

Code generation from Isabelle/HOL theories

Florian Haftmann with contributions from Lukas Bulwahn
17 February 2016

Abstract

This tutorial introduces the code generator facilities of Isabelle/HOL. They empower the user to turn HOL specifications into corresponding executable programs in the languages SML, OCaml, Haskell and Scala.

1 Introduction

This tutorial introduces the code generator facilities of Isabelle/HOL. It allows to turn (a certain class of) HOL specifications into corresponding executable code in the programming languages $S M L[8]$, OCaml [7], Haskell [11] and Scala [10].

To profit from this tutorial, some familiarity and experience with $H O L$ [9] and its basic theories is assumed.

1.1 Code generation principle: shallow embedding

The key concept for understanding Isabelle's code generation is shallow embedding: logical entities like constants, types and classes are identified with corresponding entities in the target language. In particular, the carrier of a generated program's semantics are equational theorems from the logic. If we view a generated program as an implementation of a higher-order rewrite system, then every rewrite step performed by the program can be simulated in the logic, which guarantees partial correctness [6].

1.2 A quick start with the Isabelle/HOL toolbox

In a HOL theory, the datatype and definition/primrec/fun declarations form the core of a functional programming language. By default equational theorems stemming from those are used for generated code, therefore "naive" code generation can proceed without further ado.

For example, here a simple "implementation" of amortised queues:

```
datatype 'a queue = AQueue 'a list 'a list
definition empty :: 'a queue where
    empty = AQueue [] []
primrec enqueue :: ' }a>>'a queue => 'a queue where
    enqueue x (AQueue xs ys) = AQueue (x # xs) ys
fun dequeue :: 'a queue = 'a option }\times\mathrm{ 'a queue where
    dequeue (AQueue [] []) = (None, AQueue [] [])
    | dequeue (AQueue xs (y# ys))=(Some y, AQueue xs ys)
    | dequeue (AQueue xs []) =
        (case rev xs of y # ys }=>\mathrm{ (Some y, AQueue [] ys))
```

Then we can generate code e.g. for $S M L$ as follows:

```
export-code empty dequeue enqueue in SML
    module-name Example file examples/example.ML
```

resulting in the following code:

```
structure Example : sig
    type 'a queue
    val empty : 'a queue
    val dequeue : 'a queue -> 'a option * 'a queue
    val enqueue : 'a -> 'a queue -> 'a queue
end = struct
datatype 'a queue = AQueue of 'a list * 'a list;
fun fold f (x :: xs) s = fold f xs (f x s)
    | fold f [] s = s;
fun rev xs = fold (fn a => fn b => a :: b) xs [];
val empty : 'a queue = AQueue ([], []);
fun dequeue (AQueue ([], [])) = (NONE, AQueue ([], []))
    | dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
    | dequeue (AQueue (v :: va, [])) = let
    val y :: ys = rev (v :: va);
in
    (SOME y, AQueue ([], ys))
end;
fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);
end; (*struct Example*)
```

The export-code command takes a space-separated list of constants for which code shall be generated; anything else needed for those is added implicitly. Then follows a target language identifier and a freely chosen module name. A file name denotes the destination to store the generated code. Note that the semantics of the destination depends on the target language: for SML, OCaml and Scala it denotes a file, for Haskell it denotes a directory where a file named as the module name (with extension.$h s$) is written:

```
export-code empty dequeue enqueue in Haskell
    module-name Example file examples/
```

This is the corresponding code:

```
module Example(Queue, empty, dequeue, enqueue) where {
import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
    (**), (>>=), (>>), (=<<), (&&), (||), (^), (~^), (.), ($), ($!), (++),
    (!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
    concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
    negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));
```

```
import qualified Prelude;
data Queue a = AQueue [a] [a];
empty :: forall a. Queue a;
empty = AQueue [] [];
dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue [] []) = (Nothing, AQueue [] []);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue (v : va) []) = let {
                                    (y : ys) = reverse (v : va);
                                    } in (Just y, AQueue [] ys);
enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;
}
```

For more details about export-code see $\S 7$.

1.3 Type classes

Code can also be generated from type classes in a Haskell-like manner. For illustration here an example from abstract algebra:

```
class semigroup =
    fixes mult :: ' }a=>\mathrm{ ' }a=>\mp@subsup{}{}{\prime}a(\mathrm{ (infixl }\otimes70
    assumes assoc:}(x\otimesy)\otimesz=x\otimes(y\otimesz
class monoid = semigroup +
    fixes neutral :: 'a (1)
    assumes neutl: 1 \otimesx=x
        and neutr: x \otimes 1 = x
instantiation nat :: monoid
begin
primrec mult-nat where
            0\otimesn=(0::nat)
    Suc m\otimesn=n+m\otimesn
definition neutral-nat where
    1 = Suc 0
lemma add-mult-distrib:
    fixes n m q :: nat
```

```
shows (n+m)\otimesq=n\otimesq+m\otimesq
by (induct n) simp-all
```


instance proof

```
fix \(m n q::\) nat
    show }m\otimesn\otimesq=m\otimes(n\otimesq
        by (induct m) (simp-all add: add-mult-distrib)
    show 1 }\otimesn=
        by (simp add: neutral-nat-def)
    show }m\otimes\mathbb{1}=
        by (induct m) (simp-all add: neutral-nat-def)
qed
end
```

We define the natural operation of the natural numbers on monoids:

```
primrec (in monoid) pow :: nat \(\Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\) where
    pow \(0 a=1\)
    | pow (Suc n) \(a=a \otimes\) pow \(n a\)
```

This we use to define the discrete exponentiation function:

```
definition bexp :: nat \(\Rightarrow\) nat where
    bexp \(n=\) pow \(n\) (Suc (Suc 0))
```

The corresponding code in Haskell uses that language's native classes:

```
module Example(Nat, bexp) where {
import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
    (**), (>>=), (>>), (=<<), (&&), (||), (~), (~~), (.), ($), ($!), (++),
    (!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
    concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
    negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));
import qualified Prelude;
data Nat = Zero_nat | Suc Nat;
plus_nat :: Nat -> Nat -> Nat;
plus_nat (Suc m) n = plus_nat m (Suc n);
plus_nat Zero_nat n = n;
mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);
neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;
class Semigroup a where {
```

```
    mult :: a -> a -> a;
};
class (Semigroup a) => Monoid a where {
    neutral :: a;
};
instance Semigroup Nat where {
    mult = mult_nat;
};
instance Monoid Nat where {
    neutral = neutral_nat;
};
pow :: forall a. (Monoid a) => Nat -> a -> a;
pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);
bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));
}
```

This is a convenient place to show how explicit dictionary construction manifests in generated code - the same example in $S M L$:

```
structure Example : sig
    type nat
    val bexp : nat -> nat
end = struct
datatype nat = Zero_nat | Suc of nat;
fun plus_nat (Suc m) n = plus_nat m (Suc n)
    | plus_nat Zero_nat n = n;
fun mult_nat Zero_nat n = Zero_nat
    | mult_nat (Suc m) n = plus_nat n (mult_nat m n);
val neutral_nat : nat = Suc Zero_nat;
type 'a semigroup = {mult : 'a -> 'a -> 'a};
val mult = #mult : 'a semigroup -> 'a -> 'a -> 'a;
type 'a monoid = {semigroup_monoid : 'a semigroup, neutral : 'a};
val semigroup_monoid = #semigroup_monoid : 'a monoid -> 'a semigroup;
val neutral = #neutral : 'a monoid -> 'a;
val semigroup_nat = {mult = mult_nat} : nat semigroup;
val monoid_nat = {semigroup_monoid = semigroup_nat, neutral = neutral_nat}
    : nat monoid;
fun pow A_ Zero_nat a = neutral A_
    | pow A_ (Suc n) a = mult (semigroup_monoid A_) a (pow A_ n a);
fun bexp n = pow monoid_nat n (Suc (Suc Zero_nat));
end; (*struct Example*)
```

Note the parameters with trailing underscore (A_), which are the dictionary parameters.

1.4 How to continue from here

What you have seen so far should be already enough in a lot of cases. If you are content with this, you can quit reading here.

