
 

For example, if the initial range is of 15 values from the set {-7, -6, -5, …, -1, 0, 
1, …, 5, 6, 7}, doubling this range will give a range of values as {-14, -12, -10, …, -2, 0, 
2, …, 10, 12, 14}.  However, the range will not be doubled beyond a maximum range nor 
will it be halved below a minimum range. 
 
 It should be noted that although the ADPCM process will reproduce the input 
from the output, it does introduce noise and is a nonlinear process.  Changes in volume 
are accounted for but the process of doing so is not instantaneous.  The “codes” or 
“index” values mentioned above are four-bits wide and are the compressed data values. 
 
 The ADPCM compression-phase program is as follows: 
 
 ADPCM_COMPRESS: 
   SUBWF ACCUM,W ; W = ACCUM – W 
   SUBLW 0  ; W = W – ACCUM 
   MOVWF DIFF  ; Store the Difference 
   CALL  GET_STEP_CODE ; Double-Index Table  

;    Look-Up 
        ; on Scale & Difference 
   MOVWF CODE 
   CALL  GET_STEP ; Double-Index Table Look-Up 
       ; on Scale & Code: Get Best-Fit 
   ADDWF ACCUM,F ; Update ACCUM, Form Sum 
   CALL  GET_SCALE ; Double-Index Table Look-Up 
       ; Judge Max/Min Range, Get  
       ; New Scale Index 
   MOVWF SCALE 
   BTFSS FLAGS,DATA_READY 
   GOTO  ADPCM_COMBINE ; Pack the Code, Set  

;   “Ready” 
   NOP 
   MOVF  CODE,W ; Set New Half-Byte 
   ANDLW 0x0F 
   MOVWF HALF_OUT ; Store New Half Code 
   BCF  FLAGS,DATA_READY ; Data NOT Ready Yet 
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   RETLW 0xFF   ; Return an Invalid Code 
 
 ADPCM_COMBINE: 
   SWAPF CODE,W ; Put 2nd Code in Upper Half Byte 
   ANDLW 0xF0 
   IORWF HALF_OUT,W ; Combine two Codes 
   BSF  FLAGS,DATA_READY 
   RETURN    ; W = Packed Byte Codes 
 
 The “GET_STEP_CODE” routine is a double-indexed table look-up with “DIFF” 
and “SCALE” as the indices.  First, do the “SCALE” index as: 
 
 GET_STEP_CODE: 
   MOVF  SCALE,W 
   ADDWF PCL,F 
   GOTO  SCALE0 
   GOTO  SCALE1 
   GOTO  SCALE2 
   GOTO  SCALE3 
   GOTO  SCALE4 
 
The “SCALEn”s are for 256-entry tables indexed with the “DIFF” value.  The object of 
each one is to return the “CODE” value for the closest approach (best-fit) values in the 
following table: 
 
 SCALEn Max/Min Values Delta Steps 
  0  +-7   1 
  1  +-14   2 
  2  +-28   4 
  3  +-56   8 
  4  +-112   16 
 
 There are 15 codes for each of the SCALEn tables.  These codes run as zero for 
the most negative value and 14 for the most positive value.  The reason why the double 
hashing is used and why the tables are allowed to take up so much memory is so that this 
routine can run at the highest possible speeds.  If this were not so, the time it would take 
to find the codes, the steps, and the scales would be prohibitive and the ADPCM process 
would be too slow to run in a 4 MHz PIC.  A 20 MHz PIC might not have this problem 
and a smaller ADPCM routine could be used. 
 
 Once the “CODE” is found and the “SCALE” is given, these are used to get the 
“STEP” or “Best-Fit Value”, update the accumulator, and adjust the “SCALE” for the 
next time.  The “CODE”s are then packed in groups of two to a byte and returned in W to 
the calling program.  The value of “SCALE” must not be disturbed by the rest of the 
program between subroutine calls.  The “SCALE” and the accumulator must be 
initialized to zero and the “Data-Ready” flag must be “set”  (=1) initially. 
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 The ADPCM expansion process is similar to the compression process except that 
the “CODE” is given as the compressed data to be expanded.  This process looks like: 
 
 ADPCM_EXPAND_NEW_CODE: 
   MOVWF HOLD_CODE ; W = New Packed Code 
 ADPCM_EXPAND_CODE2: 
   ANDLW 0x0F   ; Isolate First Code 
   MOVWF CODE 
   CALL  GET_STEP  ; Get Corresponding 
        ; Best-Fit Value 
   ADDWF ACCUM,F  ; Update Accumulator 
   CALL  GET_SCALE  ; Get Next Scale 
   MOVWF SCALE 
   MOVF  ACCUM,W  ; Current Accum = Output 
   RETURN    ; W = Expanded Data 
 
 ADPCM_EXPAND_SECOND_OLD_CODE: 
   SWAPF HOLD_CODE,W ; Get 2nd Code 
   GOTO  ADPCM_EXPAND_CODE2 
 
The expansion is done in two parts.  Once for a new code byte to get the first expansion 
and then once for that same byte to get the second expansion. 
 
 
 7.6     Test Functions and System Ideas 
 
 
 Embedded systems should make liberal use of test pins and test functions.  They 
are useful in all phases of development, production, testing, and field-testing.  Special 
DIP-switches or header pins should be added to the system for testing purposes alone.  
Fifteen or twenty percent of the available program code space should be reserved, if 
possible, for testing and de-bugging aids. 
 
 The simplest, most common, and most general testing and de-bugging aids use 
LEDs.  An LED can be made to flash at a given rate to show a system’s activity.  A non-
flashing LED would indicate a system failure.  PWM can be used on an LED to make it 
bright or dim, which can also serve as a system indicator.  An LED can flash when the 
watch dog timer gets its reset pulse.  In an encoder or a transmitter, an LED can show 
when a data-word is transmitted or, in a decoder or receiver, an LED can flash when a 
data-word is decoded. 
 
 If the system uses seven-segment LED digits, the system can display messages for 
testing and de-bugging.  Detailed messages for showing the data and the system status 
can be displayed. 
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 An oscilloscope with a variable-delay sweep can be used to display the system’s 
data and status using a serial stream of pulses.  A single digital output pin can be used to 
send this information.  A simple sequence of instructions can be used to send out pulses.  
For example: 
 
  BCF  PORTC,TEST_PIN 
  BTFSC RAM_WORD,DATA_BIT 
  BSF  PORTC,TEST_PIN 
  CALL  DELAY1 
  BCF  PORTC,TEST_PIN 
  CALL  DELAY2 
 
 Also, for events which occur too quickly for the human eye to see, a pulse like 
that above can be generated, held active for a few hundred milliseconds, and then 
removed.  This aids in the detection of transient events like a receiver’s “valid data 
decode” signal. 
 
 A security system could be made to report its status information or it could be set 
up with pseudo-random time delays for activating its alarms.  If it can dial telephones, it 
could call the factory or office and send a complete set of systems information for that 
day.  A special alarm mode could be reserved for units that get frequent or repeated 
resets. 
 
 A system can often incorporate utility functions like a voltmeter, a frequency 
counter, a timer, an alarm clock, a signal generator, a waveform generator, a pulse 
generator, a noise generator, or a logic analyzer.  Any of these things may be useful in a 
field-testing situation. 
 
 If your embedded system interfaces with another (larger?) system, primitive 
“look-alike” signals can be generated in your system to test it “as if” you had the other 
system.  That is, send diminutive mock-ups of the other system’s signals to mimic its 
actions so that you don’t need to carry that system around with you to test your system. 
 
 Systems which are highly interactive with user menus can be built with a series of 
interconnected jump-tables.  A time-out  feature should be included to partially reset the 
command sequence if the user does not enter a command, does not finish responding to 
the system in the way that the system “expects”, or if the user makes an error.  Such a 
system should be user friendly.  The time-out can take the user back to a previous menu 
or later to the main menu but give a warning before doing so. 
 
 Embedded systems can be made to be adaptive and have self-testing and self-
diagnostic features.  For example, a decoder or a receiver could include the code for the 
encoder and produce its own mock-up of a “transmitted signal with noise”.  The 
decoder/receiver could then try to decode and get calibrated with its own test signal. 
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 EEPROMs can be used to store calibration information and other system settings 
for its normal operation.  The system can be built with its own calibration routines to set-
up a new or updated system. 
 
 Sometimes one processor isn’t powerful enough to perform all of the required 
actions that the system needs.  There may be severe time bottlenecks.  The solution may 
be to use a second or even, a third processor.  Always watch out for the possibility that 
your system may be over burdened and that the best solution might be to include more 
processors. 
 
 Some kinds of system failures may be statistical in nature.  It may be necessary to 
measure probability distributions and statistical averages in order to diagnose the 
problem. 
 
 Gaussian white noise can be used to improve a stable, DC-valued ADC reading by 
plotting a histogram of the samples and comparing the histogram to a known Gaussian 
distribution.  The histogram is just a count of the number of times the data occurs.  This is 
accomplished by finding the upper and lower limits of the noise signal and setting up a 
RAM array for the values within these limits (start with the RAM array reset to zeros).  
The data is sampled and used to hash the RAM array then the value of the RAM at the 
hashed address is incremented.  After this process is repeated several hundred times, the 
discreet histogram is formed.  The discreet histogram values can be used to interpolate 
between the ADC steps.  It is possible to use a ten-bit ADC with this technique and 
produce the equivalent of a 16-bit ADC!  This technique of using noise to improve a 
signal’s quality or measurement is called “dithering”.  Figure 7-1 gives an illustration of 
this process. 
 
 For processors that do not have ADCs built-in, it is possible to measure DC-
valued voltages using dithering on a one-bit ADC.  The one-bit ADC is just a 
comparator.  The voltage to measure is fed in on one input and Gaussian white noise is 
fed in on the other input.  This produces a set of random, square wave pulses that the 
processor can measure.  The time duration, frequency, and overall time are measured and 
are then compared to a known Gaussian distribution.  The position on the Gaussian curve 
can be found and the voltage can be determined to an almost arbitrary accuracy.  It is not 
uncommon to get measurements and an accuracy of up to 24-bits by using this method. 
 
 One lesson to be learned from the concept of dithering is that noise itself can be 
used as a valuable signal in its own right.  There are of course many times that noise is 
bad but it can sometimes be used to a great advantage. 
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Chapter 8:     PIC Peripherals and Interrupts 
 
 8.0     Chapter Summary 
 
 Section 8.1 gives an overview of the PIC’s peripherals.  Section 8.2 covers the 
input/output ports.  Section 8.3 discusses the PIC’s interrupt system.  Section 8.4 
discusses the analog to digital converter and the analog multiplexer.  Section 8.5 covers 
the PIC’s built-in watch-dog timer.  Sections 8.6, 8.7, and 8.8 cover the counters/timers.  
Section 8.9 covers the capture mode operations.  Section 8.10 covers the compare mode 
operations.  Section 8.11 discusses the PIC’s hardware pulse width modulators. 
Section 8.12 covers the parallel slave port.  Section 8.13 discusses reading and writing 
the data EEPROM.  Section 8.14 discusses reading and writing the program memory.  
Section 8.15 discusses the data protection modes.  Section 8.16 covers the 
CONFIGURATION word and its settings.  Section 8.17 discusses the PIC’s sleep and 
reset modes. 
 
 The PIC16F877 is more than just a CPU with some RAM and ROM.  There are 
also several useful peripheral hardware modules built-in to make it a complete computer 
control system.  Many products can be made that use the PIC as a complete single-chip 
solution to its system design. 
 
 This chapter will focus on the peripherals and special functions of the PIC.  The 
details and instructions on how to use them will be given in full with examples. 
 
 
 8.1    Overview of the PIC Peripherals 
 
 

1) Input/Output Ports 
There are five port-sets as Ports (A,B,C,D,E) with bits and pins that may be set in 
software as inputs or outputs.  These pins are also shared with other peripheral 
functions and to use these other functions requires setting up the input/output 
ports for compatibility.  Thirty-three (33) input/output port pins are available. 
 
2) Interrupts 
As briefly noted in Chapter 6, an interrupt is a way for peripherals and other 
hardware to capture the attention of the CPU and have it call a subroutine to 
service the hardware with the user’s software.  The subroutine address is at a 
fixed location in program memory and is built-in to the CPU.  There are a total of 
14 possible interrupts and each of them can be enabled or disabled in software. 
 
3) Analog-to-Digital Converter & The Analog Multiplexer 
The PIC contains a ten-bit ADC and has as many as eight available analog input 
channels.  These analog inputs are shared with the port pins of Port A and Port E.  
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It is also possible to select among these pins a place to attach an external voltage 
reference in the case where the user does not want to use the internal voltage 
reference of five volts.  This feature is also software selectable. 
 
4) The Watch-Dog Timer 
As noted in Chapter 6, the PIC contains its own independent watch-dog timer 
which can be disabled not by software but by a setting in the downloading 
process.  The watch-dog timer has the power to reset the PIC when it overflows.  
The user’s job in the software is to provide the watch-dog timer with regular 
commands to reset the watch-dog timer so that it will not reset the PIC. 
The purpose of the watch-dog timer is to make sure the software does not get 
trapped in infinity loops and thus the software is made much more reliable by 
using the watch-dog timer.  In addition to the watch-dog timer is a prescaler 
which can extend the watch-dog’s time-out period. 
 
5) Timer0, Timer1, and Timer2 
These three timers can count clock pulses or count external pulses on the PIC’s 
port pins.  They are programmable and have prescalers and sometimes postscalers 
to modify their counts and counting processes.  They often serve as time-bases for 
other peripherals or for providing regular interrupts to the user’s software. 
 
6) Capture Mode (Two of them) 
The capture mode modules are hardware-controlled ways to measure pulse-widths 
with reference to the system clock. 
 
7) Compare Mode (Two of them) 
The compare mode modules compare Timer1’s count to a fixed, but user-
programmable, register value.  When that value is reached, the hardware can send 
out a pulse, trigger an interrupt, or do some kind of  “special event” within the 
PIC such as resetting and reloading Timer1 and/or starting the ADC.  This is also 
useful for setting up a time-base for the software. 
 
8) Pulse-Width Modulation  (Two of them) 
The PWM modules use Timer2 to generate signals on a PIC output pin and serve 
as DACs.  Both PWM modules have a maximum of ten bits of resolution. 
 
9) Parallel Slave Port 
Port D can be used as a bi-directional, microprocessor-type, data-bus port.  The 
PIC is controlled as a slave to three external control signals which are 
manipulated by the microprocessor or other device. 
 
 
 
10) EEPROM Data Memory 
The PIC has 256 bytes of non-volatile EEPROM and can be programmed in the 
PIC software independent of a device programmer. 
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11)    FLASH Program Memory 
In a similar way to the EEPROM Data Memory, the FLASH Program Memory 
can also be programmed in software independent of a device programmer.  New 
program features and updates can be downloaded to the PIC’s software while the 
unit is in the field. 
 
12)    Code and Data Protection 
The PIC can be configured to lock-out attempts to read or write its FLASH and 
EEPROM Data Memories.  This can be set only during the downloading process. 
 
 
13)     Resets and Sleep Mode 
The PIC has several modes of resets and status conditions to identify which of 
them has occurred.  Also, there is a power-saving mode called “sleep” which can 
be initiated in software to power-down the CPU.  This is useful in battery 
powered applications. 
 

 
 In all of the sections to follow, the special function registers and the bits that 
control the peripherals are shown in detail in Appendix C. 
 
 8.2    Input/Output Ports 
 
 There are five input/output ports as Port (A, B, C, D, E).  Most of these act alike 
but some are different and use different features and options. 
 
 8.2.1    Port A 
 
 There are six (6) Port A pins and each can be set as an input or an output.  All of 
the Port A pins except RA4 have a shared use with the analog multiplexer (MUX).  The 
RA4 pin can be a Schmitt Trigger input (hysteresis) or an open-drain output. 
 
 The first step in configuring Port A is to select which pins are to be set as digital 
input/output and which are to be analog inputs.  This is done with the lower four bits of 
the ADCON1 register file (RAM).  These settings are shown in Figure 8-1.  If we want 
all of Port A to be digital, the setting is 0x06. 
 
 Of the pins which are digital input/output the selection of “input” vs. “output” is 
made with the TRISA register file.  If a Port A pin is to be an “input”, the TRISA bit 
corresponding to the Port A pin/bit must be set to one (=1).  If it is to be an “output”, the 
TRISA bit must be set to zero (=0). 
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Figure 8-1  ADCON1 "Analog vs Digital" Selection Codes

 
 
 
 For example, if we want all of the Port A bits as “digital” and RA0, RA1, RA2 are 
to be outputs and RA3, RA4, and RA5 are to be inputs, the code would be as follows: 
 
  BANKSEL  PORTA ; Bank 0 
  CLRF   PORTA ; Reset Port A Before Configure 
  BANKSEL  ADCON1 ; Bank 1 
  MOVLW  0x06  ; Select “All Digital” on Port A 
  MOVWF  ADCON1 
  MOVLW  0x38  ; RA(0,1,2) = Out 
  MOVWF  TRISA  ; RA(3,4,5) = In 
  BANKSEL  PORTA ; Bank 0 
 
 
 
 
 
 
 
 
 



 95

 8.2.2     Port B,  Port C,  Port D 
 
 None of Port B, Port C, or Port D is shared with the analog multiplexer and none 
need be configured with the ADCON1 register file.  There are TRISB, TRISC, and 
TRISD register files which control the “input” vs. “output” selections of each of these 
port pins.  These work in the same way as Port A.  The Port B pins also have a user-
selectable “weak pull-up” option that can be enabled by clearing the “/RBPU” bit of the 
“OPTION_REG” register file.  ( Do “BCF  OPTION_REG,RBPU”.)  This feature is 
automatically disabled when a Port B pin is configured as an output. 
 
 8.2.3     Port E 
 
 The Port E pins also share their pins with the analog multiplexer as in Port A and 
its use is identical with Port A.  (Use the ADCON1 and TRISE register files.) 
 
 
 8.3     Interrupts 
 
 The PIC16F877 has a total of 14 sources of interrupts.  Each of these has an 
“Interrupt Enable Bit” which must be set (=1) to enable or use the interrupt and an 
“Interrupt Flag”, which is set (=1) automatically when the interrupt is activated.  There is 
also a “Global Interrupt Enable Bit” and a “Peripheral Interrupt Enable Bit”.  The 
“Global” must be set (=1) before any of the other interrupts will be enabled.  The 
“Peripheral” must be set (=1) before any peripheral interrupt will be enabled.  Figure 8-2 
shows the schematic for the PIC’s interrupt logic. 
 
 When an interrupt occurs the CPU treats it like a subroutine “CALL” and the 
program-counter is set for the program address, 0x0004.  The user must place the 
interrupt-handling subroutine at this address (this subroutine is called, the “Interrupt 
Service Routine” or “ISR”).  A special instruction is used to return from an ISR:  It is the 
“RETFIE” instruction. 
 
 Before returning from an interrupt, the user must reset the “Interrupt Flag” which 
was set (=1) when the interrupt occurred.  If this is not done, the interrupt hardware will 
automatically and immediately cause another interrupt to occur when the CPU executes 
the “RETFIE” instruction!  It is also possible to inadvertently cause an interrupt to occur 
when the user sets (=1) an “Interrupt Enable Bit”.  If the corresponding “Interrupt Flag” 
is set (=1) when the user sets the “Interrupt Enable Bit”, an inadvertent or accidental 
interrupt will occur! 
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Figure 8-2  PIC16F877 Interrupt Logic Tree

 
 The user’s response to an interrupt in the ISR must do two things: 
 

1) The contents of the W register and the “STATUS” register must be saved in 
RAM. 

2) The set of “Interrupt Flags” being used must be searched to determine which 
“Interrupt Flag” caused the interrupt to occur. 

 
Before returning from an interrupt, four things must be done in the following order: 
 

1) When the peripheral which caused the interrupt has been serviced, the 
peripheral’s “Interrupt Flag” must be reset by the software. 

2) All of the other “Interrupt Flags” of the ones being used, must be checked to 
see if they are reset (=0).  If any are set, another interrupt by a different 
peripheral has been called and it must be serviced.  When it has been serviced, 
go back to Step 1. 

3) Restore the W and “STATUS” registers. 
4) Do the “RETFIE” instruction. 

 
Note that the worst-case response-time for any interrupt, when it has been initiated, is 
four instruction cycles in duration. 
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 The code to save the W and “STATUS” registers has some tricks to it.  The code 
is as follows: 
 
 MOVWF W_TEMP  ; Save W 
 SWAPF STATUS,W  ; Get STATUS into W 
 MOVWF STATUS_TEMP ; Save STATUS 
 
The code to restore these registers is as follows: 
 
 SWAPF STATUS_TEMP,W ; Restore STATUS 
 MOVWF STATUS 
 SWAPF W_TEMP,F  ; Restore W 
 SWAPF W_TEMP,W 
 
The trick is that we can’t use “MOVF” anytime we want to move data from a register file 
to the W register since the “MOVF” instruction affects the “Z” (Zero) STATUS Flag!  
Doing so would destroy the “Z”-Flag state we are trying to preserve!  This is why the 
“SWAPF” instructions are used.  (This code is repeated in Appendix F.) 
 
 Now let’s look at two specific interrupts and their options.  The first is the 
external interrupt (“INT”) which is located on pin 33 and is shared with Port B, Bit Zero 
(RB0).  To use the “INT”, Port B, Bit Zero must be set-up with TRISB to be an “input” 
port pin (TRISB, Bit 0 = 1).  If this were not so, and if Port B, Bit Zero were an “output” 
pin, whatever value was on the pin would jam the “INT” input.  The “INT” interrupt is 
edge-sensitive and the user may select one of either the positive or the negative edges 
using the “INTEDG” bit in the “OPTIONS_REG” register file.  If “INTEDG” = 1, this 
selects the positive or rising edge.  If “INTEDG” = 0, this selects the negative or falling 
edge. 
 
 
 
 The code sequence to activate the “INT” interrupt is as follows: 
 
 BANKSEL TRISB  ; Bank 1 
 BSF  TRISB,0 ; Set Port B, Bit Zero as an “Input” 
 BSF  OPTIONS_REG,INTEDG ; Set “Rising” Edge 
 BCF  INTCON,INTF  ; Reset “Interrupt Flag” of INT 
 BSF  INTCON,INTE  ; Set “Interrupt Enable Bit” of INT 
 BSF  INTCON,GIE   ; Set “Global” Int Enable 
 
To reset the “INT”s “Interrupt Flag” when the ISR is done, do, “BCF   INTCON,INTF”. 
 
 Another interrupt is the “RB Port-Change Interrupt”.  When this is enabled, any 
change on Port B (RB7, RB6, RB5, RB4) will cause an interrupt.  These bits must be 
selected as inputs with TRISB.  The code to enable this interrupt is: 
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 BCF  INTCON,RBIF ; Reset “Interrupt Flag” 
 BSF  INTCON,RBIE ; Set “Interrupt Enable Bit” 
 BSF  INTCON,GIE  ; Enable “Global” Interrupt Enable 
 
To reset the “Interrupt Flag”, do, “BCF     INTCON,RBIF”. 
 
 In the ISR for this interrupt, Port B must be read to prevent a latch-up of the PortB 
bit-change that caused the interrupt to occur.  Reading Port B between interrupts may 
cause a mistake in the interrupt process. 
 
 There are interrupts available for each peripheral device.  These will be discussed 
when the peripherals are covered. 
 
 
 8.4     ADC and Analog MUX 
 
 The PIC’s ADC can convert an analog voltage to a ten-bit number.  The analog 
multiplexer (MUX) will allow up to 8 analog input channels to be converted by the ADC.  
The voltage range limits may be taken internally as “+5 Volts and Ground”, or the user 
can supply an external voltage reference on the analog input channel pins. 
 
 The ADC module uses two control registers in the register file map to set-up the 
ADC and the analog MUX.  These are “ADCON0” and “ADCON1”.  The ADC may be 
used with or without interrupts. 
 
