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An Introduction to Description Logics
Daniele Nardi
Ronald J. Brachman

Abstract

This introduction presents the main motivations for the development of Description
Logics (DL) as a formalism for representing knowledge, as well as some important
basic notions underlying all systems that have been created in the DL tradition.
In addition, we provide the reader with an overview of the entire book and some
guidelines for reading it.

We first address the relationship between Description Logics and earlier seman-
tic network and frame systems, which represent the original heritage of the field.
We delve into some of the key problems encountered with the older efforts. Subse-
quently, we introduce the basic features of Description Logic languages and related
reasoning techniques.

Description Logic languages are then viewed as the core of knowledge represen-
tation systems, considering both the structure of a DL knowledge base and its
associated reasoning services. The development of some implemented knowledge
representation systems based on Description Logics and the first applications built
with such systems are then reviewed.

Finally, we address the relationship of Description Logics to other fields of Com-
puter Science. We also discuss some extensions of the basic representation language
machinery; these include features proposed for incorporation in the formalism that
originally arose in implemented systems, and features proposed to cope with the
needs of certain application domains.

1.1 Introduction

Research in the field of knowledge representation and reasoning is usually focused
on methods for providing high-level descriptions of the world that can be effectively
used to build intelligent applications. In this context, “intelligent” refers to the abil-
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ity of a system to find implicit consequences of its explicitly represented knowledge.
Such systems are therefore characterized as knowledge-based systems.

Approaches to knowledge representation developed in the 1970’s—when the field
enjoyed great popularity—are sometimes divided roughly into two categories: logic-
based formalisms, which evolved out of the intuition that predicate calculus could be
used unambiguously to capture facts about the world; and other, non-logic-based
representations. The latter were often developed by building on more cognitive
notions—for example, network structures and rule-based representations derived
from experiments on recall from human memory and human execution of tasks like
mathematical puzzle solving. Even though such approaches were often developed
for specific representational chores, the resulting formalisms were usually expected
to serve in general use. In other words, the non-logical systems created from very
specific lines of thinking (e.g., early Production Systems) evolved to be treated
as general purpose tools, expected to be applicable in different domains and on
different types of problems.

On the other hand, since first-order logic provides very powerful and general ma-
chinery, logic-based approaches were more general-purpose from the very start. In a
logic-based approach, the representation language is usually a variant of first-order
predicate calculus, and reasoning amounts to verifying logical consequence. In the
non-logical approaches, often based on the use of graphical interfaces, knowledge is
represented by means of some ad hoc data structures, and reasoning is accomplished
by similarly ad hoc procedures that manipulate the structures. Among these spe-
cialized representations we find semantic networks and frames. Semantic Networks
were developed after the work of Quillian [1967], with the goal of characterizing by
means of network-shaped cognitive structures the knowledge and the reasoning of
the system. Similar goals were shared by later frame systems [Minsky, 1981], which
rely upon the notion of a “frame” as a prototype and on the capability of expressing
relationships between frames. Although there are significant differences between se-
mantic networks and frames, both in their motivating cognitive intuitions and in
their features, they have a strong common basis. In fact, they can both be regarded
as network structures, where the structure of the network aims at representing sets
of individuals and their relationships. Consequently, we use the term network-based
structures to refer to the representation networks underlying semantic networks and
frames (see [Lehmann, 1992] for a collection of papers concerning various families
of network-based structures).

Owing to their more human-centered origins, the network-based systems were
often considered more appealing and more effective from a practical viewpoint than
the logical systems. Unfortunately they were not fully satisfactory because of their
usual lack of precise semantic characterization. The end result of this was that every
system behaved differently from the others, in many cases despite virtually identical-
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looking components and even identical relationship names. The question then arose
as to how to provide semantics to representation structures, in particular to semantic
networks and frames, which carried the intuition that, by exploiting the notion of
hierarchical structure, one could gain both in terms of ease of representation and in
terms of the efficiency of reasoning.

One important step in this direction was the recognition that frames (at least
their core features) could be given a semantics by relying on first-order logic [Hayes,
1979]. The basic elements of the representation are characterized as unary pred-
icates, denoting sets of individuals, and binary predicates, denoting relationships
between individuals. However, such a characterization does not capture the con-
straints of semantic networks and frames with respect to logic. Indeed, although
logic is the natural basis for specifying a meaning for these structures, it turns out
that frames and semantic networks (for the most part) did not require all the ma-
chinery of first-order logic, but could be regarded as fragments of it [Brachman and
Levesque, 1985]. In addition, different features of the representation language would
lead to different fragments of first-order logic. The most important consequence of
this fact is the recognition that the typical forms of reasoning used in structure-
based representations could be accomplished by specialized reasoning techniques,
without necessarily requiring first-order logic theorem provers. Moreover, reason-
ing in different fragments of first-order logic leads to computational problems of
differing complexity.

Subsequent to this realization, research in the area of Description Logics began
under the label terminological systems, to emphasize that the representation lan-
guage was used to establish the basic terminology adopted in the modeled domain.
Later, the emphasis was on the set of concept-forming constructs admitted in the
language, giving rise to the name concept languages. In more recent years, after at-
tention was further moved towards the properties of the underlying logical systems,
the term Description Logics became popular.

In this book we mainly use the term “Description Logics” (DL) for the represen-
tation systems, but often use the word “concept” to refer to the expressions of a
DL language, denoting sets of individuals; and the word “terminology” to denote a
(hierarchical) structure built to provide an intensional representation of the domain
of interest.

Research on Description Logics has covered theoretical underpinnings as well as
implementation of knowledge representation systems and the development of appli-
cations in several areas. This kind of development has been quite successful. The
key element has been the methodology of research, based on a very close interaction
between theory and practice. On the one hand, there are various implemented sys-
tems based on Description Logics, which offer a palette of description formalisms
with differing expressive power, and which are employed in various application do-
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mains (such as natural language processing, configuration of technical products, or
databases). On the other hand, the formal and computational properties of reason-
ing (like decidability and complexity) of various description formalisms have been
investigated in detail. The investigations are usually motivated by the use of cer-
tain constructors in implemented systems or by the need for these constructors in
specific applications—and the results have influenced the design of new systems.
This book is meant to provide a thorough introduction to Description Logics,
covering all the above-mentioned aspects of DL research—namely theory, imple-
mentation, and applications. Consequently, the book is divided into three parts:

e Part I introduces the theoretical foundations of Description Logics, addressing
some of the most recent developments in theoretical research in the area;

e Part II focuses on the implementation of knowledge representation systems based
on Description Logics, describing the basic functionality of a DL system, survey-
ing the most influential knowledge representation systems based on Description
Logics, and addressing specialized implementation techniques;

e Part III addresses the use of Description Logics and of DL-based systems in the
design of several applications of practical interest.

In the remainder of this introductory chapter, we review the main steps in the
development of Description Logics, and introduce the main issues that are dealt
with later in the book, providing pointers for its reading. In particular, in the next
section we address the origins of Description Logics and then we review knowledge
representation systems based on Description Logics, the main applications devel-
oped with Description Logics, the main extensions to the basic DL framework and
relationships with other fields of Computer Science.

1.2 From networks to Description Logics

In this section we begin by recalling approaches to representing knowledge that were
developed before research on Description Logics began (i.e., semantic networks and
frames). We then provide a very brief introduction to the basic elements of these
approaches, based on Tarski-style semantics. Finally, we discuss the importance of
computational analyses of the reasoning methods developed for Description Logics,
a major ingredient of research in this field.

1.2.1 Network-based representation structures

In order to provide some intuition about the ideas behind representations of knowl-
edge in network form, we here speak in terms of a generic network, avoiding ref-
erences to any particular system. The elements of a network are nodes and links.
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Fig. 1.1. An example network.

Typically, nodes are used to characterize concepts, i.e., sets or classes of individ-
ual objects, and links are used to characterize relationships among them. In some
cases, more complex relationships are themselves represented as nodes; these are
carefully distinguished from nodes representing concepts. In addition, concepts can
have simple properties, often called attributes, which are typically attached to the
corresponding nodes. Finally, in many of the early networks both individual objects
and concepts were represented by nodes. Here, however, we restrict our attention
to knowledge about concepts and their relationships, deferring for now treatment
of knowledge about specific individuals.

Let us consider a simple example, whose pictorial representation is given in Fig-
ure 1.1, which represents knowledge concerning persons, parents, children, etc. The
structure in the figure is also referred to as a terminology, and it is indeed meant
to represent the generality /specificity of the concepts involved. For example the
link between Mother and Parent says that “mothers are parents”; this is sometimes
called an “IS-A” relationship.

The IS-A relationship defines a hierarchy over the concepts and provides the basis
for the “inheritance of properties”: when a concept is more specific than some other
concept, it inherits the properties of the more general one. For example, if a person
has an age, then a mother has an age, too. This is the typical setting of the so-called
(monotonic) inheritance networks (see [Brachman, 1979)).

A characteristic feature of Description Logics is their ability to represent other
kinds of relationships that can hold between concepts, beyond IS-A relationships.
For example, in Figure 1.1, which follows the notation of [Brachman and Schmolze,

1985], the concept of Parent has a property that is usually called a “role,” expressed



10 D. Nardi, R. J. Brachman

by a link from the concept to a node for the role labeled hasChild. The role has
what is called a “value restriction,” denoted by the label v/r, which expresses a
limitation on the range of types of objects that can fill that role. In addition, the
node has a number restriction expressed as (1,NIL), where the first number is a
lower bound on the number of children and the second element is the upper bound,
and NIL denotes infinity. Overall, the representation of the concept of Parent here
can be read as “A parent is a person having at least one child, and all of his/her
children are persons.”

Relationships of this kind are inherited from concepts to their subconcepts. For
example, the concept Mother, i.e., a female parent, is a more specific descendant of
both the concepts Female and Parent, and as a result inherits from Parent the link
to Person through the role hasChild; in other words, Mother inherits the restriction
on its hasChild role from Parent.

Observe that there may be implicit relationships between concepts. For example,
if we define Woman as the concept of a female person, it is the case that every Mother
is a Woman. It is the task of the knowledge representation system to find implicit
relationships such as these (many are more complex than this one). Typically, such
inferences have been characterized in terms of properties of the network. In this
case one might observe that both Mother and Woman are connected to both Female
and Person, but the path from Mother to Person includes a node Parent, which is
more specific then Person, thus enabling us to conclude that Mother is more specific
than Person.

However, the more complex the relationships established among concepts, the
more difficult it becomes to give a precise characterization of what kind of relation-
ships can be computed, and how this can be done without failing to recognize some
of the relationships or without providing wrong answers.

1.2.2 A logical account of network-based representation structures

Building on the above ideas, a number of systems were implemented and used in
many kinds of applications. As a result, the need emerged for a precise character-
ization of the meaning of the structures used in the representations and of the set
of inferences that could be drawn from those structures.

A precise characterization of the meaning of a network can be given by defining
a language for the elements of the structure and by providing an interpretation for
the strings of that language. While the syntax may have different flavors in different
settings, the semantics is typically given as a Tarski-style semantics.

For the syntax we introduce a kind of abstract language, which resembles other
logical formalisms. The basic step of the construction is provided by two disjoint
alphabets of symbols that are used to denote atomic concepts, designated by unary
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predicate symbols, and atomic roles, designated by binary predicate symbols; the
latter are used to express relationships between concepts.

Terms are then built from the basic symbols using several kinds of constructors.
For example, intersection of concepts, which is denoted C'T1D, is used to restrict the
set of individuals under consideration to those that belong to both C and D. Notice
that, in the syntax of Description Logics, concept expressions are variable-free. In
fact, a concept expression denotes the set of all individuals satisfying the properties
specified in the expression. Therefore, C' M D can be regarded as the first-order
logic sentence, C(z) A D(z), where the variable ranges over all individuals in the
interpretation domain and C(x) is true for those individuals that belong to the
concept C.

In this book, we will present other syntactic notations that are more closely
related to the concrete syntax adopted by implemented DL systems, and which
are more suitable for the development of applications. One example of concrete
syntax proposed in [Patel-Schneider and Swartout, 1993] is based on a Lisp-like
notation, where the concept of female persons, for example, is denoted by (and
Person Female).

The key characteristic features of Description Logics reside in the constructs for
establishing relationships between concepts. The basic ones are value restrictions.
For example, a value restriction, written VR.C, requires that all the individuals that
are in the relationship R with the concept being described belong to the concept C
(technically, it is all individuals that are in the relationship R with an individual
described by the concept in question that are themselves describable as C's).

As for the semantics, concepts are given a set-theoretic interpretation: a concept
is interpreted as a set of individuals and roles are interpreted as sets of pairs of
individuals. The domain of interpretation can be chosen arbitrarily, and it can
be infinite. The non-finiteness of the domain and the open-world assumption are
distinguishing features of Description Logics with respect to the modeling languages
developed in the study of databases (see Chapters 4, and 16).

Atomic concepts are thus interpreted as subsets of the intepretation domain,
while the semantics of the other constructs is then specified by defining the set of
individuals denoted by each construct. For example, the concept C' M D is the set
of individuals obtained by intersecting the sets of individuals denoted by C' and D,
respectively. Similarly, the interpretation of VR.C' is the set of individuals that are
in the relationship R with individuals belonging to the set denoted by the concept C.

As an example, let us suppose that Female, Person, and Woman are atomic con-
cepts and that hasChild and hasFemaleRelative are atomic roles. Using the operators
intersection, union and complement of concepts, interpreted as set operations, we
can describe the concept of “persons that are not female” and the concept of “in-
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dividuals that are female or male” by the expressions
Person I —Female and Female LI Male.

It is worth mentioning that intersection, union, and complement of concepts have
been also referred to as concept conjunction, concept disjunction and concept nega-
tion, respectively, to emphasize the relationship to logic.

Let us now turn our attention to role restrictions by looking first at quantified
role restrictions and, subsequently, at what we call “number restrictions.” Most
languages provide (full) existential quantification and value restriction that allow
one to describe, for example, the concept of “individuals having a female child” as
JhasChild.Female, and to describe the concept of “individuals all of whose children
are female” by the concept expression YhasChild.Female. In order to distinguish the
function of each concept in the relationship, the individual object that corresponds
to the second argument of the role viewed as a binary predicate is called a role
filler. In the above expressions, which describe the properties of parents having
female children, individual objects belonging to the concept Female are the fillers of
the role hasChild.

Existential quantification and value restrictions are thus meant to characterize
relationships between concepts. In fact, the role link between Parent and Person in
Figure 1.1 can be expressed by the concept expression

JhasChild.Person M YhasChild.Person.

Such an expression therefore characterizes the concept of Parent as the set of indi-
viduals having at least one filler of the role hasChild belonging to the concept Person;
moreover, every filler of the role hasChild must be a person.

Finally, notice that in quantified role restrictions the variable being quantified
is not explicitly mentioned. The corresponding sentence in first-order logic is
Vy.R(z,y) D C(y), where z is again a free variable ranging over the interpreta-
tion domain.

Another important kind of role restriction is given by number restrictions, which
restrict the cardinality of the sets of fillers of roles. For instance, the concept

(> 3 hasChild) M (< 2 hasFemaleRelative)

represents the concept of “individuals having at least three children and at most
two female relatives.” Number restrictions are sometimes viewed as a distinguishing
feature of Description Logics, although one can find some similar constructs in some
database modeling languages (notably Entity-Relationship models).

Beyond the constructs to form concept expressions, Description Logics provide
constructs for roles, which can, for example, establish role hierarchies. However,
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the use of role expressions is generally limited to expressing relationships between
concepts.

Intersection of roles is an example of a role-forming construct. Intuitively,
hasChild ' hasFemaleRelative yields the role “has-daughter,” so that the concept
expression

Woman M < 2 (hasChild M hasFemaleRelative)

denotes the concept of “a woman having at most 2 daughters”.
A more comprehensive view of the basic definitions of DL languages will be given
in Chapter 2.

1.2.3 Reasoning

The basic inference on concept expressions in Description Logics is subsumption,
typically written as C' C D. Determining subsumption is the problem of checking
whether the concept denoted by D (the subsumer) is considered more general than
the one denoted by C (the subsumee). In other words, subsumption checks whether
the first concept always denotes a subset of the set denoted by the second one.

For example, one might be interested in knowing whether Woman C Mother. In
order to verify this kind of relationship one has in general to take into account
the relationships defined in the terminology. As we explain in the next section,
under appropriate restrictions, one can embody such knowledge directly in concept
expressions, thus making subsumption over concept expressions the basic reason-
ing task. Another typical inference on concept expressions is concept satisfiability,
which is the problem of checking whether a concept expression does not necessarily
denote the empty concept. In fact, concept satisfiability is a special case of sub-
sumption, with the subsumer being the empty concept, meaning that a concept is
not satisfiable.

Although the meaning of concepts had already been specified with a logical se-
mantics, the design of inference procedures in Description Logics was influenced for
a long time by the tradition of semantic networks, where concepts were viewed as
nodes and roles as links in a network. Subsumption between concept expressions
was recognized as the key inference and the basic idea of the earliest subsumption al-
gorithms was to transform two input concepts into labeled graphs and test whether
one could be embedded into the other; the embedded graph would correspond to
the more general concept (the subsumer) [Lipkis, 1982]. This method is called
structural comparison, and the relation between concepts being computed is called
structural subsumption. However, a careful analysis of the algorithms for structural
subsumption shows that they are sound, but not always complete in terms of the
logical semantics: whenever they return “yes” the answer is correct, but when they
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report “no” the answer may be incorrect. In other words, structural subsumption
is in general weaker than logical subsumption.

The need for complete subsumption algorithms is motivated by the fact that in
the usage of knowledge representation systems it is often necessary to have a guar-
antee that the system has not failed in verifying subsumption. Consequently, new
algorithms for computing subsumption have been devised that are no longer based
on a network representation, and these can be proven to be complete. Such algo-
rithms have been developed by specializing classical settings for deductive reasoning
to the DL subsets of first-order logics, as done for tableau calculi by Schmidt-Schaufl
and Smolka [1991], and also by more specialized methods.

In the paper “The Tractability of Subsumption in Frame-Based Description Lan-
guages,” Brachman and Levesque [1984] argued that there is a tradeoff between
the expressiveness of a representation language and the difficulty of reasoning over
the representations built using that language. In other words, the more expressive
the language, the harder the reasoning. They also provided a first example of this
tradeoff by analyzing the language FL£~ (Frame Language), which included inter-
section of concepts, value restrictions and a simple form of existential quantification.
They showed that for such a language the subsumption problem could be solved
in polynomial time, while adding a construct called role restriction to the language
makes subsumption a coNP-hard problem (the extended language was called FL).

The paper by Brachman and Levesque introduced at least two new ideas:

(i) “efficiency of reasoning” over knowledge structures can be studied using the
tools of computational complexity theory;

(ii) different combinations of constructs can give rise to languages with different
computational properties.

An immediate consequence of the above observations is that one can study for-
mally and methodically the tradeoff between the computational complexity of rea-
soning and the expressiveness of the language, which itself is defined in terms
of the constructs that are admitted in the language. After the initial pa-
per, a number of results on this tradeoff for concept languages were obtained
(see Chapters 2 and 3), and these results allow us to draw a fairly complete
picture of the complexity of reasoning for a wide class of concept languages.
Moreover, the problem of finding the optimal tradeoff, namely the most ex-
pressive extensions of FL~ with respect to a given set of constructs that still
keep subsumption polynomial, has been studied extensively [Donini et al., 1991b;
1999].

One of the assumptions underlying this line of research is to use worst-case com-
plexity as a measure of the efficiency of reasoning in Description Logics (and more
generally in knowledge representation formalisms). Such an assumption has some-
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times been criticized (see for example [Doyle and Patil, 1991]) as not adequately
characterizing system performance or accounting for more average-case behavior.
While this observation suggests that computational complexity alone may not be
sufficient for addressing performance issues, research on the computational com-
plexity of reasoning in Description Logics has most definitely led to a much deeper
understanding of the problems arising in implementing reasoning tools. Let us
briefly address some of the contributions of this body of work.

First of all, the study of the computational complexity of reasoning in Description
Logics has led to a clear understanding of the properties of the language constructs
and their interaction. This is not only valuable from a theoretical viewpoint, but
gives insight to the designer of deduction procedures, with clear indications of the
language constructs and their combinations that are difficult to deal with, as well
as general methods to cope with them.

Secondly, the complexity results have been obtained by exploiting a general tech-
nique for satisfiability-checking in concept languages, which relies on a form of
tableau calculus [Schmidt-Schaufl and Smolka, 1991]. Such a technique has proved
extremely useful for studying both the correctness and the complexity of the algo-
rithms. More specifically, it provides an algorithmic framework that is parametric
with respect to the language constructs. The algorithms for concept satisfiability
and subsumption obtained in this way have also led directly to practical implemen-
tations by application of clever control strategies and optimization techniques. The
most recent knowledge representation systems based on Description Logics adopt
tableau calculi [Horrocks, 1998b].

Thirdly, the analysis of pathological cases in this formal framework has led to the
discovery of incompleteness in the algorithms developed for implemented systems.
This has also consequently proven useful in the definition of suitable test sets for
verifying implementations. For example, the comparison of implemented systems
(see for example [Baader et al., 1992b; Heinsohn et al., 1992]) has greatly benefitted
from the results of the complexity analysis.

The basic reasoning techniques for Description Logics are presented in Chapter 2,
while a detailed analysis of the complexity of reasoning problems in several languages
is developed in Chapter 3.

After the tradeoff between expressiveness and tractability of reasoning was thor-
oughly analyzed and the range of applicability of the corresponding inference tech-
niques had been experimented with, there was a shift of focus in the theoretical
research on reasoning in Description Logics. Interest grew in relating Description
Logics to the modeling languages used in database management. In addition, the
discovery of strict relationships with expressive modal logics stimulated the study
of so-called wvery expressive Description Logics. These languages, besides admit-
ting very general mechanisms for defining concepts (for example cyclic definitions,
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addressed in the next section), provide a richer set of concept-forming constructs
and constructs for forming complex role expressions. For these languages, the ex-
pressiveness is great enough that the new challenge became enriching the language
while retaining the decidability of reasoning. It is worth pointing out that this new
direction of theoretical research was accompanied by a corresponding shift in the
implementation of knowledge representation systems based on very expressive DL
languages. The study of reasoning methods for very expressive Description Logics
is addressed in Chapter 5.

1.3 Knowledge representation in Description Logics

In the previous section a basic representation language for Description Logics was
introduced along with some key associated reasoning techniques. Our goal now is
to illustrate how Description Logics can be useful in the design of knowledge-based
applications, that is to say, how a DL language is used in a knowledge representation
system that provides a language for defining a knowledge base and tools to carry
out inferences over it. The realization of knowledge systems involves two primary
aspects. The first consists in providing a precise characterization of a knowledge
base; this involves precisely characterizing the type of knowledge to be specified
to the system as well as clearly defining the reasoning services the system needs
to provide—the kind of questions that the system should be able to answer. The
second aspect consists in providing a rich development environment where the user
can benefit from different services that can make his/her interaction with the system
more effective. In this section we address the logical structure of the knowledge
base, while the design of systems and tools for the development of applications is
addressed in the next section.

One of the products of some important historical efforts to provide precise char-
acterizations of the behavior of semantic networks and frames was a functional
approach to knowledge representation [Levesque, 1984]. The idea was to give a
precise specification of the functionality to be provided by a knowledge base and,
specifically, of the inferences performed by the knowledge base—independent of any
implementation. In practice, the functional description of a reasoning system is
productively specified through a so-called “Tell&Ask” interface. Such an interface
specifies operations that enable knowledge base construction (Tell operations) and
operations that allow one to get information out of the knowledge base (Ask op-
erations). In the following we shall adopt this view for characterizing both the
definition of a DL knowledge base and the deductive services it provides.

Within a knowledge base one can see a clear distinction between intensional
knowledge, or general knowledge about the problem domain, and extensional knowl-
edge, which is specific to a particular problem. A DL knowledge base is analogously
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typically comprised by two components—a “TBoz” and an “ABoxz.” The TBox con-
tains intensional knowledge in the form of a terminology (hence the term “TBox,”
but “taxonomy” could be used as well) and is built through declarations that de-
scribe general properties of concepts. Because of the nature of the subsumption re-
lationships among the concepts that constitute the terminology, TBoxes are usually
thought of as having a lattice-like structure; this mathematical structure is entailed
by the subsumption relationship—it has nothing to do with any implementation.
The ABox contains extensional knowledge—also called assertional knowledge (hence
the term “ABox”)—knowledge that is specific to the individuals of the domain of
discourse. Intensional knowledge is usually thought not to change—to be “time-
less,” in a way—and extensional knowledge is usually thought to be contingent, or
dependent on a single set of circumstances, and therefore subject to occasional or
even constant change.

In the rest of the section we present a basic Tell&Ask interface by analyzing the
TBox and the ABox of a DL knowledge base.

1.3.1 The TBox

One key element of a DL knowledge base is given by the operations used to build
the terminology. Such operations are directly related to the forms and the meaning
of the declarations allowed in the TBox.

The basic form of declaration in a TBox is a concept definition, that is, the
definition of a new concept in terms of other previously defined concepts. For
example, a woman can be defined as a female person by writing this declaration:

Woman = Person " Female

Such a declaration is usually interpreted as a logical equivalence, which amounts to
providing both sufficient and necessary conditions for classifying an individual as a
woman. This form of definition is much stronger than the ones used in other kinds of
representations of knowledge, which typically impose only necessary conditions; the
strength of this kind of declaration is usually considered a characteristic feature of
DL knowledge bases. In DL knowledge bases, therefore, a terminology is constituted
by a set of concept definitions of the above form.

However, there are some important common assumptions usually made about DL
terminologies:

e only one definition for a concept name is allowed;
o definitions are acyclic in the sense that concepts are neither defined in terms of
themselves nor in terms of other concepts that indirectly refer to them.

This kind of restriction is common to many DL knowledge bases and implies that
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every defined concept can be expanded in a unique way into a complex expression
containing only atomic concepts by replacing every defined concept with the right-
hand side of its definition.

Nebel [1990b] showed that even simple expansion of definitions like this gives rise
to an unavoidable source of complexity; in practice, however, definitions that inor-
dinately increase the complexity of reasoning do not seem to occur. Under these
assumptions the computational complexity of inferences can be studied by abstract-
ing from the terminology and by considering all given concepts as fully expanded
expressions. Therefore, much of the study of reasoning methods in Description Log-
ics has been focused on concept expressions and, more specifically, as discussed in
the previous section, on subsumption, which can be considered the basic reasoning
service for the TBox.

In particular, the basic task in constructing a terminology is classification, which
amounts to placing a new concept expression in the proper place in a taxonomic
hierarchy of concepts. Classification can be accomplished by verifying the subsump-
tion relation between each defined concept in the hierarchy and the new concept
expression. The placement of the concept will be in between the most specific con-
cepts that subsume the new concept and the most general concepts that the new
concept subsumes.

More general settings for concept definitions have recently received some atten-
tion, deriving from attempts to establish formal relationships between Description
Logics and other formalisms and from attempts to satisfy a need for increased ex-
pressive power. In particular, the admission of cyclic definitions has led to different
semantic interpretations of the declarations, known as greatest/least fixed-point,
and descriptive semantics. Although it has been argued that different semantics
may be adopted depending on the target application, the more commonly adopted
one is descriptive semantics, which simply requires that all the declarations be sat-
isfied in the interpretation. Moreover, by dropping the requirement that on the
left-hand side of a definition there can only be an atomic concept name, one can
consider so-called (general) inclusion axioms of the form

CCD

where C' and D are arbitrary concept expressions. Notice that a concept defini-
tion can be expressed by two general inclusions. As a result of several theoretical
studies concerning both the decidability of and implementation techniques for cyclic
TBoxes, the most recent DL systems admit rather powerful constructs for defining
concepts.

The basic deduction service for such TBoxes can be viewed as logical implication
and it amounts to verifying whether a generic relationship (for example a subsump-
tion relationship between two concept expressions) is a logical consequence of the
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declarations in the TBox. The issues arising in the semantic characterization of
cyclic TBoxes are dealt with in Chapter 2, while techniques for reasoning in cyclic
TBoxes are addressed also in Chapter 2 and in Chapter 5, where very expressive
Description Logics are presented.

1.3.2 The ABox

The ABox contains extensional knowledge about the domain of interest, that is,
assertions about individuals, usually called membership assertions. For example,

Female 1 Person(ANNA)

states that the individual ANNA is a female person. Given the above definition of
woman, one can derive from this assertion that ANNA is an instance of the concept
Woman. Similarly,

hasChild(ANNA, JACOPO)

specifies that ANNA has JACOPO as a child. Assertions of the first kind are also
called concept assertions, while assertions of the second kind are also called role
assertions.

As illustrated by these examples, in the ABox one can typically specify knowledge
in the form of concept assertions and role assertions. In concept assertions general
concept expressions are typically allowed, while role assertions, where the role is
not a primitive role but a role expression, are typically not allowed, being treated
in the case of very expressive languages only.

The basic reasoning task in an ABox is instance checking, which verifies whether
a given individual is an instance of (belongs to) a specified concept. Although
other reasoning services are usually considered and employed, they can be defined
in terms of instance checking. Among them we find knowledge base consistency,
which amounts to verifying whether every concept in the knowledge base admits at
least one individual; realization, which finds the most specific concept an individual
object is an instance of; and retrieval, which finds the individuals in the knowledge
base that are instances of a given concept. These can all be accomplished by means
of instance checking.

The presence of individuals in a knowledge base makes reasoning more complex
from a computational viewpoint [Donini et al., 1994b], and may require significant
extensions of some TBox reasoning techniques. Reasoning in the ABox is addressed
in Chapter 3.

It is worth emphasizing that, although we have separated out for convenience the
services for the ABox, when the TBox cannot be dealt with by means of the simple
substitution mechanism used for acyclic TBoxes, the reasoning services may have to
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take into account all of the knowledge base including both the TBox and the ABox,
and the corresponding reasoning problems become more complex. A full setting
including general TBox and ABox is addressed in Chapter 5, where very expressive
Description Logics are discussed.

More general languages for defining ABoxes have also been considered. Knowl-
edge representation systems providing a powerful logical language for the ABox and
a DL language for the TBox are often considered hybrid reasoning systems, since
completely different knowledge representation languages may be used to specify the
knowledge in the different components. Hybrid reasoning systems were popular in
the 1980’s (see for example [Brachman et al., 1985]); lately, the topic has regained
attention [Levy and Rousset, 1997; Donini et al., 1998b], focusing on knowledge
bases with a DL, component for concept definitions and a logic-programming com-
ponent for assertions about individuals. Sound and complete inference methods
for hybrid knowledge bases become difficult to devise whenever there is a strict
interaction between the knowledge components.

1.4 From theory to practice: Description Logics systems

A direct practical result of research on knowledge representation has been the de-
velopment of tools for the construction of knowledge-based applications. As already
noted, research on Description Logics has been characterized by a tight connection
between theoretical results and implementation of systems. This has been achieved
by maintaining a very close relationship between theoreticians, system implemen-
tors and users of knowledge representation systems based on Description Logics
(DL-KRS). The results of work on reasoning algorithms and their complexity has
influenced the design of systems, and research on reasoning algorithms has itself
been focused by a careful analysis of the capabilities and the limitations of imple-
mented systems. In this section we first sketch the functionality of some knowledge
representation systems and, subsequently, discuss the evolution of DL-KRS. The
reader can find a deeper treatment of the first topic in Chapter 7, while a survey of
knowledge representation systems based on Description Logics is provided in Chap-
ter 8. Chapter 9 is devoted to more specialized implementation and optimization
techniques.

1.4.1 The design of knowledge representation systems based on Descrip-
tion Logics

In order to appreciate the difficulties of implementing and maintaining a knowledge

representation system, it is necessary to consider that in the usage of a knowledge

representation system, the reasoning service is really only one aspect of a complex
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system, one which may even be hidden from the final user. The user, before getting
to “push the reasoning button,” has to model the domain of interest, and input
knowledge into the system. Further, in many cases, a simple yes/no answer is of
little use, so a simplistic implementation of the Tell&Ask paradigm may be inad-
equate. As a consequence, the path one follows to get from the identification of
a suitable knowledge representation system to the design of applications based on
it is a complex and demanding one (see for example [Brachman, 1992]). In the
case of Description Logics, this is especially true if the goal is to devise a system
to be used by users who are not DL experts and who need to obtain a working
system as quickly as possible. In the 1980’s, when frame-based systems (such as,
for example, KEE [Fikes and Kehler, 1985]; see [Karp, 1992] for an overview) had
reached the strength of commercial products, the burden on a user of moving to the
more modern DL-KRS had to be kept small. Consequently, a stream of research
addressed important aspects of the pragmatic usability of DL systems. This issue
was especially relevant for those systems aiming at limiting the expressiveness of
the language, but providing the user with sound, complete and efficient reasoning
services. The issue of embedding a DL language within an environment suitable for
application development is further addressed in Chapter 7.

In recent years, we might add, useful DL systems have often come as internal
components of larger environments whose interfaces could completely hide the DL
language and its core reasoning services. Systems like IMACS [Brachman et al.,
1993] and PROSE [Wright et al., 1993] were quite successful in classifying data and
configuring products, respectively, without the need for any user to understand the
details of the DL representation language (CLASSIC) they were built upon.

Nowadays, applications for gathering information from the World-Wide Web,
where the interface can be specifically designed to support the retrieval of such
information, also hide the knowledge representation and reasoning component. In
addition, some data modeling tools, where the system provides a more conventional
interface, can provide additional facilities based on the capability of reasoning about
models with a DL inference engine. The possible settings for taking advantage
of Description Logics as components of larger systems are discussed in Part III;
more specifically, Chapter 14 presents Web applications and Chapter 15 Natural
Language applications, while the reasoning capabilities of Description Logics in
Database applications are addressed in Chapter 16.

1.4.2 Knowledge representation systems based on Description Logics

The history of knowledge representation is covered in the literature in numerous
ways (see for example [Woods and Schmolze, 1992; Rich, 1991; Baader et al.,
1992b]). Here we identify three generations of systems, highlighting their historical
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evolution rather than their specific functionality. We shall characterize them as Pre-
DL systems, DL systems and Current Generation DL systems. Detailed references
to implemented systems are given in Chapter 8.

1.4.2.1 Pre-Description Logics systems

The ancestor of DL systems is KL-ONE [Brachman and Schmolze, 1985], which
signaled the transition from semantic networks to more well-founded terminological
(description) logics. The influence of KL-ONE was profound and it is considered
the root of the entire family of languages [Woods and Schmolze, 1990].

Semantic networks were introduced around 1966 as a representation for the con-
cepts underlying English words, and became a popular type of framework for rep-
resenting a wide variety of concepts in Al applications. Important and common-
sensical ideas evolved in this work, from named nodes and links for representing
concepts and relationships, to hierarchical networks with inheritance of properties,
to the notion of “instantiation” of a concept by an individual object. But semantic
network systems were fraught with problems, including vagueness and inconsistency
in the meaning of various constructs, and the lack of a level of structure on which to
base application-independent inference procedures. In his Ph.D. thesis [Brachman,
1977a] and subsequent work (e.g., see [Brachman, 1979]), Brachman addressed rep-
resentation at what he called an “epistemological,” or knowledge-structuring level.
This led to a set of primitives for structuring knowledge that was less application-
and world-knowledge-dependent than “semantic” representations (like those for pro-
cessing natural language case structures), yet richer than the impoverished set of
primitives available in strictly logical languages. The main result of this work was a
new knowledge representation framework whose primitive elements allowed cleaner,
more application-independent representations than prior network formalisms. In
the late 1970’s, Brachman and his colleagues explored the utility and implications
of this kind of framework in the Ki.-ONE system.

KrL-ONE introduced most of the key notions explored in the extensive work on
Description Logics that followed. These included, for example, the notions of con-
cepts and roles and how they were to be interrelated; the important ideas of “value
restriction” and “number restriction,” which modified the use of roles in the defi-
nitions of concepts; and the crucial inferences of subsumption and classification. It
also sowed the seeds for the later distinction between the TBox and ABox and a
host of other significant notions that greatly influenced subsequent work. KL-ONE
also was the initial example of the substantial interplay between theory and practice
that characterizes the history of Description Logics. It was influenced by work in
logic and philosophy (and in turn itself influenced work in philosophy and psychol-
ogy), and significant care was taken in its design to allow it to be consistent and
semantically sound. But it was also used in multiple applications, covering intel-
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ligent information presentation and natural language understanding, among other
things.

Most of the focus of the original work on KL-ONE was on the representation
of and reasoning with concepts, with only a small amount of attention paid to
reasoning with individual objects. The first descendants of KL-ONE were focused on
architectures providing a clear distinction between a powerful logic-based (or rule-
based) component and a specialized terminological component. These systems came
to be referred to as hybrid systems. A major research issue was the integration of
the two components to provide unified reasoning services over the whole knowledge
base.

1.4.2.2 Description Logics systems

The earliest “pre-DL” systems derived directly from KL-ONE, which, while itself
a direct result of formal analysis of the shortcomings of semantic networks, was
mainly about the implementation of a viable classification algorithm and the data
structures to adequately represent concepts. Description Logic systems, per se,
which followed as the next generation, were more derived from a wave of theoretical
research on terminological logics that resulted from examination of KiL-ONE and
some other early systems. This work was initiated in roughly 1984, inspired by a
paper by Brachman and Levesque [Brachman and Levesque, 1984] on the formal
complexity of reasoning in Description Logics. Subsequent results on the trade-
off between the expressiveness of a DL language and the complexity of reasoning
with it, and more generally, the identification of the sources of complexity in DL
systems, showed that a careful selection of language constructs was needed and
that the reasoning services provided by the system are deeply influenced by the
set of constructs provided to the user. We can thus characterize three different
approaches to the implementation of reasoning services. The first can be referred
to as limited+complete, and includes systems that are designed by restricting the
set of constructs in such a way that subsumption would be computed efficiently,
possibly in polynomial time. The CLASSIC system [Brachman et al., 1991] is the
most significant example of this kind. The second approach can be denoted as
expressive+incomplete, since the idea is to provide both an expressive language
and efficient reasoning. The drawback is, however, that reasoning algorithms turn
out to be incomplete in these systems. Notable examples of this kind of system
are LooMm [MacGregor and Bates, 1987], and BACK [Nebel and von Luck, 1988].
After some of the sources of incompleteness were discovered, often by identifying
the constructs—or, more precisely, combinations of constructs—that would require
an exponential algorithm to preserve the completeness of reasoning, systems with
complete reasoning algorithms were designed. Systems of this sort (see for ex-
ample KRiS [Baader and Hollunder, 1991a]) are therefore characterized as expres-
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sive+complete; they were not as efficient as those following the other approaches,
but they provided a testbed for the implementation of reasoning techniques devel-
oped in the theoretical investigations, and they played an important role in stim-
ulating comparison and benchmarking with other systems [Heinsohn et al., 1992;
Baader et al., 1992b].

1.4.2.8 Current generation Description Logics systems

In the current generation of DL-KRS, the need for complete algorithms for ex-
pressive languages has been the focus of attention. The expressiveness of the DL
language required for reasoning on data models and semi-structured data has con-
tributed to the identification of the most important extensions for practical appli-
cations.

The design of complete algorithms for expressive Description Logics has led to
significant extensions of tableau-based techniques and to the introduction of several
optimization techniques, partly borrowed from theorem proving and partly specif-
ically developed for Description Logics. The first example of a system developed
along these lines is FacT [Horrocks, 1998b).

This research has also been influenced by newly discovered relationships between
Description Logics and other logics, leading to exchanging benchmarks and experi-
mental comparisons with other deduction systems.

The techniques that have been used in the implementation of very expressive
Description Logics are addressed in detail in Chapter 9.

1.5 Applications developed with Description Logics systems

The third component in the picture of the development of Description Logics is
the implementation of applications in different domains. Some of the applications
created over the years may have only reached the level of prototype, but many
of them have the completeness of industrial systems and have been deployed in
production use.

A critical element in the development of applications based on Description Logics
is the usability of the knowledge representation system. We have already empha-
sized that building a tool to be used in the design and implementation of knowledge-
based applications requires significant work to make it suitable for interactive de-
velopment, explanation and debugging, interface implementation, and so on. In
addition, here we focus on the effectiveness of Description Logics as a modeling lan-
guage. A modeling language should have intuitive semantics and the syntax must
help convey the intended meaning. To this end, a somewhat different syntax than
we have seen so far, closer to that of natural language, has often been adopted, and
graphical interfaces that provide an operational view of the process of knowledge
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base construction have been developed. The issues arising in modeling application
domains using Description Logics are dealt with in Chapter 10, and will be briefly
addressed in the next subsection.

It is natural to expect that some classes of applications share similarities both
in methodological patterns and in the design of specific structures or reasoning
capabilities. Consequently, we identify several application domains in Section 1.5.2;
these include Software Engineering, Configuration, Medicine, and Digital Libraries
and Web-based Information Systems.

In Section 1.5.3 we consider several application areas where Description Logics
play a major role; these include Natural Language Processing as well as Database
Management, where Description Logics can be used in several ways.

When addressing the design of applications it is also worth pointing out that there
has been significant evolution in the way Description Logics have been used within
complex applications. In particular, the DL-centered view that underlies the earliest
generation of systems, wherein an application was developed in a single environment
(the one provided by the DL system), was characterized by very loose interaction, if
any, between the DL system and other applications. Later, an approach that viewed
the DL more as a component became evident; in this view the DL system acts as
a component of a larger environment, typically leaving out functions, such those
for data management, that are more effectively implemented by other technologies.
The architecture where the component view is taken requires the definition of a clear
interface between the components, possibly adopting different modeling languages,
but focusing on Description Logics for the implementation of the reasoning services
that can add powerful capabilities to the application. Obviously, the choice between
the above architectural views depends upon the needs of the application at hand.

Finally, we have already stressed that research in Description Logics has benefited
from tight interaction between language designers and developers of DL-KRS. Thus,
another major impact on the development of DL research was provided by the
implementation of applications using DL-KRS. Indeed, work on DL applications
not only demonstrated the effectiveness of Description Logics and of DL-KRS, but
also provided mutual feedback within the DL community concerning the weaknesses
of both the representation language and the features of an implemented DL-KRS.

1.5.1 Modeling with Description Logics

In order for designers to be able to use Description Logics to model their application
domains, it is important for the DL constructs to be easily understandable; this
helps facilitate the construction of convenient to use yet effective tools. To this
end, the abstract notation that we have previously introduced and that is nowadays
commonly used in the DL community is not fully satisfactory.
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As already mentioned, there are at least two major alternatives for increasing the
usability of Description Logics as a modeling language:

(i) providing a syntax that resembles more closely natural language;
(ii) implementing interfaces where the user can specify the representation struc-
tures through graphical operations.

Before addressing the above two possibilities, one brief remark is in order. While
alternative ways of specifying knowledge, such as natural language-style syntax,
can be more appealing to the user, one should remember that Description Logics in
part arose from a need to respond to the inadequacy—the lack of a formal semantic
basis—of early semantic networks and frame systems. Those early systems often
relied on an assumption of intuitive readings of natural-language-like constructs or
graphical structures, which in the end made them unsatisfactory. Therefore, we
need to keep in mind always the correspondence of the language used by the user
and the abstract DL syntax, and consequently correspondences with the formal
semantics should always be clear and available.

The option of a more readable syntax has been pursued in the majority of DL-
KRS. In particular, we refer to the concrete syntax proposed in [Patel-Schneider
and Swartout, 1993], which is based on a Lisp-like notation, where, for example,
the concept of a female person is denoted by (and Person Female). Similarly, the
concept VhasChild.Female would be written (all hasChild Female). In addition,
there are shorthand expressions, such as (the hasChild Female), which indicates
the existence of a unique female child, and can be phrased using qualified existential
restriction and number restriction. In Chapter 10 this kind of syntax is discussed
in detail and the possible sources for ambiguities in the natural language reading of
the constructs are discussed.

The second option for providing the user with a concrete syntax is to rely on
a graphical interface. Starting with the KL-ONE system, this possibility has been
pursued by introducing a graphical notation for the representation of concepts and
roles, as well as their relationships. More recently, Web-based interfaces for Descrip-
tion Logics have been proposed [Welty, 1996a]; in addition, an XML standard has
been proposed [Bechhofer et al., 1999; Euzenat, 2001}, which is suitable not only
for data interchange, but also for providing full-fledged Web interfaces to DL-KRS
or applications embodying them as components.

The modeling language is the vehicle for the expression of the modeling notions
that are provided to the designers. Modeling in Description Logics requires the
designer to specify the concepts of the domain of discourse and characterize their
relationships to other concepts and to specific individuals. Concepts can be regarded
as classes of individuals and Description Logics as an object-centered modeling
language, since they allow one to introduce individuals (objects) and explicitly define
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their properties, as well as to express relationships among them. Concept definition,
which provides both for necessary and sufficient conditions, is a characteristic feature
of Description Logics. The basic relationship between concepts is subsumption,
which allows one to capture various kinds of sub-classing mechanisms; however
other kinds of relationships can be modeled, such as grouping, materialization, and
part-whole aggregation.

The model of a domain in Description Logics is embedded in a knowledge base.
We have already addressed the TBox/ABox characterization of the knowledge base.
We recall that the roles of TBox and ABox were motivated by the need to distin-
guish general knowledge about the domain of interest from specific knowledge about
individuals characterizing a specific world/situation under consideration. Besides
the TBox/ABox, other mechanisms for organizing a knowledge base such as contexts
and views have been introduced in Description Logics. The use of the modeling no-
tions provided by Description Logics and the organization of knowledge bases are
addressed in greater detail in Chapter 10.

Finally, we recall that Description Logics as modeling languages overlap to a
large extent with other modeling languages developed in fields such as Programming
Languages and Database Management. While we shall focus on this relationship
later, we recall here that, when compared to modeling languages developed in other
fields the characteristic feature of Description Logics is in the reasoning capabilities
that are associated with it. In other words, we believe that, while modeling has
general significance, the capability of exploiting the description of the model to
draw conclusions about the problem at hand is a particular advantage of modeling
using Description Logics.

1.5.2 Application domains

Description Logics have been used (and are being used) in the implementation of
many systems that demonstrate their practical effectiveness. Some of these systems
have found their way into production use, despite the fact that there was no real
commercial platform that could be used for developing them.

1.5.2.1 Software engineering

Software Engineering was one of the first application domains for Desciption Logics
undertaken at AT&T, where the CLASSIC system was developed. The basic idea
was to use a Description Logic to implement a Software Information System, i.e., a
system that would support the software developer by helping him or her in finding
out information about a large software system.

More specifically, it was found that the information of interest for software devel-
opment was a combination of knowledge about the domain of the application and
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code-specific information. However, while the structure of the code can be deter-
mined automatically, the connection between code elements and domain concepts
needs to be specified by the user.

One of the most novel applications of Description Logics is the LaSSIE system
[Devambu et al., 1991], which allowed users to incrementally build a taxonomy
of concepts relating domain notions to the code implementing them. The system
could thereafter provide useful information in response to user queries concerning
the code, such as, for example “the function to generate a dial tone.” By exploiting
the description of the domain, the information retrieval capabilities of the system
went significantly beyond those of the standard tools used for software development.
The LassiE system had considerable success but ultimately stumbled because of
the difficulty of maintenance of the knowledge base, given the constantly changing
nature of industrial software. Both the ideas of a Software Information System and
the usage of Description Logics survived that particular application and have been
subsequently used in other systems. The usage of Description Logics in applications
for Software Engineering is described in Chapter 11.

1.5.2.2 Configuration

One very successful domain for knowledge-based applications built using Descrip-
tion Logics is configuration, which includes applications that support the design of
complex systems created by combining multiple components.

The configuration task amounts to finding a proper set of components that can
be suitably connected in order to implement a system that meets a given specifica-
tion. For example, choosing computer components in order to build a home PC is a
relatively simple configuration task. When the number, the type, and the connec-
tivity of the components grow, the configuration task can become rather complex.
In particular, computer configuration has been among the application fields of the
first Expert Systems and can thus be viewed as a standard application domain for
knowledge-based systems. Configuration tasks arise in many industrial domains,
such as telecommunications, the automotive industry, building construction, etc.

DL-based knowledge representation systems meet the requirements for the devel-
opment of configuration applications. In particular, they enable the object-oriented
modeling of system components, which combines powerfully with the ability to
reason from incomplete specifications and to automatically detect inconsistencies.
Using Description Logics one can exploit the ability to classify the components and
organize them within a taxonomy. In addition a DL-based approach supports incre-
mental specification and modularity. Applications for configuration tasks require at
least two features that were not in the original core of DL-KRS: the representation
of rules (together with a rule propagation mechanism), and the ability to provide ex-
planations. However, extensions with so-called “active rules” are now very common
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in DL-KRS, and a precise semantic account is given in Chapter 6; significant work
on explanation capabilities of DL-KRS has been developed in connection with the
design of configuration applications [McGuinness and Borgida, 1995]. Chapter 12 is
devoted to the applications developed in Description Logics for configuration tasks.

1.5.2.8 Medicine

Medicine is also a domain where Expert Systems have been developed since the
1980’s; however, the complexity of the medical domain calls for a variety of uses
for a DL-KRS. In practice, decision support for medical diagnosis is only one of
the tasks in need of automation. One focus has been on the construction and
maintenance of very large ontologies of medical knowledge, the subject of some
large government initiatives. The need to deal with large-scale knowledge bases
(hundreds of thousands of concepts) led to the development of specialized systems,
such as GALEN [Rector et al., 1993], while the requirement for standardization
arising from the need to deal with several sources of information led to the adoption
of the DL standard language KRrss [Patel-Schneider and Swartout, 1993] in projects
like SNOMED [Spackman et al., 1997].

In order to cope with the scalability of the knowledge base, the DL language
adopted in these applications is often limited to a few basic constructs and the
knowledge base turns out to be rather shallow, that is to say the taxonomy does
not have very many levels of sub-concepts below the top concepts. Nonetheless,
there are several language features that would be very useful in the representation of
medical knowledge, such as, for example, specific support for PART-OF hierarchies
(see Chapter 10), as well as defaults and modalities to capture lack of knowledge
(see Chapter 6).

Obviously, since medical applications most often must be used by doctors, a for-
mal logical language is not well-suited; therefore special attention is given to the
design of the user interface; in particular, natural language processing (see Chap-
ter 15) is important both in the construction of the ontology and in the operational
interfaces.

Further, the DL component of a medical application usually operates within a
larger information system, which comprise several sources of information, which
need to be integrated in order to provide a coherent view of the available data (on
this topic see Chapter 16).

Finally, an important issue that arises in the medical domain is the management
of ontologies, which not only requires common tools for project management, such
as versioning systems, but also tools to support knowledge acquisition and re-use
(on this topic see Chapter 8).

The use of Description Logics specifically in the design of medical applications is
addressed in Chapter 13.
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1.5.2.4 Digital libraries and Web-based information systems

The relationship between semantic networks and the linked structures implied by
hypertext has motivated the development of DL applications for representing biblio-
graphic information and for supporting classification and retrieval in digital libraries
[Welty and Jenkins, 2000]. These applications have proven the effectiveness of De-
scription Logics for representing the taxonomies that are commonly used in library
classification schemes, and they have shown the advantage of subsumption reasoning
for classifying and retrieving information. In these instances, a number of technical
questions, mostly related to the use of individuals in the taxonomy, have motivated
the use of more expressive Description Logics.

The possibility of viewing the World-Wide Web as a semantic network has been
considered since the advent of the Web itself. Even in the early days of the Web,
thought was given to the potential benefits of enabling programs to handle not only
simple unlabeled navigation structures, but also the information content of Web
pages. The goal was to build systems for querying the Web “semantically,” allowing
the user to pose queries of the Web as if it were a database, roughly speaking.
Based on the relationship between Description Logics and semantic networks, a
number of proposals were developed that used Description Logics to model Web
structures, allowing the exploitation of DL reasoning capabilities in the acquisition
and management of information [Kirk et al., 1995; De Rosa et al., 1998].

More recently, there have been significant efforts based on the use of markup
languages to capture the information content of Web structures. The relationship
between Description Logics and markup languages, such as XML, has been precisely
characterized [Calvanese et al., 1999d], thus identifying DL language features for
representing XML documents. Moreover, interest in the standardization of knowl-
edge representation mechanisms for enabling knowledge exchange has led to the
development of DAML-ONT [McGuinness et al., 2002], an ontology language for
the Web inspired by object-oriented and frame-based languages, and OIL [Fensel et
al., 2001], with a similar goal of expressing ontologies, but with a closer connection
to Description Logics. Since the two initiatives have similar goals and use languages
that are somewhat similar (see Chapter 4 for the relationships between frames and
Description Logics), their merger is in progress. The use of Description Logics in
the design of digital libraries and Web applications is addressed in Chapter 14, with
specific discussion on DAML-ONT, OIL, and DAML+OIL.

1.5.2.5 Other application domains

The above list of application domains, while presenting some of the most relevant
applications designed with DL-KRS, is far from complete. There are many other
domains that have been addressed by the DL community. Among the application
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areas that have resorted to Description Logics for useful functions are Planning and
Data Mining.

With respect to Planning, many knowledge-based applications rely on the ser-
vices of a planning component. While Description Logics do not provide such a
component themselves, they have been used to implement several general-purpose
planning systems. The basic idea is to represent plans and actions, as well as their
constituent elements, as concepts. The system can thus maintain a taxonomy of
plan types and provide several reasoning services, such as plan recognition, plan
subsumption, plan retrieval, and plan refinement. Two examples of planning com-
ponents developed in a DL-KRS are CLASP [Yen et al., 1991b] developed on top
of CLASSIC and EXPECT [Swartout and Gil, 1996], developed on top of LooM. In
addition, the integration of Description Logics and other formalisms, such as Con-
straint Networks, has been proposed [Weida and Litman, 1992]. Planning systems
based on Description Logics have been used in many application domains to sup-
port planning services in conjunction with a taxonomic representation of the domain
knowledge. Such application domains include, among others, software engineering,
medicine, campaign planning, and information integration.

It is worth mentioning that Description Logics have also been used to represent
dynamic systems and to automatically generate plans based on such representations.
However, in such cases the use of Description Logics is limited to the formalization
of properties that characterize the states of the system, while plan generation is
achieved through the use of a rule propagation mechanism [De Giacomo et al.,
1999]. Such use of Description Logics is inspired by the correspondence between
Description Logics and Dynamic Modal Logics described in Chapter 5.

Description Logics have also been used in data mining applications, where their
inferences can help the process of analyzing large amounts of data. In this kind
of application, DL structures can represent views, and DL systems can be used to
store and classify such views. The classification mechanism can help in discovering
interesting classes of items in the data. We address this type of application briefly
in the next subsection on Database Management.

1.5.3 Application areas

From the beginning Description Logics have been considered general purpose lan-
guages for knowledge representation and reasoning, and therefore suited for many
applications. In particular, they were considered especially effective for those do-
mains where the knowledge could be easily organized along a hierarchical structure,
based on the “IS-A” relationship. The ability to represent and reason about tax-
onomies in Description Logics has motivated their use as a modeling language in
the design and maintenance of large, hierarchically structured bodies of knowledge
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as well as their adoption as the representation language for formal ontologies [Welty
and Guarino, 2001].

We now briefly look at some other research areas that have a more general rela-
tionship with Description Logics. Such a relationship exists either because Descrip-
tion Logics are viewed as a basic representation language, as in the case of natural
language processing, or because they can be used in a variety of ways in concert
with the main technology of the area, as in the field of Database Management.

1.5.3.1 Natural language

Description Logics, as well as semantic networks and frames, originally had natural
language processing as a major field for application (see for example [Brachman,
1979]). In particular, when work on Description Logics began, not only was a
large part of the DL community working on natural language applications, but
Description Logics also bore a strong similarity to other formalisms used in natural
language work, such as for example [Nebel and Smolka, 1991].

The use of Description Logics in natural language processing is mainly concerned
with the representation of semantic knowledge that can be used to convey meanings
of sentences. Such knowledge is typically concerned with the meaning of words (the
lexicon), and with context, that is, a representation of the situation and domain of
discourse.

A significant body of work has been devoted to the problem of disambiguating
different syntactic readings of sentences, based on semantic knowledge, a process
called semantic interpretation. Moreover, semantic knowledge expressed in Descrip-
tion Logics has also been used to support natural language generation.

Since the domain of discourse for a natural language application can be arbitrarily
broad, work on natural language has also involved the construction of ontologies
[Welty and Guarino, 2001]. In addition, the expressiveness of natural language has
led also to investigations concerning extensions of Description Logics, such as for
example, default reasoning (see Chapter 6).

Several large projects for natural language processing based on the use of Descrip-
tion Logics have been undertaken, some reaching the level of industrially-deployed
applications. They are referenced in Chapter 15, where the role of Description
Logics in natural language processing is addressed in more detail.

1.5.3.2 Database management

The relationship between Description Logics and databases is rather strong. In fact,
there is often the need to build systems where both a DL-KRS and a DataBase Man-
agement System (DBMS) are present. DBMS’s deal with persistence of data and
with the management of large amounts of it, while a DL-KRS manages intensional
knowledge, typically keeping the knowledge base in memory (possibly including as-
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sertions about individuals that correspond to data). While some of the applications
created with DL-KRS have developed ad hoc solutions to the problem of dealing
with large amounts of persistent data, in a complex application domain it is very
likely that a DL-KRS and a DBMS would both be components of a larger system,
and they would work together.

In addition, Description Logics provide a formal framework that has been shown
to be rather close to the languages used in semantic data modeling, such as
the Entity-Relationship Model [Calvanese et al., 1998g]. Description Logics are
equipped with reasoning tools that can bring to the conceptual modeling phase sig-
nificant advantages, as compared with traditional languages, whose role is limited
to modeling. For instance, by using concept consistency one can verify at design
time whether an entity can have at least one instance, thus clearly saving all the
difficulties arising from discovering such a situation when the database is being
populated [Borgida, 1995].

A second dimension of the enhancement of DBMS’s with Description Logics in-
volves the query language. By expressing the queries to a database in a Description
Logic one gains the ability to classify them and therefore to deal with issues such as
query processing and optimization. However, the basic Description Logic machin-
ery needs to be extended in order to deal with conjunctive queries; otherwise DL
expressiveness with respect to queries is rather limited. In addition, Description
Logics can be used to express constraints and intensional answers to queries.

A corollary of the relationship between Description Logics and DBMS query lan-
guages is the utility of Description Logics in reasoning with and about views. In the
IMACS system [Brachman et al., 1993], the CLASSIC language was used as a “lens”
[Brachman, 1994] with which data in a conventional relational database could be
viewed. The interface to the data was made significantly more appropriate for a
data analyst, and views that were found to be productive could be saved; in fact,
they were saved in a taxonomy and could be classified with respect to one another.
In a sense, this allows the schema to be viewed and queried explicitly, something
normally not available when using a raw DBMS directly.

A more recent use of Description Logics is concerned with so-called “semi-
structured” data models [Calvanese et al., 1998¢c], which are being proposed in order
to overcome the difficulties in treating data that are not structured in a relational
form, such as data on the Web, data in spreadsheets, etc. In this area Description
Logics are sufficiently expressive to represent models and languages that are being
used in practice, and they can offer significant advantages over other approaches
because of the reasoning services they provide.

Another problem that has recently increased the applicability of Description Log-
ics is information integration. As already remarked, data are nowadays available in
large quantities and from a variety of sources. Information integration is the task
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of providing a unique coherent view of the data stored in the sources available. In
order to create such a view, a proper relationship needs to be established between
the data in the sources and the unified view of the data. Description Logics not
only have the expressiveness needed in order to model the data in the sources, but
their reasoning services can help in the selection of the sources that are relevant for
a query of interest, as well as to specify the extraction process [Calvanese et al.,
2001c].

The uses of Description Logics with databases are addressed in more detail in
Chapter 16.

1.6 Extensions of Description Logics

In this section we look at several types of extensions that have been proposed for
Description Logics; these are addressed in more detail in Chapter 6. Such exten-
sions are generally motivated by needs arising in applications. Unfortunately, some
extended features in implemented DL-KRS were created without precise, formal
accounts; in some other cases, such accounts have been provided using a formal
framework that is not restricted to first-order logic.

A first group of extensions has the purpose of adding to DL languages some
representational features that were common in frame systems or that are relevant
for certain classes of applications. Such extensions provide a representation of some
novel epistemological notions and address the reasoning problems that arise in the
extended framework.

Extensions of a second sort are concerned with reasoning services that are useful
in the development of knowledge bases but are typically not provided by DL-KRS.
The implementation of such services relies on additional inference techniques that
are considered non-standard, because they go beyond the basic reasoning services
provided by DL-KRS.

Below we first address the extensions of the knowledge representation framework
and then non-standard inferences.

1.6.1 Language extensions

Some of the research associated with language extensions has investigated the se-
mantics of the proposed extensions, but often the emphasis is only on finding rea-
soning procedures for the extended languages. Within these language extensions
we find constructs for non-monotonic, epistemic, and temporal reasoning, and con-
structs for representing belief and uncertain and vague knowledge. In addition some
constructs address reasoning in concrete domains.
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1.6.1.1 Non-monotonic reasoning

When frame-based systems began to be formally characterized as fragments of first-
order logic, it became clear that those frame-based systems as well as some DL-KRS
that were used in practice occasionally provided the user with constructs that could
not be given a precise semantic characterization within the framework of first-order
logic. Notable among the problematic constructs were those associated with the
notion of defaults, which over time have been extensively studied in the field of
non-monotonic reasoning [Brachman, 1985].

While one of the problems arising in semantic networks was the oft-cited so-called
“Nixon diamond” [Reiter and Criscuolo, 1981], a whole line of research in non-
monotonic reasoning was developed in trying to characterize the system behavior by
studying structural properties of networks. For example, the general property that
“birds fly” might not be inherited by a penguin, because a rule that penguins do not
fly would give rise to an arc in the network that would block the default inference.
But as soon as the network becomes relatively complex (see for example [Touretzky
et al., 1991]), we can see that attempts to provide semantic characterization in terms
of network structure are inadequate.

Another approach that has been pursued in the formalization of non-monotonic
reasoning in semantic networks is based on the use of default logic [Reiter, 1980;
Etherington, 1987; Nado and Fikes, 1987]. Following a similar approach is the
treatment of defaults in DL-based systems [Baader and Hollunder, 1995a), where
formal tools borrowed from work on non-monotonic reasoning have been adapted
to the framework of Description Logics. Such adaptation is non-trivial, however,
because Description Logics are not, in general, propositional languages.

1.6.1.2 Modal representation of knowledge and belief

Modal logics have been widely studied to model a variety of features that in first-
order logic would require the application of special constraints on certain elements
of the formalization. For example, the notions of knowing something or believing
that some sentence is true can be captured by introducing modal operators, which
characterize properties that sentences have.

For instance the assertion

B(Married(ANNA))

states a fact explicitly concerning the system’s beliefs (the system believes that Anna
is married), rather than asserting the truth of something about the world being
modeled (the system could believe something to be true without firm knowledge
about its truth in the world).

In general, by introducing a modal operator one gains the ability to model prop-
erties like knowledge, belief, time-dependence, obligation, and so on. On the one
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hand, extensions of Description Logics with modal operators can be viewed very
much like the corresponding modal extensions of first-order logic. In particular,
the semantic issues arising in the interpretation of quantified modal sentences (i.e.,
sentences with modal operators appearing inside the scope of quantifiers) are the
same. On the other hand, the syntactic restrictions that are suited to a DL lan-
guage lead to formalisms whose expressiveness and reasoning problems inherit some
of the features of a specialized DL language. Extensions of Description Logics with
modal operators including those for representing knowledge and belief are discussed
in [Baader and Ohlbach, 1995].

1.6.1.3 Epistemic reasoning

It is not sufficient to provide a semantics for defaults to obtain a full semantic
account of frame-based systems. Frame-based systems have included procedural
rules as well as other forms of closure and epistemic reasoning that need to be
covered by the semantics as well as by the reasoning algorithms. In particular,
if one looks at the most widely-used systems based on Description Logics, such
features are still present, possibly in new flavors, while their semantics is given
informally and the consequences of reasoning sometimes not adequately explained.

Among the non-first-order features that are used in the practice of knowledge-
based applications in both DL-based and frame-based systems we point out these:

e procedural rules, (also called trigger rules) which are normally described as if-then
statements and are used to infer new facts about known individuals;

e default rules, which enable default reasoning in inheritance hierarchies;

e role closure, which limits the reasoning involving role restrictions to the individ-
uals explicitly in the knowledge base;

e integrity constraints, which provide consistency restrictions on admissible knowl-
edge bases.

In Chapter 6, among other approaches an epistemic extension of Description
Logics with a modal operator is addressed. In the resulting formalism [Donini et
al., 1998a] one can express epistemic queries and, by admitting a simple form of
epistemic sentences in the knowledge base, one can formalize the aforementioned
procedural rules. This characterization of procedural rules in terms of an epistemic
operator has been widely accepted in the DL community and is thus also included
in Chapter 2. The approach has been further extended to what have been called
Autoepistemic Description Logics (ADLs) [Donini et al., 1997b], where it is com-
bined with default reasoning. This combination is achieved by relying on the non-
monotonic modal logic MKNF [Lifschitz, 1991], thus introducing a second modal
operator interpreted as autoepistemic assumption. The features mentioned above
can be uniformly treated as epistemic sentences in the knowledge base, without the
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need to give them special status as in the case of procedural rules, defaults, and
epistemic constraints on the knowledge base. This expressiveness does not come
without making reasoning more difficult. An extension of the reasoning methods
available for deduction in the propositional formalizations of non-monotonic rea-
soning to the fragment of first-order logic corresponding to Description Logics has
nonetheless been shown to be decidable.

1.6.1.4 Temporal reasoning

One notion that is often required in the formalization of application domains is
time. Temporal extensions of Description Logics have been treated as a special
kind of modal extension. The first proposal for handling time in a DL framework
[Schmiedel, 1990] was originated in the context of the DL system BACK. Later, fol-
lowing the standard approaches in the representation of time, both interval-based
and point-based approaches have been studied, specifically focusing on the decid-
ability and complexity of the reasoning problems (see [Artale and Franconi, 2001]
for a survey the temporal extensions of Description Logics).
Time intervals can also be treated as a form of concrete domain (see below).

1.6.1.5 Representation of uncertain and vague knowledge

Another aspect of knowledge that is sometimes useful in representing and reasoning
about application domains is uncertainty. As in other knowledge representation
frameworks there are several approaches to the representation of uncertain knowl-
edge in Description Logics. Two of them, namely probabilistic logic and fuzzy logic,
have been proposed in the context of Description Logics. In the case of probabilistic
Description Logics [Heinsohn, 1994; Jaeger, 1994] the knowledge about the domain
is expressed in terms of probabilistic terminological axioms, which allow one to
represent statistical information about the domain, and in terms of probabilistic
assertions, which specify the degree of belief of asserted properties. The reasoning
tasks aim at finding the probability bounds for subsumption relations and asser-
tions. A more recent line of work tries to combine Description Logics with Bayesian
networks.

In the case of fuzzy Description Logics [Yen, 1991] the goal is to characterize no-
tions that cannot be properly defined with a “crisp” numerical bound. For example,
the concept of living near Rome cannot be always defined with a crisp boundary
on the map, but must be represented with a membership or degree function, which
expresses closeness to the city in a continuous way.

Proposed approaches to fuzzy Description Logics not only define the semantics of
assertions in terms of fuzzy sets, but also introduce new operators to express notions
like “mostly,” *
fuzzy subsumption within the framework of tableau-based methods.

very,” etc. Reasoning algorithms are also provided for computing
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1.6.1.6 Concrete domains

One of the limitations of basic Description Logics is related to the difficulty of in-
tegrating knowledge (and, consequently, performing reasoning) of specific domains,
such as numbers or strings, which are needed in many applications. For example, in
order to model the concept of a young person it seems rather natural to introduce
the (functional) role age and to use a concrete value (or range of values) in the
definition of the concept. In addition, one would like to be able to conclude that
a person of school age is also a young person. Such a conclusion might require the
use of properties of numbers to establish that the expected subsumption relation
holds.

While for some time such extensions were designed in ad hoc ways, in [Baader and
Hanschke, 1991a] a general method was established for integrating knowledge about
concrete domains within a DL language. If a domain can be properly formalized,
it is shown that the tableau-based reasoning technique can be suitably extended to
handle the reasoning services in the extended language.

Concrete domains include not only data types such as numerical types, but also
more elaborate domains, such as tuples of the relational calculus, spatial regions,
or time intervals.

1.6.2 Additional reasoning services

Non-standard inference tasks can serve a variety of purposes, among them support
in building and maintaining the knowledge base, as well as in obtaining information
about the knowledge represented in it.

Among the more useful non-standard inference tasks in Description Logics we
find the computation of the least common subsumer and the most specific concept,
matching /unification, and concept rewriting.

1.6.2.1 Least common subsumer and most specific concept

The least common subsumer (lcs) of a set of concepts is the minimal concept that
subsumes all of them. The minimality condition implies there is no other concept
that subsumes all the concepts in the set and is less general (subsumed by) the lcs.
This notion was first studied in [Cohen et al., 1992] and it has subsequently been
used for several tasks: inductive learning of concept description from examples;
knowledge base vivification (as a way to represent disjunction in languages that do
not admit it); and in the bottom-up construction of DL knowledge bases (starting
from instances of the concepts).

The notion of lcs is closely related to that of most specific concept (msc) of an
individual, i.e., the least concept description that the individual is an instance of,
given the assertions in the knowledge base; the minimality condition is specified
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as before. More generally, one can define the msc of a set of assertions about
individuals as the lcs of the msc associated with each individual. Based on the
computation of the msc of a set of assertions about individuals one can incrementally
construct a knowledge base [Baader and Kiisters, 1999].

It interesting to observe that the techniques that have been proposed to compute
the lcs and mcs rely on compact representations of concept expressions, which are
built either following the structural subsumption approach, or through the definition
of a well-suited normal form.

1.6.2.2 Unification and matching

Another tool to support the construction and maintenance of DL knowledge bases
that goes beyond the standard inference services provided by DL-KRS is the unifi-
cation of concepts.

Concept unification [Baader and Narendran, 1998| is an operation that can be
regarded as weakening the equivalence between two concept expressions. More
precisely, two concept expressions unify if one can find a substitution of concept
variables into concept expressions such that the result of applying the substitution
gives equivalent concepts. The intuition is that, in order to find possible over-
laps between concept definitions, one can treat certain concept names as variables
and discover, via unification, that two concepts (possibly independently defined by
distinct knowledge designers) are in fact equivalent. The knowledge base can con-
sequently be simplified by introducing a single definition of the unifiable concepts.

As usual, matching is defined as a special case of unification, where variables occur
only in one of the two concept expressions. In addition, in the framework of De-
scription Logics, one can define matching and unification based on the subsumption
relation instead of equivalence [Baader et al., 1999a).

As with other non-standard inferences, the computation of matching and unifi-
cation relies on the use of specialized representations for concept expressions, and
it has been shown to be decidable for rather simple Description Logics.

1.6.2.3 Concept rewriting

Finally, there has been a significant body of work on the problem of Concept Rewrit-
ing. Given a concept expressed in a source language, Concept Rewriting amounts
to finding a concept, possibly expressed in a target language, which is related to
the given concept according to equivalence, subsumption, or some other relation.

In order to specify the rewriting, one can provide a suitable set of constraints
between concepts in the source language and concepts in the target language. Con-
cept Rewriting can be applied to the translation of concepts from one knowledge
base to another, or in the reformulation of concepts during the process of knowledge
base construction and maintenance.
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In addition, Concept Rewriting has been addressed in the context of the rewriting
of queries using views, in Database Management (see also Chapter 16), and has
recently been investigated in the framework of Information Integration. In this
setting, one can apply Concept Rewriting techniques to automatically generate the
queries that enable a system to gather information from a set of sources [Beeri et
al., 1997]. Given an initial specification of the query according to a common, global
language, and a set of constraints expressing the relationship between the global
schema and the individual sources where information is stored, the problem is to
compute the queries to be posed to the local sources that provide answers, possibly
approximate, to the original query [Calvanese et al., 2000a).

1.7 Relationship to other fields of Computer Science

Description Logics were developed with the goals of providing formal, declarative
meanings to semantic networks and frames, and of showing that such representation
structures can be equipped with efficient reasoning tools. However, the underlying
ideas of concept/class and hierarchical structure based upon the generality and
specificity of a set of classes have appeared in many other field of Computer Sci-
ence, such as Database Management and Programming Languages. Consequently,
there have been a number of attempts to find commonalities and differences among
formalisms with similar underlying notions, but which were developed in different
fields. Moreover, by looking at the syntactic form of Description Logics—logics
that are restricted to unary and binary predicates and allow for restricted forms
of quantification—other, logical formalisms that have strong relationships with De-
scription Logics have been identified. In this section we briefly address such rela-
tionships; in particular, we focus our attention on the relationship of Description
Logics to other class-based languages, and then we address the relationship between
Description Logics and other logics. These topics are addressed in more detail in
Chapter 4.

1.7.1 Description Logics and other class-based formalisms

As we have mentioned, Description Logics can, in principle, be related to other
class-based formalisms. Before looking at other fields, it is worth relating Descrip-
tion Logics to other formalisms developed within the field of Knowledge Represen-
tation that share the intuitions underlying network-based representation structure.
In [Lehmann, 1992] several languages aiming at structured representations of knowl-
edge are reviewed. We have already discussed the relationship between Description
Logics and semantic networks and frames, since they provided the basic motiva-
tions for developing Description Logics in the first place. Among others, conceptual
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graphs [Sowa, 1991] have been regarded as a way of representing conceptual struc-
tures very closely related to semantic networks (and consequently, to Description
Logics). However, only recently has there been a detailed analysis of the relation-
ship between conceptual graphs and Description Logics[Baader et al., 1999c]. The
outcome of this work makes it apparent that, although one can establish a relation-
ship between simple conceptual graphs and a DL language, there are substantial
differences between the two formalisms. The most significant one is that Description
Logics are characterized by the universally quantified role restriction, which is not
present in conceptual graphs. Consequently, the interpretation of the representation
structures becomes substantially different.

In many other fields of Computer Science we find formalisms for the represen-
tation of objects and classes [Motschnig-Pitrik and Mylopoulous, 1992]. Such for-
malisms share the notion of a class that denotes a subset of the domain of discourse,
and they allow one to express several kinds of relationships and constraints (e.g.,
subclass constraints) that hold among classes. Moreover, class-based formalisms
aim at taking advantage of the class structure in order to provide various types
of information, such as whether an element belongs to a class, whether a class is
a subclass of another class, and more generally, whether a given constraint holds
between two classes. In particular, formalisms that are built upon the notions of
class and class-based hierarchies have been developed in the field of Database Man-
agement, in semantic data modeling (see for example [Hull and King, 1987]), in
object-oriented languages (see for example [Kim and Lochovsky, 1989]), and more
generally, in Programming Languages (see for example [Lenzerini et al., 1991]).