Anyway, to understand situations where problems occur or to increase the scope of code generation beyond default, it is necessary to gain some understanding how the code generator actually works:

- The foundations of the code generator are described in $\S 2$.
- In particular $\S 2.6$ gives hints how to debug situations where code generation does not succeed as expected.
- The scope and quality of generated code can be increased dramatically by applying refinement techniques, which are introduced in $\S 3$.
- Inductive predicates can be turned executable using an extension of the code generator $\S 4$.
- If you want to utilize code generation to obtain fast evaluators e.g. for decision procedures, have a look at $\S 5$.
- You may want to skim over the more technical sections $\S 6$ and $\S 7$.
- The target language Scala [10] comes with some specialities discussed in §7.1.
- For exhaustive syntax diagrams etc. you should visit the Isabelle/Isar Reference Manual [12].

Happy proving, happy hacking!

2 Code generation foundations

2.1 Code generator architecture

The code generator is actually a framework consisting of different components which can be customised individually.

Conceptually all components operate on Isabelle's logic framework Pure. Practically, the object logic $H O L$ provides the necessary facilities to make use of the code generator, mainly since it is an extension of Pure.

The constellation of the different components is visualized in the following picture.

Figure 1: Code generator architecture
Central to code generation is the notion of code equations. A code equation as a first approximation is a theorem of the form $f t_{1} t_{2} \ldots t_{n} \equiv t$ (an equation headed by a constant f with arguments $t_{1} t_{2} \ldots t_{n}$ and right hand side t).

- Starting point of code generation is a collection of (raw) code equations in a theory. It is not relevant where they stem from, but typically they were either produced by specification tools or proved explicitly by the user.
- These raw code equations can be subjected to theorem transformations. This preprocessor (see $\S 2.2$) can apply the full expressiveness of ML-based theorem transformations to code generation. The result of preprocessing is a structured collection of code equations.
- These code equations are translated to a program in an abstract intermediate language. Think of it as a kind of "Mini-Haskell" with four statements: data (for datatypes), fun (stemming from code equations), also class and inst (for type classes).
- Finally, the abstract program is serialised into concrete source code of a target language. This step only produces concrete syntax but does not change the program in essence; all conceptual transformations occur in the translation step.

From these steps, only the last two are carried out outside the logic; by keeping this layer as thin as possible, the amount of code to trust is kept to a minimum.

2.2 The pre- and postprocessor

Before selected function theorems are turned into abstract code, a chain of definitional transformation steps is carried out: preprocessing. The preprocessor consists of two components: a simpset and function transformers.

The preprocessor simpset has a disparate brother, the postprocessor simpset. In the theory-to-code scenario depicted in the picture above, it plays no role. But if generated code is used to evaluate expressions (cf. §5), the postprocessor simpset is applied to the resulting expression before this is turned back.

The pre- and postprocessor simpsets can apply the full generality of the Isabelle simplifier. Due to the interpretation of theorems as code equations, rewrites are applied to the right hand side and the arguments of the left hand side of an equation, but never to the constant heading the left hand side.

Pre- and postprocessor can be setup to transfer between expressions suitable for logical reasoning and expressions suitable for execution. As example, take list membership; logically it is expressed as $x \in$ set $x s$. But for execution the intermediate set is not desirable. Hence the following specification:

```
definition member \(::\) 'a list \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool
where
    [code-abbrev]: member xs \(x \longleftrightarrow x \in\) set \(x s\)
```

The code-abbrev attribute declares its theorem a rewrite rule for the postprocessor and the symmetric of its theorem as rewrite rule for the preprocessor. Together, this has the effect that expressions $x \in$ set $x s$ are replaced by member xs x in generated code, but are turned back into $x \in$ set $x s$ if generated code is used for evaluation.

Rewrite rules for pre- or postprocessor may be declared independently using code-unfold or code-post respectively.

Function transformers provide a very general interface, transforming a list of function theorems to another list of function theorems, provided that
neither the heading constant nor its type change. The 0 / Suc pattern used in theory Code-Abstract-Nat (see §6.3) uses this interface.
The current setup of the pre- and postprocessor may be inspected using the print-codeproc command. code-thms (see §2.3) provides a convenient mechanism to inspect the impact of a preprocessor setup on code equations.

2.3 Understanding code equations

As told in §1.1, the notion of code equations is vital to code generation. Indeed most problems which occur in practice can be resolved by an inspection of the underlying code equations.

It is possible to exchange the default code equations for constants by explicitly proving alternative ones:

```
lemma [code]:
    dequeue (AQueue xs []) \(=\)
        (if xs \(=[]\) then (None, AQueue [] [])
            else dequeue (AQueue [] (rev xs)))
    dequeue \((\) AQueue xs \((y \# y s))=\)
        (Some y, AQueue xs ys)
    by (cases xs, simp-all) (cases rev xs, simp-all)
```

The annotation [code] is an attribute which states that the given theorems should be considered as code equations for a fun statement - the corresponding constant is determined syntactically. The resulting code:

```
dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =
    (if null xs then (Nothing, AQueue [] [])
        else dequeue (AQueue [] (reverse xs)));
```

You may note that the equality test $x s=[]$ has been replaced by the predicate List.null xs. This is due to the default setup of the preprocessor.

This possibility to select arbitrary code equations is the key technique for program and datatype refinement (see §3).

Due to the preprocessor, there is the distinction of raw code equations (before preprocessing) and code equations (after preprocessing).

The first can be listed (among other data) using the print-codesetup command.

The code equations after preprocessing are already are blueprint of the generated program and can be inspected using the code-thms command:

code-thms dequeue

This prints a table with the code equations for dequeue, including all code equations those equations depend on recursively. These dependencies themselves can be visualized using the code-deps command.

2.4 Equality

Implementation of equality deserves some attention. Here an example function involving polymorphic equality:

```
primrec collect-duplicates :: 'a list \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list \(\Rightarrow\) ' \(a\) list where
    collect-duplicates xs ys []\(=x s\)
\(\mid\) collect-duplicates xs ys \((z \# z s)=(\) if \(z \in\) set xs
    then if \(z \in\) set ys
    then collect-duplicates xs ys zs
        else collect-duplicates xs (z\#ys) zs
        else collect-duplicates (z\#xs) (z\#ys) zs)
```

During preprocessing, the membership test is rewritten, resulting in List.member, which itself performs an explicit equality check, as can be seen in the corresponding $S M L$ code:

```
structure Example : sig
    type 'a equal
    val collect_duplicates :
        'a equal -> 'a list -> 'a list -> 'a list -> 'a list
end = struct
type 'a equal = {equal : 'a -> 'a -> bool};
val equal = #equal : 'a equal -> 'a -> 'a -> bool;
fun eq A_ a b = equal A_ a b;
fun member A_ [] y = false
    | member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y;
fun collect_duplicates A_ xs ys [] = xs
    | collect_duplicates A_ xs ys (z :: zs) =
        (if member A_ xs z
        then (if member A_ ys z then collect_duplicates A_ xs ys zs
            else collect_duplicates A_ xs (z :: ys) zs)
        else collect_duplicates A_ (z :: xs) (z :: ys) zs);
end; (*struct Example*)
```

Obviously, polymorphic equality is implemented the Haskell way using a type class. How is this achieved? HOL introduces an explicit class equal with a corresponding operation equal-class.equal such that equal-class.equal $=o p$
=. The preprocessing framework does the rest by propagating the equal constraints through all dependent code equations. For datatypes, instances of equal are implicitly derived when possible. For other types, you may instantiate equal manually like any other type class.