 The first step in using the ADC is to set-up the analog MUX inputs which are 
shared with Port A and Port E.  This was discussed under using Port A by selecting a 
code from Figure 8-1 and putting that four-bit code into the lower four bits of 
“ADCON1”.  For the selected analog MUX inputs, the TRISA and TRISE registers must 
be set-up so that those Port A and Port E pins are configured as “inputs”.  If they are 
configured as “outputs”, a voltage of either five volts or ground will jam the ADC. 
 
 The next step is to select the ADC conversion clock rate using the “ADCS1” and 
“ADCS0” bits of the “ADCON0” register.  The selections are as follows: 
 
 ADCS 1:0 Clock Rate 
  (0,0)  Fosc / 2 
  (0,1)  Fosc / 8 
  (1,0)  Fosc / 32 
  (1,1)  Internal RC Clock (6 microseconds) 
 
The rule is that the Clock Rate period must not be less than 1.6 microseconds.  For Fosc 
= 4 MHz this gives Fosc / 8 = 500 kHz and a period of 2.0 microseconds.  Therefore, 
select ADCS 1:0 as (0,1). 
 
 If the ADC is to be used with interrupts, the following code sequence will set this: 
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 BANKSEL PIR1  ; Bank 0 
 BCF  PIR1,ADIF ; Reset “Interrupt Flag” for ADC 
 BANKSEL PIE1  ; Bank 1 
 BSF  PIE1,ADIE ; Set “Interrupt Enable Bit” for ADC 
 BSF  INTCON,PEIE ; Set Peripheral Interrupt Enable 
 BSF  INTCON,GIE  ; Set Global Interrupt Enable 
 
 The results of the ADC conversion are ten bits long and are split into two, eight-
bit register file bytes:  “ADRESH” for the high bits and “ADRESL” for the low bits.  The 
storage of the ten-bit result can be formatted as “Left-Justified” or “Right-Justified”.  In 
the “Left-Justified” format, the 8 most significant bits are placed in “ADRESH” and the 
two least significant bits are placed in bits 6 and 7 of the “ADRESL” register.  In the 
“Right-Justified” format, the two most significant bits are placed in bits 1 and 0 of the 
“ADRESH” register and the 8 least significant bits are placed in “ADRESL”.  The user 
selects the format by setting or clearing the “ADFM” bit of the “ADCON1” register as 
follows: 
 
 ADFM = 1     =   Right Justified 
 ADFM = 0     =   Left Justified. 
 
 The ADC must also be turned “on” with the command, “BSF ADCON0,ADON”.  
It can be turned “off” by using “BCF”, if needed, to conserve power. 
 
 When the ADC is used, the analog input channel must be selected.  There are 
eight channels and only one may be selected at a time with the “CHS2:CHS0” bits of 
“ADCON0” as follows: 
 
 CHS2, CHS1, CHS0  Channel  Name 
  (0,0,0)   Channel 0  AN0 
  (0,0,1)   Channel 1  AN1 
  (0,1,0)   Channel 2  AN2 
  (0,1,1)   Channel 3  AN3 
  (1,0,0)   Channel 4  AN4 
  (1,0,1)   Channel 5  AN5 
  (1,1,0)   Channel 6  AN6 
  (1,1,1)   Channel 7  AN7 
 
 When the single channel to be used is selected, as above, the ADC can be started 
as: 
 
  BCF  PIR1,ADIF ; Reset “Interrupt Flag” for ADC 
  BSF  ADCON0,GO ; Start the ADC 
 
The “ADIF” interrupt flag is set when the ADC conversion process is finished.  If the 
“ADIE” interrupt enable bit is set (=1), setting the “ADIF” will cause an interrupt to 
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occur.  Even if the “ADIE” interrupt enable bit is not set, the “ADIF” interrupt flag will 
be set (=1) when the ADC is finished and it can be used independently of the interrupt 
system.  The “ADIF” can be tested by the software to see if the ADC conversion is 
finished. 
 
 Let’s look at an example program that uses the ADC.  Suppose that we want to 
use only Channel Zero (AN0) and display the Left Justified, most significant results on 
Port B. 
 
 First, here is an ADC example using interrupts: 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 FLAGS: EQU  0x20 ; User’s Flags, Bit 0 = “Data Ready” 
 ADC_DATA: EQU  0x21 ; User’s ADC Data Hold 
 DATA_READY:  EQU 0 ; Data Ready = Bit 0 
 
   ORG  0x0000 
   GOTO  INIT 
   ORG  0x0004 
   GOTO  INT_SERVICE 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTB ; Bank 0 
   CLRF  PORTB ; Reset PORTB 
   BANKSEL TRISB  ; Bank 1 
   CLRF  TRISB  ; Port B = All Outputs 
   MOVLW 0x0E  ; Chan 0, AN0, Left Justify 
   MOVWF ADCON1 
   BSF  TRISA,0 ; RA0 = Input 
   BANKSEL PORTB ; Bank 0 
   MOVLW 0x41  ; ADC = “on”, Chan 0 Select, 
   MOVWF ADCON0 ; Clock = Fosc / 8 
 
   BCF  PIR1,ADIF ; Reset “Interrupt Flag” for ADC 
   BANKSEL PIE1  ; Bank 1 
   BSF  PIE1,ADIE ; Set ADC Int Enable Bit 
   BANKSEL PORTB ; Bank 0 
   BSF  INTCON,PEIE  ; Set Peripheral Int Enable 
   BSF  INTCON,GIE   ; Set Global Int Enable 
   BCF  FLAGS,DATA_READY ; Reset Data Ready  

      ;  Flag 
   BSF  ADCON0,GO   ; Start the ADC  
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 MAIN: 
   CLRWDT   ; Reset Watch-Dog Timer 
   BTFSS FLAGS,DATA_READY  ; Check if ready 
   GOTO  MAIN 
 
   BCF  FLAGS,DATA_READY  ; Reset Data Ready 
   MOVF  ADC_DATA,W ; Get ADC Data 
   MOVWF PORTB  ; Send to Port B 
   GOTO  MAIN 
 
 INT_SERVICE: 
   ----- Save Registers ----- (See Appendix F)--- 
   MOVF  ADRESH,W  ; Get Raw ADC Results 
   MOVWF ADC_DATA  ; Save in User’s Hold 
   BCF  PIR1,ADIF  ; Reset “Int Flag” 
   BSF  FLAGS,DATA_READY ; Set Data Ready 
   BSF  ADCON0,GO  ; Start ADC Again 
   ----- Restore Registers ----- 
   RETFIE   ; Return From Interrupt 
   END 
 
 
 Now, here is a non-interrupt ADC example: 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
   ORG  0x0000 
   BANKSEL PORTB ; Bank 0 
   CLRF  PORTB ; Reset PORTB 
   BANKSEL TRISB  ; Bank 1 
   CLRF  TRISB  ; Port B = All Outputs 
   MOVLW 0x0E  ; Chan 0, AN0, Left Justify 
   MOVWF ADCON1 
   BSF  TRISA,0 ; RA0 = Input 
   BANKSEL PORTB ; Bank 0 
   MOVLW 0x41  ; ADC = “on”, Chan 0 Select, 
   MOVWF ADCON0 ; Clock = Fosc / 8 
 MAIN: 
   BCF  PIR1,ADIF ; Reset “ADC Done” 
   BSF  ADCON0,GO ; Start ADC 
   CLRWDT   ; Reset Watch-Dog Timer 
 
 TEST: 
   BTFSS PIR1,ADIF ; Is ADC Finished? 
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   GOTO  TEST 
 
   MOVF  ADRESH,W ; Get Raw ADC Data 
   MOVWF PORTB ; Send to Port B 
   GOTO  MAIN 
   END 
 
 
 The ADC has its own sample-and-hold amplifier with a built-in capacitor and the 
total conversion-time is a combination of the amplifier settling-time, the sample-and-hold 
capacitor charging-time, the temperature, and the successive approximation convergence-
time of the ADC clocked logic.  The detailed conversion-time breakdown is as follows: 
 
 Time of Amplifier Settling = 2 microseconds. 
 Time of S & H Charging = (Chold)*(Ric + Rss + Rs)*(ln(1/2047))  
         = 16.5 microseconds. 
 Time of Temperature Coef = (T – 25)*(0.05 microseconds/ Celsius Degree) 
            = 2.5 microseconds (worst case) 
 Time of ADC Logic = 12*(ADC Clock Period) 
            =  12*(2 microseconds) = 24 microseconds. 
 
 Total ADC Conversion-Time = 45 microseconds. 
 
Therefore, the ADC can be cycled at a rate of 22.2 kHz. 
 
 The voltage step-resolution of a ten-bit ADC over a voltage range of “+5 Volts to 
Ground” is figured as: 
 
 Voltage Resolution = ((+5 Volts) – (0 Volts)) / ((2 ** 10) – 1) = 4.89 millivolts 
per step. 
 
In general, the voltage resolution is the difference of the voltage ranges divided by the 
number of steps minus one. 
 
 
 
 8.5      Watch-Dog Timer 
 
 The watch-dog timer built-in to the PIC runs with its own RC oscillator and has a 
typical minimum time-out period of 7 milliseconds which in general is too short an 
amount of time.  There is a programmable prescaler available that can multiply this 
period by 128 to give a total time-out period of 850 milliseconds, which is very good for 
most applications. 
 
 The software must reset the watch-dog timer before it overflows and resets the 
PIC.  This is done with the “CLRWDT” instruction.  If the watch-dog timer does reset the 
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PIC, there is a “STATUS” bit, “/TO”, which indicates that this has occurred.  If  “/TO” = 
Zero (=0), the watch-dog timer has reset the PIC. 
 
 The watch-dog timer can be enabled or disabled using the “CONFIGURATION” 
word or in the down-loading process.  The watch-dog timer should NEVER be disabled!  
Also, NEVER use an Interrupt Service Routine to reset the watch-dog timer! 
 
 The user can select the watch-dog timer prescaler by using the “PSA” bit in the 
“OPTION_REG” register.  This is done by setting the “PSA” (=1) and selecting the 
amount of scaling desired as: 
 
 PS2, PS1, PS0  Scale Ratio (WDT) 
  (0,0,0)   1:1 
  (0,0,1)   1:2 
  (0,1,0)   1:4 
  (0,1,1)   1:8 
  (1,0,0)   1:16 
  (1,0,1)   1:32 
  (1,1,0)   1:64 
  (1,1,1)   1:128 
 
The prescaler may also be configured to work with the Timer0 module.  However, you 
cannot use it for both the watch-dog timer and the Timer0 module at the same time.  The 
better choice, in my opinion, is to keep the prescaler tied to the watch-dog timer since this 
greatly improves the watch-dog timer. 
 
 
 
 
 8.6     Timer0 
 
 Timer0 is an 8-bit counter/timer which can be driven from the Fosc/4 clock, a 
prescaled Fosc/4 clock, or an external pin source called, “T0CKI”, which is shared with 
Port A, RA4.  Timer0 is readable and write-able and its output can generate an interrupt, 
“T0IF”.  If Timer0 is used as a counter (with “T0CKI” input), the user can select if it 
should count on the rising edge or the falling edge. 
 
 The programmable prescaler may be used on either the timer mode or the counter 
mode.  This prescaler is the same one that is used by the watch-dog timer and it cannot be 
used by both Timer0 and the watch-dog timer at the same time. 
 
 Since the “T0CKI” input is shared with the Port A, RA4 pin, the user must set-up 
Port A, RA4 as an “input” with TRISA, if the counter mode is to be used. 
 
 Whenever the Timer0 register, “TMR0”, is written to, there is an “inhibit” on its 
incrementing process for the next two instruction cycles.  For example, if the timer 
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overflows and we want to re-initialize it so that it will reach an effective count of 250, we 
must write a value of  “8” instead of  “6” to allow for the extra delay.  (This does not 
apply if the prescaler is set to a ratio larger than two since its effects will not be seen.) 
 
 The prescaler is selected by using the “PSA” bit in the “OPTION_REG” register.  
The “PSA” bit is cleared (=0) and the scale ratio is set as: 
 
 PS2, PS1, PS0  Scale Ratio (Timer0) 
  (0,0,0)   1:2 
  (0,0,1)   1:4 
  (0,1,0)   1:8 
  (0,1,1)   1:16 
  (1,0,0)   1:32 
  (1,0,1)   1:64 
  (1,1,0)   1:128 
  (1,1,1)   1:256 
 
To set Timer0 as a “timer” do “BCF    OPTION_REG,T0CS”.  To set Timer0 as a 
“counter” use “BSF”.  In the “counter” mode do “BCF   OPTION_REG,T0SE” to select 
counting on the falling edge and do “BSF” to select counting on the rising edge. 
 
 Let’s look at an example program that uses the Timer0 module as a “timer” that 
serves as a time-base and generates an interrupt every four milliseconds.  The prescaler is 
used at a ratio of 1:32. 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 FLAGS: EQU  0x20  ; User flags, use bit 0 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  TIMER0_ISR 
 
   ORG  0x0006 
 INIT: 
   ----- Do Other Inits Prior to Doing Timer0 ----- 
   BANKSEL OPTION_REG ; Bank 1 
   MOVLW 0x04   ; T0 Prescale, Timer, 1:32 
   MOVWF OPTION_REG 
   BANKSEL PORTB  ; Bank 0 
   MOVLW D’131’   ; Set count for 125 
   MOVWF TMR0 
   MOVLW 0xA0   ; Enable T0 & Global INTs 
   MOVWF INTCON 
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   CLRF  FLAGS 
 
 MAIN: 
   ------ Do Program Steps ----- 
   ------ Test For “FLAGS, Bit 0” ------ 
 
   ORG  0x0200 
 TIMER0_ISR: 
   ------ Save Registers ------(See Appendix F)---- 
   MOVLW D’131’   ; Reset Count for 125 
   MOVWF TMR0 
   BCF  INTCON,T0IF ; Reset T0 INT Flag 
   BSF  FLAGS,0  ; Set User Flag: INT Occur 
   ------ Restore Registers ------- 
   RETFIE    ; Return from INT 
   END 
 
 
 8.7      Timer1 
 
 Timer1 is a 16-bit counter/timer with its own dedicated prescaler and an option to 
use an external oscillator in place of the Fosc/4 clock.  There is also an option to 
synchronize the external clock to the internal clock, if it is so desired.  Timer1 can 
generate interrupts, if they are enabled.  The two Timer1 counter registers, “TMR1H” and 
“TMR1L”, are the most significant and least significant bytes, respectively, and are both 
readable and write-able. 
 
 To use Timer1, it must first be turned “on” by doing, “BSF   T1CON,TMR1ON”.  
The “counter” vs. “timer” mode may be selected as, “BCF   T1CON,TMR1CS”, to select 
the Fosc/4 timer input.  Doing “BSF” of the same will select the external input on pin 
“T1CKI” which is shared with Port C, bit RC0 which must be set-up as an “input” with 
TRISC. 
 The external crystal oscillator is connected to the, “T1OSO” and “T1OSI”, pins 
and the oscillator module can be turned “on” by doing, “BSF   T1CON,T1OSCEN”.  The 
external clock source may be synchronized by doing, “BCF    T1CON,T1SYNC”.  The 
“T1OSO” and “T1OSI” pins are shared with Port C, pins RC0 and RC1.  These must be 
selected as “inputs” with TRISC. 
 
 The Timer1 prescale selection is done as: 
 
 T1CKPS1:T1CKPS0  Scale Ratio 
  (0,0)    1:1 
  (0,1)    1:2 
  (1,0)    1:4 
  (1,1)    1:8 
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Since Timer1 counts in two halves, the timer should be turned “off” when new values are 
written to the timer registers.  Do this as “BCF    T1CON,TMR1ON”. 
 
 Examples of using Timer1 will be shown in the “Capture” and “Compare” modes 
of operation. 
 
 
 8.8     Timer2 
 
 Timer2 is an 8-bit timer that has a user programmable prescaler and postscaler.  
There is also a period register, “PR2”, which can be set-up and matched to the Timer2 
register “TMR2”.  When a match occurs, “TMR2” is reset and an interrupt can be 
generated.  Timer2 is used mostly for generating precise and exotic clock frequencies. 
 
 The “TMR2” and “PR2” registers may be read and written to at any time. 
 
 The Timer2 prescale selection is done as: 
 
 T2CKPS1:T2CKPS0  Scale Ratio 
  (0,0)    1:1 
  (0,1)    1:4 
  (1,0)    1:16 
  (1,1)    1:16 
 
 
 The Timer2 postscaler selection is done as: 
 
 TOUTPS3:TOUTPS0  Post-Scale Ratio 
  (0,0,0,0)   1:1 
  (0,0,0,1)   1:2 
  (0,0,1,0)   1:3 
  (0,0,1,1)   1:4 
 
  (0,1,0,0)   1:5 
  (0,1,0,1)   1:6 
  (0,1,1,0)   1:7 
  (0,1,1,1)   1:8 
 
  (1,0,0,0)   1:9 
  (1,0,0,1)   1:10 
  (1,0,1,0)   1:11 
  (1,0,1,1)   1:12 
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  (1,1,0,0)   1:13 
  (1,1,0,1)   1:14 
  (1,1,1,0)   1:15 
  (1,1,1,1)   1:16 
 
An example program which uses Timer2 will be shown in the “Pulse-Width Modulator” 
section. 
 
 
 8.9     Capture Mode 
 
 The capture mode is a hardware method of measuring pulse-widths and delays 
between pulses.  There are two capture mode modules and both of them use the 16-bit 
timer, Timer1, for their time-bases.  Timer1 must be set-up prior to using the capture 
mode modules. 
 
 The capture mode modules use the “CCP1” and “CCP2” pins, which are shared 
with Port C, pins RC2 and RC1, respectively.  These pins must be set-up as “inputs” with 
the TRISC register. 
 
 The capture mode inputs may look for the following “events” on the input pins: 
 

1) Every falling edge. 
2) Every rising edge. 
3) Every 4th rising edge. 
4) Every 16th rising edge. 

 
 
When one of these events occurs, the Timer1 values are placed into “CCPR1H” and 
“CCPR1L” or “CCPR2H” and “CCPR2L” as the high and low bytes of Timer1’s count, 
respectively.  Interrupts must be used since, if another event occurs before the previous 
event’s data can be read, that previous data will be overwritten and destroyed. 
 
 If Timer1 is being used with an external clock, it must be set-up as 
“synchronized” or else the capture process may fail. 
 
 The capture mode modules use the “CCP1CON” and “CCP2CON” control 
register files to select the types of events for each module.  The lower four bits of each 
are used for this selection and are coded as: 
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 CCP1M3:CCP1M0 
 CCP2M3:CCP2M0  Meaning 
  (0,0,0,0)  CCP1 or CCP2 disabled, reset. 
  (0,1,0,0)  Every Falling Edge 
  (0,1,0,1)  Every Rising Edge 
  (0,1,1,0)  Every 4th Rising Edge 
  (0,1,1,1)  Every 16th Rising Edge 
 
Switching between these modes or events while the interrupts are enabled may cause 
false triggering of an interrupt. 
 
 Note that the capture, compare, and PWM modules are not independent of each 
other and must not be used without considering the possible conflicts of their usage. 
 
 An example program that uses the capture mode and Timer1 is as follows.  
Suppose that the “CCP1” input (Port C, RC2) is used with the “Every Rising Edge” event 
to measure pulse-widths. 
 
   LIST  P=16F877 
   INCLUDE “P16F877.INC” 
 
 LOW_HALF:  EQU  0x20 ; Pulse-Width, Low 
 HIGH_HALF:  EQU  0x21 ; Pulse-Width, High 
 FLAGS:  EQU  0x22 ; User Flags 
 EDGE:  EQU  0 ; Flag: First Edge Found 
 READY:  EQU  1 ; Flag: Data Ready 
 
   ORG  0x0000 
   GOTO  INIT 
   ORG  0x0004 
   GOTO  CCP1_ISR 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTC ; Bank 0 
   CLRF  INTCON ; Clear All INT Flags 
   CLRF  TMR1L ; Reset Timer1 
   CLRF  TMR1H 
   MOVLW 0x01  ; Timer1 ON, Prescale = 1 
   MOVWF T1CON 
   BANKSEL TRISC  ; Bank 1 
   BSF  TRISC,2 ; RC2 = Input 
   BSF  PIE1,CCP1IE  ; Enable CCP1 INT Enable Bit 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,CCP1IF ; Reset CCP1 INT Flag 
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   MOVLW 0x05  ; Set Event: Every Rising Edge 
   MOVWF CCP1CON 
   CLRF  FLAGS ; Reset User Flags 
   MOVLW 0xC0  ; Enable Global & Peripheral 
   MOVWF INTCON ; Interrupts 
 
 MAIN:  
   ----- Look For FLAGS,READY = 1------- 
   ----- Use This Data When Ready ---------- 
 
 CCP1_ISR: 
   ----- Save Registers ------(See Appendix F)----- 
   BTFSC FLAGS,EDGE ; First Edge Found? 
   GOTO  GET_DATA_ISR ; Yes: Copy Data, Ready 
   BSF  FLAGS,EDGE ; No: Reset Timer1 
   CLRF  T1CON  ; Turn Off Timer1 
   CLRF  TMR1L  ; Reset Timer1 
   CLRF  TMR1H 
   BSF  T1CON,TMR1ON ; Turn Timer1 On 
   GOTO  DONE_ISR 
 GET_DATA_ISR: 
   MOVF  CCPR1L,W  ; Get Low Data 
   MOVWF LOW_HALF 
   MOVF  CCPR1H,W  ; Get High Data 
   MOVWF HIGH_HALF 
   BSF  FLAGS,READY ; Set Data Ready 
 DONE_ISR: 
   BCF  PIR1,CCP1IF ; Reset INT Flag 
   ----- Restore Registers ----- 
   RETFIE    ; Return From INT 
   END 
 
 
 
 8.10     Compare Mode 
 
 There are two compare mode modules that test the value of the 16-bit timer, 
Timer1, against a 16-bit, user specified, threshold and, when there is a match, an output 
pin is set/cleared, an interrupt is generated, or a “special event” is triggered.  There are 
two compare mode modules, “CCP1” and “CCP2”, which each have distinct “special 
events”.  The special event for “CCP1” is to reset and restart Timer1.  The special event 
for “CP2” does the same as for “CCP1” but also starts the ADC.  Interrupts may also be 
generated when they are enabled. 
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 The same rules, registers, interrupts, and pins are used here as in the “capture 
modes” except that Port C, RC1 and RC2, must be configured as “outputs” with TRISC 
rather than “inputs”. 
 
 The “CCP1CON” and “CCP2CON” register bits have different meanings and 
settings in “compare mode”.  They are: 
 
 CCP1M3:CCP1M0  Meaning / Action 
  (1,0,0,0)  CCP1 = 1 and CCP1IF = 1 
  (1,0,0,1)  CCP1 = 0 and CCP1IF = 1 
  (1,0,1,0)  CCP1IF = 1 (Only) 
  (1,0,1,1)  CCP1IF = 1 and “Reset/Restart Timer1” 
 
 CCP2M3:CCP2M0  Meaning / Action 
  (1,0,0,0)  CCP2 = 1 and CCP2IF = 1 
  (1,0,0,1)  CCP2 = 0 and CCP2IF = 1 
  (1,0,1,0)  CCP2IF = 1 (Only) 
  (1,0,1,1)  CCP2IF = 1 and “Reset/Restart Timer1” 
               and “Start ADC” 
 
Where “CCP1IF” and “CCP2IF” are the interrupt flags of each module. 
 
 As it was stated in the “capture mode”:  The capture, compare, and PWM modes 
are not independent of each other and must be checked for conflicts of usage. 
 