There have been several attempts to establish relationships among the class-
based formalisms developed in different fields. In particular, the common intuitions
behind classes and concepts have stimulated several pieces of work aimed at es-
tablishing a precise relationship between class-based formalisms and Description
Logics. However, it is difficult to find a common framework for carrying out a
precise comparison.

In Chapter 4 a specific Description Logic is taken as a basis for identifying the
common features of frame systems and object-oriented and semantic data models
(see also [Calvanese et al., 1999¢]). Specifically, a precise correspondence between
the chosen DL and the Entity-Relationship model [Chen, 1976], as well as with
an object-oriented language in the style of [Abiteboul and Kanellakis, 1989], is
presented there.

This kind of comparison shows that one can indeed identify a large common ba-
sis, but also that there are features that are currently missing in each formalism.
For example, to capture semantic data models one needs a cyclic form of inclusion
assertion, as well as the inverses of roles for modeling relationships that work in
both directions, while DL roles have a directionality from one concept to another.
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Moreover, in order to make a comparison with frame-based systems, one has to leave
out both the non-monotonic features of frames, such as defaults and closures (that
are addressed among the extensions of Description Logics in the previous section)
and their dynamic aspects such as daemons and and triggers (with the exception
of trigger rules, which are also addressed in the previous section). Finally, with
respect to object-oriented data models the main difference is that although De-
scription Logics provide the expressiveness to model record and set structures, they
are not explicitly available in Description Logics and thus their representation is a
little cumbersome. On the other hand, semantic and object-oriented data models
are typically not equipped with reasoning tools that are available with Description
Logics. This issue is further developed in Chapter 16, where the applications of
Description Logics in the field of Database Management are addressed. However, if
the language is sufficiently expressive, as it needs to be in order to establish rela-
tionships among various class-based formalisms, one needs to distinguish between
finite model reasoning which is required for Database languages that are designed to
represent a closed domain of discourse, and unrestricted reasoning, which is typical
of knowledge representation formalisms and, therefore, of Description Logics.

1.7.2 Relationships to other logics

The initial observation for addressing the relationship of Description Logics to other
logics is the fact that Description Logics are subsets of first-order logic. This has
been known since the earliest days of Description Logics, and has been thoroughly
investigated in [Borgida, 1996]. In fact, the DL ALC corresponds to the fragment
of first-order logic obtained by restricting the syntax to formulas containing two
variables. The importance of this and subsequent studies on this issue is related to
finding adequate characterizations of the expressiveness of Description Logics.
Since Description Logics focus on a language formed by unary and binary predi-
cates, it turned out that they are closely related to modal languages, if one regards
roles as accessibility relations. In particular, Schild [1991] pointed out that some
Description Logics are notational variants of certain propositional modal logics;
specifically, the DL ALC has a modal logic counterpart, namely the multi-modal
version of the logic K (see [Halpern and Moses, 1992]). Actually, ALC-concepts
and formulas in multi-modal K can immediately be translated into each other.
Moreover, an ALC-concept is satisfiable if and only if the corresponding K-formula
is satisfiable. Research in the complexity of the satisfiability problem for modal
propositional logics was initiated quite some time before the complexity of Descrip-
tion Logics was investigated. Consequently, this relationship made it possible to
borrow from modal logic complexity results, reasoning techniques, and language
constructs that had not been previously considered in Description Logics. On the
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other hand, there are features of Description Logics that did not have counterparts
in modal logics and therefore needed ad hoc extensions of the reasoning techniques
developed for modal logics. In particular, number restrictions as well as the treat-
ment of individuals in the ABox required specific treatments based on the idea of
reification, which amounts to expressing the extensions through a special kind of
axiom within the logic. Finally, we mention that recent work has pointed out a
relationship between Description Logics and guarded fragments, which can be re-
garded as generalizations of modal logics. Most of the research on very expressive
Description Logics, addressed in Chapter 5, has its roots in the correspondence with
modal logic.

1.8 Conclusion

From their humble origins in the late 1970’s as a remedy for logical and semantic
problems in frame and semantic network representations, Description Logics have
grown to be a unique and important keystone in the history of Knowledge Repre-
sentation. DL formalisms certainly evoked interest in their earliest days, with the
invention and application of the KL-ONE system, but international attention and
research was given a significant boost in 1984 when Brachman and Levesque used
the simple and intuitive structure of Description Logics as the basis for their obser-
vation about the tradeoff between knowledge representation language expressiveness
and computational complexity of reasoning. The way Description Logics were able
to separate out the structure of concepts and roles into simple term-forming oper-
ators opened the door to extensive analysis of a broad family of languages. One
could add and subtract these operators from the language and explore both the
computational ramifications and the relationship of the resulting language to other
formal languages in Computer Science, such as modal logics and data models for
database systems.

As a result, the family of Description Logic languages is probably the most thor-
oughly understood set of formalisms in all of knowledge representation. The com-
putational space has been thoroughly mapped out, and a wide variety of systems
have been built, testing out different styles of inference computation and being used
in many applications.

Description Logics are responsible for many of the cornerstone notions used in
knowledge representation and reasoning. They helped crystallize many of the ideas
treated informally in earlier notations, such as concepts and roles. But they added
many new important building blocks for later work in the field: the terminol-
ogy/assertion distinction (TBox/ABox), number and value restrictions on roles,
internal structure for concepts, Tell/Ask interfaces, and others. They have been the
subject of a great deal of comparison and analysis with their cousins in other fields
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of Computer Science, and DL systems run the gamut from simple, restricted sys-
tems with provably advantageous computational properties to extremely expressive
systems that can support very powerful applications. Perhaps, the most important
aspect of work on Description Logics has been the very tight coupling between the-
ory and practice. The exemplary give-and-take between the formal, analytical side
of the field and the pragmatic, implemented side—mnotable throughout the entire
history of Description Logics—has been a role model for other areas of Al

Acknowledgements

We are grateful to Franz Baader, Francesco M. Donini, Maurizio Lenzerini, and
Riccardo Rosati for reading the manuscript and making suggestions for improving
the final version of the chapter.



2

Basic Description Logics
Franz Baader

Werner Nutt

Abstract

This chapter provides an introduction to Description Logics as a formal language
for representing knowledge and reasoning about it. It first gives a short overview of
the ideas underlying Description Logics. Then it introduces syntax and semantics,
covering the basic constructors that are used in systems or have been introduced in
the literature, and the way these constructors can be used to build knowledge bases.
Finally, it defines the typical inference problems, shows how they are interrelated,
and describes different approaches for effectively solving these problems. Some of
the topics that are only briefly mentioned in this chapter will be treated in more
detail in subsequent chapters.

2.1 Introduction

As sketched in the previous chapter, Description Logics (DLs) is the most recent
name! for a family of knowledge representation (KR) formalisms that represent the
knowledge of an application domain (the “world”) by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world descrip-
tion). As the name Description Logics indicates, one of the characteristics of these
languages is that, unlike some of their predecessors, they are equipped with a formal,
logic-based semantics. Another distinguished feature is the emphasis on reasoning
as a central service: reasoning allows one to infer implicitly represented knowledge
from the knowledge that is explicitly contained in the knowledge base. Descrip-
tion Logics support inference patterns that occur in many applications of intelligent
information processing systems, and which are also used by humans to structure
and understand the world: classification of concepts and individuals. Classification

1 Previously used names are terminological knowledge representation languages, concept languages, term
subsumption languages, and KL-ONE-based knowledge representation languages.

47
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of concepts determines subconcept/superconcept relationships (called subsumption
relationships in DL) between the concepts of a given terminology, and thus allows
one to structure the terminology in the form of a subsumption hierarchy. This hi-
erarchy provides useful information on the connection between different concepts,
and it can be used to speed-up other inference services. Classification of individuals
(or objects) determines whether a given individual is always an instance of a certain
concept (i.e., whether this instance relationship is implied by the description of the
individual and the definition of the concept). It thus provides useful information
on the properties of an individual. Moreover, instance relationships may trigger the
application of rules that insert additional facts into the knowledge base.

Because Description Logics are a KR formalism, and since in KR one usually
assumes that a KR system should always answer the queries of a user in reason-
able time, the reasoning procedures DL researchers are interested in are decision
procedures, i.e., unlike, e.g., first-order theorem provers, these procedures should
always terminate, both for positive and for negative answers. Since the guarantee
of an answer in finite time need not imply that the answer is given in reasonable
time, investigating the computational complexity of a given DL with decidable in-
ference problems is an important issue. Decidability and complexity of the inference
problems depend on the expressive power of the DL at hand. On the one hand,
very expressive DLs are likely to have inference problems of high complexity, or
they may even be undecidable. On the other hand, very weak DLs (with efficient
reasoning procedures) may not be sufficiently expressive to represent the important
concepts of a given application. As mentioned in the previous chapter, investigating
this trade-off between the expressivity of DLs and the complexity of their reasoning
problems has been one of the most important issues in DL research.

Description Logics are descended from so-called “structured inheritance net-
works” [Brachman, 1977b; 1978], which were introduced to overcome the ambi-
guities of early semantic networks and frames, and which were first realized in the
system KL-ONE [Brachman and Schmolze, 1985]. The following three ideas, first
put forward in Brachman’s work on structured inheritance networks, have largely
shaped the subsequent development of DLs:

e The basic syntactic building blocks are atomic concepts (unary predicates),
atomic roles (binary predicates), and individuals (constants).

e The expressive power of the language is restricted in that it uses a rather small set
of (epistemologically adequate) constructors for building complex concepts and
roles.

e Implicit knowledge about concepts and individuals can be inferred automatically
with the help of inference procedures. In particular, subsumption relationships
between concepts and instance relationships between individuals and concepts
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play an important réle: unlike IS-A links in Semantic Networks, which are ex-
plicitly introduced by the user, subsumption relationships and instance relation-
ships are inferred from the definition of the concepts and the properties of the
individuals.

After the first logic-based semantics for KL-ONE-like KR languages were proposed,
the inference problems like subsumption could also be provided with a precise mean-
ing, which led to the first formal investigations of the computational properties
of such languages. It has turned out that the languages used in early DL sys-
tems were too expressive, which led to undecidability of the subsumption problem
[Schmidt-Schau, 1989; Patel-Schneider, 1989b]. The first worst-case complexity
results [Levesque and Brachman, 1987; Nebel, 1988] showed that the subsumption
problem is intractable (i.e., not polynomially solvable) even for very inexpressive
languages. As mentioned in the previous chapter, this work was the starting point of
a thorough investigation of the worst-case complexity of reasoning in KL-ONE-like
KR languages (see Chapter 3 for details).

Later on it has turned out, however, that intractability of reasoning (in the sense
of being non-polynomial in the worst case) does not prevent a DL from being use-
ful in practice, provided that sophisticated optimization techniques are used when
implementing a system based on such a DL (see Chapter 9). When implementing
a DL system, the efficient implementation of the basic reasoning algorithms is not
the only issue, though. On the one hand, the derived system services (such as clas-
sification, i.e., constructing the subsumption hierarchy between all concepts defined
in a terminology) must be optimized as well [Baader et al., 1994]. On the other
hand, one needs a good user and application programming interface (see Chapter 7
for more details). Most implemented DL systems provide for a rule language, which
can be seen as a very simple, but effective, application programming mechanism
(see Subsection 2.2.5 for details).

Section 2.2 introduces the basic formalism of Description Logics. By way of
a prototypical example, it first introduces the formalism for describing concepts
(i.e., the description language), and then defines the terminological (TBox) and the
assertional (ABox) formalisms. Next, it introduces the basic reasoning problems
and shows how they are related to each other. Finally, it defines the rule language
that is available in many of the implemented DL systems.

Section 2.3 describes algorithms for solving the basic reasoning problems in
DLs. After shortly sketching structural subsumption algorithms, it concentrates
on tableau-based algorithms. Finally, it comments on the problem of reasoning
w.r.t. terminologies.

Finally, Section 2.4 describes some additional language constructors that are
not included in the prototypical family of description languages introduced in Sec-
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Fig. 2.1. Architecture of a knowledge representation system
based on Description Logics.

tion 2.2, but have been considered in the literature and are available in some DL
Systems.

2.2 Definition of the basic formalism

A KR system based on Description Logics provides facilities to set up knowledge
bases, to reason about their content, and to manipulate them. Figure 2.1 sketches
the architecture of such a system (see Chapter 8 for more information on DL sys-
tems).

A knowledge base (KB) comprises two components, the TBox and the ABox.
The TBox introduces the terminology, i.e., the vocabulary of an application do-
main, while the ABox contains assertions about named individuals in terms of this
vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles,
which denote binary relationships between individuals. In addition to atomic con-
cepts and roles (concept and role names), all DL systems allow their users to build
complex descriptions of concepts and roles. The TBox can be used to assign names
to complex descriptions. The language for building descriptions is a characteris-
tic of each DL system, and different systems are distinguished by their description
languages. The description language has a model-theoretic semantics. Thus, state-
ments in the TBox and in the ABox can be identified with formulae in first-order
logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also offers services
that reason about them. Typical reasoning tasks for a terminology are to deter-
mine whether a description is satisfiable (i.e., non-contradictory), or whether one
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description is more general than another one, that is, whether the first subsumes
the second. Important problems for an ABox are to find out whether its set of
assertions is consistent, that is, whether it has a model, and whether the assertions
in the ABox entail that a particular individual is an instance of a given concept
description. Satisfiability checks of descriptions and consistency checks of sets of
assertions are useful to determine whether a knowledge base is meaningful at all.
With subsumption tests, one can organize the concepts of a terminology into a hier-
archy according to their generality. A concept description can also be conceived as
a query, describing a set of objects one is interested in. Thus, with instance tests,
one can retrieve the individuals that satisfy the query.

In any application, a KR system is embedded into a larger environment. Other
components interact with the KR component by querying the knowledge base and
by modifying it, that is, by adding and retracting concepts, roles, and assertions.
A restricted mechanism to add assertions are rules. Rules are an extension of
the logical core formalism, which can still be interpreted logically. However, many
systems, in addition to providing an application programming interface that consists
of functions with a well-defined logical semantics, provide an escape hatch by which
application programs can operate on the KB in arbitrary ways.

2.2.1 Description languages

Elementary descriptions are atomic concepts and atomic roles. Complex descrip-
tions can be built from them inductively with concept constructors. In abstract
notation, we use the letters A and B for atomic concepts, the letter R for atomic
roles, and the letters C' and D for concept descriptions. Description languages are
distinguished by the constructors they provide. In the sequel we shall discuss var-
ious languages from the family of AL-languages. The language AL (= attributive
language) has been introduced in [Schmidt-Schaufl and Smolka, 1991] as a mini-
mal language that is of practical interest. The other languages of this family are
extensions of AL.

2.2.1.1 The basic description language AL

Concept descriptions in AL are formed according to the following syntax rule:

C,D — A (atomic concept)
T | (universal concept)
1 (bottom concept)
—A | (atomic negation)
CnD| (intersection)
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VR.C | (value restriction)
dR.T (limited existential quantification).

Note that, in AL, negation can only be applied to atomic concepts, and only the
top concept is allowed in the scope of an existential quantification over a role. For
historical reasons, the sublanguage of AL obtained by disallowing atomic negation is
called £~ and the sublanguage of F L~ obtained by disallowing limited existential
quantification is called FLy.

To give examples of what can be expressed in AL, we suppose that Person and
Female are atomic concepts. Then Person ' Female and Person 1 —=Female are AL-
concepts describing, intuitively, those persons that are female, and those that are
not female. If, in addition, we suppose that hasChild is an atomic role, we can
form the concepts Person M JhasChild. T and Person M VhasChild.Female, denoting
those persons that have a child, and those persons all of whose children are female.
Using the bottom concept, we can also describe those persons without a child by
the concept Person M VhasChild. L.

In order to define a formal semantics of AL-concepts, we consider interpreta-
tions T that consist of a non-empty set A (the domain of the interpretation) and
an interpretation function, which assigns to every atomic concept A a set AT C AT
and to every atomic role R a binary relation RZ C AT x AT. The interpretation
function is extended to concept descriptions by the following inductive definitions:

T = At

1T = 9
(_|AI — AI\AZ
(cnbD? = c*np*

)
)
(VR.CYY = {aeAT|Vb. (a,b) € RT - be T}
AR T = {ae AT |3b. (a,b) € RT}.

We say that two concepts C, D are equivalent, and write C = D, if ¢ =
DT for all interpretations Z. For instance, going back to the definition of the

semantics of concepts, one easily verifies that YhasChild.Female M VhasChild.Student
and VhasChild.(Female M Student) are equivalent.

2.2.1.2 The family of AL-languages

We obtain more expressive languages if we add further constructors to AL. The
union of concepts (indicated by the letter U) is written as C' LI D, and interpreted
as

(cuD)* =ctuD?
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Full existential quantification (indicated by the letter £) is written as IR.C, and
interpreted as

(3R.C)E = {a € AT | 3b. (a,b) € R Ab e CT}.

Note that IR.C' differs from JdR.T in that arbitrary concepts are allowed to occur
in the scope of the existential quantifier.

Number restrictions (indicated by the letter A') are written as >n R(at-least
restriction) and as <n R (at-most restriction), where n ranges over the nonnegative
integers. They are interpreted as

(=nR)Y = {a e AT ' b | (a,b) € RT}| > n}

and
(<nR)T = {a e AT ‘ 1{b] (a,b) € RT}| < n}

respectively, where “|-|” denotes the cardinality of a set. From a semantic view-
point, the coding of numbers in number restrictions is immaterial. However, for the
complexity analysis of inferences it can matter whether a number n is represented
in binary (or decimal) notation or by a string of length n, since binary (decimal)
notation allows for a more compact representation.

The negation of arbitrary concepts (indicated by the letter C, for “complement”)
is written as —C', and interpreted as

(-0)F = AT\ CT.

With the additional constructors, we can, for example, describe those persons
that have either not more than one child or at least three children, one of which is
female:

Person M (< 1 hasChild LI (= 3 hasChild M 3hasChild.Female)).

Extending AL by any subset of the above constructors yields a particular AL-
language. We name each AL-language by a string of the form

ALUJETNTLC,

where a letter in the name stands for the presence of the corresponding constructor.
For instance, ALEN is the extension of AL by full existential quantification and
number restrictions (see the appendix on DL terminology for how to extend this
naming scheme to more expressive DLs).

From the semantic point of view, not all these languages are distinct, however.
The semantics enforces the equivalences CUD = =(-CTM—D) and 3R.C = =VR.-C.
Hence, union and full existential quantification can be expressed using negation.
Conversely, the combination of union and full existential quantification gives us
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the possibility to express negation of concepts (through their equivalent negation
normal form, see Section 2.3.2). Therefore, we assume w.l.o.g. that union and full
existential quantification are available in every language that contains negation,
and vice versa. It follows that (modulo the equivalences mentioned above), all
AL-languages can be written using the letters U, £, N only. It is not hard to see
that the eight languages obtained this way are indeed pairwise non-equivalent. In
the sequel, we shall not distinguish between an AL-language with negation and its
counterpart that has union and full existential quantification instead. In the same
vein, we shall use the letter C instead of the letters € in language names. For

instance, we shall write ALC instead of ALUE and ALCN instead of ALUEN .

2.2.1.8 Description languages as fragments of predicate logic

The semantics of concepts identifies description languages as fragments of first-order
predicate logic. Since an interpretation Z respectively assigns to every atomic con-
cept and role a unary and binary relation over A%, we can view atomic concepts
and roles as unary and binary predicates. Then, any concept C' can be translated
effectively into a predicate logic formula ¢c(z) with one free variable x such that
for every interpretation Z the set of elements of AZ satisfying ¢ (z) is exactly CZ:
An atomic concept A is translated into the formula A(z); the constructors intersec-
tion, union, and negation are translated into logical conjunction, disjunction, and
negation, respectively; if C' is already translated into ¢¢(x) and R is an atomic role,
then value restriction and existential quantification are captured by the formulae

¢arc(y) = 3Fz.R(y,z) A ¢c(x)
dvrc(y) = Yo.R(y,r) — ¢c(w),

where y is a new variable; number restrictions are expressed by the formulae

¢>nr(®) = Fyi,. . yn- R(x,y1) Ao AR(z,y,) A /\yz#yj

1<J
d<nr(r) = Yy, tnr1- R@y) A AR@ yns1) = \ vi = .
1<J
Note that the equality predicate “=" is needed to express number restrictions, while

concepts without number restrictions can be translated into equality-free formulae.

One may argue that, since concepts can be translated into predicate logic, there
is no need for a special syntax. However, the above translations show that, in
particular for number restrictions, the variable free syntax of description logics is
much more concise. As can be seen from Section 2.3, it also lends itself easily to
the development of algorithms.
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A more detailed analysis of the connection between fragments of first-order pred-
icate logic and DLs can be found in Chapter 4.

2.2.2 Terminologies

We have seen how we can form complex descriptions of concepts to describe classes
of objects. Now, we introduce terminological axioms, which make statements about
how concepts or roles are related to each other. Then we single out definitions
as specific axioms and identify terminologies as sets of definitions by which we
can introduce atomic concepts as abbreviations or names for complex concepts.
If the definitions in a terminology contain cycles, we may have to adopt fizpoint
semantics to make them unequivocal. We discuss for which types of terminologies
fixpoint models exist.

2.2.2.1 Terminological axioms

In the most general case, terminological axioms have the form
CCD (RCS) or C=D (R=Y5),

where C, D are concepts (and R, S are roles). Axioms of the first kind are called
inclusions, while axioms of the second kind are called equalities. To simplify the
exposition, we deal in the following only with axioms involving concepts.

The semantics of axioms is defined as one would expect. An interpretation 7
satisfies an inclusion C T D if CT C D?, and it satisfies an equality C = D if
CT = DT, If T is a set of axioms, then 7 satisfies 7 iff Z satisfies each element
of 7. If 7 satisfies an axiom (resp. a set of axioms), then we say that it is a model
of this axiom (resp. set of axioms). Two axioms or two sets of axioms are equivalent
if they have the same models.

2.2.2.2 Definitions

An equality whose left-hand side is an atomic concept is a definition. Definitions
are used to introduce symbolic names for complex descriptions. For instance, by
the axiom

Mother = Woman M JhasChild.Person

we associate to the description on the right-hand side the name Mother. Symbolic
names may be used as abbreviations in other descriptions. If, for example, we have
defined Father analogously to Mother, we can define Parent as

Parent = Mother U Father.

A set of definitions should be unequivocal. We call a finite set of definitions 7 a
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Woman = Person 1 Female
Man = Person M —=Woman
Mother = Woman M 3hasChild.Person
Father = Man M JhasChild.Person
Parent = Father U Mother
Grandmother = Mother M JhasChild.Parent
MotherWithManyChildren = Mother M > 3 hasChild
MotherWithoutDaughter = Mother M VhasChild.=Woman
Wife = Woman M JhasHusband.Man

Fig. 2.2. A terminology (TBox) with concepts about family
relationships.

terminology or TBox if no symbolic name is defined more than once, that is, if for
every atomic concept A there is at most one axiom in 7 whose left-hand side is A.
Figure 2.2 shows a terminology with concepts concerned with family relationships.

Suppose, 7 is a terminology. We divide the atomic concepts occurring in 7 into
two sets, the name symbols N7 that occur on the left-hand side of some axiom
and the base symbols By that occur only on the right-hand side of axioms. Name
symbols are often called defined concepts and base symbols primitive concepts'. We
expect that the terminology defines the name symbols in terms of the base symbols,
which now we make more precise.

A base interpretation for 7 is an interpretation that interprets only the base
symbols. Let J be such a base interpretation. An interpretation Z that interprets
also the name symbols is an extension of J if it has the same domain as 7, i.e.,
AT = A7 and if it agrees with J for the base symbols. We say that 7 is definitorial
if every base interpretation has exactly one extension that is a model of 7. In other
words, if we know what the base symbols stand for, and 7 is definitorial, then the
meaning of the name symbols is completely determined. Obviously, if a terminology
is definitorial, then every equivalent terminology is also definitorial.

The question whether a terminology is definitorial or not is related to the question
whether or not its definitions are cyclic. For instance, the terminology that consists
of the the single axiom

Human’ = Animal M VhasParent.Human’ (2.1)

contains a cycle, which in this special case is very simple. In general, we define
cycles in a terminology 7 as follows. Let A, B be atomic concepts occurring in 7.
We say that A directly uses B in 7 if B appears on the right-hand side of the

1 Note that some papers use the notion “primitive concept” with a different meaning; e.g., synonymous to
what we call atomic concepts, or to denote the (atomic) left-hand sides of concept inclusions.
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Woman = Person 1 Female
Man = Person 1 —(Person M Female)
Mother = (Person M Female) M 3hasChild.Person
Father = (Person M —(Person M Female)) M 3hasChild.Person

Parent = ((Person M —(Person M Female)) M JhasChild.Person)
LI ((Person M Female) M 3hasChild.Person)

((Person M Female) M 3hasChild.Person)
M JhasChild.(((Person M —(Person M Female))
M 3hasChild.Person)
L ((Person M Female)
M 3hasChild.Person))

MotherWithManyChildren ((Person M Female) M 3hasChild.Person) M > 3 hasChild

MotherWithoutDaughter = ((Person M Female) M 3hasChild.Person)
M VhasChild.(—(Person M Female))

(Person M Female)
M JhasHusband.(Person M —(Person M Female))

Grandmother

Wife

Fig. 2.3. The expansion of the Family TBox in Figure 2.2.

definition of A, and we call uses the transitive closure of the relation directly uses.
Then 7 contains a cycle iff there exists an atomic concept in 7 that uses itself.
Otherwise, 7 is called acyclic.

Unique extensions need not exist if a terminology contains cycles. Consider, for
instance, the terminology that contains only Axiom (2.1). Here, Human’ is a name
symbol and Animal and hasParent are base symbols. For an interpretation where
hasParent relates every animal to its progenitors, many extensions are possible to
interpret Human’ in a such a way that the axiom is satisfied: Human’ can, among
others, be interpreted as the set of all animals, as some species, or any other set of
animals with the property that for each animal it contains also its progenitors.

In contrast, if a terminology 7 is acyclic, then it is definitorial. The reason is that
we can expand through an iterative process the definitions in 7" by replacing each
occurrence of a name on the right-hand side of a definition with the concepts that
it stands for. Since there is no cycle in the set of definitions, the process eventually
stops and we end up with a terminology 7’ consisting solely of definitions of the
form A = C’, where C’ contains only base symbols and no name symbols. We call 7’
the expansion of 7. Note that the size of the expansion can be exponential in the
size of the original terminology [Nebel, 1990b]. The Family TBox in Figure 2.2 is
acyclic. Therefore, we can compute the expansion, which is shown in Figure 2.3.

Proposition 2.1 Let T be a acyclic terminology and T’ be its expansion. Then

(i) 7 and T' have the same name and base symbols;
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(ii) 7 and T' are equivalent;
(iii) both, T and T', are definitorial.

Proof Let 77 be a terminology. Suppose A = C and B = D are definitions in 73
such that B occurs in C. Let C’ be the concept obtained from C' by replacing each
occurrence of B in C' with D, and let 73 be the terminology obtained from 77 by
replacing the definition A = C with A = C’. Then both terminologies have the
same name and base symbols. Moreover, since 75 has been obtained from 7; by
replacing equals by equals, both terminologies have the same models. Since 7" is
obtained from 7 by a sequence of replacement steps like the ones above, this proves
claims (i) and (ii).

Suppose now that 7 is an interpretation of the base symbols. We extend it to an
interpretation Z that covers also the name symbols by setting A = C'7, if A=’
is the definition of A in 7’. Clearly, 7 is a model of 7', and it is the only extension
of J that is a model of 7’. This shows that 7’ is definitorial. Moreover, 7 is
definitorial as well, since it is equivalent to 7. O

It is characteristic for acyclic terminologies, in a sense to be made more precise,
to uniquely define the name symbols in terms of the base symbols.

Of course, there are also terminologies with cycles that are definitorial. Consider
for instance the one consisting of the axiom

A = VRBU3R.(AN-A), (2.2)

which has a cycle. However, since 3R.(AM—A) is equivalent to the bottom concept,
Axiom (2.2) is equivalent to the acyclic axiom

A = VR.B. (2.3)

This example is typical for the general situation.

Theorem 2.2 Fuvery definitorial ALC-terminology is equivalent to an acyclic ter-
minology.

The theorem is a reformulation of Beth’s Definability Theorem [Gabbay, 1972] for
the modal propositional logic K,,, which, as shown by Schild [1991], is a notational
variant of ALC.

2.2.2.8 Fixpoint semantics for terminological cycles

Under the semantics we have studied so far, which is essentially the semantics of
first-order logic, terminologies have definitorial impact only if they are essentially
acyclic. Following Nebel [1991], we shall call this semantics descriptive semantics to
distinguish it from the fixpoint semantics introduced below. Fixpoint semantics are
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motivated by the fact that there are situations where intuitively cyclic definitions are
meaningful and the intuition can be captured by least or greatest fixpoint semantics.

Example 2.3 Suppose that we want to specify the concept of a “man who has
only male offspring,” for short Momo. In particular, such a man is a Mos, that is,
a “man who has only sons.” A Mos can be defined without cycles as

Mos = Man M YhasChild.Man.

For a Momo, however, we want to make a statement about the fillers of the transitive
closure of the role hasChild. Here a recursive definition of Momo seems to be natural.
A man having only male offspring is himself a man, and all his children are men
having only male offspring:

Momo = Man 1 VhasChild.Momo. (2.4)

In order to achieve the desired meaning, we have to interpret this definition un-
der an appropriate fixpoint semantics. We shall show below that greatest fixpoint
semantics captures our intuition here. =

Cycles also appear when we want to model recursive structures, e.g., binary trees.!

Example 2.4 We suppose that there is a set of objects that are Trees and a binary
relation has-branch between objects that leads from a tree to its subtrees. Then
the binary trees are the trees with at most two subtrees that are themselves binary
trees:

BinaryTree = TreeM < 2has-branch M Vhas-branch.BinaryTree.

As with the definition of Momo, a fixpoint semantics will yield the desired meaning.
However, for this example we have to use least fixpoint semantics. "

We now give a formal definition of fixpoint semantics. In a terminology 7, every
name symbol A occurs exactly once as the left-hand side of an axiom A = C.
Therefore, we can view 7 as a mapping that associates to a name symbol A the
concept description 7 (A) = C. With this notation, an interpretation Z is a model of
T if, and only if, AZ = (7 (A))%. This characterization has the flavour of a fixpoint
equation. We exploit this similarity to introduce a family of mappings such that an
interpretation is a model of 7 iff it is a fixpoint of such a mapping.

Let 7 be a terminology, and let J be a fixed base interpretation of 7. By Ext s
we denote the set of all extensions of J. Let 77: Exty — Exts be the mapping

L The following example is taken from [Nebel, 1991].
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that maps the extension Z to the extension 77 (Z) defined by AZ7(@) = (T (A))* for
each name symbol A.

Now, 7 is a fixpoint of 7 iff T = T;(I), ie., iff AL = AT7(D for all name
symbols. This means that, for every definition A = C'in T, we have AT = A77(D) =
(T(A)) = CZ, which means that Z is a model of 7. This proves the following
result.

Proposition 2.5 Let T be a terminology, T be an interpretation, and J be the
restriction of T to the base symbols of T. Then T is a model of T if, and only if, T
is a fizpoint of T.

According to the preceding proposition, a terminology 7 is definitorial iff every
base interpretation J has a unique extension that is a fixpoint of 7.

Example 2.6 To get a feel for why cyclic terminologies are not definitorial, we
discuss as an example the terminology 7M°™M° that consists only of Axiom (2.4).
Consider the base interpretation J defined by

AT = {Charles;, Charless, ...} U {Jamesy, ..., Jamesyst},
Man? = A7,
hasChild” = {(Charles;, Charles(; ) |1 > 1} U

{(James;, James(;;1y) | 1 < i < Last}.

This means that the Charles dynasty does not die out, whereas there is a last
member of the James dynasty.

We want to identify the fixpoints of 7. }"°m°. Note that an individual with-
out children, i.e., without fillers of hasChild, is always in the interpretation of
VhasChild.Momo, no matter how Momo is interpreted. Therefore, if 7 is a fix-
point extension of 7, then Jamesy a5 is in (VhasChiId.Momo)I7 and thus in Momo?.
We conclude that every James is a Momo. Let Z; be the extension of 7 such that
Momo?! comprises exactly the James dynasty. Then it is easy to check that Z; is a
fixpoint. If, in addition to the James dynasty, also some Charles is a Momo, then
all the members of the Charles dynasty before and after him must belong to the
concept Momo. One can easily check that the extension Zo that interprets Momo
as the entire domain is also a fixpoint, and that there is no other fixpoint. n

In order to give definitorial impact to a cyclic terminology 7, we must single out
a particular fixpoint of the mapping 7 if there are more than one. To this end,
we define a partial ordering “<” on the extensions of 7. We say that 7 < 7' if
AT C AT for every name symbol in 7. In the above example, Momo is the only
name symbol. Since Momo?! C Momo?2, we have Z; < To.
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A fixpoint Z of 77 is the least fizpoint (fp) if Z < Z' for every other fixpoint Z'.
We say that Z is a least fizrpoint model of T if T is the least fixpoint of 7. for
some base interpretation J. Under least fixpoint semantics we only admit the least
fixpoint models of 7 as intended interpretations. Greatest fixpoints (gfp), greatest
fixpoint models, and greatest fixpoint semantics are defined analogously. In the
Momo example, Z; is the least and Zy the greatest fixpoint of 7.

2.2.2.4 Euxistence of fixpoint models

Least and greatest fixpoint models need not exist for every terminology.

Example 2.7 As a simple example, consider the axiom
A = —A. (2.5)

If 7 is a model of this axiom, then AZ = A\ AZ  which implies A? = §, an
absurdity.

A terminology containing Axiom (2.5) thus does not have any models, and there-
fore also no gfp (lfp) models.

There are also cases where models (i.e., fixpoints) exist, but there is neither a
least one nor a greatest one. As an example, consider the terminology 7 with the
single axiom

A = VR-A. (2.6)

Let J be the base interpretation with AY = {a,b} and R7 = {(a,b), (b,a)}. Then
there are two fixpoint extensions Zj, o, defined by A%t = {a} and A%2 = {b}.
However, they are not comparable with respect to “=<”. "

In order to identify terminologies with the property that for every base interpre-
tation there exists a least and a greatest fixpoint extension, we draw upon results
from lattice theory. Recall that a lattice is complete if every family of elements has
a least upper bound.

On Exts we have introduced the partial ordering “=<”. For a family of interpre-
tations (Z;)icr in Exty we define o = | |;c; Z; as the pointwise union of the Z;s,
that is, for every name symbol A we have A%0 = Uicr A%i. Then I is the least
upper bound of the Z;s, which shows that (Ext 7, <) is a complete lattice.

A function f:L — L on a lattice (L, =) is monotone if f(x) = f(y) whenever
x = y. Tarski’s Fixpoint Theorem [Tarski, 1955] says that for a monotone function
on a complete lattice the set of fixpoints is nonempty and forms itself a complete
lattice. In particular, there is a least and a greatest fixpoint.

We define that a terminology 7 is monotone if the mapping 77 is monotone for
all base interpretations J. By Tarski’s theorem, such terminologies have greatest
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and least fixpoints. However, to apply the theorem, we must be able to recognize
monotone terminologies. A simple syntactic criterion is the following. We call a
terminology negation free if no negation occurs in it. By an induction over the depth
of concept descriptions one can check that every negation free ALCN -terminology
is monotone.

Proposition 2.8 If 7T is a negation free terminology and J a base interpretation,
then there exist extensions of J that are a lfp-model and a gfp-model of T, respec-
tively.

Negation free terminologies are not the most general class of terminologies having
least and greatest fixpoints. We have seen in Proposition 2.1 that acyclic termi-
nologies are definitorial and thus for a given base interpretation admit only a single
extension that is a model, which then is both a least and a greatest fixpoint model.

We obtain a more refined criterion for the existence of least and greatest fixpoints
if we pay attention to the interplay between cycles and negation. To this end, we
associate to a terminology 7 a dependency graph G, whose nodes are the name
symbols in 7. If 7 contains the axiom A = C, then for every occurrence of the
name symbol A’ in C, there is an arc from A to A’ in G7. Arcs are labeled as
positive and negative. The arc from A to A’ is positive if A" occurs in C in the
scope of an even number of negations, and it is negative if A’ occurs in the scope
of an odd number of negations. A sequence of nodes Ay, ..., A, is a path if there is
an arc in G from A; to A;41 foralli=1,...,n—1. A path is a cycle if 41 = A4,,.

Proposition 2.9 Let 7 be a terminology such that each cycle in G contains an
even number of negative arcs. Then T is monotone.

We call a terminology satisfying the precondition of this proposition syntactically
monotone.

2.2.2.5 Terminologies with inclusion axioms

For certain concepts we may be unable to define them completely. In this case, we
can still state necessary conditions for concept membership using an inclusion. We
call an inclusion whose left-hand side is atomic a specialization.

For example, if a (male) knowledge engineer thinks that the definition of “woman”
in our example TBox (Figure 2.2) is not satisfactory, but if he also feels that he
is not able to define the concept “woman” in all detail, he can require that every
woman is a person with the specialization

Woman C Person. (2.7)

If we allow also specializations in a terminology, then the terminology loses its
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definitorial impact, even if it is acyclic. A set of axioms 7 is a generalized terminol-
ogy if the left-hand side of each axiom is an atomic concept and for every atomic
concept there is at most one axiom where it occurs on the left-hand side.

We shall transform a generalized terminology 7 into a regular terminology 7,
containing definitions only, such that 7 is equivalent to 7 in a sense that will be
specified below. We obtain 7 from 7 by choosing for every specialization A C C
in 7 a new base symbol A and by replacing the specialization A C C with the
definition A = AN C. The terminology 7 is the normalization of T.

If a TBox contains the specialization (2.7), then the normalization contains the
definition

Woman = Woman M Person.

Intuitively, the additional base symbol Woman stands for the qualities that dis-
tinguish a woman among persons. Thus, normalization results in a TBox with a
definition for Woman that is similar to the one in the Family TBox.

Proposition 2.10 Let T be a generalized terminology and T its normalization.

o Every model of T is a model of T.
o For every model T of T there is a model I of T that has the same domain as T
and agrees with T on the atomic concepts and roles in T .

Proof The first claim holds because a model Z of 7 satisfies AT = (A O)F =
AT n Cf, which implies AT C 7. Conversely, if Z is a model of 7, then the
extension Z of Z, defined by AT = AT , is a model of 7, because AT C C7 implies
AT = ATnCT = AT C’j, and therefore 7 satisfies A= AN C. |

Thus, in theory, inclusion axioms do not add to the expressivity of terminolo-
gies. However, in practice, they are a convenient means to introduce terms into a
terminology that cannot be defined completely.

2.2.3 World descriptions

The second component of a knowledge base, in addition to the terminology or TBox,
is the world description or ABoz.

2.2.8.1 Assertions about individuals

In the ABox, one describes a specific state of affairs of an application domain in
terms of concepts and roles. Some of the concept and role atoms in the ABox may
be defined names of the TBox. In the ABox, one introduces individuals, by giving
them names, and one asserts properties of these individuals. We denote individual
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MotherWithoutDaughter(MARY) Father(PETER)
hasChild(MARY, PETER) hasChild(PETER, HARRY)
hasChild(MARY, PAUL)

Fig. 2.4. A world description (ABox).

names as a, b, c. Using concepts C' and roles R, one can make assertions of the
following two kinds in an ABox:

C(a), R(b,c).

By the first kind, called concept assertions, one states that a belongs to (the inter-
pretation of) C, by the second kind, called role assertions, one states that c is a
filler of the role R for b. For instance, if PETER, PAUL, and MARY are individual
names, then Father(PETER) means that Peter is a father, and hasChild(MARY, PAUL)
means that Paul is a child of Mary. An ABox, denoted as A, is a finite set of such
assertions. Figure 2.4 shows an example of an ABox.

In a simplified view, an ABox can be seen as an instance of a relational database
with only unary or binary relations. However, contrary to the “closed-world seman-
tics” of classical databases, the semantics of ABoxes is an “open-world semantics,”
since normally knowledge representation systems are applied in situations where one
cannot assume that the knowledge in the KB is complete.! Moreover, the TBox
imposes semantic relationships between the concepts and roles in the ABox that do
not have counterparts in database semantics.

We give a semantics to ABoxes by extending interpretations to individual names.
From now on, an interpretation 7 = (AI , 'I) not only maps atomic concepts and
roles to sets and relations, but in addition maps each individual name a to an
element a € AZ. We assume that distinct individual names denote distinct objects.
Therefore, this mapping has to respect the unique name assumption (UNA), that is,
if a, b are distinct names, then a” # bX. The interpretation Z satisfies the concept
assertion C(a) if a € C7, and it satisfies the role assertion R(a,b) if (a®,b%) € RZ.
An interpretation satisfies the ABox A if it satisfies each assertion in 4. In this
case we say that Z is a model of the assertion or of the ABox. Finally, Z satisfies
an assertion o or an ABox A with respect to a TBox 7 if in addition to being a
model of « or of A, it is a model of 7. Thus, a model of A and 7 is an abstraction
of a concrete world where the concepts are interpreted as subsets of the domain as
required by the TBox and where the membership of the individuals to concepts and

their relationships with one another in terms of roles respect the assertions in the
ABox.

1 We discuss implications of this difference in semantics in Section 2.2.4.4.
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2.2.8.2 Individual names in the description language

Sometimes, it is convenient to allow individual names (also called nominals) not
only in the ABox, but also in the description language. Some concept constructors
employing individuals occur in systems and have been investigated in the literature.
The most basic one is the “set” (or one-of) constructor, written

{ai,...,an},

where a1, ...,a, are individual names. As one would expect, such a set concept is
interpreted as

{ar,...,an}t = {df,... d%}. (2.8)

With sets in the description language one can for instance define the concept of per-
manent members of the UN security council as { CHINA, FRANCE, RUSSIA, UK, USA}.
In a language with the union constructor “LJ”, a constructor {a} for singleton sets
alone adds sufficient expressiveness to describe arbitrary finite sets since, according
to the semantics of the set constructor in Equation (2.8), the concepts {a1,...,an}
and {a;} U---U{a,} are equivalent.
Another constructor involving individual names is the “fills” constructor

R:a,
for a role R. The semantics of this constructor is defined as
(R:a)f = {deA?|(d,d?) e R}, (2.9)

that is, R : a stands for the set of those objects that have a as a filler of the role R.
To a description language with singleton sets and full existential quantification,
“fills” does not add anything new, since Equation (2.9) implies that R : a and
JR.{a} are equivalent.

We note, finally, that “fills” allows one to express role assertions through concept
assertions: an interpretation satisfies R(a,b) iff it satisfies (3R.{b})(a).

2.2.4 Inferences

A knowledge representation system based on DLs is able to perform specific kinds
of reasoning. As said before, the purpose of a knowledge representation system goes
beyond storing concept definitions and assertions. A knowledge base—comprising
TBox and ABox—has a semantics that makes it equivalent to a set of axioms in
first-order predicate logic. Thus, like any other set of axioms, it contains implicit
knowledge that can be made explicit through inferences. For example, from the
TBox in Figure 2.2 and the ABox in Figure 2.4 one can conclude that Mary is a
grandmother, although this knowledge is not explicitly stated as an assertion.
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The different kinds of reasoning performed by a DL system (see Chapter 8) are
defined as logical inferences. In the following, we shall discuss these inferences,
first for concepts, then for TBoxes and ABoxes, and finally for TBoxes and ABoxes
together. It will turn out that there is one main inference problem, namely the
consistency check for ABoxes, to which all other inferences can be reduced.

2.2.4.1 Reasoning tasks for concepts

When a knowledge engineer models a domain, she constructs a terminology, say 7,
by defining new concepts, possibly in terms of others that have been defined before.
During this process, it is important to find out whether a newly defined concept
makes sense or whether it is contradictory. From a logical point of view, a concept
makes sense for us if there is some interpretation that satisfies the axioms of 7°
(that is, a model of 7)) such that the concept denotes a nonempty set in that
interpretation. A concept with this property is said to be satisfiable with respect
to 7 and unsatisfiable otherwise.

Checking satisfiability of concepts is a key inference. As we shall see, a number of
other important inferences for concepts can be reduced to the (un)satisfiability. For
instance, in order to check whether a domain model is correct, or to optimize queries
that are formulated as concepts, we may want to know whether some concept is
more general than another one: this is the subsumption problem. A concept C' is
subsumed by a concept D if in every model of 7 the set denoted by C' is a subset
of the set denoted by D. Algorithms that check subsumption are also employed
to organize the concepts of a TBox in a taxonomy according to their generality.
Further interesting relationships between concepts are equivalence and disjoininess.

These properties are formally defined as follows. Let 7 be a TBox.

Satisfiability: A concept C is satisfiable with respect to 7 if there exists a model
T of T such that C7 is nonempty. In this case we say also that Z is a model
of C.

Subsumption: A concept C is subsumed by a concept D with respect to 7 if
CT C D? for every model T of 7. In this case we write C "7 D or
TECLCD.

Equivalence: Two concepts C' and D are equivalent with respect to 7 if CZ = DT
for every model Z of 7. In this case we write C =7 D or T |=C = D.

Disjointness: Two concepts C and D are disjoint with respect to 7 if CTND* = ()
for every model Z of 7.

If the TBox 7 is clear from the context, we sometimes drop the qualification “with
respect to 7.7
We also drop the qualification in the special case where the TBox is empty, and
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we simply write = C C D if C is subsumed by D, and = C = D if C and D are

equivalent.

Example 2.11 With respect to the TBox in Figure 2.2, Person subsumes Woman,
both Woman and Parent subsume Mother, and Mother subsumes Grandmother.
Moreover, Woman and Man, and Father and Mother are disjoint. The subsump-
tion relationships follow from the definitions because of the semantics of “M” and
“U”. That Man is disjoint from Woman is due to the fact that Man is subsumed by
the negation of Woman. "

Traditionally, the basic reasoning mechanism provided by DL systems checked
the subsumption of concepts. This, in fact, is sufficient to implement also the other
inferences, as can be seen by the following reductions.

Proposition 2.12 (Reduction to Subsumption) For concepts C, D we have

(i) C is unsatisfiable < C is subsumed by L;
(ii) C and D are equivalent < C is subsumed by D and D is subsumed by C;
(iii) C and D are disjoint < C M D is subsumed by L.

The statements also hold with respect to a TBo.

All description languages implemented in actual DL systems provide the inter-
section operator “I'” and almost all of them contain an unsatisfiable concept. Thus,
most DL systems that can check subsumption can perform all four inferences defined
above.

If, in addition to intersection, a system allows one also to form the negation of a
description, one can reduce subsumption, equivalence, and disjointness of concepts
to the satisfiability problem (see also Smolka [1988]).

Proposition 2.13 (Reduction to Unsatisfiability) For concepts C, D we have

(i) C is subsumed by D < C M =D is unsatisfiable;
(ii) C and D are equivalent < both (CT1—D) and (—C 1 D) are unsatisfiable;
(iii) C and D are disjoint < C 11D is unsatisfiable.

The statements also hold with respect to a TBoz.

The reduction of subsumption can easily be understood if one recalls that, for
sets M, N, we have M C N iff M \ N = (). The reduction of equivalence is correct
because C and D are equivalent if, and only if, C is subsumed by D and D is
subsumed by C'. Finally, the reduction of disjointness is just a rephrasing of the
definition.
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Because of the above proposition, in order to obtain decision procedures for any
of the four inferences we have discussed, it is sufficient to develop algorithms that
decide the satisfiability of concepts, provided the language for which we can decide
satisfiability supports conjunction as well as negation of arbitrary concepts.

In fact, this observation motivated researchers to study description languages in
which, for every concept, one can also form the negation of that concept [Smolka,
1988; Schmidt-Schaufl and Smolka, 1991; Donini et al., 1991b; 1997a]. The ap-
proach to consider satisfiability checking as the principal inference gave rise to a
new kind of algorithms for reasoning in DLs, which can be understood as special-
ized tableaux calculi (see Section 2.3 in this chapter and Chapter 3). Also, the most
recent generation of DL systems, like KRIS [Baader and Hollunder, 1991b], CRACK
[Bresciani et al., 1995], FacT [Horrocks, 1998b], DLP [Patel-Schneider, 1999], and
RACE [Haarslev and Moller, 2001e], are based on satisfiability checking, and a
considerable amount of research work is spent on the development of efficient im-
plementation techniques for this approach [Baader et al., 1994; Horrocks, 1998b;
Horrocks and Patel-Schneider, 1999; Haarslev and Moller, 2001c].

In an AL-language without full negation, subsumption and equivalence cannot be
reduced to unsatisfiability in the simple way shown in Proposition 2.13 and therefore
these inferences may be of different complexity.

As seen in Proposition 2.12, from the viewpoint of worst-case complexity, sub-
sumption is the most general inference for any AL-language. The next proposition
shows that unsatisfiability is a special case of each of the other problems.

Proposition 2.14 (Reducing Unsatisfiability) Let C be a concept. Then the
following are equivalent:

(i) C is unsatisfiable;
(ii) C is subsumed by L;
(i)

(iv)

The statements also hold with respect to a TBoz.

C and L are equivalent;
C and T are disjoint.

From Propositions 2.12 and 2.14 we see that, in order to obtain upper and lower
complexity bounds for inferences on concepts in AL-languages, it suffices to assess
lower bounds for unsatisfiability and upper bounds for subsumption. More precisely,
for each AL-language, an upper bound for the complexity of the subsumption prob-
lem is also an upper bound for the complexity of the unsatifiability, the equivalence,
and the disjointness problem. Moreover, a lower bound for the complexity of the
unsatifiability problem is also a lower bound for the complexity of the subsumption,
the equivalence, and the disjointness problem.
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2.2.4.2 Eliminating the TBox

In applications, concepts usually come in the context of a TBox. However, for
developing reasoning procedures it is conceptually easier to abstract from the TBox
or, what amounts to the same, to assume that it is empty.

We show that, if 7 is an acyclic TBox, we can always reduce reasoning problems
with respect to 7 to problems with respect to the empty TBox. As we have seen in
Proposition 2.1, 7 is equivalent to its expansion 7’. Recall that in the expansion
every definition is of the form A = D such that D contains only base symbols,
but no name symbols. Now, for each concept C' we define the expansion of C' with
respect to T as the concept C’ that is obtained from C' by replacing each occurrence
of a name symbol A in C by the concept D, where A = D is the definition of A
in 77, the expansion of 7.

For example, we obtain the expansion of the concept

Woman M Man (2.10)

with respect to the TBox in Figure 2.2 by considering the expanded TBox in Fig-
ure 2.3, and replacing Woman and Man with the right-hand sides of their definitions
in this expansion. This results in the concept

Person M Female M Person M —(Person M Female). (2.11)

We can readily deduce a number of facts about expansions. Since the expansion C’
is obtained from C' by replacing names with descriptions in such a way that both
are interpreted in the same way in any model of 7, it follows that

e O =7C".

Hence, C' is satisfiable w.r.t. 7 iff C’ is satisfiable w.r.t. 7. However, C’ contains
no defined names, and thus C” is satisfiable w.r.t. 7 iff it is satisfiable. This yields
that

e C is satisfiable w.r.t. T iff C' is satisfiable.

If D is another concept, then we have also D =7 D’. Thus, C C7 D iff O/ T D',
and C =7 D iff C' =7 D’. Again, since C’ and D’ contain only base symbols, this
implies

e TECLCD iff EC'CD;
e 7E=C=D iff EC'=D".

With similar arguments we can show that

e C and D are disjoint w.r.t. T iff C" and D’ are disjoint.
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Summing up, expanding concepts with respect to an acyclic TBox allows one
to get rid of the TBox in reasoning problems. Going back to our example from
above, this means that, in order to verify whether Man and Woman are disjoint with
respect to the Family TBox, which amounts to checking whether Man M Woman is
unsatisfiable, it suffices to check that the concept (2.11) is unsatisfiable.

Expanding concepts may be computationally costly, since in the worst case the
size of 7" is exponential in the size of 7, and therefore C’ may be larger than C' by
a factor that is exponential in the size of 7. A complexity analysis of the difficulty
of reasoning with respect to TBoxes shows that the expansion of definitions is a
source of complexity that cannot always be avoided (see Subsection 2.3.3 of this
chapter and Chapter 3).

2.2.4.8 Reasoning tasks for ABoxes

After a knowledge engineer has designed a terminology and has used the reasoning
services of her DL system to check that all concepts are satisfiable and that the
the expected subsumption relationships hold, the ABox can be filled with assertions
about individuals. We recall that an ABox contains two kinds of assertions, concept
assertions of the form C'(a) and role assertions of the form R(a,b). Of course, the
representation of such knowledge has to be consistent, because otherwise—from the
viewpoint of logic—one could draw arbitrary conclusions from it. If, for example,
the ABox contains the assertions Mother(MARY) and Father(MARY), the system
should be able to find out that, together with the Family TBox, these statements
are inconsistent.

In terms of our model theoretic semantics we can easily give a formal definition
of consistency. An ABox A is consistent with respect to a TBox T, if there is an
interpretation that is a model of both A and 7. We simply say that A is consistent
if it is consistent with respect to the empty TBox.

For example, the set of assertions {Mother(MARY), Father(MARY)} is consistent
(with respect to the empty TBox), because without any further restrictions on the
interpretation of Mother and Father, the two concepts can be interpreted in such a
way that they have a common element. However, the assertions are not consistent
with respect to the Family TBox, since in every model of it, Mother and Father are
interpreted as disjoint sets.

Similarly as for concepts, checking the consistency of an ABox with respect to
an acyclic TBox can be reduced to checking an expanded ABox. We define the
ezxpansion of A with respect to 7 as the ABox A’ that is obtained from A by
replacing each concept assertion C(a) in A with the assertion C’(a), where C’ is
the expansion of C' with respect to 7.! In every model of 7, a concept C and its

1 We expand only concept assertions because the description language considered until now does not pro-
vide constructors for role descriptions and therefore we have not considered TBoxes with role definitions.
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expansion C’ are interpreted in the same way. Therefore, A’ is consistent w.r.t. 7
iff A is so. However, since A’ does not contain a name symbol defined in 7, it is
consistent w.r.t. 7 iff it is consistent. We conclude:

e A is consistent w.r.t. T iff its expansion A’ is consistent.

A technique to check the consistency of ALCN-ABoxes is discussed in Section 2.3.2.

Other inferences that we are going to introduce can also be defined with respect
to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for
ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded
ABoxes. For the sake of simplicity, we shall give only definitions of inferences with
ABoxes alone, and leave it to the reader to formulate the appropriate generalization
to inferences with respect to TBoxes and to verify that they can be reduced to
inferences about expansions, provided the TBox is acyclic.

Over an ABox A, one can pose queries about the relationships between concepts,
roles and individuals. The prototypical ABox inference on which such queries are
based is the instance check, or the check whether an assertion is entailed by an
ABox. We say that an assertion « is entailed by A and we write A = a, if every
interpretation that satisfies A, that is, every model of A, also satisfies a. If «
is a role assertion, the instance check is easy, since our description language does
not contain constructors to form complex roles. If « is of the form C(a), we can
reduce the instance check to the consistency problem for ABoxes because there is
the following connection:

e AEC(a) iff AU{=C(a)} is inconsistent.

Also reasoning about concepts can be reduced to consistency checking. We have
seen in Proposition 2.13 that the important reasoning problems for concepts can be
reduced to the one to decide whether a concept is (un)satisfiable. Similarly, concept
satisfiability can be reduced to ABox consistency because for every concept C' we
have

o C is satisfiable iff {C(a)} is consistent,

where a is an arbitrarily chosen individual name. Conversely, Schaerf has shown
that ABox consistency can be reduced to concept satisfiability in languages with
the “set” and the “fills” constructor [Schaerf, 1994b]. If these constructors are not
available, however, then instance checking may be harder than the satisfiability and
the subsumption problem [Donini et al., 1994b)].

For applications, usually more complex inferences than consistency and instance

If the description language is richer, and TBoxes contain also role definitions, then they clearly have to
be taken into account in the definition of expansions.
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checking are required. If we consider a knowledge base as a means to store informa-
tion about individuals, we may want to know all individuals that are instances of a
given concept description C, that is, we use the description language to formulate
queries. In our example, we may want to know from the system all parents that
have at least two children—for instance, because they are entitled to a specific fam-
ily tax break. The retrieval problem is, given an ABox A and a concept C, to find
all individuals a such that A = C(a). A non-optimized algorithm for a retrieval
query can be realized by testing for each individual occurring in the ABox whether
it is an instance of the query concept C.

The dual inference to retrieval is the realization problem: given an individual
a and a set of concepts, find the most specific concepts C from the set such that
A = C(a). Here, the most specific concepts are those that are minimal with respect
to the subsumption ordering C. Realization can, for instance, be used in systems
that generate natural language if terms are indexed by concepts and if a term as
precise as possible is to be found for an object occurring in a discourse.

2.2.4.4 Closed- vs. open-world semantics

Often, an analogy is established between databases on the one hand and DL knowl-
edge bases on the other hand (see also Chapter 16). The schema of a database
is compared to the TBox and the instance with the actual data is compared to
the ABox. However, the semantics of ABoxes differs from the usual semantics of
database instances. While a database instance represents exactly one interpreta-
tion, namely the one where classes and relations in the schema are interpreted by the
objects and tuples in the instance, an ABox represents many different interpreta-
tions, namely all its models. As a consequence, absence of information in a database
instance is interpreted as negative information, while absence of information in an
ABox only indicates lack of knowledge.

For example, if the only assertion about Peter is hasChild(PETER, HARRY), then
in a database this is understood as a representation of the fact that Peter has only
one child, Harry. In an ABox, the assertion only expresses that, in fact, Harry is
a child of Peter. However, the ABox has several models, some in which Harry is
the only child and others in which he has brothers or sisters. Consequently, even if
one also knows (by an assertion) that Harry is male, one cannot deduce that all of
Peter’s children are male. The only way of stating in an ABox that Harry is the only
child is by doing so explicitly, that is by adding the assertion (< 1 hasChild)(PETER).
This means that, while the information in a database is always understood to be
complete, the information in an ABox is in general viewed as being incomplete.
The semantics of ABoxes is therefore sometimes characterized as an “open-world”
semantics, while the traditional semantics of databases is characterized as a “closed-
world” semantics.
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hasChild(IOKASTE, OEDIPUS) hasChild(IOKASTE, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) —Patricide(THERSANDROS)

Fig. 2.5. The Oedipus ABox Age.

This view has consequences for the way queries are answered. Essentially, a
query is a description of a class of objects. In our setting, we assume that queries
are concept descriptions. A database (in the sense introduced above) is a listing
of a single finite interpretation. A finite interpretation, say Z, could be written up
as a set of assertions of the form A(a) and R(b,c), where A is an atomic concept
and R an atomic role. Such a set looks syntactically like an ABox, but is not an
ABox because of the difference in semantics. Answering a query, represented by a
complex concept C, over that database amounts to computing CZ as it was defined
in Section 2.2.1. From a logical point of view this means that query evaluation in
a database is not logical reasoning, but finite model checking (i.e., evaluation of a
formula in a fixed finite model).

Since an ABox represents possibly infinitely many interpretations, namely its
models, query answering is more complex: it requires nontrivial reasoning. Here
we are only concerned with semantical issues (algorithmic aspects will be treated
in Section 2.3). To illustrate the difference between a semantics that identifies a
database with a single model, and the open-world semantics of ABoxes, we dis-
cuss the so-called Oedipus example, which has stimulated a number of theoretical
developments in DL research.

Example 2.15 The example is based on the Oedipus story from ancient Greek
mythology. In a nutshell, the story recounts how Oedipus killed his father, married
his mother Iokaste, and had children with her, among them Polyneikes. Finally,
also Polyneikes had children, among them Thersandros.

We suppose the ABox A, in Figure 2.5 represents some rudimentary facts about
these events. For the sake of the example, our ABox asserts that Oedipus is a
patricide and that Thersandros is not, which is represented using the atomic concept
Patricide.

Suppose now that we want to know from the ABox whether Iokaste has a child
that is a patricide and that itself has a child that is not a patricide. This can be
expressed as the entailment problem

Aoe = (3hasChild.(Patricide M JhasChild.—Patricide)) (IOKASTE) ?

One may be tempted to reason as follows. Iokaste has two children in the ABox.
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One, Oedipus, is a patricide. He has one child, Polyneikes. But nothing tells us that
Polyneikes is not a patricide. So, Oedipus is not the child we are looking for. The
other child is Polyneikes, but again, nothing tells us that Polyneikes is a patricide.
So, Polyneikes is also not the child we are looking for. Based on this reasoning, one
would claim that the assertion about Iokaste is not entailed.

However, the correct reasoning is different. All the models of A, can be divided
into two classes, one in which Polyneikes is a patricide, and another one in which he
is not. In a model of the first kind, Polyneikes is the child of Iokaste that is a patri-
cide and has a child, namely Thersandros, that isn’t. In a model of the second kind,
Oedipus is the child of Iokaste that is a patricide and has a child, namely Polyneikes,
that isn’t. Thus, in all models Iokaste has a child that is a patricide and that itself
has a child that is not a patricide (though this is not always the same child). This
means that the assertion (JhasChild.(Patricide M 3hasChild.—Patricide))(IOKASTE) is
indeed entailed by Age. n

As this example shows, open-world reasoning may require to make case analyses.
As will be explained in more detail in Chapter 3, this is one of the reasons why
inferences in DLs are often more complex than query answering in databases.

2.2.5 Rules

The knowledge bases we have discussed so far consist of a TBox 7 and an ABox A.
We denote such a knowledge base as a pair K = (7, A).

In some DL systems, such as CLASSIC [Brachman et al., 1991] or Loom [Mac-
Gregor, 1991al, in addition to terminologies and world descriptions, one can also
use rules to express knowledge. The simplest variant of such rules are expressions
of the form

C=D,

where C, D are concepts. The meaning of such a rule is “if an individual is proved
to be an instance of C, then derive that it is also an instance of D.” Such rules are
often called trigger rules.

Operationally, the semantics of a finite set R of trigger rules can be described
by a forward reasoning process. Starting with an initial knowledge base IC, a se-
ries of knowledge bases K©, K1) ... is constructed, where KO = K and K(+D
is obtained from K by adding a new assertion D(a) whenever R contains a rule
C = D such that K@ |= C(a) holds, but K does not contain D(a). This pro-
cess eventually halts because the initial knowledge base contains only finitely many
individuals and there are only finitely many rules. Hence, there are only finitely
many assertions D(a) that can possibly be added. The result of the rule applica-
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tions is a knowledge base (™ that has the same TBox as K(© and whose ABox
is augmented by the membership assertions introduced by the rules. We call this
final knowledge base the procedural extension of K and denote it as K. It is easy to
see that this procedural extension is independent of the order of rule applications.
Consequently, a set of trigger rules R uniquely specifies how to generate, for each
knowledge base K, an extended knowledge base K. The semantics of a knowledge
base K, augmented by a set of trigger rules, can thus be understood as the set of
models of K.

This defines the semantics of trigger rules only operationally. It would be prefer-
able to specify the semantics declaratively and then to prove that the extension
computed with the trigger rules correctly represents this semantics. It might be
tempting to use the declarative semantics of inclusion axioms as semantics for rules.
However, this does not correctly reflect the operational semantics given above. An
important difference between the trigger rule C = D and the inclusion axiom
C C D is that the trigger rule is not equivalent to its contrapositive =D = —C.
In addition, when applying trigger rules one does not make a case analysis. For
example, the inclusions C' = D and -C' C D imply that every object belongs to D,
whereas none of the trigger rules C' = D and —C' = D applies to an individual a
for which neither C'(a) nor =C'(a) can be proven.

In order to capture the meaning of trigger rules in a declarative way, we must
augment description logics by an operator K, which does not refer to objects in the
domain, but to what the knowledge base knows about the domain. Therefore, K
is an epistemic operator. More information on epistemic operators in DLs can be
found in Chapter 6.

To introduce the K-operator, we enrich both the syntax and the semantics of de-
scription languages. Originally, the K-operator has been defined for ALC [Donini
et al., 1992b; 1998a]. In this subsection, we discuss only how to extend the basic
language AL. For other languages, one can proceed analogously (see also Chap-
ter 6).

First, we add one case to the syntax rule in Section 2.2.1.1 that allows us to
construct epistemic concepts:

c¢,D — KC (epistemic concept).

Intuitively, the concept KC' denotes those objects for which the knowledge base
knows that they are instances of C.
Next, using K, we translate trigger rules C' = D into inclusion axioms

KC C D. (2.12)

Intuitively, the K operator in front of the concept C' has the effect that the axiom
is only applicable to individuals that appear in the ABox and for which ABox and
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TBox imply that they are instances of C. Such a restricted applicability prevents the
inclusion axiom from influencing satisfiability or subsumption relationships between
concepts. In the sequel, we will define a formal semantics for the operator K that
has exactly this effect.

A rule knowledge base is a triple K = (7, A, R), where 7 is a TBox, A is an ABox,
and R is a set of rules written as inclusion axioms of the form (2.12). The procedural
extension of such a triple is the knowledge base K = (7, .A) that is obtained from
(7,.A) by applying the trigger rules as described above.

The semantics of epistemic inclusions will be defined in such a way that it applies
only to individuals in the knowledge base that provably are instances of C', but not to
arbitrary domain elements, which would be the case if we dropped K. The semantics
will go beyond first-order logic because we not only have to interpret concepts, roles
and individuals, but also have to model the knowledge of a knowledge base. The
fact that a knowledge base has knowledge about the domain can be understood
in such a way that it considers only a subset W of the set of all interpretations as
possible states of the world. Those individuals that are interpreted as elements of C
under all interpretations in W are then “known” to be in C.

To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that:

(i) there is a fixed countably infinite set A that is the domain of every interpre-
tation (Common Domain Assumption);

(ii) there is a mapping v from the individuals to the domain elements that fixes
the way individuals are interpreted (Rigid Term Assumption).

The Common Domain Assumption guarantees that all interpretations speak about
the same domain. The Rigid Term Assumption allows us to identify each individual
symbols with exactly one domain element. These assumptions do not essentially
reduce the number of possible interpretations. As a consequence, properties like
satisfiability and subsumption of concepts are the same independently of whether
we define them with respect to arbitrary interpretations or those that satisfy the
above assumptions.

Now, we define an epistemic interpretation as a pair (Z,W), where Z is a first-
order interpretation and W is a set of first-order interpretations, all satisfying the
above assumptions. Every epistemic interpretation gives rise to a unique map-
ping ‘T associating concepts and roles with subsets of A and A x A, respectively.
For T, L, for atomic concepts, negated atomic concepts, and for atomic roles, -Z"Y
agrees with -Z. For intersections, value restrictions, and existential quantifications,
the definition is similar to the one of -Z:

(D = cPWnDptW
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(VR.C)YEYW = {aeA|Vb (a,b) € REW —be PV}
AR.TYEYW = {aeA|3b. (a,b) € REV}.

LW can be defined analogously. Note that for a concept C

For other constructors,
without an occurrence of K, the sets CTYW and C? are identical. The set of in-
terpretations W comes into play when we define the semantics of the epistemic

operator:

(KCy™W = ) ¢
Jew

It would also be possible to allow the operator K to occur in front of roles and
to define the semantics of role expressions of the form KR analogously. However,
since epistemic roles are not needed to explain the semantics of rules, we restrict
ourselves to epistemic concepts.

An epistemic interpretation (Z,W) satisfies an inclusion C' C D if CTW € DTW,
and an equality C' = D if CTW = DWW, Tt satisfies an assertion C(a) if a?"V =
v(a) € CFW, and an assertion R(a,b) if (a2, 02") = (y(a),v(b)) € RTW. It
satisfies a rule knowledge base K = (7, A, R) if it satisfies every axiom in 7, every
assertion in A, and every rule in R.

An epistemic model for a rule knowledge base K is a mazimal nonempty set W of
first-order interpretations such that, for each Z € W, the epistemic interpretation
(Z,W) satisfies K.

Note that, if (7, .A) is first-order satisfiable, then the set of all first-order models of
(7,.A) is the only epistemic model of the rule knowledge base K = (7, A, 0), whose
rule set is empty. A similar statement holds for arbitrary rule knowledge bases.
One can show that, if WW; and W, are epistemic models, then the union W; UW; is
one, too, which implies Wi = W» because of the maximality of epistemic models.

Proposition 2.16 Let K = (7, A, R) be a rule knowledge base such that (T, .A) is
first-order satisfiable. Then K has a unique epistemic model.

Example 2.17 Let R consist of the rule
KStudent C Veats.JunkFood. (2.13)

The rule states that “those individuals that are known to be students eat only junk
food”.
We consider the rule knowledge base K1 = (0,41, R), where

Ay = {Student(PETER)}.

Let us determine the epistemic model W of IC;. Every first-order interpretation
Z € W must satisfy A;. Therefore, in every such Z, we have that Student(PETER)
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is true, and thus Peter is known to be a student. Since W satisfies Rule (2.13), also
the assertion Veats.JunkFood(PETER) holds in every Z.

For any other domain element a € A, there is at least one interpretation in W
where a is not a student. Thus, Peter is the only domain element to which the rule
applies. Summing up, the epistemic model of Xy consists exactly of the first order
models of A; U {Veats.JunkFood(PETER)}.

Next we demonstrate with this example that the epistemic semantics for rules
disallows for contrapositive reasoning. We consider the rule knowledge base Ko =
(0, A2, R), where

Ay = {—Veats.JunkFood(PETER)}.

In this case, —Veats.JunkFood(PETER) is true in every first-order interpretation of
the epistemic model WW. However, because of the maximality of W, there is at least
one interpretation in WV in which Peter is a student and another one where Peter is
not a student. Therefore, Peter is not known to be a student. Thus, the epistemic
model of o consists exactly of the first order models of A,. The rule is satisfied
because the antecedent is false. n

Clearly, the procedural extension of a rule knowledge base IC contains only asser-
tions that must be satisfied by the epistemic model of K. It can be shown that the
assertions added to K by the rule applications are in fact, as stated in the following
proposition, a first-order representation of the information that is implicit in the
rules (see [Donini et al., 1998a] for a proof).

Proposition 2.18 Let K = (7, A, R) be a rule knowledge base. If (T,A) is first-
order satisfiable, then the epistemic model of K consists precisely of the first-order
models of the procedural extension K = (T, A).

2.3 Reasoning algorithms

In Section 2.2.4 we have seen that all the relevant inference problems can be re-
duced to the consistency problem for ABoxes, provided that the DL at hand allows
for conjunction and negation. However, the description languages of all the early
and also of some of the present day DL systems do not allow for negation. For
such DLs, subsumption of concepts can usually be computed by so-called structural
subsumption algorithms, i.e., algorithms that compare the syntactic structure of
(possibly normalized) concept descriptions. In the first subsection, we will consider
such algorithms in more detail. While they are usually very efficient, they are only
complete for rather simple languages with little expressivity. In particular, DLs
with (full) negation and disjunction cannot be handled by structural subsumption
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algorithms. For such languages, so-called tableau-based algorithms have turned out
to be very useful. In the area of Description Logics, the first tableau-based al-
gorithm was presented by Schmidt-Schaufl and Smolka [1991] for satisfiability of
ALC-concepts. Since then, this approach has been employed to obtain sound and
complete satisfiability (and thus also subsumption) algorithms for a great variety of
DLs extending ALC (see, e.g., [Hollunder et al., 1990; Hollunder and Baader, 1991a;
Donini et al., 1997a; Baader and Sattler, 1999] for languages with number
restrictions; [Baader, 1991] for transitive closure of roles and [Sattler, 1996;
Horrocks and Sattler, 1999] for transitive roles; and [Baader and Hanschke, 1991a;
Hanschke, 1992; Haarslev et al., 1999] for constructors that allow to refer to
concrete domains such as numbers). In addition, it has been extended to the
consistency problem for ABoxes [Hollunder, 1990; Baader and Hollunder, 1991b;
Donini et al., 1994b; Haarslev and Méller, 2000], and to TBoxes allowing for gen-
eral sets of inclusion axioms and more [Buchheit et al., 1993a; Baader et al., 1996].
In the second subsection, we will first present a tableau-based satisfiability algo-
rithm for ALCN-concepts, then show how it can be extended to an algorithm for
the consistency problem for ABoxes, and finally explain how general inclusion ax-
ioms can be taken into account. The third subsection is concerned with reasoning
w.r.t. acyclic and cyclic terminologies.

Instead of designing new algorithms for reasoning in DLs, one can also try to re-
duce the problem to a known inference problem in logics (see also Chapter 4). For
example, decidability of the inference problems for ALC and many other DLs can
be obtained as a consequence of the known decidability result for the two variable
fragment of first-order predicate logic. The language £? consists of all formulae
of first-order predicate logic that can be built with the help of predicate symbols
(including equality) and constant symbols (but without function symbols) using
only the variables x,y. Decidability of £? has been shown in [Mortimer, 1975).
It is easy to see that, by appropriately re-using variable names, any concept de-
scription of the language ALC can be translated into an £2-formula with one free
variable (see [Borgida, 1996] for details). A direct translation of the concept de-
scription VR.(3R.A) yields the formula Vy.(R(z,y) — (3z.(R(y,z) A A(2)))). Since
the subformula 3z.(R(y, z) A A(z)) does not contain z, this variable can be re-used:
renaming the bound variable z into = yields the equivalent formula Vy.(R(z,y) —
(Fz.(R(y,z)NA(x)))), which uses only two variables. This connection between ALC
and £2 shows that any extension of ALC by constructors that can be expressed with
the help of only two variables yields a decidable DL. Number restrictions and com-
position of roles are examples of constructors that cannot be expressed within £2.
Number restrictions can, however, be expressed in C?, the extension of £? by count-
ing quantifiers, which has recently been shown to be decidable [Gridel et al., 1997b;
Pacholski et al., 1997]. It should be noted, however, that the complexity of the de-
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cision procedures obtained this way is usually higher than necessary: for example,
the satisfiability problem for £? is NEXPTIME-complete, whereas satisfiability of
ALC-concept descriptions is “only” PSPACE-complete.

Decision procedures with lower complexity can be obtained by using the con-
nection between DLs and propositional modal logics. Schild [1991] was the first
to observe that the language ALC is a syntactic variant of the propositional multi-
modal logic K, and that the extension of ALC by transitive closure of roles [Baader,
1991] corresponds to Propositional Dynamic Logic (PDL). In particular, some of
the algorithms used in propositional modal logics for deciding satisfiability are very
similar to the tableau-based algorithms newly developed for DLs. This connec-
tion between DLs and modal logics has been used to transfer decidability results
from modal logics to DLs [Schild, 1993; 1994; De Giacomo and Lenzerini, 1994a;
1994b] (see also Chapter 5). Instead of using tableau-based algorithms, decidabil-
ity of certain propositional modal logics (and thus of the corresponding DLs), can
also be shown by establishing the finite model property (see, e.g., [Fitting, 1993],
Section 1.14) of the logic (i.e., showing that a formula/concept is satisfiable iff it is
satisfiable in a finite interpretation) or by employing tree automata (see, e.g, [Vardi
and Wolper, 1986]).