2.5 Explicit partiality

Partiality usually enters the game by partial patterns, as in the following example, again for amortised queues:

```
definition strict-dequeue :: ' \(a\) queue \(\Rightarrow{ }^{\prime} a \times\) ' \(a\) queue where
    strict-dequeue \(q=(\) case dequeue \(q\)
        of \(\left(\right.\) Some \(\left.\left.x, q^{\prime}\right) \Rightarrow\left(x, q^{\prime}\right)\right)\)
lemma strict-dequeue-AQueue [code]:
    strict-dequeue (AQueue xs \((y \# y s))=(y\), AQueue xs ys)
    strict-dequeue (AQueue xs []) \(=\)
        (case rev xs of \(y \# y s \Rightarrow(y\), AQueue [] ys))
    by (simp-all add: strict-dequeue-def) (cases xs, simp-all split: list.split)
```

In the corresponding code, there is no equation for the pattern AQueue [] []:

```
strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs []) = let {
                                    (y : ys) = reverse xs;
    } in (y, AQueue [] ys);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);
```

In some cases it is desirable to have this pseudo- "partiality" more explicitly, e.g. as follows:

```
axiomatization empty-queue :: 'a
definition strict-dequeue' :: 'a queue \(\Rightarrow{ }^{\prime} a \times\) ' \(a\) queue where
    strict-dequeue' \(q=\left(\right.\) case dequeue \(q\) of (Some \(\left.x, q^{\prime}\right) \Rightarrow\left(x, q^{\prime}\right) \mid-\Rightarrow\)
empty-queue)
lemma strict-dequeue'-AQueue [code]:
    strict-dequeue' \((\) AQueue xs []\()=(\) if \(x s=[]\) then empty-queue
        else strict-dequeue' (AQueue [] (rev xs)))
    strict-dequeue' (AQueue xs \((y \# y s))=\)
        ( \(y\), AQueue xs ys)
    by (simp-all add: strict-dequeue'-def split: list.splits)
```

Observe that on the right hand side of the definition of strict-dequeue ${ }^{\prime}$, the unspecified constant empty-queue occurs.

Normally, if constants without any code equations occur in a program, the code generator complains (since in most cases this is indeed an error). But such constants can also be thought of as function definitions which always fail, since there is never a successful pattern match on the left hand side. In order to categorise a constant into that category explicitly, use the code attribute with abort:

```
declare [[code abort: empty-queue]]
```

Then the code generator will just insert an error or exception at the appropriate position:

```
empty_queue :: forall a. a;
empty_queue = error "Foundations.empty_queue";
strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);
strict_dequeue (AQueue xs []) =
    (if null xs then empty_queue
        else strict_dequeue (AQueue [] (reverse xs)));
```

This feature however is rarely needed in practice. Note also that the HOL default setup already declares undefined, which is most likely to be used in such situations, as code abort.

2.6 If something goes utterly wrong

Under certain circumstances, the code generator fails to produce code entirely. To debug these, the following hints may prove helpful:

Check with a different target language. Sometimes the situation gets more clear if you switch to another target language; the code generated there might give some hints what prevents the code generator to produce code for the desired language.

Inspect code equations. Code equations are the central carrier of code generation. Most problems occurring while generating code can be traced to single equations which are printed as part of the error message. A closer inspection of those may offer the key for solving issues (cf. §2.3).

Inspect preprocessor setup. The preprocessor might transform code equations unexpectedly; to understand an inspection of its setup is necessary (cf. §2.2).

Generate exceptions. If the code generator complains about missing code equations, in can be helpful to implement the offending constants as exceptions (cf. §2.5); this allows at least for a formal generation of code, whose inspection may then give clues what is wrong.

Remove offending code equations. If code generation is prevented by just a single equation, this can be removed (cf. §2.3) to allow formal code generation, whose result in turn can be used to trace the problem. The most prominent case here are mismatches in type class signatures ("wellsortedness error").

3 Program and datatype refinement

Code generation by shallow embedding (cf. §1.1) allows to choose code equations and datatype constructors freely, given that some very basic syntactic properties are met; this flexibility opens up mechanisms for refinement which allow to extend the scope and quality of generated code dramatically.

3.1 Program refinement

Program refinement works by choosing appropriate code equations explicitly (cf. §2.3); as example, we use Fibonacci numbers:

```
fun \(f i b::\) nat \(\Rightarrow\) nat where
    fib \(0=0\)
    | fib (Suc 0) = Suc 0
    \(\mid\) fib \((\) Suc \((\) Suc \(n))=f i b n+f i b(\) Suc \(n)\)
```

The runtime of the corresponding code grows exponential due to two recursive calls:

```
fib :: Nat -> Nat;
fib Zero_nat = Zero_nat;
fib (Suc Zero_nat) = Suc Zero_nat;
fib (Suc (Suc n)) = plus_nat (fib n) (fib (Suc n));
```

A more efficient implementation would use dynamic programming, e.g. sharing of common intermediate results between recursive calls. This idea is expressed by an auxiliary operation which computes a Fibonacci number and its successor simultaneously:

```
definition fib-step :: nat \(\Rightarrow\) nat \(\times\) nat where
    fib-step \(n=(f i b(S u c n), f i b n)\)
```

This operation can be implemented by recursion using dynamic programming:

```
lemma [code]:
fib-step 0 = (Suc 0, 0)
fib-step (Suc n)=(let (m,q)=fib-step n in (m+q,m))
by (simp-all add: fib-step-def)
```

What remains is to implement fib by fib-step as follows:

```
lemma [code]:
fib \(0=0\)
fib \((\) Suc \(n)=f s t(f i b-s t e p n)\)
by (simp-all add: fib-step-def)
```

The resulting code shows only linear growth of runtime:

```
fib_step :: Nat -> (Nat, Nat);
fib_step (Suc n) = let {
    (m, q) = fib_step n;
    } in (plus_nat m q, m);
fib_step Zero_nat = (Suc Zero_nat, Zero_nat);
fib :: Nat -> Nat;
fib (Suc n) = fst (fib_step n);
fib Zero_nat = Zero_nat;
```


3.2 Datatype refinement

Selecting specific code equations and datatype constructors leads to datatype refinement. As an example, we will develop an alternative representation of the queue example given in $\S 1.2$. The amortised representation is convenient for generating code but exposes its "implementation" details, which may be cumbersome when proving theorems about it. Therefore, here is a simple, straightforward representation of queues:

```
datatype 'a queue \(=\) Queue 'a list
definition empty :: 'a queue where
    empty \(=\) Queue []
```

```
primrec enqueue :: ' \(a \Rightarrow\) ' \(a\) queue \(\Rightarrow\) ' \(a\) queue where
    enqueue \(x(\) Queue \(x s)=\) Queue \((x s\) @ \([x]\) )
fun dequeue :: ' \(a\) queue \(\Rightarrow\) ' \(a\) option \(\times\) 'a queue where
    dequeue (Queue []) \(=(\) None, Queue [])
    \(\mid\) dequeue \((\) Queue \((x \# x s))=(\) Some \(x\), Queue xs \()\)
```

This we can use directly for proving; for executing, we provide an alternative characterisation:

```
definition AQueue :: 'a list }=>\mathrm{ 'a list }=>\mathrm{ 'a queue where
    AQueue xs ys = Queue (ys @ rev xs)
code-datatype AQueue
```

Here we define a "constructor" AQueue which is defined in terms of Queue and interprets its arguments according to what the content of an amortised queue is supposed to be.

The prerequisite for datatype constructors is only syntactical: a constructor must be of type $\tau=\ldots \Rightarrow \kappa \alpha_{1} \ldots \alpha_{n}$ where $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is exactly the set of all type variables in τ; then κ is its corresponding datatype. The HOL datatype package by default registers any new datatype with its constructors, but this may be changed using code-datatype; the currently chosen constructors can be inspected using the print-codesetup command.

Equipped with this, we are able to prove the following equations for our primitive queue operations which "implement" the simple queues in an amortised fashion:

```
lemma empty-AQueue [code]:
    empty = AQueue [] []
    by (simp add: AQueue-def empty-def)
lemma enqueue-AQueue [code]:
    enqueue x (AQueue xs ys) = AQueue (x # xs) ys
    by (simp add: AQueue-def)
lemma dequeue-AQueue [code]:
    dequeue (AQueue xs [])=
        (if xs = [] then (None, AQueue [] [])
        else dequeue (AQueue [] (rev xs)))
    dequeue (AQueue xs (y # ys)) = (Some y, AQueue xs ys)
    by (simp-all add: AQueue-def)
```

It is good style, although no absolute requirement, to provide code equations for the original artefacts of the implemented type, if possible; in our case, these are the datatype constructor Queue and the case combinator case-queue:

```
lemma Queue-AQueue [code]:
    Queue \(=\) AQueue []
    by (simp add: AQueue-def fun-eq-iff)
lemma case-queue-AQueue [code]:
    case-queue \(f\) (AQueue xs ys) \(=f\) (ys @ revxs)
    by (simp add: AQueue-def)
```

The resulting code looks as expected:

```
structure Example : sig
    type 'a queue
    val empty : 'a queue
    val dequeue : 'a queue -> 'a option * 'a queue
    val enqueue : 'a }->\mathrm{ ' 'a queue }->\mathrm{ 'a queue
    val queue : 'a list -> 'a queue
    val case_queue : ('a list }->\mathrm{ ' 'b) -> 'a queue -> 'b
end = struct
datatype 'a queue = AQueue of 'a list * 'a list;
fun fold f (x :: xs) s = fold f xs (f x s)
    | fold f [] s = s;
fun rev xs = fold (fn a => fn b => a :: b) xs [];
fun null [] = true
    | null (x :: xs) = false;
val empty : 'a queue = AQueue ([], []);
fun dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
    | dequeue (AQueue (xs, [])) =
        (if null xs then (NONE, AQueue ([], []))
            else dequeue (AQueue ([], rev xs)));
fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);
fun queue x = AQueue ([], x);
fun case_queue f (AQueue (xs, ys)) = f (ys @ rev xs);
end; (*struct Example*)
```

The same techniques can also be applied to types which are not specified as datatypes, e.g. type int is originally specified as quotient type by means of typedef, but for code generation constants allowing construction of binary numeral values are used as constructors for int.