 An example program that uses the compare mode and Timer1 is as follows.  
Suppose we want to use the “CCP1” module with its special event to produce regular 
interrupts at intervals of one millisecond.  This is a good alternative to using Timer0 as a 
time-base since the Timer0 prescaler can be freed to work with the watch-dog timer. 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 FLAGS: EQU  0x20  ; User Flags 
 LIMIT_LOW: EQU  0xE8  ; LSB of 1000 
 LIMIT_HI: EQU  0x03  ; MSB of 1000 
 READY: EQU  0  ; FLAGS, Bit 0, “INT Occurred” 
 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  COMPARE_ISR 
 
   ORG  0x0006 
 INIT: 
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   BANKSEL PORTC ; Bank 0 
   CLRF  INTCON ; Reset Main INT Enables 
   CLRF  T1CON ; Turn Timer1 “Off” 
   CLRF  TMR1L ; Reset Timer1 
   CLRF  TMR1H 
   BSF  T1CON,TMR1ON ; Turn Timer1 “on”, Scale = 1 
   MOVLW LIMIT_LOW ; Set Compare Register Limit 
   MOVWF CCPR1L 
   MOVLW LIMIT_HI 
   MOVWF CCPR1H 
   BCF  PIR1,CCP1IF ; Reset Compare Mode INT Flag 
   MOVLW 0x0B  ; Set CCP1 Special Event 
   MOVWF CCP1CON 
   CLRF  FLAGS ; Reset User Flags 
   BSF  INTCON,GIE ; Set Global INT Enable 
   BSF  INTCON,PEIE ; Set Peripheral INT Enable 
   BANKSEL TRISC ; Bank 1 
   BSF  PIE1,CCP1IE ; Enable CCP1 Interrupt 
   BANKSEL PORTC ; Bank 0 
 
 MAIN: 
   BTFSS FLAGS,READY  ; INT Occurred? 
   GOTO  MAIN 
   BCF  FLAGS,READY  ; Yes: Process Loop 
   CLRWDT   ; Reset Watch-Dog Timer 
   ------ Do Rest of Program Loop ------- 
   GOTO  MAIN 
 
 COMPARE_ISR: 
   BSF  FLAGS,READY ; Set INT “Ready” Flag 
   BCF  PIR1,CCP1IF ; Reset CCP1 INT Flag 
   RETFIE    ; Return From INT 
   END 
 
 Notice that the registers did not need to be saved and restored as before since the 
special event automatically resets and restarts Timer1.  No manipulations of the W 
register and the STATUS flags were needed. 
 
 
 8.11     Pulse-Width Modulation (PWM) 
 
 There are two PWM modules in the PIC and both can serve as ten-bit Digital-to-
Analog Converters (DACs).  Their outputs are on the “CCP1” and “CCP2” pins, or, 
PortC, RC2 and RC1, respectively.  These must be set-up as “outputs” using TRISC. 
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 The PWM modules use Timer2 rather than Timer1.  Also, the lower four 
selection-bits of “CCP1CON” and “CCP2CON” must be set to (1,1,0,0) to select the 
PWM modes. 
 
 In operation, TMR2 is compared with the limit set in PR2.  To work over a full 
bit-range, PR2 = 0xFF.  For a given value of Fosc and a desired PWM frequency, this full 
bit-range may not be possible but try it first as a baseline. 
 
 PWM Period = ((PR2) + 1)*4*Tosc*(TMR Prescale). 
 
If Fosc = 4 MHz, the PWM Period is 256 microseconds.  This gives a PWM frequency of 
3.9 kHz, which may be acceptable for some applications, but it is not acceptable for 
speech output.  Speech output needs a PWM frequency of about 8 kHz. 
 
 If PR2 = 127, the PWM frequency = 7.8 kHz, which is good enough for speech 
outputs.  However, the bit-range is reduced to only 9 bits, but this is still very good 
quality for sound. 
 
 To send an output sample in PWM1, enter the MSB value in “CCPR1L” and the 
LSBs in “CCP1CON<5,4>”.  When the PWM1 is ready for the next data to send, it 
copies these values into the “CCPR1H” register automatically.  PWM2 works in a similar 
way but with “CCPR2L” and “CCP2CON<5,4>”.  The PWM period and resolution are 
the same as for PWM1. 
 
 An example program which uses PWM1 and Timer2 is as follows: 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 USER_DATA: EQU  0x20  ; Output Data for PWM1 
 FLAGS:  EQU  0x21  ; User Flags 
 READY:  EQU  0 ; Flags, Bit 0, Ready to Send 
 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  PWM_ISR 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTC  ; Bank 0 
   CLRF  INTCON  ; Reset Main INT Enables 
   CLRF  USER_DATA ; Reset Data To Send 
   CLRF  PORTC  ; Reset Port C 
   MOVLW 0x04   ; Turn “on” TMR2 
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   MOVWF T2CON  ; No Scales 
   BANKSEL TRISC  ; Bank 1 
   BCF  TRISC,2  ; RC2 = Output, Use CCP1 
   MOVLW D’127’   ; PR2 = 127 
   MOVWF PR2 
   BANKSEL PORTC  ; Bank 0 
   MOVLW 0x0C   ; Set CCP1 = PWM1 
   MOVWF CCP1CON 
   BCF  PIR1,TMR2IF ; Reset TMR2 INT Flag 
   BSF  INTCON,GIE  ; Enable Global INTs 
   BSF  INTCON,PEIE ; Enable Peripheral INTs 
   CALL  SEND_PWM  ; Send a Zero 
   BANKSEL TRISC  ; Bank 1 
   BSF  PIE1,TMR2IE ; Enable TMR2 INT 
   BANKSEL PORTC  ; Bank 0 
 
 MAIN: 
   ----- Get Data To Send  (Put it in W ) ------ 
 
 WAIT: 
   BTFSS FLAGS,READY ; INT Occurred? 
   GOTO  WAIT   ; --- No, Wait For INT 
   BCF  FLAGS,READY ; --- Yes, Get More Data 
   MOVWF USER_DATA ; Set New Data to Send 
   GOTO  MAIN    
 
 PWM_ISR: 
   ----- Save Registers -----(See Appendix F)------ 
   BSF  FLAGS,READY  ; “INT” = “Data Sent” 
   CALL  SEND_PWM 
   BCF  PIR1,TMR2IF     ; Reset TMR2 INT Flag 
   ----- Restore Registers ----- 
   RETFIE         ; Return From INT 
 
 SEND_PWM: 
   BCF  CCP1CON,4  ; Reset LSBs of Data 
   BCF  CCP1CON,5 
   BTFSC USER_DATA,0 ; Copy LSB to LSB, Bit 5 
   BSF  CCP1CON,5 
   BCF  STATUS,C  ; Rotate Right 
   RRF  USER_DATA,W ; Fit MSB to 7 Bits 
   MOVWF CCPR1L  ; Send MSB 
   RETURN 
   END 
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 8.12     Parallel Slave Port 
 
 Port D can be operated as a “parallel slave port” which is a bi-directional, 
microprocessor data-bus port controlled with the “/CS”, “/RD”, and “/WR” control lines.  
These lines are shared with Port E and the TRISE register must configure all of the Port E 
pins as “inputs”.  Since Port E also shares its lines with the analog input channels, the 
“ADCON1” register must be selected per Figure 8-1 so that the Port E lines are as 
“digital”.  When the PSP is selected, the TRISD may be ignored – it is not needed. 
 
 The PSP selection and status bits are located in the TRISE register.  To select the 
PSP, do “BSF    TRISE,PSPMODE”.  The PSP may generate interrupts upon a read or a 
write. 
 
 In the discussion that follows about PSP “reads” and PSP “writes”, the “read” and 
“write” are defined relative to the microprocessor that controls the PIC’s PSP.  The 
microprocessor “writes” data to the PIC’s PSP so that the PIC can “read” its data.  That 
is, a PSP “write” is for the PIC to get information from the PSP.  The microprocessor 
“reads” the PIC’s PSP so that the PIC can “write” data to the microprocessor.  That is, a 
PSP “read” is the way the PIC sends information to the microprocessor.  Relative to the 
PIC, a “write” in an “input” and a “read” is an “output”. 
 
 A “write” to the PSP occurs when the “/CS” and “/WR” lines are made low by the 
external device (“microprocessor”).  This causes the “IBF” flag in the TRISE register to 
be set (=1), where “IBF” means “Input Buffer Full”.  The “write” is completed when 
either the “/CS” or the “/WR” are made high.  This causes the interrupt flag, “PSPIF”, to 
be set, which generates an interrupt, if it is enabled.  The “IBF” flag is reset automatically 
when Port D is read in software.  The “IBOV” flag (“Input Buffer Overflow”) in the 
TRISE is set if a second “write” is attempted before the first Port D data is read.  The 
“IBOV” flag must be reset in software. 
 
 A “read” from the PSP is for sending data from the PIC to the external device.  
The user does this by writing data to Port D and waiting for the external device to pick it 
up.  Writing data to Port D causes the “OBF” flag in the TRISE register to be set (=1), 
where “OBF” means “Output Buffer Full”.  A “read” from the PSP occurs when the 
“/CS” and the “/RD” lines are made low by the external device.  When this occurs, the 
“OBF” flag is reset immediately so that the PIC’s software “knows” that the external 
device got the data.  When either the “/CS” or the “/RD” lines are made high, the 
interrupt flag, “PSPIF”, is set which generates an interrupt if it is enabled. 
 
 An example program that uses the PSP is as follows: 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 IN_DATA:  EQU  0x20  ; Data From PSP “Write” 
 OUT_DATA:  EQU  0x21  ; Data To PSP “Read” 
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   ORG  0x0000 
 INIT: 
   BANKSEL TRISE  ; Bank 1 
   MOVLW 0x06  ; ADCON1 – Select “All Digital” 
   MOVWF ADCON1 
   MOVLW 0x17  ; Set PSP Mode, Port E=INPUTS 
   MOVWF TRISE 
   BANKSEL PORTD ; Bank 0 
 
 MAIN: 
   ----- Get Data to Send ----- 
   BANKSEL TRISE  ; Bank 1 
   BTFSC TRISE,OBF ; Got Data? 
   GOTO  NOT_READY_YET1 
   BANKSEL PORTD ; Bank 0 
   BTFSS PIR1,PSPIF ; “Read” Complete? 
   GOTO  NOT_READY_YET1 
   MOVF  OUT_DATA,W  ; Ready to Send Next Data 
   MOVWF PORTD 
   BCF  PIR1,PSPIF ; Reset INT Flag 
   GOTO  WHEREVER1 
 
 
   ----- Prepare to Get New Data ----- 
   BANKSEL TRISE  ; Bank 1 
   BTFSS TRISE,IBF ; New Data In? 
   GOTO  NOT_READY_YET2 
   BANKSEL PORTD ; Bank 0 
   BTFSS PIR1,PSPIF ; “Write” Complete? 
   GOTO  NOT_READY_YET2 
   MOVF  PORTD,W ; Get Data 
   MOVWF IN_DATA 
   BCF  PIR1,PSPIF ; Reset INT Flag 
   GOTO  WHEREVER2 
 
   END 
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 8.13      EEPROM Data Memory 
 
 The PIC has 256 bytes of EEPROM that the user can read and write using 
software.  This is ideal for long-term data since the EEPROM is a non-volatile memory.  
The data EEPROM can support up to one-hundred-thousand “erase/write” data cycles.  
The reading of the EEPROM data is fast but the worst-case writing-time for one byte is 
eight milliseconds.  A watch-dog timer induced reset can abort the writing process so it is 
important to make sure the watch-dog timer is set with a time-out period greater than its 
minimum of seven milliseconds. 
 
 Both the data read and data write subroutines can be done in cookbook fashion 
and are as follows: 
 
 READ_EEPROM:   ; Call with Address in W 
   BANKSEL EEADR ; Bank 2 
   MOVWF EEADR ; Set Address 
   BANKSEL EECON1 ; Bank 3 
   BCF  EECON1,EEPGD  ; Do “Data EEPROM” 
   BSF  EECON1,RD         ; Start “Read” 
   BANKSEL EEDATA ; Bank 2 
   MOVF  EEDATA,W ; Get Data in W 
   BANKSEL PORTB ; Bank 0 
   RETURN 
 
The data write subroutine uses two RAM locations:  “ADDR” and “VALUE” to hold the 
address and the data value to write, respectively.  Reset the watch-dog timer and disable 
all interrupts before calling this subroutine.  This routine returns a value of zero in the W 
register if the “write” was successful. 
 
 
 WRITE_EEPROM: 
   BANKSEL EECON1 ; Bank 3 
   BTFSC EECON1,WR ; Is Previous “Write” Done? 
   RETLW 0x01  ; No, Return W = Non-Zero 
   BANKSEL EEADR ; Bank 2 
   MOVF  ADDR,W ; Get Address 
   MOVWF EEADR ; Set Address 
   MOVF  VALUE,W ; Get Data to Write 
   MOVWF EEDATA ; Set Data to Write 
   BANKSEL EECON1 ; Bank 3 
   BCF  EECON1,EEPGD  ; Data EEPROM Select 
   BSF  EECON1,WREN   ; Do “Write Enable” 
   MOVLW 0x55  ; “Lock & Key” Combinations 
   MOVWF EECON2 ;(****** See Below ******) 
   MOVLW 0xAA 
   MOVWF EECON2 
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   BSF  EECON1,WR ; Start “Write” Process 
   NOP 
   BCF  EECON1,WREN  ; Disable “Writes” 
   RETLW 0x00  ; OK, Return W = Zero 
 
 The code sequence labeled “Lock & Key” may seem confusing at first.  It is a 
sequence of actions selected by Microchip to prevent the possibility of writing data to the 
EEPROM by mistake.  Using this code sequence makes writing data to the EEPROM a 
conscious and deliberate act.  There is nothing special about the code words that are sent 
to the “EECON2” register.  They were chosen arbitrarily by Microchip to do the job.  
What matters is that these two codes must be sent in this order and one sent immediately 
after the other.  This sequence “unlocks” the “Write-to-EEPROM” process. 
 
 
 
 8.14      FLASH Program Memory 
 
 In a similar way to the Data EEPROM, the FLASH Program Memory can also be 
read from and written to in software.  However, the FLASH can only support one-
thousand “erase/write” data cycles.  The worst-case writing-time is still the same as the 
Data EEPROM at eight milliseconds.  While the writing process is active, the program 
memory cannot be accessed for the normal running of the software – the CPU “freezes” 
until the “write” is complete.  Again, you must reset the watch-dog and disable all of the 
interrupts before calling the “writing” subroutine. 
 
 Also, since the FLASH program memory has 13-bit addresses and 14-bit data 
words, two bytes, each, are needed to hold the address and data for a FLASH read or 
FLASH write.  Assume that the user’s registers that hold this data are as: 
 
  ADDRH:ADDRL   --- For the Address 
  DATAH:DATAL   --- For the Data. 
 
Both the FLASH read and the FLASH write subroutines can be done in cookbook 
fashion.  They are as follows: 
 
 FLASH_READ: 
   BANKSEL EEADR ; Bank 2 
   MOVF  ADDRL,W ; Get/Set Low Address 
   MOVWF EEADR 
   MOVF  ADDRH,W 
   MOVWF EEADRH 
   BANKSEL EECON1 ; Bank 3 
   BSF  EECON1,EEPGD ; Select FLASH Memory 
   BSF  EECON1,RD ; Start “Read” Process 
   NOP    ; Delay two cycles 
   NOP 
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   BANKSEL EEDATA ; Bank 2 
   MOVF  EEDATA,W ; Get Data, Low & High 
   MOVWF DATAL 
   MOVF  EEDATH,W 
   MOVWF DATAH 
   RETURN 
 
 
 FLASH_WRITE: 
   BANKSEL EEADR ; Bank 2 
   MOVF  ADDRL,W ; Get/Set Address, High & Low 
   MOVWF EEADR 
   MOVF  ADDRH,W 
   MOVWF EEADRH 
   MOVF  DATAL,W ; Get/Set Data to Write 
   MOVWF EEDATA 
   MOVF  DATAH,W 
   MOVWF EEDATH 
   BANKSEL EECON1 ; Bank 3 
   BSF  EECON1,EEPGD  ; Select FLASH Memory 
   BSF  EECON1,WREN  ; “Write” Enable 
   MOVLW 0x55  ; “Lock & Key” Combination 
   MOVWF EECON2 ; (**** Same Idea as EEPROM **) 
   MOVLW 0xAA 
   MOVWF EECON2 
   BSF  EECON1,WR ; Start “Write” Process 
   NOP    ; Delay two cycles 
   NOP 
   BCF  EECON1,WREN ; Disable “Writes” 
   RETURN 
 
 
 
 
 
 8.15      FLASH Code & Data EEPROM Protection 
 
 The CONFIGURATION word at address 0x2007 contains bit settings that block 
read/write access to the FLASH program memory and the Data EEPROM.  This is a 
security function to prevent software piracy.  These bits can be specified in the program 
or in the down-load process.  Other options allow restricted areas of FLASH memory to 
be set-up. 
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 8.16      The CONFIGURATION Word 
 
 The CONFIGURATION word is located at the address 0x2007 and may be 
specified in the assembly language program or specified during the down-load process.  It 
has 14 bits and is broken-down as follows: 
 
 Bit 13,  Bit 5, “CP1” 
 Bit 12,  Bit 4, “CP0” 
 
  CP1:CP0 Code Protection (FLASH) 
    (1,1)   Code Protect OFF 
    (1,0)   0x1F00 to 0x1FFF Protected 
    (0,1)   0x1000 to 0x1FFF Protected 
    (0,0)   0x0000 to 0x1FFF Protected 
 
  Both sets of bits (13,5) and (12,4) must have the same values. 
 
 Bit 11, “DEBUG” 
  = 1 = “In-Circuit Debugger Disabled” 
  = 0 = “Enabled” 
 
 Bit 9, “WRT” 
  = 1 = “UnProtected FLASH, Can be written under software control” 
  = 0 = “Cannot be written under software control” 
 
 Bit 8, “CPD” 
  = 1 = Data EEPROM Code Protect Off 
  = 0 = Code Protected 
 
 Bit 7, “LVP” = “Low Voltage In-Circuit Serial Programming Enable Bit” 
  = 1 = “Enabled” 
  = 0 = “Disabled” 
 
 Bit 6, “BODEN” 
  = 1 = “Brown-Out Reset Enabled” 
  = 0 = “Disabled” 
 
 Bit 3, “/PWRTE” 
  = 1 = “Power-Up Timer Enabled” = “Power-On Reset Enabled” 
  = 0 = “Disabled” 
 
 Bit 2, “WDTE” 
  = 1 = “Watch-Dog Timer Enabled” 
  = 0 = “Disabled” 
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 Bit 1, Bit 0, “FOSC1” and “FOSC0” 
  FOSC1:FOSC0 Oscillator Selection Bits 
   (1,1)  RC Oscillator (No External Components Needed) 
   (1,0)  HS Oscillator (4 MHz to 20 MHz XTAL) 
   (0,1)  XT Oscillator (200 kHz to 4 MHz XTAL) 
   (0,0)  LP Oscillator (32 kHz to 200 kHz XTAL) 
 
 
 
 8.17      Sleep Modes & Reset Modes 
 
 The PIC has a power-saving mode where the CPU can be deactivated only to be 
re-activated later but without losing RAM data or register data.  This is called the “Sleep” 
mode and it is initiated by executing the “SLEEP” instruction in the user’s software.  
Processor “resets” and interrupts can take the PIC out of “Sleep” mode.  These will be 
discussed shortly. 
 
 There are several kinds of processor “resets” in the PIC.  A list of these is as 
follows: 
 

1) Power-On Reset (POR) 
2) /MCLR --- Normal Operation 
3) /MCLR --- From Sleep 
4) Watch-Dog Timer (WDT)  --- Normal Operation 
5) Watch-Dog Timer (WDT)  --- From Sleep 
6) Brown-Out Reset (BOR) 

 
The “power-on reset” can be enabled to wait until the DC power has come up to a safe 
level before initializing the PIC.  Likewise, the “brown-out reset” can be enabled to look 
for drops in the DC voltage powering the PIC and cause a reset to occur.  The “power-
on” reset, the “brown-out” reset, and the watch-dog timer are all enabled or disabled from 
the CONFIGURATION word.  The “/MCLR” reset pin (pin 1) is held high with a pull-up 
in normal operation. 
 
 Each of these resets has “flag” or “status” bits that allow the user to detect which 
of these reset has occurred from software.  These bits are located in the “PCON” and 
“STATUS” registers.  A table of their states and meanings is as follows: 
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 /POR      /BOR     /TO     /PD        Meaning/ Significance 
    (0)          (x)         (1)       (1)       Power-On Reset 
    (0)       (x)        (0)       (x)        Illegal 
    (0)          (x)         (x)       (0)        Illegal 
    (1)          (0)         (1)       (1)        Brown-Out Reset 
    (1)          (1)         (0)       (1)        Watch-Dog Timer Reset 
    (1)          (1)         (0)       (0)        Watch-Dog Timer, Wake From Sleep 
    (1)          (1)         (u)       (u)        /MCLR Reset, Normal Operation 
    (1)          (1)         (1)       (0)        /MCLR or INT, Wake From Sleep 
 
Where “x” = “Don’t Care” and “u” = “unchanged”.  The program-counter’s value on a 
reset is 0x0000.   The PC’s value on a wake-up is the increment of its value when the PIC 
entered “Sleep”. 
 
 The interrupts which can awaken the PIC from “Sleep” when they are enabled are 
as follows: 
 

1) External INT pin 
2) Parallel Slave Port (Read/ Write) 
3) Timer1 
4) CCP1/CCP2 Special Events 
5) Serial Peripheral Interface (Chapter 9) 
6) SPI / I2C Slave Mode (Chapter 9) 
7) USART (Chapter 9) 
8) ADC 
9) EEPROM Writes 
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Chapter 9:     PIC Peripherals, Serial  
Communications Ports 

 
 
 9.0     Chapter Summary 
 
 Section 9.2 discusses the USART in all of its modes.  Section 9.3 covers the SPI 
master mode.  Section 9.4 covers the SPI slave mode.  Section 9.5 covers the I2C in two 
examples of its master and slave modes. 
 
 
 9.1     Introduction 
 
 The PIC has three major serial communications modes: 
 

1) USART 
The USART is a “Universal Synchronous/Asynchronous Receiver/Transmitter”.  
It performs RS-232 serial communications with the IBM-PC serial port when it is 
operated in its asynchronous mode.  It can also work in a master or slave 
synchronous mode but only in a half-duplex form. 
 
2) Master Synchronous Serial Port, Serial Peripheral Interface 
The MSSP/SPI mode is a simple 8-bit serial input/output used for working with 
shift-registers and other simple serial interfaces.  It is not used for RS-232.  Like 
the USART, it also has a master or slave mode. 
 
3) Master Synchronous Serial Port, Inter-Integrated Circuit 
The MSSP/I2C mode is a more complex serial communications mode that is 
supported by many off-the-shelf integrated circuits.  It is intended for more 
complex systems where there are several master mode devices and many slave 
mode devices.  There is a complicated communications protocol that links each 
master to each slave.  It is not used for RS-232. 
 
 
9.2      USART (Overview) 

 
 The USART performs RS-232 serial communications.  This can be done with 
another PIC, a microprocessor serial port, or the IBM-PC’s serial port. 
 
 The USART can operate with 8-bit data or 9-bit data.  It may be configured to 
work in one of three modes: 
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1) Asynchronous (Full-Duplex) 
2) Synchronous, Master (Half-Duplex) 
3) Synchronous, Slave (Half-Duplex) 

 
 The “TXSTA” register governs the status and control of the transmitter, while the 
“RCSTA” register governs the same for the receiver.  The data to transmit is placed in the 
“TXREG” and the received data is placed in the “RCREG” register.  There is also the 
“SPBRG” register which is used to select the baud rate (“data clock-speed”). 
 
 Interrupts may be generated by both the transmitter and the receiver.  These will 
be shown later as they are needed. 
 
 
 9.2.1     USART (Asynchronous Mode, Full-Duplex) 
 
 The first step in using the USART in the asynchronous mode is to activate the 
USART by setting (=1) the “SPEN” bit in the “RCSTA” register.  The Port C pins, RC6 
and RC7, must be configured with the TRISC register as “output” and “input” 
respectively.  Setting the “SPEN” bit enables the “TX” pin (RC6) as the transmitted data 
output and the “RC” pin as the received data input. 
 
 Next, the “SYNC” bit of the “TXSTA” register must be cleared (=0) to select the 
“Asynchronous” mode. 
 