2.3.1 Structural subsumption algorithms

These algorithms usually proceed in two phases. First, the descriptions to be tested
for subsumption are normalized, and then the syntactic structure of the normal
forms is compared. For simplicity, we first explain the ideas underlying this ap-
proach for the small language F Ly, which allows for conjunction (C'M D) and value
restrictions (VR.C'). Subsequently, we show how the bottom concept (L), atomic
negation (—A), and number restrictions (<n R and >n R) can be handled. Evi-
dently, FLq and its extension by bottom and atomic negation are sublanguages of
AL, while adding number restrictions to the resulting language yields the DL ALN .
An FLy-concept description is in normal form iff it is of the form

A M- A, NMVR.Ci M- - TMVR,.Ch,

where A1,..., A, are distinct concept names, Ry, ..., R, are distinct role names,
and C1,...,Cy, are FLp-concept descriptions in normal form. It is easy to see
that any description can be transformed into an equivalent one in normal form,
using associativity, commutativity and idempotence of I, and the fact that the
descriptions VR.(C'M D) and (VR.C) M (VR.D) are equivalent.

Proposition 2.19 Let

A M- A,NMVYR.C1 M- - MVR,.C,,
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be the normal form of the FLg-concept description C, and
Bim---MByVS1.DyM---1VS,.Dy,

the normal form of the FLg-concept description D. Then C T D iff the following
two conditions hold:

(i) for alli,1 <i <k, there exists j,1 < j < m such that B; = A;.
(ii) For alli,1 <1i <1, there exists j,1 < j <n such that S; = Rj and C; T Dj.

It is easy to see that this characterization of subsumption is sound (i.e., the “if”
direction of the proposition holds) and complete (i.e., the “only-if” direction of the
proposition holds as well). This characterization yields an obvious recursive algo-
rithm for computing subsumption, which can easily be shown to be of polynomial
time complexity [Levesque and Brachman, 1987).

If we extend FLy by language constructors that can express unsatisfiable con-
cepts, then we must, on the one hand, change the definition of the normal form.
On the other hand, the structural comparison of the normal forms must take into
account that an unsatisfiable concept is subsumed by every concept. The simplest
DL where this occurs is F L, the extension of FLy by the bottom concept L.

An FL | -concept description is in normal form iff it is L or of the form

Aim--MA, NMYR.Ci M ---NVYR,.Cy,

where Ai,...,A,, are distinct concept names different from 1, Ry,..., R, are
distinct role names, and C1,...,C, are FL  -concept descriptions in normal form.
Again, such a normal form can easily be computed. In principle, one just computes
the FLy-normal form of the description (where L is treated as an ordinary concept
name): By M- M By NVR;.D1MN---MVR,.D,. If one of the B;s is L, then replace
the whole description by L. Otherwise, apply the same procedure recursively to
the Djs. For example, the FLy-normal form of VR.VR.BMAMVR.(AMNVR.L) is

ANVR.(ANVYR.(BM 1)),
which yields the F L | -normal form
ANVR.(ANVR.L).

The structural subsumption algorithm for FL£; works just like the one for FLy,
with the only difference that 1 is subsumed by any description. For example,
VRYR.BMNAMVR.(ANVR.L1) C VRYR.AMAMVR.A since the recursive comparison
of their £, -normal forms ANVR.(AMVR.L) and AMVR.(AMNVR.A) finally leads
to the comparison of L and A.

The extension of F£ by atomic negation (i.e., negation applied to concept names
only) can be treated similarly. During the computation of the normal form, negated
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concept names are just treated like concept names. If, however, a name and its
negation occur on the same level of the normal form, then 1 is added, which can
then be treated as described above. For example, VR.mAMNANVYR.(ANVR.B) is first
transformed into AMVYR.(AM—-AMVYR.B), then into ANVR.(LMNAN-ANVYR.B),
and finally into AT VR.L. The structural comparison of the normal forms treats
negated concept names just like concept names.

Finally, if we consider the language ALN, the additional presence of number
restrictions leads to a new type of conflict. On the one hand, as in the case of
atomic negation, number restrictions may be conflicting with each other (e.g., >2 R
and <1R). On the other hand, at-least restrictions >n R for n > 1 are in conflict
with value restrictions VR. 1 that prohibit role successors. When computing the
normal form, one can again treat number restrictions like concept names, and then
take care of the new types of conflicts by introducing L and using it for normal-
ization as described above. During the structural comparison of normal forms, one
must also take into account inherent subsumption relationships between number
restrictions (e.g., 2n R C >m R iff n > m). A more detailed description of a struc-
tural subsumption algorithm working on a graph-like data structure for a language
extending ALN can be found in [Borgida and Patel-Schneider, 1994].

For larger DLs, structural subsumption algorithms usually fail to be complete.
In particular, they cannot treat disjunction, full negation, and full existential re-
striction IR.C. For languages including these constructors, the tableau-approach
to designing subsumption algorithms has turned out to be quite useful.

2.3.2 Tableau algorithms

Instead of directly testing subsumption of concept descriptions, these algorithms
use negation to reduce subsumption to (un)satisfiability of concept descriptions: as
we have seen in Subsection 2.2.4, C' C D iff C'T1 =D is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for ALCN in more de-
tail, we illustrate the underlying ideas by two simple examples. Let A, B be concept
names, and let R be a role name.

As a first example, assume that we want to know whether (3R.A) M (3IR.B) is
subsumed by dR.(A M B). This means that we must check whether the concept
description

C=((3R.A)MN(3IR.B)N—~(3IR.(ANB))
is unsatisfiable.

First, we push all negation signs as far as possible into the description, using
de Morgan’s rules and the usual rules for quantifiers. As a result, we obtain the
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description

Co = (3R.A) M (3R.B) NVYR.(~A U -B),

which is in megation mormal form, i.e., negation occurs only in front of concept
names.

Then, we try to construct a finite interpretation Z such that CZ # (). This means
that there must exist an individual in AZ that is an element of COI .

The algorithm just generates such an individual, say b, and imposes the constraint
be COI on it. Since Cj is the conjunction of three concept descriptions, this means
that b must satisfy the following three constraints: b € (3R.A)%, b € (3R.B)*, and
be (VR.(-AU-B))~.

From b € (3R.A)? we can deduce that there must exist an individual ¢ such that
(b,c) € R? and ¢ € AT. Analogously, b € (3R.B)? implies the existence of an
individual d with (b,d) € R and d € BZ. In this situation, one should not assume
that ¢ = d since this would possibly impose too many constraints on the individuals
newly introduced to satisfy the existential restrictions on b. Thus:

o For any existential restriction the algorithm introduces a new individual as role
filler, and this individual must satisfy the constraints expressed by the restriction.

Since b must also satisfy the value restriction VR.(—A U =B), and ¢, d were
introduced as R-fillers of b, we obtain the additional constraints ¢ € (=A L =B)?
and d € (=AU -B)%. Thus:

e The algorithm uses value restrictions in interaction with already defined role re-
lationships to impose new constraints on individuals.

Now ¢ € (wAU—-B)? means that ¢ € (=A4)? or ¢ € (-B)%, and we must choose one
of these possibilities. If we assume ¢ € (—A)Z, this clashes with the other constraint
c € AT, which means that this search path leads to an obvious contradiction. Thus
we must choose ¢ € (=B)?. Analogously, we must choose d € (=A) in order to
satisfy the constraint d € (A U —B)? without creating a contradiction to d € BZ.
Thus:

e For disjunctive constraints, the algorithm tries both possibilities in successive at-
tempts. It must backtrack if it reaches an obvious contradiction, i.e., if the same
individual must satisfy constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an
obvious contradiction. This shows that Cy is satisfiable, and thus (3R.A) M (3R.B)
is not subsumed by FR.(AMB). The algorithm has generated an interpretation Z as
witness for this fact: AT = {b,¢,d}; RT = {(b,c), (b,d)}; AT = {c} and BT = {d}.
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For this interpretation, b € CZ. This means that b € ((3R.A) N (IR.B))%, but
b¢ (3R.(AN B))L.

In our second example, we add a number restriction to the first concept of the
above example, i.e., we now want to know whether (3R.A) M (3R.B) M <1R is
subsumed by JR.(A M B). Intuitively, the answer should now be “yes” since <1R
in the first concept ensures that the R-filler in A coincides with the R-filler in B,
and thus there is an R-filler in AN B. The tableau-based satisfiability algorithm first
proceeds as above, with the only difference that there is the additional constraint
b € (<1R).. In order to satisfy this constraint, the two R-fillers ¢, d of b must be
identified with each other. Thus:

e [f an at-most number restriction is violated then the algorithm must identify dif-
ferent role fillers.

In the example, the individual ¢ = d must belong to both A7 and BZ, which
together with ¢ = d € (=AU —~B)? always leads to a clash. Thus, the search for a

counterexample to the subsumption relationship fails, and the algorithm concludes
that (3R.A)M (3IR.B)N<1RC 3R.(ANB).

2.3.2.1 A tableau-based satisfiability algorithm for ALCN

Before we can describe the algorithm more formally, we need to introduce an ap-
propriate data structure in which to represent constraints like “a belongs to (the
interpretation of) C” and “b is an R-filler of a.” The original paper by Schmidt-
Schau and Smolka [1991], and also many other papers on tableau algorithms for
DLs, introduce the new notion of a constraint system for this purpose. However,
if we look at the types of constraints that must be expressed, we see that they can
actually be represented by ABox assertions. As we have seen in the second example
above, the presence of at-most number restrictions may lead to the identification
of different individual names. For this reason, we will not impose the unique name
assumption (UNA) on the ABoxes considered by the algorithm. Instead, we allow
for explicit inequality assertions of the form z # y for individual names z,y, with
the obvious semantics that an interpretation Z satisfies « # y iff 2 # yZ. These as-
sertions are assumed to be symmetric, i.e., saying that = # y belongs to an ABox A
is the same as saying that y # x belongs to A.

Let Cy by an ALCN-concept in negation normal form. In order to test satis-
fiability of Cp, the algorithm starts with the ABox Ay = {Cy(xo)}, and applies
consistency preserving transformation rules (see Figure 2.6) to the ABox until no
more rules apply. If the “complete” ABox obtained this way does not contain an ob-
vious contradiction (called clash), then Ay is consistent (and thus Cj is satisfiable),
and inconsistent (unsatisfiable) otherwise. The transformation rules that handle
disjunction and at-most restrictions are non-deterministic in the sense that a given
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The —p-rule
Condition: A contains (C M Cy)(x), but it does not contain both C;(z) and Ca(x).
Action: A = AU{Ci(z),Cs(x)}.

The —,-rule
Condition: A contains (C; U Cq)(z), but neither C;(z) nor Ca(z).
Action: A= AU{Ci(z)}, A" = AU{Cs(z)}.

The —3-rule

Condition: A contains (3R.C')(x), but there is no individual name z such that C(z)
and R(z,z) are in A.

Action: A= AU{C(y), R(x,y)} where y is an individual name not occurring in .A.

The —vy-rule
Condition: A contains (VR.C)(x) and R(x,y), but it does not contain C(y).
Action: A =AU{C(y)}.

The —>-rule

Condition: A contains (=n R)(z), and there are no individual names z1, . .., z, such
that R(z,z) (1 <i<n)and z # z; (1 <i<j<n)are contained in A.

Action: A'=AU{R(z,y;) |1<i<n}U{y;#y;|1<i<j<n}, where y1,...,yn
are distinct individual names not occurring in A.

The —<-rule

Condition: A contains distinct individual names yi, ..., yp+1 such that (<n R)(x)
and R(z,y1),...,R(x,yn+1) are in A, and y; # y; is not in A for some i # j.

Action: For each pair y;,y; such that ¢ > j and y; # y; is not in A, the ABox
A;j = [yi/y;]A is obtained from A by replacing each occurrence of y; by y;.

Fig. 2.6. Transformation rules of the satisfiability algorithm.

ABox is transformed into finitely many new ABoxes such that the original ABox is
consistent iff one of the new ABoxes is so. For this reason we will consider finite
sets of ABoxes S = {A1,..., A} instead of single ABoxes. Such a set is consistent
iff there is some 4, 1 < ¢ < k, such that A; is consistent. A rule of Figure 2.6 is
applied to a given finite set of ABoxes S as follows: it takes an element A of S,
and replaces it by one ABox A’, by two ABoxes A" and A”, or by finitely many
ABoxes A, ;.

The following lemma is an easy consequence of the definition of the transformation
rules:

Lemma 2.20 (Soundness) Assume that S is obtained from the finite set of
ABoxes S by application of a transformation rule. Then S is consistent iff S’
18 consistent.

The second important property of the set of transformation rules is that the
transformation process always terminates:
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Lemma 2.21 (Termination) Let Cy be an ALCN -concept description in nega-
tion normal form. There cannot be an infinite sequence of rule applications

{{Cu(z0)}} = S1 — Sa — - --.

The main reasons for this lemma to hold are the following.!

Lemma 2.22 Let A be an ABox contained in S; for some i > 1.

e For every individual x # xg occurring in A, there is a unique sequence Ry, ..., Ry
(¢ > 1) of role names and a unique sequence x1,...,xy—1 of individual names
such that {Ri(xo, 1), Ra(x1,22), ..., Re(z¢—1,2)} C A. In this case, we say that
x occurs on level £ in A.

o If C(z) € A for an individual name x on level ¢, then the mazimal role depth
of C (i.e., the mazximal nesting of constructors involving roles) is bounded by the
maximal role depth of Co minus £. Consequently, the level of any individual in A
is bounded by the maximal role depth of Cy.

o I[f C(x) € A, then C is a subdescription of Cy. Consequently, the number of
different concept assertions on x is bounded by the size of Cy.

e The number of different role successors of x in A (i.e., individuals y such that
R(z,y) € A for a role name R) is bounded by the sum of the numbers occurring
in at-least restrictions in Cy plus the number of different existential restrictions
m CO.

Starting with {{Co(z0)}}, we thus obtain after a finite number of rule applications
a set of ABoxes S to which no more rules apply. An ABox A is called complete
iff none of the transformation rules applies to it. Consistency of a set of complete
ABoxes can be decided by looking for obvious contradictions, called clashes. The
ABox A contains a clash iff one of the following three situations occurs:

(i) {L(x)} C A for some individual name z;
(ii) {A(x),-A(z)} C A for some individual name = and some concept name A;
(i) {(<nR)@)} U{R(@.p) [1<i<n+1}U{p#y|1<i<j<n+1}CA
for individual names x, y1, . - . , Ynt1, & nonnegative integer n, and a role name

R.

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all the
ABoxes in S contain a clash, then S is inconsistent, and thus by the soundness
lemma {Cp(x0)} is inconsistent as well. Consequently, Cl is unsatisfiable. If, how-
ever, one of the complete ABoxes in S is clash- free, then S is consistent. By sound-
ness of the rules, this implies consistency of {Cy(z¢)}, and thus satisfiability of Cp.

L A detailed proof of termination for a set of rules extending the one of Figure 2.6 can be found in [Baader
and Sattler, 1999]. A termination proof for a slightly different set of rules has been given in [Donini et
al., 1997a).
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Lemma 2.23 (Completeness) Any complete and clash-free ABox A has a model.

This lemma can be proved by defining the canonical interpretation T4 induced
by A:

(i) the domain AZA of T4 consists of all the individual names occurring in A;
(ii) for all atomic concepts A we define ATA = {z | A(x) € A};
(iii) for all atomic roles R we define R?A = {(z,y) | R(z,y) € A}.

By definition, Z 4 satisfies all the role assertions in .A. By induction on the structure
of concept descriptions, it is easy to show that it satisfies the concept assertions as
well. The inequality assertions are satisfied since x # y € A only if x, y are different
individual names.

The facts stated in Lemma 2.22 imply that the canonical interpretation has the
shape of a finite tree whose depth is linearly bounded by the size of Cy and whose
branching factor is bounded by the sum of the numbers occurring in at-least restric-
tions in Cy plus the number of different existential restrictions in Cy. Consequently,
ALCN has the finite tree model property, i.e., any satisfiable concept Cy is satis-
fiable in a finite interpretation Z that has the shape of a tree whose root belongs
to C(].

To sum up, we have seen that the transformation rules of Figure 2.6 reduce
satisfiability of an ALCN-concept Cy (in negation normal form) to consistency of
a finite set S of complete ABoxes. In addition, consistency of S can be decided by
looking for obvious contradictions (clashes).

Theorem 2.24 It is decidable whether or not an ALCN -concept is satisfiable.

2.8.2.2 Complexity issues

The tableau-based satisfiability algorithm for ALCN presented above may need
exponential time and space. In fact, the size of the canonical interpretation built
by the algorithm may be exponential in the size of the concept description. For
example, consider the descriptions C, (n > 1), which are inductively defined as
follows:

¢, = 3R.AMN3R.B,
Chi1 = 3R.AMIRBNVYR.C,.

Obviously, the size of C,, grows linearly in n. However, given the input description
C,, the satisfiability algorithm introduced above generates a complete and clash-free
ABox whose canonical model is the full binary tree of depth n, and thus consists of
27+l — 1 individuals.

Nevertheless, the satisfiability algorithm can be modified such that it needs only
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polynomial space. The main reason is that different branches of the tree model
to be generated by the algorithm can be investigated separately. Since the com-
plexity class NPSPACE coincides with PSPACE [Savitch, 1970], it is sufficient to
describe a non-deterministic algorithm using only polynomial space, i.e., for every
non-deterministic rule we may simply assume that the algorithm chooses the cor-
rect alternative. In principle, the modified algorithm works as follows: it starts with

{Co(z0)} and

(i) applies the —n- and —;-rules as long as possible, and checks for clashes of
the form A(xo), ~A(zo) and L(zo);
(ii) generates all the necessary direct successors of xy using the —3- and the
—>-rule;
(iii) generates the necessary identifications of these direct successors using the
—<-rule, and checks for clashes caused by at-most restrictions;
(iv) successively handles the successors in the same way.

Since after identification the remaining successors can be treated separately, the
algorithm needs to store only one path of the tree model to be generated, together
with the direct successors of the individuals on this path and the information which
of these successors must be investigated next. We already know that the length of
the path is linear in the size of the input description Cy. Thus, the only remaining
obstacle on our way to a PSPACE-algorithm is the fact that the number of direct
successors of an individual on the path also depends on the numbers in the at-least
restrictions. If we assumed these numbers to be written in base 1 representation
(where the size of the representation coincides with the number represented), this
would not be a problem. However, for bases larger than 1 (e.g., numbers in decimal
notation), the number represented may be exponential in the size of the represen-
tation. For example, the representation of 10" — 1 requires only n digits in base 10
representation. Thus, we cannot introduce all the successors required by at-least
restrictions while only using polynomial space in the size of the concept description
if the numbers in this description are written in decimal notation.

It turns out, however, that most of the successors required by the at-least re-
strictions need not be introduced at all. If an individual x obtains at least one
R-successor due to the application of the —3-rule, then the —>-rule need not be
applied to x for the role R. Otherwise, we simply introduce one R-successor as rep-
resentative. In order to detect inconsistencies due to conflicting number restrictions,
we need to add a new type of clash: {(<n R)(z),(=mR)(z)} C A for nonnegative
integers n < m. The canonical interpretation obtained by this modified algorithm
need not satisfy the at-least restrictions in Cy. However, it can easily by modified to
an interpretation that does, by duplicating R-successors (more precisely, the whole
subtrees starting at these successors).
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Theorem 2.25 Satisfiability of ALCN -concept descriptions is PSPACE-complete.

The above argument shows that the problem is in PSPACE. The hardness result
follows from the fact that the satisfiability problem is already PSPACE-hard for the
sublanguage ALC, which can be shown by a reduction from validity of Quantified
Boolean Formulae [Schmidt-Schauf8 and Smolka, 1991]. Since subsumption and
satisfiability of ALCN-concept descriptions can be reduced to each other in linear
time, this also shows that subsumption of ALCN -concept descriptions is PSPACE-
complete.

2.3.2.3 Extension to the consistency problem for ABoxes

The tableau-based satisfiability algorithm described in Subsection 2.3.2.1 can easily
be extended to an algorithm that decides consistency of ALCN-ABoxes. Let A be
an ALCN-ABox such that (w.o.l.g.) all concept descriptions in A are in negation
normal form. To test A for consistency, we first add inequality assertions a # b for
every pair of distinct individual names a,b occurring in A.' Let Ay be the ABox
obtained this way. The consistency algorithm applies the rules of Figure 2.6 to the
singleton set {Ap}.

Soundness and completeness of the rule set can be shown as before. Unfortunately,
the algorithm need not terminate, unless one imposes a specific strategy on the order
of rule applications. For example, consider the ABox

Ag = {R(a,a), (IR.A)(a), (S1R)(a), (VR.IR.A)(a)}.
By applying the —3-rule to a, we can introduce a new R-successor x of a:
A = Ag U {R(a, ac), A(x)}

The —y-rule adds the assertion (IR.A)(z), which triggers an application of the
—3-rule to z. Thus, we obtain the new ABox

Ay = Ay U{(3R.A)(z), R(z,y), A(y)}.

Since a has two R-successors in Ay, the —<-rule is applicable to a. By replacing
every occurrence of x by a, we obtain the ABox

Az = Ao U{A(a), R(a,y), A(y)}.

Except for the individual names (and the assertion A(a), which is, however, irrele-
vant), As is identical to A;. For this reason, we can continue as above to obtain an
infinite chain of rule applications.

We can easily regain termination by requiring that generating rules (i.e., the rules
—3 and —>) may only be applied if none of the other rules is applicable. In the

L This takes care of the UNA.
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above example, this strategy would prevent the application of the —3-rule to x in
the ABox A; U {(3R.A)(x)} since the —<-rule is also applicable. After applying
the —<-rule (which replaces = by a), the —3-rule is no longer applicable since a
already has an R-successor that belongs to A.

Using a similar idea, one can reduce the consistency problem for ALCN-ABoxes
to satisfiability of ALCAN -concept descriptions [Hollunder, 1996]. In principle, this
reduction works as follows: In a preprocessing step, one applies the transformation
rules only to old individuals (i.e., individuals present in the original ABox). Subse-
quently, one can forget about the role assertions, i.e., for each individual name in
the preprocessed ABox, the satisfiability algorithm is applied to the conjunction of
its concept assertions (see [Hollunder, 1996] for details).

Theorem 2.26 Consistency of ALCN -ABozes is PSPACE-complete.

2.8.2.4 Extension to gemeral inclusion axioms

In the above subsections, we have considered the satisfiability problem for con-
cept descriptions and the consistency problem for ABoxes without an underlying
TBox. In fact, for acyclic TBoxes one can simply expand the definitions (see Sub-
section 2.2.4). Expansion is, however, no longer possibly if one allows for general
inclusion axioms of the form C' C D, where C and D may be complex descrip-
tions. Instead of considering finitely many such axiom Cy C Dq,...,C, E D, it is
sufficient to consider the single axiom T C é, where

C = (=CLUD)M---11(=Cp U D).

The axiom T C C simply says that any individual must belong to the concept C.
The tableau algorithm introduced above can easily be modified such that it takes
this axiom into account: all individuals (both the original individuals and the ones
newly generated by the —3- and the —>-rule) are simply asserted to belong to C.
However, this modification may obviously lead to nontermination of the algorithm.
For example, consider what happens if this algorithm is applied to test consistency
of the ABox Ay = {A(z0), (3R.A)(zo)} w.r.t. the axiom T C JR.A: the algorithm
generates an infinite sequence of ABoxes Aj, As, ... and individuals z1, xs, ... such
that A;1+1 = A; U {R(x, zit1), A(xir1), (3R.A)(zi+1)}. Since all individuals z;
receive the same concept assertions as xg, we may say that the algorithms has run
into a cycle.

Termination can be regained by trying to detect such cyclic computations, and
then blocking the application of generating rules: the application of the rules —g
and —> to an individual = is blocked by an individual y in an ABox A iff {D |
D(z) € A} C {D’ | D'(y) € A}. The main idea underlying blocking is that the
blocked individual x can use the role successors of y instead of generating new ones.
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For example, instead of generating a new R-successor for x1 in the above example,
one can simply use the R-successor of xg. This yields an interpretation Z with
AT = {xg, 21}, AT = AT and R? = {(wg,71), (z1,71)}. Obviously, Z is a model of
Ap and of the axiom T C JR.A.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration
of all individual names, and define that an individual z may only be blocked by
individuals y that occur before x in this enumeration. This, together with some
other technical assumptions, makes sure that an algorithm using this notion of
blocking is sound and complete as well as terminating (see [Buchheit et al., 1993a;
Baader et al., 1996] for details). Thus, consistency of ALCN-ABoxes w.r.t. general
inclusion axioms is decidable. It should be noted that the algorithm is no longer
in PSPACE since it may generate role paths of exponential length before blocking
occurs. In fact, even for the language ALC, satisfiability w.r.t. a single general
inclusion axiom is known to be EXPTiME-hard [Schild, 1994] (see also Chapter 3).
The tableau-based algorithm sketched above is a NEXPTIME algorithm. However,
using the translation technique mentioned at the beginning of this section, it can
be shown [De Giacomo, 1995] that ALCN-ABoxes and general inclusion axioms
can be translated into PDL, for which satisfiability can be decided in exponential
time. An EXPTIME tableau algorithm for ALC with general inclusion axiom was
described by Donini and Massacci [2000].

Theorem 2.27 Consistency of ALCN -ABoxes w.r.t. general inclusion azioms is
ExXPTIME-complete.

2.8.2.5 Extension to other language constructors

The tableau-based approach to designing concept satisfiability and ABox consis-
tency algorithms can also be employed for languages with other concept and/or
role constructors. In principle, each new constructor requires a new rule, and this
rule can usually be obtained by simply considering the semantics of the constructor.
Soundness of such a rule is often very easy to show. More problematic are complete-
ness and termination since they must also take interactions between different rules
into account. As we have seen above, termination can sometimes only be obtained if
the application of rules is restricted by an appropriate strategy. Of course, one may
only impose such a strategy if one can show that it does not destroy completeness.

2.3.3 Reasoning w.r.t. terminologies

Recall that terminologies (TBoxes) are sets of concept definitions (i.e., equalities
of the form A = C where A is atomic) such that every atomic concept occurs at
most once as a left-hand side. We will first comment briefly on the complexity of
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reasoning w.r.t. acyclic terminologies, and then consider in more detail reasoning
w.r.t. cyclic terminologies.

2.8.8.1 Acyclic terminologies

As shown in Section 2.2.4, reasoning w.r.t. acyclic terminologies can be reduced to
reasoning without terminologies by first expanding the TBox, and then replacing
name symbols by their definitions in the terminology. Unfortunately, since the ex-
panded TBox may be exponentially larger than the original one [Nebel, 1990b], this
increases the complexity of reasoning. Nebel [1990b] also shows that this complex-
ity can, in general, not be avoided: for the language FLg, subsumption between
concept descriptions can be tested in polynomial time (see Section 2.3.1), whereas
subsumption w.r.t. acyclic terminologies is coNP-complete (see also Section 2.3.3.2
below).

For more expressive languages, the presence of acyclic TBoxes may or may not
increase the complexity of the subsumption problem. For example, subsumption
of concept descriptions in the language ALC is PSPACE-complete, and so is sub-
sumption w.r.t. acyclic terminologies [Lutz, 1999a). Of course, in order to obtain
a PSPACE-algorithm for subsumption in ALC w.r.t. acyclic TBoxes, one cannot
first expand the TBox completely since this might need exponential space. The
main idea is that one uses a tableau-based algorithm like the one described in Sec-
tion 2.3.2, with the difference that it receives concept descriptions containing name
symbols as input. Expansion is then done on demand: if the tableau-based algo-
rithm encounters an assertion of the form A(zx), where A is a name occurring on the
left-hand side of a definition A = C' in the TBox, then it adds the assertion C(z).
However, it does not further expand C at this stage. It is not hard to show that this
really yields a PSPACE-algorithm for satisfiability (and thus also for subsumption)
of concepts w.r.t. acyclic TBoxes in ALC [Lutz, 1999a).

There are, however, extensions of ALC for which this technique no longer works.
One such example is the language ALCF, which extends ALC by functional roles as
well as agreements and disagreements on chains of functional roles (see Section 2.4
below). Satisfiability of concepts is PSPACE-complete for this language [Hollunder
and Nutt, 1990], but satisfiability of concepts w.r.t. acyclic terminologies is NEXP-
TiME-complete [Lutz, 1999a).

2.8.8.2 Cyclic terminologies

For cyclic terminologies, expansion is no longer possible since it would not ter-
minate. If we use descriptive semantics, then cyclic terminologies are a special
case of terminologies with general inclusion axioms. Thus, the tableau-based algo-
rithm for handling general inclusion axioms introduced in Subsection 2.3.2.4 can
also be used for cyclic ALCN-TBoxes with descriptive semantics. For cyclic ALC-
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TBoxes with fixpoint semantics, the connection between Description Logics and
propositional modal logics turns out to be useful. In fact, syntactically monotone
ALC-TBoxes with least or greatest fixpoint semantics can be expressed within the
propositional p-calculus, which is an extension of the propositional multimodal logic
K, by fixpoint operators (see [Schild, 1994; De Giacomo and Lenzerini, 1994b;
1997] and Chapter 5 for details). Since reasoning w.r.t. general inclusion axioms
in ALC and reasoning in the propositional p-calculus are both EXPTIME-complete,
these reductions yield an EXPTIME-upper bound for reasoning w.r.t. cyclic termi-
nologies in sublanguages of ALC.

For less expressive DLs, more efficient algorithms can, however, be obtained with
the help of techniques based on finite automata. Following [Baader, 1996b], we will
sketch these techniques for the small language FLg. The results can, however, be
extended to the language ALN [Kiisters, 1998]. We will develop the results for
F Ly in two steps, starting with an alternative characterization of subsumption be-
tween FLy-concept descriptions, and then extending this characterization to cyclic
TBoxes with greatest fixpoint semantics. Baader [1996b] also considers cyclic FLq-
TBoxes with descriptive and with least fixpoint semantics. For these semantics, the
characterization of subsumption is more involved; in particular, the characterization
of subsumption w.r.t. descriptive semantics depends on finite automata working on
infinite words, so-called Biichi automata. Acyclic TBoxes can be seen as a special
case of cyclic TBoxes, where all three types of semantics coincide.

In Subsection 2.3.1, the equivalence (VR.C)M(VR.D) = VR.(CT D) was used as a
rewrite rule from left to right in order to compute the structural subsumption normal
form of F Ly-concept descriptions. If we use this rule in the opposite direction, we
obtain a different normal form, which we call concept-centered normal form since it
groups the concept description w.r.t. concept names (and not w.r.t. role names, as
the structural subsumption normal form does). Using this rule, any FLo-concept
description can be transformed into an equivalent description that is a conjunction
of descriptions of the form VR;.---VR,,.A for m > 0 (not necessarily distinct)
role names Ry,..., R, and a concept name A. We abbreviate VR;.---VR,,.A by
VRy- - R, A, where Ry --- R, is viewed as a word over the alphabet X of all role
names. In addition, instead of Vwi.A T --- M Vwy. A we write VL.A where L =
{w,...,we} is a finite set of words over X. The term V{.A is considered to be
equivalent to the top concept T, which means that it can be added to a conjunction
without changing the meaning of the concept. Using these abbreviations, any pair
of FLg-concept descriptions C, D containing the concept names Aq, ..., A; can be
rewritten as

C=vVU1.A1N---NVYUR. A, and D =VVi. A M- -NVVL A,

where U;, V; are finite sets of words over the alphabet of all role names. This normal
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A = VRANVS.C
B = VRVSC
C = PnNvs.c

Fig. 2.7. A TBox and the corresponding automaton.

form provides us with the following characterization of subsumption of F Ly-concept
descriptions [Baader and Narendran, 1998]:

CCD iff UDV, foralli,1<i<Hk.

Since the size of the concept-based normal forms is polynomial in the size of the
original descriptions, and since the inclusion tests U; O V; can also be realized in
polynomial time, this yields a polynomial-time decision procedure for subsumption
in FLo. In fact, as shown in [Baader et al., 1998a], the structural subsumption
algorithm for F Ly can be seen as a special implementation of these inclusion tests.

This characterization of subsumption via inclusion of finite sets of words can
be extended to cyclic TBoxes with greatest fixpoint semantics as follows. A given
TBox 7 can be translated into a finite automaton' A7 whose states are the concept
names occurring in 7 and whose transitions are induced by the value restrictions
occurring in 7 (see Figure 2.7 for an example and [Baader, 1996b] for the formal
definition).

For a name symbol A and a base symbol P in 7, the language L 4, (A, P) is the set
of all words labeling paths in A7 from A to P. The languages L 4., (A, P) represent
all the value restrictions that must be satisfied by instances of the concept A. With
this intuition in mind, the following characterization of subsumption w.r.t. cyclic
FLy TBoxes with greatest fixpoint semantics should not be surprising:

ACr B iff Ly, (A, P) 2D La,(B,P) for all base symbols P.

In the example of Fig. 2.7, we have L4, (A, P) = R*SS* D RSS* = La,(B,P),
and thus A T4 B, but not B C1 A.

Obviously, the languages L4, (A, P) are regular, and any regular language can
be obtained as such a language. Since inclusion of regular languages is a PSPACE-
complete problem [Garey and Johnson, 1979], this shows that subsumption w.r.t.
cyclic FLo-TBoxes with greatest fixpoint semantics is PSPACE-complete [Baader,

1 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be labeled
by a word over X rather than a letter of X.
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1996b]. For an acyclic terminology 7, the automaton A7 is acyclic as well. Since
inclusion of languages accepted by acyclic finite automata is coNP-complete, this
proves Nebel’s result that subsumption w.r.t. acyclic F Ly-TBoxes is coNP-complete
[Nebel, 1990b).

2.4 Language extensions

In Section 2.2 we have introduced the language ALCN as a prototypical Descrip-
tion Logic. For many applications, the expressive power of ALCN is not sufficient.
For this reason, various other language constructors have been introduced in the
literature and are employed by systems. Roughly, these language extensions can
be put into two categories, which (for lack of a better name) we will call “classi-
cal” and “nonclassical” extensions. Intuitively, a classical extension is one whose
semantics can easily be defined within the model-theoretic framework introduced
in Section 2.2, whereas defining the semantics of a nonclassical constructor is more
problematic and requires an extension of the model-theoretic framework (such as
the semantics of the epistemic operator K introduced in Section 2.2.5). In this
section, we briefly introduce the most important classical extensions of Description
Logics. Inference procedures for such expressive DLs are discussed in Chapter 5.
Nonclassical extensions are the subject of Chapter 6.

In addition to constructors that can be used to build complex roles, we will
introduce more expressive number restrictions, and constructors that allow one to
express relationships between the role-filler sets of different (complex) roles.

2.4.1 Role constructors

Since roles are interpreted as binary relations, it is quite natural to employ the usual
operations on binary relations (such as Boolean operators, composition, inverse,
and transitive closure) as role forming constructors. Syntax and semantics of these
constructors can be defined as follows:

Definition 2.28 (Role constructors) Every role name is a role description
(atomic role), and if R, S are role descriptions, then RS (intersection), R U S
(union), =R (complement), R o S (composition), Rt (transitive closure), R~ (in-
verse) are also role descriptions.

A given interpretation Z is extended to (complex) role descriptions as follows:

(i) (RNS)Y=RINS%, (RUS)Y =R UST, (-R)? = AT x AT\ RT;

(ii) (RoS)* ={(a,c) € AT x AT | 3b. (a,b) € RT A (b,c) € ST},
(iii) (RT) = Ui21(RZ)i, i.e., (RT)? is the transitive closure of (R?);
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(iv) (R)E = {(b,a) € AT x AT | (a,b) € RT}. .

For example, the union of the roles hasSon and hasDaughter can be used to
define the role hasChild, and the transitive closure of hasChild expresses the role
hasOffspring. The inverse of hasChild yields the role hasParent.

The complexity of satisfiability and subsumption of concepts in the language
ALCN™ (also called ALCN'R in the literature), which extends ALCN by inter-
section of roles, has been investigated in [Donini et al., 1997a). It is shown that
these problems are still PSPACE-complete, provided that the numbers occurring
in number restrictions are written in base 1 representation (where the size of the
representation coincides with the number represented). Tobies [2001b] shows that
this result also hold for non-unary coding of numbers. Decidability of the exten-
sion of ALCN by the three Boolean operators and the inverse operator is an im-
mediate consequence of the fact that concepts of the extended language can be
expressed in C2, i.e., first-order predicate logic with two variables and counting
quantifiers, which is known to be decidable in NEXPTIME [Gridel et al., 1997b;
Pacholski et al., 1997]. Lutz and Sattler [2000a] show that ALC extended by role
complement is EXPTIME-complete, whereas ALC extended by role intersection and
(atomic) role complement is NEXPTIME-complete.

In [Baader, 1991], the DL ALCyqns, which extends ALC by transitive-closure,
composition, and union of roles, has been introduced, and subsumption and satis-
fiability of ALCqns-concepts has been shown to be decidable. Schild’s observation
[Schild, 1991] that ALC irens is just a syntactic variant of propositional dynamic logic
(PDL) [Fischer and Ladner, 1979] yields the exact complexity of subsumption and
satisfiability in ALCrans: they are EXPTIME-complete [Fischer and Ladner, 1979;
Pratt, 1979; 1980]. The extension of ALCns by the inverse constructor corre-
sponds to converse PDL [Fischer and Ladner, 1979], which can also be shown to be
decidable in deterministic exponential time [Vardi, 1985]. Whereas this extension
of ALC yqns does not change the properties of the obtained DL in a significant way,
things become more complex if both number restrictions and the inverse of roles
are added to ALC jyans. Whereas ALC jrans and ALC trans With inverse still have the
finite model property, ALCqns extended by inverse and number restrictions does
not. Indeed, it is easy to see that the concept

—SAN3R.AN(KIR)NY(R)T.3R™.AN(L1R))

is satisfiable in an infinite interpretation, but not in a finite one. Nevertheless,
this DL still has an EXPTIME-complete subsumption and satisfiability problem. In
fact, in [De Giacomo, 1995], number restrictions, the inverse of roles, and Boolean
operators on roles are added to ALCtrqns, and EXPTIME-decidability is shown by a
rather ingenious reduction to the decision problem for ALC yrqns. It should be noted,
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however, that in this work only atomic roles and their inverse may occur in number
restrictions, and that the complement of roles is built with respect to a fixed role
any, which must contain all other roles, but need not be interpreted as the universal
role (i.e., AT x AT). As we shall see below, allowing for more complex roles inside
number restrictions may easily cause undecidability.

2.4.2 Expressive number restrictions

There are three different ways in which the expressive power of number restrictions
can be enhanced.

First, one can consider so-called qualified number restrictions, where the number
restrictions are concerned with role-fillers belonging to a certain concept. For ex-
ample, given the role hasChild, the simple number restrictions introduced above can
only state that the number of all children is within certain limits, such as in the
concept > 2 hasChild M < 5 hasChild. Qualified number restrictions can also express
that there are at least 2 sons and at most 5 daughters:

> 2 hasChild.Male M < 5 hasChild.Female.

Adding qualified number restrictions to ALC leaves the important inference prob-
lems (like subsumption and satisfiability of concepts, and consistency of ABoxes)
decidable: the worst-case complexity is still PSPACE-complete. Membership in
PSPACE was first shown for the case where numbers occurring in number re-
strictions are written in base 1 representation [Hollunder and Baader, 1991a;
Hollunder, 1996]. More recently, this has been proved even for the case of binary
(or, equivalently, decimal) representation of numbers [Tobies, 1999¢; 2001b]. The
language stays decidable if general sets of inclusion axioms are allowed [Buchheit et
al., 1993a).

Second, one can allow for complex role expressions inside number restrictions.
As already mentioned above, allowing for the three Boolean operators and the in-
verse operator in number restrictions of ALCN leaves us within C2, which is known
to be decidable. In [Baader and Sattler, 1996b; 1999], languages that allow for
composition of roles in number restrictions have been considered.! The extension
of ALC by number restrictions involving composition has a decidable satisfiability
and subsumption problem. On the other hand, if either number restrictions involv-
ing composition, union and inverse, or number restrictions involving composition
and intersection are added, then satisfiability and subsumption become undecidable
[Baader and Sattler, 1996b; 1999]. For ALCrans, the extension by number restric-
tions involving composition is already undecidable [Baader and Sattler, 1999].

Third, one can replace the explicit numbers n in number restrictions by variables «

I Note that composition cannot be expressed within C2.
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that stand for arbitrary nonnegative integers [Baader and Sattler, 1996a; 1999].
This allows one, for example, to define the concept of all persons having at least
as many daughters as sons, without explicitly saying how many sons and daughters
the person has:

Person M > ahasDaughter M < « hasSon.

The expressive power of this language can further be increased by introducing ex-
plicit quantification of the numeric variables. For example, it is important to know
whether the numeric variables are introduced before or after a value restriction.
This is illustrated by the following concept

Person M | aw.(VhasChild.(> a hasChild 1M < a hasChild)),

in which introducing the numerical variable before the universal value restriction
makes sure that all the children of the person have the same number of children.
Here, |« stands for an existential quantification of «. Universal quantification of
numerical variables comes in via negation. In [Baader and Sattler, 1996a; 1999] it
is shown that ALCN extended by such symbolic number restrictions with universal
and existential quantification of numerical variables has an undecidable satisfiability
and subsumption problem. If one restricts this language to existential quantification
of numerical variables and negation on atomic concepts, then satisfiability becomes
decidable, but subsumption remains undecidable.

2.4.3 Role-value-maps

Role-value-maps are a family of very expressive concept constructors, which were,
however, available in the original KL-ONE-system. They allow one to relate the sets
of role fillers of role chains.

Definition 2.29 (Role-value-maps) A role chain is a composition Ry o---0o R,
of role names. If R, S are role chains, then R C S and R = S are concepts (role-
value-maps). The former is called a containment role-value-map, while the latter is
called an equality role-value-map.

A given interpretation 7 is extended to role-value-maps as follows:

(i) (RC S)F ={a € AT|Vb. (a,b) € RT — (a,b) € ST},
(i) (R= 9) = {a € AT |Vb. (a,b) € R < (a,b) € ST}. .

For example, the concept

Person M (hasChild o hasFriend C knows)
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describes the persons knowing all the friends of their children, and
Person M (marriedTo o likesToEat = likesToEat)

describes persons having the same favorite foods as their spouse.

Unfortunately, in the presence of role-value-maps, the subsumption problem is
undecidable, even if the language allows only for conjunction and value restriction
as additional constructors [Schmidt-Schauf}, 1989] (see also Chapter 3).

To avoid this problem, one may restrict the attention to role chains of functional
roles, also called attributes or features in the literature. An interpretation Z in-
terprets the role R as a functional role iff {(a,b),(a,c)} € RT implies b = c. In
the following, we assume that the set of role names is partitioned into the set of
functional roles and the set of ordinary roles. Any interpretation must interpret the
functional roles as such. Usually, we write functional roles with small letters f, g,
possibly with index.

Definition 2.30 (Agreements) If f, g are role chains of functional roles, then
f =g and f # g are concepts (agreement and disagreement).
A given interpretation Z is extended to agreements and disagreements as follows:

(i) (f =9)" ={ac AT |3 (a,b) € fF A (a,b) € g7},
(ii) (f = g)I = {CL e AT ‘ Jb1,b9. b1 # ba A (CL, bl) S fI AN (a,bg) € gI}. n

In the literature, the agreement constructor is sometimes also called the same-as
constructor. Note that, since f, g are role chains between functional roles, there
can be at most one role filler for a w.r.t. the respective role chain. Also note that
the semantics of agreements and disagreements requires these role fillers to exist
(and be equal or distinct) for a to belong to the concept.

For example, hasMother, hasFather, and hasLastName with their usual interpreta-
tion are functional roles, whereas hasParent and hasChild are not. The concept

Person M (hasLastName = hasMother o hasLastName)
M (hasLastName # hasFather o hasLastName)

describes persons whose last name coincides with the last name of their mother, but
not with the last name of their father.

The restriction to functional roles makes reasoning in ALC extended by agree-
ments and disagreements decidable [Hollunder and Nutt, 1990]. A structural sub-
sumption algorithm for the language provided by the CLASSIC-system, which in-
cludes the same-as constructor, can be found in [Borgida and Patel-Schneider, 1994].
However, if general inclusion axioms (or transitive closure of functional roles or
cyclic definitions) are allowed, then agreements and disagreements between chains
of functional roles again cause subsumption to become undecidable [Nebel, 1991;
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Baader et al., 1993]. Additional types of role interaction constructors similar to
agreements and role-value-maps are investigated in [Hanschke, 1992].
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Complexity of Reasoning

Francesco M. Donini

Abstract

We present lower bounds on the computational complexity of satisfiability and sub-
sumption in several description logics. We interpret these lower bounds as coming
from different “sources of complexity”, which we isolate one by one. We consider
both reasoning with simple concept expressions and with an underlying TBox. We
discuss also complexity of instance check in simple ABoxes. We tried to enhance
clarity and ease of presentation, sometimes sacrificing exhaustiveness for lack of
space.

3.1 Introduction

Complexity of reasoning has been one of the major issues in the development of
Description Logics (DL). This is because such logics are conceived [Brachman and
Levesque, 1984] as the formal specification of subsystems for representing knowl-
edge, to be used in larger knowledge-based systems. Since using knowledge means
also to derive implicit facts from the told ones, the implementation of derivation
procedures should take into account the optimality of reasoning algorithms. The
study of optimal algorithms starts from the elicitation of the computational com-
plexity of the problem the algorithm should solve. Initially, studies about the com-
plexity of reasoning problems in DLs were more focused on polynomial-time versus
intractable (NP- or coNp-hard) problems. The idea was that a Knowledge Repre-
sentation system based on a DL with polynomial-time inference problems would
guarantee timely answers to the rest of the system. However, once very expres-
sive DLs with exponential-time reasoning problems were implemented [Horrocks,
1998b], it was recognized that knowledge bases of realistic size could be processed
in reasonable time. This shifted most of the complexity analysis to DLs whose
reasoning problems are EXPTIME-hard, or worse.

This chapter presents some lower bounds on the complexity of basic reasoning
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tasks in simple DLs. The reasoning services taken into account are: first, satis-
fiability and subsumption of concept expressions alone (no TBox), then the same
reasoning services considering a TBox also, and in the last part of the chapter,
instance checking w.r.t. an ABox.

We show in detail some reductions from problems that are hard for complexity
classes NP, coNP, PSPACE, EXPTIME, and from semidecidable problems to satisfi-
ability /subsumption in various DLs. Then, we show how these reductions can be
adapted to other DLs as well.

In several reductions, we use tableaux expansions to prove the correctness of the
reduction. Thus, a secondary aim in this chapter is to show how tableaux are useful
not only to devise reasoning algorithms and complexity upper bounds—as seen in
Chapter 2—but also in finding complexity lower bounds. This is because tableaux
untangle two different aspects of the computational complexity of reasoning in DLs:

e The first aspect is the structure of possible models of a concept. Such a structure
is—in many DLs—a tree of individual names, linked by arcs labeled by roles.
We consider such a tree an AND-tree, in the sense that all branches must be
followed to obtain a candidate model. Following [Schmidt-Schau8 and Smolka,
1991], we call trace each branch of such a tree. Readers familiar with tableaux
terminology should observe that traces are not tableaux branches; in fact, they
form a structure inside a single tableau branch.

e The second aspect is the structure of proofs or refutations. Clearly, if a trace
contains an inconsistency—a clash in the terminology set up in Chapter 2, the
candidate models containing this trace can be discarded. When all candidate
models are discarded this way, we obtain a proof of subsumption, or unsatisfia-
bility. Hence, the structure of refutations is often best viewed as an OR-tree of
traces containing clashes.

Here we chose to mark the nodes with AND, OR, considering a satisfiability prob-
lem; if either unsatisfiability or subsumption are considered, AND-OR labels should
be exchanged. Before starting with the various results, we elaborate more on this
subject in the next paragraph.

3.1.1 Intuition: sources of complexity

The deterministic version of the calculus for ALCN in Chapter 2 can be seen as
exploring an AND-OR tree, where an AND-branching corresponds to the (indepen-
dent) check of all successors of an individual, while an OR-branching corresponds
to the different choices of application of a nondeterministic rule.

Realizing that, one can see that the exponential-time behavior of the calculus
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is due to two independent origins: The AND-branching, responsible for the ex-
ponential size of a single candidate model, and the OR-branching, responsible for
the exponential number of different candidate models. We call these two different
combinatorial explosions sources of complexity.

3.1.1.1 OR-branching

The OR-branching is due to the presence of disjunctive constructors, which make a
concept satisfiable by more than one model. The obvious disjunctive constructor is
U, hence ALU is a good sublanguage to see this source of complexity. Recall that
ALU allows one to form concepts using negation of concept names, conjunction I,
disjunction U, universal role quantification VR.C', and unqualified existential role
quantification 3. This source of complexity is the same that makes propositional
satisfiability Np-hard: in fact, satisfiability in ALU can be trivially proved Np-
hard by rewriting propositional letters as atomic concepts, A as MM, and V as L.
Many proofs of coNP-hardness of subsumption were found exploiting this source of
complexity ([Levesque and Brachman, 1987; Nebel, 1988]), by reducing an Np-hard
problem to non-subsumption. In Section 3.2.1, we show how disjunction can be
introduced also by combining role restrictions and universal quantification, and in
Section 3.2.2 by combining number restrictions and role intersection.

3.1.1.2 AND-branching

The AND-branching is more subtle. Its exponential behaviour is due to the inter-
play of qualified existential and universal quantifiers, hence ALE is now a minimal
sublanguage of ALCN with these features. As mentioned in Chapter 2 one can see
the effects of this source of complexity by expanding the tableau {D(zx)}, when D
is the following concept (whose pattern appears in many papers, from [Schmidt-
Schaufl and Smolka, 1991], to [Hemaspaandra, 1999])—see Chapter 2 for its general
form:
AP, VP, NP3.C1 M
AP, VP, VY P;.C9 M
VPl.(HPQ.Vpg.Cgl M
AP, VP3.Coo 1M
VPQ.(HPg.Cm M
dP5.C32))

For each level [ of nested quantifiers, we use a different role P; (but using the same
role R would produce the same results). The structure of the tableau for {D(x)},
which is the candidate model for D, is a binary tree of height 3: the nodes are the
individual names, the arcs are given by the P-successor relation, and the branches
are the traces in the tableau.
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Each trace ends with an individual that belongs to C1;, Caj, Csy, for 4, j, k € {1,2}.
Hence, a clash may be found independently in each trace, i.e., in each branch of the
tree. To verify that this structure is indeed a model, one has to check every AND-
branch of it; and branches can be exponentially many in the nesting of quantifiers.

This source of complexity causes an exponential number of possible refutations
to be searched through (each refutation being a trace containing a clash).

This second source of complexity is not evident in propositional calculus, but a
similar problem appears in predicate calculus—where the interplay of existential
and universal quantifiers may lead to large models—and in Quantified Boolean
Formulae.

Remark 3.1 For DLs that are not closed under negation, a source of complexity
might appear in subsumption, while it may not in satisfiability. This is because C
is subsumed by D iff CM—D is unsatisfiable, where =D may not belong to the same
DL of C' and D. "

3.1.2 Overview of the chapter

We first present separately the effect of each source of complexity. In the next
section, we discuss intractability results stemming from disjunction (OR-branching),
which lead to coNP-hard lower bounds. We discuss both the case of plain logical
disjunction (as the description logic FL), and the case of disjunction arising from
alternative identification of individuals (ALEN). Then in Section 3.3 we present an
NP lower bound stemming from AND-branching, namely a DL in which concepts
have one candidate model of exponential size.

A PSPACE lower bound combining the two sources of complexity is presented in
Section 3.4, and then in Section 3.5 we show how axioms can combine in a succinct
way the sources of complexity, leading to EXPTIME-hardness of satisfiability.

In Section 3.6 we examine one of the first undecidability results found for a DL,
using the powerful construct of role-value-maps—mnow recognized very expressive,
because of this result.

Finally, we analyze intractability arising from reasoning with individuals in
ABoxes (Section 3.7), and add a final discussion about the significance of these
results—beyond the initial study of theoretical complexity of reasoning—also for
benchmark testing of implemented procedures.

An appendix with a (hopefully complete) list of complexity results for satisfiability
and subsumption closes the chapter.
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Table 3.1. Syntax and semantics of the description logic FL. For FL™, omit role

restriction.
concept expressions semantics

concept name A Cc AT
concept intersection cnbD ctnD?
limited exist. quant. IR {x € AT | Jy. (x,y) € RT}

value restriction VR.C {x € AT | Vy. (x,y) € RT — y € CT}

role expressions semantics
role name P C AT x AT
role restriction R|c {(z,y) € AT x AT | (z,y) € RT A y € CF}

3.2 OR-branching: finding a model

When the number of candidate models is exponential in the size of the concepts
involved, a combinatorial problem is finding the right candidate model to check. In
DLs, this may lead to NP-hardness of satisfiability, and coNP-hardness of subsump-
tion.

3.2.1 Intractability in FL

Brachman and Levesque [1984];[Levesque and Brachman, 1987] were the first to
point out that a slight increase in the expressiveness of a DL may result in a drastic
change in the complexity of reasoning. They called this effect a “computational
cliff” of structured knowledge representation languages. They considered the lan-
guage F L, which admits concept conjunction, universal role quantification, unqual-
ified existential quantification, and role restriction. For readability, the syntax and
semantics of FL are recalled in Table 3.1.

Role restriction allows one to construct a subrole of a role R, i.e., a role whose
extension is a subset of the extension of R. For example, the role child]ma|e may
be used for the “son-of” relation. Observe two properties of role restriction, whose
proofs easily follow from the semantics in Table 3.1:

(i) for every role R, the role R|t is equivalent to R;
(ii) for every role R, and concepts A, C, D, the concept (V(R|c).A) 1 (V(R|p).A)
is equivalent to V(R|cup))-A.

The second property highlights that disjunction—although not explicitly present in
the syntax of the language—arises from semantics.
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Brachman and Levesque defined also the language FL~, derived from FL by
omitting role restriction. They first showed that for FL~, subsumption can be
decided by a structural algorithm, with polynomial time complexity, similar to the
one shown in Chapter 2. Then they showed that subsumption in F L is coNP-hard,
exhibiting the first “computational cliff” in description logics.

Since the original proof of coNP-hardness is somehow complex, we give here a
simpler proof, found by Calvanese [1990]. The proof is based on the observation
that if C;U---UCy, =T, then, given a role R and a concept A, it is

(V(R|cy)-A)n---N(Y(R|¢c,).-A) = (from (ii))
YR|(cyuuc) A =
VR|T.A = (from (i))

(3.1
(3.2
(3.3
VR.A (3.4

— — ~— —

Moreover, observe that, for every role  and every concept C, the disjunction
JQ U VQ.C is equivalent to the concept T. Hence V(R|3g).A M VY(Rlyg.c).A is
equivalent to VR.A. These observations are the key to the reduction from tautology
check of propositional 3DNF formulae to subsumption in FL.

Theorem 3.2 Subsumption in FL is coNP-hard.

Proof Given an alphabet of propositional variables L = {p1,...,pi}, define a
propositional formula F' = G; V ---V G, in 3DNF over L, where each disjunct
G; is made of three literals I} AlZ Al?, and for every i € {1,...,n}, and j € {1,2,3},
each literal lg is either a variable p € L, or its negation p.

Given a set of role names {R, P, ..., P,} (one role P; for each variable p;) and a
concept name A, define the concept Cr = (VR|¢,.A) M --- M (VR|¢, .A) where, for
each i € {1,...,n}, C; is the conjunction of three concepts D} M D? M D3, and each
Dg is

. o7l
Dg:{gﬁz;fl, i;;gz for j € {1,2,3}, i € {1,...,n)

Then the claim follows from the following lemma. O
Lemma 3.3 F is a tautology if and only if Cr = VR.A.

Proof The proof of the claim is straightforward; however, since it does not appear
elsewhere but Calvanese’s Master thesis (in italian), we present it here in full.
Only-if If F is a tautology, then C; U--- U C, = T. This can be shown by
contradiction: suppose C7 Ll --- U C, is not equivalent to T. Then, there exists an
interpretation Z in which there is an element = ¢ C7, for every i € {1,...,n}. Since
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each C; = D! D2 D3, it follows that for each i there is a j € {1,2,3} such that
x ¢ D]. Define a truth assignment 7 to L as follows. For each h € {1,...,k},

e 7(pp) = false iff lf =pp, and x & Dzj
e 7(pp) = true iff lf =pp, and = & Df

Observe that it cannot be both 7(py,) = false and 7(p;,) = true at the same time,
since this would imply both x ¢ dP,, and = ¢ VP,.A, which is impossible since
dP,UVP,.A = T. Evidently, 7 assigns false to at least one literal for each disjunct
of F', contradicting the hypothesis that F'is a tautology. Therefore C1U---UC, = T.

The claim is now implied by equivalences (3.1)-(3.4).

If Suppose F' is not a tautology. Then, there exists a truth assignment 7 such
that for each i € {1,...,n}, there exists a j € {1,2,3} such that 7(I/) = false.

Define an interpretation (AZ,-7), with A? containing three elements z,y, z, such
that PI = (y, z) if 7(ps) = false, and P = () otherwise. Moreover, let A7 = (), and
R* = {z,y}.

Observe that in this way, y € (3P,)* iff 7(p,) = false, and y € (VP,.A)* iff
7(pp) = true. This implies that = ¢ (VR.A)Z. To prove the claim, we now show
that x € C’%.

Observe that, for each i € {1,...,n}, there exists a j € {1, 2,3} such that T(lg) =
false. For such j, we show by case analysis that y ¢ (Df )E:

o if lg = pp, then Dg = VP,.A, and in this case, 7(py) = false, hence y ¢
(VP,.A)L;
e if I/ = pj, then D! = 3P, and in this case, 7(pj,) = true, hence y ¢ (IP;,)%.

Therefore, for every i € {1,...,n} it is y & CZ. This implies that (z,y) ¢
R‘(Iclumucn)? hence z € (VR|(Clu---uCn).A)I, which is a concept equivalent to Cp.
|

The above proof shows only that subsumption in F L is coNP-hard. However, role
restrictions could be used also to obtain qualified existential quantification, since
JR.C = 3R|¢. Hence, FL contains also the AND-branching source of complexity.
Combining the two sources of complexity, Donini et al. [1997a] proved a PSPACE
lower bound for subsumption in F £, matching the upper bound found by Schmidt-
Schaufl and Smolka [1991].

3.2.2 Intractability in 7L~ plus qualified existential quantification and
number restrictions

As shown in Chapter 2, disjunction arises also from qualified existential quantifica-
tion and number restrictions. This can be easily seen examining the construction
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of the tableau checking the satisfiability of the concept
(3R.A)M(FR.(mANM=B))N(ER.B)N<2R

in which, once three objects are introduced to satisfy the existentials, one has to
choose between three non-equivalent identifications of pairs of objects, where only
one identification leads to a consistent tableau.

Remark 3.4 When a DL includes number restrictions, also negation of concept
names is included for free, at least from a computational viewpoint. In fact, a
concept name A and its negation —A can be coded as, say, 24 R4 and <3 Ry
where R4 is a new role name introduced for A. Now these two concepts obey the
same axioms of A and —A—mnamely, their conjunction is L and their union is T.
Hence, everything we say about computational properties of DLs including FL£~
plus number restrictions holds also for AL plus number restrictions. "

We now present a proof of intractability based on this property. The reduction
was first published by Nebel [1988], who reduced the NP-complete problem of SET
SPLITTING [Garey and Johnson, 1979, p. 221], to non-subsumption in the DL of the
BACK system, which included the basic £~ plus intersection of roles, and number
restrictions. SET SPLITTING is the following problem:

Definition 3.5 (set splitting) Given a collection C of subsets of a basic set S,
decide if there exists a partition of .S into two subsets S7 and So such that no subset
of C is entirely contained in either Sy or Ss. n

We simplify the original reduction. We start from a variant of SET SPLITTING
(still NP-complete) in which all ¢ € C have exactly three elements, and reduce it to
satisfiability in FL£~ plus qualified existential role quantification and number restric-
tions'. Since role intersection can simulate qualified existential role quantification
(see next Section 3.2.2.1) this result implies the original one.

Theorem 3.6 Satisfiability in FLEN is NP-hard.

Proof Let S = {1,...,n}, and let ¢1,...,c, be the subsets of S. There exists a
splitting of S iff the concept Dy M Dy M Dg is satisfiable, where D1, Do, D3 are
defined as follows:

Dy = 3R.BN---N3R.B, (3.5)
Dy = VR.(<2Q1[—|--~|_|<2Q;€) (36)
Dy = <2R (3.7)

1 From Remark 3.4, this DL has the same computational properties of ALEN [Donini et al., 1997a).
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N le
M) -] |7

Zijy Zija Zijk

Fig. 3.1. The AND-tree structure of the tableau obtained by
applying rules for M and IR.C to D1 M Dy M Ds(x). Applying
rule for < 2 R(x) would lead to several OR-branches (as many
as the possible identifications of y's).

where each concept B; codes which subsets element ¢ appears in, as follows:

Bz' = I_lj |i€C; HQJAZ

and concepts Ay, ..., A, are defined in such a way that they are pairwise disjoint—
say, fori € {1,...,n} let A; = >i RMN< i R. Intuitively, when tableaux rules dealing
with M and qualified existential quantification are applied to Dy M Dg M D3(z),
one obtains a tableau whose tree structure of individual names can be visualized
as in Figure 3.1. The rest of the proof strictly follows the original one [Nebel,
1988], hence we do not present it here. The intuition is that D3 forces to identify
all ¢’s generated by D; into two successors of the root individual name x. Such
identifications correspond to the sets S; and S3. Then Dy forces the split of each
3-subset, since it makes sure that neither of these successors has more than two
Qj-successors, and thus both have at least one @);-successor (since there are three
of them). O

We clarify the construction and show its relevant properties on an example.

Example 3.7 Suppose S = {1,2,3,4}, and let ¢; = {1,2,4},c0 = {2,3,4},¢c3 =
{1,3,4}. Applying the tableau rules of Chapter 2 to Dj, one obtains the following
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tree of individual names (definitions of each B; are expanded):

7

Q1(y1,211) Ai(z11)
R(x, B

(@) i) { Q3(y1,213) A1(z13)

Q1(y2,221) Az(z21)
R(x, B

(#.92) Brwn) { Q2(y2, 222)  Az(222)

Dy () { Q2(y3,232) Asz(z32)
R(x, B

(@:93) Brwn) Q3(y3,z33) As(z33)

Q1(ya, z41) As(za1)

R(x,y1) Bi(y1) Q2(y4, 242)  Aa(242)

{ Q3(ya,243) Aa(243)

where the individual names y1, ..., ys stand for the four elements of S, and each z;;

codes the fact that element i appears in subset ¢;. Because of assertions A;(z;;), no
two z’s disagreeing on the first index—e.g., 232 and z4o—can be safely identified,
since they must satisfy assertions on incompatible A’s. This is the same as if the
constraints z;; # zpj, for all i,h € {1,...,|S|} with i # h, and all j € {1,...,|C|}
were present.

Now Dg states that y1,...,ys must be identified into only two individual names.
Observe that identifying ys,ys,ys leads to an individual name (say, y2) having
among others, three unidentifiable Qo-fillers zo9, 239, z40. But Dy states that all
R-fillers of z, including ys, have no more than 2 fillers for Q2. This rules out the
identification of yo, y3, y4 in the tableau. Observe that this identification corresponds
to a partition of S in {1} and {2,3,4} which is not a solution of SET SPLITTING
because the subset co is not split. Following the same line of reasoning, one could
prove that the only identifications of all R-fillers into two individual names, leading
to a satisfiable tableau, are one-one with solutions of SET SPLITTING. n

The same reduction works for non-subsumption, since D1 N Dy I Dg is satisfiable
iff D1M D3 is not subsumed by =D3 = > 3 R. This type of reduction was also applied
(see [Donini et al., 1999]) to prove that subsumption in ALNZ is coNP-hard, where
ALNT is the DL including AL, number restrictions and inverse roles.

Observe that also FLEN contains the AND-branching source of complexity,
since qualified existential restriction is present. With a more complex reduction
from Quantified Boolean Formulae, combining the two sources of complexity, sat-
isfiability and non-subsumption in ALEN has been proved PSPACE-complete by
Hemaspaandra [1999].

Note that in the above proof of intractability, pairwise disjointness of Aq,..., A,
could be also expressed by conjoining logn concept names and their negations in
all possible ways. Hence, the proof needs only the concept <2 R, and when quali-
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fied existentials are simulated by subroles, only > 1 R is used. This shows that the
above proof of intractability is quite sharp: intractability raises independently of
the size of the numbers involved. The computational cliff is evident if one moves
to having 0 and 1 only in number restrictions, that leads to so-called functional
roles—since the assertion < 1 R(z) forces R to be a partial function from x. In that
case, the tractability of a DL can be usually established, e.g., the DL of the system
Crassic [Borgida and Patel-Schneider, 1994]. The intuitive reason for tractability
of functional roles can be found in the corresponding tableau rules, which for num-
ber restrictions of the form <1 R(xz) become deterministic: there is no choice in
identifying individuals names y1, ..., yr which are all R-fillers for x, but to collapse
them all into one individual.

8.2.2.1 Simulating AR.C with role conjunction

Donini et al. [1997a] showed that a concept D containing qualified existential role
quantifications JR.C' is satisfiable iff the concept D is satisfiable, where in D each
occurrence of a concept IR.C' is replaced by the concept I(RM Qo) MV(RMNQc).C
adding Q¢ as a new role name (a different Q¢ for each occurrence of IR.C, to be
used nowhere else). We call D an M-simulation of D in the rest of the chapter.

The proof that the simulation is correct can be easily given by referring to
tableaux.

Example 3.8 Considering the concept D below on the left, and simulating qual-
ified existential quantifications in D by role intersections, one obtains the concept
D on the right,

JR.AN N J(RMNQA)NY(RMQa).A
D={ 3R.BN D=< I(RNQB)NV(RMNQpB).B
VR.C VR.C

where subscripts on new role names help identifying which existential they simulate.
Applying tableaux rules of Chapter 2 to D(x), one obtains the model

R(z,y) Aly)
Qalz,y) Cly)
R(z,z) B(z2)
QB(xa Z) C(Z)
which satisfies both concepts. =

Proposition 3.9 A concept D is satisfiable zﬁﬁ is satisfiable.

Proof The proof of the proposition follows the example. Namely, an open tableau
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branch for D is also an open tableau branch for D (ignoring assertions on new role
names), and an open tableau branch for D can be transformed to an open tableau
branch for D just by adding the assertions about new role names. O

As observed by Nebel [1990a], an acyclic role hierarchy in a description logic can
be always simulated by conjunctions of existing roles and new role names. In the
above example, using two role names @ 4, @p and the inclusions Q4 C R, Qp C R
yields the same simulation.

Applying M-simulation, one could obtain from the reduction in Theorem 3.6 the
original reduction by Nebel, proving that satisfiability (and non-subsumption) in
ALN (M) is NP-hard. Using a more complex reduction, Donini et al. [1997a] proved
that satisfiability in ALN (M) is in fact PSPACE-complete.

3.3 AND-branching: finding a clash

When candidate models of a concept have exponential size—as for the ALE-concept
of Section 3.1.1.2—models cannot be guessed and checked in polynomial time. In
this case, a combinatorial problem is finding the clash—if any—in the candidate
model. This leads to NP-hardness of unsatisfiability and subsumption. However,
for many DLs the AND-tree structure of a model is such that its traces (branches
of the AND-tree) have polynomial size. A concept C is satisfiable iff there is no
trace containing a clash, hence it is sufficient to guess such a trace to show that C' is
unsatisfiable. From this argument, Schmidt-Schau8 and Smolka [1991] proved that
satisfiability in ALE is in coNP.

3.3.1 Intractability of satisfiability in ALE

We now report a proof that satisfiability in ALE is coNP-complete. The original
proof was based on a polynomial-time reduction from a variant of the NP-complete
problem ONE-IN-THREE 3SAT [Garey and Johnson, 1979, p. 259]. Here we present a
proof based on the same idea, but with a slightly different construction, relying on a
reduction from the NP-complete problem EXACT COVER (XC) [Garey and Johnson,
1979, p. 221]. Such a problem is defined as follows.

Definition 3.10 (Exact cover xc) Let U = {uy,...,u,} be a finite set, and let
M be a family My, ..., M, of subsets of U. Decide if there are ¢ mutually disjoint
subsets M;,, ..., M;, such that their union equals U, i.e., M;, N M; =0 for 1 <

h<k<gq, and Ul_, M, =U. .

The reduction consists in associating every instance of XC with an ALE-concept
Cwr, such that M has an exact cover if and only if Cyg is unsatisfiable. 1t is
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important to note that, differently from the previous sections, here a solution of
the NP-complete source problem is related to a proof of the absence of a model.
In fact, exact covers of M are related to those traces of {Cp(z)} that contain a
clash, hence the certificate of a solution of an NP-complete problem is related to a
refutation in the target DL.

In the following we assume R to be a role name. We translate M into the concept

Cy=CiMn---nCMN Dy

where each concept C{ represents a subset M;, and is inductively defined as

i_ {EIR.CZJ‘_i_l, if either [ < n, w; € Mj or [ > n, u_, € M; for 1€ {1,....2n}

L VR.C],,, if either I <n, uy & Mj or 1> n, u_, ¢ M,

and by the base case an 41 = 1. The concept D is defined by

D) =¥VR.---VR. |
2

and each one of Do, D3, ... have one universal quantifier less than the previous one.

Intuitively, for every element u; in U there are two corresponding levels [, + n
in the concepts C’f ’s, where “level” refers to the nesting of quantifiers. The element
w is present in M if and only if there is an existential quantifier in the concept C’{
at level | + n—which implies by construction that d is also at level . The concept
D is designed in such a way that a clash for {Cy(z)} can only occur in a trace
containing at least 2n + 1 individual names.

Example 3.11 Consider the following instance of xc: let U = {uq,...,us}, and
M = {My = {u1,uz}, Mz = {ug,u3}, M3 = {uz}}

The corresponding ALE-concept Cyy is given by the conjunction of Cf, C?, C3 and
D1, defined as follows.

Uy U U3z Ul U U3

M, < O} = 3R3RVRIRIRVR.T
My « C? VRIARIRVRIRIR.T
My < C3 VRVYRI3RVRVYRIR.T
Dy = VRVRVRVYRVRVR.L

where on the left we put the subset M; corresponding to each C{, and above the
elements of U corresponding to each level of the concepts. Observe that the elements
of U appear twice. "
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The conjunction of the above concepts is unsatisfiable if and only if the interplay
of the various existential and universal quantifiers, represented by a trace, forces an
individual name in the tableau for {C(x)} to belong to the extension of L. This
reduction creates a correspondence between such a trace and an exact cover of U.

In order to formally characterize such a correspondence, we define the activeness
of a concept in a trace. Let T be a trace and C be a concept. We say that C' is
active in T if C is of the form 3R.D and there are individual names y, z such that
T contains C(y), R(y, z), and D(z). Therefore, an existentially quantified concept
JR.D is active in T if the —3-rule has been applied to the assertion IR.D(y) in T
Intuitively, if C’Z is active in a trace of {Cy(z)} containing a clash, then uy belongs
to an exact cover of M.

Lemma 3.12 ([Donini et al., 1992a, Lemma 3.1]) Let T be a trace of
{Cm(z)}.

(i) Suppose C’,{; is active in T'. Then for alll € {1,...,k} if the concept C’lj is of

the form EIR.CZJH,

(ii) If T contains a clash, then for every | € {1,...,2n} there exists exactly one

then it is active in T.

J such that C’lj s active in T'.

Example 3.13 The reader can gain an insight on the importance of the above
properties by constructing the tableau for the concept

(3RVR.AR.A) M
(3RVR.3R.B) M
(VR.3R.T)

and verifying that the trace reaching the concept A has both existentials in the
first line active (and no existential of the second line), and vice versa for the trace
reaching B. "

Example 3.14 (Example 3.11 continued) Note that in Example 3.11 the two
subsets M; and My form a (non-exact) cover of U, and indeed, the tableau for
{C{ N C} 1 Dy(z)} is satisfiable. Moreover, observe the importance of the two
levels. If concepts were formed by just one level, the following concepts would be
unsatisfiable (choose highlighted existentials):

Cl = 3R3RVRT
C! = VR3IRIR.T
D; = VYRVRVYR.L

corresponding to a cover by M7 and My which is non-exact. The second level ensures
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that once an existential is chosen, all nested existentials must be chosen too to form
a trace. [

Theorem 3.15 Unsatisfiability in ALE is NP-hard.

Proof We show that an instance (U, M) of XC has an exact cover if and only
if Cpq is unsatisfiable. Let M = {My,..., M,,} be a set of subsets from U and
Cypm = CLM...MC" M Dy be the corresponding concept. Since this proof is the
base for three other ones in the chapter, we present it with some detail.

Only-if Let M;,, ..., M;, be an exact cover of U. Let T be a trace of {Ca(71)}
defined inductively as follows:

Ty ={Ci(x1)|je{1,...,m}}U{Di(x1)}

Ti1 =Ty U{R(z1, 2141)} U{C) (141) | wigr € My} U {Digr (zi41)}

Obviously, T = To 11 Contains a clash, because Da,11 = L. For each level [ there

is exactly one j such that CY = JR.CY

i.1- Using this fact, one can easily show that

T is a trace by induction on I.
If If Cyq is unsatisfiable, then there exists a trace T' of {Caq(x)} such that T
contains a clash. We show that the subsets in

{M; |3l e{1,...,n}:C7,, is active in T}

form an exact cover of U. First of all, since T is a trace, for every level [ € {1,...,2n}
there exists a j such that C’lj is active in 7' (second point of Lemma 3.12). Hence
the union of these subsets cover U.

We now prove that no two subsets overlap: in fact, suppose there are i, j such
that M;, M; intersect non-trivially in element ;. Here we exploit the two-layered
construction of Cyq. By definition, there are h, k such that C’fl 4, and C’Zb 4, are active
in T'. Since v; is in both M; and Mj, by construction of Cyq we have C7 = 3R.C}_
and Clj = EIR.Cle. From first point in Lemma 3.12, we know that Cli and C’lj are
both active in T'. Hence ¢ = j from second point of Lemma 3.12. O

The above reduction works also for the special case of XC in which every subset
has at most three elements, which corresponds to at most six nested existential
quantifications in each concept C{ . Hence, bounding by a constant & > 6 the
number of nested existential quantifications does not yield tractability. The original
reduction from ONE-IN-THREE 3SAT shows that also bounding by a constant k > 3
the number of existentials in each level, does not yield tractability.

Simulating qualified existential quantifications in Caq by role intersection (see
Section 3.2.2.1), we conclude that unsatisfiability of concepts in AL(M)—AL plus
role conjunction—is NP-hard, too.
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Theorem 3.16 Satisfiability and subsumption of concepts are NP-hard in AL(M).

We note that this source of intractability is not due to the presence of the concept
L, but to the interplay of universal and existential quantification. In fact, the above
reduction works also for the description logic FL~E&, which is FL~ plus qualified
existential quantification.