This approach however fails if the representation of a type demands invariants; this issue is discussed in the next section.

3.3 Datatype refinement involving invariants

Datatype representation involving invariants require a dedicated setup for the type and its primitive operations. As a running example, we implement a type 'a dlist of list consisting of distinct elements.

The first step is to decide on which representation the abstract type (in our example ' a dlist) should be implemented. Here we choose ' a list. Then a conversion from the concrete type to the abstract type must be specified, here:

$$
\text { Dlist :: 'a list } \Rightarrow \text { ' } a \text { dlist }
$$

Next follows the specification of a suitable projection, i.e. a conversion from abstract to concrete type:

$$
\text { list-of-dlist }:: \text { ' } a \text { dlist } \Rightarrow{ }^{\prime} a \text { list }
$$

This projection must be specified such that the following abstract datatype certificate can be proven:

```
lemma [code abstype]:
    Dlist (list-of-dlist dxs)=dxs
    by (fact Dlist-list-of-dlist)
```

Note that so far the invariant on representations (distinct :: 'a list \Rightarrow bool) has never been mentioned explicitly: the invariant is only referred to implicitly: all values in set $\{x s$. list-of-dlist (Dlist $x s)=x s\}$ are invariant, and in our example this is exactly $\{x s$. distinct $x s\}$.

The primitive operations on 'a dlist are specified indirectly using the projection list-of-dlist. For the empty dlist, Dlist.empty, we finally want the code equation

$$
\text { Dlist.empty }=\text { Dlist }[]
$$

This we have to prove indirectly as follows:

```
lemma [code]:
    list-of-dlist Dlist.empty = []
    by (fact list-of-dlist-empty)
```

This equation logically encodes both the desired code equation and that the expression Dlist is applied to obeys the implicit invariant. Equations for insertion and removal are similar:

```
lemma [code]:
    list-of-dlist (Dlist.insert x dxs) = List.insert x (list-of-dlist dxs)
    by (fact list-of-dlist-insert)
lemma [code]:
    list-of-dlist (Dlist.remove x dxs) = remove1 }x\mathrm{ (list-of-dlist dxs)
    by (fact list-of-dlist-remove)
```

Then the corresponding code is as follows:

```
module Example(Dlist, empty, list_of_dlist, inserta, remove) where {
import Prelude ((==), (/=), (<), (<=), (>=), (>), (+), (-), (*), (/),
    (**), (>>=), (>>), (=<<), (&&), (||), (^), (~^), (.), ($), ($!), (++),
    (!!), Eq, error, id, return, not, fst, snd, map, filter, concat,
    concatMap, reverse, zip, null, takeWhile, dropWhile, all, any, Integer,
    negate, abs, divMod, String, Bool(True, False), Maybe(Nothing, Just));
import qualified Prelude;
newtype Dlist a = Dlist [a];
empty :: forall a. Dlist a;
empty = Dlist [];
member :: forall a. (Eq a) => [a] -> a -> Bool;
member [] y = False;
member (x : xs) y = x == y || member xs y;
insert :: forall a. (Eq a) => a -> [a] -> [a];
insert x xs = (if member xs x then xs else x : xs);
list_of_dlist :: forall a. Dlist a -> [a];
list_of_dlist (Dlist x) = x;
inserta :: forall a. (Eq a) => a -> Dlist a -> Dlist a;
inserta x dxs = Dlist (insert x (list_of_dlist dxs));
remove1 :: forall a. (Eq a) => a -> [a] -> [a];
remove1 x [] = [];
remove1 x (y : xs) = (if x == y then xs else y : remove1 x xs);
remove :: forall a. (Eq a) => a -> Dlist a -> Dlist a;
remove x dxs = Dlist (remove1 x (list_of_dlist dxs));
}
```

See further [5] for the meta theory of datatype refinement involving invariants.

Typical data structures implemented by representations involving invariants are available in the library, theory Mapping specifies key-value-mappings (type (' a, 'b) mapping); these can be implemented by red-black-trees (theory RBT).

4 Inductive Predicates

The predicate compiler is an extension of the code generator which turns inductive specifications into equational ones, from which in turn executable code can be generated. The mechanisms of this compiler are described in detail in [3].

Consider the simple predicate append given by these two introduction rules:
append [] ys ys
append $x s$ ys zs \Longrightarrow append $(x \# x s)$ ys $(x \# z s)$
To invoke the compiler, simply use code-pred:
code-pred append .
The code-pred command takes the name of the inductive predicate and then you put a period to discharge a trivial correctness proof. The compiler infers possible modes for the predicate and produces the derived code equations. Modes annotate which (parts of the) arguments are to be taken as input, and which output. Modes are similar to types, but use the notation i for input and o for output.

For append, the compiler can infer the following modes:

- $i \Rightarrow i \Rightarrow i \Rightarrow$ bool
- $i \Rightarrow i \Rightarrow o \Rightarrow$ bool
- $o \Rightarrow o \Rightarrow i \Rightarrow$ bool

You can compute sets of predicates using values:
values $\{z s$. append $[(1:: n a t), 2,3][4,5] z s\}$
outputs $\{[1,2,3,4,5]\}$, and
values $\{(x s, y s)$. append xs ys $[(2:: n a t), 3]\}$
outputs $\{([],[2,3]),([2],[3]),([2,3],[])\}$.
If you are only interested in the first elements of the set comprehension (with respect to a depth-first search on the introduction rules), you can pass an argument to values to specify the number of elements you want:

```
values 1 {(xs, ys). append xs ys [(1::nat), 2, 3, 4]}
values }3{(xs,ys).append xs ys [(1::nat), 2, 3, 4]
```

The values command can only compute set comprehensions for which a mode has been inferred.

The code equations for a predicate are made available as theorems with the suffix equation, and can be inspected with:

thm append.equation

More advanced options are described in the following subsections.

4.1 Alternative names for functions

By default, the functions generated from a predicate are named after the predicate with the mode mangled into the name (e.g., append-i-i-o). You can specify your own names as follows:

$$
\begin{aligned}
& \text { code-pred (modes: } i \Rightarrow i \Rightarrow o \Rightarrow \text { bool as concat, } \\
& o \Rightarrow o \Rightarrow i \Rightarrow \text { bool as split, } \\
& i \Rightarrow o \Rightarrow i \Rightarrow \text { bool as suffix) append } .
\end{aligned}
$$

4.2 Alternative introduction rules

Sometimes the introduction rules of an predicate are not executable because they contain non-executable constants or specific modes could not be inferred. It is also possible that the introduction rules yield a function that loops forever due to the execution in a depth-first search manner. Therefore, you can declare alternative introduction rules for predicates with the attribute code-pred-intro. For example, the transitive closure is defined by:

```
rab\Longrightarrow tranclp r a b
tranclp rab\Longrightarrowrbc\Longrightarrowtranclp rac
```