 Eight-bit vs. nine-bit transmission and reception is done with the “TX9” bit of the 
“TXSTA” register and the “RX9” bit of the “RCSTA” register, respectively.  Setting 
each (=1) enables the nine-bit operation while clearing them (=0) enables the eight-bit 
operation.  If the nine-bit operation is enabled, the ninth transmitted data bit, “TX9D”, 
must be set-up in the “TXSTA” register, and the ninth received data bit, “RX9D”, can be 
found in the “RCSTA” register. 
 
 The baud rate must be selected next.  There are two speeds for the baud rate 
model.  The user enters a value “X” in the “SPBRG” register according to the formulas: 
 
 Low-Speed Baud Rate = Fosc / (64 * (X + 1)) 
 High-Speed Baud Rate = Fosc / (16 * (X + 1)). 
 
The “BRGH” bit in the “TXSTA” register selects between these “low-speed” and “high-
speed” models.  If BRGH = 1, the “high-speed” is selected and BRGH = 0 selects the 
“low-speed”.  The selection of these speeds is somewhat arbitrary in that one or the other 
may give a better approximation to the desired baud rate, and this is really what counts. 
 
 For example, suppose we want a baud rate of 19200 and the Fosc = 4 MHz.  For 
the “low-speed”, this gives SPBRG = 2 and the approximate baud rate = 20833, which 
has a percent error of 8.5%.  For the “high-speed”, this gives SPBRG = 12 and the 
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approximate baud rate = 19230 which has a percent error of 0.16%.  Therefore, the “high-
speed” selection is the better choice. 
 
 Last, the receiver must be enabled by setting (=1) the “CREN” bit in the 
“RCSTA” register. 
 
 The overall data format for the USART in the asynchronous mode is transmission 
and reception with the least-significant-bit first, in a non-return-to-zero (NRZ) format, 
with the bit sequence as “start-bit, data-bits, stop-bit”, and with no internally-generated 
parity bits. 
 
 The transmitter is enabled by setting (=1) the “TXEN” bit in the “TXSTA”.  To 
send data for output, write the data to the “TXREG” register.  (If the nine-bit mode is set, 
the “TX9D” data bit must be set-up first and then write the other part, the byte, to the 
“TXREG” register. 
 
 There is a “transmitter” interrupt flag, “TXIF”, which is set when the “TXREG” 
register is empty and waiting for the next byte to send.  That is, when a data byte is 
placed in the “TXREG” register, the byte is shifted out, and, when the “TXREG” is 
empty, the interrupt flag is set.  The “TXIF” flag cannot be reset in software.  It is only 
reset by writing another byte to the “TXREG” register.  If there is no more data to 
transmit, the interrupt process can only be disabled by disabling the “TXIE” interrupt-
enable bit. 
 
 To receive a data byte, the “receive” interrupt flag, “RCIF”, is set when a new 
byte is received, and will generate an interrupt if it is enabled.  The “RCIF” bit is 
automatically reset when the software reads the data from the “RCREG” data register. 
(If the nine-bit mode is set, the “RX9D” data bit in the “RCSTA” register must be read 
before reading the “RCREG” data.) 
 
 Another feature that is available in the nine-bit asynchronous mode is “automatic 
address detection”.  This is used for “multi-PIC” or “multi-device” operations where each 
device has a nine-bit “address” and it will respond to the transmitting PIC only when the 
address matches the address sent to it. 
 
 To select this mode of operation, set-up the PIC in nine-bit asynchronous mode 
and set (=1) the “ADDEN” bit in the “RCSTA” register.  Also enable the receiver 
interrupt with the “RCIE” bit (RCIE = 1).  When the interrupt occurs, read the nine data 
bits, interpret them as an address, and see if the address matches the user-defined address.  
If it does, clear (=0) the “ADDEN” bit to allow the software to read the data to follow.  
The address is distinguished from the data by setting the ninth-bit of the address to one 
(=1).  The ninth-bit of the data will be zero (=0). 
 
 It should be noted that the asynchronous USART mode is halted if the CPU enters 
the “Sleep” state. 
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 There are two receiver-error condition bits that need to be discussed.  These are 
the “OERR” bit meaning “Overrun Error” and “FERR” meaning “Framing Error”.  Both 
of these bits are in the “RCSTA” register. 
 
 The “RCREG” register where the data comes in is double-buffered so that it can 
store two bytes in succession.  If a third data byte comes in, without the first two having 
been read, the “OERR” bit will be set (=1) to indicate “Overrun Error”.  When this 
happens, the third data byte is lost and the whole receive process is inhibited.  To correct 
and reset this error, the “RCREG” register must be emptied and the “OERR” can be reset 
only indirectly by doing: 
 
  BCF RCSTA,CREN 
  BSF RCSTA,CREN. 
 
 The “Framing Error” condition, indicated by the “FERR” bit is set (=1) if a 
received data byte has an illegal “Stop” bit indicating that the data is illegal.  This error 
condition does not inhibit the receive process and does not need to be cleared.  A new 
“FERR” value will appear when the “RCREG” data register is read.  Therefore, check the 
“FERR” bit before reading the “RCREG” to get the current “FERR” value. 
 
 The example program that follows is for an 8-bit, asynchronous USART mode 
with receiver interrupts, transmitter polling, and a baud rate of 19200. 
 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 RCV_DATA:  EQU  0x20  ; Received Data 
 FLAGS:  EQU  0x21  ; User Flags 
 READY:  EQU  0  ; Flag: RCV Data Ready 
 FRAME:  EQU  1  ; Flag: Frame Error 
 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  RCV_ISR 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTC  ; Bank 0 
   CLRF  PORTC 
   BCF  PIR1,RCIF  ; Reset RCV INT Flag 
   MOVLW 0x80   ; Enable USART, 8-Bit 
   MOVWF RCSTA  ; --- RCV Mode 
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BANKSEL TRISC  ; Bank 1 
BCF  TRISC,6  ; RC6 = Out 
BSF  TRISC,7  ; RC7 = In 
MOVLW D’12’   ; Set Baud Rate = 19200 
MOVWF TXSTA 
BSF  PIE1,RCIE  ; Set RCV Int Enable Bit 
BANKSEL PORTC  ; Bank 0 
BSF  INTCON,PEIE ; Enable Peripheral Ints 
BSF  INTCON,GIE  ; Enable Global Ints 
BSF  RCSTA,CREN ; Enable RCV 
CLRF  FLAGS  ; Reset User Flags 
BSF  TXSTA,TXEN ; Enable XMTR 

 
 MAIN: 
   ------ When Ready To Send Data --------- 
   ------ Put Data in (W) ----------------------- 
 
   MOVWF TXREG  ; Send Data 
 WAIT: 
   BTFSS PIR1,TXIF  ; Wait for XMT to Finish 
   GOTO  WAIT 
 
   ------ If Data is Received -------------------- 
   BTFSS FLAGS,READY ; Is Data Ready to Read? 
   GOTO  NO_DATA_YET 
   MOVF  RCV_DATA,W ; Get the Data 
   BCF  FLAGS,READY 
 
 RCV_ISR: 
   ------ Save Registers ------- (See Appendix F) 
   BCF  FLAGS,FRAME ; Reset Previous FERR 
   BTFSC RCSTA,FERR ; Check for Frame Error 
   BSF  FLAGS,FRAME ; Set “FRAME” if FERR=1 
   MOVF  RCREG,W  ; Get New RCV Data 
   MOVWF RCV_DATA  ; Store in User’s Data 
   BSF  FLAGS,READY ; Set User’s Data Ready 
   ------ Restore Registers --------------------- 
   RETFIE    ; Return From Int 
   END 
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 9.2.2     USART (Synchronous, Master Mode) 
 
 Both the synchronous master mode and the synchronous slave mode run the 
USART as “half-duplex” meaning that the data cannot be transmitted and received at the 
same time.  The primary difference between the master mode and the slave mode is that 
the master mode generates the serial clock while the slave mode receives the external 
serial clock. 
 
 Many features, bits, and conditions of the synchronous master mode are similar to 
the asynchronous mode.  This section will illustrate only the differences between these 
modes. 
 
 The baud rate generator works with a model and formula different from  the 
asynchronous mode and the “BRGH” bit, which was the speed control, has no meaning.  
The baud rate is: 
 
 Baud Rate = Fosc / (4 * (X + 1)) 
 
Where “X” is the value written into the “SPBRG” register.  This allows for much higher 
baud rates. 
 
 The “Sleep” mode halts the synchronous master mode.  The “Address Detection” 
mode is not available in the synchronous master mode.  The Port C pins, RC6 and RC7, 
are set up as before.  The clock (CK) is sent on RC6 while the data is both sent and 
received one way at a time, on RC7 (DT). 
 
 The “CSRC” bit and the “SYNC” bit, both of the “TXSTA” register, must be set 
(=1) for the synchronous master mode. 
 
 The operation of the USART in the synchronous master mode is more 
complicated due to the restriction of doing only half-duplex communications.  The 
“TXEN” bit of the “TXSTA” register and the “CREN” bit of the “RCSTA” register must 
not both be set (=1) at the same time – only one or the other is to be set (=1) at any one 
time.  To transmit data, the “TXEN” bit must be set (=1) and the “CREN” bit must be 
cleared (=0).  To receive data, the “TXEN” bit must be cleared (=0) and the “CREN” bit 
must be set (=1).  All other things are equal.  In the receive mode, the data is sampled on 
the falling edge of the clock and, in transmit mode, the data is shifted on the rising edge 
of the clock and is stable on the falling edge. 
 
 One exception is the possibility of receiving one single byte during the 
transmission of (typically) a stream of transmitted data bytes.  This is done by setting the 
“SREN” bit (=1) of the “RCSTA” register while the “TXEN” bit of the “TXSTA” 
register is set (=1).  When a single byte is received, the “SREN” bit is cleared (=0) 
automatically. 
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 9.2.3    USART (Synchronous, Slave Mode) 
 
 This section will illustrate the differences between the synchronous slave mode 
and the other two USART modes. 
 
 Since the synchronous slave mode does not generate a serial data clock, but 
receives it externally, there is no need to set-up the “SPBRG” register to generate baud 
rates.  The Port C pins, RC6 and RC7, must both be set-up as “inputs” using the TRISC” 
register.  The “CSRC” bit of the “TXSTA” register must now be cleared (=0) for the 
synchronous slave mode. 
 
 
 The “single byte receive” option using the “SREN” bit is disabled in the slave 
mode.  The “either-or” nature of the “TXEN” and “CREN” bits is still the same as in the 
synchronous master mode. 
 
 The reception or transmission of data in the slave mode can awaken the CPU from 
“Sleep”. 
 
 
 
 9.3     Serial Peripheral Interface (SPI, Master Mode) 
 
 The SPI master mode allows 8-bit data to be synchronously transmitted and 
received at the same time.  This data transfer happens on three pins as follows: 
 
 Serial Data Out   =   SDO   =   RC5   =   Output 
 Serial Data In      =   SDI    =   RC4   =   Input 
 Serial Clock        =   SCK   =   RC3   =   Output. 
 
Where the Port C pins, RC5, RC4, and RC3, are set-up with the TRISC register as above. 
 
 The “SSPSTAT” and “SSPCON” registers are used to control the SPI module, 
while the “SSPBUF” register is used for the input and output data. 
 
 The first step in setting-up the SPI in master mode is to set the lower four bits of 
the “SSPCON” register as follows: 
 
 SSPM3:SSPM0  Function / Meaning 
  (0,0,0,0)  SPI, Master, SCK = Fosc / 4 
  (0,0,0,1)  SPI, Master, SCK = Fosc / 16 
  (0,0,1,0)  SPI, Master, SCK = Fosc / 64 
  (0,0,1,1)  SPI, Master, SCK = Timer2 / 2 
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Next, the “CKP” bit in the “SSPCON” register must be set-up along with the “CKE” and 
“SMP” bits of the “SSPSTAT” register.  This is done according to the waveforms of 
Figure 9-1.  An example of the issues involved with this selection will be given later. 
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bit 0
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SCK(CKP = 0, CKE = 0)
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SCK(CKP = 1, CKE = 0)

SCK(CKP = 1, CKE = 1)

SDO

SDI(SMP = 0)

SDI(SMP = 1)

SSPIF

Figure 9-1  Master Mode  SPI Mode Timing

 
 
 
 The last step is to set (=1) the “SSPEN” bit of the “SSPCON” register to enable 
the MSSP/SPI module. 
 
 Sending data for output (on the SDO line) is done by writing the data to the 
“SSPBUF” register.  Getting data from the input (on the SDI line) is done by doing a 
“dummy” write or a “real” write to the “SSPBUF” register.  It is impossible to read data 
for input without writing data for output!  When the data transfer process is finished, the 
“SSPIF” interrupt-flag is set (=1).  If the corresponding interrupt-enable bit, “SSPIE”,  is 
set (=1), an interrupt will be generated. 
 
 Now let’s look at some hardware interfacing issues and the selection of bits per 
Figure 9-1.  A simple input/output circuit is shown in Figure 9-2.  A “serial-in, parallel-
out” (SIPO) shift-register (74HC164) is used to capture the SPI’s serial output data.  A 
“parallel-in, serial-out” (PISO) shift-register (74HC165) is used to feed the SPI’s serial 
input pin (SDI).  Notice that the “clock” or “shift” input of the 74HC165 runs from the 
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SPI’s clock (SCK) through an inverter.  Both of the shift-registers “clock” on the rising-
edge. 
 

(8) (8)PIC16F877

74HC164 (SIPO) 74HC165 (PISO)

1 Reset CKI

(8) (8)PIC16F877
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Shift/
Load

Shift/
Load

SDI

Data In

Data In

SCK
CK

CK
Data
OutSDI

CK

CK

SCK
Data
SDI

SDI

OR

Figure 9-2  Serial-Out/Serial-In with the 74HC164 & 74HC165

 
 
 
 The selection bits for this circuit are: 
 
 CKP = 0,  CKE = 1,  and  SMP = 0. 
 
This produces the second “SCK” waveform from the top of Figure 9-1.  This is ideal for 
the “output” part since the “SDO” data is stable when the “SCK” makes a rising edge.  If 
the 74HC165 is used without the inverter on its clock, a potential problem exists.  The 
rising edge would then be used to sample the input data and shift the shift-register at the 
same time!  In general this is a bad design practice.  The problem can be fixed by using 
the inverter as above, or by selecting “SMP = 1” and feeding the 74HC165’s serial output 
line back into its serial input line.  The latter would cause the data to be shifted an extra 
space and the PIC would have to rotate the bit-pattern back into its proper place. 
 
 Another circuit situation is shown in Figure 9-3.  This circuit uses an “AND” gate 
to inhibit the clock-input of a SIPO, 74HC164 shift-register to prevent data from being 
output to it while data from the 74HC165 is being read in. 
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Figure 9-3  Serial-Out/Serial-In with Gated Clock
To Inhibit Serial Output

 
 
 Since both the 74HC164 and the 74HC165 have serial data inputs, they may be 
cascaded in series (serially) for multiple-byte inputs and outputs. 
 
 An example program that uses the SPI master mode and Figure 9-3 is as follows: 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 DATA_RCV:  EQU  0x20  ; Storage for RCV Data 
 OUT_ENABLE: EQU  0  ; Port B, RB0 – Enable Out 
 SHIFT_LOAD: EQU  1  ; Port B, RB1 = 
        ;       1 = SHIFT 
        ;       0 = LOAD 
   ORG  0x0000 
 INIT: 
   BANKSEL TRISC  ; Bank 1 
   MOVLW 0x10   ; RC5 = RC3 = Out 
   MOVWF TRISC  ; RC4 = In 
   CLRF  TRISB   ; Port B = Outputs 
   BCF  SSPSTAT,SMP ; SMP = 0 
   BSF  SSPSTAT,CKE ; CKE = 1 
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   BANKSEL PORTC  ; Bank 0 
 
   CLRF  SSPCON  ; SPI, Master, Fosc / 4 
   BSF  SSPCON,SSPEN ; Enable SPI 
 
 MAIN: 
   ------- Put Data to Send in W --------- 
   CALL  SPI_SEND  ; Do Data Read / Write 
 
   CALL  SPI_READ  ; Do Data Read (No Write) 
 
 SPI_READ: 
   BCF  PORTB,OUT_ENABLE ; Disable Write 
   GOTO  SPI_SKIP 
 SPI_SEND: 
   BSF  PORTB,OUT_ENABLE ; Enable Write 
 SPI_SKIP: 
   BCF  PORTB,SHIFT_LOAD ; “Load” 
   BSF  PORTB,SHIFT_LOAD ; “Shift” 
   BCF  PIR1,SSPIF   ; Reset Int Flag 
   MOVWF SSPBUF   ; “Send” Data 
 
 SPI_WAIT: 
   BTFSS PIR1,SSPIF  ; Wait Until Done 
   GOTO  SPI_WAIT 
 
   MOVF  SSPBUF,W  ; Get RCV Data 
   MOVWF DATA_RCV  ; & Save It 
   BCF  PIR1,SSPIF  ; Reset Int Flag 
   RETURN 
   END 
 
 
 
 9.4     Serial Peripheral Interface (SPI, Slave Mode) 
 
 There are many similarities between the SPI master mode and the SPI slave mode.  
Only the differences will be stated here.  The main difference is that the “SCK” serial-
clock line does not generate the clock but receives it as an input on the “SCK” line.  Also, 
there is a fourth serial port line, “/SS”, meaning “slave-select” which can be used to 
activate or deactivate the slave SPI unit, if the option to use it is enabled. 
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 The summary of the SPI serial pins in slave mode is: 
 
 Serial Data Out   =   SDO   =   RC5   =   Output 
 Serial Data In      =   SDI    =   RC4   =   Input 
 Serial Clock        =   SCK   =   RC3   =   Input 
 /Slave Select       =   /SS     =    RA5  =   Input (TRISA & ADCON1) 
 
 
The lower four bits of the “SSPCON” register now select as: 
 
 SSPM3:SSPM0  Function / Meaning 
  (0,1,0,0)  SPI, Slave, /SS Enabled 
  (0,1,0,1)  SPI, Slave, /SS Disabled 
 
 The “CKP” and “CKE” bits are selected according to the waveforms in Figure 9-4 
and Figure 9-5.  The “SMP” bit must always be zero (=0).  Also if “CKE” is set (=1) then 
the “slave select” (/SS) must be enabled. 
 

bit 7

bit 7

bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 0

SDO

SDI(SMP = 0)

SSPIF

SS  (Optional)

SCK(CKP = 0)

SCK(CKP = 1)

Figure 9-4  SPI  Mode  Timing  (Slave Mode, CKE = 0)
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 If the “slave select” pin is enabled, the controlling device must set this pin “low” 
(= 0 = Ground) to activate the slave PIC’s SPI module.  If the “slave select” line is 
enabled and is held “high” (= 1 = +5 Volts), the slave PIC will ignore the “SCK” input 
clock and none of its data will be transferred. 
 
 All of the other features of the SPI master mode are the same as in the SPI slave 
mode. 
 
 
 9.5     I2C System Overview 
 
 The I2C system communicates on the “SCL” and “SDA” pins which are shared 
with the Port C, pins RC3 and RC4, respectively.  The “SCL” is the data clock and the 
“SDA” is the data line.  These pins must both be set-up as “inputs” with the TRISC 
register before configuring the I2C modes.  Furthermore external pull-up resistors 
(minimum resistance is 1.7 K-Ohms) must be attached to each of these pins for the proper 
operation of the I2C module.  All of the above is true for the I2C module in all of its 
modes, master or slave. 
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 In the I2C system each slave device has a unique “address” code which identifies 
it for the master device when the master device wants to access it.  Many slave devices 
may be used in the system and there may be several master devices, too.  They all share 
the same “SCL” and “SDA” lines which are “open-drain” outputs along with sensors for 
“inputs”.  This makes bi-directional information transfers possible at any time. 
 
 The slave’s addresses may be either 7-bits long or 10-bits long depending on the 
devices to be used or its settings.  The PIC I2C module supports both lengths in either of 
the master or slave modes. 
 
 The slave devices in the I2C system cannot initiate a data transfer to the 
master(s).  It can only read or write data to the master when the master calls it and only 
one master can do this at any one time. 
 
 Let’s look at the I2C communication process in its most general form.  Suppose, 
for example, for simplicity we are working with 7-bit slave addresses. 
 
 Suppose that the master device is the PIC in the I2C system operating in the 
master mode and it wants to write data to a slave.  The master PIC first looks for activity 
on the “SDA” and “SCL” lines to see if another master device is using the system.  If and 
when there is no activity, the master sends out nine (9) clock pulses on the “SCL” line 
and sends out eight (8) bits on the “SDA” line.  The eight bits are the 7-bit slave address 
and a “read/write” bit which is set (=1) for a “read” or reset (=0) for a “write”.  Here it is 
reset (=0).  Then the master PIC holds the “SDA” line “high” (=1) and looks for an 
“acknowledge” state from the slave also on the “SDA” line (this is possible since the 
“SDA” line uses “open-drain” outputs).  If the slave does not acknowledge the master, it 
will hold the “SDA” line “high” (=1) and the master knows that the slave refuses the 
master’s attempt to “write”.  If the slave does acknowledge the master, it will bring the 
“SDA” line to ground, or “low” (=0), and the master will proceed to send its data (more 
on this later). 
 
 When the slave device (suppose it is a PIC in slave mode) receives the 7-bit 
address and the “read/write” bit it checks the address contained in the “SSPADD” 
register which was set-up by the slave’s user’s software.  If there is a match, an 
“acknowledge” is sent; if not, no “acknowledge” is sent. 
 
 If the slave gives an “acknowledge” to the master, the master sends out nine (9) 
“SCL” clock pulses and the eight data bits to be sent on the “SDA” line.  The ninth clock 
pulse is used to sense another “acknowledge” state from the slave.  If the slave does not 
“acknowledge” the master, the data “write” process is stopped, and both the master and 
the slave go into an “idle” state.  If there is an “acknowledge” from the slave, the above 
process repeats, but sending a new address is not necessary. 
 
 Suppose that the master wants to get data (“read”) from the slave.  The whole 
process is nearly identical, but with three (3) exceptions.  The first is that the “read/write” 
bit is set (=1) for doing a “read”.  The second is that when the slave gives the 
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“acknowledge” when it gets its address code from the master, the slave holds the “SCL” 
line “low” (=0) to inhibit the master from sending out clock pulses on the “SCL” line.  
These are the clock pulses the master uses to synchronize the data “read” from the slave.  
The master is inhibited until the slave is ready to send its data.  When it is ready, it 
releases the “SCL” line by letting it go “high” (=1).  The third is that master is now the 
one that sends the “acknowledge” out on the ninth master clock pulse for the slave to 
receive.  If there is an “acknowledge” from the master, the slave gets ready to send 
another byte.  Again, sending a new address is not necessary. 
 
 In both the “write” and “read” processes a “useless” or “dummy” byte is sent after 
the last “valid-data” byte “acknowledge” is sent so that it can be refused and the data 
transfer process will then stop. 
 
 The I2C module uses five user-accessible registers for its data, status, and control 
functions: 
 
 

1) SSPCON --- Control #1 
2) SSPCON2 --- Control #2 
3) SSPSTAT --- Status 
4) SSPBUF --- Transmit and Receive Data 
5) SSPADD --- Slave Address or Master Baud-Rate Setting 

 
The first step in setting-up the I2C module is to set-up Port C pins RC3 and RC4  

as “inputs” by using the TRISC register.  Next, set-up the lower four bits of the 
“SSPCON” register as: 
 
 SSPM3:SSPM0  Function / Meaning 
  (0,1,1,0)  I2C Slave Mode, 7-Bit Address 
  (0,1,1,1)  I2C Slave Mode, 10-Bit Address 
  (1,0,0,0)  I2C Master Mode 
  (1,0,1,1)  I2C Firmware Controlled Master Mode / Slave Idle 
  (1,1,1,0)  I2C FCMM, 7-Bit Addr, Start/Stop Interrupts 
  (1,1,1,1)  I2C FCMM, 10-Bit Addr, Start/Stop INTs 
 
 In the master mode, set-up the baud rate as “X” in the “SSPADD” register as: 
 
 Baud Rate =  Fosc / (4 * (X + 1)) 
 
Where the baud rate is usually one of 100 kHz, 400 kHz, or 1 MHz. 
 