Theorem 3.17 Subsumption is NP-hard in FLE.

Proof The proof is based on the reduction given for ALE. The ALE-concept
Cp = CiM...NCMND; in that reduction, is unsatisfiable if and only if C{1...NC"
is subsumed by —=D;. Now C]M...MC™ is a concept in FLE and —~D; can be
rewritten to the equivalent concept F, defined as

E=3JR.---dR. T
2
n

i.e., a chain of 2n qualified existential quantifications terminating with the concept
T. Obviously, E is in FL~&, hence subsumption in FL~E is NP-hard. O

We now use the above construction to show that in three other DLs—extending
F L~ with each pair of role constructs for role conjunction, role inverse, and role
chain—subsumption is NP-hard. The fact that reductions can be easily reused is a
characteristic of DLs. It depends on the compositional semantics of constructs—
hardness proofs obviously carry over to more general DLs—but also on the exten-
sional semantics, that allows one to simulate a construct with others.

3.3.2 FL~ plus role conjunction and role inverse

We abbreviate this description logic as FL(M,” ). We prove that FL(M,7) is
hard for NP with an argument similar to that for F£~&. One may be tempted
to use M-simulation, defined in Section 3.2.2.1, which substitutes qualified existen-
tial quantifications with role intersections. However, a direct M-simulation of the
concepts used in the reduction for FL~E does not work. In fact, M-simulation pre-
serves satisfiability, not subsumption; e.g., while 3R.C'T1 D is subsumed by dR.C,
its M-simulation (R M Q1) MVQ1.C' T D is not subsumed by I(R M Q2) MVQ2.C.

To carry over the proof, it is useful a tableaux rule for role inverse:

Condition: T contains R(z,vy),
where R is either a role name P or its inverse P~;
Action: T' =T U{R (y,x)},
where if R = P, then R~ = P.
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Theorem 3.18 Subsumption in FL(M,” ) is NP-hard.
Proof We refer to the concept Cy defined in the reduction given for ALE. Let n
be the cardinality of U in XC. First define the concept F' as follows:

F=VYR.---VR.V(R").---¥(R). A
2
n 2n

where A is a concept name (remind that Cy( does not contain any concept name,
but T and 1). F is a concept of FL(M,7).

Observe now that the ALE-concept Chg = C1 M ... M C M Dy is unsatisfiable if
and only if C1M...MCM™ M F is subsumed by A (where C is the M-simulation of C).
In fact, the subsumption holds if and only if the complete tableau for {5% M...M
C™ M F(z),~A(x)} contains the only possible clash {A(z),—A(x)}. This tableau
contains a clash if and only if there is a trace of length 2n in the tableau, and such a
trace is in one-one correspondence with the exact covers of the problem XC. Hence
subsumption in FL~(M,” ) is NP-hard. O

3.3.3 7L plus role conjunction and role chain

We abbreviate this description logic as FL™ (1, 0).
Theorem 3.19 Subsumption in FL™ (M, 0) is NP-hard.

Proof Again, we refer to the concept Cy defined in the reduction given for ALE.
Observe that the ALE-concept Cpg = CL ... M CP M Dy is unsatisfiable if and
only if 511 M...Mn 5{” is subsumed by —D; (again, C is the M-simulation of C). The
claim holds, since C1 ... M C™ is in FL (1) and —D; can be expressed as the
equivalent concept F, defined as follows:

G=3(Ro---oR) (3.8)
2
Obviously, G is in FL™ (o), hence subsumption in FL~ (11, o) is NpP-hard. O

We note that in the above reduction, subsumption is proved intractable by using
only role conjunction in the subsumee (to simulate existential quantification), and
only role chain in the subsumer. We exploit this fact in the following section.

3.3.4 FL~ plus role chain and role inverse

We abbreviate this description logic as FL (o, ). We first show that, similarly to
Section 3.2.2.1, qualified existential quantifications in a concept D can be replaced
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by a combination of role chains and role inverses, obtaining a new concept D that
is satisfiable iff D does.

3.8.4.1 Simulating AR.C' via role chains and role inverses

Donini et al. [1991b; 1999] showed that a concept D containing qualified existential
role quantifications 3R.C' is satisfiable iff the concept D is satisfiable, where in D
each occurrence of a concept IR.C' is replaced by the concept I(R o Q¢) M V(R o
Qc o Qp).C, adding Q¢ as a new role name (a different @) for each occurrence of
JR.C, to be used nowhere else). We say that C is a o-simulation of C.

Also this simulation can be explained by referring to tableaux, through an exam-
ple concept.

Example 3.20 Consider the concept D below on the left, and its o-simulation D
on the right:

JR.ATI R J(RoQa)MV(RoQao0Q,).Al
D=4 3R.BN D=4 3(RoQp)NY(RoQpoQp).BI
VR.C VR.C
where subscripts on new role names help identifying which existential they simulate.
Applying tableau rules of Chapter 2 to D(z), one obtains the model

R(z,y) Aly) Qal(y,wy)
C(y)

R(.%',Z) B(Z) QB(zauz)
C(2)

where subscripts on individuals u,, u, highlight that there is a new individual name
for each individual name used to satisfy an existential quantification. That is, the
number of individual names in the tableau for D are at most twice those in the
tableau for D. "

Lemma 3.21 Let C be an ALE-concept and C its o-simulation. Then C is satis-
fiable if and only if C is satisfiable.

Proof The proof extends the above example. In one direction, an open tableau for
D is also an open tableau for D (ignoring assertions on new role names). In the
other direction, an open tableau for D can be transformed to an open tableau for D:
to every role assertion R(z,y)—added to satisfy an existential IR.C' in D—chain
an assertion Qc(y, uy). O

If C is an ALE-concept, its o-simulation Cisa concept belonging to the language
AL(0,7 ), that is, AL plus role inverses and role chains. Of course, o-simulations
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could be defined for concepts belonging to DLs more expressive than ALE. For
DLs in which every concept is satisfiable (like £~ (0,7 )) this simulation can be
interesting only in subsumptions.

We can now come back to subsumption in the DL FL~ plus role inverses and
role chains.

Theorem 3.22 Subsumption in FL (o,” ) is NP-hard.

Proof For every ALE-concept C, one can compute in quadratic time an o-simulation
C. For a given instance (U, M) of xc, C'y¢ is unsatisfiable iff (by Lemma 3.21) GM
is satisfiable iff 611 M...rl (7;” is subsumed by —D;. Now the subsumee contains no
negated concept, hence it belongs to L~ (o,” ). The subsumer is equivalent to the
concept G in (3.8), which again is in FL (o, ). O

3.4 Combining sources of complexity

In a DL containing both sources of complexity, one might expect to code any prob-
lem involving the exploration of polynomial-depth, rooted AND-OR graphs. The
computational analog of such graphs is the class APTIME (problems solved in poly-
nomial time by an alternating Turing machine) which is equivalent to PSPACE (e.g.,
see [Johnson, 1990, p. 98]). A well-known PSPACE-complete problem is Validity of
Quantified Boolean Formulae:

Definition 3.23 (Quantified Boolean Formulae QBF) Decide whether it is
valid the (second-order logic) closed sentence

(@1 X1)(Q2X2) - (QnXn)[F(X1,. .., Xp)]

where each @); is a quantifier (either V or 3) and F'(X71, ..., X,) is a Boolean formula
with Boolean variables X1, ..., X,. "

The problem remains PSPACE-complete if F' is in 3CNF, i.e., conjunctive normal
form with at most three literals per clause. We call prefiz of the quantified formula
the string of quantifiers, and matriz the 3CNF formula F'.

This problem can be encoded in an AND-OR graph, using AND-nodes to encode
V-quantifiers, and OR-nodes for 3-quantifiers. In the leaves, there is the matrix F.
We use this analogy to illustrate the reduction, taken from [Schmidt-Schauf8 and
Smolka, 1991].
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3.4.1 PSPACE -hardness of satisfiability in ALC

Without loss of generality, we assume that each clause is non-tautological, i.e.,
a literal and its complement do not appear both in the same clause. Let F' =
Gi A+ NGy The QBF (Q1X1) -+ (QnXn)[G1 A -+ - A Gy is valid iff the ALC-
concept

C=DnNcin...ncy (3.9)

is satisfiable, where in C' all concepts are formed using the concept name A and the
atomic role name R. The concept D encodes the prefix, and is of the form D M
VR.(D2MVR.(...(Dp—1MVR.D,,)...) where for i € {1,...,n} each D; corresponds
to a quantifier of the QBF in the following way:

D — (AR.A)N(IR-A), fQ; =V
‘| 3R.T, if Q; =3

The concept C! is obtained from the clause G; using the concept name A when a
Boolean variable occurs positively in G;, = A when it occurs negatively, and nesting
[ universal role quantifications to encode the variable X;. In detail, let k£ be the max-
imum index of all Boolean variables appearing in G;. Then, for [ € {1,...,(k—1)}
one defines
VR.(AU Cli+1)’ if X; appears positively in G;
C; = VR.(-AUC},,), if X; appears negatively in G;

VR.C}H, if X; does not appear in G;

and the last concept of the sequence is defined as

ci — VR.A, if X appears positively in G;
¥\ VR.-A, if X, appears negatively in G;

It can be shown that each trace in a tableau branch for D corresponds to a truth as-
signment to the Boolean variables, and that all traces of a tableau branch correspond
to a set of truth assignments consistent with the prefix. Therefore, Schmidt-Schaufl
and Smolka conclude that satisfiability in ALC is PSPACE-hard. Combining this re-
sult with the polynomial-space calculus given for ALCN in Chapter 2, one obtains
that satisfiability (and subsumption) in ALCN are PSPACE-complete, and that
the exponential-time behavior of the calculus cannot be improved unless PSPACE
=PTIME. Satisfiability and subsumption are still in PSPACE if role conjuctions are
added to ALCN [Donini et al., 1997a), or if inverse roles and transitive roles are
added to ALC [Horrocks et al., 2000b].

Using M-simulations, one can use the same reduction to prove that both satisfia-
bility and subsumption in ALU (M) are PSPACE-hard (and thus PSPACE-complete).
With a more complex reduction, Donini et al. [1991a] proved that also satisfiabil-
ity in ALN (M) is PSPACE-hard. Hemaspaandra [1999] proved that satisfiability in
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ALEN is PSPACE-hard using a reduction from QBF, where the prefix was coded with
a concept similar to D (more precisely, similar to the concept D in Section 3.1.1.2),
and the matrix was coded in a more complex way. Also FL was proved PSPACE-
hard in [Donini et al., 1997a]. Observe that all these DLs contain both sources of
complexity.

3.4.2 A remark on reductions

Schild [1991] observed that ALC is a notational variant of multi-modal logic K,
whose satisfiability was proved PSPACE-hard by Ladner [1977], using a different
reduction from QBF. This gives us the occasion to point out a characteristic of
reductions from a different, pretty experimental viewpoint.

The target modal formula in Ladner’s reduction has size quadratic w.r.t. the given
instance of QBF, while one can observe that the concept C' in (3.9) has just linear
size. From a theoretical perspective of the PSPACE reduction, this is irrelevant.
However, QBF has been studied also from an experimental point of view (e.g., [Cadoli
et al., 2000; Gent and Walsh, 1999]): trivial cases have been identified, easy-hard-
easy patterns have been found, and one can use ratios of clauses/variables for which
the probability that a random QBF is valid is around 0.5—which have been proved
experimentally to contain the “hard” instances. This experimental work can be
transferred in DLs, to compare the various algorithms and systems for reasoning in
ALC. This transfer yields the benefits that

e concepts which are trivially (un)satifiable do not need to be isolated again;

e the translation of “hard” QBF's can be used to test reasoning algorithms for ALC;

e the performance of algorithms for ALC can be compared with best known algo-
rithms for solving QBF(see [Cadoli et al., 2000; Rintanen, 1999; Giunchiglia et al.,
2001b]), and optimizations can be carried over.

However, using Ladner’s reduction to obtain “hard-to-reason” concepts, the
quadratic blow-up of the reduction makes the resulting concepts soon too big to
be significantly tested. Using Schmidt-Schau3 and Smolka linear reduction, in-
stead, one can use a spectrum of “hard” concepts as wide as the original instances
of QBF. Thus, experimental analysis might make significant differences between
(theoretically equivalent) polynomial many-one transformations used in reductions
[Donini and Massacci, 2000].

3.5 Reasoning in the presence of axioms

In this section we consider the impact of axioms on reasoning. Intuitively, axioms
introduce new concept expressions in every individual generated in a tableau, hence
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simple arguments on termination and complexity based on the nesting of operators
do not apply. We start with a comparison with Dynamic Logic, and then we show
how axioms can encode a succinct representation of AND-OR graphs, leading to an
EXPTIME lower bound.

3.5.1 Results from Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) [Harel et al., 2000] is a formalism able to express
propositional properties of programs. Instead of introducing yet another logical
syntax, we will talk about PDL in terms of DLs. A precise correspondence between
DLs and PDL can be found in Chapter 5.

The counterpart of PDL in DLs is ALCens [Baader, 1991], already defined in
Chapter 2. We recall that ALCrqns is ALC plus a rich set of role constructors:
union of roles, composition, and transitive closure. To be precise, PDL has also a role-
forming constructor which is role identity, and the closure of a role is the reflexive-
transitive one, denoted as R*. Reflexive-transitive closure is defined similarly to
transitive closure, but considering also every pair (a,a) is in the interpretation of
R*. However, Schild [1991] showed that these are minor differences, as far as we are
concerned with computational behavior only.

PDL and ALCyqns are relevant in this section about axioms, because using union
and transitive closure of roles, one can “internalize” axioms in a concept in the
following way [Baader, 1991; Schild, 1991]. Let C' be an ALC concept, 7 a set of
axioms of the form C; C D;, i € {1,...,m}. Observe that every axiom can also be
thought as a concept =C' U D which every individual in a model must belong to.
Let Ry,..., R, be all the role names used in either C or 7. Then C is satisfiable
w.r.t. 7 iff the following concept is satisfiable:

CNV(RiU---UR,)* . ((-CruUDy)M---M(=Cp U Dyy)) (3.10)

The key property that makes this reduction correct is the connected model property
[Streett, 1982]: if C' has a model w.r.t. a set of axioms, then it has also a model in
which one element a € A is in CZ, and for every other element b in the model,
there is a path of roles from a to b.

Concept (3.10) is just a syntactic variant of a PDL expression. Hence, every upper
bound on complexity of satisfiability for PDL applies also to concept satisfiability
in ALC w.r.t. axioms, including all role constructors of PDL. Namely, satisfiabil-
ity in PDL was proved to be decidable in deterministic exponential time, first by
Pratt [1979], and then by Vardi and Wolper [1986] using an embedding into tree
automata. This upper bound holds also for ALC plus axioms. It is interesting to
observe that the deterministic exponential time upper bound was nontrivial; simple
nondeterministic upper bounds were proved by Fischer and Ladner [1979] for PDL
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and by Buchheit et al. [1993a] for DLs, using tableaux. Only recently a tableaux
with lemmata providing a deterministic exponential upper bound has been found
[Donini and Massacci, 2000].

Regarding hardness, every lower bound on reasoning in ALC with axioms car-
ries over to PDL. However, lower bounds for PDL were already known. Fischer
and Ladner [1979] proved that PDL is EXPTIME-hard using a reduction from Al-
ternating Turing Machines working in polynomial space (recall that the complexity
class Alternating Polynomial Space is the same as EXPTIME [Johnson, 1990]). van
Emde Boas [1997] proved the same result using a reduction from alternating domino
games. However, both hardness proofs use a very small part of PDL, and in particu-
lar, transitive closure on roles appears only in one expression of the form (3.10), so
that proofs could be adapted to ALC concept satisfiability w.r.t. a set of inclusions,
in a very simple way. Moreover, the proofs use VR.C' to code an AND-node, and
JR.C to code an OR-node. Hence, they follow the same intuition presented in the
previous section, where we showed the correspondence between AND-OR-trees and
satisfiability of ALC without axioms.

Here, we want to present yet another proof, of a very different nature, that
highlights the fact that concept inclusions can express a large structure in a succinct
way.

3.5.2 Axioms and succinct representations of AND-OR-graphs

We now need more precise definitions about AND-OR-graphs. An AND-OR-graph
is a graph in which nodes are partitioned into AND-nodes, and OR-nodes. An
OR-node is reachable if one of its predecessors is reachable (as in ordinary graphs),
while an AND-node is reachable only if all its predecessors are reachable.

Definition 3.24 (AND-OR-Graph Accessibility Problem (AGAP)) Given
an AND-OR-graph, a set of source nodes St,..., S, and a target node T, is T
reachable from Sy, ..., 5,7 "

Let n be the number of nodes of the graph, and d (a constant) the maximum
number of predecessors of a node. It is well known that AGAP can be solved in
time polynomial in n (e.g., it can be reduced to Monotone Circuit Value, which
is PTIME-complete [Papadimitriou, 1994]). However, AGAP becomes EXPTIME-
complete when one considers its succinct version [Balcazar, 1996]. Let the out-
degree of a node be bounded by a constant d. Let C be a Boolean circuit with logn
inputs, and with 1+ dlogn outputs; when the input of C is the binary encoding of
a node N, its outputs are the encodings of the type of N (AND/OR) and of the d
predecessors of N (using a dummy node if the predecessors are less than d).
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Definition 3.25 (Succinct AND-OR-Graph Accessibility Problem (s(AGAP)))
Given a circuit C representing an AND-OR-graph, a set of source nodes S, ..., S,
and a target node T, is T reachable from Sy, ...,S5,,7 =

Now, s(AGAP) is EXPTIME-complete [Balcazar, 1996]. The intuition for this ex-
ponential blow-up in complexity is that there are many circuits which can encode
graphs whose size is exponentially larger than the circuit size. This intuition ap-
plies to many other succinct representations of problems with circuits [Papadim-
itriou, 1994, p. 492] or with propositional formulae [Veith, 1997], yielding complete
problems for high complexity classes.

We reduce s(AGAP) for graphs with in-degree d = 2 to unsatisfiability of an ALC
concept C' w.r.t. a set of inclusions 7. Intuitively, the axioms can succinctly encode
either a proof of unsatisfiability for a concept, or a model for C w.r.t. 7. We note
that, since we are coding reachability into unsatisfiability, we will use N to code OR-
nodes—a conjunction is unsatisfiable when at least one of its conjuncts does—and
U to code AND-nodes.

First of all, let Ay, ..., Aiogn, be a set of concept names one-one with the inputs
of the circuit C. Each node N in the graph is then mapped into a conjunction of
As and their negations, denoted as concept(N), depending on the code of N: if the
i-th bit in the code of N is 1, use A;, if it is 0, use = A;. For example, if N has code
1101 then concept(N) is Ay M Ao M —Ag M Ay.

Then, let Bll, e Bllogn, and B%, . ,BIQOgn be two sets of concept names one-one
with the outputs of C. Conjunctions of Bs with negations code predecessor nodes.

Moreover, let two concept names AND, OR, represent the type of a graph node.
If C has k internal gates, we use also k£ concept names W7y, ..., Wy. For each gate,
we use a concept equality that mimics the Boolean formula defining the gate. E.g.,
if C has a A-gate x1 A o = x3, we use the equality X; M Xy = X3, where the
X1, X9, X3 can be either concept names among Wi, ..., W} denoting input/output
of internal gates, or they can be some of the As and Bs, denoting inputs/outputs
of the whole circuit.

For the output of C encoding the type of the node, we use directly the two concept
names AND, OR in the concept equality coding the output gate of C. Moreover,
to model the different interpretation of predecessors for the two type of nodes, we
use the inclusions:

AND
OR

IR'TUIRAET (3.11)

C
C 3R .TN3RALT (3.12)

where R! and R? are two role names (we use indexes 1,2 to parallel indexes of the
Bs). Observe that concept AND implies a disjunction LI, and concept OR implies
a conjunction M. This is because we reduce reachability to unsatisfiability, as we
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said before. Moreover, observe that predecessors in the AND-OR-graph are coded
into role successors in the target DL.

For the output of C encoding the predecessors of a node, For i € {1,...,logn},
we add the following inclusions:

B} C VR'.A, (3.13)
-B! C VR!.-4; (3.14)
B? C VR%.A, (3.15)
-B? C VR%-4; (3.16)

We denote by 7¢ the set of all of the above axioms.

We now give an example of what the axioms imply. Suppose C computes the
two predecessors 1011 and 0110 for node 1101. Then, equalities coding C force
concept(1101) = Ay M Ay M —A3 M Ay to be included in B}, =B, Bi, Bl (first
predecessor) and —=B?, B3, B3, =B? (second predecessor). Then inclusions (3.13)-
(3.16) tell that every R!-successor is included in Ay, =Ay, As, Ay—which conjoined,
make concept(1011)—and that every R2-successor is included in —Ay, Ay, Az, -4,
(concept(0110)). Moreover, if C computes an AND-type for node 1101, then ax-
iom (3.11) implies that the corresponding concept is included in AND, and this
implies that either an R'-successor, or an R2-successor exists. For OR-type nodes,
both successors exist.

Theorem 3.26 Let C be a circuit, T be the target node, and Si,...,Sm, be the
source nodes in an instance of s(AGAP). Then T is reachable from Si,...,Sm
iff concept(T) is unsatisfiable in the TBox Tc U {concept(S;) T L} U --- U
{concept(S,,) C L}.

Proof Most of the rationale of the proof has been informally given above. We sketch
what is needed to complete the proof.

If Suppose T is unreachable from Si,...,S,,. We construct a model (Z, AT)
for concept(T) satisfying the axioms as follows. Let A be the set of all nodes in
the graph which are unreachable from Sy, ...,S,. Then, (R')? is the set of pairs
(a,b) of nodes in AZ, such that b is the first predecessor of a, and similarly for
(R*)T (second predecessor). For i € {1,...,logn}, (A;)7 is the set of nodes in AZ
whose binary code has the ¢-th bit equal to 1. The interpretation of the Bs, W',
AND, OR, concepts is according to the 1-value of the circuit: node @ is in their
interpretation iff the output they correspond to is 1 when the code of a is the input
of the circuit.

Then, T € (concept(T))*, and moreover (Z, AT) satisfies by construction all ax-
ioms in 7¢; e.g., if an OR-node is unreachable, then both its predecessors are
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unreachable, hence both predecessors are in A%, and axiom (3.12) is satisfied. Sim-
ilarly for an AND-node.

Only-if Let N be any node reachable from Si, ..., Sy, and let d(IV) be the depth
of the shortest hyperpath leading from Sy, ..., S, to N. We show by induction on
d(N) that concept(N) is unsatisfiable in the TBox.

If d(N) = 0, the claim holds by construction. Let N be a reachable node, with
d(N) = k+ 1. If N is an OR-node, at least one of its predecessors—let it be the
first predecessor, and call it M—is reachable with d(M) = k. Then concept(M) is
unsatisfiable by inductive hypothesis. But axiom (3.12) implies that concept(N) is
included in IRY. TM3R2.T, while (3.13)(3.16) imply that concept(N) is included in
VR!.concept(M), that is, VR'. L. Hence, also concept(N) is unsatisfiable. A similar
proof holds in case N is an AND-node.

Then, the claim holds for N =T O

Observe that in the above proof we did not use qualified existential quantification,
hence, the proof works for the sublanguage of ALC called ALU. Now, axioms coding
the circuit can be propositionally rewritten without union. Moreover, the only other
axiom in which union is needed is (3.11), which could be rewritten equivalently as
VR'. 1 MVR?. 1 C -OR, which is now in the language AL.

Theorem 3.27 Let C be a concept and T a set of inclusions in AL, with at least
two role names. Deciding whether C is unsatisfiable w.r.t. T is EXPTIME-hard.

The above theorem sharpens a result by Calvanese [1996b], who proved EXPTIME-
hardness for ALU. McAllester et al. [1996] proved ExpTIME-hardness for a logic
that includes FL£~ &, and their proof can be rewritten to work with ALU.

We close the section with some discussion about the proof.

Remark 3.28 The above proof does not follow the correspondence used by Fischer
and Ladner [1979] between AND-nodes and VR.C concepts on one side, and OR-
nodes and IR.C concepts on the other side. Here, quantifications 3R and VR.C were
used to code predecessors in the graph, node type was coded by M, LI constructors,
while axioms were crucial to mimic the behavior of the circuit. "

3.5.3 Syntax restrictions on axioms

In the proof, no restriction on axioms was imposed. A significant syntactic restric-
tion is to allow one to use only concept names on the left-hand side of axioms. In
this case, a dependency graph induced by the axioms of a TBox 7 can be con-
structed, whose nodes are labeled by concept names. A node A is connected to a
node B if the concept name B appears (also as a subconcept) in a concept C, and
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A C Cis an axiom. Then, it makes sense to distinguish between cyclic axioms, in
which the dependency graph contains a cycle, and acyclic axioms.

Acyeclicity is significant, because if only acyclic axioms are allowed, then reasoning
in ALC can be performed in PSPACE by expanding axioms when needed [Baader
and Hollunder, 1991b; Calvanese, 1996b]. The only case for ALC (till now) in which
acyclic axioms make reasoning EXPTIME-hard is when concrete domains are also
added [Lutz, 2001b].

Also sublanguages of ALC can be considered. With regard to acyclic axioms
in AL, Buchheit et al. [1998] proved that subsumption in acyclic AL TBoxes is
coNP-hard, and in PSPACE. Calvanese [1996b] proved that cyclic axioms in AL are
PSPACE-complete, and other results for ALE and ALU.

A second possible restriction is to allow for axioms of the form A = C, but in
which a concept name can appear only once on the left-hand side. For axioms of
this form in ALN, Kiisters [1998] proved that reasoning is PSPACE-complete when
the TBox is cyclic, and NP-complete when it is acyclic.

3.6 Undecidability

One of the main reasons why satisfiability and subsumption in many DLs are
decidable—although highly complex—is that most of the concept constructors can
express only local properties about an element [Vardi, 1997; Libkin, 2000]. Let C
be a concept in ALC: recalling the tableaux methods in Chapter 2, an assertion
C'(x) states properties about z, and about elements which are linked to x by a chain
of at most |C| role assertions. Intuitively, this implies that a constraint regarding
x will not “talk about” elements which are arbitrarily far (w.r.t. role links) from
2. This also means that in ALC, and in many DLs, an assertion on an individual
cannot state properties about a whole structure satisfying it. However, not every
DL satisfies locality.

3.6.1 Undecidability of role-value-maps

The first notable non-local DL is a subset of the language of the knowledge rep-
resentation system KL-ONE, isolated by Schmidt-Schaufi [1989], which we call
FL (o,=)'. Tt contains conjunction, universal quantification, role composition,
and equality role-value-maps R = (). A role-value-map allows one to express con-
cepts like “persons whose co-workers coincide with their relatives”, as it could be,
e.g., a small family-based firm. Using two role names co-worker and relative, this
concept would be expressed as (co-worker = relative).

The DL proved undecidable by Schmidt-Schaufl used equality role-value-maps.

I In his paper, Schmidt-Schauf used the name ALR.
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Table 3.2. Syntax and semantics of the description logic FL™ (o, C).

concept expressions semantics
concept name A C AT
value restriction VR.C {x € AT | Vy. (x,y) € RT — y € CT}
concept intersection cnbD ctnD?
role-value-map RCQ {x € AT | Vy. (z,y) € RT — (z,y) € Q*}
role expressions semantics

role name P C AT x AT

role composition RoQ {(z,y) € AT x AT | Fe. (z,2) € RE, (z,y) € Q*}

Here we present a simpler proof for a DL using containment role-value-maps R C Q).
We call this DL FL™ (o, C). Clearly, FL (o, C) is (slightly) more expressive than
FL (o,=), since R = @ can be expressed by (R C Q)M (Q C R), but not vice
versa. Most of the original reduction is preserved, though.

Although all constructs of FL™ (o, C) have already been defined in different parts
of Chapter 2, we recall for convenience their syntax and semantics in the single
Table 3.2. Recall that R C @ is a concept; namely, the concept of all elements
whose set of fillers for role R is included in the set of fillers for role Q). To avoid
many parentheses, we assume o has always precedence over C.

Before giving the proof that subsumption in FL£™ (o, C) is undecidable, let us
consider an example illustrating why FL~ (o, C) is not local.

Example 3.29 Let Q,R,S,U,V be role names. Consider whether the concept
C =VSYUAN (Ro @ C S)MNVR.(QoU C V) is subsumed by the concept
D =VRVQ.VU.B.

The answer is no: in fact, a model satisfying C' and not satisfying D is shown
in Fig. 3.2. This model can be obtained trying to satisfy =D = 3JR.3Q.3U.—-B
with individual x,y, z,w, and then adding role assertions satisfying C'. Observe
that a model of C' cannot be a tree because of concepts like (Ro @ C S). Hence,
any notion of “distance” between two individuals in a model, as number of role
links connecting them, is ambiguous when a DL has role-value-maps. Moreover,
the satisfaction of the assertions (Ro @ C S)(z) and VS.A(x) in an interpretation
depends on the satisfaction of the assertion A(z), for every individual z connected
to x via a path of role fillers that can be composed according to role-value-maps.
In fact, replacing B with A in D yields a concept D’ which now subsumes C—and
indeed, the previous model satisfies also D’. "
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V(y,w)
VSVU.A(x) R(x,y) | (QoU C V)(y) o) . A;w)
(RoQ C 8)(x) . ~B(w)
VR.(QoU C V)(z) S LAz

Fig. 3.2. A possible countermodel for C T D in Exam-
ple 3.29. Boxes group assertions about an individual; arrows
represent role assertions.

These properties are crucial for the reduction from ground rewriting systems to
subsumption in FL~ (o, C). For basics about rewriting systems, consult [Dershowitz
and Jouannaud, 1990].

Definition 3.30 (Ground Rewriting System) Let 3 be a finite alphabet
{a,b,...}. A term w on X is an element of ¥* i.e., a finite sequence of 0 or
more letters from Y. If v, w are terms, their concatenation is a term, denoted as
vw. A ground rewriting system is a finite set of rewriting rules p = {s; — t;}i=1,.._n,
where for every i € {1,...,n} both s; and ¢; are terms on X. The rewriting relation
= induced by a set of rewriting rules p is the minimal relation which is reflexive,
transitive, and satisfies the following conditions:

(i) if s — t € p then s > t;
(ii) for every letter a € X, if p = ¢ then both ap — ag and pa = qa.

The rewriting problem for ground rewriting systems is: Given a set of rewriting
rules p and two terms v, w, decide whether v 5 w. n

Remark 3.31 In general, a single rewriting step of a term v consists in finding a
substring of v which coincides with the antecedent s of a rewriting rule s — ¢, and
then substitute ¢ for s in v. Hence, v — w if there exist n terms uy, . . ., u, such that
up = v,u, = w, and for each ¢ € 1..n — 1 the two terms w;, u;41 are such that for
some terms p and ¢, it is u; = psq, u;+1 = ptq, and s — t € p. This proves that the
term problem is recursively enumerable. However, it is semidecidable (recursively
enumerable, but nonrecursive). .

We reduce this problem to subsumption in FL™ (o, C) as follows. First of all,
observe that we can define the following one-to-one correspondence between terms
and role chains:
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e for every letter a in X, let P, be a role name;
e for every term w, let R,, be the composition of the role names corresponding to
the letters of w. For example, if w = aab, then R, = P, o P, o P,.

Now for each set of rewriting rules p, we define the concept C), as
Cp = |_|s—>t€p(Rs c Rt)
Let @ be a new atomic role: we define a concept Cy, as

Cx :I—]aEE(QOPa c Q)

Intuitively, if a model Z satisfies Cx(x), then for every term w, if (Q o Ry)(z, 2)
holds in Z, then Q(x, z) also holds, i.e., x is directly connected via @ to every other
element z to which it is indirectly connected via Q o Ry,.

If also Z = VQ.Cy(x), then C,(z) holds for every such z. This is a key property
of the reduction.

Remark 3.32 The two concepts VQ.C, and Cyx. are a way to internalize simple
axioms in a concept. Consider a TBox 7 = {T T C,} which states that every
individual in a model must satisfy concept C,. One could prove that in FL™ (o, C)
a concept C' is subsumed by a concept D w.r.t. 7 iff CxMVQ.C,NVQ.C is subsumed
by VQ.D, where the latter is plain subsumption between concept expressions. =

Theorem 3.33 Subsumption in FL (o, Q) is undecidable.

Let p be a set of rewriting rules, and v, w be two terms. Define the following two
concepts:

C = CyNvQ.C, (3.17)
D = VYQ.(R, C Ry) (3.18)

We divide the proof in two lemmata.
Lemma 3.34 If v = w then the concept C is subsumed by D.

Proof We first prove that the claim holds for the base case of the inductive definition
of 5 (Condition (i) in Definition 3.30). Then, we prove the claim for the two
inductive cases (Condition (ii)). Finally, we prove that the proof carries over the
closure conditions. In all cases, let s — ¢ € p.

Base case. The concept D is VQ.(Rs C Ry;). Observe that the concept VQ.C, is
equivalent to Ms_sc,VQ.(Rs € Rt). Hence, C is subsumed by D because D is one
of the conjuncts of (an equivalent form of) C.

Inductive cases. For the first inductive case, let D =VQ.(P,o R, C P,0Ry), and
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let the inductive hypothesis be that C' is subsumed by VQ.R, C R,. By refutation,
suppose C' is not subsumed by D: then, there is a model Z in which both C(z) and
—D(z) hold. The latter constraint implies that there is an element y such that

(i) 7 Qz,y)

(ii) Z | (Pao Rp)(y, 2)

(iii) Z & (Pao Rg)(y, 2)

From (ii), there is an element ' such that both P,(y,y’) and Rs(y/,2) hold. Now
from Cyx(z), it must be Z |= Q(z,y’), and from the inductive hypothesis this implies
(Rs C Ry)(v/). Then, Z | R(vy',z) holds, hence T = (P, o R;)(y, z), contradict-
ing (iii).

The second inductive case is simpler, since one does not need to consider Cyx(x).
The interested reader can use it as an exercise.

We conclude the proof by showing that the reduction carries over the reflexive
and transitive closure of —.

First, from the semantics in Table 3.2 follows that R, C R, is equivalent to
T, which implies also that D = T. Hence the claim holds also for w — w (i.e.,
reflexivity).

For transitivity, the induction is easy: suppose u — v and v — w: then by
induction C' is subsumed by D; and by Ds, where D1 = VQ.(R, C R,) and Dy =
VQ.(R, € Ry). Then C is subsumed also by D; M Dy which is equivalent to
VQ.((Ry € R,) M (R, € Ry)). This concept is subsumed by VQ.(R, C R,,), which
is the claim. O

We now prove the other direction of the reduction.

Lemma 3.35 If v % w, then the concept C is not subsumed by D.

Proof We give the rule to construct an infinite tableau branch 7 and show that
it defines a model that satisfies C, and does not satisfy D. The tableau is one-one
with an infinite automaton accepting the term v, and every other term v can be
rewritten into. Let v[1],...,v[n] denote the n letters of v (v[i] is the i-th letter of
V).

Let z,y, z be individual names. Start from the set of assertions
76 - P’U[l} (y, yl)u s 7Pv[i+1] (y“ yi+1)7 ey P’U[n] (yn—h Z)
Then add role assertions to 7 following the —c-rule:

Condition: there is a rewriting rule s - ¢t € p
where s = s[1]---s[h| and t = t[1] - - - t[k];
T contains h 4 1 individuals yg, ..., yn and h assertions
Ps[z] (yi—h yz) for i € {1, ceey h}
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T does not contain all assertions Py1)(40,%1); - -+ > Popn) (Y—1, Yn)
Action: T'=T U {Pt[l] (y[), y’l), - 7Pt[n] (y,’c_l, yh)},
where 31, ...,9)_,, are k — 1 individual names not occurring in 7.

Intuitively, if there is in 7 a path of role assertions such that Rs(yo,yn) holds, the
—c-rule adds another path such that also R:(yo,ys) holds. Of course, 7, can have
an infinite number of individuals and role assertions between them; this is reason-
able, since its role paths from y to z are one-one with the possible transformations on
v one can make using the rewriting rules. One can also think 7, as an infinite-state
automaton accepting 7 = {u | v = u}.

The —c-rule always adds new assertions to 7, and its application given some
premises does not destroy other premises of application of the —c-rule itself, since
we keep in 7 all the rewritten terms. Therefore, the construction is monotonic over
the C-lattice of all tableaux with a countable number of individuals, and role asser-
tions between individuals. In building 7,,, however, a fair strategy must be adopted.
That is, if at a given stage 7; of the construction, the —c-rule is applicable for in-
dividuals yo, ..., yn, then for some finite k, in 7,1 the —c-rule has been applied
for those premises—i.e., a possible rule application is not indefinitely deferred. This
could be achieved by, e.g., inserting possible rule applications in a queue.

Proposition 3.36 Let 7, be constructed using the —c-rule, and a fair strategy.
For every term u = u[l]---ulk], v = u iff in T, there are k — 1 individual names
Y1, Yk—1 and k assertions Pyu)(y,y1), - - - Pupg (Yk—1, 2)-

Proof If v = w, then there are a minimum finite number n of applications of
rewriting rules in p transforming v into w. By induction on such n, the premises of
the —c-rule are fulfilled, and since 7, is built adopting a fair strategy, from some
finite stage of its construction onwards, R, (y, z) must hold. For the other direction,
if R,(y,z) holds in 7, then for each —c-rule application leading to R, (y,z) one
can apply a rewriting rule to v, leading to u. O

We can now define the model 7 satisfying C' and not satisfying D. Let IV be the
set of individual names of 7. Z has domain {x} UN. Let Z = 7T, U{Q(z,y)|y €
N}. Then 7 satisfies C(z) straightforwardly; moreover, it does not satisfy D from
Proposition 3.36. O

To prove that subsumption in undecidable in the less expressive DL FL™ (o, =),
Schmidt-Schaufl [1989] started from the word problem for groups. Starting from
the Post correspondence problem, with a more complex construction, also Patel-
Schneider [1989b] proved that subsumption is undecidable in the more expressive
DL FL™ (o, C) plus role inverses, functional roles, and role restrictions.
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Starting from the word problem—which is less general than the term rewrit-
ing problem, but still semidecidable—Baader [1998] showed that subsumption in
F L™ (o,C) is undecidable without referring to tableaux. We report here the second
part of his proof, (corresponding to Lemma 3.35) since it is quite short and elegant,
and shows a different way of proving the only-if direction, namely, giving a direct
definition of an infinite structure satisfying the concepts.

The word problem follows Definition 3.30, but considers the reflexive-symmetric-
transitive closure <> of rewriting rules. This is also known as the word problem for
semigroups, or Thue systems. In this case, ground term and word are synonyms.
Of course, < is an equivalence relation on words; let [v] denote the &-equivalence
classes. Note that [u] = [v] iff u <& v. There is a natural multiplication on these
classes induced by concatenation: [u][v] = [uv] (since <> is even a congruence, this
is well-defined).

Taking the equivalence classes plus one distinguished element = as domain of the
model Z, the roles can be interpreted as

Qf = {(z,[u])|u €=} (3.19)
(P = {([u],[ua])|a € ¥,u € ¥*} (3.20)

Then, it can be shown that if v <> w, then z belongs to CZ, but not to D% as
follows.

(i) = belongs to CZ: from (3.20), for every word u it is (z,[u]) € QF and
([u], [ua]) € (P,)*; but also from (3.19), (x,[ua]) € QF, hence Cg(x) is
satisfied by Z. Regarding VQ.C,(z), suppose ([u], [w]) € (Rs)%, where s —
t € p. Then [w] = [us] by definition of (P,)*. Moreover, from s — t € p
it follows us <> ut, hence [us] = [ut]. Consequently, ([u], [w]) = ([u], [ut]) €
(Ry)* from (3.20).

(ii) 2 does not belong to D*: for the empty word ¢, [¢] is a Q-filler of =, however
[] does not satisfy the concept R, C Ry,. In fact, ([¢], [v]) € (R,)%, but not
([e], [v]) € (Ry)? since [w] is the only R,-filler of [¢], but [v] # [w] from the
assumption that v ¢ w.

3.7 Reasoning about individuals in ABoxes

When an ABox is considered, the reasoning problem of instance check arises: Given
an ABox A, an individual a and a concept C, decide whether A = C(a). For the
instance check problem, the size of the input is formed by the size of the concept
expression C' plus the size of A. Since the size of one input may be much larger
than the other in real applications, it makes sense to distinguish the complexity



134 F. M. Donini

w.r.t. the two inputs—as it is usually done in databases with data complexity and
query complexity [Vardi, 1982].

A common intuition [Schmolze and Lipkis, 1983] about instance check was that
it could be performed via subsumption, using the so-called most specific concept
(msc) method.

Definition 3.37 (most specific concepts) Let A be an ABox in a given DL,
and let a be an individual in A. A concept C' is the most specific concept of a in
A, written msc(A,a), if, for every concept D in the given DL, A = D(a) implies
CCD. n

Recall from Chapter 2 a slightly different definition of msc in the realization problem:
given an individual ¢ and an ABox A, find the most specific concepts C' (w.r.t.
subsumption) such that A |= C(a) [Nebel, 1990a, p. 104]. Since conjunction is
always available in every DL, the two definitions are equivalent (just conjoin all
specific concepts of realization in one msc).

Clearly, once msc(A, a) is known, to decide whether a is an instance of a concept
D it should be sufficient to check whether msc(A,a) is subsumed by D, turning
instance checking into subsumption. Moreover, when a TBox is present, off-line
classification of all msc’s in the TBox may provide a way to pre-compute many
instance checks, providing an on-line speed-up.

The intuition about how computing msc(A,a) was to gather the con-
cepts/properties explicitly stated for a in A. However, this approach is quite sensi-
tive to the DL chosen to express msc(A, a) and the queries. In fact, most specific
concepts can be easily computed for simple DLs, like AL. However, it may not be
possible when slightly more expressive languages are considered.

Example 3.38 A simple example (simplified from [Baader and Kiisters, 1998]) is
the ABox made just by the assertion R(a,a). If FL™ is used for most specific
concepts and queries, then msc({R(a,a)},a) = FR. However, if qualified existen-
tial quantification is allowed for most specific concepts, then each of the concepts
JR, dR.dR, dR.dR.3R, ..., is more specific than the previous one. Using this
argument, it is possible to prove that msc({R(a,a)}, a) has no finite representation,
unless also transitive closure on roles is allowed. Using the axiom A C dR.A in
an ad-hoc TBox, msc({R(a,a)},a) = A for the simple ABox of this example—but
this does not simplify instance check. An alternative approach would be to raise
individuals in the language to express concepts, through the concept constructor
{...} that enumerates the individuals belonging to it (called “one-of” in CLASSIC).
In that case, msc({R(a,a)},a) = IR.{a} (see [Donini et al., 1990]). But this “solu-
tion” to instance check becomes now a problem for subsumption, which must take
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individuals into account (for a treatment of DLs with one-of, see [Schaerf, 1994a)).

The msc’s method makes an implicit assumption: to work well, the size of
msc(A,a) should be comparable with the size of the whole ABox, and in most
cases much shorter. However, consider the DL ALE, in which subsumption is in
NP. Then, solving instance check by means of subsumption in polynomial space
and time would imply that in instance check was in NP, too. However, suppose
that we prove that instance check was hard for coNP. Then, solving instance check
by subsumption implies that either coNp C NP, or msc(A,a), if ever exists, has
superpolynomial size w.r.t. A. The former conclusion is unlikely to hold, while the
latter would make unfeasible the entire method of msc’s.

In general, this argument works whenever subsumption in a DL belongs to a
complexity class C, while instance check is proved hard for a different complexity
class C’, for which C’ C C is believed to be false. We present here a proof using this
argument, found by Schaerf [1993; 1994b; 1994a].

We first start with a simple example highlighting the construction.

Example 3.39 Let f,c1,c0,x,y, 2z be individuals, R, P, N be role names, and A a
concept name. Let A be the following ABox, whose structure we highlight using
some arrows between assertions:

/' Ple,z) Ar)
f/ R(f,c1) N ]\E(Cl’?;)
N\ /" P(ca,y
REe) { Nieps) ~A()

The query IR.(3P.AT13IN.-A)(f) is entailed by A. That is, one among c¢; and co
has its P-filler in A and its N-filler in —=A. This can be verified by case analysis
on y: in every model either A(y) or —A(y) must be true. For models in which
A(y) holds, co is the R-filler of f satisfying the query; for models in which —A(y)
holds, ¢; is. Observe that if ALE is used to express most specific concepts, the best
approximation we can find for msc(A, f), by collecting assertions along the role
paths starting from f, is the concept C' = IR.(IP.AMN3IN) N IR.(IPMIN.-A), in
which the fact that the same individual y is both the N-filler of 3N and the P-filler
of 4P is lost. Indeed, C' is not subsumed by the query, as one can see constructing
an open tableau for C M —3R.(IP.ANIN.-A)(f). .

The above example can be extended to a proof that deciding A = C(a), where C'is
an ALE-concept, is coNP-hard. Observe that this is a different source of complexity
w.r.t. unsatisfiability in ALE. In fact, a concept C'is unsatisfiable iff {C'(a)} = L(a).
This problem is NP-complete when C' is a concept in ALE (Section 3.3.1).
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The source coNP-complete problem is the complement of 2+2-SAT, which is the
following problem.

Definition 3.40 (2+42-sat) Given a 4CNF propositional formula F', in which ev-
ery clause has exactly two positive literals and two negative ones, decide whether
F is satisfiable. "

The problem 2+4-2-SAT is a simple variant of the well-known 3-SAT. Indeed, for
3-literal clauses mixing both positive and negative literals, add a fourth disjunct,
constantly false; e.g., X VY V —Z is transformed into the 2+2-clause X VY V-2V
—true. Unmixed clauses can be replaced by two mixed ones using a new variable
(see [Schaerf, 1994a, Theorem 4.2.6]).

Given an instance of 2+2-sAT F' = C1 ACy A --- A Cp, where each clause C; =
Li Vv Ly, v -Li_V-Ly_, we construct an ABox Ap as follows. Ap has one
individual [ for each variable L in F, one individual ¢; for each clause C;, one
individual f for the whole formula F', plus two individuals true and false for the
corresponding propositional constants.

The roles of Ap are Cl (for Clause), P, P (for positive literals), Ny, No (for
negative literals), and the only concept name is A. Finally, Ap is given by (we
group role assertions on first individual to ease reading):

Cl(fa Cl)

A(true), —A(false)

Cl(f,en)

Now let D be the following, fixed, query concept:
D =3CI1.((3P,.—A) N (IP,.—A) M (IN1.A) 11 (IN;3.A))

Intuitively, an individual name [ is in the extension of A or —A iff the propositional
variable L is assigned true or false, respectively. Then, checking whether Ap =
D(f) corresponds to checking that in every truth assignment for F' there exists a
clause whose positive literals are interpreted as false, and whose negative literals
are interpreted as true—i.e., a clause that is not satisfied. If one applies the above
idea to translate the two clauses (having just two literals each one) false V =Y,
Y V —true, one obtains exactly the ABox of Example 3.39.
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The correctness of this reduction was proved by Schaerf [1993; 1994a]. We report
here only the concluding lemma.

Lemma 3.41 A 2+2-CNF formula F is unsatisfiable if and only if Ap = D(f).

Hence, instance checking in ALE is coNP-hard. This implies that instance check
in ALE cannot be efficiently solved by subsumption, unless coNP C NP. We remark
that only the size of Ap depends on the source formula F', while D is fixed. Hence,
instance checking in ALE is coNP-hard with respect to knowledge base complexity—
and it is also NP-hard from Section 3.3.1. The upper bound for knowledge base
complexity of instance checking in ALE is in 115, but it is still not known whether
the problem is IT5-complete. Regarding combined complexity—that is, neither the
size of the ABox nor that of the query is fixed—in [Schaerf, 1994a; Donini et al.,
1994b] it was proved that instance checking in ALE is PSPACE-complete.

Since the above reduction makes use of negated concept names, it may seem that
coNP-hardness arises from the interaction between qualified existential quantifica-
tion and negated concept names. However, all it is needed are two concepts whose
union covers all possible cases. We saw in Section 3.2.1 that also 3R and VR.B have
this property. Therefore, if we replace A and = A in Ar with 3R and VR.B, respec-
tively, (where R is a new role name and B is a new concept name), we obtain a new
reduction for which Lemma 3.41 still holds. Hence, instance checking in FL~E (i.e.,
ALE without negation of concept names) is coNP-hard too, thus confirming that
coNP-hardness is originated by qualified existential quantification alone. In other
words, intractability arises from a query language containing both qualified existen-
tial quantification, and pairs of concepts whose union is equivalent to T. Hence, for
languages containing these constructs, the msc method is not effective.

Regarding the expressivity of the language for assertions in the ABox, coNP-
hardness of instance checking arises already when assertions in the ABox involve
just concept and role names. However, note that a key point in the reduction is the
fact that two individuals in the ABox can be linked via different role paths, as f
and y were in Example 3.41.

3.8 Discussion

In this chapter we analyzed various lower bounds on the complexity of reasoning
about simple concept expressions in DLs. Our presentation appealed to the intuitive
notions of exploring AND-OR trees, in the special case when the tree comes out of
a tableau.

We remark that an alternative approach to reasoning is to reduce it to the empti-
ness test for automata (e.g., [Vardi, 1996]), which has been quite successfully ap-
plied to temporal logics, and propositional logics of programs. However, till now
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such techniques were used to obtain upper bounds in reasoning, while in order ob-
taining lower bounds one would need a way to reduce problems on automata to
unsatisfiability /subsumption in DL. The only example of this reduction is [Nebel,
1990b], for a very simple DL, which we did not presented in this chapter for lack of
space.

We end the chapter with a perspective on the significance of the NP, coNP,
and PSPACE complexity lower bounds we presented. Present reasoning sys-
tems in DLs (see chapter in this book) can now cope with reasonable size EX-
PTIME-complete problems. Hence the computational complexity of the prob-
lems now reachable is above PSPACE. However, in our opinion, for imple-
mented systems the significance of a reduction lies not just in the theoretical
lower bound obtained, but also in the reduction itself. In fact, when exper-
imenting algorithms for subsumption, satisfiability, etc. [Baader et al., 1992a;
Hustadt and Schmidt, 1997] on an implemented system, one can exploit already
known “hard” cases of a source problem like 3-SAT, 24-2-SAT, SET SPLITTING,
or QBF validity to obtain “hard” instances for the algorithm under test. These
instances isolate the influence of each source of combinatorial explosion on the per-
formance of the overall reasoning system, and can be used to optimize reasoning
algorithms in a piecewise fashion [Horrocks and Patel-Schneider, 1999], separately
for the various sources of complexity. In this respect, the issue of finding “efficient”
reductions (w.r.t. the size of the resulting concepts) is still open, and can make the
difference when concepts to be tested scale up (see [Donini and Massacci, 2000]).

3.9 A list of complexity results for subsumption and satisfiability

A lot of names were invented for languages of different DLs, e.g., FL for Frame
Language, ALC for Attributive Descriptions Language with Complement, etc. Al-
though suggestive, these names are not very explicit about which constructs are
in the named language. This makes the huge mass of results about complexity of
reasoning in DLs often difficult to screen by non-experts in the field. To clarify
the constructs each language is equipped with, we use two lists of constructors: the
first one for concept constructors, and the second one for role constructors. For
example, the pair of lists (M,3R,VR.C') (M,0) denotes a language whose concept
constructors are conjunction M, unqualified existential quantification 3R, universal
role quantification VR.C', and whose role constructors are conjunction M and compo-
sition o. Many combinations of concept constructors have been given a name which
is now commonly used. For instance, the first list of the above example is known
as FL~. In these cases, we follow a syntax first proposed in [Baader and Sattler,
1996b], and write just FL (M, 0)—that is, FL~ augmented with role conjunction
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and composition—to make it immediately recognizable also by researchers in the
field.

3.9.1 Notation

In the following catalog, satisfiability and subsumption refer to the problems with
plain concept expressions. When satisfiability and subsumption are w.r.t. a set of
axioms, we state it explicitly. Moreover, when the constructs of the DL allows one
to reduce subsumption between C' and D to satisfiability of C'T1 =D, we mention
only satisfiability.

In the lists, we tried to use the symbol of the DL construct whenever possible.
We abbreviated some constructs, however: unqualified number restrictions >n R,
<n R are denoted as < R, while qualified number restrictions >n R.C', <n R.C
are S R.C. When a construct is allowed only for names (either concept names in
the first list, or role names in the second one) we apply the construct to the word
name.

3.9.2 Subsumption in PTIME
To the best of author’s knowledge, no proof of PTIME-hardness was given for any

DL so far. Therefore the following results refer only to membership in PTIME.

(M, 3R,VR.C) () known as FL~ [Levesque and Brachman, 1987].
(M, 3R,VR.C, —~(name)) () known as AL [Schmidt-Schau and Smolka, 1991]

e (M,3R,VR.C,< R) () known as ALN [Donini et al., 1997a]

e AL(0), AL(™) [Donini et al., 1999

e FL (M) [Donini et al., 1991a]

e (M,3R.C, {individual}) (M,”) known as ELIRO! [Baader et al., 1998b]

3.9.3 NP and coNP

e (M,3R.C,VR.C,—~(name)) () (known as ALE) subsumption and unsatisfiability
are NP-complete [Donini et al., 1992a] (see Section 3.3.1)

AL(M), ALE(N), and (M,3R.C,VR.C) () (known as ALR, ALER and FLE
respectively) subsumption and unsatisfiability NP-complete [Donini et al., 1997a)
(see Theorems 3.16,3.17 for hardness, and [Donini et al., 1992a] for membership)
e (M,U,3R,VR.C,—~(name)) () (known as ALU) subsumption and unsatisfiability
coNP-complete [Donini et al., 1997a] (see Section 3.1.1.1)

ALN () subsumption is coNP-complete, while satisfiability is decidable in poly-
nomial time [Donini et al., 1999]
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FL(N,7), FL (M,0), and FL (o,7) [Donini et al, 1999] (see Sec-
tions 3.3.2,3.3.3, and 3.3.4)

AL(), satisfiability w.r.t. a set of acyclic axioms is coNP-hard [Buchheit et al.,
1994a; Calvanese, 1996b; Buchheit et al., 1998] (coNP-complete for ALE() [Cal-
vanese, 1996b)).

3.9.4 PSPACE

(M,u, -, 3R.C,VR.C) () (known as ALC) [Schmidt-Schaufl and Smolka, 1991] (see
Section 3.4.1)

(M, =~(name),IR.C,YR.C,< R) () (known as ALEN) [Hemaspaandra, 1999]
FL (R|¢) (known as FL), ACN (M), ALU(M), (M,3R.C,VR.C,—, < R) (M)
(known as ALCN'R) [Donini et al., 1997a]

ALC(M, L, 0) satisfiability [Massacci, 2001]. Membership is nontrivial.

ALE() satisfiability w.r.t. a set of cyclic axioms is PSPACE-complete [Calvanese,
1996b).

ALN () satisfiability w.r.t. a set of cyclic axioms of the form A = C, where each
concept name A can appear only once on the left-hand side, is PSPACE-complete
[Kiisters, 1998].

3.9.5 ExpTIME

AL w.r.t. a set of axioms (see Section 3.5 for hardness).

(M,u,—,3IR.C,VR.C) (,0,*,4d(),” ) which includes ALCyqns [Baader, 1991;
Schild, 1991]. Membership is nontrivial, and was proved by Pratt [1979] without
inverse, and by Vardi and Wolper [1986] for converse-pDL reducing the problem
to emptiness of tree-automata.

(MU, -, 3IR.C,YR.C,s name.C,s name~.C)) (U,0,*,”,id()), known as
ALCQT,¢q4 (see Chapter 5). Membership is nontrivial.

(MU, =, IR.C,VR.C, pux.Clz], {individual}) (), where px.Clx] denotes the least
fixpoint of x [Sattler and Vardi, 2001]. Membership is nontrivial.

3.9.6 NExpTIME

adding concrete domains (see [Baader and Hanschke, 1991a]), satisfiability in
ALC w.r.t. a set of acyclic axioms, and ALC(™) [Lutz, 2001a]

ALC(M, U, =) satisfiability [Lutz and Sattler, 2001]

(M,U,3R.C,YR.C, -, {individual}, < R.C) () satisfiability [Tobies, 2001b]
(M,U,—,3R.C,VR.C,<> R) (M) (known as ALCN'R) satisfiability w.r.t. a set of
axioms (only membership was proved) in [Buchheit et al., 1993a])
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3.9.7 Undecidability results

FL (o,=), which is a subset of the language of the knowledge representation
system KL-ONE [Schmidt-SchauB, 1989] (see Section 3.6.1 for undecidability of
FL (0,C))

FL (o, C,7, functionality, R|¢), which is a subset of the language of the knowl-
edge representation system NIKL [Patel-Schneider, 1989a]

(), (M, 0,=) (known as U) [Schild, 1989]

ALCN (0,1, ), ALCN (0,M) satisfiability w.r.t. a set of axioms [Baader and Sat-
tler, 1999]
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Relationships with other Formalisms
Ulrike Sattler

Diego Calvanese

Ralf Molitor

Abstract

In this chapter, we are concerned with the relationship between Description Log-
ics and other formalisms, regardless of whether they were designed for knowledge
representation issues or not. We concentrated on those representation formalisms
that either (1) had or have a strong influence on Description Logics (e.g., modal
logics), (2) are closely related to Description Logics for historical reasons (e.g., se-
mantic networks and structured inheritance networks), or (3) have similar expressive
power (e.g., semantic data models). There are far more knowledge representation
formalisms than those mentioned in this section. For example, “verb-centered”
graphical formalisms like those introduced by Simmons [1973] are not mentioned
since we believe that their relationship with Description Logics is too weak.

4.1 AI knowledge representation formalisms

In artificial intelligence (AI), various “non-logical” knowledge representation for-
malisms were developed, motivated by the belief that classical logic is inadequate
for knowledge representation in Al applications. This belief was mainly based upon
cognitive experiments carried out with human beings and the wish to have repre-
sentational formalisms that are close to the representations in human brains. In this
Section, we will discuss some of these formalisms, namely semantic networks, frame
systems, and conceptual graphs. The first two formalisms are mainly presented for
historical reasons since they can be regarded as ancestors of Description Logics. In
contrast, the third formalism can be regarded as a “sibling” of Description Logics
since both have similar ancestors and live in the same time.

142
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4.1.1 Semantic networks

Semantic networks originate in Quillian’s semantic memory models [Quillian, 1967],
a graphical formalism designed to represent “word concepts” in a definitorial way,
i.e., similar to the one that can be found in an encyclopedia definition. This for-
malism is based on labelled graphs with different kinds of edges and nodes. Besides
others, Quillian’s networks allow for subclass/superclass edges, for and- and or
edges, and for subject/object edges between nodes.

Following Quillian’s memory models, a great variety of semantic network for-
malisms were proposed; an overview of their history can be found in [Brachman,
1979]. In general, semantic networks distinguish between concepts (denoted by
generic nodes) and individuals (denoted by individual nodes), and between sub-
class/superclass edges and property edges. Using subclass/superclass links, concepts
can be organised in a specialisation hierarchy. Using property edges, properties can
be associated to concepts, that is, to the individuals belonging to the concept the
properties are associated with. Figure 4.1 contains a hierarchy of animals, birds,
fishes, etc. Interestingly, the cognitive adequacy of this approach was proven em-
pirically [Collins and Quillian, 1970].

The two kinds of edges interact with each other: A property is inherited along
subclass/superclass edges—if not modified in a more specific class. For example,
birds are equipped with skin because animals are equipped with skin, and birds

- has skin
Animal o - can move around
- eats
- breathes
has wings - has fins
Birdo - can fly Fish o - can swim
- has feathers has gills

- has long,

Ostricho thinlegs  Shark o =" bite
-is tall - is dangerous

- can sing

Canaro _ is yellow

-can'tfly

Fig. 4.1. A semantic network describing animals.
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inherit this property because of the subclass/superclass edge between birds and
animals. In contrast, although ostriches are birds, they do not inherit the property
“can fly” from birds because this property is “modified” for ostriches.

Intuitively, it should be possible to translate subclass/superclass edges into con-
cept definitions, for example,’

Shark = Fish 1 CanBite N IsDangerous.

According to Brachman [1985], the above translation is not always intended. Sub-
class/superclass edges can also be read as primitive concept definitions, that is,
they impose only necessary properties but not sufficient ones. Hence the above
translation might better be

Shark C Fish M CanBite ' IsDangerous.

Due to the lack of a precise semantics, there are even more readings of subclass/su-
perclass edges which are discussed in Woods [1975], [1977b; 1985]. A prominent
reading is the one of inheritance by default, which can be specified in different ways,
thus leading to misunderstandings and to the question which of these specifications
is the “right” one (see also Chapter 6).

As a consequence of this ambiguity, new formalisms mainly evolved along two
lines: (1) To capture inheritance by default, various non-monotonic inheritance sys-
tems, respectively various ways of reasoning in non-monotonic inheritance systems,
were investigated [Touretzky et al., 1987; 1991; Selman and Levesque, 1993]. (2) To
capture the monotonic aspects of semantic networks, a new graphical formalism,
structured inheritance networks, was introduced and implemented in the system
KL-ONE [Brachman, 1979; Brachman and Schmolze, 1985]. It was designed to cover
the declarative, monotonic aspects of semantic networks, and hence did not specify
the way in which (non-monotonic multiple) inheritance was supposed to function
in conflicting situations. Brachman and Schmolze [1985] argue that KL-ONE does
not allow for cancellation or inheritance by default because such mechanisms would
make taxonomies meaningless. Indeed, all properties of a given concept could be
cancelled, so that it would fit everywhere in the taxonomy. Their proposition is to
make a strict separation of default assertions and conceptual descriptions.

Brachman and Schmolze [1985], besides pointing out the computation of the
taxonomy as a core system service, describe the meaning of various concept con-
structors that were implemented in KL-ONE, for example conjunction, universal
value restrictions, role hierarchies, role-value-maps, etc. Moreover, we find a clear
distinction between individuals and concepts, and between a terminological and an
assertional formalism.

I In the following, we use standard Description Logics as defined in Chapter 2.
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Later [Levesque and Brachman, 1987], KL-ONE was provided with a well-defined
“Tarski-style” semantics which fixed the precise meaning of its graphical constructs
and led to the definition of the first Description Logic [Levesque and Brachman,
1987], at that time also called terminological languages, concept languages, or KL-
ONE based languages. Besides giving a precise meaning to semantic networks, this
formalisation allowed the investigation of inference algorithms with respect to their
soundness, completeness, and computational complexity. For example, it turned
out that subsumption in KL-ONE is undecidable, mainly due to role-value-maps
[Schmidt-Schauf}, 1989].

4.1.2 Frame systems

Minsky [1981] introduced frame systems as an alternative to logic-oriented ap-
proaches to knowledge representation, which he thought were not adequate to “sim-
ulate common sense thinking” for various reasons. His system provides record-like
data structures to represent prototypical knowledge concerning situations and ob-
jects and includes defaults, multiple perspectives, and analogies. Nowadays, se-
mantic networks and frame systems are often viewed as the same family of for-
malisms. However, in standard semantic networks, properties are restricted to
primitive, atomic ones, whereas, in general, properties in frame systems can be
complex concepts described by frames.

One goal of the frame approach was to gather all relevant knowledge about a situa-
tion (e.g., entering a restaurant) in one object instead of distributing this knowledge
across various axioms. Roughly spoken, a situation (or an object) is described in one
frame. Similar to entries in a record, a frame contains slots to represent properties
of the situation described by the frame. Reasoning comes in two shapes: (1) Using
a “partial matching”, more specific frames are embedded into more general ones,
thus giving, for example, meaning to a new situation or classifying an object as a
kind of, say, bird. (2) Searching for slot fillers to collect more information con-
cerning a specific situation. A variety of expert systems [Fikes and Kehler, 1985;
Christaller et al., 1992; Gen, 1995; Flex, 1999] are based on a frame-based formalism
and are further enhanced with rules, triggers, daemons, etc.

Despite the fact that frame systems were designed as an alternative to logic, the
monotonic, declarative part of this formalism could be shown to be captured us-
ing first-order predicate logic [Hayes, 1977; 1979]. To our knowledge, no precise
semantics could be given for the non-declarative, non-logic, or non-monotonic as-
pects of frame systems. Hence neither their expressive power nor the quality of
the corresponding reasoning algorithms and services can be compared with other
formalisms.

In the remainder of this section, we show how the monotonic part of a frame-
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based knowledge base can be translated into an ALUN TBox [Calvanese et al.,
1994].1 Since there is no standard syntax for frame systems, we have chosen to use
basically the notation adopted by Fikes and Kehler [1985], which is used also in the
KEE 2 system.

A frame definition is of the form Frame : F in KB F E, where F is a frame
name and F is a frame expression, i.e., an expression formed according to the
following syntax:

E — SuperClasses: Fi,..., Fy
MemberSlot : S;
ValueClass : H;
Cardinality.Min : m,
Cardinality.Max : n,

MemberSlot : S
ValueClass : Hy
Cardinality.Min : my
Cardinality.Max : ng

F; denotes a frame name, S; denotes a slot name, m; and n; denote positive integers,
and H; denotes slot constraints. A slot constraint can be specified as follows:

H — F|
(INTERSECTION H; H,) |
(UNION H; Hy) |
(NOT H)

A frame knowledge base F is a set of frame definitions.

For example, Figure 4.2 shows a simple KEE knowledge base describing courses in
a university. Cardinality restrictions are used to impose a minimum and maximum
number of students that may be enrolled in a course, and to express that each
course is taught by exactly one individual. The frame AdvCourse represents courses
which enroll only graduate students, i.e., students who already have a degree. Basic
courses, on the other hand, may be taught only by professors.

Hayes [1979] gives a semantics to frame definitions by translating them to first-
order formulae in which frame names are translated to unary predicates, and slots
are translated to binary predicates.

In order to translate frame knowledge bases to ALUN knowledge bases, we first
define the function ¥ that maps each frame expression into an ALUN concept ex-
pression as follows: Each frame name F' is mapped onto an atomic concept W(F),

1 Not only the translation but also the example are by Calvanese et al. [1994].
2 KEE is a trademark of Intellicorp. Note that a KEE user does not directly specify her knowledge base in
this notation, but is allowed to define frames interactively via the graphical system interface.
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Frame: Course in KB University

MemberSlot: enrolls
ValueClass: Student
Cardinality.Min: 2
Cardinality.Max: 30

MemberSlot: taughtby
ValueClass: (UNION GradStudent

Professor)

Cardinality.Min: 1
Cardinality.Max: 1

Frame: AdvCourse in KB University
SuperClasses: Course
MemberSlot: enrolls

ValueClass: (INTERSECTION
GradStudent
(NOT Undergrad))

Cardinality.Max: 20

Frame: BasCourse in KB University
SuperClasses: Course
MemberSlot: taughtby

ValueClass: Professor

Frame: Professor in KB University
Frame: Student in KB University

Frame: GradStudent in KB University
SuperClasses: Student
MemberSlot: degree

ValueClass: String
Cardinality.Min: 1
Cardinality.Max: 1

Frame: Undergrad in KB University
SuperClasses: Student

Fig. 4.2. A KEE knowledge base.

each slot name S onto an atomic role ¥(.5), and each slot constraint H onto the cor-
responding Boolean combination W(H) of concepts. Then, every frame expression

of the form

SuperClasses : Fy,..., F}

MemberSlot : S;

ValueClass : H;
Cardinality.Min : my

Cardinality.Max : n;

MemberSlot : S

ValueClass : Hy
Cardinality.Min : my
Cardinality.Max : ny

is mapped into the concept

U(F) M- MU (F,) N

V\P(Sl)\IJ(Hl) Mn=mq ‘11(51) n<ng \P(Sl) [l

Making use of the mapping ¥, we obtain the ALUN knowledge base ¥ (F) cor-
responding to a frame knowledge base F, by introducing in W(F) an inclusion
assertion W(F) C W(FE) for each frame definition Frame : F'in KB F E in F.
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Course L Venrolls.Student M > 2 enrolls M < 30enrolls M
Vtaughtby.(Professor LI GradStudent) M =1 taughtby
AdvCourse L Course M Venrolls.(GradStudent M —=Undergrad) M < 20 enrolls
BasCourse LT Course N Vtaughtby.Professor
GradStudent L Student M Vdegree.String M = 1 degree
Undergrad LT Student

Fig. 4.3. The ALUN knowledge base corresponding to the
KEE knowledge base in Figure 4.2.

The ALUN knowledge base corresponding to the KEE knowledge base given in
Figure 4.2 is shown in Figure 4.3.

The correctness of the translation follows from the correspondence between the
set-theoretic semantics of ALUN and the first-order interpretation of frames [Hayes,
1979; Borgida, 1996; Donini et al., 1996b]. Consequently,

e verifying whether a frame F' is satisfiable in a knowledge base and
e identifying which of the frames are more general than a given frame,

are captured by concept satisfiability and concept subsumption in ALUN knowledge
bases. Hence reasoning for the monotonic, declarative part of frame systems can
be reduced to concept satisfiability and concept subsumption in ALUN knowledge
bases.

4.1.3 Conceptual graphs

Besides Description Logics, conceptual graphs [Sowa, 1984] can be viewed as de-
scendants of frame systems and semantic networks. Conceptual graphs (CGs) are a
rather popular (especially in natural language processing) and expressive formalism
for representing knowledge about an application domain in a graphical way. They
are given a formal semantics, e.g., by translating them into (first-order) formulae.
In the CG formalism, one is, just as for Description Logics, not only interested
in representing knowledge, but also in reasoning about it. Reasoning services for
CGs are, for example, deciding whether a given graph is wvalid, i.e., whether the
corresponding formula is valid, or whether a graph g is subsumed by a graph h,
i.e., whether the formula corresponding to g implies the formula corresponding to
h. Since CGs can express all of first-order predicate logic [Sowa, 1984], these rea-
soning problems are undecidable for general CGs. In the literature [Sowa, 1984;
Wermelinger, 1995; Kerdiles and Salvat, 1997] one can find complete calculi for va-
lidity of CGs, but implementations of these calculi may not terminate for formulae
that are not valid. An approach to overcome this problem, which has also been
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employed in the area of Description Logics, is to identify decidable fragments of the
formalism. The most prominent decidable fragment of CGs is the class of simple con-
ceptual graphs (SGs) [Sowa, 1984], which corresponds to the conjunctive, positive,
and existential fragment of first-order predicate logic (i.e., existentially quantified
conjunctions of atoms). Even for this simple fragment, however, subsumption is
still an NP-complete problem [Chein and Mugnier, 1992].!

Although Description Logics and CGs are employed in very similar applications,
precise comparisons were published, to our knowledge, only recently [Coupey and
Faron, 1998; Baader et al., 1999c]. These comparisons are based on translations of
CGs and Description Logic concepts into first-oder formulae. It turned out that the
two formalisms are quite different for several reasons:

(i) CGs are translated into closed first-order formulae, whereas Description
Logic concepts are translated into formulae in one free variable;

(ii) since Description Logics use a variable-free syntax, certain identifications of
variables expressed by cycles in SGs and by co-reference links in CGs cannot
be expressed in Description Logics;

(iii) in contrast to CGs, most Description Logics considered in the literature only
allow for unary and binary relations but not for relations of arity greater
than 2;

(iv) SGs are interpreted by existential sentences, whereas almost all Description
Logics considered in the literature allow for universal quantification.

Possibly as a consequence of these differences, so far no natural fragment of CGs
that corresponds to a Description Logic has been identified. In the sequel, we will
illustrate the main aspects of the correspondence result presented by Baader et
al. [1999¢], which strictly extends the one proposed by Coupey and Faron [1998].

Sitmple Conceptual Graphs

Simple conceptual graphs (SGs) as introduced by Sowa [1984] are the most promi-
nent decidable fragment of CGs. They are defined with respect to a so-called sup-
port. Roughly spoken, the support is a partially ordered signature that can be used
to fix the a primitive ontology of a given application domain. It introduces a set of
concept types (unary predicates), a set of relation types (n-ary predicates), and a set
of individual markers (constants). As an example, consider the support S shown in
Figure 4.4, where T is the most general concept type representing the entire domain.
The partial ordering on the individual markers is flat, i.e., all individual markers
are pairwise incomparable and the so-called generic marker * is more general than
L Since SGs are equivalent to conjunctive queries (see also Chapter 16), the NP-completeness of subsumption

of SGs is also an immediate consequence of NP-completeness of containment of conjunctive queries
[Chandra and Merlin, 1977].
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concept types: relation types: individual marker:
T *
hasOffspring /[\
Human  CSCourse ‘ MARY PETER KR101

/\ attends hasChild likes

Male  Female Student

Fig. 4.4. An example of a support.

all individual markers. In this example, all relation types are assumed to have arity
2 and to be pairwise incomparable except for hasOffspring, which is more general
than hasChild. The partial orderings on the types yield a fixed specialization hierar-
chy for these types that must be taken into account when computing subsumption
relations between SGs. For binary relation types, this partial ordering resembles a
role hierarchy in Description Logics.

An SG over the support S is a labelled bipartite graph of the form g = (C, R, E, {),
where C' is a set of concept nodes, R is a set of relation nodes, and E C C x R is
the edge relation.

As an example, consider the SGs depicted in Figure 4.5: the SG ¢ describes a
woman Mary having a child who likes its grandfather Peter and who attends the
computer science course number KR101; the SG h describes all mothers having a
child who likes one of its grandparents.

Each concept node is labelled with a concept type (such as Female) and a referent,
i.e., an individual marker (such as MARY) or the generic marker . A concept
node is called gemeric if its referent is the generic marker; otherwise, it is called
individual concept node. Each relation node is labelled with a relation type r (such
as hasChild), and its outgoing edges are labelled with indices according to the arity
of r. For example, for the binary relation hasChild, there is one edge labelled with
1 (leading to the parent), and one edge labelled with 2 (leading to the child).

Simple graphs are given a formal semantics in first-order predicate logic (FOL)
by the operator ® [Sowa, 1984]: each generic concept node is related to a unique
variable, and each individual concept node is related to its individual marker. Con-
cept types and relation types are translated into atomic formulae, and the whole
SG g is translated into the existentially closed conjunction of all atoms obtained
from the nodes in g.

In our example, this operator yields

®(g) = 3Fx1.(Female(MARY) A Human(PETER) A Student(z1) A
CScourse(KR101) A hasChild(PETER, MARY) A
hasChild(MARY, 21) A likes(z1, PETER) A attends(z1, KR101)),
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g: h:
hasChild
1
c1 Human : PETER o Student : * ‘ ds Human : = ds Human : = ‘
E i E
1
likes likes

2
CScourse : KR101

Fig. 4.5. Two simple graphs.

c3

1.) 2.) 3.)

T
Female Student

v

FemStud

e Female: MARY
0

Student: MARY d FemStud: MARY
Cc1 0 €0

Fig. 4.6. Expressing conjunction of concept types in SGs.