These rules do not suit well for executing the transitive closure with the mode $(i \Rightarrow o \Rightarrow$ bool $) \Rightarrow i \Rightarrow o \Rightarrow$ bool, as the second rule will cause an infinite loop in the recursive call. This can be avoided using the following alternative rules which are declared to the predicate compiler by the attribute code-pred-intro:

```
lemma [code-pred-intro]:
    rab tranclp rab
    \(r a b \Longrightarrow\) tranclp \(r b c \Longrightarrow\) tranclp \(r a c\)
```

by auto

After declaring all alternative rules for the transitive closure, you invoke code-pred as usual. As you have declared alternative rules for the predicate, you are urged to prove that these introduction rules are complete, i.e., that you can derive an elimination rule for the alternative rules:

```
code-pred tranclp
proof -
    case tranclp
    from this converse-tranclpE [OF tranclp.prems] show thesis by metis
qed
```

Alternative rules can also be used for constants that have not been defined inductively. For example, the lexicographic order which is defined as:

```
lexordp \(r\) ? xs ? ys s \(\longleftrightarrow\)
\((\exists a v\).? \(y s=\) ? \(x s @ a \# v \vee\)
    \((\exists u a b v w \cdot r a b \wedge ? x s=u @ a \# v \wedge\) ? \(y s=u @ b \# w))\)
```

To make it executable, you can derive the following two rules and prove the elimination rule:

```
lemma [code-pred-intro]:
    append xs \((a \# v)\) ys \(\Longrightarrow\) lexordp \(r\) xs ys
lemma [code-pred-intro]:
    append \(u(a \# v) x s \Longrightarrow\) append \(u(b \# w) y s \Longrightarrow r a b\)
    \(\Longrightarrow\) lexordp r xs ys
code-pred lexordp
```


4.3 Options for values

In the presence of higher-order predicates, multiple modes for some predicate could be inferred that are not disambiguated by the pattern of the set comprehension. To disambiguate the modes for the arguments of a predicate, you can state the modes explicitly in the values command. Consider the simple predicate succ:

```
inductive succ :: nat \(\Rightarrow\) nat \(\Rightarrow\) bool where
    succ 0 (Suc 0)
\(\mid\) succ \(x y \Longrightarrow \operatorname{succ}(\) Suc \(x)(\) Suc \(y)\)
code-pred succ .
```

For this, the predicate compiler can infer modes $o \Rightarrow o \Rightarrow b o o l, i \Rightarrow o \Rightarrow$ bool, $o \Rightarrow i \Rightarrow$ bool and $i \Rightarrow i \Rightarrow$ bool. The invocation of values $\{n$. tranclp succ $10 n\}$ loops, as multiple modes for the predicate succ are possible and here the first mode $o \Rightarrow o \Rightarrow$ bool is chosen. To choose another mode for the argument, you can declare the mode for the argument between the values and the number of elements.
values [mode: $i \Rightarrow o \Rightarrow$ bool] $1\{n$. tranclp succ $10 n\}$
values [mode: $o \Rightarrow i \Rightarrow$ bool] $1\{n$. tranclp succ $n 10\}$

4.4 Embedding into functional code within Isabelle/HOL

To embed the computation of an inductive predicate into functions that are defined in Isabelle/HOL, you have a number of options:

- You want to use the first-order predicate with the mode where all arguments are input. Then you can use the predicate directly, e.g.

```
valid-suffix ys zs =
    (if append [Suc 0, 2] ys zs then Some ys else None)
```

- If you know that the execution returns only one value (it is deterministic), then you can use the combinator Predicate.the, e.g., a functional concatenation of lists is defined with
functional-concat xs ys $=$ Predicate.the (append-i-i-o xs ys)
Note that if the evaluation does not return a unique value, it raises a run-time error not-unique.

4.5 Further Examples

Further examples for compiling inductive predicates can be found in ~~/src/ HOL/Predicate_Compile_Examples/Examples.thy. There are also some examples in the Archive of Formal Proofs, notably in the POPLmark-deBruijn and the FeatherweightJava sessions.

5 Evaluation

Recalling $\S 1.1$, code generation turns a system of equations into a program with the same equational semantics. As a consequence, this program can be used as a rewrite engine for terms: rewriting a term t using a program to a term t^{\prime} yields the theorems $t \equiv t^{\prime}$. This application of code generation in the following is referred to as evaluation.

5.1 Evaluation techniques

The existing infrastructure provides a rich palette of evaluation techniques, each comprising different aspects:

Expressiveness. Depending on how good symbolic computation is supported, the class of terms which can be evaluated may be bigger or smaller.

Efficiency. The more machine-near the technique, the faster it is.
Trustability. Techniques which a huge (and also probably more configurable infrastructure) are more fragile and less trustable.

The simplifier (simp)

The simplest way for evaluation is just using the simplifier with the original code equations of the underlying program. This gives fully symbolic evaluation and highest trustablity, with the usual performance of the simplifier. Note that for operations on abstract datatypes (cf. §3.3), the original theorems as given by the users are used, not the modified ones.

Normalization by evaluation (nbe)

Normalization by evaluation [1] provides a comparably fast partially symbolic evaluation which permits also normalization of functions and uninterpreted symbols; the stack of code to be trusted is considerable.

Evaluation in ML (code)

Highest performance can be achieved by evaluation in ML, at the cost of being restricted to ground results and a layered stack of code to be trusted, including code generator configurations by the user.

Evaluation is carried out in a target language Eval which inherits from SML but for convenience uses parts of the Isabelle runtime environment. The soundness of computation carried out there depends crucially on the correctness of the code generator setup; this is one of the reasons why you should not use adaptation (see $\S 6$) frivolously.

5.2 Aspects of evaluation

Each of the techniques can be combined with different aspects. The most important distinction is between dynamic and static evaluation. Dynamic evaluation takes the code generator configuration "as it is" at the point where evaluation is issued. Best example is the value command which allows adhoc evaluation of terms:

```
value 42 / (12 :: rat)
```

value tries first to evaluate using ML, falling back to normalization by evaluation if this fails.

A particular technique may be specified in square brackets, e.g.

$$
\text { value }[n b e] 42 /(12:: ~ r a t)
$$

To employ dynamic evaluation in the document generation, there is also a value antiquotation with the same evaluation techniques as value.

Static evaluation freezes the code generator configuration at a certain point and uses this context whenever evaluation is issued later on. This is particularly appropriate for proof procedures which use evaluation, since then the behaviour of evaluation is not changed or even compromised later on by actions of the user.

As a technical complication, terms after evaluation in ML must be turned into Isabelle's internal term representation again. Since this is also configurable, it is never fully trusted. For this reason, evaluation in ML comes with further aspects:

Plain evaluation. A term is normalized using the provided term reconstruction from ML to Isabelle; for applications which do not need to be fully trusted.

Property conversion. Evaluates propositions; since these are monomorphic, the term reconstruction is fixed once and for all and therefore trustable.

Conversion. Evaluates an arbitrary term t first by plain evaluation and certifies the result t^{\prime} by checking the equation $t \equiv t^{\prime}$ using property conversion.

The picture is further complicated by the roles of exceptions. Here three cases have to be distinguished:

- Evaluation of t terminates with a result t^{\prime}.
- Evaluation of t terminates which en exception indicating a pattern match failure or a non-implemented function. As sketched in $\S 2.5$, this can be interpreted as partiality.
- Evaluation raises any other kind of exception.

For conversions, the first case yields the equation $t=t^{\prime}$, the second defaults to reflexivity $t=t$. Exceptions of the third kind are propagated to the user.

By default return values of plain evaluation are optional, yielding SOME t^{\prime} in the first case, $N O N E$ in the second, and propagating the exception in the third case. A strict variant of plain evaluation either yields t^{\prime} or propagates any exception, a liberal variant captures any exception in a result of type Exn.result.

For property conversion (which coincides with conversion except for evaluation in ML), methods are provided which solve a given goal by evaluation.