 In either master or slave modes, set-up the “CKE” bit in the “SSPSTAT” register 
as: 
 
 0 =  I2C Input Levels 
 1 =  SMBus Input Levels. 
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Also, set-up the “SMP” bit which is also in the “SSPSTAT” register, to control the slew-
rates of the “SCL/SDA” pins as: 
 
 1 =  Slew-Rate Disabled (100 kHz or 1 MHz baud rates) 
 0 =  Slew-Rate Enabled (400 kHz baud rate). 
 
Last, set (=1) the “SSPEN” bit in the “SSPCON” register to enable the I2C serial port 
module. 
 
 
 
 
 9.5.1      I2C Slave Mode 
 
 The great complexity of the I2C communications module makes it difficult to 
describe not only the available options but the sequences in which they are used.  This is 
best seen with an example program using the 7-bit I2C in slave mode. 
 
   LIST  P=16F877 
   INCLUDE “P16F877.INC” 
 
 FLAGS: EQU  0x20  ; User’s Flags 
 RCV_DATA: EQU  0x21  ; Hold for User’s Rcved Data 
 ADDR_LOW: EQU  0x3D  ; Slave’s Address (Arbitrary Here) 
 ACCEPT: EQU  0 ; Flags: Bit 0 = “Accept Next Data” 
 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  SLAVE_ISR 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTC ; Bank 0 
   CLRF  FLAGS ; Reset User’s Flags 
   BANKSEL TRISC  ; Bank 1 
   BSF  TRISC,3 ; Make RC3 & RC4 “Inputs” 
   BSF  TRISC,4 
   BCF  SSPCON2,GCEN ; Disable “General Call” 
      ; (This would reserve Address = 0 as 
      ; a cause for an interrupt, if enabled) 
   BANKSEL PORTC ; Bank 0 
   MOVLW 0x06  ; Select “7-Bit Slave” Mode 
   MOVWF SSPCON 
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   BANKSEL SSPSTAT ; Bank 1 
   BCF  SSPSTAT,SMP ; Enable Slew-Rate Control 
   BCF  SSPSTAT,CKE ; Set I2C Signal Levels 
   MOVLW ADDR_LOW ; Set The Slave’s Address 
   MOVWF SSPADD 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF ; Reset I2C Int Flag 
   BANKSEL TRISC ; Bank 1 
   BSF  PIE1,SSPIE ; Enable I2C Interrupts 
   BANKSEL PORTC ; Bank 0 
   BSF  INTCON,PEIE ; Enable Peripheral Interrupts 
   BSF  SSPCON,SSPEN ; Enable I2C MSSP Module 
   BSF  INTCON,GIE ; Enable Global Interrupts 
 
 
 
 MAIN: 
   --- Do Program & Wait to be Interrupted ---- 
 
 SLAVE_ISR: 
   --- Save Registers ---(See Appendix F)--- 
   BANKSEL SSPSTAT ; Bank 1 
   BTFSC SSPSTAT,DA ; Is Word = Address? 
   GOTO  DO_DATA ; --- No, Process the Data 
   BTFSC SSPSTAT,RW ; --- Yes, Is This a “Write” Op? 
   GOTO  WRITE_DATA ; --- Yes, Do Write 
 
   BANKSEL PORTC ; --- No, Prepare To Get Data 
   BSF  FLAGS,ACCEPT ; Set Flag to Accept Next  

; Data 
   MOVF  SSPBUF,W ; Discard Address Transmitted 
   BCF  SSPCON,SSPOV ; Reset Overflow Flag 
 ISR_RETURN: 
   BCF  PIR1,SSPIF ; Reset I2C Interrupt Flag 
   --- Restore Registers ---- 
   RETFIE   ; Return From Interrupt 
 
 WRITE_DATA: 
   BANKSEL PORTC ; Bank 0 
   MOVF  SSPBUF,W ; Discard Address Transmitted 
   BCF  SSPCON,CKP ; SCL = 0, Inhibit Master 
   CALL  GET_DATA_TO_SEND ; W = Data 
   MOVWF SSPBUF ; Send Data 
   BSF  SSPCON,CKP ; Release Master 
   GOTO  ISR_RETURN 
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 DO_DATA: 
   BANKSEL PORTC ; Bank 0 
   BTFSC FLAGS,ACCEPT ; Accept This Data? 
   GOTO  YES_ACCEPT 
 
   MOVF  SSPBUF,W ; Discard The Data 
   BCF  SSPCON,SSPOV ; Reset Overflow (Send  

; ACKN) 
   GOTO  ISR_RETURN 
 
 YES_ACCEPT: 
   MOVF  SSPBUF,W ; Get The Data 
   MOVWF RCV_DATA ; Store Data in User’s Data Hold 
   BCF  FLAGS,ACCEPT ; Refuse Next Data 
   BSF  SSPCON,SSPOV ; Set Overflow, No ACKN 
       ; For Next Time 
   GOTO  ISR_RETURN 
   END 
 
 
 
 9.5.2     I2C Master Mode 
 
 As in the slave mode, the operation of the master mode is best seen with an 
example program.  Assume that we are using the “I2C Firmware Controlled Master Mode 
with 7-Bit Addresses and Start/Stop Interrupts Enabled” at a baud rate of 100 kHz. 
 
 
   LIST   P=16F877 
   INCLUDE “P16F877.INC” 
 
 FLAGS: EQU  0x20  ; User’s Flags #1 
 FLAGS2: EQU  0x21  ; User’s Flags #2 
 RCV_DATA: EQU  0x22  ; User’s Rcved Data Hold 
 XMT_DATA: EQU  0x23  ; Hold For Data to Transmit 
 CALLED_SLAVE:  EQU 0x24  ; Current Slave’s Address 
 
 BAUD: EQU  0x09  ; Value for Baud Rate = 100 kHz 
 SLAVE1: EQU  0x78  ; First Slave’s Address (Arbitrary) 
 SLAVE2: EQU  0x6E  ; 2nd Slave’s Address (Arbitrary) 
 SLAVE3: EQU  0x2C  ; 3rd Slave’s Address (Arbitrary) 
 
 ; FLAGS ----------------------------------------------------------------- 
 DUMMY_WRITE: EQU 0  ; Do a Dummy Write 
 START_OK: EQU  1  ; “Start” Process is OK 
 ADDR_ACK EQU  2  ; Address is ACKNed 
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 MASTER_ACK: EQU 3  ; Master’s ACKN is Given 
 
 ; FLAGS2 ----------------------------------------------------------------- 
 BYTE_FOR_XMT: EQU 0 ; Main Program is Attempting XMT 
 GET_A_BYTE: EQU 1  ; Main is to Receive a Byte 
 ADDR_ERROR: EQU 2  ; Address Error – Slave Refused 
 XMT_DATA_OK: EQU 3  ; Transmitted Data Process OK 
 WRITE_ERROR: EQU 4  ; Slave Refuses Data-Write 
 RCV_OK: EQU  5  ; RCV Data Process OK 
 BUS_COL: EQU  6  ; Bus Collision Error Occurred 
 ;------------------------------------------------------------------------------ 
 
   ORG  0x0000 
   GOTO  INIT 
 
   ORG  0x0004 
   GOTO  INT_RESPONSE 
 
   ORG  0x0006 
 INIT: 
   BANKSEL PORTC ; Bank 0 
   CLRF  FLAGS ; Reset User’s Flags #1 
   CLRF  FLAGS2 ; Reset User’s Flags #2 
   CLRF  INTCON ; Reset Main INT Flags 
   BANKSEL TRISC ; Bank 1 
   BSF  TRISC,3 ; Make RC3 & RC4 “Inputs” 
   BSF  TRISC,4 
   BANKSEL PORTC ; Bank 0 
   MOVLW 0x0E  ; 7-Bit FCMM Start/Stop Ints 
   MOVWF SSPCON 
   BANKSEL TRISC ; Bank 1 
   BCF  SSPSTAT,CKE ; I2C Signal Levels 
   BSF  SSPSTAT,SMP ; Slew-Rate Control Disabled 
   MOVLW BAUD  ; Set Baud Rate = 100 kHz 
   MOVWF SSPADD 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF ; Reset I2C Interrupt Flag 
   BCF  PIR2,BCLIF ; Reset Bus Collision Int Flag 
   BANKSEL TRISC ; Bank 1 
   BSF  PIE1,SSPIE ; Enable I2C Interrupts 
   BSF  PIE2,BCLIE ; Enable Bus Collision Interrupts 
   BANKSEL PORTC ; Bank 0 
   BSF  INTCON,PEIE ; Enable Peripheral Interrupts 
   BSF  SSPCON,SSPEN ; Enable I2C MSSP Module 
   BSF  INTCON,GIE ; Enable Global Interrupts 
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 MAIN: 
  ----- Run the Main Program and Look at the FLAGS2 byte ----- 
  ----- This is the “Macro-Status” for the I2C Process -------------- 
 
  To Write to a Slave Device: 

1) Check if “BYTE_FOR_XMT” and “GET_A_BYTE” are 
clear 

2) Get the Slave’s address and put it in “CALLED_SLAVE” 
3) Get the byte for to send, put it in “XMT_DATA” 
4) Set the “BYTE_FOR_XMT” flag 
5) Call the “SET_START” subroutine 
6) Check if “XMT_DATA_OK” flag is set and no error flags 

are set (Data Sent OK).  Then Reset “FLAGS2”. 
7) Possible Errors Are: 

a) ADDR_ERROR --- Slave does not accept address 
given 

b) WRITE_ERROR --- Slave does not accept the data 
c) BUS_COL --- A Bus Collision occurred. 

 
To Read from a Slave Device: 

1) Check if “BYTE_FOR_XMT” and “GET_A_BYTE” are 
clear 

2) Get the Slave’s address and put it in “CALLED_SLAVE” 
3) Set the “GET_A_BYTE” flag 
4) Call the “SET_START” subroutine 
5) Check if “RCV_OK” flag is set and no error flags are set 

(Received Data OK).  Get the Data in “RCV_DATA”.  
Then Reset FLAGS2. 

6) Possible Errors Are: 
a) ADDR_ERROR --- Slave does not accept address 

given 
b) BUS_COL --- A Bus Collision Occurred. 

 
;------------------------------------------------------------------------------------------ 
 
INT_RESPONSE: 
  ---- Save Registers -----(See Appendix F)---- 
CHECK_INT_FLAGS: 
  BANKSEL PORTC ; Bank 0 
  BTFSC PIR2,BCLIF ; Bus Collision? 
  GOTO  BUS_COLLISION 
  BTFSC PIR1,SSPIF ; I2C Interrupt? 
  GOTO  DATA_COMMUNICATIONS 
  ---- Restore Registers ------ 
  RETFIE   ; Return from Interrupt 
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BUS_COLLISION: 
  MOVF  SSPBUF,W ; Discard SSPBUF Data 
  BCF  SSPCON,WCOL ; Reset Error Flags (In I2C) 
  BCF  SSPCON,SSPOV 
  BANKSEL SSPCON2 ; Bank 1 
  BSF  SSPCON2,PEN ; Send “Stop” Condition Signal 
  BANKSEL PORTC ; Bank 0 
  BSF  FLAGS2,BUS_COL ; Set User Flag: Bus  

; Collision 
  BCF  PIR2,BCLIF ; Reset All INT Flags 
  BCF  PIR1,SSPIF 
  GOTO  CHECK_INT_FLAGS 
 
;----------------------------------------------------------------------------------------- 
 
DATA_COMMUNICATIONS: 
  BANKSEL PORTC ; Bank 0 
  BTFSS FLAGS2,BUS_COL ; Was Previous Bus  

;  Col? 
  GOTO  CHECK_STATUS2 ; No 
 
  CLRF  FLAGS   ; Return, Main Software Must Clear 
  BCF  PIR1,SSPIF ; The Previous Bus Collision 
  GOTO  CHECK_INT_FLAGS ; Condition Before New 
      ; Communications Will Start. 
 
CHECK_STATUS2: 
  BANKSEL SSPSTAT ; Bank 1 
  BTFSS SSPSTAT,S ; “Start” Condition Occurred? 
  GOTO  CHECK_STATUS3 
 
  BCF  SSPSTAT,S ; Reset The “Start” Status flag 
  BANKSEL PORTC ; Bank 0 
  BTFSS FLAGS2,BYTE_FOR_XMT ; Data Transmit? 
  GOTO  CHECK_FOR_RECEIVE 
 
SEND_SLAVE_ADDRESS: 
  MOVF  CALLED_SLAVE,W ; Do XMT, Send Slave  

;  Addr 
  MOVWF SSPBUF 
  BSF  FLAGS,START_OK ; “Start” is OK 
RESET_RET: 
  BCF  PIR1,SSPIF 
  GOTO  CHECK_INT_FLAGS 
 
CHECK_FOR_RECEIVE: 
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  BTFSS FLAGS2,GET_A_BYTE ; Data Receive? 
  GOTO  RESET_RET 
  BANKSEL SSPCON2 ; Bank 1 
  BSF  SSPCON2,RCEN ; Enable Receive 
  BANKSEL PORTC ; Bank 0 
  GOTO  SEND_SLAVE_ADDR 
 
;---------------------------------------------------------------------------------------- 
 
CHECK_STATUS3: 
  BANKSEL SSPSTAT ; Bank 1 
  BTFSS SSPSTAT,P ; “Stop” Condition Occurred? 
  GOTO  CHECK_STATUS4 
 
DO_A_RESET: 
  BCF  SSPSTAT,P ; Reset “Stop” Condition Flag 
  BANKSEL PORTC ; Bank 0 
  BCF  SSPCON,WCOL ; Reset I2C Error Flags 
  BCF  SSPCON,SSPOV 
  CLRF  FLAGS 
  BCF  PIR1,SSPIF 
  GOTO  CHECK_INT_FLAGS 
 
;----------------------------------------------------------------------------------------- 
 
CHECK_STATUS4: 
  BANKSEL PORTC ; Bank 0 
  BTFSS FLAGS2,BYTE_FOR_XMT 
  GOTO  CHECK_STATUS5 
 

 
 
   BANKSEL SSPSTAT ; Bank 1 
   BTFSC SSPSTAT,DA ; Data or Address RCVed? 
   GOTO  DO_DATA_PROCESS1 
 
   BTFSS SSPSTAT,ACKSTAT ; Get ACKN? 
   GOTO  NO_ACKN1 
   BANKSEL PORTC ; Bank 0 
   BSF  FLAGS,ADDR_ACK 
   BCF  SSPCON,SSPOV  ; Reset Overflow 
   MOVF  XMT_DATA,W ; Get Data To Send 
   MOVWF SSPBUF  ; Send Data 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
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 NO_ACK1: 
   BANKSEL PORTC ; Bank 0 
   BSF  FLAGS2,ADDR_ERROR 
   BANKSEL SSPCON2 ; Bank 1 
   BSF  SSPCON2,PEN ; Send “Stop” Condition 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
 
 ;---------------------------------------------------------------------------------------- 
 
 DO_DATA_PROCESS1: 
   BTFSS SSPSTAT,ACKSTAT ; Get ACKN? 
   GOTO  NO_ACKN2 
 
   BANKSEL PORTC ; Bank 0 
   BSF  FLAGS2,XMT_DATA_OK 
   BSF  FLAGS,DUMMY_WRITE 
   BSF  SSPCON,SSPOV ; No ACKN Next Time 
   MOVWF SSPBUF ; Dummy Write 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
 
 NO_ACKN2: 
   BANKSEL PORTC ; Bank 0 
   BTFSS FLAGS,DUMMY_WRITE 
   GOTO  NO_DUMMY 
 
 
 
 
 
 DO_DUMMY_END: 
   BCF  SSPCON,WCOL ; Reset I2C Error Flags 
   BCF  SSPCON,SSPOV 
   CLRF  FLAGS 
   BANKSEL SSPCON2 ; Bank 1 
   BSF  SSPCON2,PEN ; Send “Stop” Condition 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
 
 NO_DUMMY: 
   BSF  FLAGS2,WRITE_ERROR 
   GOTO  DO_DUMMY_END 
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 ;---------------------------------------------------------------------------------------- 
 
 CHECK_STATUS5: 
   BANKSEL PORTC ; Bank 0 
   BTFSS FLAGS2,GET_A_BYTE 
   GOTO  DO_A_RESET 
 
   BTFSC FLAGS,MASTER_ACK 
   GOTO  DO_DUMMY_END 
 
   BANKSEL SSPSTAT ; Bank 1 
   BTFSC SSPSTAT,DA ; Data or Address? 
   GOTO  DO_DATA_PROCESS2 
 
   BTFSS SSPCON2,ACKSTAT ; Get ACKN? 
   GOTO  NO_ACKN1 
 
   BANKSEL PORTC ; Bank 0 
   MOVF  SSPBUF,W ; Discard Address Received 
   BSF  FLAGS,ADDR_ACK 
   BCF  SSPCON,WCOL ; Reset I2C Error Flags 
   BCF  SSPCON,SSPOV 
   BANKSEL SSPCON2 ; Bank 1 
   BSF  SSPCON2,RCEN ; Enable RCV 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
 
 ;--------------------------------------------------------------------------------------- 
 
 
 
 DO_DATA_PROCESS2: 
   BANKSEL PORTC ; Bank 0 
   MOVF  SSPBUF,W ; Get Data RCVed 
   MOVWF RCV_DATA ; Store Data in User’s Data Hold 
   BSF  FLAGS2,RCV_OK 
   BSF  MASTER_ACK 
   BANKSEL SSPCON2 ; Bank 1 
   BSF  SSPCON2,ACKDT ; Send “No ACKN” 
   BSF  SSPCON2,ACKEN 
   BANKSEL PORTC ; Bank 0 
   BCF  PIR1,SSPIF 
   GOTO  CHECK_INT_FLAGS 
 
 ;---------------------------------------------------------------------------------------- 
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 SET_START: 
   BANKSEL SSPCON2 ; Bank 1 
   BSF  SSPCON2,SEN ; Set a “Start” Condition 
   BANKSEL PORTC ; Bank 0 
   RETURN 
 ;------------------------------------------------------------------------------------------ 
   END 
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Chapter 10:     DSP Fundamentals 
 
 10.0     Chapter Summary 
 
 Section 10.2 looks at a simple low pass filter as a moving average.  Section 10.3 
looks at a similar high pass filter.  Section 10.4 gives a short discussion of digital filters 
in the most general sense.  Section 10.5 discusses aliasing and the Nyquist Sampling 
Theorem.  Section 10.6 is a cookbook example of a practical low pass/high pass filter.  
Section 10.7 is a cookbook example of a practical band pass filter.  Section 10.8 covers 
the concept of a median filter.  Section 10.9 describes DTMF decoding using a series of 
standard band pass filters.  Section 10.10 describes DTMF decoding by the deliberate use 
of aliasing.  Section 10.11 discusses how DSP can be used for speech compression and 
sound effects. 
 
 
 10.1     Introduction 
 
 Digital Signal Processing (DSP) is usually thought of as a modern idea due to the 
availability of cheap computers, but its roots can be traced back to the 17th century.  The 
main idea of DSP is to use equations to manipulate signals.  That is, signals such as 
speech or communications waveforms, can be sampled at regular intervals of time, 
converted from voltage levels to numbers (ADC), and used as a sequence of these 
numbers, to feed a computer to run calculations on them with a given, user-defined 
equation.  The resulting numbers are then converted back into voltage levels (DAC) to 
use as a new signal. 
 
 DSP techniques can be used to filter, detect, classify, encode, decode, and remove 
noise from signals.  Why would anyone want to use DSP when other filters, detectors, 
and classifiers are already available?  A DSP filter is an algorithm that runs on a cheap 
computer.  It is programmable and it is flexible in that its program can be changed.  For a 
given algorithm or program it is ultra-stable.  The DSP filter does not change with 
temperature, component aging, component tolerances, and it is very resistant to errors in 
manufacturing.  Part of its flexibility is in its adaptability.  A much slower process can be 
run at the same time as the main filter program to measure the performance of the filter 
and then over time change the filter program to make it do a better job of filtering.   
Today when computers, ADCs, and DACs are very cheap, DSP is a very attractive idea! 
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 10.2     An Example: A Low-Pass Filter 
 
 Let’s see how a simple filter can be constructed with DSP techniques and show 
that it is possible to do filtering by doing calculations alone.  Suppose that there is an 
ADC that takes 8-bit data sample-values at a regular rate of 20kHz and suppose that the 
signals we want to filter are sine waves. 
 
 Let the filter calculations be done this way:  Let 16 ADC samples be stored in 
RAM in the order they were received.  When a new sample comes in, it is also stored in 
RAM but the oldest of the 16 previous samples gets discarded.  That is, at any time, there 
are only the 16 most recent samples, including the current sample stored in RAM.  Let 
the “output” of the filter be the average of these 16 samples.  That is, add up all of the 
samples together and divide the sum by 16 to get one filter “output” point or sample.  
This process is called a “moving-average”. 
 
 Does this process do “low-pass” filtering?  Let’s see.  Suppose that the input test 
signal is a sine wave at a frequency of 10 Hz.  Since the sampling rate (or “the data rate”) 
is 20 kHz, there are 2000 sample points in one cycle of the 10 Hz wave.  Only 16 of these 
at any one time are used in the moving-average.  Most of the 16 points have roughly the 
same values as each other.  There are, at times, some differences between the points since 
the wave is changing over time, but at 10 Hz this change is very slow relative to the 
sampling rate.  The filter output, or average, will be only slightly less than any one of the 
16 sample values.  That is, a “low” frequency will “pass” unchanged. 
 
 What happens if the input test signal is a sine wave with a frequency of 8500 Hz?  
Since the sampling rate is 20 kHz, there are at most only two successive samples that are 
“both positive” or “both negative” at any one time.  If 16 successive samples were added 
together, most of them will cancel each other out.  This sum will be made even smaller 
when it is divided by 16.  So, for this “high” frequency, the filter output will be very 
small at any one time.  A low-pass filter will attenuate high frequencies. 
 
 So, we have a low-pass filter just by doing the moving-average calculation! 
 
 
 10.3     An Example: A High-Pass Filter 
 
 This example is crude and more difficult to see, but with a relaxed view it can be 
seen by approximation. 
 
 Suppose that the moving-average is the same as in our high-pass filter except that, 
now instead of adding the 16 samples together they are alternately added to and 
subtracted from each other (and then the sum/difference result is divided by 16).  That is, 
add the first, subtract the second, add the third, … and so on. 
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 If our input test signal is the 10 Hz sine wave, most of these samples were nearly 
the same and consequently forming the new sum/difference will cancel these samples 
out.  Then dividing the result by 16 will make the output even smaller.  A “low” 
frequency is now attenuated! 
 
 The 8500 Hz signal input case is more difficult to see.  Since this signal is mostly 
alternating in sign, or nearly so, the sum/difference process will now “subtract negatives” 
and “add positives” thereby reinforcing the “sum”.  Dividing the result by 16 will make it 
smaller, but the result, or output, will be much larger at any one time than for the “low” 
frequencies.  This process is now a high-pass filter! 
 
 
 
 10.4     DSP Filters in General 
 
 DSP filters can also use past values of the outputs of the filter for an even greater 
filtering effect.  In general, most DSP filters today use “weights” or “constant 
multipliers” that multiply each of the past inputs and each of the past outputs before 
forming the sum to be used as the filter output.  Modern DSP filters are linear, recursive, 
difference equations.  Any type of filter can be made by taking enough past inputs and 
past outputs and giving them each a proper multiplying weight.  The weights modulate 
the filter’s performance by making the response more uniform in the pass-band, giving a 
sharper cut-off of the undesired frequencies and overall, produce the desired filter shape. 
 