{Female,Student} : MARY

®(h) = ZJzorize.(Female(zg) A Human(zi) A Human(zz) A
hasChiId(xl, .To) AN haSChild(.’Eo, .132) VAN |ikeS($2,£C1)),

where z1 in ®(g) is (resp. xp, x1, and x9 in ®(h) are) introduced for the generic
concept node ¢y (resp. the generic concept nodes dy, dy, and ds).

In general, there are three different ways of expressing conjunction of concept
types. For example, suppose we want to express that Mary is both female and a
student. This can be expressed by a SG containing one individual concept node
for each statement (see Figure 4.6, 1.).! A second possibility is to introduce a new
concept type in the support for a common specialization of Female(MARY) and
Student(MARY) (see Figure 4.6, 2.). Finally, such a conjunction can be represented
by labelling the corresponding concept node with a set of concept types instead of
a single concept type (see Figure 4.6, 3.; for details on how to handle SGs labelled
with sets of concept types see [Baader et al., 1999c]).

Subsumption with respect to a support S for two SGs g, h is defined by a so-
called projection from h to g [Sowa, 1984; Chein and Mugnier, 1992]: g is subsumed
by h w.r.t. S iff there exists a mapping from h to g that (1) maps concept nodes

1 Note that this solution cannot be applied if the individual marker MARY were substituted by the generic
marker *, because the two resulting generic concept nodes would be interpreted by different variables.
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(resp. relation nodes) in h onto more specific (w.r.t. the partial ordering in S)
concept nodes (resp. relation nodes) in g and that (2) preserves adjacency.
In our example (Figure 4.5), it is easy to see that g is subsumed by h, since
mapping d; onto ¢; for 0 <4 < 2 yields a projection w.r.t. S from A to g.
Subsumption for SGs is an NP-complete problem [Chein and Mugnier, 1992]. In
the restricted case where the subsumer h is a tree, subsumption can be decided in
polynomial time [Mugnier and Chein, 1992].

Concept Descriptions and Simple Graphs

In order to determine a Description Logic corresponding to (a fragment of) SGs,
one must take into account the differences between Description Logics and CGs
mentioned before.

e Most Description Logics only allow for role terms corresponding to binary rela-
tions and for concept descriptions describing connected structures. Thus, Baader
et al. [1999c] and Coupey and Faron [1998] restrict their attention to connected
SGs over a support S containing only unary and binary relation types.

e Due to the different semantics of SGs and concept descriptions (closed formulae
vs. formulae in one free variable), Coupey and Faron restrict their attention to
SGs that are trees. Baader et al. introduce so-called rooted SGs, i.e., SGs that
have one distinguished node called the root. An adaption of the operator ® yields
a translation of a rooted SG ¢ into a FO formula ®(g)(z¢) with one free variable
ZQ-

e Since all Description Logics considered in the literature allow for conjunction of
concepts, Baader et al. allow for concept nodes labelled with a set of concept
types instead of a single concept type in order to express conjunction of atomic
concepts in SGs. Coupey and Faron avoid the problem of expressing conjunction
of atomic concepts: they just do not allow for (1) conjunctions of atomic concepts
in concept descriptions, and (2) for individual concept nodes in SGs.

The Description Logic considered by Baader et al., denoted by ELIRO1, allows
for existential restrictions and intersection of concept descriptions (EL), inverse
roles (I), intersection of roles (R), and unary one-of concepts (O1). For the con-
stants occurring in the one-of concepts the unique name assumption applies, i.e.,
all constants are interpreted as different objects. Coupey and Faron only consider
a fragment of the Description Logic £LZ.

In both papers, the correspondence result is based on translating concept descrip-
tions into syntax trees. For example, consider the ELIRO1-concept

C = Femalen 3hasChild™.(Human M {PETER}) M
J(hasChild 1 likes).(Male M Student M Jattends.CScourse)
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Tc: :
© co : Female 9 co {Female} : %
1

2 1
hasChild~ likes M has-child hasChild ( tikes ) (‘haschild )
1 2 2

c1 : Human, {PETER}cs : Male, Student {Human} : PETER ‘ o {Male, Student} :

C1

{CScourse} : *

Fig. 4.7. Translating concept descriptions into simple graphs.

attends

c3 : CScourse 3

describing all daughters of Peter who have a dear child that is a student attending
a computer science course. The syntax tree corresponding to C' is depicted on the
left hand side of Figure 4.7.

One can show [Baader et al., 1999c] that, if concept descriptions C' are restricted
to contain at most one unary one-of concept in each conjunction, the corresponding
syntax tree T can be easily translated into an equivalent rooted SG g¢ that is
a tree! (see Figure 4.7). Conversely, every rooted SG ¢ that is a tree and that
contains only binary relation types can be translated into an equivalent ELZTRO;-
concept description Cy. There are, however, rooted SGs that can be translated into
equivalent £LZRO1-concept descriptions though they are not trees. For example,
the rooted SG g depicted in Figure 4.5 is equivalent to the concept description

Cy = {MARY} M Femalen 3hasChild™.(Human M {PETER}) M
JhasChild.(Student M Jattends.({KR101} 1 CScourse) 11 Jlikes.{ PETER})

In general, the above correspondence result can be strengthened as follows [Baader
et al., 1999c]: Every rooted SG ¢ containing only binary relation types can be
transformed into an equivalent rooted SG that is a tree if each cycle in g with more
than 2 concept nodes contains at least one individual concept node. Hence, each
such rooted SG can be translated into an equivalent ELTRO1-concept description.

Note that the SG h with root dy in Figure 4.5 cannot be translated into an equiv-
alent ELIRO1-concept description C}, because, in ELIRO;1, one cannot express
that the grandparent (represented by the concept node d;) and the human liked by
the child (represented by the concept node dg) must be the same person.

The correspondence result between £LZIRO; and rooted SGs allows for transfer-
ring the tractability result for subsumption between SGs that are trees to ELIRO;.
Furthermore, the characterization of subsumption based on projections between
graphs was adapted to ELIRO1 and other Description Logics, e.g., ALE, and is

1 In this context, a tree may contain more than one relation between two adjacent concept nodes.
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used in the context of inference problems like matching and computing least com-
mon subsumers [Baader and Kiisters, 1999; Baader et al., 1999b]. Conversely, the
correspondence result can be used as a basis for determining more expressive frag-
ments of conceptual graphs, for which validity and subsumption is decidable. Based
on an appropriate characterization of a fragment of conceptual graphs correspond-
ing to a more expressive Description Logic (like ALC), one could use algorithms
for these Description Logics to decide validity or subsumption of graphs in this
fragment.

4.2 Logical formalisms

In this section, we will investigate the relationship between Description Logics and
other logical formalisms.

Traditionally, the semantics of Description Logics is given in a Tarski-style model-
theoretic way. Alternatively, it can be given by a translation into predicate logic,
where it depends on the Description Logic whether this translation yields first or-
der formulae or whether it goes beyond first order, as it is the case for Description
Logics that allow, e.g., for the transitive closure of roles or fixpoints. Due to the
variable-free syntax of Description Logics and the fact that concepts denote sets of
individuals, the translation of concepts yields formulae in one free variable. Fol-
lowing the definition by Borgida [1996], a concept C' and its translation m(C)(x)
are said to be equivalent if and only if, for all interpretations! Z = (AZ,-%) and all
a € AT, we have

ac CLiff 7= n(C)(a).

A Description Logic DL is said to be less expressive than a logic L if there is
a translation that translates all DL-concepts into equivalent £ formulae. Such a
translation is called preserving.

Please note that there are various other ways in which equivalence of formulae and
logics being “less expressive than” others could have been defined [Baader, 1996a;
Kurtonina and de Rijke, 1997; Areces and de Rijke, 1998]. For example, a less strict
definition is the one that only asks the translation to be satisfiability preserving.

To start with, we give a translation 7 that translates ALC-concepts into predicate
logic and which will be useful in the remainder of this section. For those familiar with
modal logics, please note that this translation parallels the one from propositional
modal logic [van Benthem, 1983; 1984]; the close relationship between modal logic
and Description Logic will be discussed in Section 4.2.2. For ALC, the translation
of concepts into predicate logic formulae can be defined in such a way that the
resulting formulae involve only two variables, say z,y, and only unary and binary

L In the following, we view interpretations both as Description Logic and predicate logic interpretations.
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predicates. In the following, £F denotes the first order predicate logic over unary
and binary predicates with k variables.

The translation is given by two mappings 7, and m, from ALC-concepts into
£? formulae in one free variable. Each concept name A is also viewed as a unary
predicate symbol, and each role name R is viewed as a binary predicate symbol.
For ALC-concepts, the translation is inductively defined as follows:

m(4) = Az), my(A) = Ay),
m(CND) = mlC)Am(D),  m(CND) = m(C)Am(D),
m(CUD) = m(C)Vm(D),  m(CUD) = m,(C)Vmy(D),
m(3R.C) = EIy.R(a: y) ANmy(C), m(3R.C) = 3Fx.R(y,z) A m,(C),
1:(VR.C) = Vy.R(z,y) D my(C), my(VR.C) = Va.R(y,z) D m,(C).

Other concept and role constructors that can easily be translated into first order
predicate logic without involving more than two variables are inverse roles, conjunc-
tion, disjunction, and negation on roles, and one-of!.

If a Description Logic allows for number restrictions >n R, < n R, the translation
either involves counting quantifiers 32", 3=" (and still involves only two variables)
or equality (and involves an unbounded number of variables):

m(2nR) = F"y.R(z,y) = i, Yn Nig Ui # Ui AN R(2, 1)
m(<nR) = 3%"y.R(x,y) = Yy, Ynt1- Nig Ui # 95 2 Vi R(, 93)

For qualified number restrictions, the translations can easily be modified with the
same consequence on the number of variables involved.

So far, all Description Logics were less expressive than first order predicate logic
(possibly with equality or counting quantifiers). In contrast, the expressive power of
a Description Logic including the transitive closure of roles goes beyond first order
logic: First, it is easy to see that expressing transitivity (p*(z,y) A pT(y,2)) D
pT(z,z) involves at least three variables. To express that a relation p* is the
transitive closure of p, we first need to enforce that p™ is a transitive relation
including p—which can easily be axiomatized in first order predicate logic. Secondly,
we must enforce that pT is the smallest transitive relation including p—which, as a
consequence of the Compactness Theorem, cannot be expressed in first order logic.

Internalisation of Knowledge Bases: So far, we were concerned with preserving
translations of concepts into logical formulae, and thus could reduce satisfiability
of concepts to satisfiability of formulae in the target logic. In Description Logics,
however, we are also concerned with concept consistency and logical implication
w.r.t. a TBox, and with ABox consistency w.r.t. a TBox.

Furthermore, TBoxes differ in whether they are restricted to be acyclic, allow for

1 In this case, the translation is to £2 with constants.
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cyclic definitions, or allow for general concept inclusion axioms (see Chapter 2 for
details). In first order logic, the equivalent to a TBox assertion is simply a univer-
sally quantified formula, and thus it is not necessary to make the above mentioned
distinction between, for example, pure concept satisfiability and satisfiability with
respect to a TBox—provided that cyclic TBoxes are read with descriptive seman-
tics [Baader, 1990a; Nebel, 1991] (cyclic TBoxes read with least or greatest fixpoint
semantics go beyond the expressive power of first order predicate logic). In the fol-
lowing, we consider only the most expressive form of TBoxes, namely those allowing
for general concept inclusion axioms. Given a preserving translation m from Descrip-
tion Logic concepts into first order formulae and a TBox 7 = {C; C D; | 1 <i < n},
we define

Then it is easy to show that

e a concept C is satisfiable with respect to 7 iff the formula 7, (C) A w(7) is
satisfiable.

e a concept C is subsumed by a concept D with respect to 7 iff the formula 7, (C) A
-7, (D) A 7(T) is unsatisfiable.

e given two index sets I, J, an ABox {Ri(ai,a;) | (3,7, k) € I}U{Cj(a;) | (3,7) € J}
is consistent with 7 iff the formula

N Bulana) A N\ mo(Cy)ai) Am(T)

(i,j,k)ET (i.g)eJ

is satisfiable, where the a;-s in the formula are constants corresponding to the
individuals in the ABox.

Observe that, if all concepts in a TBox 7 can be translated to £ (resp. C2), then
the translation 7(7) of 7 is also a formula of £? (resp. C?).

Hence in first order logic, reasoning with respect to a knowledge base (consisting
of a TBox and possibly an ABox) is not more complex than reasoning about concept
expressions alone—in contrast to the complexity of reasoning for most Description
Logics, where considering even acyclic TBoxes can make a considerable difference
(for example, see [Calvanese, 1996b; Lutz, 1999a)). This gap is not surprising since
first order predicate logic is far more complex than most Description Logics, namely
undecidable.

In the following, we investigate logics that are more closely related to Descrip-
tion Logics, namely restricted variable fragments, modal logics, and the guarded
fragment.
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4.2.1 Restricted variable fragments

One possibility to define decidable fragments of first-order logic is to restrict the set
of variables which are allowed inside formulae and the arity of relation symbols. As
mentioned in the previous section, we use £F to denote first order predicate logic
over unary and binary predicates with at most k variables. Analogously, C¥ denotes
first order predicate logic over unary and binary predicates with at most k variables
and counting quantifiers 327, ="

With the exception of the Description Logics introduced by Calvanese et
al. [1998a] and Lutz et al. [1999], the translation of Description Logic concepts
into predicate logic formulae involves predicates of arity at most 2.

From the translations in the previous section, it follows immediately that

o ALCR is less expressive than £2 and that
e ALCNR is less expressive than C2.

As we have shown above, general TBox assertions can be translated into £2 formu-
lae. These facts together with the linearity of the translation yields upper bounds
for the complexity of ALCR and ALCNR (even though these bounds are far from
being tight): £2 and C? are known to be NEXPT1ME-complete [Gridel et al., 1997a;
Pacholski et al., 2000] (for C?, this is true only if numbers in counting quantifiers are
assumed to be coded in unary, an assumption often made in Description Logics),
hence satisfiability and subsumption with respect to a (possibly cyclic) TBox are in
NExPTIME for ALCR and ALCNR.

However, both £2 and C? are far more expressive than ALCR and ALCNR,
respectively. For example, both logics allow for the negation of binary predi-
cates, i.e, subformulae of the form —R(z,y). In Description Logics, this cor-
responds to negation of roles, an operator that is rarely considered in Descrip-
tion Logics, except in the weakened form of difference! [De Giacomo, 1995;
Calvanese et al., 1998a (Exceptions are the work by Mameide and Montero [1993]
and Lutz and Sattler [2000b], which deal with genuine negation of roles). Moreover,
£? and C? allow for “global” quantification, i.e., for formulae of the form 3z.®(x)
or Vz.U(x) that talk about the whole interpretation domain. In contrast, quantifi-
cation in Description Logics is, in general, “local”, e.g., concepts of the form VR.C
only constrain all R-successors of an individual.

Borgida [1996] presents a variety of results stating that a certain Description
Logic is less than or as expressive as a certain fragment of first order logic. We
mention only the most important ones:

o ALC extended with

1 Difference of roles is easier to deal with than genuine negation, since it does not destroy “locality” of
quantification.
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(role constructors) full Boolean operators on roles, inverse roles, cross-product
of two concepts, an identity role id, and
(concept constructors) individuals (“one-of”),

is as expressive as £2 (and therefore decidable and, more precisely, NEXPTIME-
complete).

e A further extension of this logic with all sorts of role-value-maps is as expressive
as £3 (and therefore undecidable).

Since both extensions include full Boolean operators on roles, they can simulate a
universal role using the complex role R LI =R, and thus general TBox assertions
can be internalised (see Chapter 5). Thus, for these two extensions, reasoning with
respect to (possibly cyclic) TBoxes can be reduced to pure concept reasoning—i.e.,
the TBox can be internalized—and the above complexity results include both sorts
of reasoning problems.

Later, a second Description Logic was presented that is as expressive as £2 [Lutz
et al., 2001a). In contrast to the logic in [Borgida, 1996], this logic does not allow
to build a role as the cross-product of two concepts, and it does not provide indi-
viduals. However, using the identity role id (with id? = {(z,z) | z € AT} for all
interpretations Z), we can guarantee that (the atomic concept) N is interpreted as
an individual, i.e., a singleton set, using the following TBox axiom:

T C I(RU-R).(N NV—id.~N)

4.2.2 Modal logics

Modal logics and Description Logics have a very close relationship, which was
first described in [Schild, 1991]. In a nutshell, [Schild, 1991] points out that
ALC can be seen as a notational variant of the multi modal logic K,,. Later,
a similar relationship was observed between more expressive modal logics and
Description Logics [De Giacomo and Lenzerini, 1994a; Schild, 1994], namely be-
tween (extensions of) Propositional Dynamic Logic PDL and (extensions of ) ALC ¢,
ie., ALC extended with regular roles. Following and exploiting these observa-
tions, various (complexity) results for Description Logics were found by trans-
lating results from modal or propositional dynamic logics and the p-calculus
to Description Logics [De Giacomo and Lenzerini, 1994a; 1994b; Schild, 1994;
De Giacomo, 1995]. Moreover, upper bounds for the complexity of satisfiabil-
ity problems were tightened considerably, mostly in parallel with the develop-
ment of decision procedures suitable for implementations and optimisation tech-
niques for these procedures [De Giacomo and Lenzerini, 1995; De Giacomo, 1995;
Horrocks et al., 1999]. In the following, we will describe the relation between modal
logics and Description Logics in more detail.
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We start by introducing the basic modal logic K; for a nice introduction and
overview see [Halpern and Moses, 1992; Blackburn et al., 2001]. Given a set of
propositional letters p1,po, .. ., the set of formulae of the modal logic K is the small-
est set that

e contains p1,ps, ...,
e is closed under Boolean connectives A, V, and —, and
e if it contains ¢, then it also contains O¢ and <¢.

The semantics of modal formulae is given by so-called Kripke structures M =
(S, 7, KC), where S is a set of so-called states or worlds (which correspond to indi-
viduals in Description Logics), 7 is a mapping from the set of propositional letters
into sets of states (i.e., w(p;) is the set of states in which p; holds), and K is a binary
relation on the states S, the so-called accessibility relation (which can be seen as
the interpretation of a single role). The semantics is then given as follows, where,
for a modal formula ¢ and a state s € S, the expression M, s |= ¢ is read as “¢
holds in M in state s”.

M,s = p; iff sem(p)

M,sE=d1Np2 iff M,skE ¢y and M, s = ¢

M,sE¢1V oo it M,skE ¢ or M,s = ¢o

M,s E - ifft M,sl:o

M, s = O iff  there exists s € S with (s,s') € K and M,s' | ¢
M, s = 0O¢ iff  forall s €8, if (s,s') € K, then M,s' E ¢

In contrast to many other modal logics, K does not impose any restrictions on the
Kripke structures. For example, the modal logic S4 is obtained from K by restrict-
ing the Kripke structures to those where the accessibility relation K is reflexive and
transitive. Other modal logics restrict K to be symmetric, well-founded, an equiva-
lence relation, etc. Moreover, the number of accessibility relations may be different
from one. Then we are talking about multi modal logics, where each accessibility
relation KC; can be thought to correspond to one agent, and is quantified using the
multi modal operators O; and <; (or, alternatively [i] and (i)). For example, Ky,
stands for the multi modal logic K with m agents.

To establish the correspondence between the modal logic K, and the Description
Logic ALC, Schild [1991] gave the following translation f from ALC-concepts using
role names Ry, ..., Ry, to Ku:

fA) = A4
fenp FC)NF(D),
f(cuD) FC)V f(D),
f=(@) = =(f(O),
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fVR.C) = 0,(f(C)),
FER.C) = Oi(f(C)).

Now, Kripke structures can easily be viewed as Description Logic interpretations
and vice versa. Then, from the semantics of K, and ALC, it follows immediately
that a is an instance of an ALC-concept C' in an interpretation Z iff its translation
f(C) holds in a in the Kripke structure corresponding to Z. Obviously, we can
define an analogous translation from K, formulae into ALC.

There exists a large variety of modal logics for a variety of applications. In the
following, we will sketch some of them together with their relation to Description
Logics.

Propositional Dynamic Logics are designed for reasoning about the behaviour
of programs. Propositional Dynamic Logic (PDL) was introduced by Fischer and
Ladner [1979], and proven to have an EXPTIME-complete satisfiability problem
by Fischer and Ladner [1979] and Pratt [1979]; for an overview, see [Harel et al.,
2000]. PDL was designed to describe the (dynamic) behaviour of programs: complex
programs can be built starting from atomic programs by using non-deterministic
choice (U), composition (;), and iteration (-*). PDL formulae can be used to describe
the properties that should hold in a state after the execution of a complex program.
For example, the following PDL formula holds in a state if the following condition
is satisfied: whenever program « or 3 is executed, a state is reached where p holds,
and there is a sequence of alternating executions of o and 8 such that a state is
reached where —p A ¢ holds:

[aUBlp A ((a; 8)")(—=p A q)

Its Description Logic counterpart, ALC,, was introduced independently by
Baader [1991]. ALC ¢4 is the extension of ALC with regular expressions over roles’
and can be seen as a notational variant of Propositional Dynamic Logic. For this cor-
respondence, see the work by Schild [1991] and De Giacomo and Lenzerini [1994a],
and Chapter 5.. There exist a variety of extensions of PDL (or ALC ), for example
with inverse roles, counting, or difference of roles, most of which still have an Exp-
TIME satisfiability problem; see, e.g., [Kozen and Tiuryn, 1990; De Giacomo, 1995;
De Giacomo and Lenzerini, 1996] and Chapter 5.

The p-Calculus can be viewed as a generalisation of dynamic logic, with similar
applications, and was introduced by Pratt [1981] and Kozen [1983]. It is obtained
from multi modal Ky, by allowing for (least and greated) fixpoint operators to be

I Regular expressions over roles are built using union (L), composition (o), and the Kleene operator (-*)
on roles and can be used in ALCey-concepts in the place of atomic roles (see Chapter 5).
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used on propositional letters. For example, for u the least fixpoint operator and X a
variable for propositional letters, the formula X .pV(a) X describes the states with a
(possibly empty) chain of « edges into a state in which p holds. In PDL, this formula
is written (o*)p, and its ALC,e, counterpart is IR},.p. However, the p-calculus is
strictly more expressive than PDL or ALC,4: for example, the p-calculus can express
well-foundedness of a program (binary relation), i.e., there is a u-calculus formula
that has only models in which « is interpreted as a well-founded relation (that is, a
relation without any infinite chains). In [De Giacomo and Lenzerini, 1994b; 1997;
Calvanese et al., 1999c], this additional expressive power is shown to be useful in a
variety of Description Logics applications. The Description Logic counterpart of the
p-calculus extended with number restrictions [De Giacomo and Lenzerini, 1994b;
1997] and additionally with inverse roles [Calvanese et al., 1999¢c] is proven to have
an EXPTIME-complete satisfiability problem.

There are two other classes of Description Logics with other forms of fixpoints: in
Description Logics, fixpoints first came in through (1) the transitive closure operator
[Baader, 1991], which is naturally defined using a least fixpoint, and (2) through
terminological cycles [Baader, 1990a), which have a different meaning according to
whether a greatest, least, or arbitrary fixpoint semantics is employed [Nebel, 1991;
Baader, 1996b; Kiisters, 1998].

Temporal Logics are designed for reasoning about time-dependent information.
They have applications in databases, automated verification of programs, hardware,
and distributed systems, natural language processing, planning, etc. and come in
various different shapes; for a survey of temporal logics, see, e.g., [Gabbay et al.,
1994]. Firstly, they can differ in whether the basic temporal entities are time points
or time intervals. Secondly, they differ in whether they are based on a linear or
on a branching temporal structure. In the latter structures, the flow of time might
“branch” into various succeeding future times. Finally, they differ in the underlying
logic (e.g., Boolean logic or first order predicate logic) and in the operators provided
to speak about the past and the future (e.g., operators that refer to the next time
point, to all future time points, to a future time point and all its respective future
time points, etc.).

In contrast to some other modal logics, temporal logics do not have very close De-
scription Logic relatives. However, they are mentioned here because they are used
to “temporalise” Description Logics; for a survey on temporal Description Logics,
see [Artale and Franconi, 2001] and Chapter 6. When speaking of “the tempo-
ralisation” of a logic, e.g., ALC, one usually refers to a logic with two-dimensional
interpretations. One dimension refers to the flow of time, and each state in this flow
of time comprises an interpretation of the underlying logic, e.g., an ALC interpre-
tation. Obviously, the logic obtained depends on the temporal logic chosen for the
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temporal dimension and on the underlying (description) logic. Moreover, one has
the choice to require that the interpretation domain of each time point is the same
for all states (“constant domain assumption”) or that it is a subset of the domains of
the interpretations underlying future states. Examples of temporalised Description
Logics can be found in [Wolter and Zakharyaschev, 1999d; Sturm and Wolter, 2002;
Artale et al., 2001; Schild, 1993; Lutz et al., 2001b]. An alternative to this tempo-
ralisation is to extend a Description Logic with a temporal concrete domain [Baader
and Hanschke, 1991a]. This yields a “two-sorted” interpretation domain, consisting
of abstract individuals on the one hand and time points or intervals on the other
hand. Abstract individuals are then related to the temporal structure using fea-
tures (functional roles) and the standard concrete domain constructs. An example
of such a logic is described by Lutz [2001a].

Hybrid Logics extend standard modal logics with the the possibility to refer to
single states (individuals in the interpretation domain) using so-called nominals
(see, e.g., [Blackburn and Seligman, 1995; Areces et al., 2000; Areces, 2000] for
hybrid logics related to Description Logics). Nominals are simply special propo-
sitional variables which hold in exactly one state. Hybrid logics enjoy a variety
of “nice” properties whose description goes beyond the scope of this article; for a
summary, see [Areces, 2000]. In Description Logics, there are three standard ways
to refer to individuals: (1) we can use ABox individuals in ABoxes, (2) we can
use the “one-of” concept constructor {o1,...,0,} which can be applied to individ-
ual names o; and which is present in only a few Description Logics (e.g., in the
Description Logic described in [Bresciani et al., 1995]), and (3) we can use nom-
inals in a similar way as in hybrid logics (e.g., [De Giacomo, 1995; Tobies, 2000;
Horrocks and Sattler, 2001]), namely as special atomic concepts that are interpreted
as singleton sets. For most Description Logics, there is a direct mapping between
nominals and the “one-of” constructor and back: let o; stand for individual names
and, at the same time, nominals. Then we can extend the translation f mentioned
above to the “one-of” constructor as follows—provided that we make the unique
name assumption (cf. Chapter 2) either for both the individual names and the
nominals or for none of them:

fo1,...,01}) = flor} U...U{ox}) =01 V... Vo

ABox individuals can be viewed as a restricted form of nominals, and each ABox
in a Description Logic £ can be translated into a single concept of (the extension
of) £ with conjunction, existential restriction, and “one-of”: first, translate each
assertion of the form

C(a) into {a} M C and

R(a,b) into {a} M3IR.{b}
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Next, for C4,...,C,, the resulting concepts of this translation and U a role name
not occurring in any Cj;, define C = MMi<;<;,AU.C;. Then each model of C' is a
model of the original ABox—provided, again, that the unique name assumption
holds either for both individual names and nominals or for none. Vice versa, each
model of the original ABox can easily be extended to a model of C.

So far, we only mentioned the weakest way in which nominals occur in hybrid
logics. The next stronger form are formulae of the form ¢p@o; which describes,
intuitively, that ¢ holds in the state o;. For U a universal role and C, the translation
of ¢, this formula corresponds to the concept 3U.(0; 1 Cy). Finally, we only point
out that there are even more expressive ways of talking about nominals in hybrid
logics using, for example, variables for nominals and quantification over them.

So far for the relation between certain modal logics and certain Description Logics.
In the remainder of this section, the relationship between standard Description
Logics constructors and their counterpart in modal logics are discussed.

Number Restrictions: In modal logics, the equivalent to qualified number re-
strictions >n R.C and <n R.C [Hollunder and Baader, 1991b] is known as graded
modalities [Fine, 1972; Van der Hoek and de Rijke, 1995], whereas no equivalent
to the standard, weaker form of number restrictions, >n R and <n R, has been
considered explicitly.

Number restrictions can be said to play a central role in Description Logics: they
are present in almost all knowledge representation systems based on Description
Logics, several variants have been investigated with respect to their computational
complexity (e.g., see [Tobies, 1999c] for qualified number restrictions, [Baader and
Sattler, 1999] for symbolic number restrictions and number restrictions on complex
roles), and it was proved by De Giacomo and Lenzerini [1994a] that reasoning
with respect to (possibly cyclic) TBoxes for the Description Logic equivalent to
converse-PDL extended with qualified number restrictions (on atomic and inverse
atomic roles) is EXPTIME-complete.

In contrast, they play a minor role in modal and dynamic logics. A more promi-
nent role in dynamic logics is played by deterministic programs, i.e., programs that
are to be interpreted as functional relations (cf. Chapter 2). Ben-Ari et al. [1982]
and Parikh [1981] show that validity (and hence satisfiability) of DPDL (i.e., the logic
that is obtained from PDL by restricting programs to be deterministic) is EXPTIME-
complete. Moreover, Parikh [1981] has shown that PDL formulae can be linearly
translated into DPDL formulae, and this translation was used by De Giacomo and
Lenzerini [1994a] to code qualified number restrictions into DPDL formulae. As a
consequence, we have that satisfiability and subsumption with respect to (possibly
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cyclic) TBoxes in ALC extended with regular expressions over roles and qualified
number restrictions is in EXPTIME.

Transitivity: In modal logics and Description Logics, transitivity comes in (at
least) two different shapes, as transitive roles (or frames whose accessibility rela-
tion is transitive, like in K4y,) and as the transitive closure operator on roles (or
the Kleene star operator on programs in PDL). Interestingly, these two sorts of
transitivity differ in their complexity.

Fischer and Ladner [1979] prove that satisfiability in PDL is EXPTIME-complete.
However, the only operator on programs (or roles) used in the hardness proof is the
transitive closure operator. Translated to Description Logics, this yields EXPTIME-
completeness of satisfiability in ALC extended with the transitive closure operator
on roles.

In contrast, K4,, is known to be of the same complexity as Ky, (or ALC), namely
PSpPACE-complete [Halpern and Moses, 1992], while providing transitivity: K4, is
obtained from Ky, by restricting Kripke structures to those where the accessibility
relations are transitive. Translated into Description Logics, this means that concept
satisfiability in ALC extended with transitive roles (i.e., the possibility to say that
certain roles are interpreted as transitive relations) is in PSPACE [Sattler, 1996].
An extension of this Description Logic with role hierarchies was implemented in
the Description Logic system FacT [Horrocks, 1998a]. Although pure concept sat-
isfiability of this extension is EXPTIME-hard, its highly optimised implementation
behaves quite well [Horrocks, 1998b).

Inverse Roles: Without the converse operator on programs/time (or the inverse
operator on roles), binary relations are restricted to be used asymmetrically: For
example, one is restricted to either model “into the future” or “into the past”, or
one must decide whether to use a role “has-child” or “is-child-of”, but may not
use both and relate them in the proper way. Hence in both modal and Description
Logics, the converse/inverse operator plays an important role since it overcomes
this asymmetry, and a variety of logics allowing for this operator were investigated
[Streett, 1982; Vardi, 1985; De Giacomo and Massacci, 1996; Calvanese, 1996a;
De Giacomo, 1996; Horrocks et al., 1999].

4.2.3 Guarded fragments

Andréka et al. [1996] introduce guarded fragments as natural generalisations of
modal logics to relations of arbitrary arity. Their definition and investigation was
motivated by the question why modal logics have such “nice” properties, e.g., finite
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axiomatisability, Craig interpolation, and decidability. Guarded fragments are ob-
tained from first order logic by allowing the use of quantified variables only if these
variables are guarded by appropriate atoms' before they are used in the body of a
formula. More precisely, quantifiers are restricted to appear only in the form

Jy(P(x,y) A ®(y)) or VYy(P(x,y) D ®(y)) (First Guarded Fragment)
Jy(P(x,y) AN ®(x,y)) or Vy(P(x,y)D ®(x,y)) (Guarded Fragment)

for atoms P, vectors of variables x and y, and (first) guarded fragment formulae ®
with free variables in y and x (resp. in y). The loosely guarded fragment further
allows for a restricted form of conjunction as guards.

Obviously, the translation (Jy.R(z,y) A ¢(y))(z) of the K formula O¢ (or of the
ALC concept IR.C,,) is a formula in the first guarded fragment since the quantified
variable y is “guarded” by R. A more complex guarded fragment formula is

Jz1, z9.(parents(x, 21, 22) A (married(z1, 22) A (Vy.parents(y, z1, 22) D rich(z1))))

in one free variable x, a guard atom parents, and describing all those persons that
have married parents and whose siblings (including herself) are rich.

All guarded fragments were shown to be decidable [Andréka et al., 1996].
Gridel [1999] proves that satisfiability of the guarded fragment is in EXPTIME—
provided that the arity of the predicates is bounded—and 2EXPTIME-complete for
unbounded signatures. Interestingly, the guarded fragment was shown to remain
2EXPTIME when extended with fixpoints [Gridel and Walukiewicz, 1999]. These
“nice” properties together with their close relationship to modal/description logics
suggest that they are a good starting point for the development of a Description
Logic with n-ary predicates [Gridel, 1998]: in [Lutz et al., 1999], a restriction of
the guarded fragment was proven to be PSPACE-complete, where the restriction
concerns the way in which variables are used in guard atoms. Roughly spoken, each
predicate A comes with a two-fold arity (i, j) and, when A is used as a guard, either
all first ¢ variables are quantified and none of the last j are or, symmetrically, all
last j variables are quantified and none of the first ¢ are. Hence one might think of
the predicates as having two-fold “groupings”. A similar logic, the so-called action-
guarded fragment AGF is proposed in [Goncalves and Gridel, 2000]: it comes with
a similar grouping of variables in predicates (which is, when extended with “inverse
actions”, the same as the grouping in [Lutz et al., 1999]) and, additionally, it divides
predicates into those allowed as guards and those allowed in the body of formulae.
From a Description Logic perspective, this should not be too severe a restriction
since it parallels the distinction between role and concept names. Interestingly, the
extension of AGF with counting quantifiers (the first order counterpart of number
restrictions), inverse actions, and fixpoints yields an EXPTIME logic—provided that

1 Atoms are formulae P(z1, ..., ) where P is a k-ary predicate symbol and x; are variables.
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the arity of the predicates is bounded and that numbers in counting quantifiers are
coded unarily [Goncalves and Griidel, 2000]. This result is even more interesting
when noting that the guarded fragment, when extended with number restrictions,
functional restrictions, or transitivity (i.e., statements saying that certain binary
relations are to be interpreted as transitive relations) becomes undecidable [Gridel,
1999].

To the best of our knowledge, the only other n-ary Description Logics with sound
and complete inference algorithms are DLR [Calvanese et al., 1998a] and DLR,,
[Calvanese et al., 1999c], which seem to be orthogonal to the guarded fragment. An
exact description of the relationship between DLR (resp. DLR,,) and the guarded
fragment (resp. its extension with fixpoints) is missing so far.

4.3 Database models

In this section we will describe the relationship between Description Logics and
data models used in databases. We will consider both traditional data models used
in the conceptual modeling of an application domain, such as semantic and object-
oriented data models, and more recently introduced formalisms for representing
semistructured data and data on the web. We will concentrate on the relationship
between the formalisms and refer to Chapter 16 for a more detailed discussion on
the use of Description Logics in data management [Borgida, 1995].

4.3.1 Semantic data models

Semantic data models were introduced primarily as formalisms for database
schema design [Abrial, 1974; Chen, 1976], and are currently adopted in most
of the database and information system design methodologies and Computer
Aided Software Engineering (CASE) tools [Hull and King, 1987; Batini et al.,
1992]. In semantic data models, classes provide an explicit representation of
objects with their attributes and the relationships to other objects, and sub-
type/supertype relationships are used to specify the inheritance of properties. Here,
we concentrate on the Entity-Relationship (ER) model [Chen, 1976; Teorey, 1989;
Batini et al., 1992; Thalheim, 1993], which is one of the most widespread semantic
data models. However, the considerations we make hold also for other formalisms
for conceptual modeling, such as UML class diagrams [Rumbaugh et al., 1998;
Jacobson et al., 1998]

4.3.1.1 Formalization

The basic elements of the ER model are entities, relationships, and attributes, which
are used to model the domain of interest by means of an ER schema.
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Fig. 4.8. An Entity-Relationship schema.

Figure 4.8 shows a simple ER schema representing the registration of customers
for (telephone) services provided by departments (e.g., of a telephone company).
The schema is drawn using the standard graphical ER notation, in which entities
are represented as boxes, and relationships as diamonds. An attribute is shown as a
circle attached to the entity for which it is defined. An entity type (or simply entity)
denotes a set of objects, called its instances, with common properties. Elementary
properties are modeled through attributes, whose values belong to one of several
predefined domains, such as Integer, String, Boolean, etc. Relationships between
instances of different entities are modeled through relationship types (or simply
relationships). A relationship denotes a set of tuples, each one representing an
association among a combination of instances of the entities that participate in the
relationship. The participation of an entity in a relationship is called an ER-role and
has a unique name. It is depicted by connecting the relationship to the participating
entity. The number of ER-roles for a relationship is called its arity.

Cardinality constraints can be attached to an ER-role in order to restrict the min-
imum or maximum number of times an instance of an entity may participate via
that ER-role in instances of the relationship [Abrial, 1974; Grant and Minker, 1984;
Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994; Thalheim, 1992; Calvanese
and Lenzerini, 1994b]. Minimal and maximal cardinality constraints can be arbi-
trary non-negative integers. However, typical values for minimal cardinality con-
straints are 0, denoting no constraint, and 1, denoting mandatory participation of
the entity in the relationship; typical values for maximal cardinality constraints
are 1, denoting functionality, and oo, denoting no constraint. In Figure 4.8, cardi-
nality constraints are used to impose that each customer must be registered for at
least one service. Also, each service is provided by exactly one department, which
in turn may not provide more than 20 different services.

To represent inclusions between the sets of instances of two entities or two rela-
tionships, so called IS-A relations are used. An IS-A relation states the inheritance
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of properties from a more general entity (resp. relationship) to a more specific one.
A generalization is a set of IS-A relations which share the more general entity
(resp. relationship). Multiple generalizations can be combined in a generalization
hierarchy. A generalisation can be mutually exclusive, meaning that all the specific
entities (resp. relationships) are mutually disjoint, or complete, meaning that the
union of the more specific entities (resp. relationships) completely covers the more
general entity (resp. relationship). In Figure 4.8, a mutually exclusive and com-
plete generalisation is used to represent the fact that customers are partitioned into
private and business customers.

Additionally, keys are used to represent the fact that an instance of an entity is
uniquely identified by a certain set of attributes, or that an instance of a relation-
ship is uniquely identified by a set of instances of the entities participating in the
relationship.

Although we do not provide a formal definition here, the semantics of an ER
schema can be given by specifying which database states are consistent with the
information structure represented by the schema; for details see e.g., [Calvanese et
al., 1999¢].

Traditionally, the ER model has been used in the design phase of commercial
applications, and modern CASE tools usually provide sophisticated schema editing
facilities and automatic generation of code for the interaction with the database
management system. However, these tools do not provide any support for dealing
with the complexity of schemata that goes beyond the graphical user interface. In
particular, the designer is responsible for checking schemata for important proper-
ties such as consistency and redundancy. This may be a complex and time consum-
ing task if performed by hand. By translating an ER schema into a Description
Logic knowledge base in such a way that the verification of schema properties cor-
responds to traditional Description Logic reasoning tasks, the reasoning facilities
of a Description Logic system can be profitably exploited to support conceptual
database design.

4.8.1.2 Correspondence with Description Logics

Both in Description Logics and in the ER model, the domain of interest is mod-
eled through classes and relationships, and various proposals have been made for
establishing a correspondence between the two formalisms. Bergamaschi and Sar-
tori [1992] provide a translation of ER schemas into acyclic ALN knowledge bases.
However, due to the limited expressiveness of the target language, several features
of the ER model and desired reasoning tasks could not fully be captured by the
proposed translation. Indeed, when relating the ER model to Description Logics,
one has to take into account the following aspects:
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Registration [ VcustRegistration.Customer N =1 custRegistration I
VlocRegistration.Location M =1 locRegistration M
VservRegistration.Service M = 1 servRegistration

Supply C  VservSupply.Service 1 =1 servSupply M
VcomSupply.Customer M =1 comSupply

Customer L VcustRegistration™ .Registration I > 1 custRegistration™
Location C VlocRegistration™ .Registration
Service L VservRegistration™ .Registration N
VservSupply ™ .Supply M = 1servSupply ™
Department T YcomSupply ™ .Supply M < 20 comSupply™
Customer LC BusinessCustomer LI PrivateCustomer
BusinessCustomer [C  Customer
PrivateCustomer T Customer I =BusinessCustomer
Customer L Vname.String M =1name

Fig. 4.9. Part of the knowledge base corresponding to the
Entity-Relationship schema in Figure 4.8.

(i) The ER model allows for relations of arbitrary arity, while in traditional
Description Logics only unary and binary relations are considered.

(ii) The assumption of acyclicity is unrealistic in an ER shema, while it is com-
mon in Description Logics knowledge bases.

(iii) Database states are considered to be finite structures, while no assumption
on finiteness is usually made on the interpretation domain of a Description
Logic knowledge base.

Before discussing these issues in more detail, we show in Figure 4.9 part of the
ALUNT knowledge base corresponding to the ER schema in Figure 4.8, derived
according to the translation proposed by Calvanese et al. [1994; 1999¢]. We have
omitted the part corresponding to the translation of most attributes, showing as an
example only the translation of the attribute name of the entity Customer.

Due to point (i), when translating ER schemas into knowledge bases of a tradi-
tional Description Logic, it becomes necessary to reify relationships, i.e., to translate
each relationship into a concept whose instances represent the tuples of the relation-
ship. Each entity is translated also into a concept, while each ER-role is translated
into a Description Logic role. Then, using functional roles, one can enforce that
each instance of the atomic concept C' corresponding to a relationship R represents
a tuple of R, i.e., for each role representing an ER-role of R, the instance of C' is
connected to exactly one instance of the entity associated to the ER-role.
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There is, however, one condition, which is implicit in the semantics of the ER
model, but which does not necessarily hold once relationships are reified, and which
can also not be enforced in Description Logics on the models of a knowledge base:
The condition is that the extension of a relationship R does not contain some tuple
twice. After reification this corresponds to the fact that there are no two instances
of the concept corresponding to R that are connected through all roles of R exactly
to the same instances of the entities associated to the roles. However, it can be
shown that, when reasoning on a knowledge base corresponding to an ER schema,
nothing is lost by ignoring this condition. Indeed, given an arbitrary model of such
a knowledge base, one can always find a model in which the condition holds, and
thus one that corresponds directly to a legal database state [Calvanese et al., 1994;
De Giacomo, 1995; Calvanese et al., 1999¢].

Cardinality constraints are translated using number restrictions on the inverse
of the roles connecting relationships to entities. To avoid the need for qualified
number restrictions, in the translation in Figure 4.9 we have disambiguated the
roles by appending to their name the name of the relationship they belong to.
An alternative would be to allow the same role to appear in several places, and
use qualified number restrictions instead of unqualified ones. While considerably
complicating the language, this makes it possible to translate also IS-A relations
between relationships, which cannot be captured using the translation proposed by
Calvanese et al. [1999¢]. Also more general forms of cardinality constraints have
been proposed for the ER model [Thalheim, 1992], allowing e.g., to limit the number
of locations a customer may be registered for, independently of the service. To the
best of our knowledge, such types of cardinality constraints cannot be captured in
Description Logics in general. Borgida and Weddell [1997] have studied reasoning in
Description Logics in the presence of functional dependencies that are more general
than unary ones, and which allow one to represent keys of relations. Decidability
of reasoning in a very expressive Description Logic augmented with non-unary key
constraints has been shown by Calvanese et al. [2000b], and Calvanese et al. [2001a]
have shown that also general functional dependencies can be added without losing
ExpPTIME-completeness.

IS-A relations are simply translated using concept inclusion assertions. General-
isation hierarchies additionally require negation, if they are mutually disjoint, and
union, if they are complete.

With respect to point (ii), we observe that the translation of an ER schema
containing cycles obviously gives rise to a cyclic Description Logic knowledge base.
However, due to the necessity of properly relating a relationship via an ER-role
to an entity, even when translating an acyclic ER schema, the resulting knowledge
base contains cycles. On the other hand, it is sufficient to use inclusion assertions
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rather than equivalence, since the former naturally correspond to the semantics of
ER schemata.

With respect to point (iii), we observe that one cannot simply ignore it and
adopt algorithms that reason with respect to arbitary models. Indeed, the
ER model itself does not have the finite model property [Cosmadakis et al.,
1990; Calvanese and Lenzerini, 1994b], which states that, if a knowledge base
(resp. schema) has an arbitrary, possibly infinite model (resp. database state),
then it also has a finite one (see also Chapter 5 for more details). A further
confirmation comes from the fact that, for correctly capturing ER schemas in
Description Logics, possibly cyclic knowledge bases expressed in a Description
Logic including functional restrictions and inverse roles are required, and such
knowledge bases do not have the finite model property [Calvanese et al., 1994;
1999¢]. Therefore one must resort to techniques for finite model reasoning. Cal-
vanese et al. [1994] show that reasoning w.r.t. finite models in ALUNT knowl-
edge bases containing only inclusion assertions is EXPTIME-complete, and Cal-
vanese [1996a] presents a 2EXPTIME algorithm for reasoning in ALCQT knowledge
bases with general inclusion assertions.

4.8.1.8 Applications of the correspondence

The study of the correspondence between Description Logics and semantic data
models has led to significant advantages in both fields. On the one hand, the
richness of constructs that is typical of Description Logics makes it possible to add
them to semantic data models and take them fully into account when reasoning on
a schema [Calvanese et al., 1998g]. Notable examples are:

e the ability to specify not only IS-A and generalisation hierarchies, but also arbi-
trary Boolean combinations of entities or relationships, which can correspond to
forms of negative and incomplete knowledge [Di Battista and Lenzerini, 1993];

e the ability to refine properties along an IS-A hierarchy, such as restricting the
numeric range for cardinality constraints, or refining the participation in rela-
tionships using universal quantification over roles;

e the ability to define classes by means of equality assertions, and not only to state
necessary properties for them.

The correspondence between semantic data models and Description Logics has been
recently exploited to add such advanced capabilities to CASE tools. A notable
example is the 16COM tool [Franconi and Ng, 2000] for conceptual modeling, which
combines a user-friendly graphical interface with the ability to automatically infer
properties of a schema (e.g., inconsistency of a class, or implicit IS-A relations) by
invoking the FacT Description Logic reasoner [Horrocks, 1998a; 1999].
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On the other hand, the basic ideas behind the translation of semantic data mod-
els into Description Logics, namely reification and the fact that one can restrict
the attention to models in which distinct instances of a reified relation correspond
to distinct tuples, have led to the development of Description Logics in which re-
lations of arbitrary arity are first class citizens [De Giacomo and Lenzerini, 1994c;
Calvanese et al., 1997; 1998a]. Using such Description Logics, the translation of
an ER schema is immediate, since now also relationships of arbitrary arity have
their direct counterpart. For example, using DLR [Calvanese et al., 1998a], the
part of the schema in Figure 4.8 relative to the ternary relation Registration can be
translated as follows:

Registration T ($1: Customer) M ($2: Location) M ($3: Service)
Customer C  J[$1]Registration

We refer to Chapter 16, Section 16.2.2 for the details of the translation.

Description Logics could also be considered as expressive variants of semantic
data models with incorporated reasoning facilities. This is of particular importance
in the context of information integration, where a high expressiveness is required
to capture in the best possible way the complex relationships that hold between
data in different information sources [Levy et al., 1995; Calvanese et al., 1998d;
1998e].

4.3.2 Object-oriented data models

Object-oriented data models have been proposed recently with the goal of devis-
ing database formalisms that could be integrated with object-oriented program-
ming systems [Abiteboul and Kanellakis, 1989; Kim, 1990; Cattell and Barry, 1997;
Rumbaugh et al., 1998]. Object-oriented data models rely on the notion of object
identifier at the extensional level (as opposed to traditional data models which are
value-oriented) and on the notion of class at the intensional level. The structure
of the classes is specified by means of typing and inheritance. Since we aim at dis-
cussing the relationship with Description Logics, which are well suited to describe
structural rather than dynamic properties, we restrict our attention to the structural
component of object-oriented models. Hence we do not consider all those aspects
that are related to the specification of the behaviour and evolution of objects, which
nevertheless constitute an important part of these data models. Although in our
discussion we do not refer to any specific formalism, the model we use is inspired
by the one presented by Abiteboul and Kanellakis [1989], and embodies the basic
features of the static part of the ODMG standard [Cattell and Barry, 1997]
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class Customer type-is class Registration type-is
union BusinessCustomer, PrivateCustomer record
end cust: Customer,
_ ) ) regis: set-of record
class PrivateCustomer is-a Customer type-is serv: Service
record _ loc: Location
SSN: String end
end end

class Service type-is
record
code: Integer,
suppliedBy: Department
end

Fig. 4.10. An object-oriented schema.

4.53.2.1 Formalization

An object-oriented schema is a finite set of class declarations, which impose con-
straints on the instances of the classes that are used to model the application do-
main. A class declaration for a class C has the form

class C is-a C1,...,Cy type-is T,

where the is-a part, which is optional, specifies inclusions between the sets of in-
stances of the involved classes, while the type-is part specifies through the type
expression T the structure assigned to the objects that are instances of the class.
We consider union, set, and record types, built according to the following syntax,
where the letter A is used to denote attributes:

T — C |
union T4, ...,T) end |
set-of T' |
record Aq:T1, ..., Ap: Ty end.

Figure 4.10 shows part of an object-oriented schema modeling the same reality
as the Entity-Relationship schema of Figure 4.8. Notice that now registrations are
represented as a class and grouped according to the customer, since all registrations
related to one customer are collected in the set-valued attribute regis.

The meaning of an object-oriented schema is given by specifying the characteris-
tics of a database state for the schema. The definition of a database state makes use
of the notions of object identifier and value. Starting from a finite set @7 of object
identifiers, the set of complex values over @7 is built inductively by grouping values
into finite sets and records. A database state J for a schema is constituted by the



174 U. Sattler, D. Calvanese, R. Molitor

set of object identifiers, a mapping 7 assigning to each class a subset of O, and
a mapping p7 assigning to each object in @7 a value over O7.

Notice that, although the set of values that can be constructed from a set O
of object identifiers is infinite, for a database state one only needs to consider the
finite subset V7 of values assigned by p7 to the elements of O, including the values
that are not explicitly associated with object identifiers, but are used to form other
values.

The interpretation of type expressions in a database state J is defined through
an interpretation function -7 that assigns to each type expression T a set TV of
values in V7 as follows:

e if T is a class C, then TV = 77 (C);

e if T is a union type union 77,..., T} end, thenTJ:T1‘7U--~UT];7;

e it T is a record type (resp. set type), then T is the set of record values (resp. set
values) compatible with the structure of T. For records we are using an open
semantics, meaning that the records that are instances of a record type may
have more components than those explicitly specified in the type [Abiteboul and

Kanellakis, 1989].

A database state J for an object-oriented schema & is said to be legal (with
respect to S) if for each declaration

class C is-a C1,...,C, type-is T

in S, it holds that (1) CY C CY for each i € {1,...,n}, and (2) p7(C7) C
T7. Therefore, for a legal database state, the type expressions that are present
in the schema determine the (finite) set of values that must be considered. The
construction of such values is limited by the depth of type expressions.

4.8.2.2 Correspondence with Description Logics

When establishing a correspondence between an object-oriented model as the one
presented above, and Description Logics, one must take into account that the in-
terpretation domain for a Description Logic knowledge base consists of atomic
objects, whereas each object of an object-oriented schema is assigned a possi-
bly structured value. Therefore one needs to explicitly represent in Description
Logics the type structure of classes [Calvanese et al., 1994; 1999¢; Artale et al.,
1996a). We describe now the translation proposed by Calvanese et al. [1994;
1999¢], that overcomes this difficulty by introducing in the Description Logic knowl-
edge base concepts and roles with a specific meaning: the concepts AbstractClass,
RecType, and SetType are used to denote instances of classes, record values, and set
values, respectively. The associations between classes and types induced by the class
declarations, as well as the basic characteristics of types, are modeled by means of
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specific roles: the functional role value models the association between classes and
types, and the role member is used for specifying the type of the elements of a set.
Moreover, the concepts representing types are assumed to be mutually disjoint, and
disjoint from the concepts representing classes. These constraints are expressed by
the following inclusion assertions, which are always part of the knowledge base that
is obtained from an object-oriented schema:

AbstractClass = =1value
RecType C Vvalue.L

SetType LC Vvalue.l M —RecType

The translation from object-oriented schemas to Description Logic knowledge
bases is defined through a mapping I', which maps each type expression to a concept
expression as follows:

Each class C' is mapped to an atomic concept I'(C).

Each type expression union 77, ..., T} end is mapped to I'(77) U - - - U T'(T%).

Each type expression set-of T is mapped to SetType M Vmember.I'(T)).

Each attribute A is mapped to an atomic role I'(A), and each type expression
record A1:T71,...,Ag: 1) end is mapped to

RecType M VI'(Ay).I(Th)M=1T(A;)M--- M
VP(Ak).P(Tk) n=1 F(Ak)

Then, the knowledge base I'(S) corresponding to an object-oriented schema S is
obtained by taking for each class declaration

class C is-a C1,...,C), type-is T
an inclusion assertion
['(C) C AbstractClass 1 T(Cy) M --- M T(Cy) M Yvalue.I'(T).

We show in Figure 4.11 the knowledge base resulting from the translation of the
fragment of object-oriented schema shown in Figure 4.10.

Analogously to the ER model, it is sufficient to use inclusion assertions instead
of equivalence assertions to capture the semantics of object-oriented schemas. A
translation to an acyclic knowledge base is possible under the assumption that no
class in the schema refers to itself, either directly in its type or indirectly via the
class declarations' [Artale et al., 1996a). However, since this assumption represents
a rather strong limitation in expressiveness, cycles are typically present in object-
oriented schemas, and in this case the resulting Description Logic knowledge base

1 Note that cyclic references cannot appear directly in a type, which is constructed inductively, but only
through the class declarations.
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Customer [ AbstractClass M Vvalue.(BusinessCustomer LI PrivateCustomer)
PrivateCustomer L AbstractClass M Customer M Vvalue.(RecType M =1 SSN M ¥SSN.String)
Service T AbstractClass M
Vvalue.(RecType M =1 code M Vcode.Integer I
= 1 suppliedBy M VsuppliedBy.Department)
Customer LT AbstractClass M

Yvalue.(RecType M =1 cust M Vcust.Customer M
= 1 regis M Vregis.(Set Type M
VYmember.(RecType M
= 1serv M Vserv.Service M
=1loc M Vloc.Location)))

Fig. 4.11. The specific part of the knowledge base corre-
sponding to the object-oriented schema in Figure 4.10.

will contain cyclic assertions. No inverse roles are needed for the translation, since in
object-oriented models the inverse of an attribute is rarely considered. Furthermore,
the use of number restrictions is limited to functionality, since all attributes are
implicitly functional.

To establish the correctness of the transformation, and thus ensure that the rea-
soning tasks on an object-oriented schema can be reduced to reasoning tasks on its
translation in Description Logics, we would like to establish a one-to-one correspon-
dence between database states legal for the schema and models of the knowledge
base resulting from the translation. However, as for the ER model, the knowledge
base may have models that do not correspond directly to legal database states. In
this case, this is due to the fact that, while values have a treelike structure, the cor-
responding individuals in a model of the Description Logic knowledge base may be
part of cyclic substructures. One way of ruling out such cyclic substructures would
be to adopt a specific constructor that allows one to impose well-foundedness [Cal-
vanese et al., 1995, or even exploit general fixed points on concepts [Schild, 1994;
De Giacomo and Lenzerini, 1994a; 1997; Calvanese et al., 1999c|. However, it turns
out that, in this case, it is not necessary to explicitly enforce such a condition. In-
deed, due to the finite depth of nesting of types in a schema, it can be shown that
each model of the translation of the schema can be unfolded into one that directly

corresponds to a legal database state (more details are provided by Calvanese et
al. [1999¢)).

4.8.2.8 Applications of the correspondence

Similarly to the ER model, the existence of property-preserving transformations
from object-oriented schemas into Description Logic knowledge bases makes it pos-
sible to exploit the reasoning capabilities of a Description Logic system for checking
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relevant schema properties, such as consistency and redundancy [Bergamaschi and
Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1998g]. Additionally, several
extensions of the object-oriented formalism that are useful for the purpose of con-
ceptual modeling can be considered:

e Not only IS-A, but also disjointness, and, more generally, Boolean combinations
of classes can be used.

e (lass definitions can be used to specify not only necessary but also necessary and
sufficient properties for an object to be an instance of a class [Bergamaschi and
Nebel, 1994].

e Cardinality constraints and not only implicit functionality can be imposed on
attributes. Having attributes with multiple values could in some cases be a useful
alternative to set-valued attributes.

e By admitting also the use of inverse roles in the language, one gains the ability
to impose constraints using a relation in both directions, as it is customary in
semantic data models. The increase in expressiveness that one obtains this way
has indeed been recognized as extremely important by the database community
[Albano et al., 1991], and has been included in the recent ODMG standard [Cattell
and Barry, 1997].

The basic characteristics of object-oriented data models have also been included
in the structural part of the Unified Modeling Language (UML) [Rumbaugh et
al., 1998; Jacobson et al., 1998], which is becoming the standard language for the
analysis phase of software and information system development. Additionally, UML
allows for the definition of generic recursive data structures (both inductive and co-
inductive) such as lists and trees, and for their specialisation to specific types. In
order to capture also these aspects of UML in Description Logics and take them
fully into account when reasoning over a schema, the Description Logic must provide
the ability to represent and reason over data structures. In particular, to represent
UML schemas, it is necesary to resort to very expressive Description Logics including
number restrictions, inverse roles or n-ary relations, and fixed point constructs on
concepts [Calvanese et al., 1999¢c|. Also in this case, the reasoning services provided
by a Description Logic system can be integrated in CASE tools and profitably
exploited to support the designer in the analysis phase [Franconi and Ng, 2000].

4.3.3 Semistructured data models and XML

In recent application areas such as data integration, access to data on the web, and
digital libraries, the structure of the data is usually not rigid, as in conventional
databases, and thus it is difficult to describe it using traditional data models. There-
fore, so called semistructured data models have been proposed, which are graph-
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based data models that provide flexible structuring mechanisms, and thus allow
one to represent data that is neither raw nor strictly typed [Abiteboul et al., 2000;
Abiteboul, 1997; Buneman et al., 1997; Mendelzon et al., 1997]. The Extensible
Markup Language (XML) [Bray et al., 1998; Abiteboul et al., 2000], which has been
introduced as a mechanism for representing structured documents on the web, can
in fact also be considered a model for semistructured data. Indeed, XML is by now
the way most popular model for data on the Web, and there is a tremendous effort
related to XML and the associated standards', both in the research community and
in industry.

Description Logics have traditionally been used to describe and organize data
in a more flexible way than what is done in databases, basically using graph-like
structures. Hence it seems natural to adopt Description Logics and the associated
reasoning services also for representing and reasoning on semistructured data and
XML. In the following, we discuss the (rather few) proposals made in the literature.
What these proposals have in common is the necessity to resort to fixpoints, either
by adopting fixpoint semantics [Nebel, 1991; Baader, 1991], or by using reflexive
transitive closure or explicit fixpoint constructs [De Giacomo and Lenzerini, 1997]
(cf. also Chapter 5).

For the recent extensive work on the use of Description Logics to provide a se-
mantically richer representation of data on the web we refer to Chapter 14.

4.3.3.1 Relationship between semistructured data and Description Logics

Michaeli et al. [1997] propose to extend a semistructured data model that is an
abstraction of the OEM model [Abiteboul et al., 1997] with a layer of classes,
representing objects with common properties. Class expressions correspond to
Description Logic concepts and the properties for the classes are specified by a
set of classification rules, which provide sufficient conditions for class membership
and are interpreted under a least fixpoint semantics. By a reduction to reasoning
in a Description Logic with fixpoint operators [De Giacomo and Lenzerini, 1997;
Calvanese et al., 1999¢c|, it is shown that determining class satisfiability and contain-
ment under a set of rules is ExpTIME-decidable (and in fact EXPTIME-complete).

In the following, we discuss in more detail the use of Description Logics to repre-
sent and reason on semistructured data, on the example of one typical representative
for semistructured data models. In semistructured data models, data is organized
in form of a graph, and information on both the values and the schema for the data
are attached to the edges of the graph. In the formalism proposed by Buneman et
al. [1997], the labels of edges in a schema are formulae of a complete first order the-
ory, and the conformance of a database to a schema is defined in terms of a special re-
lation, called simulation. The notion of simulation is less rigid than the usual notion

L http://www.w3.org/
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of satisfaction, and suitably reflects the need for dealing with less strict structures of
data. In order to capture in Description Logics the notion of simulation, it is neces-
sary on the one hand to express the local conditions that a node must satisfy, and on
the other hand to deal with the fact that the simulation relation is the greatest rela-
tion satisfying the local conditions. Since semistructured data schemas may contain
cycles, the local conditions may depend on each other in a cyclic way. Therefore,
while the local conditions can be encoded by means of suitable inclusion assertions
in ALU, the maximality condition on the simulation relation can only be captured
correctly by resorting to a greatest fixed point semantics [Calvanese et al., 1998¢;
1998b]. Then, using a Description Logic with fixed point constructs, such as uALCQ
[De Giacomo and Lenzerini, 1994b; 1997] (see also Chapter 5), a so-called character-
istic concept for a semistructured data schema can be constructed, which captures
exactly the properties of the schema. Subsumption between two schemas, which
is the task of deciding whether every semistructured database conforming to one
schema also conforms to another schema [Buneman et al., 1997, can be decided by
checking subsumption between the characteristic concepts of the schemas [Calvanese
et al., 1998c.

The correspondence with Description Logics can again be exploited to enrich
semistructured data models, without losing the ability to check schema subsump-
tion. Indeed, the requirement already raised by Buneman et al. [1997], to extend
semistructured data models with several types of constraints, has been addressed
by Calvanese et al. [1998b], who propose several types of constraints, such as ex-
istence and cardinality constraints, which are naturally derived from Description
Logic constructs. Reasoning in the presence of constrains is done by encoding also
the constraints in the characteristic concept of a schema. Calvanese et al. deal also
with the presence of incomplete information in the theory describing the properties
of edge labels, by proposing the use of a theory expressed in pALCQ, instead of a
complete first order theory.

4.8.3.2 Relationship between XML and Description Logics

XML [Bray et al., 1998] is a formalism for representing documents that are struc-
tured by means of nested tags. Recently, XML has gained popularity also as a
formalism for representing (semistructured) data and exchanging it over the Web.
Figure 4.12 shows two example XML documents containing respectively data about
customers and their registration to services provided by various departments (e.g.,
of a telephone company). A part of an XML document consisting of a start tag
(e.g., <Customer>), the matching end tag (e.g., </Customer>), and everything in
between is called an element. Elements can be arbitrarily nested, and can have
associated attributes, specified by means of attribute-value pairs inside the start tag
(e.g., type="business"). Intuitively, each XML document can be viewed as a finite
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<?7xml version="1.0"7>
<!DOCTYPE Customers SYSTEM "services.dtd">

<Customers>
<Customer type="business">
<Name>FIAT</Name>
<Field>manufacturing</Field>
<Registered service="522">
<Location><City>Torino</City>
<Address>...</Address>
</Location>
<Location>...</Location>
</Registered>
<Registered service="612">
<Location>...</Location>
</Registered>
</Customer>

<Customer type="private">
<Name>...</Name>
<SSN>...</SSN>
<Registered service="214">

<?7xml version="1.0"7>
<!DOCTYPE Services SYSTEM "services.dtd">

<Services>
<Department name="standard-services">
<Service code="522">
<Name>call-back when busy</Name>
<Cost>...</Cost>

</Service>
<Service code="214">
<Name>three-party call</Name>
</Service>
</Department>

<Department name="business-services">
<Service code="612">
<Name>conference call</Name>
</Service>

</Department>
</Services>

<Location>...</Location>
</Registered>
</Customer>

</Customers>

Fig. 4.12. Two XML documents specifying respectively cus-
tomers and services.

ordered unranked tree!, where each element represents a node, and the children of
an element are those elements directly contained in it. How XML documents are
viewed as trees is defined, together with an API for accessing and manipulating such
trees/XML-documents, by the Document Object Model?, which defines, besides el-
ement nodes, also other types of nodes, such as attributes, comments, etc.

In XML, it is possible to impose a structure on documents by means of a Doc-
ument Type Declaration (DTD) [Bray et al., 1998]. A DTD consists of a set of
declarations: For each element type used in the XML document, the DTD must
contain a declaration that specifies, by means of a regular expression, how elements
can be nested within elements of that type. The keyword #PCDATA is used to specify
that the element content (i.e., the part enclosed by the tags) is free text without
nested elements. For each attribute appearing in the XML document, the DTD
must contain a declaration specifying the name of the attribute, the type of the
elements it is associated to, and additional properties (e.g., the type and whether
the attribute is optional or mandatory). Figure 4.13 shows part of the DTD for
the XML documents in Figure 4.12. We refer to [Bray et al., 1998] for a precise
definition of the syntax and semantics of XML DTDs.

1 In an unranked tree each node can have an arbitrary finite number of child nodes. The tree is ordered
since the order among children of the same node matters.
2 http://www.w3.org/DOM/
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<!-- File: services.dtd --—>
<!ELEMENT Customers (Customer)+ >

<!ELEMENT Customer (Name, (Field|SSN), Registered+) >
<!ELEMENT Registered (Location)+ >

<IELEMENT Services  (Department)+ >
<!ELEMENT Department (Service)* >

<!ELEMENT Service (Name, Cost?, ...) >

<!ELEMENT Name #PCDATA >

<!ATTLIST Customer  type (business|private) "private">
<IATTLIST Registered service IDREF #REQUIRED>
<!ATTLIST Department name CDATA #REQUIRED>
<IATTLIST Service code ID #REQUIRED>

Fig. 4.13. Part of the Document Type Declaration S for the
XML documents in Figure 4.12.

We illustrate the method for encoding XML DTDs into Description Logics knowl-
edge bases proposed in [Calvanese et al., 1999d]. For simplicity, we do not consider
XML attributes, although they can easily be dealt with by introducing suitable
roles. Due to the presence of regular expressions, to encode DTDs in Description
Logics, it is necessary to resort to a Description Logic equipped with constructs for
building regular expressions over roles (cf. Chapter 5). Notice that the encoding of
DTDs into Description Logic knowledge bases must allow for representing unranked
trees and at the same time for preserving the order of the children of a node. For
example, the DTD in Figure 4.13 enforces that the content of a Customer element
consists of a Name element, followed by (in DTDs, concatenation is denoted with
“,”) either a Field or an SSN element (alternative is denoted with “|”), followed
by an arbitrary number (but at least one) of Registered elements (transitive clo-
sure is denoted with “+”). To overcome these difficulties, Calvanese et al. [1999d]
propose to represent XML documents (i.e., ordered unranked trees) by means of
binary trees, and provide an encoding of DTDs in Description Logics that exploits
such a representation. Figure 4.14 shows the binary tree corresponding to one of
the XML documents in Figure 4.12.

Figure 4.15 shows part of the axioms encoding the DTD in Figure 4.13. The two
roles f and r are used to encode binary trees, and such roles are globally functional
(axiom (4.1)). Moreover, the well-founded construct (cf. Chapter 5) wf(f Ur) is
used to express that there can be no infinite chain of objects, each one connected to
the next by means of f Ur. Such a condition turns out to be necessary to correctly
capture the fact that XML documents correspond to trees that are finite. For each
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</Customers>

r
manufacturing </Field>

</Customer>

Fig. 4.14. The binary tree corresponding to the XML docu-
ment on the left hand side of Figure 4.12.

element type F, the atomic concepts StartE' and EndE represent respectively the
start tags (4.2) and end tags (4.3) for E, and such tags are leaves of the tree (4.4).
The remaining leaves of the tree are free text, represented by the atomic concept
PCDATA (4.5). Using such concepts and roles, one can introduce for each element

type E appearing in a DTD D an atomic concept Ep, and encode the regular

expression specifying the structure of elements of type E in a suitable complex

role, exploiting constructs for regular expressions over roles (including the id(-)

T = <lfn<irnuwf(fur)
StartEE C Tag for each element type F
EndE C Tag for each element type F
Tag C V(fUr).L
PCDATA C VY(fur).Ln—-Tag
Customerss = 3f.StartCustomers M 3(r o (id(3f.Customers) o r)™).EndCustomers
Customerg = 3f.StartCustomers 1 3(r o id(If.Nameg) o r
o (id(3f.Fields) U id(3f.SSNg)) o r
o (id(3f.Registeredg) o r)*).EndCustomer
Nameg = 3f.StartName M 3(r o id(3f.PCDATA) o r).EndName

Fig. 4.15. Part of the encoding of the DTD S in Figure 4.13
into a Description Logics knowledge base.
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construct). This is illustrated in Figure 4.15 for part of the element types of the
DTD in Figure 4.13. We refer to [Calvanese et al., 1999d] for the precise definition
of the encoding.

The encoding of DTDs into Description Logics can be exploited to verify different
kinds of properties on DTDs, namely inclusion, equivalence, and disjointness be-
tween the sets of documents conforming respectively to two DTDs. Such reasoning
tasks come in different forms. For strong inclusion (resp. equivalence, disjointness)
both the document structure and the actual tag names are of importance when com-
paring documents, while for structural inclusion (resp. equivalence, disjointness) one
abstracts away from the actual tag names, and considers only the document struc-
ture [Wood, 1995]. Parametric inclusion (resp. equivalence, disjointness) generalizes
both notions, by considering an equivalence relation between tag names, and com-
paring documents modulo such an equivalence relation. By exploiting the encoding
of DTDs into Description Logics presented above, all forms of inference on DTDs
can be carried out in deterministic exponential time [Calvanese et al., 1999d].
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Diego Calvanese

Giuseppe De Giacomo

Abstract

This chapter covers extensions of the basic description logics introduced in Chap-
ter 2 by very expressive constructs that require advanced reasoning techniques. In
particular, we study reasoning in description logics that include general inclusion ax-
ioms, inverse roles, number-restrictions, reflexive-transitive closure of roles, fixpoint
constructs for recursive definitions, and relations of arbitrary arity. The chapter will
also address reasoning w.r.t. knowledge bases including both a TBox and an ABox,
and discuss more general ways to treat objects. Since the logics considered in the
chapter lack the finite model property, finite model reasoning is of interest and will
also be discussed. Finally, we mention several extensions to description logics that
lead to undecidability, confirming that the expressive description logics considered
in this chapter are close to the boundary between decidability and undecidability.

5.1 Introduction

Description logics have been introduced with the goal of providing a formal re-
construction of frame systems and semantic networks. Initially, the research has
concentrated on subsumption of concept expressions. However, for certain applica-
tions, it turns out that it is necessary to represent knowledge by means of inclusion
axioms without limitation on cycles in the TBox. Therefore, recently there has
been a strong interest in the problem of reasoning over knowledge bases of a general
form. See Chapters 2, 3, and 4 for more details.

When reasoning over general knowledge bases, it is not possible to gain tractabil-
ity by limiting the expressive power of the description logic, because the power of
arbitrary inclusion axioms in the TBox alone leads to high complexity in the infer-
ence mechanisms. Indeed, logical implication is EXPTIME-hard even for the very
simple language AL (see Chapter 3). This has lead to investigating very powerful
languages for expressing concepts and roles, for which the property of interest is
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no longer tractability of reasoning, but rather decidability. Such logics, called here
expressive description logics, have the following characteristics:

(i) The language used for building concepts and roles comprises all classical con-
cept forming constructs, plus several role forming constructs such as inverse
roles, and reflexive-transitive closure.

(ii) No restriction is posed on the axioms in the TBox.

The goal of this chapter is to provide an overview on the results and techniques
for reasoning in expressive description logics. The chapter is organized as follows.
In Section 5.2, we outline the correspondence between expressive description logics
and Propositional Dynamic Logics, which has given the basic tools to study reason-
ing in expressive description logics. In Section 5.3, we exploit automata-theoretic
techniques developed for variants of Propositional Dynamic Logics to address rea-
soning in expressive description logics with functionality restrictions on roles. In
Section 5.4 we illustrate the basic technique of reification for reasoning with expres-
sive variants of number restrictions. In Section 5.5, we show how to reason with
knowledge bases composed of a TBox and an ABox, and discuss extensions to deal
with names (one-of construct). In Section 5.6, we introduce description logics with
explicit fixpoint constructs, that are used to express in a natural way inductively
and coinductively defined concepts. In Section 5.7, we study description logics that
include relations of arbitrary arity, which overcome the limitations of traditional
description logics of modeling only binary links between objects. This extension
is particularly relevant for the application of description logics to databases. In
Section 5.8, the problem of finite model reasoning in description logics is addressed.
Indeed, for expressive description logics, reasoning w.r.t. finite models differs from
reasoning w.r.t. unrestricted models, and requires specific methods. Finally, in Sec-
tion 5.9, we discuss several extensions to description logics that lead in general to
undecidability of the basic reasoning tasks. This shows that the expressive descrip-
tion logics considered in this chapter are close to the boundary to undecidability,
and are carefully designed in order to retain decidability.

5.2 Correspondence between Description Logics and Propositional
Dynamic Logics

In this section, we focus on expressive description logics that, besides the standard
ALC constructs, include regular expression over roles and possibly inverse roles
[Baader, 1991; Schild, 1991]. It turns out that such description logics correspond
directly to Propositional Dynamic Logics, which are modal logics used to express
properties of programs. We first introduce syntax and semantics of the description
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logics we consider, then introduce Propositional Dynamic Logics, and finally discuss
the correspondence between the two formalisms.

5.2.1 Description Logics

We consider the description logic ALCZ 4, in which concepts and roles are formed
according to the following syntax:

c,C' — A| -C | Cnc' | cuc | YRC | 3RC
R.R — P | RUR | RoR | R* | id(C) | R~

where A and P denote respectively atomic concepts and atomic roles, and C' and
R denote respectively arbitrary concepts and roles.

In addition to the usual concept forming constructs, ALCZ ., provides constructs
to form regular expressions over roles. Such constructs include role union, role com-
position, reflexive-transitive closure, and role identity. Their meaning is straight-
forward, except for role identity id(C) which, given a concept C, allows one to
build a role which connects each instance of C' to itself. As we shall see in the next
section, there is a tight correspondence between these constructs and the operators
on programs in Propositional Dynamic Logics. The presence in the language of the
constructs for regular expressions is specified by the subscript “reg” in the name.

ALCZI ., includes also the inverse role construct, which allows one to denote the
inverse of a given relation. One can, for example, state with Jchild™.Doctor that
someone has a parent who is a doctor, by making use of the inverse of role child.
It is worth noticing that, in a language without inverse of roles, in order to express
such a constraint one must use two distinct roles (e.g., child and parent) that cannot
be put in the proper relation to each other. We use the letter Z in the name to
specify the presence of inverse roles in a description logic; by dropping inverse roles
from ALC,¢,, we obtain the description logic ALC .