5.3 Schematic overview

	simp	nbe	code
interactive evaluation . plain evaluation	value [simp]	value [$n 6 e$]	value [code] Code_Evaluation.dynamic_value
$\begin{aligned} & \text { む̃ } \\ & \text { evaluation method } \\ & \text { D property conversion } \end{aligned}$	code-simp	normalization	eval Code_Runtime.dynamic_holds_conv
conversion	Code_Simp.dynamic_conv	Nbe.dynamic_conv	Code_Evaluation.dynamic_conv
. plain evaluation			Code_Evaluation.static_value
property conversion			Code_Runtime.static_holds_conv
conversion	Code_Simp.static_conv	Nbe.static_conv	Code_Evaluation.static_conv

5.4 Preprocessing HOL terms into evaluable shape

When integration decision procedures developed inside HOL into HOL itself, it is necessary to somehow get from the Isabelle/ML representation to the representation used by the decision procedure itself ("reification"). One option is to hardcode it using code antiquotations (see §5.5). Another option is to use pre-existing infrastructure in HOL: Reification.conv and Reification.tac

An simplistic example:

```
datatype form-ord \(=T|F|\) Less nat nat
    | And form-ord form-ord \(\mid\) Or form-ord form-ord \(\mid\) Neg form-ord
primrec interp \(::\) form-ord \(\Rightarrow{ }^{\prime}\) 'a::order list \(\Rightarrow\) bool
where
    interp \(T\) vs \(\longleftrightarrow\) True
| interp F vs \(\longleftrightarrow\) False
| interp (Less \(i j) v s \longleftrightarrow v s!i<v s!j\)
\(\mid\) interp \((\) And \(f 1 f 2)\) vs \(\longleftrightarrow\) interp \(f 1\) vs \(\wedge\) interp \(f 2\) vs
\(\mid\) interp (Or f1 f2) vs \(\longleftrightarrow\) interp \(f 1\) vs \(\vee\) interp \(f 2\) vs
\(\mid \operatorname{interp}(\operatorname{Neg} f)\) vs \(\longleftrightarrow \neg\) interp \(f\) vs
```

The datatype form-ord represents formulae whose semantics is given by interp. Note that values are represented by variable indices (nat) whose concrete values are given in list vs.
ML \langle val thm $=$
Reification.conv @\{context\} @\{thms interp.simps $\}$ @ $\{$ cterm $x<y \wedge x<z\}$)
By virtue of interp.simps, Reification.conv provides a conversion which, for this concrete example, yields $x<y \wedge x<z \equiv \operatorname{interp}$ (And (Less (Suc $0)(S u c(S u c ~ 0)))($ Less (Suc 0) 0)) $[z, x, y]$. Note that the argument to interp does not contain any free variables and can thus be evaluated using evaluation.

A less meager example can be found in the AFP, session Regular-Sets, theory Regexp-Method.

5.5 Intimate connection between logic and system runtime

The toolbox of static evaluation conversions forms a reasonable base to interweave generated code and system tools. However in some situations more direct interaction is desirable.

Static embedding of generated code into system runtime - the code antiquotation

The code antiquotation allows to include constants from generated code directly into ML system code, as in the following toy example:

```
datatype form =T|F| And form form| Or form form
ML <
    fun eval_form @{code T} = true
        | eval_form @{code F} = false
        | eval_form (@{code And} (p, q)) =
            eval_form p andalso eval_form q
        | eval_form (@{code Or} (p, q)) =
            eval_form p orelse eval_form q;
>
```

code takes as argument the name of a constant; after the whole ML is read, the necessary code is generated transparently and the corresponding constant names are inserted. This technique also allows to use pattern matching on constructors stemming from compiled datatypes. Note that the code antiquotation may not refer to constants which carry adaptations; here you have to refer to the corresponding adapted code directly.

For a less simplistic example, theory Approximation in the Decision-Procs session is a good reference.

Static embedding of generated code into system runtime - code-reflect

The code antiquoation is lightweight, but the generated code is only accessible while the ML section is processed. Sometimes this is not appropriate, especially if the generated code contains datatype declarations which are shared with other parts of the system. In these cases, code-reflect can be used:

```
code-reflect Sum-Type
    datatypes sum = Inl| Inr
    functions Sum-Type.sum.projl Sum-Type.sum.projr
```

code-reflect takes a structure name and references to datatypes and functions; for these code is compiled into the named ML structure and the Eval target is modified in a way that future code generation will reference these precompiled versions of the given datatypes and functions. This also allows
to refer to the referenced datatypes and functions from arbitrary ML code as well.

A typical example for code-reflect can be found in the Predicate theory.

Separate compilation - code-reflect

For technical reasons it is sometimes necessary to separate generation and compilation of code which is supposed to be used in the system runtime. For this code-reflect with an optional file argument can be used:

```
code-reflect Rat
    datatypes rat \(=\) Frct
    functions Fract
        (plus \(::\) rat \(\Rightarrow\) rat \(\Rightarrow\) rat) (minus \(::\) rat \(\Rightarrow\) rat \(\Rightarrow\) rat \()\)
        (times :: rat \(\Rightarrow\) rat \(\Rightarrow\) rat) (divide \(::\) rat \(\Rightarrow\) rat \(\Rightarrow\) rat)
```

 file examples/rat.ML
 This merely generates the referenced code to the given file which can be included into the system runtime later on.

6 Adaptation to target languages

6.1 Adapting code generation

The aspects of code generation introduced so far have two aspects in common:

- They act uniformly, without reference to a specific target language.
- They are safe in the sense that as long as you trust the code generator meta theory and implementation, you cannot produce programs that yield results which are not derivable in the logic.

In this section we will introduce means to adapt the serialiser to a specific target language, i.e. to print program fragments in a way which accommodates "already existing" ingredients of a target language environment, for three reasons:

- improving readability and aesthetics of generated code
- gaining efficiency
- interface with language parts which have no direct counterpart in $H O L$ (say, imperative data structures)

Generally, you should avoid using those features yourself at any cost:

- The safe configuration methods act uniformly on every target language, whereas for adaptation you have to treat each target language separately.
- Application is extremely tedious since there is no abstraction which would allow for a static check, making it easy to produce garbage.
- Subtle errors can be introduced unconsciously.

However, even if you ought refrain from setting up adaptation yourself, already $H O L$ comes with some reasonable default adaptations (say, using target language list syntax). There also some common adaptation cases which you can setup by importing particular library theories. In order to understand these, we provide some clues here; these however are not supposed to replace a careful study of the sources.

6.2 The adaptation principle

Figure 2 illustrates what "adaptation" is conceptually supposed to be:

Figure 2: The adaptation principle
In the tame view, code generation acts as broker between logic, intermediate language and target language by means of translation and serialisation; for the latter, the serialiser has to observe the structure of the language itself plus some reserved keywords which have to be avoided for generated code.

However, if you consider adaptation mechanisms, the code generated by the serializer is just the tip of the iceberg:

- serialisation can be parametrised such that logical entities are mapped to target-specific ones (e.g. target-specific list syntax, see also §6.4)
- Such parametrisations can involve references to a target-specific standard library (e.g. using the Haskell Maybe type instead of the HOL option type); if such are used, the corresponding identifiers (in our example, Maybe, Nothing and Just) also have to be considered reserved.
- Even more, the user can enrich the library of the target-language by providing code snippets ("includes") which are prepended to any generated code (see $\S 6.6$); this typically also involves further reserved identifiers.

As figure 2 illustrates, all these adaptation mechanisms have to act consistently; it is at the discretion of the user to take care for this.

6.3 Common adaptation applications

The HOL Main theory already provides a code generator setup which should be suitable for most applications. Common extensions and modifications are available by certain theories in $\sim \sim / s r c / H O L / L i b r a r y ;$ beside being useful in applications, they may serve as a tutorial for customising the code generator setup (see below §6.4).

Code-Numeral provides additional numeric types integer and natural isomorphic to types int and nat respectively. Type integer is mapped to target-language built-in integers; natural is implemented as abstract type over integer. Useful for code setups which involve e.g. indexing of target-language arrays. Part of $H O L-$ Main.

Code-Target-Int implements type int by integer and thus by target-language built-in integers.

Code-Binary-Nat implements type nat using a binary rather than a linear representation, which yields a considerable speedup for computations. Pattern matching with $0 / S u c$ is eliminated by a preprocessor.

Code-Target-Nat implements type nat by integer and thus by target-language built-in integers. Pattern matching with $0 / S u c$ is eliminated by a preprocessor.

Code-Target-Numeral is a convenience theory containing both Code-Target-Nat and Code-Target-Int.

String provides an additional datatype String.literal which is isomorphic to strings; String.literals are mapped to target-language strings. Useful for code setups which involve e.g. printing (error) messages. Part of HOL-Main.

Code-Char represents HOL characters by character literals in target languages. Warning: This modifies adaptation in a non-conservative manner and thus should always be imported last in a theory header.