 
 10.5     Aliasing and the Nyquist Sampling Theorem 
 
 There is a limit to the highest frequency that can be represented in a signal when 
the sampling rate is set at some value.  It turns out that for a given sampling rate, call it 
“SR”, the largest frequency component of a signal to be sampled must not exceed the 
frequency “SR / 2”.  If that signal does have frequencies exceeding “SR / 2”, those 
frequencies will be “reflected back” and will interfere with the valid frequencies that are 
less than “SR / 2”.  These “reflections back” are called the “alias” frequencies of a 
sampled signal.  Unless these frequency components which are greater than “SR / 2” are 
removed by an analog filter prior to being sampled, they will be “aliased”; they will 
interfere with the frequency components which are less than “SR / 2”, and there will be 
no way to remove them once they are sampled! 
 
 Why is this so?  Why does “aliasing” occur at all?  Let’s go back to Chapter 7 to 
the part about the Direct Digital Synthesis method for generating sine waves.  (Take 
some time to review that now.)  It was said, at the time without proof, that the maximum 
frequency sine wave, which could be produced with DDS, was at half the sampling rate 
(data rate).  Is this true?  Assume that the system that was used in Chapter 7 is the same 
as the one we will use here.  The sampling rate is 10 kHz and the accumulator and the 
table-increment are both 16-bit registers.  Suppose we want to use this DDS system to 
produce a sine wave at 7500 Hz.  The table-increment = 7500 / F-to-I = 49152 = 0xC000.  
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Let the accumulator start from zero and use the table-increment of 0xC000.  This 
produces the following data: 
 
 Accumulator  Sine Wave Value 
 ACCUM = 0000          Zero 
 ACCUM = C000         - Max 
 ACCUM = 8000          Zero 
 ACCUM = 4000         + Max 
 ACCUM = 0000          Zero 
 
The sampling rate is 10 kHz and this output has a period of four steps so our frequency is 
2500 Hz! 
 
 On the other hand, suppose we have an ADC that samples at 10 kHz and we give 
it an input sine wave with a frequency of 7500 Hz.  What does this look like? 
See Figure 10-1.  The resulting samples are the same as the DDS case:  The samples are 
for a 2500 Hz sine wave! 
 

Input Sine Wave Frequency = 7.5 kHz

10 kHz Sample Points

Alias Sine Wave at 2.5 kHz

Figure 10-1  Example of Aliasing When Sampling an Analog Signal

 
 
 
 We can’t tell the difference between a 2500 Hz sine wave and a 7500 Hz sine 
wave if the sampling rate is 10 kHz by looking at the samples they produce!  We know 
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that the inputs are very different, but we can’t tell the difference by looking at the 
samples alone.  As far as we know there is no difference at all. 
 
 Aliasing is a fundamental fact of the nature of sampled-data systems.  In most 
applications we wish to prevent aliasing from occurring.  In some cases, however, we can 
use aliasing as a design technique.  The decision to do so must be based on the size, cost 
and complexity of the system to be built.  If aliasing is to be used in an answering 
machine, this is OK.  If you are using DSP techniques to radar-map the surface of Venus 
in a Venus-orbiting satellite, avoid aliasing at all costs! 
 
 If the input signal waveform to a sampled-data system has a maximum frequency 
of “Fmax”, the Nyquist Sampling Theorem says that the data can be exactly represented 
and recovered without aliasing if the sampling rate is at least twice the frequency of 
“Fmax”.  In practice, we use a little more than twice the frequency (say, 2.2 * Fmax), for 
insurance. 
 
 
 10.6     DSP Cookbook I --- A Simple LPF/HPF 
 
 A simple low-pass/high-pass filter can be formed with the equation: 
 
 Y(n) = X(n) – (B1) * Y(n-1). 
 
Where Y(n) is the n-th output, Y(n-1) is the (n-1)-th output, X(n) is the n-th input, and B1 
is a constant multiplying weight.  If B1 is as: 
 
 B1  >  0,    Then the filter is a high-pass filter 
 B1  <  0,    Then the filter is a low-pass filter. 
 
 ABS(B1)  <  1.0   is a MUST, or the filter will be unstable 
    (Its outputs will try to run to infinity). 
 
In a modified frequency-domain, a “normalized” frequency called “A” is defined as: 
 
 A  =  (2 * Pi * f) / (Sampling Rate). 
 
Since the frequency “f” ranges over the range  0 <= f < (SR / 2) the normalized frequency 
“A” will range over the range 0 <= A < Pi. 
 
 The filter “magnitude vs. normalized frequency” equation is: 
 
 Magnitude = 1 / sqrt( 1  +  (B1 ** 2) + ( 2 * B1 * cos(A))). 
 
 The maximum magnitude for this filter is Max Magnitude = 1 / ( 1 – B1). 
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 The half-power (3 dB) frequency is given by: 
 
 Cosine(A) = 2 – (( 1 – (B1 ** 2)) / ( 2 * B1)). 
 
 Note that the maximum magnitude and the filter gains get very large as “B1” is 
just less than one.  Also, if the half-power (3 dB) frequency is to be “tight”, “B1” must be 
slightly less than one, and therefore the gains will be large. 
 
 There are several problems that are encountered when we attempt to implement 
this filter on the PIC.  Since “B1” is a constant, the multiply routine can be made as a 
“multiply-by-a-constant” using “RLF”, “ADDWF”, “SUBWF”, or by using a look-up 
table (hashing).  If the filter gains are too high, however, a single-byte multiply may not 
be sufficient.  The inputs may have to be reduced (attenuated) before entering the filter to 
reduce the outputs that are made large by the large gains.  This will make the small 
amplitudes of the signal even smaller.  If the input must be a large amplitude and the 
gains must be large (“small bandwidth”), working with double-byte arithmetic is a 
MUST.  Overall, the sampling rates and the PIC’s oscillator frequency, “Fosc”, must be 
used to judge how much time is allowed to do the filter calculations. 
 
 An example filter program is as follows:  (Put the input into W when this is called 
and the output will also be in W) 
 
 FILTER: 
   MOVWF TEMP  ; Store input 
   MOVF  OLD_OUTPUT,W  ; Get Y(n-1) 
   CALL  MULTIPLY_B1 
   ADDWF TEMP,W ; Add X(n), Get X(n) – B1 * Y(n-1) 
   MOVWF OLD_OUTPUT ; Set Y(n) as Next Y(n-1) 
   RETURN     ; W = Y(n) = Output 
 
 
 10.7     DSP Cookbook II --- A Simple BPF 
 
 A simple band-pass filter (BPF) can be produced by using the following equation: 
 
 Y(n) = X(n)  -  B1*Y(n-1)  -  B2*Y(n-2). 
 
Where the Y()s are for the current, previous, and second-previous outputs, respectively.  
The X(n) is the current input and “B1” and “B2” are the constant multiplier weights.  The 
weights “B1” and “B2” can be expressed in a different form as: 
 
 B1  =  - 2 * R * Cosine(G) 
 B2  =  R ** 2. 
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Where “G” is the “Normalized Center Frequency Desired”.  The “R” value must be 
greater than zero and less than one.  If “R” is greater than or equal to one, the filter will 
be unstable and the outputs will try to run to infinity. 
 
 The filter’s “Magnitude vs. Normalized Frequency” equation is considerably 
more complicated than that of the LPF/HPF: 
 
 Magnitude = 1 / sqrt( C1  +  C2  +  C3) 
 
 C1 = 4 * B2 * (Cosine(A)) ** 2 
 C2 = 2 * B1 * ( 1 + B2) * Cosine(A) 
 C3 = B1 ** 2  +  ( 1 – B2) ** 2 
 
Where “A” is the normalized input frequency.  The maximum gain at the center 
frequency is: 
 
 Max Magnitude = 1 / (( 1 -  R ** 2) * Sine(G)). 
 
The bandwidth may be calculated from: 
 
Cosine(A+) = Cosine(G) * (( 1 + R ** 2)/( 2 * R)) + Sine(G) * (( 1 – R ** 2)/( 2 * R)) 
Cosine(A-)  = Cosine(G) * (( 1 + R ** 2)/( 2 * R)) – Sine(G) * (( 1 – R ** 2)/( 2 * R)) 
 
 Bandwidth = ABS((A+) – (A-)) and A+- = Arccos(Cosine(A+-)). 
 
The bandwidth is in the normalized frequency range. 
 
 Note that the gains and the maximum magnitude get very large as “R” is just less 
than one, but this is required for having narrow bandwidths.  The exact same design and 
implementation issues are applicable here as they are in the LPF/HPF. 
 
 
 10.8      DSP Cookbook III --- A Median Filter 
 
 The median filter is a departure from the other filters in that there are no 
multiplying weights and no summation of values.  The median filter is for removing 
impulse noise that may corrupt a signal.  It removes noise spikes.  It works by taking an 
odd number of samples, preserving their order in RAM, removing the oldest point to fill 
in the current point as before, but the set of samples is copied to a separate section of 
RAM and sorted into order from lowest to highest.  Then the middle point (the median) is 
taken as the current output. 
 
 It is important to note that the median filter is nonlinear.  Traditional frequency-
domain analysis techniques will not work on it.  The median filter looks in some ways 
like a low-pass filter but it preserves sharp transitions and edges like a high-pass filter.  It 
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is also important to notice that the median filter selects but does not calculate in order to 
do its filtering action. 
 
 One application of the median filter that we will need is for cleaning-up the noise 
from the ADPCM expansion process (ADPCM was covered in Chapter 7).  The ADPCM 
expansion process includes many overshoots and undershoots in the signal as it tries to 
approximate the original signal.  These come out as noise spikes and are present in 
enough volume to make listening to the output difficult.  The median filter removes these 
noise spikes and there is no noticeable noise at the median filter’s output. 
 
 One implementation problem with the median filter is running the filter at high 
speeds.  If the median filter is coded with a brute-force sorting-algorithm, it will take 113 
instruction cycles to run.  This is too much time and the median filter could not be used in 
this form without moving the PIC to a higher oscillator frequency.  But, an improved 
algorithm will take only 57 instruction cycles, and this will make the median filter 
practical in this application.  The details of this improved algorithm are outlined in 
Chapter 6 under the example of ROM States. 
 
 
 10.9     DSP Example I --- Standard DTMF Decoding 
 
 The “standard” way to decode DTMF signals is to use a bank of seven (7) band-
pass filters to decode each single frequency.  These frequencies are: 
 
 697 Hz, 770 Hz, 852 Hz, 941 Hz, 1209 Hz, 1336 Hz, and 1477 Hz. 
 
More complete details of the DTMF signaling process can be found in Chapter 7.  Each 
BPF will have two multiplier weights giving a total of 14 weights.  Since the highest 
frequency to measure is 1477 Hz, the sampling rate can be set at 3 kHz to satisfy the 
Nyquist Sampling Theorem.  This will give us 333 microseconds to do a run of all of the 
filters.  Another requirement is to measure the outputs of each of the filters to see if they 
are showing high volume outputs to show if that particular frequency is present.  This 
means that each output of each filter must be converted to an absolute-value and 
accumulated or “integrated” to judge if that frequency is present.  This must use a double-
byte buffer for each filter to make this accumulation.  After about 50 milliseconds, we 
can stop the process and look for peaks in the accumulated filter outputs and decode them 
into symbols (if there were any at all – there might not be any).   
 
 If the PIC’s clock oscillator is running at 4 MHz, each instruction will take one 
microsecond to run.  This means that the complete process of all of the filters and their 
accumulations must run with only 333 instruction cycles.  Some minor amount of 
overhead is also needed. 
 
 Assume that all of the weight multiplications use look-up tables with 256 entries 
each.  This requires a total memory space of 3.5 kilo-words in ROM. 
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 Let’s look at one BPF and one double-byte add and estimate the time it takes to 
run and then multiply that by seven (7) to see if the process can be done in less than 333 
microseconds.  Let the following routine be called with the new input-data in a RAM 
location called, “INPUT_N”: 
 
 BPF_FILTER: 
  MOVF  OLD_OUT1,W ; Get Y(n-1) 
  CALL  WEIGHT_TABLE1 ; Get  Product B1 * Y(n-1) in W 
  MOVWF TEMP 
  MOVF  OLD_OUT2,W ; Get Y(n-2) 
  CALL  WEIGHT_TABLE2 ; Get  Product B2 * Y(n-2) in W 
  ADDWF TEMP,W  ; Sum The Two Products in W 
  ADDWF INPUT_N,W ; Add the Input to the two products 
  MOVWF RESULT  ; Store The Y(n) Temporarily 
 
  MOVF  OLD_OUT1,W ; Update Y(n-2) for Next Time 
  MOVWF OLD_OUT2 
  MOVF  RESULT,W  ; Update Y(n-1) for Next Time 
  MOVWF OLD_OUT1 
 
  MOVF  RESULT,W  ; Convert to ABS Value 
  BTFSC RESULT,7 
  SUBLW 0 
 
  ADDWF ACCUM_LOW,F ; Add to Accumulator-Low 
  BTFSC STATUS,C  ; Add Carry If Any 
  INCF  ACCUM_HIGH,F 
  RETURN 
 
The above BPF and accumulate code takes about 40 microseconds to run.  Seven of these 
gives 280 microseconds.  If we can do all of the overhead in 53 microseconds, this 
solution will work.  If not, we may need a faster clock speed. 
 
 
 10.10     DSP Example II --- Alternative DTMF Decoding 
 
 
 It may be easier to do the DTMF decoding without band-pass filters and without a 
lot of memory by using aliasing as a design technique.  Each of the DTMF frequencies 
are sinusoidal with very tight tolerances on each frequency (2%).  At any time there are 
only two frequencies present.  All of the frequency signals have the same amplitude as 
the others.  The whole waveform is just the sum of these two sine waves. 
 
 Suppose that we set the sampling rate to be exactly one of the DTMF frequencies, 
one at a time, and over a window of a few milliseconds.  On the “exact frequency” we 
would sample the same corresponding part of the wave at any time – there would be no 
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change in the voltage of that part of the sine wave.  We would alias it to a DC value!  The 
other sine wave would also be aliased to some other sine wave frequency.  If we 
accumulated each sample, the DC parts of one frequency alias would add together, but 
the other alias frequency would alternate in sign, and its samples would add to zero!  If 
neither frequency were present, they would both be aliased to other sine waves and they 
would both add to zero. 
 
 Two problems may exist in this scheme.  One is that the DC valued alias that we 
measure may be near zero and add only a small amount of value each time it gets added 
to the sum.  The other problem is that the “other” alias sine wave may be aliased to a very 
low frequency and when adding its samples it may “look like” DC and thereby confuse 
the whole process. 
 
 The first problem can be solved by having a second sampling of data within one 
period with a shift of 90 degrees and run a second accumulator for it.  If the first sum 
gives us zero, the second sum would give us the peak sine values!  Between the two sums 
we can measure some substantial amount of DC if that frequency is present. 
 
 To solve the second problem we need to know how to predict where the second 
frequency would be aliased.  That is, go through all of the possible combinations of 
aliases and see if there are any frequencies that are too low.  Let’s develop a rule for 
finding the alias frequency. 
 
 The aliasing formulas look like: 
 
 0  <=  f   <=   (SR / 2) No Aliasing 
 (SR / 2) <=  f  <=    (SR)  Alias = SR – f 
 (SR)  <=  f  <=    (3*SR/2) Alias =  f – SR 
 (3*SR/2) <= f  <=   (2*SR)  Alias =  (2*SR) – f 
 (2*SR)  <=  f  <=    (5*SR/2) Alias =   f – (2*SR) 
 (5*SR/2) <=  f  <=   (3*SR) Alias =   (3*SR) – f 
 
Where “f” is the input frequency of a single sine wave and “SR” is the sampling rate. 
 
 A summary of the aliasing analysis of the DTMF tones will be given here.  First, 
an example of one of the aliasing table results will be given as follows: 
 
 If  SR = 770 Hz, Then: 
  F = 697 Hz Alias = 73 Hz 
  F = 852 Hz Alias = 82 Hz 
  F = 941 Hz Alias = 171 Hz 
  F = 1209 Hz Alias = 439 Hz 
  F = 1336 Hz Alias = 566 Hz 
  F = 1477 Hz Alias = 707 Hz 
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 This table is the worst case of all the possible aliasing tables.  Therefore, the 
lowest aliasing frequency of everything is 73 Hz.  To get cancellation of this wave, we 
would need at least one cycle at a period of 13.7 milliseconds.  For seven frequencies to 
measure we need seven periods of 13.7 milliseconds each (roughly) to give a total of 96 
milliseconds to sample the frequencies.  Therefore, we can judge if the DTMF signals are 
present and decode them in about one hundred milliseconds.  There is no “second” 
problem. 
 
 The software to measure the DTMF frequencies is much shorter than the band-
pass filter DTMF decoding method.  The main loop must measure two samples per wave 
at a 90-degree difference.  The delays that make up the period of the sampling rates can 
be adjusted to fit each frequency, but the delay routine can be made in a general way.  
This software is as follows: 
 
 DTMF_ALIAS:    ; Call with Code in W 
   CALL  SET_DELAYS ; Set up delay/period & clear  

;   accum 
 DTMF_LOOP: 
   CLRW    ; Signal: Add Zero to Accum 
   CALL  GET_SAMPLE1 ; Add ADC to Accum, Start  

; ADC 
   CALL  DELAY ; Delay for Period / 4 
   NOP 
   NOP 
   NOP 
   MOVLW 1  ; Signal: Add ADC to Accum 
   CALL  GET_SAMPLE2 ; Do 16-Bit Add to Accum 
   CALL  DELAY 
   NOP 
   NOP 
   NOP 
   MOVLW 1  ; Signal: Add ADC to Accum 
   CALL  GET_SAMPLE1 ; ADC is 8-Bit Data, Use Sign  

;  Ext 
   CALL  DELAY 
   NOP 
   NOP 
   NOP 
   CLRW    ; Signal Add Zero to Accum 
   CALL  GET_SAMPLE2 
   CALL  DELAY 
   BTFSS FLAGS,DO_RETURN ; This Flag Set in Delay 
   GOTO  DTMF_LOOP 
   RETURN 
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The “GET_SAMPLE” routines are identical except that they work with different 
accumulators.  The “DELAY” routine not only delays to produce sampling at one-fourth 
of the period in the DTMF_LOOP, but it also counts the number of these delays and sets 
a flag to signal the DTMF_LOOP to return to the calling routine. 
 
 GET_SAMPLE1: 
  MOVWF ENABLE  ; Store the Code to “Add or Zero” 
  MOVF  ADRESH,W 
  SUBLW D’127’   ; Convert to Two’s Complement 
  BTFSS ENABLE,0 
  CLRW     ; Code = 0, “Add Zero to Accum” 
  MOVWF ADC_VALUE 
  CLRF  EXTEND  ; Clear Sign-Extend Byte 
  BTFSC ADC_VALUE,7 ; Test Sign-Bit 
  COMF  EXTEND  ; Sign-Extend as “Negative” 
  CLRF  CARRY 
  MOVF  ADC_VALUE,W 
  ADDWF ACCUM_LOW1,F ; Add ADC to Accum1 (Low) 
  BTFSC STATUS,C  ; Capture the Carry-State 
  INCF  CARRY,F 
  MOVF  CARRY,W  ; Add Carry to Accum1 (High) 
  ADDWF ACCUM_HIGH1,F 
  MOVF  EXTEND,W  ; Add Sign-Extend to Same 
  ADDWF ACCUM_HIGH1,F 
  BCF  PIR1,ADIF  ; Prepare & Start ADC 
  BSF  ADCON0,GO 
  RETURN 
 
 DELAY: 
  MOVF  MASTER_WHOLE,W  ; Get “Reference Copy” of 
  MOVWF WHOLE     ; “Whole-Loop” Delay 
  MOVF  FRACTION,W 
  ADDWF PCL,F 
  NOP 
  NOP 
  NOP 
  NOP 
  NOP 
  NOP 
  NOP 
  NOP 
 DELAY_LOOP: 
  NOP 
  NOP 
  NOP 
  NOP 
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  NOP 
  DECFSZ WHOLE,F 
  GOTO  DELAY_LOOP 
 
  DECFSZ COUNT,F 
  RETURN 
  BSF  FLAGS,DO_RETURN 
  RETURN 
 
 
 
 10.11     DSP Application:  Speech Compression 
 
 In the early 1970’s a company called Compressed Time, Inc. (CTI) came out with 
a novel machine for manipulating the play-back speeds of tape-recorded speech.  The 
idea was to take the speech of a slow-speaking person on a tape-recording and speed it up 
but compensate for the shift in the speech frequencies.  That is, the rate of delivery of the 
speech would be faster but the person would still appear to speak in a “normal” tone of 
voice!  The opposite could also be done.  That is, slow-down a fast-speaking person and 
have him/her appear to speak in a “normal” voice.  CTI called this process, “Speech 
Compression”. 
 
 The equipment that CTI developed was expensive and it contained a tape-recorder 
with several play-back heads mounted on a rotating drum.  The tape would be fed at the 
desired speed while the drum would rotate at a speed that would sample the speech on the 
tape and produce a play-back speed difference so that the relative play-back speed was 
“normal”. 
 
 Doing the same process today is made cheap and easy by using DSP techniques.  
Speech compression can be done very easily with the PIC although more analog filtering 
would be required. 
 
 Let’s consider how we can do speech compression with DSP techniques. 
 
 Telephone-quality speech has a maximum frequency of about 4 kHz.  To sample 
and recover this speech would require a sampling-rate of 8 kHz to avoid aliasing.  If the 
speech were on a tape-recording and the play-back speed were doubled, the maximum 
speech frequency would also double and the new sampling-rate would be doubled to     
16 kHz. 
 
 There is another kind of sampling that must be considered, however.  When we 
speak, we hold each consonant and each vowel sound for a minimum of about 20 
milliseconds.  This figure is only approximate and it varies considerably from speaker to 
speaker.  If each consonant and vowel sound were considered to be a “bit” of 
“information”, the typical “information-rate” is about 50 Hz at most!  When the tape-
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recording play-back speed is doubled this information-rate is also doubled to 100 Hz at 
most. 
 
 Both of these processes need to be sampled in order to do speech compression.  
Sampling each waveform point at 16 kHz is easy but how do we sample the 
“information”?  The answer is to fill an array of 16 kHz samples over a time-window of 
about 10 milliseconds to get a total of 160 sample-elements.  Ten milliseconds 
corresponds to an “information-sampling-rate” of 100 Hz, but this is not the proper 
Nyquist sampling rate for 100 Hz data.  In actual practice, a sampling-rate for the time-
window samples may be substantially different from the Nyquist rate.  The danger is in 
loosing information and the actual number of samples in the array may need to be larger 
to faithfully reproduce the speech sounds.  This will require some experimentation to get 
the speech to sound the right way and with no distortion. 
 
 To play this speech back at a “normal” tone of voice, the 160 array points are sent 
out at an 8 kHz rate over a 20-millisecond time interval.  This process is shown in  
Figure 10-2.  The speech is recorded at 16 kHz and the 160 samples are spread-out by 
sending them out at 8 kHz.  In this time interval an equivalent of 160 samples are skipped 
in order to send out the first 160 points.  The “catch” in doing speech compression in the 
“Fast-to-Slow” mode is that some information is lost and cannot be recovered.  But if 
there is a right mix of sample points and array-sample-windows, the human ear will not 
detect the lost information.  In addition to a low-pass filter to smooth the output, a high-
pass filter is needed to get rid of the 50 Hz noise that comes in when the array-sample-
windows are “chopped” or “broken” on the play-back process.  The human ear will hear 
the speaker in a normal tone of voice but at double the speed. 
 
 Let’s now consider the “opposite” of  the “Fast-to-Slow” mode process.  That is, 
let’s do the “Slow-to-Fast” mode process. 
 
 If the play-back speed were cut in half, the maximum speech frequency would be 
2 kHz and we would need a sampling-rate of only 4 kHz.  If a 20-millisecond time-
window were used, this would fill an array of 80 sample points. 
 
 The “Slow-to-Fast” mode process is shown in Figure 10-3.  The trick is to 
completely fill the 80-element array and then send it out, twice, each time at a rate of 8 
kHz.  This time there is no lost information.  The human ear will hear the speaker in a 
normal tone of voice but at half the speed. 
 