From the semantic point of view, given an interpretation Z, concepts are in-
terpreted as subsets of the domain AZ, and roles as binary relations over AZ, as
follows!:

AI g AI
(-C)F = Af\C*
cncyr = ctnc?*
(CLucy)t = ctuct
(VR.C)Y = {oe AT |Vd.(0,0) e Rt 5o e C?}

1 We use R* to denote the reflexive-transitive closure of the binary relation R, and R1 o R to denote the
chaining of the binary relations R1 and Ra.
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(BR.C)YE = {oe AT |30 .(0,0) e REANO € CT}
P c AT x AT
(RURY = RTUR?
(RoRY = RIoR?

(R = (BRY)"
id(CY = {(0,0) € AT x AT |0 € C?}
(R)E = {(0,0) e AT x AT | (d,0) € RT}

We consider the most general form of TBoxes constituted by general inclusion
axioms of the form C' E C’, without any restriction on cycles. We use C' = C’ as
an abbreviation for the pair of axioms C' C C’ and C' C C. We adopt the usual
descriptive semantics for TBoxes (cf. Chapter 2).

Example 5.1 The following ALCZ ., TBox 75, models a file-system constituted
by file-system elements (FSelem), each of which is either a Directory or a File. Each
FSelem has a name, a Directory may have children while a File may not, and Root is
a special directory which has no parent. The parent relationship is modeled through
the inverse of role child.

FSelem C dname.String

FSelem = Directory LI File
Directory C —File
Directory C Vchild.FSelem
File C Vchild.L
Root L Directory
Root T Vchild™.L

The axioms in 7g, imply that in a model every object connected by a chain of
role child to an instance of Root is an instance of FSelem. Formally, 75, =
J(child™)*.Root C FSelem. To verify that the implication holds, suppose that there
exists a model in which an instance o of 3(child™)*.Root is not an instance of FSe-
lem. Then, reasoning by induction on the length of the chain from the instance of
Root to o, one can derive a contradiction. Observe that induction is required, and
hence such reasoning is not first-order. "

In the following, when convenient, we assume, without loss of generality, that LI
and VR.C are expressed by means of -, M, and dR.C’. We also assume that the
inverse operator is applied to atomic roles only. This can be done again without
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loss of generality, since the following equivalences hold: (Ri;R2)” = Ry o R,
(R—1URy)”" =R; UR;, (R*)” =(R7)* and (id(C))” =14d(C).

5.2.2 Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) are modal logics specifically developed for
reasoning about computer programs [Fischer and Ladner, 1979; Kozen and Tiuryn,
1990; Harel et al., 2000]. In this section, we provide a brief overview of PDLs, and
illustrate the correspondence between description logics and PDLs.

Syntactically, a PDL is constituted by expressions of two sorts: . programs and
formulae. Programs and formulae are built by starting from atomic programs and
propositional letters, and applying suitable operators. We denote propositional let-
ters with A, arbitrary formulae with ¢, atomic programs with P, and arbitrary
programs with 7, all possibly with subscripts. We focus on converse-PDL [Fischer
and Ladner, 1979] which, as it turns out, corresponds to ALCTyeq. The abstract
syntax of converse-PDL is as follows:

¢, — T LIA] NG | oV | b | (r)o | [r]¢

ro' — P orUr |t | et ] e | T

The basic Propositional Dynamic Logic PDL [Fischer and Ladner, 1979] is obtained
from converse-PDL by dropping converse programs r~.

The semantics of PDLs is based on the notion of (Kripke) structure, defined as
a triple M = (S,{Rp},II), where S denotes a non-empty set of states, {Rp} is a
family of binary relations over S, each of which denotes the state transitions caused
by an atomic program P, and II is a mapping from S to propositional letters such
that II(s) determines the letters that are true in state s. The basic semantical
relation is “a formula ¢ holds at a state s of a structure M”, written M, s = ¢,
and is defined by induction on the formation of ¢:

M,s=A iff Aell(s)

M,s=T always

M,sk= L never

M,sEoNG T M,skE¢and M,s = ¢

M;sEoVP iff M,skE¢or M,skE= ¢

M, s E ¢ iff M,s o

M,s k= (r)¢ iff thereis s’ such that (s,s’) € R, and M,s' = ¢
M,sE|[rl¢p iff forall ¢, (s,s') € R, implies M, s = ¢

where the family {R p} is systematically extended so as to include, for every program
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r, the corresponding relation R, defined by induction on the formation of 7:

Rp € SxS§8
Reorr = RrURy
Ryp = RyoRy
Rpx = (Rr)*
Ryr = {(s,8) e Sx S| M,s = ¢}
er = {(81,82) eSxS ’ (82,81) S RT}

If, for each atomic program P, the transition relation R p is required to be a function
that assigns to each state a unique successor state, then we are dealing with the
deterministic variants of PDLs, namely DPDL and converse-DPDL [Ben-Ari et al.,
1982; Vardi and Wolper, 1986).

It is important to understand, given a formula ¢, which are the formulae that
play some role in establishing the truth-value of ¢. In simpler modal logics, these
formulae are simply all the subformulae of ¢, but due to the presence of reflexive-
transitive closure this is not the case for PDLs. Such a set of formula is given by
the Fischer-Ladner closure of ¢ [Fischer and Ladner, 1979].

To be concrete we now illustrate the Fischer-Ladner closure for converse-PDL.
However, the notion of Fischer-Ladner closure can be easily extended to other PDLs.
Let us assume, without loss of generality, that V and [-] are expressed by means
of =, A, and (). We also assume that the converse operator is applied to atomic
programs only. This can again be done without loss of generality, since the following
equivalences hold: (rU ')~ = r=Ur'~, (r;7)” =7"";r7, (r*)” = (r7)*, and
(¢7)” = ¢7.

The Fischer-Ladner closure of a converse-pDL formula 1, denoted CL(%)), is the
least set F' such that 1) € F' and such that:

if ¢oeF then —¢ € F (if ¢ is not of the form —¢')
if —~peF then ¢ € F

if oA EF then ¢,¢' € F

it (r¢gel then ¢ € F

if (rur)¢peF then (r)¢,(r')¢p € F

(
if (rr)¢ € F then (r){(r')¢p € F
if (MeeFl then (r)(r*)¢ € F
if (¢'NpeF then ¢’ € F.

Note that CL(v) includes all the subformulae of v, but also formulae of the form
(r)(r*)¢ derived from (r*)¢, which are in fact bigger than the formula they derive
from. On the other hand, both the number and the size of the formulae in CL(%))
are linearly bounded by the size of ¢ [Fischer and Ladner, 1979], exactly as the set
of subformulae. Note also that, by definition, if ¢ € CL(%)), then CL(¢) C CL(v).
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A structure M = (S,{Rp},1II) is called a model of a formula ¢ if there exists a
state s € S such that M, s = ¢. A formula ¢ is satisfiable if there exists a model
of ¢, otherwise the formula is unsatisfiable. A formula ¢ is valid in structure M
if for all s € S, M,s = ¢. We call azioms formulae that are used to select the
interpretations of interest. Formally, a structure M is a model of an axiom ¢, if
¢ is valid in M. A structure M is a model of a finite set of axioms I' if M is a
model of all axioms in I". An axiom is satisfiable if it has a model and a finite set of
axioms is satisfiable if it has a model. We say that a finite set I' of axioms logically
implies a formula ¢, written I' = ¢, if ¢ is valid in every model of T'.

It is easy to see that satisfiability of a formula ¢ as well as satisfiability of a finite
set of axioms I' can be reformulated by means of logical implication, as () &= —¢ and
[ £ L respectively.

Interestingly, logical implication can, in turn, be reformulated in terms of satisfi-
ability, by making use of the following theorem (cf. [Kozen and Tiuryn, 1990]).

Theorem 5.2 (Internalization of axioms) LetI" be a finite set of converse-PDL
azioms, and ¢ a converse-PDL formula. Then I" = ¢ if and only if the formula

—dA[(PLU---UP, UP U---UPTY

m

is unsatisfiable, where Py, ..., Py, are all atomic programs occurring in T'U{¢} and
I is the conjunction of all axioms in T'.

Such a result exploits the power of program constructs (union, reflexive-transitive
closure) and the connected model property (i.e., if a formula has a model, it has a
model which is connected) of PDLs in order to represent axioms. The connected
model property is typical of modal logics and it is enjoyed by all PDLs. As a
consequence, a result analogous to Theorem 5.2 holds for virtually all PDLs.

Reasoning in PDLs has been thoroughly studied from the computational point of
view, and the results for the PDLs considered here are summarized in the following
theorem [Fischer and Ladner, 1979; Pratt, 1979; Ben-Ari et al., 1982; Vardi and
Wolper, 1986]:

Theorem 5.3 Satisfiability in PDL is EXPTIME-hard. Satisfiability in PDL, in
converse-PDL, and in converse-DPDL can be decided in deterministic exponential
time.
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5.2.3 The correspondence

The correspondence between description logics and PDLs was first published by
Schild [1991].1 In the work by Schild, it was shown that ALCT e can be consid-
ered a notational variant of converse-PDL. This observation allowed for exploiting
the results on converse-PDL for instantly closing long standing issues regarding the
decidability and complexity of both satisfiability and logical implication in ALC,,
and .,élECImg.2 The paper was very influential for the research in expressive de-
scription logics in the following decade, since thanks to the correspondence between
PDLs and description logics, first results but especially formal techniques and in-
sights could be shared by the two communities. The correspondence between PDLs
and description logics has been extensively used to study reasoning methods for
expressive description logics. It has also lead to a number of interesting extensions
of PDLs in terms of those constructs that are typical of description logics and have
never been considered in PDLs. In particular, there is a tight relation between
qualified number restrictions and graded modalities in modal logics [Van der Hoek,
1992; Van der Hoek and de Rijke, 1995; Fattorosi-Barnaba and De Caro, 1985;
Fine, 1972].

The correspondence is based on the similarity between the interpretation struc-
tures of the two logics: at the extensional level, individuals (members of AZ) in
description logics correspond to states in PDLs, whereas links between two individ-
uals correspond to state transitions. At the intensional level, concepts correspond
to propositions, and roles correspond to programs. Formally, the correspondence
is realized through a one-to-one and onto mapping 7 from ALCZ ., concepts to
converse-PDL formulae, and from ALCZ,e,; roles to converse-PDL programs. The
mapping 7 is defined inductively as follows:

T(A) = A 7(P) P
T(=C) = -7(0) T(R™) = 7(R)”
r(cnc) = ( )AT(C) T(RUR) = 7(R)UT(R )
r(cuc) = 7(C)vr(C) T(RoR') = 7(R);7(R
T(VR.C) = [r(R)]7(C) T(R*) = 7(R)"
T(3R.C) (T(R)7(C) 7(id(C)) T(C)?

Axioms in description logics’ TBoxes correspond in the obvious way to axioms in
PDLs. Moreover all forms of reasoning (satisfiability, logical implication, etc.) have
their natural counterpart.

One of the most important contributions of the correspondence is obtained by

1 In fact, the correspondence was first noticed by Levesque and Rosenschein at the beginning of the ’80s,
but never published. In those days Levesque just used it in seminars to show intractability of certain
description logics.

2 In fact, the decidability of ALCrey without the id(C) construct was independently established by
Baader [1991].
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rephrasing Theorem 5.2 in terms of description logics. It says that every TBox can
be “internalized” into a single concept, i.e., it is possible to build a concept that
expresses all the axioms of the TBox. In doing so we rely on the ability to build a
“universal” role, i.e., a role linking all individuals in a (connected) model. Indeed,
a universal role can be expressed by using regular expressions over roles, and in
particular the union of roles and the reflexive-transitive closure. The possibility
of internalizing the TBox when dealing with expressive description logics tells us
that for such description logics reasoning with TBoxes, i.e., logical implication, is
no harder that reasoning with a single concept.

Theorem 5.4 Concept satisfiability and logical implication in ALCry are
ExPTIME-hard.  Concept satisfiability and logical implication in ALCrey and
ALCL ey can be decided in deterministic exponential time.

Observe that for description logics that do not allow for expressing a universal
role, there is a sharp difference between reasoning techniques used in the presence
of TBoxes, and techniques used to reason on concept expressions. The profound
difference is reflected by the computational properties of the associated decision
problems. For example, the logic AL admits simple structural algorithms for de-
ciding reasoning tasks not involving axioms, and these algorithms are sound and
complete and work in polynomial time. However, if general inclusion axioms are
considered, then reasoning becomes EXPTIME-complete (cf. Chapter 3), and the de-
cision procedures that have been developed include suitable termination strategies
[Buchheit et al., 1993a). Similarly, for the more expressive logic ALC, reasoning
tasks not involving a TBox are PSPACE-complete [Schmidt-Schaufl and Smolka,
1991], while those that do involve it are EXPTIME-complete.

5.3 Functional restrictions

We have seen that the logics ALC,¢y and ALCZ ¢, correspond to standard PDL and
converse-PDL respectively, which are both well studied. In this section we show
how the correspondence can be used to deal also with constructs that are typical of
description logics, namely functional restrictions, by exploiting techniques developed
for reasoning in PDLs. In particular, we will adopt automata-based techniques,
which have been very successful in studying reasoning for expressive variants of
PDL and characterizing their complexity.

Functional restrictions are the simplest form of number restrictions considered
in description logics, and allow for specifying local functionality of roles, i.e., that
instances of certain concepts have unique role-fillers for a given role. By adding
functional restrictions on atomic roles and their inverse to ALCZI,,, we obtain
the description logic ALCFZI,.. The PDL corresponding to ALCFZ ey is a PDL
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that extends converse-DPDL [Vardi and Wolper, 1986] with determinism of both
atomic programs and their inverse, and such that determinism is no longer a global
property, but one that can be imposed locally.

Formally, ACCFI,, is obtained from ALCI,., by adding functional restrictions
of the form <1Q, where @ is a basic role, i.e., either an atomic role or the inverse
of an atomic role. Such a functional restriction is interpreted as follows:

(K1Q)F = {oeAT[[{d € AT |(0,0) €QT} <1}

We show that reasoning in ALCFZ,e, is in EXPTIME, and, since reasoning in
ALC,eq is already EXPTIME-hard, is in fact EXPTIME-complete. Without loss
of generality we concentrate on concept satisfiability. We exploit the fact that
ALCFTI,ey has the tree model property, which states that if a ALCFZ,e, concept
(' is satisfiable then it is satisfied in an interpretation which has the structure of a
(possibly infinite) tree with bounded branching degree (see later). This allows us
to make use of techniques based on automata on infinite trees. In particular, we
make use of two-way alternating automata on infinite trees (2ATAs) introduced by
Vardi [1998]. 2ATAs were used by Vardi [1998] to derive a decision procedure for
modal p-calculus with backward modalities. We first introduce 2ATAs and then
show how they can be used to reason in ALCFT .

5.3.1 Automata on infinite trees

Infinite trees are represented as prefix closed (infinite) sets of words over N (the set
of positive natural numbers). Formally, an infinite tree is a set of words T" C N*,
such that if x-c € T, where z € N* and ¢ € N, then also x € T. The elements of
T are called nodes, the empty word ¢ is the root of T, and for every z € T, the
nodes x-c, with ¢ € N, are the successors of x. By convention we take x-0 = z, and
x-i-—1 = x. The branching degree d(x) of a node z denotes the number of successors
of z. If the branching degree of all nodes of a tree is bounded by k, we say that the
tree has branching degree k. An infinite path P of T is a prefix-closed set P C T
such that for every i > 0 there exists a unique node z € P with || =1i. A labeled
tree over an alphabet ¥ is a pair (T, V'), where T is a tree and V : T — X maps
each node of T" to an element of 3.

Alternating automata on infinite trees are a generalization of nondeterministic
automata on infinite trees, introduced by Muller and Schupp [1987]. They allow for
an elegant reduction of decision problems for temporal and program logics [Emerson
and Jutla, 1991; Bernholtz et al., 1994]. Let B(I) be the set of positive Boolean
formulae over I, built inductively by applying A and V starting from true, false,
and elements of I. For aset J C I and a formula ¢ € B(I), we say that J satisfies ¢
if and only if, assigning true to the elements in J and false to those in I'\ J, makes
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¢ true. For a positive integer k, let [k] = {—1,0,1,...,k}. A two-way alternating
automaton over infinite trees with branching degree k, is a tuple A = (X, @, 0, qo, F),
where X is the input alphabet, @ is a finite set of states, § : @ x X — B([k] x Q)
is the transition function, gy € @ is the initial state, and F' specifies the acceptance
condition.

The transition function maps a state ¢ € () and an input letter o € X to a positive
Boolean formula over [k] x Q. Intuitively, if §(¢,0) = ¢, then each pair (c¢,q’)
appearing in ¢ corresponds to a new copy of the automaton going to the direction
suggested by ¢ and starting in state ¢/. For example, if & = 2 and 6(q1,0) =
(L,g2) AN (1,¢3) V (—1,q1) A (0,q3), when the automaton is in the state ¢; and is
reading the node x labeled by the letter o, it proceeds either by sending off two
copies, in the states g2 and g3 respectively, to the first successor of z (i.e., z-1), or
by sending off one copy in the state ¢; to the predecessor of x (i.e., z-—1) and one
copy in the state g3 to x itself (i.e., z-0).

A run of a 2ATA A over a labeled tree (T,V) is a labeled tree (7,7) in which
every node is labeled by an element of T x Q. A node in 7, labeled by (z,q)
describes a copy of A that is in the state ¢ and reads the node x of T'. The labels of
adjacent nodes have to satisfy the transition function of A. Formally, a run (7}, )
is a T x Q-labeled tree satisfying;:

(i) e € T, and r(e) = (g, qo).
(ii) Let y € T, with r(y) = (z,q) and d(g, V(x)) = ¢. Then there is a (possibly
empty) set S = {(c1,q1),---,(cn,qn)} C [k] x Q such that:

e S satisfies ¢ and
e for all 1 < i < n, we have that y-i € T, z-¢; is defined, and r(y-i) =
(z-ciy qi)-

A run (T, 7) is accepting if all its infinite paths satisfy the acceptance condition®.
Given an infinite path P C T}, let inf(P) C @ be the set of states that appear
infinitely often in P (as second components of node labels). We consider here Biichi
acceptance conditions. A Biichi condition over a state set () is a subset F of @), and
an infinite path P satisfies F' if inf(P) N F # (.

The non-emptiness problem for 2ATAs consists in determining, for a given a,
whether the set of trees it accepts is nonempty. The results by Vardi [1998] provide
the following complexity characterization of non-emptiness of 2ATAs.

Theorem 5.5 ([Vardi, 1998]) Given a 2ATA A with n states and an input alpha-
bet with m elements, deciding non-emptiness of A can be done in time exponential
i n and polynomial in m.

1 No condition is imposed on the finite paths of the run.
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5.3.2 Reasoning in ALCFZ,,

The (Fischer-Ladner) closure for ALCFZ,., extends immediately the analogous
notion for converse-PDL (see Section 5.2.2), treating functional restrictions as atomic
concepts. In particular, the closure CL(Cyp) of an ALCFZ ¢, concept Cj is defined
as the smallest set of concepts such that Cy € CL(Cp) and such that (assuming LI
and V to be expressed by means of M and 4, and the inverse operator applied only
to atomic roles)?:

it C e CL(Cy) then —C € CL(Cy) (if C is not of the form —~C")
if —-C e CL(Cy) then C e CL(Cy)

if Cnc e CL(Cy) then C, C" € CL(Cy)

if 3R.C € CL(Cp) then C e CL(Cp)

if I(RUR').C e CL(Cy) then IR.C,3IR.C e CL(Cp)
if 3(RoR').C € CL(Cy) then 3RIR'.C € CL(Cy)

if 3R*.C € CL(Cy) then 3IR.IR*.C € CL(Cy)
if 3id(C).C" € CL(Cy)  then C € CL(Cp)

The cardinality of CL(Cp) is linear in the length of Cp.

It can be shown, following the lines of the proof in [Vardi and Wolper, 1986] for
converse-DPDL, that ALCF T, enjoys the tree model property, i.e., every satisfiable
concept has a model that has the structure of a (possibly infinite) tree with branch-
ing degree linearly bounded by the size of the concept. More precisely, we have the
following result.

Theorem 5.6 Every satisfiable ACCFI,e, concept Co has a tree model with branch-
ing degree k¢, equal to twice the number of elements of CL(Cyp).

This property allows us to check satisfiability of an ALCFZ,., concept Cy by
building a 2ATA that accepts the (labeled) trees that correspond to tree models of
Cp. Let A be the set of atomic concepts appearing in Cp, and B = {Q1,...,Qn}
the set of atomic roles appearing in Cy and their inverses. We construct from Cj
a 2ATA A, that checks that Cj is satisfied at the root of the input tree. We
represent in each node of the tree the information about which atomic concepts are
true in the node, and about the basic role that connects the predecessor of the node
to the node itself (except for the root). More precisely, we label each node with a
pair o = (a, q), where « is the set of atomic concepts that are true in the node, and
q = Q if the node is reached from its predecessor through the basic role (). That
is, if @ stands for an atomic role P, then the node is reached from its predecessor
through P, and if ) stands for P~, then the predecessor is reached from the node

2 We remind that C and C’ stand for arbitrary concepts, and R and R’ stand for arbitrary roles.
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through P. In the root, ¢ = Py, where Py, is a new symbol representing a
dummy role.

Given an ALCFI,. concept Cpy, we construct an automaton Ac, that accepts
trees that correspond to tree models of Cy. For technical reasons, it is convenient
to consider concepts in negation normal form (i.e., negations are pushed inside as
much as possible). It is easy to check that the transformation of a concept into
negation normal form can be performed in linear time in the size of the concept.
Below, we denote by nnf(C) the negation normal form of C, and with CLy,,s(C)
the set {nnf(C) | C € CL(Cy)}. The automaton A, = (2,5, 6, Sini, F') is defined
as follows.

e The alphabet is ¥ = 24 x (BU{Pgym}), i.e., the set of pairs whose first component
is a set of atomic concepts, and whose second component is a basic role or the
dummy role Py,,,. This corresponds to labeling each node of the tree with a truth
assignment to the atomic concepts, and with the role used to reach the node from
its predecessor.

e The set of states is S = {Sini} U CLpns(Co) U{Q,~Q | Q@ € B}, where s, is the
initial state, CLpns(Cp) is the set of concepts (in negation normal form) in the
closure of Cp, and {Q,—~Q | Q € B} are states used to check whether a basic role
labels a node. Intuitively, when the automaton in a state C' € CLyys(Cp) visits
a node x of the tree, this means that the automaton has to check that C' holds
in x.

e The transition function § is defined as follows.

1. For each o € 24, there is a transition from the initial state

0(Sinis (@, Pgum)) = (0,nnf(Ch))

Such a transition checks that the root of the tree is labeled with the dummy
role Py, and moves to the state that verifies Cj in the root itself.

2. For each (a,q) € ¥ and each atomic concept A € A, there are transitions

true, ifAca
0(4, (a,q) = {false, if A¢a

true, if A&«
6(=4, (. q)) = { false, if A€«

Such transitions check the truth value of atomic concepts and their negations
in the current node of the tree.
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3. For each («,¢) € ¥ and each basic role Q) € B, there are transitions

B true, ifqg=0Q
5(Q, (CY, Q)) - { false, if q # Q

) = {true, if ¢ #Q

(=@, (g false, if q=Q

Such transitions check through which role the current node is reached.

4. For the concepts in CL,,f(Cp) and each o € 3, there are transitions

scnc’o) = (0,C) A (0,0)
s(Ccuc, o) (0, ) v (0,C")
0(vQ.C,o) = ((0,~Q7) vV (=LC)) N Nicicpe, ((:2Q) V (i, C))
S(V(RUR').C,o0) = (0,YR.C) A (0,VR.C)
S(V(RoR).C,0) (0,YRYR'.C)
(VR C o) (0,C) A (0,YRVR*.C)
o(Vid(C).C",0) = (0, nnf(—C)) v (0,0")
(HQC o) = ((0,@7)AN(=1C)) V' Vicic (@) A (E,C))
S3(RUR).C,o) = (0,3R.C) Vv (0,3R.C)
S(3(Ro R).C,0) (0,3R.3R.C)
S(3R*. C a) (0,C) v (0,3R.3IR*.C)
5(3id(C).C"0) = (0.C) A (0,C)

All such transitions, except for those involving VR*.C' and dR*.C, inductively
decompose concepts and roles, and move to appropriate states of the automaton
and nodes of the tree. The transitions involving VR*.C' treat VR*.C as the
equivalent concept C' MMVR.VR*.C, and the transitions involving IR*.C treat
JR*.C as the equivalent concept C' LI dR.IR*.C.

5. For each concept of the form <1Q in CLy,(C) and each o € X, there is a
transition

i(£1Q,0) = ((0,Q7) A /\1§z‘gk00(iuﬁQ)) 2
((0,-Q7) A A1§i<j§kco((ia_‘Q> Vv (4,7Q)))

Such transitions check that, for a node z labeled with <1, there exists at
most one node (among the predecessor and the successors of z) reachable from
x through Q.

6. For each concept of the form —-<1Q in CLyy¢(C) and each o € 3, there is a
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transition

B(+<1Q0) = ((0.Q7) A Vigipy, (Q) V
Vigiciche, ((:Q) A (.Q))

Such transitions check that, for a node x labeled with —<1 (), there exist at

least two nodes (among the predecessor and the successors of x) reachable from
x through Q.

e The set F' of final states is the set of concepts in CLyynf(Co) of the form VR*.C.
Observe that concepts of the form dR*.C are not final states, and this is suffi-
cient to guarantee that such concepts are satisfied in all accepting runs of the
automaton.

A run of the automaton A¢, on an infinite tree starts in the root checking that
Cop holds there (item 1 above). It does so by inductively decomposing nnf(Cp)
while appropriately navigating the tree (items 3 and 4) until it arrives to atomic
concepts, functional restrictions, and their negations. These are checked locally
(items 2, 5 and 6). Concepts of the form VR*.C' and IR*.C are propagated using
the equivalent concepts C MVR.VR*.C' and C U3JR.3R*.C, respectively. It is only
the propagation of such concepts that may generate infinite branches in a run. Now,
a run of the automaton may contain an infinite branch in which JR*.C' is always
resolved by choosing the disjunct IR.3R*.C, without ever choosing the disjunct C.
This infinite branch in the run corresponds to an infinite path in the tree where
R is iterated forever and in which C is never fulfilled. However, the semantics of
JR*.C requires that C' is fulfilled after a finite number of iterations of R. Hence
such an infinite path cannot be used to satisfy IR*.C. The acceptance condition of
the automaton, which requires that each infinite branch in a run contains a state
of the form VR*.C', rules out such infinite branches in accepting runs. Indeed, a
run always deferring the fulfillment of C will contain an infinite branch where all
states have the form dR;.---dR,.dR*.C, with n > 0 and R; o --- o R, a postfix
of R. Observe that the only remaining infinite branches in a run are those that
arise by propagating concepts of the form VR*.C indefinitely often. The acceptance
condition allows for such branches.

Given a labeled tree T = (T,V) accepted by Ac,, we define an interpretation
Ir = (AI L ) as follows. First, we define for each atomic role P, a relation Rp as
follows: Rp = { (z,zi) | V(xi) = (a, P) for some o € 24 } U { (wi,x) | V(i) =
(o, P7) for some a € 2 }. Then, using such relations, we define:

o A ={z]|(e2) € (Up(RPURR))" };
e AT=ATn{z|V(z)=(a,q) and A € a, for some a € 24 and ¢ € BU{Pgum} },
for each atomic concept A;
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e P = (AT x AT)NRp, for each atomic role P.

Lemma 5.7 If a labeled tree T is accepted by Ac,, then It is a model of Cy.

Conversely, given a tree model 7 of Cy with branching degree k¢,, we can obtain
a labeled tree 77 = (T, V') (with branching degree k¢, ) as follows:

o T =A7T,
e V(¢) = (@, Pgum), where a = {A | e € AT};
o V(zi) = (a,Q), where a = {A | zi € AT} and (z, i) € Q~.

Lemma 5.8 If 7 is a tree model of Cy with branching degree kc,, then 17 is a
labeled tree accepted by Ac,.

From the lemmas above and the tree model property of ALCFZ,q, (Theorem 5.6),
we get the following result.

Theorem 5.9 An ALCFZI,ey concept Cy is satisfiable if and only if the set of trees
accepted by Ac, is not empty.

From this theorem, it follows that we can use algorithms for non-emptiness of
2ATAs to check satisfiability in ALCFZ . It turns out that such a decision proce-
dure is indeed optimal w.r.t. the computational complexity. The 2ATA A, has a
number of states that is linear in the size of Cy, while the alphabet is exponential in
the number of atomic concepts occurring in Cy. By Theorem 5.5 we get an upper
bound for reasoning in ALCFZI e, that matches the EXPTIME lower bound.

Theorem 5.10 Concept satisfiability (and hence logical implication) in ALCFZL ey
is EXPTIME-complete.

Functional restrictions, in the context of expressive description logics that in-
clude inverse roles and TBox axioms, were originally studied in [De Giacomo and
Lenzerini, 1994a; De Giacomo, 1995] using the so called aziom schema instantia-
tion technique. The technique is based on the idea of devising an axiom schema
corresponding to the property of interest (e.g., functional restrictions) and instan-
tiating such a schema to a finite (polynomial) number of concepts. A nice il-
lustration of this technique is the reduction of converse-pDL to PDL in [De Gi-
acomo, 1996]. Axiom schema instantiation can be used to show that reasoning
w.r.t. TBoxes is EXPTIME-complete in significant sub-cases of ALCFZ e, (such as
reasoning w.r.t. ALCFZ TBoxes [Calvanese et al., 2001b]). However, it is still
open whether it can be applied to show ExXPTIME-completeness of ALCFZL .
The attempt in this direction presented in [De Giacomo and Lenzerini, 1994a;
De Giacomo, 1995] turned out to be incomplete [Zakharyaschev, 2000].
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5.4 Qualified number restrictions

Next we deal with qualified number restrictions, which are the most general form
of number restrictions, and allow for specifying arbitrary cardinality constraints on
roles with role-fillers belonging to a certain concept. In particular we will consider
qualified number restrictions on basic roles, i.e., atomic roles and their inverse. By
adding such constructs to ALCZ ., we obtain the description logic ALCQT ¢. The
PDL corresponding to ALCQT,¢, is an extension of converse-PDL with “graded
modalities” [Fattorosi-Barnaba and De Caro, 1985; Van der Hoek and de Rijke,
1995; Tobies, 1999¢] on atomic programs and their converse.

Formally, ALCQT ., is obtained from ALCZ,., by adding qualified number re-
strictions of the form <n @QC and >n QC, where n is a nonnegative integer, @ is
a basic role, and C is an ALCQT,¢, concept. Such constructs are interpreted as
follows:

(<nQCY = {oe AT ||{d e AT |(0,0) e Q* N € CT}| < n}
=nQCY = {oeAT||{d e AT|(0,0) e QF Ao € CT}| >n}

Reasoning in ALCQT,, is still EXPTIME-complete under the standard assump-
tion in description logics, that numbers in number restrictions are represented
in unary!. This could be shown by extending the automata theoretic tech-
niques introduced in Section 5.3 to deal also with qualified number restrictions.
Here we take a different approach and study reasoning in ALCQZ,., by exhibit-
ing a reduction from ALCQOZ ey to ALCFIL ey [De Giacomo and Lenzerini, 1995;
De Giacomo, 1995]. Since the reduction is polynomial, we get as a result EXp-
TiME-completeness of ALCQT,,. The reduction is based on the notion of reifica-
tion. Such a notion plays a major role in dealing with Boolean combinations of
(atomic) roles [De Giacomo and Lenzerini, 1995; 1994c], as well as in extending
expressive description logics with relation of arbitrary arity (see Section 5.7).

5.4.1 Reification of roles

Atomic roles are interpreted as binary relations. Reifying a binary relation means
creating for each pair of individuals (o01,02) in the relation an individual which is
connected by means of two special roles Vi and V5 to o1 and og, respectively. The
set of such individuals represents the set of pairs forming the relation. However, the
following problem arises: in general, there may be two or more individuals being all
connected by means of V1 and V5 to 01 and 09 respectively, and thus all representing
L In [Tobies, 2001a] techniques for dealing with qualified number restrictions with numbers coded in binary

are presented, and are used to show that even under this assumption reasoning over ALCQZ knowledge
bases can be done in EXPTIME.
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the same pair (01,02). Obviously, in order to have a correct representation of a
relation, such a situation must be avoided.
Given an atomic role P, we call its reified form the following role

Vi oid(Ap)o Vs

where Ap is a new atomic concept denoting individuals representing the tuples of
the relation associated with P, and V; and V5 denote two functional roles that
connect each individual in Ap to the first and the second component respectively
of the tuple represented by the individual. Observe that there is a clear symmetry
between the role V]~ o id(Ap) o V5 and its inverse V;, o id(Ap) o V;.

Definition 5.11 Let C be an ALCQZ,., concept. The reified counterpart & (C') of
C' is the conjunction of two concepts, £ (C) = & (C) M O, where:

e {(C) is obtained from the original concept C by (i) replacing every atomic role
P by the complex role V|~ o id(Ap) o Va, where V; and V, are new atomic roles
(the only ones present after the transformation) and Ap is a new atomic concept;
(ii) and then re-expressing every qualified number restriction

(‘/v1 OZd(AP>OV2) as gan(Apl_IHVQD)
n(Vy oid(Ap)oVa).D as >=nV] .(Apn3Va.D)
n(Vy oid(Ap)oVi).D as <nVy .(Apn3Vi.D)
n(Vy oid(Ap)oVi).D as >=nVy .(Apn3Vi.D)

o O :V(Vlu‘/qul_LlV2_)* (<1V1 1V2) [

The next theorem guarantees that, without loss of generality, we can restrict
our attention to models of &;(C') that correctly represent relations associated with
atomic roles, i.e., models in which each tuple of such relations is represented by a
single individual.

Theorem 5.12 If the concept & (C) has a model T then it has a model I' such
that for each (0,0') € (V" o id(Ap,) o V)T’ there is exactly one individual 0y such
that (0gy,0) € VE and (0oy,0') € VE . That is, for all 01,02,0,0 € AT such that
01 # 0y and o # o, the following condition holds:

01,02 € AIID; > =((o1,0) € VE A(02,0) € VE A(01,0") € ViE A (02,0) € V).

The proof of Theorem 5.12 exploits the disjoint union model property: let C be an
ALCOT ., concept and T = (AZ,-T) and J = (A7,-7) be two models of C, then
also the interpretation Zw J = (AT W A7, -2 w-7) which is the disjoint union of
7 and J, is a model of C'. We remark that most description logics have such a
property, which is, in fact, typical of modal logics. Without going into details, we
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c d e

Fig. 5.1. A model of the ALCQOT,, concept Cp =
AP.(=2P .(=2PT)).

a b

Fig. 5.2. A model of the reified counterpart & (Cp) of Cp.

just mention that the model Z’ is constructed from Z as the disjoint union of several
copies of 7, in which the extension of role V5 is modified by exchanging, in those
instances that cause a wrong representation of a role, the second component with
a corresponding individual in one of the copies of Z.

By using Theorem 5.12 we can prove the result below.

Theorem 5.13 An ALCQZ ., concept C is satisfiable if and only if its reified coun-
terpart £1(C) is satisfiable.

5.4.2 Reducing ALCQOT ¢y to ALCFL ey

By Theorem 5.13, we can concentrate on the reified counterparts of ALCQOZ ¢,
concepts. Note that these are ALCQT ., concepts themselves, but their special form
allows us to convert them into ALCFZ,,, concepts. Intuitively, we represent the
role V.7, i = 1,2 (recall that V; is functional while V; is not), by the role Fy; OF‘,G- "
where Fy; and Fy, are new functional roles!. The main point of such transformation
is that it is easy to express qualified number restrictions as constraints on the
chain of (Fy; o Fy,")-successor of an individual. Formally, we define the ALCFT y-
counterpart of an ALCQT ., concept as follows.

Definition 5.14 Let C be an ALCQT,., concept and &1 (C) = §(C) M Oy its rei-
fied counterpart. The ALCFZ eq-counterpart {2(C) of C' is the conjunction of two
concepts, &(C) = &,(C) A O, where:

1 The idea of expressing nonfunctional roles by means of chains of functional roles is due to Parikh [1981],
who used it to reduce standard PDL to DPDL.
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a b
FVl / / Vi /
1 FV1 2 FVz . FV1 4
7 Ap Ap %, Ap Ap &,
O""FVQ FV2 ”O FV2’ .‘O
c d e

Fig. 5.3. A model of the ALCFZ-counterpart &2(Cp) of Cy.

e £(C) is obtained from &y(C) by simultaneously replacing:?
— every occurrence of role V; in constructs different from qualified number re-
strictions by (Fy, o F{,")~, where Fy, and Fy, are new atomic roles;
— every <nV;".D by Y(Fy, o F{," o (id(D) o F"/Z_'F)”).ﬁD;
— every >nV;".D by 3(Fy, o F{," o (id(D) o F"/Z_Jr)"_l).D.
o Oy =V(;_y o (Fy; U Fy, U Fy, UEF]))*.(01M02), with 6; of the form:

<1F, N<1F, N<1F; N<1F, - N-(3F;,. T N3k, ~.T). .

Observe that Oy constrains each model Z of £(C') so that the relations F; IZ , By, z
(Fy, ¥, and (FY, )t are partial functions, and each individual cannot be linked
to other individuals by both (F‘Z )% and (F{,Z )., As a consequence, we get that
((Fy; o Fy, “)7)? is a partial function. This allows us to reconstruct the extension of
Vi, as required.

We illustrate the basic relationships between a model of an ALCQZ ., concept
and the models of its reified counterpart and ALCFZ.4-counterpart by means of
an example.

Example 5.15 Consider the concept
Co=3P.(=2P .(=2PT))

and consider the model Z of Cy depicted in Figure 5.1, in which a € Cg . Such
a model corresponds to a model Z’ of the reified counterpart &1 (Cp) of Cp, shown
in Figure 5.2. The model Z’ of &(Cp) in turn, corresponds to a model Z” of the
ALCFT eg-counterpart £2(Cyp) of Cp, shown in Figure 5.3. Notice that, from 7" we
can easily reconstruct 7, and from Z’ the model Z of the original concept. "

It can be shown that &;(C) is satisfiable if and only if £5(C) is satisfiable. Since, as
it is easy to see, the size of &»(C) is polynomial in the size of C', we get the following
characterization of the computational complexity of reasoning in ALC QT y¢q.

2 Here RT stands for Ro R* and R™ stands for Ro--- o R (n times).
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Theorem 5.16 Concept satisfiability (and hence logical implication) in ALC QT g
is EXPTIME-complete.

5.5 Objects

In this section, we review results involving knowledge on individuals expressed in
terms of membership assertions. Given an alphabet O of symbols for individuals, a
(membership) assertion has one of the following forms:

C(a) P(a1,az)

where C' is a concept, P is an atomic role, and a, a1, ao belong to @. An in-
terpretation 7 is extended so as to assign to each a € O an element a? € A in
such a way that the unique name assumption is satisfied, i.e., different elements
are assigned to different symbols in O. 7T satisfies C(a) if a € C*, and T satisfies
P(ay,a9) if (at,a%) € RT. An ABoz A is a finite set of membership assertions, and
an interpretation Z is called a model of A if T satisfies every assertion in A.

A knowledge base is a pair K = (7,.A), where 7 is a TBox, and A is an ABox.
An interpretation Z is called a model of K if it is a model of both 7 and A. K is
satisfiable if it has a model, and K logically implies an assertion (3, denoted K = 3,
where [ is either an inclusion or a membership assertion, if every model of K satisfies
(. Logical implication can be reformulated in terms of unsatisfiability: e.g., K |
C(a) iff CU{~C(a)} is unsatisfiable; similarly K = Cy C Cy iff CU{(C1M—C2)(d’)}
is unsatisfiable, where a’ does not occur in K. Therefore, we only need a procedure
for checking satisfiability of a knowledge base.

Next we illustrate the technique for reasoning on ALCQZ,., knowledge bases
[De Giacomo and Lenzerini, 1996]. The basic idea is as follows: checking the sat-
isfiability of an ALCQZ ., knowledge base K = (7,.A) is polynomially reduced to
checking the satisfiability of an ALCQZ,., knowledge base K' = (7', A"), whose
ABox A’ is made of a single membership assertion of the form C(a). In other
words, the satisfiability of C is reduced to the satisfiability of the concept C' w.r.t.
the TBox 7" of the resulting knowledge base. The latter reasoning service can be
realized by means of the method presented in Section 5.4, and, as we have seen,
is ExpTIME-complete. Thus, by means of the reduction, we get an EXPTIME al-
gorithm for satisfiability of ALCQT,., knowledge bases, and hence for all standard
reasoning services on ALCQT ., knowledge bases.

Definition 5.17 Let K = (7,A) be an ALCQZ,., knowledge base. We call the
reduced form of K the ALCQT ., knowledge base K' = (7', A’) defined as follows.

We introduce a new atomic role create, and for each individual a;, 1 = 1,...,m,
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occurring in A, a new atomic concept A;. Then:

A" = {(3create.A; M-+ - M 3create. Ay, (g)},

where g is a new individual (the only one present in A’), and 7/ = 7 U 74 U Toua,
where:

e 74 is constituted by the following inclusion axioms:

— for each membership assertion C(a;) € A, one inclusion axiom
A, T C
— for each membership assertion P(a;,a;) € A, two inclusion axioms

Aj C dP~.A,N<K<1P A

— for each pair of distinct individuals @; and a; occurring in A, one inclusion
axiom

A ©E —A;

e Touz is constituted by one inclusion axiom (U stands for (P, U---U P, U P U
-+~ U P7)*, where Py,..., P, are all atomic roles in 7 U 7T4):

A;NC C YU.(~A4;UC)

for each A; occurring in 7U7 4 and each C' € CLey (7 UTy), where CLey (T UT )
is a suitably extended syntactic closure of 7 U 74 ! whose size is polynomially
related to the size of 7 U 74 [De Giacomo and Lenzerini, 1996). "

To understand how the reduced form K’ = (77, A’) relates to the original knowl-
edge base K = (7, .A), first, observe that the ABox A’ is used to force the exis-
tence of the only individual g, connected by the role create to one instance of each
A;. Tt can be shown that this allows us to restrict the attention to models of K’
that represent a graph connected to g, i.e., models Z = (AZ,-Z) of K’ such that
AT = {g} U{s'| (g,5) € create’ o (Up(PT U PT)")}.

The TBox 7’ consists of three parts 7, 74, and T,,,. 7 are the original inclusion
axioms. 74 is what we may call a “naive encoding” of the original ABox A as
inclusion axioms. Indeed, each individual a; is represented in 74 as a new atomic
concept A; (disjoint from the other A;’s), and the membership assertions in the
original ABox A are represented as inclusion axioms in 74 involving such new
atomic concepts. However 7 U 74 alone does not suffice to represent faithfully
(w.r.t. the reasoning services we are interested in) the original knowledge base,

1 The syntactic closure of a TBox is the syntactic closure of the concept obtained by internalizing the
axioms of the TBox.
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because an individual a; in K is represented by the set of instances of A; in K'. In
order to reduce the satisfiability of K’ to the satisfiability of I, we must be able to
single out, for each A;, one instance of A; representative of a;. For this purpose, we
need to include in 7’ a new part, called 7,,, which contains inclusion axioms of
the form:

(A;NC) T YU.(~4;LC)

Intuitively, such axioms say that, if an instance of A; is also an instance of C|
then every instance of A; is an instance of C'. Observe that, if we could add an
infinite set of axioms of this form, one for each possible concept of the language
(i.e., an axiom schema), we could safely restrict our attention to models of £ with
just one instance for every concept A;, since there would be no way in the logic to
distinguish two instances of A; one from the other. What is shown by De Giacomo
and Lenzerini [1996] is that in fact we do need only a polynomial number of such
inclusion axioms (as specified by 74, ) in order to be able to identify, for each i, an
instance of A; as representative of a;. This allows us to prove that the existence of
a model of K’ implies the existence of a model of K.

Theorem 5.18 Knowledge base satisfiability (and hence every standard reasoning
service) in ALCQT eq is EXPTIME-complete.

Using a similar approach, De Giacomo and Lenzerini [1994a] and De Gia-
como [1995] extend ALC Qreg and ALCL e, by adding special atomic concepts A,
called nominals, having exactly one single instance a, i.e., the individual they name.
Nominals may occur in concepts exactly as atomic concepts, and hence they con-
stitute one of the most flexible ways to express knowledge about single individuals.

By using nominals we can capture the “one-of” construct, having the form
{ai1,...,a,}, denoting the concept made of exactly the enumerated individuals
ai,...,a, . We can also capture the “fills” construct, having the form R : a, de-
noting those individuals having the individual a as a role filler of R 2 (see [Schaerf,
1994b] and references therein for further discussion on these constructs).

Let us denote with ALCQO,,, and ALCIO,, the description logics resulting
by adding nominals to ALCQ,ey and ALCZ ., respectively. De Giacomo and Lenz-
erini [1994a] and De Giacomo [1995] polynomially reduce satisfiability in ALCQO ¢,
and ALCIO,e, knowledge bases to satisfiability of ALCQ, and ALCZ,e, con-
cepts respectively, hence showing decidability and ExPTIME-completeness of rea-
soning in these logics. EXPTIME-completeness does not hold for ALCQZO,,,
1 Actually, nominals and the one-of construct are essentially equivalent, since a name A, is equivalent to

{a} and {a1,...,an} is equivalent to Ag, LI--- U Aq,.
2 The “fills” construct R : a is captured by IR.A,.
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ie., ALCQL,, extended with nominals. Indeed, a result by Tobies [1999a;
1999b] shows that reasoning in such a logic is NEXPTIME-hard. Its decidability
still remains an open problem.

The notion of nominal introduced above has a correspondent in modal logic
[Prior, 1967; Bull, 1970; Blackburn and Spaan, 1993; Gargov and Goranko, 1993;
Blackburn, 1993]. Nominals have also been studied within the setting of PDLs
[Passy and Tinchev, 1985; Gargov and Passy, 1988; Passy and Tinchev, 1991]. The
results for ALCQO ¢y and ALCLO ey are immediately applicable also in the setting
of PDLs. In particular, the PDL corresponding to ALCQQO,, is standard PDL aug-
mented with nominals and graded modalities (qualified number restrictions). It is
an extension of deterministic combinatory PDL, DcPDL, which is essentially DPDL
augmented with nominals. The decidability of DcPDL is established by Passy and
Tinchev [1985], who also prove that satisfiability can be checked in nondetermin-
istic double exponential time. This is tightened by the result above on EXPTIME-
completeness of ALCQO,,, which says that DcPDL is in fact EXPTIME-complete,
thus closing the previous gap between the upper bound and the lower bound. The
PDL corresponding to ALCZ O,y is converse-PDL augmented with nominals, which
is also called converse combinatory PDL, ccPDL [Passy and Tinchev, 1991]. Such
logic was not known to be decidable [Passy and Tinchev, 1991]. Hence the results
mentioned above allow us to establish the decidability of ccPDL and to precisely
characterize the computational complexity of satisfiability (and hence of logical im-
plication) as EXPTIME-complete.

5.6 Fixpoint constructs

Decidable description logics equipped with explicit fixpoint constructs have been
devised in order to model inductive and coinductive data structures such as lists,
streams, trees, etc. [De Giacomo and Lenzerini, 1994d; Schild, 1994; De Giacomo
and Lenzerini, 1997; Calvanese et al., 1999¢c|. Such logics correspond to extensions of
the propositional p-calculus [Kozen, 1983; Streett and Emerson, 1989; Vardi, 1998],
a variant of PDL with explicit fixpoints that is used to express temporal properties
of reactive and concurrent processes [Stirling, 1996; Emerson, 1996]. Such logics can
also be viewed as a well-behaved fragment of first-order logic with fixpoints [Park,
1970; 1976; Abiteboul et al., 1995].

Here, we concentrate on the description logic pALCQT studied by Calvanese et
al. [1999c]. Such a description logic is derived from ALCQT by adding least and
greatest fizpoint constructs. The availability of explicit fixpoint constructs allows
for expressing inductive and coinductive concepts in a natural way.
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Example 5.19 Consider the concept Tree, representing trees, inductively defined
as follows:

(i) An individual that is an EmptyTree is a Tree.
(ii) If an individual is a Node, has at most one parent, has some children, and
all children are Trees, then such an individual is a Tree.

In other words, Tree is the concept with the smallest extension among those satis-
fying the assertions (i) and (ii). Such a concept is naturally expressed in pALC QT
by making use of the least fixpoint construct uX.C"

Tree = pX.(EmptyTree U (Node M < 1 child™ M 3child. T M Vchild. X)) .

Example 5.20 Consider the well-known linear data structure, called stream.
Streams are similar to lists except that, while lists can be considered as finite se-
quences of nodes, streams are infinite sequences of nodes. Such a data structure is
captured by the concept Stream, coinductively defined as follows:

(i) An individual that is a Stream, is a Node and has a single successor which is
a Stream.

In other words, Stream is the concept with the largest extension among those sat-
isfying condition (i). Such a concept is naturally expressed in . ALCQZ by making
use of the greatest fixpoint construct v.X.C:

Stream = vX.(Node M < 1 succ M 3succ. X) .

Let us now introduce pALCQT formally. We make use of the standard first-
order notions of scope, bound and free occurrences of variables, closed formulae,
etc., treating p and v as quantifiers.

The primitive symbols in pnALCQZ are atomic concepts, (concept) variables, and
atomic roles. Concepts and roles are formed according to the following syntax

C—>A|—|C|Cl|_|02|>nRC‘,UJXC|X
R—>P‘P7

where A denotes an atomic concept, P an atomic role, C an arbitrary pALCQT
concept, R an arbitrary nALCQZ role (i.e., either an atomic role or the inverse of
an atomic role), n a natural number, and X a variable.

The concept C' in X C must be syntactically monotone, that is, every free occur-
rence of the variable X in C' must be in the scope of an even number of negations
[Kozen, 1983]. This restriction guarantees that the concept C' denotes a monotonic
operator and hence both the least and the greatest fixpoints exist and are unique
(see later).
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In addition to the usual abbreviations used in ALCQZ, we introduce the ab-
breviation vX.C for ~uX.-C[X/-X], where C[X/-X] is the concept obtained by
substituting all free occurrences of X with —X.

The presence of free variables does not allow us to extend the interpretation
function -7 directly to every concept of the logic. For this reason we introduce
valuations. A wvaluation p on an interpretation Z is a mapping from variables to
subsets of AZ. Given a valuation p, we denote by p[X/&] the valuation identical to
p except for the fact that p[X/E](X) = €.

Let Z be an interpretation and p a valuation on Z. We assign meaning to concepts

of the logic by associating to Z and p an extension function -% , mapping concepts
to subsets of AL, as follows:
XI = p(X)cat
AT = ATc At
(-t = Af\C
(CiNCa); = (Cr)pN(Co)y,
>nR.CpI = {seAl||{s|(s,s) € R and ' € CL}| > n}
(MX-C)g = ﬂ{g c At | Cg[x/g] C&}

Observe that Cg[ X)) can be seen as an operator from subsets £ of AT to subsets

of AT, and that, by the syntactic restriction enforced on variables, such an operator
is guaranteed to be monotonic w.r.t. set inclusion. uX.C' denotes the least fixpoint
of the operator. Observe also that the semantics assigned to v.X.C' is

vX.C0)l = U{E CAT| EC C;{[X/é‘} }

Hence v X.C denotes the greatest fixrpoint of the operator.

In fact, we are interested in closed concepts, whose extension is independent
of the valuation. For closed concepts we do not need to consider the valuation
explicitly, and hence the notion of concept satisfiability, logical implication, etc.
extend straightforwardly.

Exploiting a recent result on EXPTIME decidability of modal p-calculus with
converse [Vardi, 1998], and exploiting a reduction technique for qualified number
restrictions similar to the one presented in Section 5.4, Calvanese et al. [1999¢] have
shown that the same complexity bound holds also for reasoning in uALCQOZL.

Theorem 5.21 Concept satisfiability (and hence logical implication) in nALCQTL
1s EXPTIME-complete.

For certain applications, variants of un ALCQZ that allow for mutual fixpoints, de-
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noting least and greatest solutions of mutually recursive equations, are of interest
[Schild, 1994; Calvanese et al., 1998c; 1999b]. Mutual fixpoints can be re-expressed
by suitably nesting the kind of fixpoints considered here (see, for example, [de
Bakker, 1980; Schild, 1994]). It is interesting to notice that, although the resulting
concept may be exponentially large in the size of the original concept with mutual
fixpoints, the number of (distinct) subconcepts of the resulting concept is polyno-
mially bounded by the size of the original one. By virtue of this observation, and
using the reasoning procedure by Calvanese et al. [1999c], we can strengthen the
above result.

Theorem 5.22 Checking satisfiability of a closed nALCQOT concept C can be done
in deterministic exponential time w.r.t. the number of (distinct) subconcepts of C.

Although pALCQT does not have the rich variety of role constructs of ALCQT .y,
it is actually an extension of ALCQZ 4, since any ALCQT,., concept can be ex-
pressed in pALCQOT using the fixpoint constructs in a suitable way. To express
concepts involving complex role expressions, it suffices to resort to the following
equivalences:

I(R10Ry).C = 3R1.3R,.C
H(Rl (] RQ)C dR,.C U3Ry.C
dr*.C uX.(CU3IR.X)
Jid(D).C = CnD.

Note that, according to such equivalences, we have also that
VR*.C =vX.(CMVR.X)

Calvanese et al. [1995] advocate a further construct corresponding to an implicit
form of fixpoint, the so called well-founded concept construct wf(R). Such con-
struct is used to impose well-foundedness of chains of roles, and thus allows one to
correctly capture inductive structures. Using explicit fixpoints, wf(R) is expressed
as uX.(VR.X).

We remark that, in order to gain the ability of expressing inductively and
coinductively defined concepts, it has been proposed to adopt ad hoc seman-
tics for interpreting knowledge bases, specifically the least fixpoint semantics for
expressing inductive concepts and the greatest fizpoint semantics for expressing
coinductive ones (see Chapter 2 and also [Nebel, 1991; Baader, 1990a; 1991;
Dionne et al., 1992; Kiisters, 1998; Buchheit et al., 1998]). Logics equipped
with fixpoint constructs allow for mixing statements interpreted according to the
least and greatest fixpoint semantics in the same knowledge base [Schild, 1994;
De Giacomo and Lenzerini, 1997], and thus can be viewed as a generalization of
these approaches.
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Recently, using techniques based on alternating two-way automata, it has been
shown that the propositional u-calculus with converse programs remains EXPTIME-
decidable when extended with nominals [Sattler and Vardi, 2001]. Such a logic
corresponds to a description logic which could be called uALCZO.

5.7 Relations of arbitrary arity

A limitation of traditional description logics is that only binary relationships be-
tween instances of concepts can be represented, while in some real world situations
it is required to model relationships among more than two objects. Such rela-
tionships can be captured by making use of relations of arbitrary arity instead
of (binary) roles. Various extensions of description logics with relations of ar-
bitrary arity have been proposed [Schmolze, 1989; Catarci and Lenzerini, 1993;
De Giacomo and Lenzerini, 1994c; Calvanese et al., 1997; 1998a; Lutz et al., 1999].

We concentrate on the description logic DLR [Calvanese et al., 1997; 1998a/,
which represents a natural generalization of traditional description logics towards n-
ary relations. The basic elements of DLR are atomic relations and atomic concepts,
denoted by P and A respectively. Arbitrary relations, of given arity between 2 and
Nmaz, and arbitrary concepts are formed according to the following syntax

R — T, |P| ($i/nC) | -R | RiMNR,
C — T |A|-C|CinG | J%R | <k[$iR

where 7 and j denote components of relations, i.e., integers between 1 and 1,40, 1
denotes the arity of a relation, i.e., an integer between 2 and n,q., and k denotes
a nonnegative integer. Concepts and relations must be well-typed, which means
that only relations of the same arity n can be combined to form expressions of type
R; MRy (which inherit the arity n), and ¢ < n whenever i denotes a component of
a relation of arity n.

The semantics of DLR is specified through the usual notion of interpretation
T = (AT, 7), where the interpretation function I assigns to each concept C a
subset C% of AZ, and to each relation R of arity n a subset R% of (A)", such that
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the following conditions are satisfied

o S (Af)"
Pl c T1Z
(-R)T = TI\R?
(R MRy)? RINRZ
($i/n:C)Y = {(dy,...,dp) € TL|d; € CT}
—[-I — AI
A%f c Af
(O = AT\C?
(ClﬂCQ)I = C%—ﬂcg’—
(A[$i|R)Z = {de AT |3(dy,...,d,) € RT.d; =d}
(Kk[$R)E = {de AT ||{(d1,...,dn) € RT | d; =d}| <k}

where P, R, R1, and Re have arity n. Observe that T denotes the interpretation
domain, while T,,, for n > 1, does not denote the n-cartesian product of the domain,
but only a subset of it, that covers all relations of arity n that are introduced. As a

W__"
—

consequence, the construct on relations expresses difference of relations rather
than complement.

The construct ($i¢/n: C') denotes all tuples in T, that have an instance of concept
C as their i-th component, and therefore represents a kind of selection. Existential
quantification and number restrictions on relations are a natural generalization of
the corresponding constructs using roles. This can be seen by observing that, while
for roles the “direction of traversal” is implicit, for a relation one needs to explicitly
say which component is used to “enter” a tuple and which component is used to
“exit” it.

DLR is in fact a proper generalization of ALCQZ. The traditional description
logic constructs can be reexpressed in DLR as follows:

rP.C as J[$1)(P 11 ($2/2:C))
arP-.C as J[$2](P M ($1/2: C))
VP.C as  —3[$1)(P N ($2/2:=C))
VP-.C as  —3J[$2](P M ($1/2: ~C))
<kP.C as <Ek[$1](P M ($2/2:C))
<kP~.C as <Ek[$2)(PM($1/2:C))

Observe that the constructs using direct and inverse roles are represented in DLR
by using binary relations and explicitly specifying the direction of traversal.

A TBox in DLR is a finite set of inclusion axioms on both concepts and relations
of the form

ccc R C R
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where R and R’ are two relations of the same arity. The notions of an interpretation
satisfying an assertion, and of model of a TBox are defined as usual.

The basic technique used in DLR to reason on relations is reification (see Sec-
tion 5.4.1), which allows one to reduce logical implication in DLR to logical im-
plication in ALCQZ. Reification for n-ary relations is similar to reification of roles
(see Definition 5.11): A relation of arity n is reified by means of a new concept and
n functional roles f1, ..., f,. Let the ALCQZ TBox 7' be the reified counterpart of
a DLR TBox 7. A tuple of a relation R in a model of 7 is represented in a model
of 7’ by an instance of the concept corresponding to R, which is linked through
f1,- .., fn respectively to n individuals representing the components of the tuple. In
this case reification is further used to encode Boolean constructs on relations into
the corresponding constructs on the concepts representing relations.

As for reification of roles (cf. Section 5.4.1), performing the reification of relations
requires some attention, since the semantics of a relation rules out that there may
be two identical tuples in its extension, i.e., two tuples constituted by the same
components in the same positions. In the reified counterpart, on the other hand,
one cannot explicitly rule out (e.g., by using specific axioms) the existence of two
individuals 07 and oo “representing” the same tuple, i.e., that are connected through
fi,--., fn to exactly the same individuals denoting the components of the tuple.
A model of the reified counterpart 7’ of 7 in which this situation occurs may
not correspond directly to a model of 7, since by collapsing the two equivalent
individuals into a tuple, axioms may be violated (e.g., cardinality constraints).
However, also in this case the analogue of Theorem 5.12 holds, ensuring that from
any model of 7’ one can construct a new one in which no two individuals represent
the same tuple. Therefore one does not need to take this constraint explicitly
into account when reasoning on the reified counterpart of a knowledge base with
relations. Since reification is polynomial, from EXPTIME decidability of logical
implication in ALCQZ (and ExpTIME-hardness of logical implication in ALC) we
get the following characterization of the computational complexity of reasoning in
DLR [Calvanese et al., 1997]

Theorem 5.23 Logical implication in DLR is EXPTIME-complete.

DLR can be extended to include regular expressions built over projections of
relations on two of their components, thus obtaining DLR ;. Such a logic, which
represents a generalization of ALCQTZ .4, allows for the internalization of a TBox.
ExPTIME decidability (and hence completeness) of DLR,, can again be shown
by exploiting reification of relations and reducing logical implication to concept
satisfiability in ALCQZ ., [Calvanese et al., 1998a]. Recently, DLR ey has been
extended to DLR,,, which includes explicit fixpoint constructs on concepts, as those
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introduced in Section 5.6. The ExpTIME-decidability result extends to DLR, as
well [Calvanese et al., 1999c]|.

Recently it has been observed that guarded fragments of first order logic [Andréka
et al., 1996; Gridel, 1999] (see Section 4.2.1), which include n-ary relations, share
with description logics the “locality” of quantification. This makes them of interest
as extensions of description logics with n-ary relations [Gridel, 1998; Lutz et al.,
1999]. Such description logics are incomparable in expressive power with DLR and
its extensions: On the one hand the description logics corresponding to guarded
fragments allow one to refer, by the use of explicit variables, to components of
relations in a more flexible way than what is possible in DLR. On the other hand
such description logics lack number restrictions, and extending them with number
restrictions leads to undecidability of reasoning. Also, reasoning in the guarded
fragments is in general NExpT1ME-hard [Gridel, 1998; 1999] and thus more difficult
than in DLR and its extensions, although PSPACE-complete fragments have been
identified [Lutz et al., 1999].

5.7.1 Boolean constructs on roles and role inclusion axioms

Observe also that DLR (and DLR,¢,) allows for Boolean constructs on relations
(with negation interpreted as difference) as well as relation inclusion axioms R C
R’. In fact, DLR (resp. DLR ) can be viewed as a generalization of ALCQT
(resp. ALCQT,¢y) extended with Boolean constructs on atomic and inverse atomic
roles. Such extensions of ALCQZ were first studied in [De Giacomo and Lenzerini,
1994c; De Giacomo, 1995, where logical implication was shown to be EXPTIME-
complete by a reduction to ALCQT (resp. ALCQZ ;). The logics above do not
allow for combining atomic roles with inverse roles in Boolean combinations and role
inclusion axioms. Tobies [2001a] shows that, for ALCQZ extended with arbitrary
Boolean combinations of atomic and inverse atomic roles, logical implication remains
in ExPTIME. Note that, in all logics above, negation on roles is interpreted as
difference. For results on the impact of full negation on roles see [Lutz and Sattler,
2001; Tobies, 2001a).

Horrocks et al. [2000b] investigate reasoning in SHZ Q, which is ALC QT extended
with roles that are transitive and with role inclusion axioms on arbitrary roles (di-
rect, inverse, and transitive). SHZQ does not include reflexive-transitive closure.
However, transitive roles and role inclusions allow for expressing a universal role
(in a connected model), and hence allow for internalizing TBoxes. Satisfiability
and logical implication in SHZQ are EXPTIME-complete [Tobies, 2001a). The im-
portance of SHZQ lies in the fact that it is the logic implemented by the current
state-of-the-art description logic-based systems (cf. Chapters 8 and 9).
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5.7.2 Structured objects

An alternative way to overcome the limitations that result from the restriction to
binary relationships between concepts, is to consider the interpretation domain as
being constituted by objects with a complex structure, and extend the description
logics with constructs that allow one to specify such structure [De Giacomo and
Lenzerini, 1995]. This approach is in the spirit of object-oriented data models
used in databases [Lecluse and Richard, 1989; Bancilhon and Khoshafian, 1989;
Hull, 1988], and has the advantage, with respect to introducing relationships, that
all aspects of the domain to be modeled can be represented in a uniform way, as
concepts whose instances have certain structures. In particular, objects can either
be unstructured or have the structure of a set or of a tuple. For objects having the
structure of a set a particular role allows one to refer to the members of the set, and
similarly each component of a tuple can be referred to by means of the (implicitly
functional) role that labels it.

In general, reasoning over structured objects can have a very high computational
complexity [Kuper and Vardi, 1993]. However, reasoning over a significant fragment
of structuring properties can be polynomial reduced to reasoning in traditional de-
scription logics, by exploiting again reification to deal with tuples and sets. Thus,
for such a fragment, reasoning can be done in EXPTIME [De Giacomo and Lenz-
erini, 1995]. An important aspect in exploiting description logics for reasoning over
structured objects, is being able to limit the depth of the structure of an object
to avoid infinite nesting of tuples or sets. This requires the use of a well-founded
construct, which is a restricted form of fixpoint (see Section 5.6).

5.8 Finite model reasoning

For expressive description logics, in particular for those containing inverse roles and
functionality, a TBox may admit only models with an infinite domain [Cosmadakis
et al., 1990; Calvanese et al., 1994]. Similarly, there may be TBoxes in which a
certain concept can be satisfied only in an infinite model. This is illustrated in the
following example by Calvanese [1996¢c].

Example 5.24 Consider the TBox

FirstGuard T Guard M Vshields™._L
Guard LC dshields M Vshields.Guard M < 1 shields™

In a model of this TBox, an instance of FirstGuard can have no shields-predecessor,
while each instance of Guard can have at most one. Therefore, the existence of an
instance of FirstGuard implies the existence of an infinite sequence of instances of
Guard, each one connected through the role shields to the following one. This means
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that FirstGuard can be satisfied in an interpretation with a domain of arbitrary
cardinality, but not in interpretations with a finite domain. =

Note that the TBox above is expressed in a very simple description logic, in partic-
ular AL (cf. Chapter 2) extended with inverse roles and functionality.

A logic is said to have the finite model property if every satisfiable formula of the
logic admits a finite model, i.e., a model with a finite domain. The example above
shows that virtually all description logics including functionality, inverse roles, and
TBox axioms (or having the ability to internalize them) lack the finite model prop-
erty. The example shows also that to lose the finite model property, functionality in
only one direction is sufficient. In fact, it is well known that converse-DPDL, which
corresponds to a fragment of ALCFZ ¢,, lacks the finite model property [Kozen and
Tiuryn, 1990; Vardi and Wolper, 1986].

For all logics that lack the finite model property, reasoning with respect to un-
restricted and finite models are fundamentally different tasks, and this needs to
be taken explicitly into account when devising reasoning procedures. Restricting
reasoning to finite domains is not common in knowledge representation. However,
it is typically of interest in databases, where one assumes that the data available
are always finite [Calvanese et al., 1994; 1999e¢].

When reasoning w.r.t. finite models, some properties that are essential for the
techniques developed for unrestricted model reasoning in expressive description log-
ics fail. In particular, all reductions exploiting the tree model property (or similar
properties that are based on “unraveling” structures) [Vardi, 1997] cannot be ap-
plied since this property does not hold when only finite models are considered. An
intuitive justification can be given by observing that, whenever a (finite) model
contains a cycle, the unraveling of such a model into a tree generates an infinite
structure. Therefore alternative techniques have been developed.

In this section, we study decidability and computational complexity of finite
model reasoning over TBoxes expressed in various sublanguages of ALCQZ. Specif-
ically, by using techniques based on reductions to linear programming problems,
we show that finite concept satisfiability w.r.t. to ALUNT TBoxes® constituted by
inclusion axioms only is EXPTIME-complete [Calvanese et al., 1994], and that finite
model reasoning in arbitrary ALCQZ TBoxes can be done in deterministic double
exponential time [Calvanese, 1996a).

5.8.1 Finite model reasoning using linear inequalities
A procedure for finite model reasoning must specifically address the presence of
number restrictions, since it is only in their presence that the finite model property

L ALUNT is the description logic obtained by extending ALUN (cf. Chapter 2) with inverse roles.
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fails. We discuss a method which is indeed based on an encoding of number restric-
tions into linear inequalities, and which generalizes the one developed by Lenzerini
and Nobili [1990] for the Entity-Relationship model with disjoint classes and rela-
tionships (hence without IS-A). We first describe the idea underlying the reason-
ing technique in a simplified case. In the next section we show how to apply the
technique to various expressive description logics [Calvanese and Lenzerini, 1994b;
1994a; Calvanese et al., 1994; Calvanese, 1996a).

Consider an ALNZT TBox! 7 containing the following axioms: for each pair of
distinct atomic concepts A and A’, an axiom A C —A’, and for each atomic role P,
an axiom of the form T C VP.As MYP~.Aq, for some atomic concepts A1 and As
(not necessarily distinct). Such axioms enforce that in all models of 7 the following
hold:

P1: The atomic concepts have pairwise disjoint extensions.

Ps: Each role is “typed”, which means that its domain is included in the extension
of an atomic concept A1, and its codomain is included in the extension of an
atomic concept As.

Assume further that the only additional axioms in 7 are used to impose cardi-
nality constraints on roles and inverse roles, and are of the form

T C >2miPn<m P
T C ZmogP M<ng P~

where m1, ni, meo, and ng are positive integers with m; < ny and mo < no.

Due to the fact that properties P; and Py hold, the local conditions imposed
by number restrictions on the number of successors of each individual, are reflected
into global conditions on the total number of instances of atomic concepts and roles.
Specifically, it is not difficult to see that, for a model Z of such a TBox, and for
each P, Ay, As, m1, ma, ni, and ne as above, the cardinalities of PZ, A{, and Ag
must satisfy the following inequalities:

my - |Af|
my - | A3 |

bl
P2

ny - |Af|

<
< ng-|A

<
<

On the other hand, consider the system W7 of linear inequalities containing for
each atomic role P typed by A; and As the inequalities

my-Var(A;) < Var(P) < np-Var(4;) (5.1)
mgy - Var(Ag) < Var(P) < mng-Var(Ag) '

L ALNT is the description logic obtained by extending ALN (cf. Chapter 2) with inverse roles.
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where we denote by Var(A) and Var(P) the unknowns, ranging over the non-
negative integers, corresponding to the atomic concept A and the atomic role P
respectively.

It can be shown that, if the only axioms in 7 are those mentioned above, then
certain non-negative integer solutions of Wy (called acceptable solutions) can be put
into correspondence with finite models of 7. More precisely, for each acceptable
solution S, one can construct a model of 7 in which the cardinality of each concept
or role X is equal to the value assigned by S to Var(X) [Lenzerini and Nobili, 1990;
Calvanese et al., 1994; Calvanese, 1996¢c]. Moreover, given ¥, it is possible to
verify in time polynomial in its size, whether it admits an acceptable solution.

This property can be exploited to check finite satisfiability of an atomic concept
A w.r.t. a TBox 7 as follows:

(i) Construct the system W7 of inequalities corresponding to 7.
(ii) Add to U7 the inequality Var(A) > 0, which enforces that the solutions
correspond to models in which the cardinality of the extension of A is positive.

(iii) Check whether ¥ admits an acceptable solution.

Observe that for simple TBoxes of the form described above, this method works in
polynomial time, since (i) U7 is of size polynomial in the size of 7, and can also
be constructed in polynomial time, and (ii) checking the existence of acceptable
solutions of W7 can be done in time polynomial in the its size. Notice also that the
applicability of the technique heavily relies on conditions P and Py, which ensure
that, from an acceptable solution of W7, a model of 7 can be constructed.

5.8.2 Finite model reasoning in expressive description logics

The method we have presented above is not directly applicable to more complex
languages or TBoxes not respecting the particular form above. In order to extend it
to more general cases we make use of the following observation: Linear inequalities
capture global constraints on the total number of instances of concepts and roles.
So we have to represent local constraints expressed by number restrictions by means
of global constraints. This can be done only if P; and the following generalization
of Py hold:

P/: For each atomic role P and each concept expression C' appearing in 7, the
domain of P is either included in the extension of C' or disjoint from it.
Similarly for the codomain of P.

This condition guarantees that, in a model, all instances of a concept “behave” in
the same way, and thus the local constraints represented by number restrictions are
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indeed correctly captured by the global constraints represented by the system of
inequalities.

It is possible to enforce conditions Py and P/, for expressive description logics,
by first transforming the TBox, and then deriving the system of inequalities from
the transformed version. We briefly sketch the technique to decide finite concept
satisfiability in ALUNT TBoxes consisting of specializations, i.e., inclusion axioms
in which the concept on the left hand side is atomic. A detailed account of the
technique and an analysis of its computational complexity has been presented by
Calvanese [1996¢].

First of all, it is easy to see that, by introducing at most a linear number of new
atomic concepts and TBox axioms, we can transform the TBox into an equivalent
one in which the nesting of constructs is eliminated. Specifically, in such a TBox the
concept on the right hand side of an inclusion axiom is of the form L, L, Ly, VR.L,
>n R, or <n R, where L is an atomic or negated atomic concept. For example,
given the axiom

ALC CiuCy

where C7 and C5 do not have the form above, we introduce two new atomic concepts
Ac, and Ac,, and replace the axiom above by the following ones

A C AC1 (] A02
Ay E Oy
ACQ E CQ

Then, to ensure that conditions P; and P, are satisfied, we use instead of atomic
concepts, sets of atomic concepts, called compound concepts' and instead of atomic
roles, so called compound roles. Each compound role is a triple (P, CAH, 62) consist-
ing of an atomic role P and two compound concepts 61 and 62 Intuitively, the
instances of a compound concept C are all those individuals of the domain that are
instances of all concepts in C and are not instances of any concept not in C. A com-
pound role (P, Ch, 02) is interpreted as the restriction of role P to the pairs whose
first component is an instance of 5’1 and whose second component is an instance of
62.

This ensures that two different compound concepts have necessarily disjoint exten-
sions, and hence that the property corresponding to P; holds. The same observation
holds for two different compound roles (P, 51, 62) and (P, 6’{, éé) that correspond
to the same role P. Moreover, for compound roles, the property corresponding
to property Po holds by definition, and, considering that the TBox contains only
specializations and that nesting of constructs has been eliminated, also P/, holds.

LA similar technique, called atomic decomposition there, was used by Ohlbach and Koehler [1999].
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We first consider the set 7’ of axioms in the TBox that do not involve number
restrictions. Such axioms force certain compound concepts and compound roles to
be inconsistent, i.e., have an empty extension in all interpretations that satisfy 7.
For example, the axiom A; C —As makes all compound concepts that contain both
A; and As inconsistent. Similarly, the axiom A; C VP.As makes all compound
roles (P, 61, 52) such that 61 contains A; and @2 does not contain As inconsistent.
Checking whether a given compound concept is inconsistent essentially amounts to
evaluating a propositional formula in a given propositional model (the one corre-
sponding to the compound concept), and hence can be done in time polynomial in
the size of the TBox. Similarly, one can check in time polynomial in the size of the
TBox whether a given compound role is inconsistent. Observe however, that since
the total number of compound concepts and roles is exponential in the number of
atomic concepts in the TBox, doing the check for all compound concepts and roles
takes in general exponential time.