IArray provides a type 'a iarray isomorphic to lists but implemented by (effectively immutable) arrays in SML only.

6.4 Parametrising serialisation

Consider the following function and its corresponding SML code:

```
primrec in-interval :: nat }\times\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ bool where
    in-interval ( }k,l\mathrm{ ) n }\longleftrightarrowk\leqn\wedgen\leq
structure Example : sig
    type nat
    type boola
    val in_interval : nat * nat -> nat -> boola
end = struct
datatype nat = Zero_nat | Suc of nat;
datatype boola = True | False;
fun conj p True = p
    | conj p False = False
    | conj True p = p
    | conj False p = False;
fun less_eq_nat (Suc m) n = less_nat m n
    | less_eq_nat Zero_nat n = True
and less_nat m(Suc n) = less_eq_nat m n
    | less_nat n Zero_nat = False;
fun in_interval (k, l) n = conj (less_eq_nat k n) (less_eq_nat n l);
end; (*struct Example*)
```

Though this is correct code, it is a little bit unsatisfactory: boolean values and operators are materialised as distinguished entities with have nothing to do with the SML-built-in notion of "bool". This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which would perfectly terminate when the existing SML bool would be used. To map the HOL bool on SML bool, we may use custom serialisations:

```
code_printing
    type_constructor bool - (SML) "bool"
| constant True - (SML) "true"
| constant False - (SML) "false"
| constant HOL.conj - (SML) "_ andalso _"
```

The code-printing command takes a series of symbols (contants, type constructor, ...) together with target-specific custom serialisations. Each custom serialisation starts with a target language identifier followed by an expression, which during code serialisation is inserted whenever the type constructor would occur. Each "_" in a serialisation expression is treated as a placeholder for the constant's or the type constructor's arguments.

```
structure Example : sig
    type nat
    val in_interval : nat * nat -> nat -> bool
end = struct
datatype nat = Zero_nat | Suc of nat;
fun less_eq_nat (Suc m) n = less_nat m n
    | less_eq_nat Zero_nat n = true
and less_nat m (Suc n) = less_eq_nat m n
    | less_nat n Zero_nat = false;
fun in_interval (k, l) n = (less_eq_nat k n) andalso (less_eq_nat n l);
end; (*struct Example*)
```

This still is not perfect: the parentheses around the "andalso" expression are superfluous. Though the serialiser by no means attempts to imitate the rich Isabelle syntax framework, it provides some common idioms, notably associative infixes with precedences which may be used here:

```
code_printing
    constant HOL.conj }\rightharpoonup\mathrm{ (SML) infixl 1 "andalso"
structure Example : sig
    type nat
    val in_interval : nat * nat -> nat -> bool
end = struct
datatype nat = Zero_nat | Suc of nat;
fun less_eq_nat (Suc m) n = less_nat m n
```

```
    | less_eq_nat Zero_nat n = true
and less_nat m (Suc n) = less_eq_nat m n
    | less_nat n Zero_nat = false;
fun in_interval (k, l) n = less_eq_nat k n andalso less_eq_nat n l;
end; (*struct Example*)
```

The attentive reader may ask how we assert that no generated code will accidentally overwrite. For this reason the serialiser has an internal table of identifiers which have to be avoided to be used for new declarations. Initially, this table typically contains the keywords of the target language. It can be extended manually, thus avoiding accidental overwrites, using the code-reserved command:
code-reserved SML bool true false andalso
Next, we try to map HOL pairs to SML pairs, using the infix "*" type constructor and parentheses:

```
code_printing
    type_constructor prod - (SML) infix 2 "*"
    | constant Pair }->\mathrm{ (SML) "!((_),/ (_))"
```

The initial bang "!" tells the serialiser never to put parentheses around the whole expression (they are already present), while the parentheses around argument place holders tell not to put parentheses around the arguments. The slash "/" (followed by arbitrary white space) inserts a space which may be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serialisations provide; however their usage requires careful thinking in order not to introduce inconsistencies - or, in other words: custom serialisations are completely axiomatic.

A further noteworthy detail is that any special character in a custom serialisation may be quoted using "'"; thus, in "fn '_ => _" the first "_" is a proper underscore while the second "_" is a placeholder.

6.5 Haskell serialisation

For convenience, the default $H O L$ setup for Haskell maps the equal class to its counterpart in Haskell, giving custom serialisations for the class equal and its operation HOL.equal.

```
code_printing
    type_class equal - (Haskell) "Eq"
| constant HOL.equal - (Haskell) infixl 4 "=="
```

A problem now occurs whenever a type which is an instance of equal in $H O L$ is mapped on a Haskell-built-in type which is also an instance of Haskell Eq:

```
typedecl bar
instantiation bar :: equal
begin
definition HOL.equal (x::bar) }y\longleftrightarrowx=
instance by standard (simp add: equal-bar-def)
end
code_printing
    type_constructor bar - (Haskell) "Integer"
```

The code generator would produce an additional instance, which of course is rejected by the Haskell compiler. To suppress this additional instance:

```
code_printing
    class_instance bar :: "HOL.equal" }\rightharpoonup\mathrm{ (Haskell) -
```


6.6 Enhancing the target language context

In rare cases it is necessary to enrich the context of a target language; this can also be accomplished using the code-printing command:

```
code_printing
    code_module "Errno" - (Haskell)
        <errno i = error ("Error number: " ++ show i)\
code_reserved Haskell Errno
```

Such named modules are then prepended to every generated code. Inspect such code in order to find out how this behaves with respect to a particular target language.

7 Further issues

7.1 Specialities of the Scala target language

Scala deviates from languages of the ML family in a couple of aspects; those which affect code generation mainly have to do with Scala's type system:

- Scala prefers tupled syntax over curried syntax.
- Scala sacrifices Hindely-Milner type inference for a much more rich type system with subtyping etc. For this reason type arguments sometimes have to be given explicitly in square brackets (mimicking System F syntax).
- In contrast to Haskell where most specialities of the type system are implemented using type classes, Scala provides a sophisticated system of implicit arguments.

Concerning currying, the Scala serializer counts arguments in code equations to determine how many arguments shall be tupled; remaining arguments and abstractions in terms rather than function definitions are always curried.

The second aspect affects user-defined adaptations with code-printing. For regular terms, the Scala serializer prints all type arguments explicitly. For user-defined term adaptations this is only possible for adaptations which take no arguments: here the type arguments are just appended. Otherwise they are ignored; hence user-defined adaptations for polymorphic constants have to be designed very carefully to avoid ambiguity.

Isabelle's type classes are mapped onto Scala implicits; in cases with diamonds in the subclass hierarchy this can lead to ambiguities in the generated code:

```
class class \(1=\)
    fixes \(f o o::{ }^{\prime} a \Rightarrow{ }^{\prime} a\)
class class \(2=\) class 1
class class \(3=\) class 1
```

Here both class 2 and class 3 inherit from class 1 , forming the upper part of a diamond.

```
definition bar :: ' \(a\) :: \(\{\) class 2, class 3\(\} \Rightarrow{ }^{\prime} a\) where
    \(b a r=f o o\)
```

This yields the following code:

```
object Example {
trait class1[A] {
    val 'Example.foo': A => A
}
def foo[A](a: A)(implicit A: class1[A]): A = A.'Example.foo'(a)
trait class2[A] extends class1[A] {
}
trait class3[A] extends class1[A] {
}
def bar[A : class2 : class3]: A => A = ((a: A) => foo[A] (a))
} /* object Example */
```

This code is rejected by the Scala compiler: in the definition of bar, it is not clear from where to derive the implicit argument for foo.

The solution to the problem is to close the diamond by a further class with inherits from both class 2 and class 3 :

$$
\text { class class } 4=\text { class } 2+\text { class } 3
$$

Then the offending code equation can be restricted to class 4 :

```
lemma [code]:
    (bar :: 'a::class 4 }=>\mp@subsup{}{}{\prime}a)=\mathrm{ foo
    by (simp only: bar-def)
```

with the following code:

```
object Example {
trait class1[A] {
    val 'Example.foo': A => A
}
def foo[A](a: A)(implicit A: class1[A]): A = A.'Example.foo'(a)
trait class2[A] extends class1[A] {
}
trait class3[A] extends class1[A] {
}
trait class4[A] extends class2[A] with class3[A] {
}
def bar[A : class4]: A => A = ((a: A) => foo[A](a))
} /* object Example */
```

which exposes no ambiguity.
Since the preprocessor (cf. §2.2) propagates sort constraints through a system of code equations, it is usually not very difficult to identify the set of code equations which actually needs more restricted sort constraints.