 Another application of these techniques is to alter the tone of voice of a live, 
normal speaker.  This gives some very strange-sounding effects.  Several radio and 
television science fiction shows have used these techniques to radically change the 
speech of their actor’s voices. 
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 Appendix A   ---   The PIC16F877 Instruction Set 
 
 The PIC16F877 has a total of 35 instructions, all of which are as a single word. 
 
 
 ADDLW    (“Add Literal to W”) 
 Syntax: ADDLW     k 
 Operand: k,  where  0 <=  k  <=  255 
 Operation: (W) = (W) + k 
 Status:  C, DC, Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  111x   kkkk   kkkk 
 Code Example:    “ADDLW   7” 
 Operation Example:   If (W) = 3 and “ADDLW   7” is executed, (W) = 10. 
 Description: 
  The contents of the W register are added to the constant, k, and the 
  Results are placed in the W register. 
 
 
 ADDWF    (“Add W and file”) 
 Syntax: ADDWF     f,d 
 Operands: f,  where   0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (W) +  (file)    if  d = 0 
   (file) = (W) + (file)   if  d = 1 
 Status:  C, DC, Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   0111  dfff   ffff 
 Code Examples:  “ADDWF     SUM,W”   for   d = 0 
       “ADDWF     SUM,F”     for   d = 1 
 Operation Examples: 
   If  (W) = 10 and (SUM) = 20, 
    “ADDWF   SUM,W”  gives (W) = 30 and (SUM) = 20 
    “ADDWF   SUM,F”    gives (W) = 10 and (SUM) = 30 
 Description: 
  The contents of the W register are added to the contents of the 
  Register-file and the results are placed in: 
   (W)  if   d = 0 
   (file) if  d = 1 
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 ANDLW    (“And Literal and W”) 
 Syntax: ANDLW     k 
 Operand: k,  where  0 <=  k  <=  255 
 Operation: (W) = (W) & k 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  1001   kkkk   kkkk 
 Code Example:    “ANDLW   0x07” 
 Operation Example:   If (W) = 0xE6 and “ANDLW   0x07” is executed, 

 (W) = 0x06. 
 Description: 
  The contents of the W register are ANDed with the constant, k, and the 
  Results are placed in the W register. 
 
 
 ANDWF    (“And W and file”) 
 Syntax: ANDWF     f,d 
 Operands: f,  where   0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (W) &  (file)    if  d = 0 
   (file) = (W) & (file)   if  d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   0101  dfff   ffff 
 Code Examples:  “ANDWF     SUM,W”   for   d = 0 
       “ANDWF     SUM,F”     for   d = 1 
 Operation Examples: 
   If  (W) = 0xC7 and (SUM) = 0xE5, 
   “ANDWF   SUM,W”  gives (W) = 0xC5 and (SUM) = 0xE5 
   “ANDWF   SUM,F”    gives (W) = 0xC7 and (SUM) = 0xC5 
 Description: 
  The contents of the W register are ANDed to the contents of the 
  Register-file and the results are placed in: 
   (W)  if   d = 0 
   (file) if  d = 1 
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 BCF    (“Bit Clear file”) 
 Syntax: BCF     f,b 
 Operands: f,  where  0  <=  f  <=  127 
   And  b,  where   0  <=  b  <=  7 
 Operation: file<b> = 0 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 01  00bb  bfff   ffff 
 Code Example:  “BCF    FLAGS,3” 
 Operation Example:  If  FLAGS<3> = 1, doing “BCF  FLAGS,3” will make 
    FLAGS<3> = 0. 
 Description: 
  Bit number, b, is cleared (=0) in the register-file. 
 
 
 
 BSF    (“Bit Set file”) 
 Syntax: BSF     f,b 
 Operands: f,  where  0  <=  f  <=  127 
   And  b,  where   0  <=  b  <=  7 
 Operation: file<b> = 1 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 01  01bb  bfff   ffff 
 Code Example:  “BSF    FLAGS,3” 
 Operation Example:  If  FLAGS<3> = 0, doing “BSF  FLAGS,3” will make 
    FLAGS<3> = 1. 
 Description: 
  Bit number, b, is set (=1) in the register-file. 
 
 
 BTFSC     (“Bit Test, Skip If Clear”) 
 Syntax: BTFSC     f,b 
 Operands: f,  where  0  <=  f  <=  127 
   And  b,  where  0  <=  b  <=  7 
 Operation: Skip Next Instruction if  file<b> = 0. 
 Status:  None 
 Cycles: 1 Cycle If “NO” Skip 
   2 Cycles If SKIP 
 Binary Code: 01  10bb  bfff   ffff 
 Code Example:  “BTFSC    FLAGS,3” 
 Operation Example:  If  FLAGS<3> = 0,  “BTFSC   FLAGS,3” will Skip. 
             If  FLAGS<3> = 1,   “BTFSC   FLAGS,3” will Not Skip. 
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 Description: 
  If the register-file bit, b, is zero, the next instruction will be skipped. 
  If the register-file bit, b, is one, the next instruction will execute. 
 
 BTFSS     (“Bit Test, Skip If Set”) 
 Syntax: BTFSS     f,b 
 Operands: f,  where  0  <=  f  <=  127 
   And  b,  where  0  <=  b  <=  7 
 Operation: Skip Next Instruction if  file<b> = 1. 
 Status:  None 
 Cycles: 1 Cycle If “NO” Skip 
   2 Cycles If SKIP 
 Binary Code: 01  11bb  bfff   ffff 
 Code Example:  “BTFSS    FLAGS,3” 
 Operation Example:  If  FLAGS<3> = 1,  “BTFSS   FLAGS,3” will Skip. 
             If  FLAGS<3> = 0,   “BTFSS   FLAGS,3” will Not Skip. 
 Description: 
  If the register-file bit, b, is one, the next instruction will be skipped. 
  If the register-file bit, b, is zero, the next instruction will execute. 
 
 
 
 CALL   (“Call Subroutine”) 
 Syntax: CALL     k 
 Operand: k,  where   0  <=  k  <=   2047 
 Operation: (Program Counter) + 1  is moved to the Top-of-Stack 
   Address = k  is transferred to  PC<10:0> 
   (PCLATH<4,3>) is transferred to PC<12,11> 
 Status:  None. 
 Cycles: 2 Instruction Cycles 
 Binary Code: 10  0kkk   kkkk    kkkk 
 Code Example:  “CALL    START” 
 Operation Example:  If  START = 0x00C7 and “CALL   START” is done, 
    (PC) = 0x00C7. 
 Description: 
  Call a subroutine.  The incremented program counter (PC) is placed 
  On the stack, the program counter, bits zero through 10, are loaded 
  With the target address, k, and the PCLATH bits <4,3> are placed into 
  The program counter bits <12,11>.   
 Notes: 
  Doing a CALL within a 2 K block does not require any manipulation 
  Of the PCLATH register.  If the CALL is beyond the current 2 K block, 
  The PCLATH register bits <4,3> must be set-up before doing the CALL. 
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 CLRF    (“Clear  file”) 
 Syntax: CLRF    f 
 Operand: f,  where  0  <=  f  <=  127 
 Operation: (f) = 0. 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0001  1fff   ffff 
 Code Example:   “CLRF     FLAGS” 
 Operation Example:  If  FLAGS = 0x20, doing “CLRF  FLAGS” will make 
    (0x20) = 0x00. 
 Description: 
  The register-file is reset.  Zeros are written to this RAM byte. 
 
 
 CLRW    (“Clear  W”) 
 Syntax: CLRW 
 Operand: None. 
 Operation: (W) = 0. 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0001  0xxx  xxxx 
 Code Example:   “CLRW” 
 Operation Example:  Doing “CLRW” makes (W) = 0x00. 
 Description: 
  Zeros are written to the W register. 
 
 
 CLRWDT    (“Clear Watch-Dog Timer”) 
 Syntax: CLRWDT 
 Operand: None 
 Operation: (WDT) = 0x00.  (WDT  Prescaler) = 0x00. 
 Status:  STATUS Flags:  /TO  = 1  and  /PD = 1. 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0000  0110  0100 
 Code Example:  “CLRWDT” 
 Operation Example:  Doing “CLRWDT” resets the Watch-Dog Timer. 
 Description: 
  CLRWDT resets the Watch-Dog Timer and its prescaler. 
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 COMF    (“Complement   file”) 
 Syntax: COMF     f,d 
 Operands: f,  where  0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = /(f)  if  d = 0 
   (f) = /(f)  if  d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   1001   dfff   ffff 
 Code Examples:  “COMF    FLAGS,W”   for  d = 0. 
       “COMF    FLAGS,F”     for  d = 1 
 Operation Examples: 
  If (W) = 0xE3 and (FLAGS) = 0xF1, 
    Doing “COMF  FLAGS,W” gives (W) = 0x0E and (FLAGS) = 0xF1. 
    Doing “COMF  FLAGS,F”   gives (W) = 0xE3 and (FLAGS) = 0x0E. 
 Description: 
  Take the one’s complement of the register-file and place the results: 
   In (W) if  d = 0 
   In (file) if  d = 1. 
 
 
 DECF    (“Decrement  file”) 
 Syntax: DECF     f,d 
 Operands: f,   where  0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (f) – 1   if  d = 0 
   (f) = (f) – 1     if   d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0011  dfff   ffff 
 Code Examples:  “DECF     COUNT,W”    for   d = 0 
       “DECF     COUNT,F”      for   d = 1 
 Operation Examples: 
  If  (W) = 0x3A and (COUNT) = 0x12, 
    Doing “DECF   COUNT,W”  gives  (W) = 0x11 and (COUNT) = 0x3A. 
    Doing “DECF  COUNT,F”  gives (W) = 0x3A and (COUNT) = 0x11. 
 Description: 
  The contents of the register-file are decremented by one and the results 
  Are placed as: 
   In  (W)  if  d = 0 
   In  (file)  if  d = 1. 
 



 169

 
 
 
 
 DECFSZ   (“Decrement  file,  Skip If Zero”) 
 Syntax: DECFSZ      f,d 
 Operands: f,  where  0 <= f <= 127 
   And  d,  where  d = {0,1} 
 Operations: (W) = (f) – 1   if  d = 0 
   (f)  =  (f) – 1   if  d = 1 
   and Skip the next instruction if the result was zero. 
 Status:  None. 
 Cycles: 1 Instruction Cycle if non-zero result (No Skip) 
   2 Instruction Cycles if zero result (Skip) 
 Binary Code: 00  1011  dfff  ffff 
 Code Example:  “DECFSZ    COUNT,W”   if  d = 0 
     “DECFSZ    COUNT,F”     if  d = 1 
 Operation Example: 
  If  (W) = 0x10 and (COUNT) = 0x01, 
     “DECFSZ   COUNT,W” gives (W) = 0x00 and (COUNT) = 0x01 
     “DECFSZ   COUNT,F”  gives (W) = 0x10 and (COUNT) =0x00 
   In Both Cases: The Next Instruction Will Be Skipped. 
  If  (W) = 0x10 and (COUNT) = 0x23, 
      “DECFSZ   COUNT,W”  gives (W) = 0x22 and (COUNT) = 0x23 
      “DECFSZ   COUNT,F”   gives (W) = 0x10 and (COUNT) = 0x22 
   In Both Case:  The Next Instruction Will Be Executed. 
 Description: 
  The contents of the register-file is decremented and the results are 
  Placed in: 
    (W) if  d = 0 
    (file) if  d = 1 
  And the next instruction will be skipped if the result was zero. 
  Otherwise, the next instruction will be executed. 
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 GOTO   (“Unconditional Branch”) 
 Syntax: GOTO     k 
 Operand: k,  where   0  <=  k  <=   2047 

Operation: Address = k  is transferred to  PC<10:0> 
   (PCLATH<4,3>) is transferred to PC<12,11> 
 Status:  None. 
 Cycles: 2 Instruction Cycles 
 Binary Code: 10  1kkk   kkkk    kkkk 
 Code Example:  “GOTO    START” 
 Operation Example:  If  START = 0x00C7 and “GOTO   START” is done, 
    (PC) = 0x00C7. 
 Description: 
  Jump to a new address. 
  The program counter, bits zero through 10, are loaded 
  With the target address, k, and the PCLATH bits <4,3> are placed into 
  The program counter bits <12,11>.   
 Notes: 
  Doing a GOTO within a 2 K block does not require any manipulation 
  Of the PCLATH register.  If the GOTO is beyond the current 2 K block, 
  The PCLATH register bits <4,3> must be set-up before doing the GOTO. 
 
 
 INCF    (“Increment  file”) 
 Syntax: INCF     f,d 
 Operands: f,   where  0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (f) + 1   if  d = 0 
   (f) = (f) + 1     if   d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  1010  dfff   ffff 
 Code Examples:  “INCF     COUNT,W”    for   d = 0 
       “INCF     COUNT,F”      for   d = 1 
 Operation Examples: 
  If  (W) = 0x3A and (COUNT) = 0x12, 
    Doing “INCF   COUNT,W”  gives  (W) = 0x13 and (COUNT) = 0x3A. 
    Doing “INCF  COUNT,F”  gives (W) = 0x3A and (COUNT) = 0x13. 
 Description: 
  The contents of the register-file are incremented by one and the results 
  Are placed as: 
   In  (W)  if  d = 0 
   In  (file)  if  d = 1. 
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 INCFSZ   (“Increment  file,  Skip If Zero”) 
 Syntax: INCFSZ      f,d 
 Operands: f,  where  0 <= f <= 127 
   And  d,  where  d = {0,1} 
 Operations: (W) = (f) + 1   if  d = 0 
   (f)  =  (f) + 1   if  d = 1 
   and Skip the next instruction if the result was zero. 
 Status:  None. 
 Cycles: 1 Instruction Cycle if non-zero result (No Skip) 
   2 Instruction Cycles if zero result (Skip) 
 Binary Code: 00  1111  dfff  ffff 
 Code Example:  “INCFSZ    COUNT,W”   if  d = 0 
     “INCFSZ    COUNT,F”     if  d = 1 
 Operation Example: 
  If  (W) = 0x10 and (COUNT) = 0xFF, 
     “INCFSZ   COUNT,W” gives (W) = 0x00 and (COUNT) = 0xFF 
     “INCFSZ   COUNT,F”  gives (W) = 0x10 and (COUNT) =0x00 
   In Both Cases: The Next Instruction Will Be Skipped. 
  If  (W) = 0x10 and (COUNT) = 0x23, 
      “INCFSZ   COUNT,W”  gives (W) = 0x24 and (COUNT) = 0x23 
      “INCFSZ   COUNT,F”   gives (W) = 0x10 and (COUNT) = 0x24 
   In Both Case:  The Next Instruction Will Be Executed. 
 Description: 
  The contents of the register-file is incremented and the results are 
  Placed in: 
    (W) if  d = 0 
    (file) if  d = 1 
  And the next instruction will be skipped if the result was zero. 
  Otherwise, the next instruction will be executed. 
 
 
 
 IORLW    (“Inclusive Or Literal and W”) 
 Syntax: IORLW     k 
 Operand: k,  where  0 <=  k  <=  255 
 Operation: (W) = (W) | k 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  1111   kkkk   kkkk 
 Code Example:    “IORLW   0x07” 
 Operation Example:   If (W) = 0xE6 and “IORLW   0x07” is executed, 

 (W) = 0xE7. 
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 Description: 
  The contents of the W register are ORed with the constant, k, and the 
  Results are placed in the W register. 
 
 IORWF    (“Inclusive Or W and file”) 
 Syntax: IORWF     f,d 
 Operands: f,  where   0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (W) |  (file)    if  d = 0 
   (file) = (W) | (file)   if  d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   0100  dfff   ffff 
 Code Examples:  “IORWF     SUM,W”   for   d = 0 
       “IORWF     SUM,F”     for   d = 1 
 Operation Examples: 
   If  (W) = 0xC7 and (SUM) = 0xE5, 
   “IORWF   SUM,W”  gives (W) = 0xE7 and (SUM) = 0xE5 
   “IORWF   SUM,F”    gives (W) = 0xC7 and (SUM) = 0xE7 
 Description: 
  The contents of the W register are ORed to the contents of the 
  Register-file and the results are placed in: 
   (W)  if   d = 0 
   (file) if  d = 1 
 
 
 
 MOVF    (“Move  file”) 
 Syntax: MOVF     f,d 
 Operands: f,  where  0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operations: (W) = (f)   if  d = 0 
   (f)  =  (f)   if   d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  1000  dfff   ffff 
 Code Examples:  “MOVF     TEMP,W”   for   d = 0 
       “MOVF     TEMP,F”     for   d = 1 
 Operation Examples: 
  If  (W) = 0x25 and (TEMP) = 0xC7, 
       “MOVF    TEMP,W”  gives  (W) = 0xC7 and (TEMP) = 0xC7 
       “MOVF    TEMP,F”    gives  (W) = 0x25 and (TEMP) = 0xC7 
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 Description: 
  If  d = 0,  the register-file contents are placed in W, with the register 
  File unchanged.  If  d = 1,  there is no change in the contents of either 
  W or the register-file.  In both cases the Z flag is set if the data is zero 
  And it is reset otherwise. 
 
 
 
 MOVLW     (“Move Literal to W”) 
 Syntax: MOVLW     k 
 Operand: k,  where  0  <=  k  <=  255 
 Operation: (W) = k 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  00xx  kkkk  kkkk 
 Code Example:  “MOVLW    0xB5” 
 Operation Example: 
  If  (W) = 0x03, Doing “MOVLW  0xB5” gives (W) = 0xB5. 
 Description: 
  The literal value, k, is moved into the W register. 
 
 
 MOVWF     (“Move W to file”) 
 Syntax: MOVWF      f 
 Operand: f,  where  0 <= f <= 127 
 Operation: (f) = (W) 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0000  1fff   ffff 
 Code Example:  “MOVWF    TEMP” 
 Operation Example: 
  If (W) = 0xA4 and (TEMP) = 0x3F, 
      “MOVWF    TEMP” gives  (W) = 0xA4 and (TEMP) = 0xA4. 
 Description: 
  The contents of W are moved to the register-file. 
 
 
 NOP     (“No Operation”) 
 Syntax: NOP 
 Operand: None 
 Operation: None 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0000  0000  0000 
 Code Example:  “NOP” 
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 Operation Example:  Doing “NOP” does nothing. 
 Description: 
  This instruction does nothing but does take one instruction cycle 
  To execute. 
 
 
 
 
 
 RETFIE    (“Return from Interrupt”) 
 Syntax: RETFIE 
 Operand: None 
 Operation: (PC) = Top-of-Stack  and  INTCON<GIE> = 1 
 Status:  None 
 Cycles: 2 Instruction Cycles 
 Binary Code: 00  0000  0000  1001 
 Code Example:  “RETFIE” 
 Operation Example: 
  If  (TOS) = 0x0017 and (PC) = 0x108F, 
      “RETFIE” gives (PC) = 0x0017. 
 Description: 
  The program counter is filled with the address at the top of the stack. 
  Also, the INTCON bit “GIE” is set (=1). 
 
 
 RETLW     (“Return from Subroutine with Literal in W”) 
 Syntax: RETLW     k 
 Operand: k,  where  0 <= k <= 255 
 Operation: (PC) = Top-of-Stack   and  (W) = k 
 Status:  None 
 Cycles: 2 Instruction Cycles 
 Binary Code: 11  01xx  kkkk  kkkk 
 Code Example:   “RETLW    0x34” 
 Operation Example: 
  If (TOS) = 0x0017 and (PC) = 0x108F and (W) = 0xFC, 
     “RETLW   0x34” gives  (PC) = 0x0017 and (W) = 0x34. 
 Description: 
  The program counter is filled with the address at the top of the stack. 
  Also, the W register is filled with the literal value, k. 
 
 
 RETURN     (“Return from Subroutine”) 
 Syntax: RETURN 
 Operand: None 
 Operation: (PC) = Top-of-Stack 
 Status:  None 
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 Cycles: 2 Instruction Cycles 
 Binary Code: 00  0000  0000  1000 
 Code Example:  “RETURN” 
 Operation Example: 
  If (TOS) = 0x0017 and (PC) = 0x108F, 
      “RETURN” gives (PC) = 0x0017. 
 Description: 
  The program counter is filled with the address at the top of the stack. 
 
 RLF    (“Rotate Left  file  Through Carry”) 
 Syntax: RLF     f,d 
 Operands: f,  where  0 <= f <= 127 
   And  d, where d = {0,1} 
 Operations: See Figure 5-7 in Chapter 5. 
   (W) = result if d = 0 
   (f) = result if d = 1 
 Status:  C 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  1101  dfff   ffff 
 Code Example:  “RLF    POSITION,W”  for  d = 0 
     “RLF    POSITION,F”    for  d = 1 
 Operation Example: 
     If (POSITION) = 0x8C and (W) = 0x02 and (C-flag) = 0, 
     “RLF   POSITION,W” gives (W) = 0x18 and (C-flag) = 1 and (POSITION) = 
           0x8C 
     “RLF   POSITION,F” gives (W) = 0x02 and (C-flag) = 1 and (POSITION) = 
           0x18 
 Description: 
  See attached Figure.  The results are placed in: 
   (W) if  d = 0 
   (file) if  d = 1 
 
 
 RRF    (“Rotate Right  file  Through Carry”) 
 Syntax: RRF     f,d 
 Operands: f,  where  0 <= f <= 127 
   And  d, where d = {0,1} 
 Operations: See Figure 5-7 in Chapter 5. 
   (W) = result if d = 0 
   (f) = result if d = 1 
 Status:  C 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  1100  dfff   ffff 
 Code Example:  “RRF    POSITION,W”  for  d = 0 
     “RRF    POSITION,F”    for  d = 1 
 Operation Example: 
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     If (POSITION) = 0x8D and (W) = 0x02 and (C-flag) = 0, 
     “RRF   POSITION,W” gives (W) = 0x46 and (C-flag) = 1 and (POSITION) = 
           0x8D 
     “RRF   POSITION,F” gives (W) = 0x02 and (C-flag) = 1 and (POSITION) = 
           0x46 
 Description: 
  See attached Figure.  The results are placed in: 
   (W) if  d = 0 
   (file) if  d = 1 
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 SLEEP     (“Enter Sleep Mode”) 
 Syntax: SLEEP 
 Operand: None 
 Operation: (WDT) = 0x00,  (WDT Prescaler) = 0x00, 
   STATUS flags:  /TO = 1  and  /PD = 0. 
 Status:  None 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00  0000  0110  0011 
 Code Example:  “SLEEP” 
 Operation Example: 
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  Doing “SLEEP” sends the CPU into sleep mode. 
 Description: 
  Doing this instruction sends the CPU into sleep mode. 
 
 
 
 
 
  
 SUBLW    (“Subtract W from Literal”) 
 Syntax: SUBLW     k 
 Operand: k,  where  0 <=  k  <=  255 
 Operation: (W) =  k – (W) 
 Status:  C, DC, Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  110x   kkkk   kkkk 
 Code Example:    “SUBLW   7” 
 Operation Example:   If (W) = 3 and “ADDLW   7” is executed, (W) = 4. 
 Description: 
  The contents of the W register are subtracted from the constant, k, 
  And the results are placed in the W register. 
 