Once the consistent compound concepts and roles have been determined, we can
introduce for each of them an unknown in the system of inequalities (the inconsistent
compound concepts and roles are discarded). The axioms in the TBox involving
number restrictions are taken into account by encoding them into suitable linear
inequalities. Such inequalities are derived in a way similar to inequalities 5.1, ex-
cept that now each inequality involves one unknown corresponding to a compound
concept and a sum of unknowns corresponding to compound roles.

Then, to check finite satisfiability of an atomic concept A, we can add to the
system the inequality

Z Var(C) > 1

CC2A | AeC

which forces the extension of A to be nonempty. Again, if the system admits an
acceptable solution, then we can construct from such a solution a finite model of
the TBox in which A is satisfied; if no such solution exists, then A is not finitely
satisfiable. To check finite satisfiability of an arbitrary concept C, we can introduce
a new concept name A, add to the TBox the axiom A C C, and then check the
satisfiability of A. Indeed, if A is finitely satisfiable, then so is C'. Conversely, if the
original TBox admits a finite model Z in which C has a nonempty extension, then
we can simply extend Z to A by interpreting A as C7, thus obtaining a finite model
of the TBox plus the additional axiom in which A is satisfied.

The system of inequalities can be effectively constructed in time exponential in the
size of the TBox, and checking for the existence of acceptable solutions is polynomial
in the size of the system [Calvanese et al., 1994]. Moreover, since verifying concept
satisfiability is already EXPTIME-hard for TBoxes consisting of specializations only
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and expressed in the much simpler language ALY [Calvanese, 1996b], the above
method provides a computationally optimal reasoning procedure.

Theorem 5.25 Finite concept satisfiability in ACUNT TBozes consisting of spe-
ctalizations only is EXPTIME-complete.

The method can be extended to decide finite concept satisfiability also for a
wider class of TBoxes, in which a negated atomic concept and, more in general,
an arbitrary Boolean combination of atomic concepts may appear on the left hand
side of axioms. In particular, this makes it possible to deal also with knowledge
bases containing definitions of concepts that are Boolean combinations of atomic
concepts, and reason on such knowledge bases in deterministic exponential time.
Since ALUNT is not closed under negation, we cannot immediately reduce logical
implication to concept satisfiability. However, the technique presented above can
be adapted to decide in deterministic exponential time also finite logical implication
in specific cases [Calvanese, 1996c].

A further extension of the above method can be used to decide logical implication
in ALCQZ. The technique uses two successive transformations on the TBox, each of
which introduces a worst case exponential blow up, and a final polynomial encoding
into a system of linear inequalities [Calvanese, 1996¢; 1996a).

Theorem 5.26 Logical implication w.r.t. finite models in ALCQOT can be decided
in worst case deterministic double exponential time.

For more expressive description logics, and in particular for all those description
logics containing the construct for reflexive-transitive closure of roles, the decidabil-
ity of finite model reasoning is still an open problem. Decidability of finite model
reasoning for C2, i.e., first order logic with two variables and counting quantifiers
(see also Chapter 4, Section 4.2) was shown recently [Gridel et al., 1997b]. C? is
a logic that is strictly more expressive than ALCOT TBoxes, since it allows, for
example, to impose cardinality restrictions on concepts [Baader et al., 1996] or to
use the full negation of a role. However, apart from decidability, no complexity
bound is known for finite model reasoning in C2.

Techniques for finite model reasoning have also been studied in databases. In
the relational model, the interaction between inclusion dependencies and functional
dependencies causes the loss of the finite model property, and finite implication of
dependencies under various assumptions has been investigated by Cosmadakis et
al. [1990]. A method for finite model reasoning has been presented by Calvanese
and Lenzerini [1994b; 1994a] in the context of a semantic and an object-oriented
database model, respectively. The reasoning procedure, which represents a direct
generalization of the one discussed above to relations of arbitrary arity, does not
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exploit reification to handle relations (see Section 5.7) but encodes directly the
constraints on them into a system of linear inequalities.

5.9 Undecidability results

Several additional description logic constructs besides those discussed in the previ-
ous sections have been proposed in the literature. In this section we present the most
important of these extensions, discussing how they influence decidability, and what
modifications to the reasoning procedures are needed to take them into account.
In particular, we discuss Boolean constructs on roles, variants of role-value-maps
or role agreements, and number restrictions on complex roles. Most of these con-
structs lead to undecidability of reasoning, if used in an unrestricted way. Roughly
speaking, this is mainly due to the fact that the tree model property is lost [Vardi,
1997].

5.9.1 Boolean constructs on complex roles

In those description logics that include regular expressions over roles, such as
ALCQOTL ey, since regular languages are closed under intersection and complementa-
tion, the intersection of roles and the complement of a role are already expressible,
if we consider them applied to the set of role expressions. Here we consider the
more common approach in PDLs, namely to regard Boolean operators as applied
to the binary relations denoted by complex roles. The logics thus obtained are
more expressive than traditional PDL [Harel, 1984] and reasoning is usually harder.
We notice that the semantics immediately implies that intersection of roles can be
expressed by means of union and complementation.

Satisfiability in PDL augmented with intersection of arbitrary programs is decid-
able in deterministic double exponential time [Danecki, 1984], and thus is satisfia-
bility in ALC ., augmented with intersection of complex roles, even though these
logics have neither the tree nor the finite model property. On the other hand, satisfi-
ability in PDL augmented with complementation of programs is undecidable [Harel,
1984], and so is reasoning in ALC ey augmented with complementation of complex
roles. Also, DPDL augmented with intersection of complex roles is highly undecid-
able [Harel, 1985; 1986], and since global functionality of roles (which corresponds
to determinism of programs) can be expressed by means of local functionality, the
undecidability carries over to ALCF ¢, augmented with intersection of roles.

These proofs of undecidability make use of a general technique based on the
reduction from the unbounded tiling (or domino) problem [Berger, 1966; Robinson,
1971], which is the problem of checking whether a quadrant of the integer plane
can be tiled using a finite set of tile types—i.e., square tiles with a color on each
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side—in such a way that adjacent tiles have the same color on the sides that touch!.
We sketch the idea of the proof using the terminology of description logics, instead
of that of PDLs. The reduction uses two roles right and up which are globally
functional (i.e., <1right, <1up) and denote pairs of tiles that are adjacent in the
x and y directions, respectively. By means of intersection of roles, right and up
are constrained to effectively define a two-dimensional grid. This is achieved by
imposing for each point of the grid (i.e., reachable through right and up) that by
following right o up one reaches a point reached also by following up o right:

V(right U up)*.3((right o up) M (up o right))

To enforce this condition, the use of intersection of compositions of atomic roles is
essential. Reflexive-transitive closure (i.e., V(rightUup)*.C') is then also exploited to
impose the required constraints on all tiles of the grid. Observe that, in the above
reduction, one can use TBox axioms instead of reflexive-transitive closure to enforce
the necessary conditions in every point of the grid.

The question arises if decidability can be preserved if one restricts Boolean op-
erations to basic roles, i.e., atomic roles and their inverse. This is indeed the case
if complementation of basic roles is used only to express difference of roles, as
demonstrated by the EXPTIME decidability of DLR and its extensions, in which
intersection and difference of relations are allowed (see Section 5.7).

5.9.2 Role-value-maps

Another construct, which stems from frame-systems, and which provides additional
useful means to specify structural properties of concepts, is the so called role-value-
map [Brachman and Schmolze, 1985], which comes in two forms: An equality role-
value-map, denoted R; = Ro, represents the individuals o such that the set of
individuals that are connected to o via role Ry equals the set of individuals connected
to o via role Ro. The second form of role-value-map is containment role-value-map,
denoted R; C Ro, whose semantics is defined analogously, using set inclusion instead
of set equality. Using these constructs, one can denote, for example, by means of
ownsomade_in C lives_in the set of all persons that own only products manufactured
in the country they live in.

When role-value-maps are added, the logic loses the tree model property, and
this construct leads immediately to undecidability of reasoning when applied to
role chains (i.e., compositions of atomic roles). For ALCe4, this can be shown by
a reduction from the tiling problem in a similar way as to what is done in [Harel,
1985] for DPDL with intersection of roles. In this case, the concept right o up =

I In fact the reduction is from the H%-complete—and thus highly undecidable—recurring tiling problem
[Harel, 1986], where one additionally requires that a certain tile occurs infinitely often on the z-axis.
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up o right involving role-value-map can be used instead of role intersection to define
the constraints on the grid. The proof is slightly more involved than that for DPDL,
since one needs to take into account that the roles right and up are not functional
(while in DPDL all programs/roles are functional). However, undecidability holds
already for concept subsumption (with respect to an empty TBox) in AL (in fact
F L) augmented with role-value-maps, where the involved roles are compositions
of atomic roles [Schmidt-Schau$, 1989]—see Chapter 3 for the details of the proof.
As for role intersection, in order to show undecidability, it is necessary to ap-
ply role-value-maps to compositions of roles. Indeed, if the application of role-
value-maps is restricted to Boolean combinations of basic roles, it can be added
to ALCQT,., without influencing decidability and worst case complexity of rea-
soning. This follows directly from the decidability results for the extension with
Boolean constructs on atomic and inverse atomic roles (captured by DLR). In-
deed, R1 C Ry is equivalent to V(R; M —Rg).L, and thus can be expressed using
difference of roles. We observe also that universal and existential role agreements
introduced in [Hanschke, 1992], which allow one to define concepts by posing various
types of constraints that relate the sets of fillers of two roles, can be expressed by
means of intersection and difference of roles. Thus reasoning in the presence of role
agreements is decidable, provided these constructs are applied only to basic roles.

5.9.3 Number restrictions on complex roles

In ALCFZT ey, the use of (qualified) number restrictions is restricted to atomic and
inverse atomic roles, which guarantees that the logic has the tree model property.
This property is lost, together with decidability, if functional restrictions may be
imposed on arbitrary roles. The reduction to show undecidability is analogous to
the one used for intersection of roles, except that now functionality of a complex
role (i.e., <1 (right oup) U (up oright)) is used instead of role intersection to define
the grid.

An example of decidable logic that does not have the tree model property is
obtained by allowing the use of role composition (but not transitive closure) inside
number restrictions. Let us denote with N'(X), where X is a subset of {LJ,M,0,” },
unqualified number restrictions on roles that are obtained by applying the role
constructs in X to atomic roles. Let us denote with ALCN (X) the description logic
obtained by extending ALC (cf. Chapter 2) with number restrictions in N'(X). As
shown by Baader and Sattler [1999], concept satisfiability is decidable for the logic
ALCN (o), even when extended with number restrictions on union and intersection
of role chains of the same length. Notice that, decidability for ALCN (o) holds
only for reasoning on concept expressions and is lost if one considers reasoning
with respect to a TBox (or alternatively adds transitive closure of roles) [Baader
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and Sattler, 1999]. Reasoning even with respect to the empty TBox is undecidable
if one adds to ALCN number restrictions on more complex roles. In particular,
this holds for ALCN (M,0) (if no constraints on the lengths of the role chains are
imposed) and for ALCN (L, 0,” ) [Baader and Sattler, 1999]. The reductions exploit
again the tiling problem, and make use of number restrictions on complex roles to
simulate a universal role that is used for imposing local conditions on all points of
the grid.

Summing up we can state that the borderline between decidability and undecid-
ability of reasoning in the presence of number restrictions on complex roles has been
traced quite precisely, although there are still some open problems. E.g., it is not
known whether concept satisfiability in ALCN (U, o) is decidable (although logical
implication is undecidable) [Baader and Sattler, 1999].
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Abstract

This chapter considers, on the one hand, extensions of Description Logics by features
not available in the basic framework, but considered important for using Description
Logics as a modeling language. In particular, it addresses the extensions concerning:
concrete domain constraints; modal, epistemic, and temporal operators; probabili-
ties and fuzzy logic; and defaults.

On the other hand, it considers non-standard inference problems for Description
Logics, i.e., inference problems that—unlike subsumption or instance checking—are
not available in all systems, but have turned out to be useful in applications. In par-
ticular, it addresses the non-standard inference problems: least common subsumer
and most specific concept; unification and matching of concepts; and rewriting.

6.1 Introduction

Chapter 2 introduces the language ALCN as a prototypical Description Logic, de-
fines the most important reasoning tasks (like subsumption, instance checking, etc.),
and shows how these tasks can be realized with the help of tableau-based algorithms.
For many applications, the expressive power of ALCN is not sufficient to express
the relevant terminological knowledge of the application domain. Some of the most
important extensions of ALCN by concept and role constructs have already been
briefly introduced in Chapter 2; these and other extensions have then been treated
in more detail in Chapter 5. All these extensions are “classical” in the sense that
their semantics can easily be defined within the model-theoretic framework intro-
duced in Chapter 2. Although combinations of these constructs may lead to very
expressive DLs (the unrestricted combination even to undecidable ones), all the DLs
obtained this way can only be used to represent time-independent, objective, and
certain knowledge. In addition, they do not allow for “built-in data structures” like
numerical domains.

226



Ezxtensions to Description Logics 227

The “nonclassical” language extensions considered in the first part of this chap-
ter try to overcome some of these deficiencies. The extension by concrete domains
allows us to integrate numerical and other domains in a schematic way into Descrip-
tion Logics. The extension of DLs by modal operators allows for the representation
of time-dependent and subjective knowledge (e.g., knowledge about knowledge and
belief of intelligent agents). DLs that can explicitly represent time have also been
introduced outside the modal framework. The extension by epistemic operators
provides a model-theoretic semantics for rules, it can be used to impose “local”
closed world assumptions, and to integrate integrity constraints into DLs. In order
to represent vague and uncertain knowledge, different approaches based on proba-
bilistic, possibilistic, and fuzzy logics have been proposed. Finally, non-monotonic
Description Logics are obtained by the integration of defaults into DLs.

When building and maintaining large DL knowledge bases, inference services like
subsumption and satisfiability are very helpful, but in general not quite sufficient
for an adequate support of the knowledge engineer. For this reason, some DLs
systems (e.g., CLASSIC) provide their users with additional system services, which
can formally be reconstructed as new types of inference problems. In the second
part of this chapter we will motivate and introduce the most prominent of these
“non-standard” inference problems, and try to give an intuition on how they can
be solved.

6.2 Language extensions

The extensions introduced in this section are “nonclassical” in the sense that defin-
ing their semantics is not obvious and requires an extension of the model-theoretic
framework considered until now; for many (but not all) of these extensions, non-
classical logics (such as modal and non-monotonic logics) are employed to provide
the right framework.

6.2.1 Concrete domains

A drawback that all Description Logics introduced until now share is that all the
knowledge must be represented on the abstract logical level. In many applications,
one would like to be able to refer to concrete domains and predefined predicates
on these domains when defining concepts. An example for such a concrete domain
could be the set of nonnegative integers, with predicates such as > (greater-or-equal)
or < (less-than). For example, assume that we want to give an adequate definition
of the concept Woman. The first idea could be to use the concept description
Human M Female for this purpose. However, a newborn female baby would probably
not be called a woman, and neither would a three-year old toddler. Thus, as an
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additional property, one could require that a female human-being should be old
enough (e.g., at least 18) to be called a woman. In order to express this property,
one would like to introduce a new (functional) role has-age, and define Woman by
an expression of the form Human M Female M Jhas-age.>15. Here >1g stands for the
unary predicate {n | n > 18} of all nonnegative integers greater than or equal to
18.

Stating such properties directly with reference to a given numerical domain seems
to be easier and more natural than encoding them somehow into abstract concept
expressions. In addition, such a direct representation makes it possible to use ex-
isting reasoners for the concrete domain. For example, we could have also decided
to introduce a new atomic concept Atleastl8 to express the property of being at
least 18 years old. However, if for some reason we also need the property of be-
ing at least 21 years old, we must make sure that the appropriate subsumption
relationship between AtlLeast18 and Atleast21 is asserted as well. While this could
still be done by adding appropriate inclusion axioms, it does not appear to be an
elegant solution, and it would still not take care of other relationships, e.g., the
fact that AtLeast18 N AtMostl6 is unsatisfiable. In contrast, an appropriate rea-
soner for intervals of nonnegative integers would automatically take care of these
relationships.

The need for such a language extension was already evident to the designers of
early DL systems such as MESON [Edelmann and Owsnicki, 1986; Patel-Schneider
et al., 1990], K-REP [Mays et al., 1988; 1991a], and CrLAssIC [Brachman et al.,
1991; Borgida and Patel-Schneider, 1994]: in addition to abstract individuals, these
systems also allow one to refer to “concrete” individuals such as numbers and strings.
Both the CraAssIC and the K-REP reasoner can deal correctly with intervals, whereas
in MESON the user had to supply the adequate relationships between the concrete
predicates in a separate hierarchy. All these approaches are, however, ad hoc in the
sense that they are restricted to a specific collection of concrete objects.

In contrast, Baader and Hanschke [1991a] propose a scheme for integrating (al-
most) arbitrary concrete domains into Description Logics. This extension was de-
signed such that

e it still has a formal declarative semantics that is very close to the usual semantics
employed for DLs;

e it is possible to combine the tableau-based algorithms available for DLs with
existing reasoning algorithms in the concrete domain in order to obtain the ap-
propriate algorithms for the extension;

e it provides a scheme for extending DLs by various concrete domains rather than
constructing a single ad hoc extension for a specific concrete domain.

In the following, we will first introduce the original proposal by Baader and
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Hanschke, and then describe two extensions of this proposal [Hanschke, 1992;
Haarslev et al., 1999].

6.2.1.1 The family of Description Logics ALC(D)

Before we can define the members of this family of DLs, we must formalize the
notion of a concrete domain.

Definition 6.1 A concrete domain D consists of a set AP, the domain of D, and
a set pred(D), the predicate names of D. Each predicate name P € pred(D) is
associated with an arity n, and an n-ary predicate PP C (AP, "

Let us illustrate this definition by examples of interesting concrete domains. Let us
start with some numerical ones:

e The concrete domain A, which we have employed in our introductory example,
has the set IN of all nonnegative integers as its domain, and pred(N') consists of
the binary predicate names <, <, >, > as well as the unary predicate names <,
<n, Zn, >n for n € N, which are interpreted by predicates on IN in the obvious
way.

e The concrete domain R has the set R of all real numbers as its domain, and the
predicates of R are given by formulae that are built by first-order means (i.e.,
by using Boolean connectives and quantifiers) from equalities and inequalities
between integer polynomials in several indeterminates. For example, z + 22 =y
is an equality between the polynomials p(z,2) = = + 22 and ¢(y) = »; and
x > y is an inequality between very simple polynomials. From these equalities
and inequalities one can for instance build the formulae 3z.(z + 22 = y) and
Jz.(x + 22 = y) V (¥ > y). The first formula yields a predicate name of arity 2
(since it has two free variables), and it is easy to see that the associated predicate
is {(r,s) | r and s are real numbers and r < s}. Consequently, the predicate
associated to the second formula is {(r, s) | r and s are real numbers} = R x R.

e The concrete domain Z is defined just like R, with the only difference that A%
is the set of all integers instead of all real numbers.

In addition to numerical domains, Definition 6.1 also captures more abstract do-
mains:

e A given (fixed) relational database DB can be seen as a concrete domain DB,
whose domain is the set of atomic values occurring in DB, and whose predicates
are the relations that can be defined over DB using a query language (such as

SQL).
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e One can also consider Allen’s interval calculus [Allen, 1983] as concrete domain
ZC. Here A€ consists of time intervals, and the predicates are built from Allen’s
basic interval relations (such as before, after, ...) with the help of Boolean
connectives.

e Instead of time intervals one can also consider spatial regions (e.g., in R x R),
and use Boolean combinations of the basic RCC-8 relations as predicates [Randell
et al., 1992; Bennett, 1997].

Although syntax and semantics of DLs extended by concrete domains could be
defined with the general notion of a concrete domain introduced in Definition 6.1,
the requirement that the extended language should still have decidable reasoning
problems adds some additional restrictions.

To be able to compute the negation normal form of concepts in the extended
language, we must require that the set of predicate names of the concrete domain
is closed under negation, i.e., if P is an n-ary predicate name in pred(D) then there
has to exist a predicate name Q in pred(D) such that QP = (AP)"\ PP. We will
refer to this predicate name by P. In addition, we need a unary predicate name that
denotes the predicate AP. The domain N from above satisfies these two properties
since, e.g., <, = >, and (ZO)N =N.

Let us now clarify what kind of reasoning mechanisms are required in the concrete
domain. Let Py,..., Py be k (not necessarily different) predicate names in pred(D)
of arities nq,...,n,. We consider the conjunction

Here () stands for an n-tuple (xgi), RN :1:7(53) of variables. It is important to note
that neither all variables in one tuple nor those in different tuples are assumed to be
distinct. Such a conjunction is said to be satisfiable iff there exists an assignment
of elements of AP to the variables such that the conjunction becomes true in D.
We will call the problem of deciding satisfiability of finite conjunctions of this form

the satisfiability problem for D.

Definition 6.2 The concrete domain D is called admissible iff (i) the set of its
predicate names is closed under negation and contains a name Tp for AP, and
(ii) the satisfiability problem for D is decidable. n

With the exception of Z, all the concrete domains introduced above are admis-
sible. For example, decidability of the satisfiability problem for R is a conse-
quence of Tarski’s decidability result for real arithmetic [Tarski, 1951; Collins,
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1975). In contrast, undecidability of the satisfiability problem for Z is a con-
sequence of the undecidability of Hilbert’s 10th problem [Matiyasevich, 1971;
Davis, 1973).

In the following, we will take the language ALC as the (prototypical) starting

point of our extension.!

In the following, let D be an arbitrary (but fixed) con-
crete domain. The interface between ALC and the concrete domain is inspired by
the agreement construct between chains of functional roles (see Chapter 2, Sub-
section 2.4.3). With this construct one can, for example, express the concept
of all women whose father and husband are of the same age by the expression
Woman Mhas-father o has-age = has-husband o has-age. However, one cannot express
that the husband is even older than the father. This becomes possible if we take

the concrete domain A. Then we can simply write
Woman M 3(has-father o has-age, has-husband o has-age).<.

More generally, our extension, called ALC(D), will allow to state that a tuple of
chains of functional roles satisfies a (not necessarily binary) predicate, which is
provided by the concrete domain in question.

Thus, ALC(D) extends ALC in two respects. First, the set of role names is now
assumed to be partitioned into a set of functional roles and a set of ordinary roles.
Both types of roles are allowed to occur in value restrictions and in the existential
quantification construct. In addition, there is a new constructor, called existential
predicate restriction, which is defined by adding to the syntax rules for ALC the
rule

C,D — 3F(uy,...,uy).P,

where P is an n-ary predicate of D and wug,...,u, are chains of functional roles.
When considering ALC(D)-ABoxes, one must distinguish between names for ab-
stract and for concrete individuals. Concrete predicates P € pred(D) give rise to
additional ABox assertions of the form P(xi,...,x,), where x1,...,z, are names
for concrete individuals.

Definition 6.3 An interpretation T for ALC(D) consists of a set AT, the abstract
domain of the interpretation, and an interpretation function. The abstract domain
and the given concrete domain must be disjoint, i.e., AP N AT = (). As before,
the interpretation function associates with each concept name a subset of AZ and
with each ordinary role name a binary relation on AZ. The new feature is that the
functional roles are now interpreted by partial functions from AZ into AT U AP.
If u= fio---0f, is a chain of functional roles, then u? denotes the composition
ff oo fI of the partial functions fI,..., fF.

1 All the definitions would, of course, also work for any other concept description language. The approach
for combining the reasoning algorithms will work for many other languages, but not for all of them.
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The semantics of the usual ALC-constructors is defined as before. In particular,
this means that complex concept descriptions are always interpreted as subsets
of the abstract domain AZ. The existential predicate restriction is interpreted as
follows:

(3(ui, ..., uy).P)t = {x € AT | there exist r1,...,7, € AP such that

uf(z) =r1,...,ul(x) =r, and (r1,...,7,) € PP}.
]

Above, we have already seen two examples of concepts of ALC(N'). The following
ALC(R)-concepts describe rectangles and squares in the R x R:

Rectangle = 3(x,y,b,h).rectangle-cond,
Square = Rectangle M 3(b, h).equal,

where the concrete predicates rectangle-cond and equal are defined as equal(z,y) <
x = y and rectangle-cond(x,y,b,h) < b > 0 A h > 0. In rectangle-cond, the first
two arguments are assumed to express the z- and y- coordinate of the lower left
corner of the rectangle, whereas the third and fourth argument express the breadth
and hight of the rectangle. We leave it to the reader to define the concept “pairs
of rectangles” where the first component is a square that is contained in the second
component.

A tableau-based algorithm for deciding consistency of ALC(D)-ABoxes for ad-
missible D was introduced in [Baader and Hanschke, 1991b]. The algorithm has an
additional rule that treats existential predicate restrictions according to their se-
mantics. The main new feature is that, in addition to the usual “abstract” clashes,
there may be concrete ones, i.e., one must test whether the given combination of
concrete predicate assertions is non-contradictory. This is the reason why we must
require that the satisfiability problem for D is decidable. As described in [Baader
and Hanschke, 1991b], the algorithm is not in PSPACE. Using techniques similar
to the ones employed for ALC it can be shown, however, that the algorithm can
be modified such that it needs only polynomial space [Lutz, 1999b], provided that
the satisfiability procedure for D is in PSPACE. In the presence of acyclic TBoxes,
reasoning in ALC(D) may become NEXPTIME-hard even for rather simple concrete
domains with a polynomial satisfiability problem [Lutz, 2001b).

This technique of combining a tableau-based algorithm for the description log-
ics with a satisfiability procedure for the concrete domain can be extended to more
expressive DLs (e.g., ALCN and ALCN with agreements and disagreements). How-
ever, this is not true for arbitrary DLs with tableau-based decision procedures. For
example, the technique does not work if the tableau-based algorithm requires some
sort of blocking (see Chapter 2, Subsection 2.3.2.4) to ensure termination. Tech-
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nically, the problem is that concrete predicates can be used to state properties
concerning different individuals in the ABox, and that blocking, which is concerned
only with the properties of a single individual, cannot take this into account. The
main idea underlying an undecidability proof for such a logic is that elements of
the concrete domain (e.g., R) can encode configurations of a Turing machine and
that one can define a concrete predicate stating that one configuration is a direct
successor of the other. Finally, the DL must provide some means of representing
sequences of configurations of arbitrary length, which is usually the case for DLs
requiring blocking. More concretely, it was shown in [Baader and Hanschke, 1992]
(by reduction from Post’s correspondence problem) that satisfiability of concepts
becomes undecidable if transitive closure (of a single functional role) is added to
ALC(R). Post’s correspondence problem can also be used to show undecidability of
ALC(R) with general inclusion axioms, although one cannot use exactly the same
reduction as for transitive closure (see [Haarslev et al., 1998] for a similar reduc-
tion). A notable exception to the rule of thumb that concrete domains together
with general inclusion axioms lead to undecidability has recently been shown by
Lutz [2001a), who combines ALC with the concrete domain of rational numbers
with equality and inequality predicates.

6.2.1.2 Predicate restrictions on role chains

The role chains occurring in predicate restrictions of ALC (D) are restricted to chains
of functional roles. In [Hanschke, 1992] this restriction was removed. To be more
precise, the syntax rules for ALC are extended by the two rules

C,D — 3J(ui,...,un).P | V(ui,...,up).P,

where P is an n-ary predicate of D and wy,...,u, are chains of (not necessarily
functional) roles.

In this setting, ordinary roles are also allowed to have fillers in the concrete
domain, i.e., both functional and ordinary roles are interpreted as subsets of
AT x (AT U AP). Of course, functional roles must still be be interpreted as partial
functions. The extension of the predicate restrictions is defined as

(3(u1,...,uy).P)t = {x € AT | there exist r1,...,r, € AP such that
(z,m1) €ut, ... (z,70) €ul and (r1,...,m,) € PP},

(Y(u1,...,up).P)t ={x € AT | for all r1,...,7: (w,71) €ud, ... (z,7,) € ul
implies (r1,...,r,) € PP}.

Using the universal predicate restriction one can, for example, define the concept
of parents all of whose children are younger than 4 by the description

Parent M Vhas-child o has-age. <4 .
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Hanschke [1992] shows that an extension of the DL we have just introduced still
has a decidable ABox consistency problem, provided that the concrete domain D is
admissible.

6.2.1.3 Predicate restrictions defining roles

In [Haarslev et al., 1998; 1999], ALC(D) was extended in a different direction:
predicate restrictions can now also be used to define new roles. To be more precise,
if P is a predicate of D of arity n + m and wuy,...,un,v1,...,0yn are chains of
functional roles, then

J(ur, ... up)(v1, ..., 0m). P

is a complex role. These complex roles may be used both in value restrictions and in
the existential quantification construct. The semantics of complex roles is defined
as

(3(ut, ..., un)(v1,...,0m).P) =
{(z,y) € AT x AT | there exist r1,...,7p, 51, ..,8m € AP such that

uf(2) =i, ul(@) = ravf (y) = 51, 0L ) = s
and (T17"'7rn7‘917-'-,5m) S PD}

For example, the complex role 3(has-age)(has-age).> consists of all pairs of indi-
viduals having an age such that the first is older than the second.

Unfortunately, it has turned out that the full logic obtained by this extension
has an undecidable satisfiability problem [Haarslev et al., 1998]. To overcome this
problem, Haarslev et al. [1999] define syntactic restrictions on concepts such that
the restricted language (i) is closed under negation, and (ii) has a decidable ABox
consistency problem. Consequently, the subsumption and the instance problem are
also decidable. The complexity of reasoning in this DL is investigated in [Lutz,
2001b]. Similar to the case of acyclic TBoxes, rather simple concrete domains can
already make reasoning NEXPTIME-hard.

An approach for integrating arithmetic reasoning into Description Logics that
considerable differs from the concrete domain approach described above was pro-
posed by Ohlbach and Koehler [1999].

6.2.2 Modal extensions

Although the DLs discussed so far provide a wide choice of constructors, usually they
are intended to represent only static knowledge and are not able to express various
dynamic aspects such as time-dependence, beliefs of different agents, obligations,
etc. For example, in every standard description language we can define a concept
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“good car” as, say, a car with an air-conditioner:
GoodCar = Car N Jpart.Airconditioner. (6.1)

However, we have no means to represent the subtler knowledge that only John
believes (6.1) to be the case, while Mary does not think so:

[John believes](6.1) A ~[Mary believes](6.1).

Nor can we express the fact that (6.1) holds now, but in the future the notion of a
good car may change (since, for instance, all cars will have air conditioners):

(6.1) A {eventually) —(6.1).

A way to bridge this gap seems quite clear and will be discussed in this and the
next section: one can simply combine a DL with a suitable modal language treating
belief, temporal, deontic or some other intensional operators. However, there are
a number of parameters that determine the design of a modal extension of a given
DL.

(I) First, modal operators can be applied to different kinds of well-formed ex-
pressions of the DL.

One may apply them only to conceptual and assertional axioms thereby forming
new axioms of the form:

[John believes](GoodCar = Car M dpart.Airconditioner),

[Mary believes] (eventually) (Rich(JOHN)).
Modal operators may also be applied to concepts in order to form new ones:
[John believes]expensive
i.e., the concept of all objects John believes to be expensive, or
HumanBeing M 3child.[Mary believes| (eventually) GoodStudent

i.e., the concept of all human beings with a child that Mary believes to be eventually
a good student. By allowing applications of modal operators to both concepts and
axioms we obtain expressions of the form

[John believes](GoodCar = [Mary believes|GoodCar)

i.e., John believes that a car is good if and only if Mary thinks so.
Finally, one can supplement the options above with modal operators applicable
to roles. For example, using the temporal operator [always] (in future) and the role



236 F. Baader, R. Kiisters, F. Wolter

loves, we can form the new role [always|loves (which is understood as a relation
between objects x and y that holds if and only if x will always love y) to say

(F[always]loves.Woman)(JOHN)

i.e., John will always love the very same woman (but perhaps not only her), which
is not the same as ([always|Jloves.Woman)(JOHN).

(IT) All these languages are interpreted with the help of the possible worlds
semantics, in which the accessibility relations between worlds (or points in time, .. .)
treat the modal operators, and the worlds themselves are DL interpretations.

The properties of the modal operators are determined by the conditions we im-
pose on the corresponding accessibility relations. For example, by imposing no
condition at all we obtain what is known as the minimal normal modal logic K—
although of definite theoretical interest, it does not have the properties required
to model operators like [agent A knows], (eventually), etc. In the temporal case,
depending on the application domain we may assume time to be linear and dis-
crete (for example, the usual strict ordering of the natural numbers), or branch-
ing, or dense, etc. (see [Gabbay et al., 1994; van Benthem, 1996]). Moreover,
we have the possibility to work with intervals instead of points in time (see Sec-
tion 6.2.4). In epistemic logic, transitivity of the accessibility relation for agent
A’s knowledge means what is called positive introspection (A knows what she
knows), euclideannes corresponds to negative introspection (A knows what she
does not know), and reflexivity means that everything known by A is true; see
Section 6.2.3 for a formulation of these principles in terms of Description Log-
ics. For more information and further references consult [Fagin et al., 1995;
Meyer and van der Hoek, 1995].

(III) When connecting worlds—that is, ordinary interpretations of the pure de-
scription language—by accessibility relations, we are facing the problem of connect-
ing their objects. Depending on the particular application, we may assume worlds
to have arbitrary domains (the varying domain assumption), or we may assume
that the domain of a world accessible from a world w contains the domain of w
(the expanding domain assumption), or that all the worlds share the same domain
(the constant domain assumption); see [van Benthem, 1996] for a discussion in the
context of first-order temporal logic. Consider, for instance, the following axioms:

—[agent A knows](Unicorn = L),
([agent A knows]—Unicorn) = T.

The former means that agent A does not know that unicorns do not exist, while
according to the latter, for every existing object, A knows that it is not a unicorn.
Such a situation can be modeled under the expanding domain assumption, but these
two formulas cannot be simultaneously satisfied in a model with constant domains.
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(IV) Finally, one should take into account the difference between global (or rigid)
and local (or flexible) symbols. In our context, the former are the symbols which
have the same extension in every world in the model under consideration, while
the latter are those whose interpretation is not fixed. Again the choice between
these depends on the application domain: if the knowledge base is talking about
employees of a company then the name John Smith should probably denote the
same person no matter what world we consider, while President of the company
may refer to different persons in different worlds. For a more detailed discussion
consult, e.g., [Fitting, 1993; Kripke, 1980].

To describe the syntax and semantics more precisely we briefly introduce the
modal extension L ., of ALC with n unary modal operators Oy, ..., 0,, and their
duals v, ..., <.

Definition 6.4 (Concepts, roles, axioms) Concepts and roles of L") .. are de-
fined inductively as follows: all concept names are concepts, and if C, D are con-
cepts, R is a role, and <; is a modal operator, then C M D, -C, ¢;C, and dR.C are
concepts.! All role names are roles, and if R is a role, then O; R and ;R are roles.

Let C' and D be concepts, R a role, and a, b object names. Then expressions of
the form C' = D, R(a,b), and C(a) are axioms. If ¢ and ¢ are axioms then so are
Oip, mp, and @ A . "

We remind the reader that models of a propositional modal language are based
on Kripke frames, i.e., structures of the form § = (W, <1, ... <,) in which each <; is
a binary (accessibility) relation on the set of worlds W. What is going on inside the
worlds is of no importance in the propositional framework (see, e.g., [Chagrov and
Zakharyaschev, 1997] for more information on propositional modal logics). Models
of L7 - are also constructed on Kripke frames; however, in this case their worlds
come equipped with interpretations of ALC.

Definition 6.5 (model) A model of L") -, based on a frame § = (W, <1,..., <)
is a pair 9 = (§,I) in which [ is a function associating with each w € W an
ALC-interpretation

I(w) = <AI’“’, -I’w> )

9 has constant domain iff AT = AW for all v,w € W. 9 has expanding
domains iff AI(®) € AI(W) whenever v <; w, for some 1. n

Definition 6.6 For a model 9 = (§,I) and a world w in it, the extensions CTv

I Note that value restrictions (the modal box operators O;) need not explicitly be included here since they
can be expressed using negation and existential restrictions (the modal diamond operators <;).
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and R and the satisfaction relation w = ¢ (¢ an axiom) are defined inductively.
The interesting new steps of the definition are:

(i) z € (¢;0) iff Fv. v;wand z € CTY;
(ii) (z,y) € (O;R)\® iff Fv. v>;w and (z,y) € RHY;
(i) w | i ff v, v>;wand v | .

An axiom ¢ (a concept C) is satisfiable in a class of models M if there is a model
9 € M and a world w in 90 such that w = ¢ (CT% # ). .

Given a class of frames IC, the satisfiability problems for axioms and concepts in
are the most important reasoning tasks; others are reducible to them (see [Wolter
and Zakharyaschev, 1998; 1999b]). Notice that the satisfiability problem for con-
cepts is reducible to that for axioms since -(C' = 1) is satisfiable iff C'is satisfiable.
Also, the satisfiability problem for models with expanding or varying domain is re-
ducible to that for models with constant domain (see [Wolter and Zakharyaschev,
1998]).

We are now going to survey briefly the state of the art in the field. We will restrict
ourselves first to modal description logics which are not temporal logics. The latter
will be considered in Section 6.2.4. Chronologically, the first investigations of modal
description logics are [Laux, 1994; Graber et al., 1995; Baader and Laux, 1995;
Baader and Ohlbach, 1993; 1995]. The papers [Laux, 1994; Griber et al., 1995]
construct multi-agent epistemic description logics in which the belief operators apply
only to axioms; the accessibility relations are transitive, serial, and euclidean. The
decidability of the satisfiability problem for axioms follows immediately from the
decidability of both, the propositional fragment of the logic and ALC, because in
languages without modalized concepts and roles there is no interaction between the
modal operators and role quantification (see [Finger and Gabbay, 1992]). Baader
and Laux [1995] introduce a DL in which modal operators can be applied to both
axioms and concepts (but not to roles); it is interpreted in models with arbitrary
accessibility relations under the expanding domain assumption. The decidability of
the satisfiability problem for axioms is proved by constructing a complete tableau
calculus. This tableau calculus was modified and extended for checking satisfiability
in models with constant domain in [Lutz et al., 2002]. It decides satisfiability in
constant domain models in NEXPTIME, which matches the lower bound established
in [Mosurovic and Zakharyaschev, 1999] (see also [Gabbay et al., 2002)).

The papers [Wolter and Zakharyaschev, 1998; 1999a; 1999¢; 1999b; Wolter, 2000;
Mosurovic and Zakharyaschev, 1999] investigate the decision problem for various
families of modal description logics in detail. For example, in [Wolter and Za-
kharyaschev, 1999c; 1999b] it is shown that the satisfiability problem for arbitrary
axioms (possibly containing modalized roles) is decidable in the class of all frames
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and in the class of polymodal S5-frames—frames in which all accessibility rela-
tions are equivalence relations—based on constant, expanding, and varying do-
mains. It becomes undecidable, however, if common knowledge epistemic operators
(in the sense of [Fagin et al., 1995]) are added to the language or if the class of
frames consists of the flow of time (N, <). In [Wolter and Zakharyaschev, 1999a;
1998] it is shown that for expressive modal languages—like logics with common
knowledge operators or Propositional Dynamic Logics—the satisfiability problem
for axioms becomes decidable when modalized roles are not included. Wolter [2000]
shows that the satisfiability problem for concepts interpreted in frames with global
(i.e., world-independent) roles is decidable for expressive modal logics based on ALC
while the satisfiability problem for axioms is undecidable for them. However, even
the complexity of the satisfiability problem for concepts becomes non-elementary for
these logics [Gabbay et al., 2002]. In fact, for various decidable modal description
logics only computationally non-elementary decision procedures are known and the
precise complexity has not yet been determined (consult [Gabbay et al., 2002] for
further results).

The papers [Baader and Ohlbach, 1993; 1995] introduce a multi-dimensional de-
scription language that is even more expressive than L7 .. (but without object
names). Roughly, in this approach each dimension (object, time, belief, etc.) is rep-
resented by a set D; (of objects, moments of time, possible worlds, etc.), concepts
are interpreted as subsets of the cartesian product [[;; D;, and roles of dimension %
as binary relations between n-tuples that may differ only in the ith coordinate. One
can quantify over both, roles and concepts, in any dimension. Thus, in contrast to
L" ¢ arbitrarily many dimensions are considered and no dimension is labelled as
the “modal” or “ALC”-one. This language has turned out to be extremely expres-
sive. The satisfiability problem for the full language is known to be undecidable
and even for natural fragments no sound and complete reasoning procedures have
appeared. Baader and Ohlbach [1995] provide only a sound satisfiability checking
algorithm for such a fragment.

6.2.3 Epistemic operators

The systems CLASSIC and LooM provide their users with the possibility to include
procedural rules into knowledge bases (see also Chapter 2, Section 2.2.5). Such rules
take the form

C=D,
where C' and D are concepts. The meaning of a procedural rule is different from the

meaning of an inclusion axiom: while C' C D represents conceptual knowledge and
says that—no matter what is known about individuals—the concept D subsumes
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C, the rule C = D represents the incidental fact that “if an individual is known to
be an instance of C, then we can conclude that it is an instance of D”. Consider
the following example: suppose a knowledge base ® consists of

GreatLogician C Professor, —Professor(a).

Obviously we can derive —GreatLogician(a) from ®. In this representation we as-
sume a conceptual relation between the terms ‘professor’ and ‘great logician’. More
appropriate, however, seems to be the weaker claim that people who are known to
be great logicians are professors: let ® be the knowledge base which results from
® when GreatLogician C Professor is replaced with

GreatlLogician = Professor.

The assertion —GreatLogician(a) turns out to be not derivable from ®'. The proce-
dural explanation for this phenomenon is this: in the knowledge base ® we do not
find an individual belonging to the concept GreatLogician. Therefore the rule Great-
Logician = Professor does not “fire” and nothing new about the world is derivable
by using it. However, Description Logic is aiming at an extensional semantics for
frame-based systems, hence it would be desirable to have a precise model-theoretic
explanation of the behavior of procedural rules as well.

It turns out that adding an epistemic operator together with a possible worlds
semantics interpreting it provides us with the required models. Integrating the op-
erator K—‘the knowledge base knows that’—into ALC will allow us to rephrase the
rule GreatLogician = Professor by the inclusion axiom KGreatLogician C Professor,
which says that all objects that are known to be great logicians are professors. Ac-
tually, it will turn out that extensions of Description Logics by means of epistemic
operators are useful in other contexts as well. We postpone their discussion until we
have introduced some technical prerequisites. We will follow [Donini et al., 1992b;
1998a], where the extension of ALC by epistemic operators was introduced and
investigated.

Formulated in terms of Section 6.2.2, we consider the language E}L\ rc in which the
modal operator 0; (now denoted by K) can be applied to concepts and roles but
not to axioms. Following [Donini et al., 1998a] we call this language ALCK. The
following principles are assumed to govern the epistemic operator (we formulate
them here for K applied to concepts; the formulation for roles is similar):

e KC C C (only true facts are known: if an object is known to be an instance of
C, then it is an instance of C);

e KC C KKC (positive introspection: if it is known that an object is an instance
of C, then this is known);
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e -KC C K-KC (negative introspection: if it is not known whether an object is
an instance of C, then this is known).

These principles are valid in all models based on a Kripke frame § = (W, <) iff § is
an S5-frame, or, equivalently, if <1 is the universal relation on W, ie., <=W x W.
So, we consider frames of the form (W, W x W) only.

We assume also that:

e it is known which object an object name denotes (so, object names are assumed
to be global (or rigid) designators),

e the set of existing objects A is known and countably infinite (so, we adopt the
constant domain assumption).

These assumptions together allow us to simplify the possible worlds semantics con-
siderably: we can identify the set of worlds W with a set of interpretations M (all
having the same countably infinite domain A and the same interpretation of the
object names) and the accessibility relation is implicitly given as the universal rela-
tion on M. Hence, we call any set of interpretations M satisfying these constraints
a model (for ALCK) and can define the extensions CT* and RTM of a concept C
and a role R in an interpretation 7 in M as follows:

ATM = AT for atomic concepts A

pM PT for atomic roles P

(ﬁC)LM = A\CTM

(C1nC)PM = ofMncyM
AR.CYPM = {ae A|3b. (a,b) € REMADb e CTMY
(KCPM = [ ¢IM(={aeA|VT e M. acCT™M})
JeM
(KR™M = [ RIM (={(a,b) € A|VT € M. (a,b) € R7M})
JeM

So, KC' comprises the set of all objects that are instances of C' in every world
regarded as possible.

An ALCK-knowledge base ® consists of a set of inclusion axioms and ABox asser-
tions whose concepts and roles are in ALCK. A model M satisfies ® (is a $-model)
iff all inclusion and membership assertions of ® are true in every Z € M.

So far, we have introduced a rather simple version of the epistemic extensions
of ALC discussed in Section 6.2.2. In the present section, however, we are not
interested in the satisfiability of epistemic knowledge bases, but in a relation =
between knowledge bases and assertions such that ® = ¢ iff a knowledge base knows
 under the assumption that “all the knowledge base knows is ®”. For example, if
® is empty (the knowledge base knows nothing), then ~KC(a) as well as “K-C(a)
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should be derivable, since the knowledge base does not know whether «a is an instance
of C or not. On the semantic level this means that we are not interested in arbitrary
models satisfying ® but only in those ®-models that refute as many ALC-assertions
as possible. In other words, we consider ®-models only with as many worlds as
possible (corresponding to the intuition that more worlds are regarded as possible
if less is known). For example, if ® is empty, then the intended models comprise all
interpretations (with a fixed domain and interpretation of the object names), since
all interpretations are regarded as possible by an empty knowledge base. Here are
the precise definitions:

Definition 6.7 An epistemic model for ® is a mazimal non-empty set of interpre-
tations M satisfying ®. The knowledge base ® logically implies an assertion ¢,
written @ = ¢, if every epistemic model M for ® satisfies . "

Consequently, = is a non-monotonic consequence relation: while ) = (-=KC A
-K-C)(a), we have C(a) = KC(a). On the propositional level, this type of
reasoning is known as ground non-monotonic S5 (see [Donini et al., 1995; 1997c;
Nardi and Rosati, 1995]).

Reasoning with arbitrary ALCK-knowledge bases has not been investigated. In
fact, all applications considered in the literature require only very small fragments
of ALCK. In what follows, we shall briefly introduce two such fragments and some
of their applications.

6.2.3.1 ALCK as a query language

We first confine ourselves to knowledge bases that are ordinary ALC-ABoxes. Hence,
the epistemic operator K can be used only in queries. Recall that concept languages
can be applied as query languages in a straightforward manner: the answer set of a
query consisting of a concept C' to a knowledge base ® comprises the set of individ-
uals a with ® = C(a). Queries with epistemic operators enable us to extract the
knowledge which the knowledge base has about its own knowledge. Consider, for
example, the knowledge base ® = {3friend.Male(SUSAN)}, which contains incom-
plete information about Susan. Applications of K to different concepts and roles in
dfriend.Male enable us to form a variety of different queries:

e dfriend.Male; clearly, the answer to this query is {SUSAN}.
dfriend.KMale; the answer set is empty, since no known male is a friend of Susan.

dKfriend.Male; the answer set is empty since we do not find a male individual
that is known to be a friend of Susan.

Kdfriend.Male; the answer set is {SUSAN} since the knowledge base knows that
Susan has a friend who is male.
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Observe that, for ® = ®U{friend(SUSAN, BOB), Male(BOB)}, the answer set would
consist of SUSAN in all four cases. We refer the reader to [Donini et al., 1992b;
1998a] for more examples.

Epistemic queries can also be used to formulate integrity constraints. Recall
that integrity constraints can be viewed as epistemic sentences that state what a
knowledge base must know about the world [Reiter, 1990]. For example, suppose
that we want to rule out those knowledge bases that are uncertain about whether
a given course is a course for undergraduates or graduates. This can be expressed
using the query

—KCourse U (KUndergraduate LI KGraduate). (6.2)

A knowledge base satisfies the integrity constraint iff it logically implies the assertion
(6.2)(a), for every object name a appearing in it. Observe, by the way, that the query
—Coursell(UndergraduatelGraduate) has a different meaning: while () = (6.2)(a), for
all a (corresponding to the intention), () = (—Coursell(UndergraduatelIGraduate))(a).
We refer the reader to [Levesque, 1984; Lifschitz, 1991; Reiter, 1990] for a discussion
of the use of epistemic queries in general.

What is the computational complexity of querying ALC-ABoxes by means of
ALCK-concepts? The following result is proved in [Donini et al., 1992b; 1998a]:

Theorem 6.8 There is an algorithm for deciding, given an ALC-ABox X, an object
name a, and an ALCK-concept C, whether ¥ |= C(a). More precisely, the problem
Y | C(a) is PSPACE-complete (w.r.t. the size of C and X).

Recall that querying ALC-ABoxes with ALC-concepts is PSPACE-complete as well
[Hollunder, 1996]. Thus, the additional epistemic operators in queries do not cause
any increase of the computational complexity.

6.2.3.2 Semantics for procedural rules

To capture the meaning of procedural rules as discussed above (and in Chapter 2,
Section 2.2.5), we must admit assertions of the form KC T D in the knowledge
base. A rule ABox consists of an ALC-ABox and a set of sentences of the form

KC C D,

where C', D are ALC-concepts and C' is not equivalent to T (the reason for this
technical condition will be discussed below).

Fortunately, the additional inclusion axioms again do not lead to any increase of
the complexity [Donini et al., 1992b; 1998a].

Theorem 6.9 There is an algorithm for deciding, given a rule ALC-ABox ¥, an
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object name a, and an ALCK-concept C, whether ¥ |= C(a). More precisely, the
problem ¥ = C(a) is PSPACE-complete (w.r.t. the size of C and X).

Observe that this result does not extend to the language with inclusion axioms
of the form KC' C D, where C is equivalent to T. In this case KC would be
equivalent to T as well, and so KC' C D would be equivalent to D = T. However,
for knowledge bases with axioms of this type instance checking is known to be
ExpTIME-complete [Schild, 1994]. Notice that in applications a rule of the form
T = C does not make sense.

6.2.8.8 An extension of ALCK

The non-monotonic logic MKNF is an expressive extension of ground non-
monotonic S5, which can simulate in a natural manner Default Logic, Autoepistemic
Logic, and Circumscription (see [Lifschitz, 1994]). This is achieved by adding to
classical logic not only the operator K (of ground non-monotonic S5) but also a
second epistemic operator A, which is interpreted in terms of autoepistemic as-
sumption. The papers [Donini et al., 1997b; Rosati, 1998] study the corresponding
bimodal extension of ALC by means of K and A, called ALCB in what follows.

We first consider the two operators K and A separately: the consequence relation
= for assertions containing K only is still the one introduced above. On the other
side, for assertions containing A (‘it is assumed that’) only we are interested in
a consequence relation =47 such that ® 4% ¢! iff ¢ belongs to every stable
expansion of @, i.e., iff p belongs to every reasonable theory? about the world which
a rational agent who assumes only the assertions in ® can have. In particular, it is
assumed that agents are capable of introspection. Consider, for example, an agent
assuming precisely ® = {AC = T} (‘the set of all objects I assume to be in C
comprises all existing objects’). We still assume that agents know which objects
exist (the constant domain assumption). Hence ® can be rephrased as ‘I assume
that all objects belong to C’. Now, according to the autoepistemic approach such
an agent cannot have a coherent theory about the world because if she would have
one then she should assume as well that C' = T from the very beginning.

From the “possible worlds” viewpoint the relation ):AE can be captured as fol-
lows. Firstly, the extension of ALC by A is interpreted in pairs (Z, M) in precisely
the same manner as ALCK. However, now we allow that the actual world Z is not in
M-—corresponding to the idea that assumptions (in contrast to known assertions)
are not always true. Thus we may have (AC)TM = T but CTM # T, which is not
possible for K. The intended models are called AE-models in what follows.

1 AE indicates that autoepistemic propositional logic in the sense of [Moore, 1985] is extended here to
ALC.

2 In terms of propositional logic a theory T is called reasonable iff the following conditions hold: (0) T is
closed under classical reasoning, (1) if P € T, then AP € T, (2) if P ¢ T, then AP € T.
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Definition 6.10 An AFE-model for a set of assertions ® is a set of interpretations
M that satisfies ® and such that, for every interpretation 7 € M, ® is refuted in
(Z, M). Now put ® =4F ¢ iff ¢ is satisfied in all AE-models for ®. .

So, we do not maximize the set of possible worlds, but we exclude the case that
® is true in an actual world that is not regarded possible (i.e., is not a member of
M). The consequence relation =4 is also non-monotonic since ) =4¥ =AC(a)
but C(a) = AC(a). Observe that = and =47 are different: while AC' = T has
no AE-models, KC' = T has the epistemic model consisting of all interpretations in
which C' =T.

How to interpret the combined language ALCB and define a consequence relation?
Following Lifschitz [1994], the intended models (called ALCB-models) are defined
as follows.

Definition 6.11 The ALCB-models for a set of ALCB-assertions ® are those mod-
els M satisfying ® and the following maximality condition: if a non-empty set of
new worlds N is added to M, K is interpreted in the model M U N, and A is
interpreted in the old model M, then @ is refuted in some interpretation from N.
Now @ logically implies o, in symbols ® = ¢, iff ¢ is satisfied in every ALCB-model
satisfying ®. -

Thus, roughly speaking, we still maximize the set of worlds, but now we require
that any larger set of possible worlds contains a world at which @ is refuted under
the interpretation of A by means of the original set of possible worlds. But this
corresponds, for the operator A, to the definition of AE-models. Clearly, the new
consequence relation is a conservative extension of the one defined for ALCK above
(and of =47 as well). Hence using the same symbol for both does not cause any
ambiguity.

The new logic is considerably more expressive than ALCK. Donini et al. [1997b]
show that Default Logic can be embedded into ALCB more naturally than into
ALCK. They also consider the formalization of integrity constraints in knowledge
bases, which cannot be expressed in ALCK, and they discuss how role and concept
closure can be formalized in ALCB. Here we confine ourselves to a brief discussion
of the formalization of integrity constraints in ALCB. Above we have seen that the
query (6.2) can be used to express the constraint that every course known to the
knowledge base should be known to be for undergraduates or graduates. Sometimes
it is more useful not to formalize integrity constraints as queries, but as part of the
knowledge base (see [Donini et al., 1997b]). However, the addition of constraints
should not change the content of the knowledge base, but just force the knowledge
base to be inconsistent iff the constraint is violated. How can this be achieved in
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ALCK? The naive idea is to add the assertion (6.2) = T to the knowledge base
in order to express the constraint. Unfortunately, this does not work: consider
the knowledge base ® consisting of Course(a), which does not satisfy the integrity
constraint. However, the knowledge base obtained from ® by adding (6.2) = T does
not tell us that the constraint is violated in ® since the extended knowledge base is
still consistent: the set M consisting of all interpretations J (with a fixed domain
and interpretation of a) satisfying a7 € Course” N Graduate” is an epistemic model
for the extended knowledge base. In fact, there is no way to formulate the required
constraint within ALC/KC. On the other hand, by adding the ALCB-assertion

KCourse C AGraduate LI AUndergraduate

to @, we obtain a knowledge base without ALCB-models, as required. Note, for
example, that the model M introduced above is not an ALCB-model for this knowl-
edge base because any set of worlds A" = {Z} with Z ¢ M and a? € Cou rse’ refutes
the maximality condition.

Donini et al. [1997b] present a number of decidability results for reasoning with
ALCB knowledge bases.

6.2.4 Temporal extensions

Temporal extensions are a special form of modal extensions of description logics.
However, because of the intended interpretation in flows of time they have a specific
flavour, which is slightly different from general modal logic. Chronologically, the
first example of a “modalized” description logic was the temporal description logic
of Schmiedel [1990]. The papers [Bettini, 1997; Artale and Franconi, 1994; 1998]
introduce and investigate variants of Schmiedel’s formalism. The papers mentioned
so far employ an interval-based approach to the semantics of temporal operators.
Point-based temporal description logics have been introduced by Schild [1993] and
further investigated by Wolter and Zakharyaschev [1999e].

For simplicity, let us first consider propositional temporal logic and then see how
it can be extended to temporal description logic. In what follows we assume that
a flow of time ¥ = (T, <) consists of a set of points in time 7" and a precedence
relation < between points in time which is assumed to be a strict linear order. This
corresponds to the intuition that, for any two moments t1,to € T, either ¢; precedes
to, to precedes t1, or t1 equals to.

How to define a satisfiability relation = between entities in a flow of time and
formulas? There exist (at least) two different possibilities to select the entities at
which formulas are evaluated: points in time and intervals. While in the first case we
are considering a relation ¢ = ¢ between time-points ¢ and formulas ¢, in the second
case we have a relation [u,v] = ¢ between intervals [u,v] = {z € T | u < z < v},
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where u < v, in ¥ and formulas ¢. Denote by T* the set of all intervals in T. Both,
point- and interval-based temporal logics, are special instances of modal logics: in
the former the worlds of Kripke frames are interpreted as time-points while in the
latter they are interpreted as intervals. Point- as well as interval-based temporal
models are easily extended to temporal ALC-models:

Definition 6.12 A point-based temporal ALC-model M = (T, ) consists of a flow
of time ¥ and a function I which associates with every ¢ € T an interpretation

I(t) = (Al Ity

An interval-based temporal ALC-model M = (T, I) consists of a flow of time T and
a function I which associates with every interval i € * an interpretation

I(i) = (AL, 1Y, .

We can now evaluate ALC-concepts and axioms in point- and interval-based tem-
poral models. For example,

o (M, 1) = Alive(a) iff 't € Alivel"!, i.e., a is alive at moment t,
o (9M,4) |= Sleep(a) iff a’* € Sleep’”, i.e., a is sleeping in the interval i.

We now add temporal operators and quantifiers to ALC, which enable us to relate
different moments and intervals to each other.

For the point-based approach we have discussed appropriate operators already:
we can form the language E,lzwc and interpret the operator O = O as ‘always in
the future’. Thus, t =0(C = D) iff ¢/ = C = D for all ¢/ > ¢, (always in the future
of t, C and D are interpreted as the same set), and z € (OC)!! iff there exists
t' > t such that z € CLt (eventually z is an instance of C). Often, however, more
expressive temporal operators are required. The operator U (until), for example, is
a binary temporal operator with the following truth-conditions, for all concepts C,
D and axioms ¢, ¥:

1) T € I there exists ©° > ¢ suc at x € ’/an,ora wi

(i) (CUD)™ iff th ists ¢ > ¢ such that D5Y and, for all #” with
t<t' <t zecht”

11 1 ere exists > 1 suc a aln or a. w1 < <

(ii) t = U iff th ists ' > ¢ such that ¢’ = v and, for all ¢’ with ¢ < ¢" < ¢/,
t// ): (p

In this language we can define a mortal as, say, a living being that is alive until it
dies:

Mortal = LivingBeing 1 (LivingBeing &/ O-LivingBeing).

This language, interpreted in the flow of time (N, <), was first considered by
Schild [1993], who showed that the satisfiability problem for concepts (without
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modalized or global roles) is decidable. Wolter [2000] proves the decidability for
concepts with global roles (but without modalized roles). However, the complex-
ity of the decision problem for this language is non-elementary [Gabbay et al.,
2002]. Wolter and Zakharyaschev [1999¢] prove that even for axioms the satis-
fiability problem is decidable, provided that they do not contain modalized or
global roles. Tableau calculi (running in double-exponential time) for the case
of expanding and constant domains were developed in [Sturm and Wolter, 2002;
Lutz et al., 2001b]. The satisfiability problem for axioms in the full language with
the flow of time (N, <) is undecidable.

For the interval-based approach we find both languages that extend ALC by
means of temporal operators which are interpreted by accessibility relations between
intervals [Bettini, 1997] and languages that allow for explicit quantification over
intervals [Schmiedel, 1990; Artale and Franconi, 1994; 1998].

We start the discussion with the temporal operators approach. Bettini [1997]
extends the propositional interval-based temporal logic of [Halpern and Shoham,
1991] to ALC (and weaker description logics). Thus, given a concept C, we can
now form new concepts like (starts) C' and (finishes) C. They are interpreted in
interval-based models (T, I) as follows:

o z c ((starts) C)[) iff It € T u <t <wv Az el
(z is an instance of (starts) C' in the interval [u, v] iff z is an instance of C' in some
interval starting [u, v]),

o z € ({finishes) C)lv iff 3t € T uw <t <w Az e CHIbY,

In other words, the modal operators (starts) and (finishes) are interpreted in the
standard “possible worlds manner” by means of the accessibility relations ‘starts’
and ‘finishes’, respectively, where (i,7) € starts iff j starts i and (4,j) € finishes
if j finishes i. By adding the converse operators of (starts) and (finishes) to the
language, we obtain a language that can express all the thirteen Allen relations
between intervals [Allen, 1983]. Here is a definition of Mortal in this language:

Mortal = LivingBeing M (after) —LivingBeing.

Unfortunately, for the full language based on ALC the satisfiability problem for
concepts is undecidable in all interesting flows of time. This follows from the fact
that propositional interval-based temporal logic is undecidable already in (R, <),
(Q, <), (N, <), ete. (see [Halpern and Shoham, 1991]). However, there are numerous
open decision problems when description logics weaker than ALC and different
notions of intervals are considered (see [Bettini, 1997; Artale and Franconi, 2000;
2001]).

Now, let us consider interval-based temporal extensions of description logics that
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allow for explicit quantification over intervals. Schmiedel [1990] develops an expres-
sive formalism in which we have two quantifiers O(i)! (‘for all intervals i”) and <(4)
(‘there exists an interval '), where 7 is a variable ranging over intervals. The lan-
guage does not contain negation so that the quantifiers are not mutually definable.
The quantifiers are relativized (alias bounded or guarded) by so called time nets,
which can, for example, be some relations like starts or finishes between intervals
(metric and granularity constraints are admitted as well). An operator @ specifies
the interval at which a concept applies to an object and # denotes a reference inter-
val. The following concept can be regarded as a definition of the concept Mortal in
Schmiedel’s language:

LivingBeing M (< (i) (after ¢ #)(—LivingBeing @ 7)).

Here (after ¢ f) is the time net which relativizes the quantifier (i) by means of
the constraint expressing that ¢ must be after the reference interval denoted by .
According to this definition, an object x is an instance of Mortal at the reference
interval f§ iff = is living at ff and there exists an interval ¢ that is after f, and at which
x is not living.

Schmiedel [1990] does not address computational problems for his language. How-
ever, it is not difficult to see that, in the presence of negation, this language is more
expressive than the one of Bettini [1997] considered above—and thus subsumption is
undecidable for all interesting flows of time. The decision problem for the language
without negation appears to be open.

A brief remark concerning the relation between interval-based temporal logic
with and without explicit quantification over intervals is in order. Of course,
explicit quantification provides more expressive power. Using the temporal op-
erators introduced above, it is not possible to represent relations between more
than two intervals because reference to a fixed reference interval is impossible.
On the other hand, variable-free languages are much closer in spirit to pure de-
scription logics and therefore seem to be more natural candidates for temporal-
izations of description logics; we refer the reader to [Artale and Franconi, 2000;
2001] for a detailed discussion.

The papers [Artale and Franconi, 1994; 1998] present a number of languages
weaker than Schmiedel’s with a decidable subsumption problem. Among oth-
ers, they define a temporal extension of a description logic extending ALC with
functional roles. They show decidability of concept subsumption and PSPACE-
completeness of satisfiability w.r.t. an empty KB in an unbounded and dense flow
of time. The main reason for the decidability is that the language does not admit
universal quantification over intervals and that the constructors of the underlying

I Here and in what follows we use the notation of [Artale and Franconi, 1998].
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description logic cannot be applied to the temporalized part of the language. In
particular, the negation of the underlying DL cannot be used to define the universal
quantifier by means of the existential one. The authors show by means of a num-
ber of examples that their formalism still has enough expressive power to represent
non-trivial actions and plans.

An interesting feature of the subsumption algorithm presented by Artale and
Franconi [1998] is that it consists of two parts: firstly, a normalization procedure is
employed to reduce the subsumption problem for the temporalized DL to that prob-
lem for the pure DL, which can then be solved with known algorithms [Hollunder
and Nutt, 1990

For a more detailed survey of the state of art in temporal description logic we
refer the reader to [Artale and Franconi, 2000; 2001], where one can also find an
introduction to the work of Weida and Litman [1992], who propose a loose hy-
brid integration between description logics and constraint networks with the aim of
reasoning about plans.

6.2.5 Representing uncertain and vague knowledge

Description Logics whose semantics is based on classical first-order logic cannot
express vague or uncertain knowledge. To overcome this deficiency, approaches for
integrating probabilistic logic and fuzzy logic into Description Logics have been
proposed. Although both types of approaches assign numerical values to entries
in the knowledge base, they are quite different, not only from a technical point of
view, but also w.r.t. the basic phenomena they are trying to model. We talk about
uncertainty if we deal with propositions that are either true or false, but due to a
lack of information we do not know for certain which is the case. This gives rise to
statements about the probability with which a proposition is assumed to be true.
In contrast, vagueness means that the propositions themselves are only true to a
certain degree. This vagueness is not caused by incomplete knowledge; it is due to
the fact that fuzzy notions, i.e., notions without crisp boundaries (e.g., tall person)
are modeled.

In the following, we will restrict our attention to the probabilistic extensions
of DLs introduced in [Heinsohn, 1994; Jaeger, 1994; Koller et al., 1997; Yelland,
2000] and the fuzzy extensions of DLs introduced in [Yen, 1991; Tresp and Molitor,
1998; Straccia, 1998; 2001]. The possibilistic extension by Hollunder [1994b] can
be viewed as lying between these two approaches: possibilistic logic is mainly used
to model uncertainty, but its formal semantics is defined in terms of fuzzy sets of
interpretations.
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6.2.5.1 Probabilistic extensions

Let us first concentrate on how to extend the terminological (TBox) formalism. In
classical Description Logics, one has very restricted means of expressing (and testing
for) relationships between concepts. Given two concepts C and D, subsumption tells
us whether C' is contained in D, and the satisfiability test (applied to C' M D) tells
us whether C and D are disjoint. Relationships that are in-between (e.g., 90% of
all C's are Ds) can neither be expressed nor be derived.

This deficiency is overcome in [Heinsohn, 1994; Jaeger, 1994] by allowing for
probabilistic terminological axioms of the form!

P(CID) = p,

where C, D are concept descriptions and 0 < p < 1 is a real number. Such an axiom
states that the conditional probability for an object known to be in D to belong to
C'is p. A given finite interpretation Z satisfies P(C|D) = p iff

(C Dy

T P

More generally, the formal semantics of the extended language is defined in terms
of probability measures on the set of all concept descriptions (modulo equivalence).

Given a knowledge base P consisting of probabilistic terminological axioms, the
main inference task is then to derive optimal bounds for additional conditional
probabilities. Intuitively,

P E=P(CID) € pq]

iff in all probability measures satisfying P the conditional probability P(C|D) be-
longs to the interval [p, q]. Given P, C, D, one is interested in finding the maximal
p and minimal ¢ such that P = P(C|D) € [p, q] is true.

Heinsohn [1994] introduces local inference rules that can be used to derive bounds
for conditional probabilities, but these rules are not complete, that is, in general
they are not sufficient to derive the optimal bounds.

Jaeger [1994] only describes a naive method for computing optimal bounds. A
more sophisticated version of that method reduces the inference problem to a linear
optimization problem. In the following, we will sketch the main idea underlying
this reduction. Assume that Cy,...,C,, are the concept descriptions occurring in
P and P(C|D), and consider all conjunctions D1 M-+ -MD,,, where D; is either C; or
—C;. Let 2 be the set of those conjunctions that are satisfiable. Given a probability
measure on all concept descriptions, the values of this measure on Ci,...,Cy, is
uniquely determined by the values on 2. To be more precise, its value for C; can

L Actually, Heinsohn uses a different notation and allows for more expressive axioms stating that P(C|D)
belongs to an interval [p;, pu], where 0 < p; < p, < 1.
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be obtained as the sum of the values for those elements of 2 that are subsumed by
C; (i-e., the ones where C; occurs positively). The idea is to introduce a numerical
variable z; (ranging over the real interval (0,1)) for each element t € 2. For
example, if C1,Cy are two concept names, then 2 consists of the four elements
to = ~C1 M =Cy, t1 = 2C1 M Cy, tog = C1 M —~Cy, and t3 = C7 M Cy, for which we
introduce the variables xg, z1, T2, 3, respectively. Thus, the probability associated
with C1 M Cy is x3 and the one for Cs is 21 + x3. Consequently, the probabilistic
terminological axiom P(C4|C2) = 0.7 can be represented by the (linear) constraint
r3 = O?(.’El + 173).

We have to find the maximal and minimal values that P(C|D) attains on the set
of values (xo, ..., x,) satisfying the linear constraints induced by P. The value of
the function P(C|D) (in terms of the variables x) is given by

Sz [teAALT CND}
S{w [t€ANLC D}

By a simple transformation, this fractional optimization problem can be transformed

into a linear optimization problem [Amarger et al., 1991].

Jaeger [1994] also extends the assertional formalism by allowing for probabilistic
assertions of the form

P(C(a)) =p,

where C'is a concept description, a an individual name, and p a real number between
0 and 1. It should be noted that this kind of probabilistic statement is quite different
from the one introduced by the terminological formalism. Whereas probabilistic
terminological axioms state statistical information, which is usually obtained by
observing a large number of objects, probabilistic assertions express a degree of
belief in assertions for specific individuals. The formal semantics of probabilistic
assertions is again defined with the help of probability measures on the set of all
concept descriptions, one for each individual name. Intuitively, the measure for a
tells us for each concept C' how likely it is (believed to be) that a belongs to C.
Given a knowledge base P consisting of probabilistic terminological axioms and
assertions, the main inference task is now to derive optimal bounds for additional
probabilistic assertions. However, if the probabilistic terminological axioms are sup-
posed to have an impact on this inference problem, the semantics as sketched until
now is not sufficient. In fact, until now there is no connection between the proba-
bility measure used for the terminological part and the measures for the assertional
part. Intuitively, one wants that the measures for the assertional part “most closely
resemble” the measure for the terminological part, while not violating the proba-
bilistic assertions. Jaeger [1994] uses cross entropy minimization in order to give
a formal meaning to this intuition. Until now, there is no algorithm for comput-
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ing optimal bounds for P(C(a)), given a knowledge base consisting of probabilistic
terminological axioms and assertions.

The work reported in [Koller et al., 1997], which is restricted to the terminologi-
cal component, has a focus that is quite different from the one in [Heinsohn, 1994;
Jaeger, 1994]. In the latter work, the probabilistic terminological axioms provide
constraints on the set of admissible probability measures. However, these con-
straints may still be satisfied by a large set of distributions, and hence the optimal
interval entailed for the probabilities of interest can be fairly large. In contrast,
Koller et al. [1997] present a framework for the specification of a unique probability
distribution on the set of all concept descriptions (modulo equivalence). Since there
are infinitely many such descriptions, providing such a (finite) specification is a
nontrivial task. The basic idea is to specify a distribution on concepts of role-depth
0, and then to specify how to extend a distribution on concepts of role-depth n to
one on concepts of role-depth n + 1. Koller et al. [1997] employ Bayesian networks
as the basic representation language for the required probabilistic specifications.
The probability P(C') of a concept description C' can then be computed by using
inference algorithms developed for Bayesian networks. The complexity of this com-
putation is linear in the length of C. Under certain restrictions on the Bayesian
networks used in the specification, it is polynomial in the size of that specification.

Yelland [2000] also combines Bayesian networks and Description Logics. In con-
trast to [Koller et al., 1997], this work extends Bayesian networks by Description
Logic features rather than the other way round. The Description Logic used in [Yel-
land, 2000] is rather inexpressive, but this allows the author to avoid restrictions
on the network that had to be imposed by Koller et al. [1997].

6.2.5.2 Fuzzy extensions

The concepts in Description Logics are interpreted as crisp sets, i.e., an individual
either belongs to the set or not. However, many “real-life” concepts are vague in
the sense that they do not have precisely defined membership criteria. Consider,
for example, the concept of a tall person. It does not make sense to fix an exact
boundary such that persons of height larger than this boundary are tall and others
are not. In fact, what about a person whose height is 1 millimeter below the
boundary? It is more sensible to say that an individual belongs to the concept
“tall person” only to a certain degree n € [0, 1], which depends on the height of the
individual. This is exactly what fuzzy logic allows one to do.

The main idea underlying the fuzzy extensions of Description Logics proposed in
[Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001] is to leave the syntax
as it is, but to use fuzzy logic for defining the semantics. Thus, an interpreta-
tion now assigns fuzzy sets to concepts and roles, i.e., concept names A are in-
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terpreted by membership degree functions of the form AZ : A — [0, 1], and role
names R by membership degree functions of the form RZ : AT x AT — [0,1].
The interpretation of the Boolean operators and the quantifiers must then be ex-
tended from {0,1} to the interval [0,1]. Fuzzy logics provides different options
for such an extension. In [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998;
2001], the usual interpretation of conjunction as minimum, disjunction as maximum,
negation as Az.(1 — z), universal quantifier as infimum, and existential quantifier as
supremum is considered. For example,

(VR.C)*(d) = inf{max{1 — R%(d,e),C%(d,e)} | e € AT},

since VR.C' corresponds to the formula Vz.(—R(x,y) V C(y)).

Tresp and Molitor [1998] also propose an extension of the syntax by so-called ma-
nipulators, which are unary operators that can be applied to concepts. Examples
of manipulators could be “mostly”, “more or less”, or “very”. For example, if Tall
is a concept (standing for the fuzzy set of all tall persons), then VeryTall, which is
obtained by applying the manipulator Very to the concept Tall, is a new concept
(standing for the fuzzy set of all very tall persons). Intuitively, the manipulators
modify the membership degree functions of the concepts they are applied to ap-
propriately. In our example, the membership function for VeryTall should have its
largest values at larger heights than the membership function for Tall. Formally, the
semantics of a manipulators is defined by a function that maps membership degree
functions to membership degree functions. The manipulators considered in [Tresp
and Molitor, 1998] are, however, of a very restricted form.

Lets us now consider what kind of inference problems are of interest in this con-
text. Yen [1991] considers crisp subsumption of fuzzy concepts, i.e., given two
concepts C, D defined in the fuzzy DL, he is interested in the question whether
C%(d) < DX(d) for all fuzzy interpretations Z and d € AT. Thus, the subsumption
relationship itself is not fuzzified. He describes a structural subsumption algorithm
for a rather small fuzzy DL, which is almost identical to the subsumption algorithm
for the corresponding classical DL. In contrast, Tresp and Molitor [1998] are inter-
ested in determining fuzzy subsumption between fuzzy concepts, i.e., given concepts
C, D, they want to know to which degree C is a subset of D. In [Straccia, 1998;
2001] and [Molitor and Tresp, 2000], also ABoxes are considered, where the ABox
assertions are equipped with a degree. In this context one wants to find out to
which degree other assertions follow from the ABox.