7.2 Modules namespace

When invoking the export-code command it is possible to leave out the module-name part; then code is distributed over different modules, where the module name space roughly is induced by the Isabelle theory name space.

Then sometimes the awkward situation occurs that dependencies between definitions introduce cyclic dependencies between modules, which in the Haskell world leaves you to the mercy of the Haskell implementation you are using, while for $S M L / O C a m l$ code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three cyclically dependent modules are named A, B and C. Then, by stating

```
code-identifier
    code-module A \rightharpoonup (SML) ABC
code-module B \rightharpoonup (SML) ABC
code-module C \rightharpoonup (SML) ABC
```

we explicitly map all those modules on $A B C$, resulting in an ad-hoc merge of this three modules at serialisation time.

7.3 Locales and interpretation

A technical issue comes to surface when generating code from specifications stemming from locale interpretation into global theories.

Let us assume a locale specifying a power operation on arbitrary types:

```
locale power \(=\)
    fixes power :: ' \(a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b\)
    assumes power-commute: power \(x \circ\) power \(y=\) power \(y \circ\) power \(x\)
begin
```

Inside that locale we can lift power to exponent lists by means of a specification relative to that locale:

```
primrec powers :: 'a list 吘 ' b 和 b where
```

```
    powers [] = id
```

```
powers (x # xs) = power x\circ powers xs
lemma powers-append:
    powers (xs @ ys)= powers xs ○ powers ys
    by (induct xs) simp-all
lemma powers-power:
    powers xs \circ power x = power x ○ powers xs
    by (induct xs)
        (simp-all del: o-apply id-apply add: comp-assoc,
            simp del: o-apply add: o-assoc power-commute)
lemma powers-rev:
    powers (rev xs) = powers xs
        by (induct xs) (simp-all add: powers-append powers-power)
end
```

After an interpretation of this locale (say, global-interpretation fun-power: power $\left(\lambda n\left(f:: '^{\prime} a \Rightarrow^{\prime} a\right) . f^{\wedge} n\right)$), one could naively expect to have a constant fun-power.powers :: nat list $\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a$ for which code can be generated. But this not the case: internally, the term fun-power.powers is an abbreviation for the foundational term power.powers $\left(\lambda n\left(f:: ' a \Rightarrow{ }^{\prime} a\right)\right.$. $f^{\wedge} n$) (see [2] for the details behind).

Fortunately, a succint solution is available: a dedicated rewrite definition:

```
global-interpretation fun-power: power ( }\lambdan(f:: 'a = ' 'a).f ^^ n
    defines funpows = fun-power.powers
    by unfold-locales
        (simp-all add: fun-eq-iff funpow-mult mult.commute)
```

This amends the interpretation morphisms such that occurrences of the foundational term power.powers $\left(\lambda n\left(f::^{\prime} a \Rightarrow^{\prime} a\right) . f^{\wedge} n\right)$ are folded to a newly defined constant funpows.

After this setup procedure, code generation can continue as usual:

```
funpow :: forall a. Nat -> (a -> a) -> a -> a;
funpow Zero_nat f = id;
funpow (Suc n) f = f . funpow n f;
funpows :: forall a. [Nat] -> (a -> a) -> a -> a;
funpows [] = id;
funpows (x : xs) = funpow x . funpows xs;
```


7.4 Parallel computation

Theory Parallel in $\sim \sim / s r c / H O L / L i b r a r y ~ c o n t a i n s ~ o p e r a t i o n s ~ t o ~ e x p l o i t ~ p a r-~$ allelism inside the Isabelle/ML runtime engine.

7.5 Imperative data structures

If you consider imperative data structures as inevitable for a specific application, you should consider Imperative Functional Programming with Isabelle/HOL [4]; the framework described there is available in session Imperative-HOL, together with a short primer document.

7.6 ML system interfaces

Since the code generator framework not only aims to provide a nice Isar interface but also to form a base for code-generation-based applications, here a short description of the most fundamental ML interfaces.

Managing executable content

ML Reference

```
Code.read_const: theory -> string -> string
Code.add_eqn: thm -> theory -> theory
Code.del_eqn: thm -> theory -> theory
Code_Preproc.map_pre: (Proof.context -> Proof.context) -> theory -> theory
Code_Preproc.map_post: (Proof.context -> Proof.context) -> theory -> theory
Code_Preproc.add_functrans:
    string * (Proof.context -> (thm * bool) list -> (thm * bool) list option)
            -> theory -> theory
Code_Preproc.del_functrans: string -> theory -> theory
Code.add_datatype: (string * typ) list -> theory -> theory
Code.get_type: theory -> string
    -> ((string * sort) list * (string * ((string * sort) list * typ list)) list) * bool
Code.get_type_of_constr_or_abstr: theory -> string -> (string * bool) option
Code.read_const thy s reads a constant as a concrete term expression s.
Code.add_eqn thm thy adds function theorem thm to executable content.
Code.del_eqn thm thy removes function theorem thm from executable content,
        if present.
Code_Preproc.map_pre f thy changes the preprocessor simpset.
```

Code_Preproc.add_functrans (name, f) thy adds function transformer f (named name) to executable content; f is a transformer of the code equations belonging to a certain function definition, depending on the current theory context. Returning NONE indicates that no transformation took place; otherwise, the whole process will be iterated with the new code equations.

Code_Preproc.del_functrans name thy removes function transformer named name from executable content.

Code.add_datatype cs thy adds a datatype to executable content, with generation set $c s$.

Code.get_type_of_constr_or_abstr thy const returns type constructor corresponding to constructor const; returns NONE if const is no constructor.

Data depending on the theory's executable content

Implementing code generator applications on top of the framework set out so far usually not only involves using those primitive interfaces but also storing code-dependent data and various other things.

Due to incrementality of code generation, changes in the theory's executable content have to be propagated in a certain fashion. Additionally, such changes may occur not only during theory extension but also during theory merge, which is a little bit nasty from an implementation point of view. The framework provides a solution to this technical challenge by providing a functorial data slot Code_Data; on instantiation of this functor, the following types and operations are required:

```
type T
val empty:T
```

T the type of data to store.
empty initial (empty) data.
An instance of Code_Data provides the following interface:
change: theory $\rightarrow(T \rightarrow T) \rightarrow T$
change-yield: theory $\rightarrow\left(T \rightarrow{ }^{\prime} a * T\right) \rightarrow{ }^{\prime} a * T$
change update of current data (cached!) by giving a continuation.
change-yield update with side result.

References

[1] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled implementation of normalization by evaluation. In Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar, editors, TPHOLs '08: Proceedings of the 21th International Conference on Theorem Proving in Higher Order Logics, volume 5170 of Lecture Notes in Computer Science, pages 352-367. Springer-Verlag, 2008.
[2] Clemens Ballarin. Tutorial to Locales and Locale Interpretation. http://isabelle.in.tum.de/doc/locales.pdf.
[3] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive into equational specifications. In Theorem Proving in Higher Order Logics, pages 131-146, 2009.
[4] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkk, and John Matthews. Imperative functional programming with Isabelle/HOL. In Theorem Proving in Higher Order Logics: TPHOLs 2008, Lecture Notes in Computer Science. Springer-Verlag, 2008.
[5] Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. Data refinement in isabelle/hol. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive Theorem Proving (ITP 2013), volume 7998 of Lecture Notes in Computer Science, pages 100-115. Springer-Verlag, 2013.
[6] Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, Functional and Logic Programming: 10th International Symposium: FLOPS 2010, volume 6009 of Lecture Notes in Computer Science. Springer-Verlag, 2010.
[7] Xavier Leroy et al. The Objective Caml system - Documentation and user's manual. http://caml.inria.fr/pub/docs/manual-ocaml/.
[8] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.
[9] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
[10] Martin Odersky and al. An overview of the scala programming language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.
[11] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised report. Journal of Functional Programming, 13(1):0-255, Jan 2003. http://www.haskell.org/definition/.
[12] Makarius Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.tum.de/doc/isar-ref.pdf.