 
 SUBWF    (“Subtract W from file”) 
 Syntax: SUBWF     f,d 
 Operands: f,  where   0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) =  (file) – (W)   if  d = 0 
   (file) = (file) – (W)  if  d = 1 
 Status:  C, DC, Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   0010  dfff   ffff 
 Code Examples:  “SUBWF     SUM,W”   for   d = 0 
       “SUBWF     SUM,F”     for   d = 1 
 Operation Examples: 
   If  (W) = 10 and (SUM) = 25, 
    “SUBWF   SUM,W”  gives (W) = 15 and (SUM) = 25 
    “SUBWF   SUM,F”    gives (W) = 10 and (SUM) = 15 
 Description: 
  The contents of the W register are subtracted from the contents of the 
  Register-file and the results are placed in: 
   (W)  if   d = 0 
   (file) if  d = 1 
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 SWAPF     (“Swap Nibbles in file”) 
 Syntax: SWAPF     f,d 
 Operands: f,  where  0 <= f <= 127 
   And  d, where d = {0,1} 
 Operations: (W) = (f<3:0>,f<7:4>)  if  d = 0 

(f) =  (f<3:0>,f<7:4>) if  d = 1 
Status:  None 
Cycles: 1 Instruction Cycle 
Binary Code: 00  1110  dfff   ffff 
Code Examples:  “SWAPF    TEMP,W”   for  d = 0 
      “SWAPF    TEMP,F”     for  d = 1 
Operation Examples: 
 If  (W) = 0xC7  and  (TEMP) = 0xA9, 
    “SWAPF   TEMP,W”  gives (W) = 0x9A  and (TEMP) = 0xA9 
    “SWAPF   TEMP,F”   gives  (W) = 0xC7  and (TEMP) = 0x9A 
Description: 
 This instruction swaps the high and low nibbles of the register-file 
 And places the results in: 

(W) if  d = 0 
(file)  if  d = 1 

 
 
 
 XORLW    (“Exclusive Or Literal and W”) 
 Syntax: XORLW     k 
 Operand: k,  where  0 <=  k  <=  255 
 Operation: (W) = (W) .XOR. k 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 11  1010   kkkk   kkkk 
 Code Example:    “XORLW   0x07” 
 Operation Example:   If (W) = 0xE6 and “XORLW   0x07” is executed, 

 (W) = 0xE3. 
 Description: 
  The contents of the W register are XORed with the constant, k, and the 
  Results are placed in the W register. 
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 XORWF    (“Exclusive Or W and file”) 
 Syntax: XORWF     f,d 
 Operands: f,  where   0  <=  f  <=  127 
   And  d,  where  d = {0,1} 
 Operation: (W) = (W) .XOR.  (file)    if  d = 0 
   (file) = (W) .XOR. (file)   if  d = 1 
 Status:  Z 
 Cycles: 1 Instruction Cycle 
 Binary Code: 00   0110  dfff   ffff 
 Code Examples:  “XORWF     SUM,W”   for   d = 0 
       “XORWF     SUM,F”     for   d = 1 
 Operation Examples: 
   If  (W) = 0xC7 and (SUM) = 0xE5, 
   “XORWF   SUM,W”  gives (W) = 0x22 and (SUM) = 0xE5 
   “XORWF   SUM,F”    gives (W) = 0xC7 and (SUM) = 0x22 
 Description: 
  The contents of the W register are XORed to the contents of the 
  Register-file and the results are placed in: 
   (W)  if   d = 0 
   (file) if  d = 1 
 
 
 
 



 180

 
 

Appendix B --- Useful C++ Programs for  
Developing PIC ASM Applications 

 
 

1) PERMS.CPP  --- Permutation Hash Tables 
 

2) SINEH.CPP   --- Sine / Cosine Tables 
 

3) OPENLOOP.CPP  --- “Open-Loop” Time-Measurement  
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//========================================================== 
// Program:  PERMS.CPP  == Generate Permutation Tables 
//                         in PIC16F877 Assembly Language. 
// 
// Author:   Timothy D. Green 
// Date:     26 NOV 2005 
// 
// Compiler: Turbo C++ for DOS, Rev. 3.0 
// 
// This Program May Be Copied Freely 
// It is in the Public Domain. 
// 
// The User of this Program does so at his or her own risk 
// and bears the full responsibility thereof. 
// The author, Timothy D. Green, assumes no liability 
// for the use of this program. 
// 
//========================================================== 
 
#include<stdio.h> 
int main(void) 
{ 
  unsigned int     k,Map[8],Power[8],N_Bits,Test,Value,N_Table,j,m; 
  FILE             *out; 
 
  printf("Enter Number of Bits = ?  "); 
  scanf("%d",&N_Bits); 
 
  for(k=0,m=1;k < 8;k++,m=2*m) Power[k] = m; 
 
  N_Table = 1; 
  k = N_Bits; 
  while(k > 0){ 
    N_Table = 2 * N_Table; 
    k--; 
  } 
 
  printf("\n\n\n"); 
  for(k=0;k < N_Bits;k++){ 
    printf("For Input Bit = %d: What is the Output Bit Number = ? ",k); 
    scanf("%d",&m); 
    Map[k] = m; 
    printf("\n"); 
  } 
 
  out = fopen("PICPERM.ASM","w"); 
 
  for(k=0;k < N_Table;k++){ 
    Value = 0; 
    for(m=0;m < N_Bits;m++){ 
      Test = Power[m]; 
      Test = Test & k; 
      if(Test > 0) Value = Value + Power[Map[m]]; 
    } 
    Value = Value & 0x00ff; 



 182

    fprintf(out,"        RETLW         %d\n",Value); 
  } 
 
  fclose(out); 
  return 0; 
} 
 
 
 
//========================================================== 
// Program:  SINEH.CPP  == Generate Sine or Cosine Tables 
//                         in PIC16F877 Assembly Language. 
// 
// Author:   Timothy D. Green 
// Date:     26 NOV 2005 
// 
// Compiler: Turbo C++ for DOS, Rev. 3.0 
// 
// This Program May Be Copied Freely 
// It is in the Public Domain. 
// 
// The User of this Program does so at his or her own risk 
// and bears the full responsibility thereof. 
// The author, Timothy D. Green, assumes no liability 
// for the use of this program. 
// 
//========================================================== 
 
#include<stdio.h> 
#include<math.h> 
 
int main(void) 
{ 
  char    H,L,Hex[16]; 
  char             S; 
  int              k,N,j; 
  double           Rk,Pi,Peak,RN,Angle,Sine; 
  FILE             *out; 
 
//================= 
 
  Peak = 127.5; 
  N = 128; 
 
//================= 
 
  RN = (double) N; 
  Pi = 3.1415926535; 
  for(k=0;k < 10;k++) Hex[k] = '0' + k; 
  for(k=10,j=0;k < 16;k++,j++) Hex[k] = 'A' + j; 
 
//================= 
 
  out = fopen("PICSINE.ASM","w"); 
 
  for(k=0;k < N;k++){ 
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    Rk = (double) k; 
    Angle = (2.0 * Pi * Rk) / RN; 
    Sine = Peak * sin(Angle); 
    S = (char) Sine; 
    L = S & 0x0f; 
    H = ((S & 0xf0) >> 4) & 0x0f; 
    L = Hex[L]; 
    H = Hex[H]; 
    fprintf(out,"       RETLW    0x%c%c\n",H,L); 
  } 
 
  fclose(out); 
 
  return 0; 
} 
 
 
 
 
 
//========================================================== 
// Program:  OPENLOOP.CPP  == Generate "Open-Loop" Code 
//                            in PIC16F877 Assembly Language. 
// 
// Author:   Timothy D. Green 
// Date:     26 NOV 2005 
// 
// Compiler: Turbo C++ for DOS, Rev. 3.0 
// 
// This Program May Be Copied Freely 
// It is in the Public Domain. 
// 
// The User of this Program does so at his or her own risk 
// and bears the full responsibility thereof. 
// The author, Timothy D. Green, assumes no liability 
// for the use of this program. 
// 
//========================================================== 
 
#include<stdio.h> 
 
 
int main(void) 
{ 
  int              Start,Stop,k; 
  FILE             *out; 
 
//================= 
 
  Start = 0; 
  Stop = 100; 
 
//================= 
 
  out = fopen("PICLOOP.ASM","w"); 
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  for(k=Start;k <= Stop;k++){ 
    fprintf(out,"       BTFSS    PORTC,TEST_BIT\n"); 
    fprintf(out,"       RETLW    %d\n",k); 
  } 
 
  fclose(out); 
 
  return 0; 
} 
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 Appendix C --- Special Function Registers  
                                (RAM Addresses & Bits) 
 
 
 
 STATUS (Address 0x03, In All Banks) 
 7    IRP    Indirect Addressing Bank Select [0 = Banks(0,1), 1 = Banks(2,3)] 
 6    RP1   Bank Select:  11=Bank(3),  10=Bank(2),  01=Bank(1),  00=Bank(0) 
 5    RP0   Bank Select 
 4   /TO    Time-Out Bit  1=(Power-up,CLRWDT,SLEEP)  0=WDT Overflow 
 3   /PD     Power-Down Bit  1=(Power-up,CLRWDT)  0=SLEEP 
 2     Z       Zero Bit    1=Result was Zero    0=Result was NOT Zero 
 1    DC     Digit Carry Bit   =Carry-State Out of 4th Low Bit of Result 
 0     C       Carry Bit   =Carry-State Out of Result Most Significant Bit 
 
 
 PCON (Address 0x8E, Bank 2 Only) (Also, Uses only Bits 1 & 0) 
 1    /POR    Power-On Reset Status:  1= No Reset    0=Reset 
 0    /BOR    Brown-Out Reset Status:  1=No Reset   0=Reset 
 
 
 INTCON (Address 0x0B, In All Banks) 
 7    GIE     Global Interrupt Enable Bit 
 6    PEIE    Peripheral Interrupt Enable Bit 
 5    T0IE    Timer0 Interrupt Enable Bit 
 4    INTE    RB0/INT External Interrupt Enable Bit 
 3    RBIE    PortB-Change Interrupt Enable Bit 
 2    T0IF     Timer0 Interrupt Flag 
 1    INTF    RB0/INT External Interrupt Flag 
 0    RBIF    RB0/INT External Interrupt Flag 
 
 
 PIR1 (Address 0x0C, Bank 0 Only) 
 7    PSPIF   Parallel Slave Port Interrupt Flag (Set on Read/Write) 
 6    ADIF    ADC Interrupt Flag (Set when Conversion is Done) 
 5    RCIF     USART Receive Interrupt Flag 
 4    TXIF     USART Transmit Interrupt Flag 
 3    SSPIF   Synchronous Serial Port (SSP) Interrupt Flag 
 2    CCP1IF   CCP1  Interrupt Flag (Capture Mode or Compare Mode) 

1 TMR2IF  TMR2-to-PR2 Match Interrupt Flag 
0    TMR1IF   TMR1 Overflow Interrupt Flag 
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PIR2 (Address 0x0D, Bank 0 Only) 
6 Reserved --- Never Write to This Bit 
4    EEIF    EEPROM Write-Operation Interrupt Flag 
3    BCLIF   Bus Collision Interrupt Flag 
0    CCP2IF    CCP2 Interrupt Flag (Capture Mode or Compare Mode) 
 
 
 
PIE1 (Address 0x8C, Bank 1 Only) 
7    PSPIE    Parallel Slave Port Interrupt Enable Bit 
6    ADIE     ADC Interrupt Enable Bit 
5    RCIE      USART Receive Interrupt Enable Bit 
4    TXIE      USART Transmit Interrupt Enable Bit 
3    SSPIE     Synchronous Serial Port (SSP) Interrupt Enable Bit 
2    CCP1IE  CCP1 Interrupt Enable Bit 
1    TMR2IE   TMR2 Interrupt Enable Bit 
0    TMR1IE    TMR1 Interrupt Enable Bit 
 
 
PIE2 (Address 0x8D, Bank 1 Only) 
6 Reserved --- Never Write to This Bit 
4    EEIE      EEPROM Write-Operation Interrupt Enable Bit 
3    BCLIE   Bus Collision Interrupt Enable Bit 
0 CCP2IE  CCP2 Interrupt Enable Bit 
 
 
OPTION-REG (Address 0x81, Banks 1 and 3) 
7    /RBPU    PortB Pull-Up Enable Bit  1=Disable   0=Enable 
6    INTEDG   Interrupt Edge Select Bit   1=Rising   0=Falling 
5    T0CS        TMR0 Clock Source Select  1=RA4/T0CKI   0=Internal 
4    T0SE        TMR0 Source Edge Select    1=Falling   0=Rising 
3    PSA          Prescaler Assignment Bit   1=WDT    0=TMR0 
2    PS2           (PS2:PS0)= See Chapter 8, Timer0 or WDT, Prescaler 
1 PS1 
0 PS0 
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ADCON0 (Address 0x1F, Bank 0 Only) 
7-6    ADCS1:ADCS0   ADC  Clock Select Bits 
  00 = Fosc / 2 
  01 = Fosc / 8 
  10 = Fosc / 32 
  11 = Internal RC-OSC for ADC 
5-3 CHS2:CHS0  Analog Channel Select Bits 

(0,0,0) = Channel 0 
(0,0,1) = Channel 1 
(0,1,0) = Channel 2 
(0,1,1) = Channel 3 
(1,0,0) = Channel 4 
(1,0,1) = Channel 5 
(1,1,0) = Channel 6 
(1,1,1) = Channel 7 

 2      GO     ADC Start Conversion Bit  (Set this to Start a Conversion) 
 0      ADON    ADC Activation Bit (Set this to turn the ADC unit ON) 
 
 
 
 ADCON1 (Address 0x9F, Bank 1 Only) 
 7     ADFM    ADC Result Format Bit    1=Right-Justified  0=Left-Justified 

3-0 PCFG3:PCFG0  ADC Port Configuration Bits (See Chapter 8) 
 
 

T1CON (Address 0x10, Bank 0 Only) 
5-4    T1CKPS1:T1CKPS0   Timer1 Input Clock Prescale Select Bits 
  (1,1) = 1:8 Prescale Value 
  (1,0) = 1:4 Prescale Value 
  (0,1) = 1:2 Prescale Value 
  (0,0) = 1:1 Prescale Value 

 3        T1OSCEN   Timer1 Oscillator Enable Control Bit (1=Enable, 0=Disable) 
 2        /T1SYNC    Timer1 External Clock Sync Bit (1=No Sync, 0=Sync) 
 1        TMR1CS     Timer1 Clock Source Select (1=External Clock, 0=Internal) 
    (External Clock on RC0/T1OSO/T1CKI) 
 0        TMR1ON    Timer1 Activation Bit (1=Turn TMR1 On, 0=Turn Off) 
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 T2CON (Address 0x12, Bank 0 Only) 

6-3 TOUTPS3:TOUTPS0  Timer2 Output Postscale Select (See Chapter 8) 
2        TMR2ON   Timer2 Activation Bit (1=Turn TMR2 On, 0=Turn Off) 
1-0 T2CKPS1:T2CKPS0  Timer2 Clock Prescale Select (See Chapter 8) 

 
 
 

CCP1CON (Address 0x17, Bank 0 Only) 
5-4    CCP1X:CCP1Y     PWM  LSBs  (In Order: MSB-LSB) 
3-0    CCP1M3:CCP1M0  CCP1 Mode Select Bits (See Chapter 8) 
 
 
CCP2CON (Address 0x1D, Bank 0 Only) 
5-4    CCP2X:CCP2Y     PWM  LSBs  (In Order: MSB-LSB) 
3-0    CCP2M3:CCP2M0  CCP2 Mode Select Bits (See Chapter 8) 
 
 
 
TRISE (Address 0x89, Bank 1 Only) 
7      IBF     Parallel Slave Port, Input Buffer Full (See Chapter 8) 
6      OBF   Parallel Slave Port, Output Buffer Full (See Chapter 8) 
5 IBOV  PSP, Input Buffer Overflow Detect Bit (See Chapter 8) 
4      PSPMODE   (1=PSP Mode, 0= General I/O) 
2      RE2 Direction Bit (1=Input, 0=Output) 

 1      RE1 Direction Bit (1=Input, 0= Output) 
 0      RE0 Direction Bit (1=Input, 0=Output) 
 
 
 EECON1 (Address 0x8C, Bank 3 Only) 
 7     EEPGD   Program/Data Memory Select Bit (1=FLASH, 0=EEPROM) 
 3     WRERR  EEPROM Error Flag Bit (1=Write-Op Prematurely Terminated) 
          (0=Write-Op OK) 
 2     WREN    EEPROM Write-Enable Bit (1=Enable, 0=Disable) 
 1     WR         Start Write Process (Automatically Cleared by Hardware) 
 0     RD          Start Read Process (Auto Cleared by Hardware) 
 
 
 
 
 
 
 
 
 
 



 189

 
 TXSTA (Address 0x98, Bank 1 Only) 
 7     CSRC    Clock Source Select Bit (See Chapter 9) 
 6     TX9       9-Bit Transmit Enable Bit (See Chapter 9) 
 5     TXEN    Transmit Enable Bit (1=Enabled, 0=Disabled) 
 4     SYNC    USART Mode Select (1=Synchronous, 0=Asynchronous) 
 2     BRGH    High Baud Rate Select Bit (1=High Speed, 0=Low Speed) 
 1     TRMT    Transmit Shift Register Status Bit (1=TSR Empty, 0=TSR Full) 
 0     TX9D     9th Bit of Transmitted Data 
 
 
 RCSTA (Address 0x18, Bank 0 Only) 
 7     SPEN     Serial Port Enable Bit (1=Enable USART, 0=Disable USART) 
 6     RX9       9-Bit Receive Enable Bit (1=Enable, 0=Disable) 
 5     SREN    Single Receive Enable Bit (See Chapter 9) 
 4     CREN   Continuous Receive Enable Bit (See Chapter 9) 
 3     ADDEN  Address Detect Enable Bit (See Chapter 9) 
 2     FERR      Frame Error Status Bit (1=Error, 0= No Error) (See Chapter 9) 
 1     OERR     Overrun Error Bit (1=Error, 0=No Error) (See Chapter 9) 
 0     RX9D     9th Received Data Bit 
 
 
 
 SSPCON (Address 0x14, Bank 0 Only) 
 7     WCOL    Write Collision Detect Bit (See Chapter 9) 
 6     SSPOV   Receive Overflow Indicator Bit (See Chapter 9) 
 5    SSPEN    Synchronous Serial Port Enable Bit (1=Enable, 0=Disable) 
 4    CKP        Clock Polarity Select Bit (See Chapter 9) 
 3-0   SSPM3:SSPM0  Synchronous Serial Port Mode Select Bits 
    (See Chapter 9) 
 
 
 SSPCON2 (Address 0x91, Bank 1 Only) 
 7     GCEN     General Call Enable Bit (See Chapter 9) 
 6     ACKSTAT   ACKN Status Bit (See Chapter 9) 
 5     ACKDT        ACKN Data Bit (See Chapter 9) 
 4     ACKEN        ACKN Sequence Enable Bit (See Chapter 9) 
 3     RCEN           Receive Enable Bit (See Chapter 9) 
 2     PEN              “STOP” Condition Enable Bit (See Chapter 9) 
 1     RSEN            Repeated Start Enable Bit (See Chapter 9) 
 0     SEN               “START” Condition Enable Bit (See Chapter 9) 
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 SSPSTAT (Address 0x94, Bank 1 Only) 
 7     SMP     Sample Bit (See Chapter 9) 
 6     CKE     SPI Clock Edge Select Bit (See Chapter 9) 
 5     DA        Data/Address Bit (See Chapter 9) 
 4     P           “STOP” Bit (See Chapter 9) 
 3     S           “START” Bit (See Chapter 9) 
 2     RW        Read/Write Bit Information (See Chapter 9) 
 1     UA         Update Address (See Chapter 9) 
 0     BF          Buffer Full (Auto Cleared When SSPBUF is Read) (See Chapter 9) 
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 Appendix D  --- PIC16F877  Register File Map 
 
 
 ADDR  Bank 0  Bank 1  Bank 2  Bank3 
 0x00  INDF  INDF  INDF  INDF 
 0x01  TMR0     OPTION_REG TMR0      OPTION_REG  
 0x02  PCL  PCL  PCL  PCL 
 0x03  STATUS STATUS STATUS STATUS 
 0x04  FSR  FSR  FSR  FSR 
 0x05  PORTA TRISA  ====  ==== 
 0x06  PORTB TRISB  PORTB TRISB 
 0x07  PORTC TRISC  ====  ==== 
 0x08  PORTD TRISD  ====  ==== 
 0x09  PORTE TRISE  ====  ==== 
 0x0A  PCLATH PCLATH PCLATH PCLATH 
 0x0B  INTCON INTCON INTCON INTCON 
 0x0C  PIR1  PIE1  EEDATA EECON1 
 0x0D  PIR2  PIE2  EEADR EECON2 
 0x0E  TMR1L PCON  EEDATH ==== 
 0x0F  TMR1H ====  EEADRH ==== 
 0x10  T1CON ==== 
 0x11  TMR2  SSPCON2 
 0x12  T2CON PR2 
 0x13  SSPBUF SSPADD 
 0x14  SSPCON SSPSTAT 
 0x15  CCPR1L ==== 
 0x16  CCPR1H ==== 
 0x17  CCP1CON ==== 
 0x18  RCSTA TXSTA 
 0x19  TXREG SPBRG 
 0x1A  RCREG ==== 
 0x1B  CCPR2L ==== 
 0x1C  CCPR2H ==== 
 0x1D  CCP2CON ==== 
 0x1E  ADRESH ADRESL 
 0x1F  ADCON0 ADCON1 
 
 Notes: 

1) Entries marked “====” are reserved – do not use them. 
2) Blank Entries are Usable as RAM 
3) RAM Addresses from 0x20-Through-0x7F Are Freely Available 
4) RAM from 0x70-through-0x7F Do Not Need To Switch Banks 
5) Indirect Addresses Must Add 0x80 For Bank 1 & Bank 3 

 
 



 192

 

 Appendix E --- PIC16F877 Pin Function Map 
 
 
 PIN #  Functions   PIN #  Functions 
 1  /MCLR, Vpp   40    RB7, PGD 
 2  RA0, AN0   39    RB6, PGC 
 3  RA1, AN1   38    RB5 
 4  RA2, AN2, Vref-  37    RB4 
 5  RA3, AN3, Vref+  36    RB3, PGM 
 
 6  RA4, T0CKI   35    RB2 
 7  RA5, AN4, /SS  34    RB1 
 8  RE0, AN5, /RD  33    RB0, INT 
 9  RE1, AN6, /WR  32    Vdd (+5 Volts) 
 10  RE2, AN7, /CS  31    Vss (Ground) 
 
 11  Vdd (+5 Volts)  30    RD7, PSP7 
 12  Vss (Ground)   29    RD6, PSP6 
 13  OSC1, CLKIN  28    RD5, PSP5 
 14  OSC2, CLKOUT  27    RD4, PSP4 
 15  RC0, T1OSO, T1CKI  26    RC7, RX, DT 
 
 16  RC1, T1OSI, CCP2  25    RC6, TX, CK 
 17  RC2, CCP1   24    RC5, SDO 
 18  RC3, SCK, SCL  23    RC4, SDI, SDA 
 19  RD0, PSP0   22    RD3, PSP3 
 20  RD1, PSP1   21    RD2, PSP2 
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 Appendix F --- Save Register / Restore Registers  
                                on Interrupt 
 
 The code to save the W and STATUS registers at the start of an interrupt is as 
follows: 
 

W_TEMP: EQU  0x70  ; Storage for W Register 
 STATUS_T: EQU  0x71  ; Storage for STATUS Register 
 
   MOVWF W_TEMP ; Save W 
   SWAPF STATUS,W ; Get STATUS into W 
   MOVWF STATUS_T ; Save STATUS 
 
The code to restore the same is as follows: 
 
   SWAPF STATUS_T,W    ; Get Saved STATUS 
   MOVWF STATUS     ; Restore STATUS 
   SWAPF W_TEMP,F        ; Restore W 
   SWAPF W_TEMP,W 
 
 Note: The process of saving and restoring the registers can be simplified by using 
assembly language MACROs.  These are called “PUSH” and “POP” and are defined as 
follows: 
 
 PUSH: MACRO 
   MOVWF W_TEMP ; Save W 
   SWAPF STATUS,W ; Get STATUS into W 
   MOVWF STATUS_T ; Save STATUS 
   ENDM 
 
 
 POP:  MACRO 
   SWAPF STATUS_T,W    ; Get Saved STATUS 
   MOVWF STATUS     ; Restore STATUS 
   SWAPF W_TEMP,F        ; Restore W 
   SWAPF W_TEMP,W 
   ENDM 
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 To use these MACROs, do as follows: 
 
 INT_SERVICE: 
   PUSH  ; Inserts the “PUSH” MACRO’s Code Here 
   ---- Do The Service ------ 
   POP  ; Inserts the “POP” MACRO’s Code Here 
   RETFIE 
 
 The MACRO-code is translated verbatim into these places where they are called.  
They are NOT subroutines!  The code is just repeated in each place where the MACRO is 
called. 
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