Both [Straccia, 1998; 2001] and [Tresp and Molitor, 1998] contain complete al-
gorithms for solving these inference problems in the respective fuzzy extension of
ALC. Although both algorithms are extensions of the usual tableau-based algo-
rithm for ALC, they differ considerably. For example, the algorithm in [Tresp and
Molitor, 1998] introduces numerical variables for the degrees, and produces a lin-
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ear optimization problem, which must be solved in place of the usual clash test.
In contrast, Straccia deals with the membership degrees within his tableau-based
algorithm.

6.2.6 Extensions by default rules

In Description Logics, inclusion axioms of the form C' E D are interpreted as univer-
sal statement, i.e., all instances of C' also belong to D. The same is true for inferred
subsumption relationships. In commonsense reasoning, however, one often wants
to state and infer relationships that are only “normally” true, but may have excep-
tions. The most prominent example from the non-monotonic reasoning community
is the statement that all birds fly; but of course penguins and other non-flying birds
are exceptions. Allowing for such default statements has a strong impact both on
the semantics and the reasoning capabilities of Description Logics. Instead of bas-
ing the semantics on classical first-order logic, one must employ a non-monotonic
logic [Ginsberg, 1987]. In fact, conclusions drawn from a given knowledge base with
defaults may ultimately turn out to be false when additional knowledge is added,
and thus must be withdrawn.

Since most of the classical Description Logics can be seen as fragments of first-
order predicate logic, an obvious approach for extending DLs by non-monotonic
reasoning capabilities is to take one of the well-known non-monotonic logics, and
restrict the first-order version of this logic to the DL in question. This approach
was employed in [Baader and Hollunder, 1995a], where Reiter’s default logic [Reiter,
1980] is integrated into DLs. In addition to terminological axioms in the TBox and
assertions in the ABox, Baader and Hollunder allow for terminological defaults of
the form

C(z): D(x)
E(z)

where C, D, E are concept descriptions (viewed as first-order formulae with one free
variable z). Intuitively, such a default rule can be applied to an ABox individual
a, i.e., E(a) is added to the current set of beliefs, if its prerequisite C'(a) is already
believed for this individual and its justification D(a) is consistent with the set of
beliefs. Formally, the consequences of a terminological default theory (consisting of
a TBox, ABox, and a set of terminological defaults) are defined with reference to
the notion of an extension, which is a set of deductively closed first-order formulae
defined by a fixpoint construction (see [Reiter, 1980], p.89). In general, a default
theory may have more than one extension, or even no extension. Depending on
whether one wants to employ skeptical or credulous reasoning, an assertion F'(a) is
a consequence of a default theory iff it is in all extensions or if it is in at least one
extension of the theory.
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It should be noted that in this setting the application of default rules is re-
stricted to individuals explicitly present in the ABox.! For example, assume
that the ABox consists of the fact that Tom has a child that is a doctor, i.e.,
A = {(3has-child.Doctor)(TOM)}, and that by default we assume that doctors are

usually rich:

Doctor(x) : Rich(z)
Rich(x)

Intuitively, one might expect that (3has-child.Rich)(TOM) is a default consequence
of this terminological default theory. However, since the ABox does not contain a
name for Tom’s child, the default cannot be applied to this “implicit” individual,
and thus one cannot conclude that Tom has a rich child by default. Baader and
Hollunder [1995a] give two reasons that justify restricting the application of defaults
to explicit individuals. From a semantic point of view, adapting Reiter’s treatment
of implicit individuals via Skolemization is quite unsatisfactory, since semantically
equivalent (but syntactically different) ABoxes may lead to different default conse-
quences. From the algorithmic point of view, the application of defaults to implicit
individuals is problematic since it may lead to an undecidable default consequence
relation, even though the employed DL is decidable. In contrast, the restriction
of default application to explicit individuals ensures that reasoning in terminolog-
ical default theories stays decidable whenever reasoning in the underlying DL is
decidable.

A major drawback, which terminological default logic inherits from general de-
fault logic, is that it does not take precedence of more specific defaults over more
general ones into account. For example, assume that we have a default that says
that doctors are usually rich, and another one that says that general practitioners
are usually not rich, and that classification shows that general practitioners are
doctors. Intuitively, for any general practitioner the more specific second default
should be preferred, which means that there should be only one default extension
in which the general practitioner is not rich. However, in default logic the second
default has no priority over the first one, which means that one also gets a second
extension where the general practitioner is rich. This behaviour has already been
criticized in the general context of default logic, but it is all the more problematic
in the terminological case where the emphasis lies on the hierarchical organization
of concepts. To overcome this problem, Baader and Hollunder [1995b] first define a
prioritized version of Reiter’s default logic, where priorities are given by an arbitrary
partial order on defaults. In the terminological case, the priority is induced by the
subsumption relationship between prerequisites of defaults. A similar approach is

L This agrees with the semantics given to (monotonic) rules in DLs (see Subsection 6.2.3 and Chapter 2,
Subsection 2.2.5).
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proposed in [Straccia, 1993], with the main difference that in that paper the defaults
also influence the priority order. In addition, Straccia also allows for defaults of the
form
A(z) Ar(z,y) : Cly)
C(y) ’

where A is an atomic concept, r a role name, and C' a concept description. Such a

default can, for example, be used to say that usually a child of a doctor is again a
doctor.

A quite different proposal for how to treat defaults in Description Logics can be
found in [Quantz and Royer, 1992]. There, preference semantics [Shoham, 1987] is
employed to define the semantics of default assertions C' ~» D, which are intuitively
interpreted as saying: “whenever an object is an instance of C| it is also an instance
of D, unless this is in conflict with other knowledge”. Though on this intuitive level
the meaning of the default C'~ D coincides with that of the terminological default
C(z): D(z)/D(x), the formal semantics (and thus also the default consequences)
differ significantly. The semantics proposed by Quantz and Royer is based on a
preference relation on models, which tries to minimize the exceptions to defaults
while maximizing the number of defaults that have been fired. In contrast to the
work mentioned above, Quantz and Royer restrict reasoning with defaults not only
to the derivation of concept assertions of the form C(a). They also consider default
subsumption between concepts. However, default subsumption is reduced to rea-
soning about individuals. The subsumption relationship C' C D follows by default
from the knowledge base iff the knowledge base extended by C'(a) implies D(a) by
default, where a is a new individual name. Designing reasoning methods for such
a model-based approach to non-monotonic reasoning is rather hard. Quantz and
Royer only provide some ideas for how to obtain a sound but incomplete procedure.

Default subsumption is also considered in [Padgham and Zhang, 1993, where non-
monotonic inheritance networks [Horty et al., 1987] are extended in the direction of
DLs, though the DL employed is of a very limited expressive power.

6.3 Non-standard inference problems

All DL systems provide their users with standard inference services like computing
the subsumption hierarchy and testing ABox consistency. In some applications it
has turned out, however, that these services are not quite sufficient for providing an
optimal support when building and maintaining large DL knowledge bases. For this
reason, some DL systems (e.g., CLASSIC) provide their users with additional system
services, which can formally be reconstructed as new types of inference problems.
First, the standard inferences can be applied after a new concept has been defined
to find out whether the concept is non-contradictory or whether its place in the



258 F. Baader, R. Kiisters, F. Wolter

taxonomy coincides with the intuition of the knowledge engineer; however, these
inferences do not directly support the process of actually defining the new concept.
To overcome this problem, the non-standard inference services of computing the
least common subsumer and the most specific concept have been proposed.

Second, if a knowledge base is maintained by different knowledge engineers, one
needs support for detecting multiple definitions of the same intuitive concept. Since
different knowledge engineers might use different names for the “same” primitive
concept, the standard equivalence test may not be adequate to check whether differ-
ent descriptions refer to the same notion. The non-standard inference service uni-
fication of concept descriptions tackles this problem by allowing to replace concept
names by appropriate concept descriptions before testing for equivalence. Match-
ing is a special case of unification, which has, for example, been used for pruning
irrelevant parts of large concept descriptions before displaying them to the user.

Third, and very abstractly speaking, rewriting of concept descriptions allows one
to transform a given concept description C into a “better” description D, which
satisfies certain optimality criteria (e.g., small size) and is in a certain relationship
(e.g., equivalence or subsumption) with the original description C'.

Before describing the different non-standard inferences in more detail, we start
with some general remarks on how these new problems have until now been tackled
in the literature. An overview of the state of the art in this field and detailed proofs
of several of the results mentioned below can be found in [Kiisters, 2001].

6.3.1 Techniques for solving non-standard inferences—a general remark

Approaches for solving the new inference problems are usually based on an appro-
priate characterization of subsumption, which can be used to obtain a structural
subsumption algorithm. First, the concept descriptions are turned into a certain
normal form, in which implicit facts have been made explicit. Second, the structure
of the normal forms is compared appropriately. This is one of the reasons why most
of the results on non-standard inferences are restricted to languages that can be
treated by structural subsumption algorithms.

One can distinguish two kinds of normal forms proposed in the literature. In
one approach, called language-based approach in the sequel, the normal form of a
concept description is given in terms of certain finite or regular sets of words over
the alphabet of all role names. Then, subsumption can be characterized via the
inclusion of these sets (see Chapter 2, Section 2.3.3.2). The second approach, called
graph-based in the following, turns concept descriptions into so-called description
graphs. Here, subsumption of concept descriptions is characterized via the ex-
istence of certain homomorphisms between the corresponding description graphs.
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The structural subsumption algorithm introduced in Chapter 2, Subsection 2.3.1,
can be represented in this way (although this was not explicitly done in Chapter 2).

For the sublanguage ALN of Crassic, the graph-based approach can be
seen as special implementation of the language-based approach [Baader et al.,
1998a). In general, however, either the language-based or the graph-based ap-
proach may turn out to be more appropriate, depending on the DL under con-
sideration. On the one hand, the language-based approach is particularly useful
for characterizing subsumption between cyclic concept descriptions, i.e., descrip-
tions defined by means of cyclic terminologies in FLy and ALN [Baader, 1996b;
Kiisters, 1998]. On the other hand, the graph-based approach can be employed to
handle full CLassIC [Borgida and Patel-Schneider, 1994] as well as ALE [Baader et
al., 1999b], which extends FLg by primitive negation and existential restrictions.
Although Borgida and Patel-Schneider did not explicitly characterize subsumption
in terms of homomorphisms between description graphs, their subsumption algo-
rithm does in fact check for the existence of an appropriate homomorphism.

The known approaches for solving non-standard inference problems are usually
based on one of the two approaches for characterizing subsumption, depending on
the DL of choice. In the sequel, we will give an idea of how to solve the inference
problems by mainly looking at the language-based approach for the DL FLy. We
will also briefly comment on how to treat extensions of FLg.

6.3.2 Least common subsumer and most specific concept

Intuitively, the least common subsumer of a given collection of concept descriptions
is a description that represents the properties that all the elements of the collection
have in common. More formally, it is the most specific concept description that
subsumes the given descriptions:

Definition 6.13 Let £ be a description language. A concept description E of L
is the least common subsumer (lcs) of the concept descriptions Ci,...,C), in L
(Ies(Ch, ..., Cy) for short) iff it satisfies

(i) C;C Eforalli=1,...,n, and
(ii) FE is the least L-concept description satisfying (i), i.e., if £ is an L-concept
description satisfying C; C E' for alli =1,...,n, then £ C E’. "

As an easy consequence of this definition, the lcs is unique up to equivalence.
In fact, if £y and E5 are both least common subsumers of the same collection of
concepts, then 1 C FE, (since s satisfies (i) and FEj is the least concept description
satisfying (i)). The subsumption relationship Fo C E; can be derived analogously.
It should be noted, however, that the lcs need not always exist. This can have
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two different reasons: (a) there may be several subsumption incomparable minimal
concept descriptions satisfying (i) of the definition; (b) there may be an infinite chain
of more and more specific descriptions satisfying (i). It is easy to see, however, that
for DLs allowing for conjunction of descriptions (a) cannot occur.

The lcs has first been introduced by Cohen et al. [1992] as a new inference task
that is useful for a number of different reasons. First, finding the most specific
concept that generalizes a set of examples is a common operation in inductive
learning, called learning from examples. Cohen and Hirsh [1994a] as well as Frazier
and Pitt [1994] investigate the learnability of sublanguages of CLASSIC with regard
to the PAC learning model proposed by Valiant [1984]. The lcs-computation is used
as a subprocedure in their learning algorithms. Experimental results concerning
the learnability of concepts based on computing the lcs can be found in [Cohen and
Hirsh, 1994b).

Another motivation for considering the lcs is to use it as an alternative to disjunc-
tion. The idea is to replace disjunctions like C7U- - -LIC,, by the lcs of C1,...,C,. In
[Cohen et al., 1992; Borgida and Etherington, 1989], this operation is called knowl-
edge base vivification. Although, in general, the lcs is not equivalent to the corre-
sponding disjunction, it is the best approximation of the disjunctive concept within
the available DL. Using such an approximation is motivated by the fact that, in
many cases, adding disjunction would increase the complexity of reasoning. Observe
that, if the DL already allows for disjunction, we have lcs(C1, . .., Cy) = Ci1U- - -UC,.
In particular, this means that, for such DLs, the Ics is not really of interest.

Finally, as proposed in [Baader and Kiisters, 1998; Baader et al., 1999b], the Ics
operation can be used to support the “bottom-up” construction of DL knowledge
bases. In contrast to the usual “top-down” approach, where the knowledge engi-
neers first define the terminology of the application domain in the TBox and then
uses this terminology when describing individuals in the ABox, the “bottom-up”
approach proceeds as follows. The knowledge engineer first specifies some “typical”
examples of a concept to be defined using individuals in the ABox. Then, in a
second step, these individuals are generalized to their most specific concept, i.e.,
a concept description that (i) has all the individuals as instances, and (ii) is the
most specific description satisfying property (i). Finally, the knowledge engineers
inspects and possibly modifies the concept description obtained this way.

Let us now define the most specific concept of an ABox individual in more detail.

Definition 6.14 A concept description F in some description language £ is the
most specific concept (msc) of the individuals ay,...,a, defined in an ABox A
(msc(ay, ..., ay) for short) iff

(i) A= E(a;) foralli=1,...,n, and
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(ii) E is the least concept satisfying (i), i.e., if E’ is an L-concept description
satisfying A |= E'(a;) for all i = 1,...,n, then EC E'. .

The task of computing the msc can be split into two subtasks: computing the most
specific concept of a single individual, and computing the least common subsumer

of a given finite number of concepts. In fact, it is easy to see that msc(ay,...,a,) =
les(msc(ay), . .., msc(ay)).

6.3.2.1 Computing the lcs and the msc

We will now give an intuition on how to compute the lcs for the DL FLy and an
extension, and briefly comment on the problems that arise when considering the
msc. As mentioned above, the first step towards an algorithm for computing the
Ics is to characterize subsumption of concept descriptions. For the DL F L, we will
present such a characterization using the language-based approach.

The normal form of FLg-concept descriptions employed in the language-based
approach is the so-called concept-centered normal form (CCNF), which has already
been introduced in Chapter 2, Section 2.3.3.2. For example, using the equivalence
VR.(CT D) =VR.CMNVR.D as well as commutativity of concept conjunction, the
F Lo-concept description C' = VR.(VS.ANVR.B)MVS.VS.A can be transformed into
CCNF as follows:

C VRVS.AMVSVS.ANVRYVR.B

V{RS,SS}.ANV{RR}.B.

Recall that V{RS,SS}.A has been introduced in Chapter 2, Subsection 2.3.3.2 as
an abbreviation for VR.VS.AMVS.VS.A. Similarly, V{RR}.B abbreviates VR.YR.B.

In general, if N¢ is a finite set of atomic concepts and Npg is a finite set of role
names, then the CCNF of a concept C' built using only these names is of the form

C = |1 VU4.A,
AENc

where Uy is a finite set of words over the alphabet of role names, i.e., Uy C Np.
Note that V(). A represents the universal concept T, and V{e}.A for the empty word
€ is equivalent to A.

If the CCNF of D is [ 14en, ¥Va.A, then subsumption of C' by D can be charac-
terized as follows:

Proposition 6.15 C C D iff V4 C Uy for all A € N¢.

As an easy consequence, we obtain

Corollary 6.16 Ics(C, D) =[laen, V(Ua NVy4).A.
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By Proposition 6.15, this concept description obviously subsumes C' and D.
Moreover, Ug N V4 is the largest set contained in both Uy and V4, and thus
Maen, ¥(Ua NV4).A s in fact the least concept subsuming both C' and D.

As an example consider the concept C specified above and D = V{RS, RR}.A N
V{RR,SR}.B. Then, lcs(C,D) =V{RS}.ANV{RR}.B.

For DLs extending FLy by constructs that can express unsatisfiable concepts,
like 1, the language-based approach can still be applied. However, in order to
characterize subsumption, we need to consider certain infinite regular languages
instead of finite ones. The reason is that L is subsumed by an infinite number
of concept descriptions. For example, although V{R, RSR}.L C V{RR}.L, we do
not have V, = {RR} C {R,RSR} =: U,. However, we know that V{R}.L is
subsumed by V{Rw}.L for any word w of the alphabet Ng. Consequently, we must
use U -Nj, = {vw | v € U, and w € Ny} in place of U, in the inclusion test.
For this reason, the lcs must also be described in terms of possibly infinite regular
languages. As a simple example, consider the concept descriptions C' = V{R, SR}. L
and D = V{RS,S}.L. Then,

les(C,D) = V({R,SR}-NpN{RS,S} Np).L
V({RS,SR}-N}).L
V{RS,SR}.L

A detailed description of how to compute the lcs in ALN, which extends FLq by
1, atomic complement, and number restrictions, is given in [Baader and Kiisters,
1998]. Moreover, Baader and Kiisters investigate cyclic ALN -concept descriptions,
which are defined in terms of cyclic terminologies with greatest fixpoint seman-
tics. In this context, the languages U4 introduced above can be arbitrary regular
languages (see also Chapter 2, Section 2.3.3.2).

Cyclic descriptions become necessary if one wants to guarantee the existence of
the msc. Consider, for example, the ABox consisting only of the assertion R(a,a).
Then, we know that msc(a) C VR.---VR.(<1R) for arbitrarily deep nesting of
value restrictions. Baader and Kiisters show that there does not exist an acyclic
ALN-concept description presenting the msc of a. However, the msc of individuals
described in ALN-ABoxes can always be represented by a cyclic ALN-concept
description. In our example, msc(a) can be represented by the concept A defined by
A = (=1R)NVR.A, if this definition is interpreted with greatest fixpoint semantics.

Using the graph-based approach, the Ics can be computed for the DL that extends
FLy by the same-as construct [Cohen and Hirsh, 1994a; Frazier and Pitt, 1994;
Kiisters and Borgida, 2001], for the language ALE, which extends FLq by full exis-
tential quantification as well as primitive negation [Baader et al., 1999b], and for the
language ALEN', which extends ALE by number restrictions [Kiisters and Molitor,
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2001b]. On the one hand, it is not clear how to handle these languages with the
language-based approach. On the other hand, up to now the graph-based approach
cannot deal with cyclic concept descriptions, which are needed for computing the
msc. Consequently, for the extensions of FLy treated with the help of the graph-
based approach, the msc can currently only be approximated [Cohen and Hirsh,
1994b; Kiisters and Molitor, 2001a).

6.3.3 Unification and matching

Unification and matching are non-standard inferences that allow us to replace cer-
tain concept names by concept descriptions before testing for equivalence or sub-
sumption. This capability turns out to be useful when maintaining (large) knowl-
edge bases. In this subsection, we will first introduce unification and matching and
mention the main motivations for considering these new inference tasks. We will
then review the results available in the literature, and give an intuition on how
unification problems in the small language F Ly can be solved.

6.3.3.1 Unification

Unification of concepts has first been introduced by Baader and Narendran [1998],
motivated by the following application problem. If several knowledge engineers are
involved in defining new concepts, and if this knowledge acquisition process takes
rather long (several years), it happens that the same (intuitive) concept is intro-
duced several times, often with slightly differing descriptions. Testing for equiva-
lence of concepts is not always sufficient to find out whether, for a given concept
description, there already exists another concept description in the knowledge base
describing the same notion. As an example, let us ask whether the following two
F Ly-concept descriptions might denote the same (intuitive) concept?

Vhas-child.Vhas-child.Rich M Vhas-child.Rmr,
Acr M Vhas-child.Acr M Vhas-child.Vhas-spouse.Rich.

The answer is yes, since replacing the concept name Rmr by the description Rich M
Vhas-spouse.Rich and Acr by Vhas-child.Rich yields the descriptions

Vhas-child.Vhas-child.Rich M Vhas-child.(Rich M Yhas-spouse.Rich),
Vhas-child.Rich M Vhas-child.Vhas-child.Rich M Yhas-child.Vhas-spouse.Rich,

which are obviously equivalent. Thus, under the assumption that Rmr stands for
“Rich and married rich” and Acr for “All children are rich”, we can conclude that
both descriptions are meant to express the concept “All grandchildren are rich and
all children are rich and married rich”.

A substitution of concept descriptions for concept names that makes two concept
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descriptions C, D equivalent is called a unifier of C' and D. Of course, before testing
for unifiability, one must decide which of the concept names the unifier is allowed to
replace. These names are then called concept variables to distinguish them from the
usual concept names, which cannot be replaced. In the above example, the strange
acronyms Acr and Rmr were considered to be variables, whereas Rich was treated
as a (non-replaceable) concept name. Concept descriptions containing variables are
called concept patterns. More precisely, F Ly-concept patterns are defined by means
of the following syntax rules:

C,D — X|A|VRC|CND

where X stands for concept variables.

Now, a substitution in FLy is a mapping from the concept variables into the
set of FLy-concept descriptions. An example is the substitution {Rmr — Rich 1
Vhas-spouse.Rich, Acr — Vhas-child.Rich} used in our example. The application of
a substitution can be extended from variables to FLy-concept patterns in the usual
way (as exemplified above).

Definition 6.17 Let C, D be FLy-concept patterns. Then, a substitution o is a
unifier of the unification problem C' =7 D iff o(C) = o(D). .

Of course, it is not necessarily the case that concept descriptions that are unifiable
in this way are really meant to represent the same notion. A unifiability test can,
however, suggest to the knowledge engineer possible candidate descriptions.

6.3.3.2 Matching

Matching can be seen as a special case of unification, where one of the two ex-
pressions to be unified do not contain variables [Baader and Narendran, 1998;
2001]. Thus, a matching problem is of the form C =’ D where C is a concept
description and D a concept pattern. A substitution o is a matcher of this problem
iff C =o(D).

Borgida and McGuinness [1996] have introduced a different notion of matching,
which we call matching modulo subsumption to distinguish it from matching modulo
equivalence, as introduced above. A matching problem modulo subsumption is of
the form C T’ D, where C is a concept description and D is a concept pattern.
Such a problem asks for a substitution ¢ such that C' C (D).

Since o is a solution of C' C’ D iff ¢ solves C' =’ C' M D, matching modulo sub-
sumption can be reduced to matching modulo equivalence, and thus to unification.
However, in the context of matching modulo subsumption, one is interested in find-
ing “minimal” solutions of C' C° D, i.e., o should satisfy the property that there
does not exist another substitution ¢ such that C' C 6(D) C o(D). In addition,



Ezxtensions to Description Logics 265

Baader et al. [1999a] introduce side conditions of the form X C F and X T E, with
X a variable and E a concept pattern, to further restrict possible substitutions for
the variables occurring in the matching problem.

The original reason for introducing matching modulo equivalence was (i) to help
filter out unimportant aspects of complicated concepts appearing in large knowledge
bases, and (ii) to specify patterns for explaining proofs carried out by DL systems
[McGuinness and Borgida, 1995]. For example, matching the concept pattern

D = Vresearch-interests. X
against the description
C = Vpets.Cat I Vresearch-interests.Al N Vhobbies.Gardening

yields the minimal matcher o = {X ~— Al}, and thus finds the scientific interest
described in the concept, filtering out the other aspects described by C.

Another motivation for matching as well as unification can be found in the area
of integrating data or knowledge base schemata represented in some DL. An inte-
grated schema can be viewed as the union of the local schemata along with some
interschema assertions satisfying certain conditions. Finding such interschema as-
sertions can be supported be solving matching or unification problems. Borgida
and Kiisters [2000] propose a formal framework for schema integration, and pro-
vide initial theoretical as well as experimental results concerning this application of
unification and matching.

6.3.3.83 Results on matching and unification

As with computing the lcs, the algorithms for matching that can be found in the
literature follow either the language-based or the graph-based approach. Match-
ing modulo subsumption for a description language containing most of the con-
structs available in CLASSIC has been considered in [Borgida and McGuinness, 1996).
Borgida and McGuinness describe a polynomial-time matching algorithm, which
follows the graph-based approach. However, this algorithm cannot be applied to
arbitrary patterns, and it is not complete. Using the language-based approach, com-
plete and polynomial-time algorithms for matching modulo equivalence and match-
ing modulo subsumption in FLg were presented in [Baader and Narendran, 1998;
2001]. This result was extended to the language ALN by Baader et al. [1999a] and
its extension ALN ¢, by the role constructors union, composition, and transitive
closure by Kiisters [2001]. Baader et al. [2001] consider matching under side condi-
tions in more detail. Basically, subsumption conditions of the form X C FE leave the
complexity of matching in ALN polynomial, whereas strict subsumption conditions
X C F cause NP-hardness. Matching in ALE based on the characterization of sub-
sumption by homomorphism between graphs has been investigated in [Baader and
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Kiisters, 2000]. It is shown that matching modulo equivalence is NP-complete, and
that appropriate matchers can be computed in exponential time. Finally, complete
algorithms for matching in CLASSIC are provided by Kiisters [2001].

For unification, the only results available until now are for the small DL FL
and its extension F L, by the role constructors union, composition, and transitive
closure. In [Baader and Narendran, 1998; 2001] it is shown that deciding unifiability
of FLy-patterns is an EXPTIME-complete problem, and in [Baader and Kiisters,
2001] this result is extended to F Lyeg. In the remainder of this subsection, we will
try to give a flavor of how to solve unification problems in FLg.

As an immediate consequence of Proposition 6.15, equivalence of FLg-concept
descriptions C' = ['4en, YUA.A and D = [14en,, ¥Va.A in CCNF can be charac-
terized as follows:

C=D iff Uy=Vy forall Ae Ng. (6.3)

This fact can be used to turn F Ly-unification problems into certain formal language
equations, which then can be solved using tree automata.

Let us illustrate this on the example from Subsection 6.3.3.1. There, we consid-
ered the unification problem!

V{cc}.RNV{c}.X =" V{e,c}.Y NV{cs}.R.
As an easy consequence of (6.3), a substitution o of the form
{X —VUx.R, Y — VUy.R},

where Ux, Uy are sets of words over the alphabet {c, s}, is a unifier of this problem
iff the assignment X = Ux and Y = Uy solves the formal language equation

{cc} U{c} X = {es} U{e, c}Y.

For example, the unifier {X — RMVs.R, Y +— Vc.R} corresponds to the solution
X ={e,s}, Y = {c} of the above formal language equation. In general, unification
problems correspond to systems of formal language equations of the form

SoUST- XqU---US,- X, =TouT1-XqU---UT,-X,,

where the S;,T; are given finite sets of words and the X; are variables ranging
over finite sets of words. In [Baader and Narendran, 1998; 2001] it is shown that
solvability of such a system of equations can be reduced (in exponential time) to
the emptiness problem for automata on finite trees. This yields an EXPTIME-
decision procedure for unification in FLg. For unification in FL;e,, the S;, T; are

I To increase readability, has-spouse is replaced by s, has-child by ¢, Rich by R, and Rmr, Acr by the
variables X, Y. In addition, we have already transformed the patterns into their CCNF.
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regular languages, and to test the equation for solvability one must employ automata
working on infinite trees.

6.3.4 Concept rewriting

A general framework for rewriting concepts using terminologies has been proposed
in Baader et al. [2000]. Assume that £, Lo, and L3 are three description languages,
and let C be an Lq-concept description and 7 an Lo-TBox. We are interested in
rewriting (i.e., transforming) C into an L3-concept description D such that C' and
D are in a certain relationship (e.g., equivalence, subsumption w.r.t. 7)) and such
that D satisfies certain optimality criteria (e.g., being of minimal size).

This very general framework has several interesting instances. In the following,
we will discuss the three most promising ones.

The first instance is the translation of concept descriptions from one DL into
another. Here, we assume that £; and L3 are different description languages, and
that the TBox 7 is empty. By trying to rewrite an L£i-concept C into an equivalent
Ls-concept D, one can find out whether C' is expressible in £3. In many cases,
such an exact rewriting may not exist. In this case, one can try to approximate
C by an Ls-concept from above (below), i.e., find a minimal (maximal) concept
description D in £3 such C T D (D C C). An inference service that can compute
such rewritings could, for example, support the transfer of knowledge bases between
different systems. First results in this direction for the case where £ is ALC and
L3 is ALE can be found in [Brandt et al., 2001].

The second instance comes from the database area, where the problem of rewrit-
ing queries using views is a well-known research topic [Beeri et al., 1997]. The aim
is to optimize the runtime of queries by using cached views, which allows one to
minimize the (more expensive) access to source relations. In the context of the
above framework, views can be regarded as TBox definitions and queries as concept
descriptions. Beeri et al. [1997] investigate the instance where £1 = Lo = ALCN'R
and L3 = {M,U}. More precisely, they are interested in maximally contained total
rewritings, i.e., D should be subsumed by C, contain only concept names defined
in the TBox, and be a maximal concept (w.r.t. subsumption) satisfying these prop-
erties. They show that such a rewriting is computable (whenever it exists).

The third instance of the general framework, which was first proposed in [Baader
and Molitor, 1999], tries to increase the readability of large concept descriptions
by using concepts defined in a TBox. The motivation comes from the expe-
riences made with non-standard inferences (like lcs, msc and matching) in ap-
plications. The concept descriptions produced by these services are usually un-
folded (i.e., do not use defined names), and are thus often very large and hard
to read and comprehend. Therefore, one is interested in automatically generat-
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ing an equivalent concept description of minimal length that employs the con-
cept names defined in the underlying terminology. Referring to the framework,
one thus considers the case where £L = £1 = Lo = L3 and the TBox is non-
empty. For a given concept description C and a TBox 7 in L one is inter-
ested in an L-concept description D (containing concept names defined in 7)
such that C' =7 D and the size of D is minimal. Rewriting in this sense has
been investigated for the languages ALN and ALE [Baader and Molitor, 1999;
Baader et al., 2000]. Rewritings can be computed by a nondeterministic polyno-
mial algorithm that uses an oracle for deciding subsumption. The corresponding
decision problem (i.e., the question whether there exists a rewriting of size < k for
a given number k) is NP-hard for both languages.
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From Description Logic Provers
to Knowledge Representation Systems

Deborah L. McGuinness
Peter F. Patel-Schneider

Abstract

A description-logic based knowledge representation system is more than an infer-
ence engine for a particular description logic. A knowledge representation system
must provide a number of services to human users, including presentation of the
information stored in the system in a manner palatable to users and justification of
the inferences performed by the system. If human users cannot understand what
the system is doing, then the development of knowledge bases is made much more
difficult or even impossible. A knowledge representation system must also provide
a number of services to application programs, including access to the basic infor-
mation stored in the system but also including access to the machinations of the
system. If programs cannot easily access and manipulate the information stored in
the system, then the development of applications is made much more difficult or
even impossible.

7.1 Introduction

A description logic-based knowledge representation system does not live in a vac-
uum. It has to be prepared to interact with several sorts of other entities. One class
of entities consists of human users who develop knowledge bases using the system.
If the system cannot effectively interact with these users then it will be difficult to
create knowledge bases in the system, and the system will not be used. Another
class of entities consists of programs that use the services of the system to provide
information to support applications. If the system cannot effectively interact with
these programs then it will be difficult to create applications using the system, and
the system will not be used.

However, before one can talk about effective interaction, there has to be basic
interaction between the knowledge representation system and applications or users.
This basic interaction has to do with the mechanics of telling information to the

271



272 D. L. McGuinness, P. F. Patel-Schneider

system and retrieving information from it. At this level the system just maintains
what is was told and responds to the queries by running an inference procedure for
the logic it implements.

The basic interface is not sufficient for effective access to the system. On the
application side there is need for a treatment of exceptional conditions, wider inter-
face to applications, remote interfaces, and concurrent access, among others. There
is also need for responsive reaction by the system. On the human side there is
need for better presentation of the results of queries, particularly the suppression
of irrelevant detail; explanation of the inferences performed by the system; better
support for the creation of large description logic knowledge bases, particularly by
several people working in collaboration.

Even if all the above are present in a system, it will still not be complete. There
is also a need to have effective information about the system widely available. This
information has to be in various forms, including the obvious user manuals, but also
including interactive tutorials and demonstration system.

A system that does not include all of the above services is not a complete knowl-
edge representation system.

Our discussion of the services that need to be provided will mostly be described
in terms of an arbitrary description logic knowledge representation system. How-
ever, some of our examples will be given in the context of the CLASSIC family
of knowledge representation systems developed at AT&T [Borgida et al., 1989;
Brachman et al., 1991; Patel-Schneider et al., 1991], as CLASSIC has had the
longest lived and most extensive industrial application history of any descrip-
tion logic knowledge representation system. The CLASSIC application that we
will refer to the most is the configuration of transmissions equipment—an ap-
plication developed within AT&T [Wright et al., 1993; McGuinness et al., 1995;
McGuinness and Wright, 1998b; McGuinness et al., 1998].

In a typical configuration problem, a user is interested in entering a small number
of constraints and obtaining a complete, correct, and consistent parts list. Given a
configuration application’s domain knowledge and the base description logic infer-
ence system, the application can determine if the user’s constraints are consistent.
It can then calculate the deductive closure of the user-stated knowledge and the
background domain knowledge to generate a more complete description of the fi-
nal parts list. For example, in a home theater demonstration configuration system
[McGuinness et al., 1995, user input is solicited on the quality a user is willing to
pay for and the typical use (audio only, home theater only, or combination), and
then the application deduces all applicable consequences. This typically generates
descriptions for 6-20 subcomponents which restrict properties such as price range,
television diagonal, power rating, etc. A user might then inspect any of the individ-
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ual components possibly adding further requirements to it which may, in turn, cause
further constraints to appear on other components of the system. Also, a user may
ask the system to “complete” the configuration task, completely specifying each
component so that a parts list is generated and an order may be completed.

This home theater configurator example is fairly simple but it is motivated by real
world application uses in configuring very large pieces of transmission equipment
where objects may have thousands of parts and subparts and one decision can
easily have hundreds of ramifications. It was complicated applications such as these
that drove our work on access to information. More information can be found on
description logics for configuration in in this book in Chapter 12. Another example
application that drove our work on information access and presentation needs was
a simple description logic backend system supporting knowledge-enhanced search
for the web called FINDUR [McGuinness, 1998; McGuinness et al., 1997] which is
also described in Chapter 14.

7.2 Basic access

Basic access to a description logic knowledge base consists of simple mechanisms to
create description logic knowledge bases and to query them. The foundational as-
pects of this basic interaction have been well-studied. For example, Levesque [1984]
proposed that the basic interface to any knowledge representation system consist
of two kinds of interactions—one to tell information to the system and one to ask
whether information follows from what was previously told to the system.

Many frame-oriented knowledge representation systems embody such distinc-
tions, such as the Generic Frame Protocol [Chaudhri et al., 1997], and OKBC
(Open Knowledge Base Connectivity) [Chaudhri et al., 1998a). In the description
logic community, this basic interaction was standardized into an interface speci-
fication that defined a number of tell and ask operations that a description logic
knowledge representation system should implement [Patel-Schneider and Swartout,
1993].1 This specification is commonly known as the KRSS specification. The de-
scription of a minimal description logic knowledge representation system interface
given here will generally follow this KRSS specification. The KRSS specification
incorporates the DFKI standardized syntax and semantics [Baader et al., 1991].
Examples given here follow the syntax of Chapter 2, for the abstract syntax, and
the syntax of KRrss for a Lisp-like syntax that can actually be used from within a
computer.

One problem with defining a tell-and-ask interface for a description logic knowl-
edge representation system is that even a minimal interface depends on the expres-

1 The KRss specification also incorporates a number of operations that fall under the advanced interface
that will be discussed later.
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Table 7.1. Syntaz and semantics of making definitions.

Program Syntax Abstract Semantics

Syntax
(define-concept CN C) CN=C CON*f=(C"
(define-primitive-concept CN C) CNCC CONTcc?
(define-role RN R) RN=R RN'=R?
(define-primitive-role RN R) RNCR RNZ C RT
(define-attribute AN A) AN =A ANT=AT

(define-primitive-attribute AN R) ANC R AN? C R?

Table 7.2. Inclusion syntax and semantics.

Program Syntax Abstract Semantics
Syntax

(included C D) cCD ctcp?

sive power of the logic. As an example, if the description logic implemented by the
system does not include individuals then of course there is no need to include any
facilities for making statements about individuals. To overcome this difficulty this
chapter will describe the interfaces required for a system that implements a typical
description logic with both concepts and individuals.

Such a system has to have a method for creating a terminology of concepts. A
syntax for creating such a terminology, taken directly from the KRSS specification,
is given in Table 7.1. A terminological knowledge base, or TBox, is then a set of
such definitions perhaps with the condition that every concept, role, and attribute
name has at most one definition. There may also be the side condition that there
are no recursive definitions.

Some representation systems may have other definitions allowable or other re-
strictions. For example, some systems allow the definition of transitive roles, via a
define-transitive-role definition. Other systems prohibit non-primitive roles.

If the underlying description logic allows for recursive definitions, then it may be
easier to provide an even more basic interface to define concepts. Table 7.2 shows
a minimal interface for a system that employs arbitrary concept inclusions as its
means of defining concepts.

If the system incorporates individual reasoning, then it has to have a mechanism
for adding information about these individuals. One such method is via the asser-
tions in Table 7.3. An assertional knowledge base, or ABox, is then a set of such
assertions.

Once information has been told to the system, there has to be a mechanism for
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Table 7.3. Assertion syntaz and semantics.

Program Syntax Abstract Semantics
Syntax
(instance IN C) INe(C INT € C7

(related IN I R) (IN,I)e R (IN* I%)e R?

Table 7.4. Query syntax and semantics.

Query Meaning
(concept-subsumes? C1 C2) CiC Oy
(role-subsumes? R1 R2) R{C Ry

(individual-instance? IN C) IN € C
(individual-related? IN I R) (IN,I)€ R

determining what follows from this information. A minimal mechanism for this is
via a set of queries, such as those given in Table 7.4. A query is answered by the
system by determining if the meaning of the query is implied by the information
that has been told to the system.

The interface described above is sufficient for determining the contents of a knowl-
edge base but only in the theoretical sense. For reasonable access to the information
in a knowledge base a richer interface is required. One part of this richer access
even really belongs in the basic interface, namely retrievals of taxonomy information.
The interface in Table 7.5 provides a simple interface to the taxonomy information
implicit in a description logic knowledge base. The meaning of the calls should
be obvious from their description, except perhaps the

”

-direct-" versions, which

Table 7.5. Taxonomy retrieval syntax.

(concept-descendants C)
(concept-offspring C)
(concept-ancestors C)
(concept-parents C)
(concept-instances C)
(concept-direct-instances C)
(role-descendants R)
(role-offspring R)
(role-ancestors R)
(role-parents R)
(individual-types IN)
(individual-direct-types IN)
(individual-fillers IN R)
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Table 7.6. UnTell syntax.

(undefine-concept CN)
(undefine-role RN)
(undefine-attribute AN)
(un-tell-instance IN C)
(un-tell-related IN I R)

return the concepts, individuals, or roles that are directly related to the query, i.e.,
that have no intervening concept or role.

Another basic service that is missing from above interface is the ability to remove
information from the knowledge base. This is not the ability to perform arbitrary
changes to the implicit information represented by the knowledge base. Instead it is
just the ability to “un-tell” information that had been previously told to the system.
A basic interface for this purpose is given in Table 7.6. There may be restrictions on
what can be un-told, such as requiring that concepts that are currently mentioned
in the definition of other concepts cannot be removed from the knowledge base.

7.3 Advanced application access

The basic interface described above provides only minimal access to a description
logic knowledge base. Effective access requires a number of augmentations to the
basic interface.

One of the most important augmentations has to do with defining a complete
application programming interface. The basic interface assumes that the system
is implemented in a language like LiSP, where there is a simple way of creating
descriptions and other values for the various operations and there is a mechanism
for returning values of any type. This was acceptable when systems and applications
were all implemented in LispP, but this is no longer the case.

A complete application programming interface must then provide a syntax for
creating all the types of values that need to be passed to the representation system.
Further, it needs to provide or define mechanisms for returning values, particularly
compound values such as the sets of concepts that are returned by the taxonomic
retrieval operations.

7.3.1 Efficiency

Because the operations of the representation system may represent the largest re-
source consumption of an application, it is often necessary to know how expensive
various operations of the system may be. For example, it is often necessary to
know the usual resource consumption of the most-frequently called operations of
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the knowledge representation system or those operations that are called at critical
time in the operation of the whole system.

The CLAssIC family has been particularly aggressive in ensuring that queries to
the system are fast, working under the assumption that the most-common opera-
tions are queries. Most queries in CLASSIC are simply retrievals of data stored by
the system, as CLASSIC responds to the addition of knowledge by computing most
of its consequences. Further, the performance of the addition of knowledge to the
system is optimized over the retraction or change of knowledge.

CLASSIC achieves these characteristics of fastest queries, fast additions, and slower
retractions and changes by retaining data structures that record the current set of
consequences and also record, on a fairly granular level, which knowledge affects
other knowledge. This is not full truth-maintenance data, which would be pro-
hibitively expensive to compute (and store), but is just enough to make additions
cheap. It also serves to make retractions and changes somewhat cheaper than they
otherwise would be, but this effect is much less than the change in the speed up
additions of knowledge.

7.3.2 Wide application programming interface

In the vast majority of applications, the knowledge representation system has to
serve as a tightly integrated component of a much larger overall system. For this
to be workable, the knowledge representation system must provide a full-featured
interface for the use of the rest of the system.

The NEOCLASSIC system, which is programmed in C++, and is designed to be part
of a larger C++program, provides a very wide application programming interface.
In addition to the above interface, there is a large interface that lets the rest of the
system receive and process the actual data structures used inside NEOCLASSIC to
represent knowledge, but without allowing these structures to be modified outside
of NEoCrLAssIC.! This interface allows for much faster access to the knowledge
stored by NEOCLASSIC, as many accesses just retrieve fields from a data structure.
Further, direct access to data structures allows the rest of the system to keep track
of knowledge from NEOCLASSIC without having to keep track of a “name” for the
knowledge querying using this name. (In fact, it is in this way possible to dispense
with any notion of querying by name.)

There are also ways to obtain the data structures that are used by NEOCLAS-
sic for other purposes, including explanation. We have used this facility to write
graphical user interfaces to present explanations and other information.

An additional interface that is provided by both Lisp CLassiC and NEOCLASSIC

L Of course, as C++does not have an inviolable type system, there are mechanisms to modify these struc-
tures. It is just that any well-typed access cannot.



278 D. L. McGuinness, P. F. Patel-Schneider

is a notification mechanism, or hooks. This mechanism allows programmers to write
functions that are called when particular changes are made in the knowledge stored
in the system or when the system infers new knowledge from other knowledge.
Hooks for the retraction of knowledge from the system are also provided. These
hooks allow, among other things, the creation of a graphical user interface that
mirrors (some portion or view of ) the knowledge stored in the representation system.

Others in the knowledge representation community have recognized the need for
common APIs, (e.g., the Generic Frame Protocol [Chaudhri et al., 1997] and the
Open Knowledge Base Connectivity [Chaudhri et al., 1998a]). Some systems em-
brace the notion of loading many different forms of knowledge bases and accept
wrapper specifications for other source formats and APIs. For example, ONTOLIN-
GUA has implemented capability for loading a number of formats including CLASSIC,
OKBC, ANSI KIF, KIF 3.0, CML, CLIPS, ONTOLINGUA, PROTEGE, SNARK, and
DAML+4OIL. It also provides the ability to dump frames in multiple formats such
as OKBC, Crassic, CLOS, CML, ONTOLINGUA, and DAML+OIL and it has also
been made interoperable with at least two reasoners including one in lisp and one
in java.

7.3.3 Remote and concurrent access

The standard computing environment is becoming more and more distributed. If a
description logic knowledge representation system is to be part of this environment
it must allow effective remote access. There are several mechanisms for allowing re-
mote access, including applications that run on the same machine as the description
logic knowledge representation system but themselves provide a remote access mech-
anism. Examples of such applications are the wines [Brachman et al., 1991] and
stereo configuration demonstration systems [McGuinness et al., 1995] mentioned
later in this chapter.

The description logic knowledge representation system itself can also directly pro-
vide a remote access mechanism. This can be as simple as providing the system
with a pipe-like interface where clients can send a sequence of commands to the sys-
tem from remote machines, and receive responses via the same pipe. NEOCLASSIC
provides this sort of simple remote access mechanism.

A more complicated remote access mechanism would be to provide a CORBA in-
terface to the system. This kind of access was proposed by Bechhofer et al. [1999],
Their interface gives a CORBA layering around a tell-and-ask interface. Providing
a wider CORBA access to description logic knowledge representation systems, such
as providing CORBA access to the actual data structures of the system, is more
difficult, as the CORBA mechanism for dealing with recursive objects is annoy-
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ing. Nevertheless, an effective remote access mechanism should provide the same
functionality as is desired for local access.

If remote access to a description logic knowledge representation system is pro-
vided, then the issue of concurrent access becomes vital. (This is not to say that
concurrent access is not of interest if the system does not allow remote access.) The
interesting issues with respect to concurrent access involve simultaneous access to
the same repository of knowledge. Most of the issues with respect to concurrent ac-
cess are the same as concurrent access to databases, including locking and providing
transactions. In fact, there have been informal proposals to use a database system
to store the information in a description logic knowledge representation system like
CLASSIC just so as to piggyback on the facilities for concurrent access provided by
the database system.

The remote interface proposal mentioned above provides a limited form of trans-
actions, basically allowing clients to batch up a collection of updates to a knowledge
base and apply them all at once as an atomic transaction. This interface, however,
does not provide any mechanism to abort transactions or to provide a local view of
the knowledge base during the execution of a transaction.

At least one other knowledge representation system has dealt with the notion of
concurrent access by leveraging the notion of sessions. ONTOLINGUA allows users
to log in to a particular session that may already be opened by a previous user.
All users logged into the same session see the same version of the knowledge base.
A more sophisticated approach to concurrent access and knowledge base editing is
embodied in ONTOBUILDER [Das et al., 2001]. In this system, users can not only
do something similar to sharing a session, but the implementation also facilitates
collaboration through dialogue with other users currently signed on to the same
ontology and allows locking of concepts for updates.

7.3.4 Platforms

Another important access aspect concerns the platforms on which the knowledge
representation system runs. This encompasses not only the machines and operating
systems, but also the language in which the system is written (if it is visible), the
version of the libraries that the system uses, and the mechanism for linking to the
system. Many applications have needs for a particular operating system or language,
and cannot utilize tools not available in this context.

Some description logics like CLASSIC have been made available on a reasonable
number of platforms. The underlying language of a member of the CLASSIC family
is visible, not just because of the application programming interface which is, of
necessity, language-specific, but also because programmers can write functions to
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extended the expressive power of the system, and these functions have to be written
in the underlying language of the system.

CLASsIC is currently available in two different languages: Lisp and C++. The
C++member is the more recent, and the reimplementation used C++precisely to
make CLASSIC available for a larger number of applications. This was done even
though C++is not the ideal language in which to write a representation system.

The members of the Crassic family have also been written in a platform-
independent manner. This has required not using some of the nicer capabilities
of the underlying language or of particular operating systems. For example, NEO-
CrLassIC does not use C++exceptions, partly because few C++compilers supported
this extension to the language. LiSP-CLASSIC runs on various LISP implementa-
tions and on various operating systems, including most versions of Unix, MacOS,
and Windows. NEOCLASSIC runs under four C++compilers and on both Unix and
Windows NT.

With the influence of the web and more distributed development environments,
it may be expected that more description logics may be made available on multiple
platforms and may be integrated into more hybrid environments. One example of
another knowledge representation system that found a need to do this is the CHI-
MAERA Ontology Evolution Environment [McGuinness et al., 2000b]. This system
has been connected to ONTOLINGUA for ontology editing and simple inference, a
lisp-based reasoner for some diagnostics, and a hybrid java-based reasoning envi-
ronment that supports both first order logic reasoning as well as special purpose
reasoning for the DAML4OIL description logic.

7.4 Advanced human access
7.4.1 Explanation

Many research areas which focus on deductive systems (such as expert systems
and theorem proving) have determined that explanation modules are required for
even simple deductive systems to be usable by people other than their designers.
Description Logics have at least as great a need for explanation as other deductive
systems since they typically provide similar inferences to those found in other fields
and also support added inferences particular to description logics. They provide a
wide array of inferences [Borgida, 1992b] which can be strung together to provide
complicated chains of inferences. Thus conclusions may be puzzling even to experts
in description logics when application domains are unfamiliar or when chains of
inference are long. Additionally, naive users may require explanations for deductions
which may appear simple to knowledgeable users. Both sets of needs became evident
in work on a family of configuration applications and necessitated an automatic
explanation facility.
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The main inference in description logics is subsumption—determining when mem-
bership in one class necessitates membership in another class. For example, Person
is subsumed by Mammal since anything that is a member of the class Person must be
a member of the class Mammal. Almost every inference in description logics can be
rewritten using subsumption relationships and thus subsumption explanation forms
the foundation of an explanation module [McGuinness and Borgida, 1995].

Although subsumption in most implemented description logics is calculated pro-
cedurally, it is preferable to provide a declarative presentation of the deductions
because a procedural trace typically is very long and is littered with details of
the implementation. A declarative explanation mechanism which relies on a proof
theoretic representation of deductions may be used as a framework. Such a mecha-
nism has been specified [McGuinness, 1996] and implemented for CLASSIC and later
specified for ACN [Baader et al., 1999a).

All the inferences in a description logic system can be represented declaratively
by a proof rules which state some (optional) antecedent conditions and deduce some
consequent relationship. The subsumption rules may be written so that they have
a single subsumption relationship in the denominator. For example, if Person is
subsumed by Mammal, then it follows that something that has all of its children
restricted to be Persons must be subsumed by something that has all of its children
restricted to be Mammals. This can be written more generally (with C representing
Person, D representing Mammal, and R representing child) as the V restriction rule
below:

FCCD

All restriction FVR.C CVR.D

Using a set of proof rules that represent description logic inferences, it is possible
to give a declarative explanation of subsumption conclusions in terms of proof rule
applications and appropriate antecedent conditions. This basic foundation can be
applied to all of the inferences in description logics, including all of the inferences for
handling constraint propagation and other individual inferences. There is a wealth
of techniques that one can employ to make this basic approach more manageable
and meaningful for users [McGuinness and Borgida, 1995; McGuinness, 1996].

Expressive description logic-based systems may require a large number of proof
rules. If one is interested in limiting both explanation implementation work and
also limiting the size of explanations, it is be beneficial to prune the number of
inferences to be explained. In one configuration family of applications [McGuinness
and Wright, 1998b] the help desk logs were logged and analyzed to determine the
most questions that related to explanation. These inferences included inheritance
(if A is an instance of B and B is a subclass of C, then A “inherits” all the properties
of C'), propagation (if A fills a role R on B, and B is an instance of something which
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is known to restrict all of its fillers for the R role to be instances of D, then A is an
instance of D), rule firing (if a is an instance of £ and E has a rule associated with
it that says that anything that is an £ must also be an F', then a is an instance
of F'), and contradiction detection (e.g., I can not be an instance of something
that has at least 3 children and at most 2 children). In the initial development
version, explanation was only provided for these inferences in an effort to minimize
development costs, resulting in a quite useful explanation mechanism with much
less effort than a full explanation system. (The two current implementations of
explanation in CLASSIC contain complete explanation.) One demonstration system
[McGuinness et al., 1995] incorporates special handling for the most heavily used
inferences providing natural language templates for presentations of explanations
aimed at lay people.

7.4.2 Error handling

Since one common usage of deductive systems is for contradiction detection, han-
dling error reporting and explanation is critical to usability. This usage is com-
mon in applications where object descriptions can easily become over-constrained.
For example, in the home theater system application, one could generate a non-
contradictory request for a high quality stereo system that costs under a certain
amount. The description could later become inconsistent as more information is
added. For example, a required high-quality, expensive speaker set could violate
a low total price constraint. Understanding evolving contradictions such as this
challenges many users and leads them to request special error explanation support.
Informal studies with internal users and external academic users indicate that ade-
quate error support is crucial to the usability of the system.

Error handling could be viewed simply as a special case of inference where the
conclusion is that some object is found to be described by the a special concept
typically called bottom or nothing. For example, a concept is incoherent if it has
conflicting bounds on some role:

FCC(zmr) FCC(<nr) n<m

B fli
ounds Conflict FoC L

If an explanation system is already implemented to explain proof theoretic infer-
ence rules, then explaining error conditions is almost a special case of explaining
any inference. There are two issues that are worth noting, however. The first is that
information added to one object in the knowledge base may cause another object
to become inconsistent. In fact, information about one object may impact another
series of objects before a contradiction is discovered at some distant point along
an inference chain. Typical description logic systems require consistent knowledge
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bases, thus whenever they discover a contradiction, they use some form of truth
maintenance to revert to a consistent state of knowledge, removing conclusions that
depend on the information removed from the knowledge base. Thus, it is possi-
ble, if not typical, for an error condition to depend upon some conclusion that was
later removed. A simple minded explanation based solely on information that is
currently in the knowledge base would not be able to refer to these removed conclu-
sions. Thus, any explanation system capable of explaining errors will need access
to the current state of the knowledge base as well as to its inconsistent state.

Because of the added complexity resulting from the distinction between the cur-
rent (consistent) state and the inconsistent state of the knowledge base and because
of the importance of error explanation, we believe system designers will want to
support special handling of error conditions. For example, in a number of situa-
tions surveyed, users typically asked for explanations of a particular object property
or relationships between objects. Under error conditions, users had more trouble
identifying an appropriate query to ask. This suggests that special error support
should be introduced. In CrAssic, for example, an automatic error explanation
option is generated upon contradiction detection. This way the user requires no
knowledge (other than the explanation error command name) in order to ask for
help.

Another issue of importance to error handling is the completeness or incomplete-
ness of the system. If a system is incomplete then it may miss deductions. Thus, it
is possible for an object to be inconsistent if all of the logically implied deductions
were to be made but, because the system was incomplete, it missed some of these
deductions and thus the object remains consistent in the knowledge base. In order
for users to be able to use a system that is incomplete, they may need to be able
to explain not only error deductions but deductions that were missed because of
incomplete reasoning. An approach that completes the reasoning with respect to a
particular aspect of an object is described in [McGuinness, 1996, Chapter 5]. Given
the completed information, the system can then explain missed deductions.

7.4.3 Pruning

If a knowledge representation system makes it easy to generate and reason with
complicated objects, users may find naive object presentations to be much too
complex to handle. In order to make a system more usable, there needs to be some
way of limiting the amount of information presented about complicated objects. For
example, in the stereo demonstration application, a typical stereo system description
may generate four pages of printout. The information contained in the description
may be clearly meaningful information such as price ranges and model numbers for
components but it may also contain descriptions of where the component might be
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displayed in the rack and which superconcepts are related to the object. In certain
contexts it is desirable to print just model numbers and prices, and in other contexts
it is desirable to print price ranges of components. We believe it is critical to provide
support for encoding domain independent and domain dependent information which
can be used along with contextual information to determine what information to
print or explain. As one example, we consider some of the knowledge bases written
for the DARPA High Performance Knowledge Base project. This project includes
a very general upper level ontology with many slots defined on many of the classes.
Most objects in the system inherit a large number of slots from upper ontology
classes and it is not uncommon for normalized objects to have hundreds of slots
associated with them even though they only have a couple of properties defined on
them in the local knowledge bases.

Knowledge representation systems faced with information overload need to take
some approach to filtering. One of the simplest approaches allows a specification on
roles concerning whether they should be displayed on objects or not. This may work
for homogeneous knowledge bases where role information is uniformly interesting
or uninteresting. Our experience is however, that context needs to be taken into
account in more heterogeneous knowledge base applications. One example imple-
mentation that allows context and domain dependent information to be considered
along with domain independent information is implemented in CLASSIC. A meta
language is defined for describing what is interesting to either print or explain on
a class by class basis. Any subclass or instance of the class will then inherit the
meta description and thus will inherit “interestingness” properties from its parent
classes. The meta language essentially captures the expressive power of the base
description logic with some carefully chosen epistemic operators to allow contextual
information (such as known fillers or closed roles) to impact decisions on what to
print.

The meta language has been used to reduce object presentation and explanation
by an order of magnitude in at least one application [McGuinness et al., 1995]. This
reduction was required for the application to be able to include object presentation.
The algorithms of the basic approach are included in [McGuinness, 1996], the theory
of a generalized approach are presented in [Borgida and McGuinness, 1996] and
further analyzed in [Baader et al., 1999a).

7.4.4 Knowledge acquisition

If an application is expected to have a long life-cycle, then acquisition and main-
tenance of knowledge become major issues for usability. There are two kinds of
knowledge acquisition which are worth considering: (i) acquisition of additional
knowledge once a knowledge base is in place, and (ii) acquisition of original do-
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main knowledge. A complete environment will address both concerns, however the
original acquisition of knowledge is a much more general and difficult problem and
conveniently enough, is not the activity that many users will find themselves doing
repeatedly while maintaining a project.

We observe that with knowledge of the domain and appropriate analysis of evo-
lution, it is possible to build a knowledge evolution environment suitable for non-
experts to use for extending knowledge bases. One such project considered the
evolution support environment for configurators. The specific domain and usage
patterns were analyzed, and it was found that only certain classes had new sub-
classes added to them as product knowledge evolved. It was also found that in-
stances were typically populated in particular patterns. A special purpose interface
was developed for a family of configurators that exploited these findings and sup-
ported new configurator application development by non-experts [McGuinness and
Wright, 1998b]. Also, in related work, Gil and Melz [1996] have analyzed planning-
based uses of another description logic-based system that systematically supports
knowledge base evolution with respect to the known plan usage.

A more general problem that does not rely on domain or reasoning knowledge has
been addressed in the editor work [Paley et al., 1997] for the general frame protocol
and also in editor work for collaborative generation and maintenance of ontologies
by non experts in the Collaborative Topic Builder component of FINDUR [McGuin-
ness, 1998] and recently in CHIMAERA work [McGuinness et al., 2000b] for merging,
analyzing, and maintaining ontologies. The general work, of course, is broader
yet shallower with respect to reasoning implications. In the FINDUR collaborative
topic builder environment, simple hierarchies of node names (with role filler and
value restriction information) is used to support query expansion to provide more
intelligent web searching. In order to deploy this broadly, a web-based distributed
ontoloty editor was required to allow non-experts to input, modify, and maintain
background ontologies. The basic functionality for this interface follows the same re-
quirements specified in Section 7.2 although this particular implementation limited
some of the interface specifications according to expected usage patterns. For ex-
ample, in the medical deployments [McGuinness, 1999] of FINDUR, it was expected
that all of the roles that were to be used had been defined and thus pull down
lists of these roles were hardcoded into the interface and new role specification was
not one of the exposed functionalities in the GUIL. It also allows importing of seed
ontologies and supports contradiction detection from ontology input. CHIMAERA’S
environment takes the analysis task to a much more detailed level and it provides
a number of different ways of not only detecting explicit contradictions but also
possible contradictions and possible term merges.
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7.5 Other technical concerns

The computer science concerns that affect the suitability of a knowledge represen-
tation system have to do with the behavior of the system as a computer program or
routine, ignoring its status as a representer of knowledge. The most-studied aspect
of this collection of concerns has to do with the computational analysis of the basic
algorithms embodied in the system, in particular their worst-case complexity. Be-
cause this worst-case complexity has been so well studied, we will not say anything
about it further, except to state that it ¢s important in determining the suitability
of a knowledge representation system for particular task, notably tasks that need a
performance guarantee.

7.6 Public relations concerns

Researchers sometimes underestimate the varied public relations aspects involved
with making a system usable. Barriers to usability come in many forms: potential
users who are unaware of a system’s existence will not use it; potential users who
do not understand how a system can meet the users needs are unlikely to use it;
potential users who do not have enough understanding to visualize an abstract solu-
tion to their problem using a new system are unlikely to depend on the new system
over tools they understand and can predict; and finally potential users who have a
limited set of approved tools which does not include the new system are unlikely go
to the effort of getting the new system approved for their internal use. In order to
address these issues, description logic system designers need to devise ways to make
their systems known to likely users, educate those users about the possible uses,
provide support for teaching users how to use them for some standard and lever-
ageable uses, and either obtain approval for their systems or provide ammunition
for users to gain approval.

In experiences with CLASSIC, the following tools have been employed to overcome
the above stated barriers to usability.

Beyond the standard research papers, users demand usage guidelines aimed at
non-PhD researchers. A paper that provides a running (executable) example on
how to use the system is most desirable, such as [Brachman et al., 1991]. This
paper also tries to provide guidance on when a description logic-based system might
be useful, what its limitations are, and how one might go about using one in a
simple application. A take off of that paper was done as the basis of a tutorial on
building ontologies in other knowledge representation systems including PROTEGE
and ONTOLINGUA [Noy and McGuinness, 2000].

A demonstration system is also of great utility as it helps users understand a
simple reasoning paradigm and provides a prototyping domain for showing off novel
functionality which exploits the strengths of the underlying system. In the CLASSIC
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project a number of demonstration systems were developed, including a simple ap-
plication that captures “typical” reasoning patterns in an accessible domain. This
one system has been used in dozens of universities as a pedagogical tool and test sys-
tem. While this application was appropriate for many students, an application more
closely resembling some actual applications was needed to (i) give more meaningful
demonstrations internally and to (ii) provide concrete suggestions of new function-
ality that developers might consider using in their applications. This led to a more
complex application with a fairly serious graphical interface [McGuinness et al.,
1995]. Both of these applications have been adapted for the web.! It was only when
a demonstration system that was clearly isomorphic to the developer’s applications
was available that there could be effective providing of clear descriptions and im-
plemented examples of the functionality that we believed should be incorporated
into development applications.

Interactive courses are also of benefit in training potential users in how to use a
description-logic based knowledge representation system. Several courses [McGuin-
ness et al., 1994; Abrahams et al., 1996] on how to use CLASSIC have been devel-
oped, including one from a university for course use, which includes a set of five
running assignments to help students gain experience using the system. Other gen-
eral description logic courses can be found on the Description Logic web site at
http://wuw.dl.kr.org/.

For a system to be used in the business community, it has to satisfy their de-
mand for common standard implementation languages, reasonable support, and
standard platform toolkits. Some description logic implementations, such as CLAS-
SIC, attempted to meet this need by providing an implementation in C while still
maintaining the lisp research version. This later proved problematic to maintain
and the decision was made to provide an implementation in C++that was to meet
both developers and implementers needs. Interestingly enough, years later though
the lisp version is the one that appears to be most heavily used. More details of
the evolution of that of usability of that system can be found in [Brachman et al.,
1999].

7.7 Summary

Although a knowledge representation system must have sufficient expressive power
and appropriate computational complexity to be considered for use in applications,
there are many other issues that also determine whether it will be used. These
issues involve access to the knowledge stored in the system, such as explanation
and presentation of the knowledge, other technical issues, such as efficiency and

1 The web version of the wines demonstration system was provided by Chris Welty and is available at
http://untangle.cs.vassar.edu/wine-demo/index.html.
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programming interfaces, and non-technical issues, such as publicity and demos. If
these issues are not addressed appropriately, a knowledge representation system will
not be used in real applications.
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Description Logics Systems
Ralf Moller

Volker Haarslev

Abstract

This chapter discusses implemented description logic systems that have played or
play an important role in the field. It first presents several earlier systems that,
although not based on description logics, have provided important ideas. These
systems include KL-ONE, KRYPTON, NIKL, and KANDOR. Then, successor systems
are described by classifying them along the characteristics discussed in the previous
chapters, addressing the following systems: CLASSIC (“almost” complete, fast);
BAcCk, LooM (expressive, incomplete); KRis, CRACK (expressive, complete). At
last, a new optimized generation of very expressive but sound and complete DL
systems is also introduced. In particular, we focus on the systems DLP, FacT, and
RACER and explain what they can and cannot do.

8.1 New light through old windows?

In this chapter a description of the goals behind the development of different DL
systems is given from a historical perspective. The description of DL systems al-
lows important insights into the development of the knowledge representation re-
search field as a whole. The design decisions behind the well-known systems which
we discuss in this chapter do not only reflect the trends in different knowledge
representation research areas but also characterize the point of view on knowl-
edge representation that different researchers advocate. The chapter discusses
general capabilities of the systems and gives an analysis of the main language
features and design decisions behind system architectures. The analysis of cur-
rent systems in the light of a historical perspective might lead to new ideas for
the development of even more powerful description logic systems in the future.
References to previous descriptions of DL systems (e.g., in [MacGregor, 1991a;
Woods and Schmolze, 1990; Horrocks, 1997a)) or publications on DL theory that also
contain discussions about description logic systems (e.g., [Patel-Schneider, 1987a;
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Nebel, 1990a; Schmidt, 1991]) are included where appropriate. For references to
other systems not mentioned here see also [Woods and Schmolze, 1990] and [Nebel,
1990b, p. 46f., p. 63f.].

In Chapter 2 basic concept and role constructors were already introduced (see also
the appendix for a summary of syntax and semantics of DL constructors). However,
before starting the discussion about DL systems it is appropriate to introduce some
notation for language constructors in order to keep this chapter self-contained. It
is assumed that the reader is familiar with the basic description logics AL and
ALC. In a similar way as in Chapter 2, further language features are indicated
by different letters. The letter A is used for simple number restrictions and the
letter © is used for qualified number restrictions. H is used for role hierarchies
with multiple parents whereas h is used for role hierarchies with single inheritance
only. In some languages, no role hierarchies but role conjunctions are provided.
Role conjunctions are indicated with the letter R in the following. In addition, the
abbreviations F and f are used for features with and without equality for feature
chains (i.e., agreements), respectively. The index R* is used to indicate support for
transitive roles. Language constructors for an extensional specification of concepts
using nominals (or individuals) are denoted by the letters O and B (see Chapter 2
or the appendix for details). If inverse roles are supported by a DL system, this
is indicated either with a superscript ~! or with the letter Z. The latter variant is
used in order to allow for a convenient pronunciation of the DL language.

8.2 The first generation

Inspired by research on human cognitive behavior, proposals for knowledge repre-
sentation languages were first discussed in the late sixties. E.g., [Quillian, 1967]
is one of the first publications of these languages called “semantic networks” (see
also [Quillian, 1968]). Originally, semantic network formalisms were seen as alter-
natives to first-order logic. In a similar spirit, [Minsky, 1981] introduced the initial
notion of a frame system. The motivation of these representation formalisms was
to mimic human reasoning in the sense of achieving “cognitive adequacy”. Thus,
the idea was to support problem solving with appropriate representation structures
that somehow “resemble” representation structures assumed in human information
processing. The exploitation of inheritance was a predominant idea in frame sys-
tems. The specification of knowledge bases should be simple and the use of the
representation structures should be intuitive (“epistemological adequacy”). How-
ever, as pointed out by [Woods, 1975], it was not at all simple to specify what an
inference system was supposed to actually compute. The late seventies saw ini-
tial research on the relation of frame systems and first-order logic [Hayes, 1977;
1979] which revealed that some aspects of frame-based systems can be considered
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as special “instantiations” of first-order reasoning. Hayes argued that frame-based
reasoning was not an entirely new way of knowledge representation with particular
advantages over first-order reasoning. Specific features of frame systems beyond
first-order reasoning (e.g., defaults) were not very well understood at that time.
The consequence of these publications was that many researchers did not consider
frame systems and semantic network systems as possible alternatives to logic-based
approaches any more.

The criticisms of early frame systems and semantic network formalisms stimulated
research on the development of mathematical structures and techniques for defining
the semantics of representational constructs supported by different representation
languages. For instance, in early frame systems there was no clear distinction be-
tween constructs for representing “generic” knowledge about sets of individuals and
knowledge about “specific” individuals. Furthermore, frames were often used as
data structures in procedural programs. For these programs a formal specification
of what they were expected to compute was rarely provided. Rather than interpret-
ing frame structures as data structures, [Woods, 1975] suggested to use a formal
semantics to clearly specify what is to be computed by inference algorithms.

KL-ONE

Inspired by critics such as [Woods, 1975], Brachman started to develop a new rep-
resentation system (called KL-ONE) that inherently included the notion of inferring
implicit knowledge from given declarations [Brachman, 1977b; 1979]. Although the
initial approach was not logic-based, KL-ONE started the era of logic-based repre-
sentation systems which can be used to formalize application problems as inference
problems over the constructs supported by the representation language. One of
the prevailing inference patterns is centered around inheritance [Brachman, 1983].
The final report on the KL-ONE language is published in [Brachman and Schmolze,
1985].

One of the core ideas behind K1L-ONE as a representation language for the “epis-
temological level” resulted from problems with languages offering built-in primitives
for general representation purposes (e.g., CD theory [Schank, 1975]). Rather than
providing general built-in primitives, in KL-ONE, for a specific representation prob-
lem a set of adequate primitives was defined by the user. The primitives were
denoted by so-called concept names. The next idea was to use concept-forming op-
erators to build new concepts from basic concepts. These compound concepts were
also referred to as “concepts”, “concept terms” or “concept descriptions”. Generic
concepts were intended to denote classes of individuals and individual concepts were
intended to denote individuals (see also [Nebel, 1990a, p. 42]). Individuals were re-
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lated by so-called roles which, in turn, could be primitive roles (role names) or roles
described with role constructors [Brachman and Schmolze, 1985].

In KL-ONE, concepts and roles are the building blocks for representational pur-
poses. The main idea behind concepts and concept constructors in KL-ONE is that
the meaning of a concept is derived only from the meaning of its superconcepts
and other restrictions associated with a concept [Brachman and Schmolze, 1985].
A Kr-ONE generic concept consists of a set of superconcept names, a set of role
descriptions, and a set of structural descriptions [Patel-Schneider, 1987a, p. 58f.].1
Roles can be viewed as potential relationships between an individual of a certain
class and other individuals in the world [Nebel, 1990a, p. 42].

Role descriptions could be either restrictions or differentiations. The former re-
stricted the class of permitted fillers (value restrictions) or the number of fillers
(number restrictions). Role differentiations were used to describe a subrole with
possible value or number restrictions. So-called structural descriptions were used
to state relationships between the fillers of roles (see also [Patel-Schneider, 1987a,
p. 58f.]). Descriptions for individual concepts consisted simply of a set of values for
roles plus a set of generic concepts. Individual concepts were seen as instances of
these generic concepts, i.e., an individual concept had to satisfy all restrictions (and
differentiations) inherited by the generic concepts. On the other hand, individual
concepts were also subsumed by their generic concepts. However, the semantics of
individuals was never completely worked out (see [Schmolze and Brachman, 1982,
p. 23-31] cited after [Nebel, 1990a, p. 64]).

The representation structures offered by KL-ONE were similar to those of-
fered by semantic networks or frames. Although, initially, the structures of-
fered by KL-ONE were called “structural inheritance networks” [Brachman, 1977b;
1979], in [Brachman and Levesque, 1984] the authors talk of “frame structures”.?
In accordance with [Nebel, 1990a, p. 45] we argue that in contrast to, e.g., CD
theory [Schank, 1975, providing a (large) set of primitive representation structures
(names) for all kinds of representation purposes was not the development goal of
KL-ONE. As Nebel points out [Nebel, 1990a, p. 45], more important and unique
for KL-ONE is the core idea of proving ways to specify concept definitions, i.e., the
possibility to let a knowledge engineer declare the relation of “high-level concepts”
to “lower-level primitives”.

A concept definition was an assignment of a (unique) name to a concept term. In
KL-ONE the well known distinction between the two kinds of concept definitions,

1 Note that, in KL-ONE-like languages, there are specific syntactic constructs for specifying superconcepts.
These specific constructs are no longer present in logic-based concept languages of the nineties.

There are large differences between frame systems and description logic systems: if for 7 the restriction
VR.C holds, and we set ¢ into relation to j via the role r, then every KrL-ONE-based system concludes
that j is an instance of C. In standard frame-based systems, j can only be set into relation to ¢ via R if
it is already known that j is an instance of C'. Otherwise, in frame systems at least a warning is issued
or even an error is signalled.

2
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definitions with necessary and sufficient conditions and definitions with only nec-
essary conditions (so-called primitive definitions), was investigated for knowledge
representation purposes for the first time.? In the original approach no cycles were
allowed in the set of concept definitions.* The most important consequence of the
introduction of concept definitions with necessary and sufficient conditions was that
reasoning about the relationships between concepts became important. In KL-ONE
there is still the notion of a “told subsumer” syntactically being explicitly mentioned
in a list of so-called superconcepts but, according to the semantics, there are also
additional computed subsumers which are concept names (direct subsumers or di-
rect superconcepts). Note that inferences in KL-ONE were based on the open-world
assumption. Hence, rather than with frame systems where the names as supercon-
cepts are always given explicitly, KL-ONE introduced the idea that the set of direct
superconcepts (i.e., concept names) for a given concept must be inferred.

Direct superconcept/subconcept relationships (also called parent/children rela-
tionships) are dependent on the concept terms used in the definitions of a TBox. In
particular, the notion of defined concepts (with necessary and sufficient conditions)
led to the idea of classifying a TBox. The idea was to compute the subsumption
hierarchy (sometimes also called “inheritance hierarchy”) of parents and children
for each concept name mentioned in a TBox during a so-called classification pro-
cess. The intention was that a model for a specific application domain could be
verified by a knowledge engineer based on the subsumption hierarchy. Considering
the subsumption hierarchy, i.e., the lattice of direct superconcepts, the idea was
also that concept terms could be automatically “inserted” between named concepts
in the hierarchy. Hence, concept terms could be set into relation to “predefined”
concept names (and, indirectly, other concept terms). This feature has been used
in many projects for implementing application functionality.

The first development of an algorithm for computing the subsumption hierarchy
of a TBox (the “classifier”) is described in [Schmolze and Lipkis, 1983]. Another
inference component called “realizer” computes for each individual mentioned in an
ABox the most-specific atomic concepts (or concept names) of which the individual
is an instance. One of the first algorithms for computing the realization of an ABox is
described in [Mark, 1982]. Initial KL-ONE systems were implemented in INTERLISP
[Lipkis, 1982] and Smalltalk [Fikes, 1982]. The Consul project [Kaczmarek et al.,

3 In the literature, some authors use the word “definition” as a synonym for concept terms themselves (e.g.,
[Schmidt, 1991], see also [Woods, 1991, p. 65]). In this case, “primitive” concepts with only necessary
conditions were introduced with a specific marker to be used in concept terms.

4 The semantics of cycles was analyzed in [Baader, 1990b; 1991; Nebel, 1990a; 1991]. The so-called
descriptive semantics provided many advantages compared to so-called fized point semantics. For details
see [Nebel, 1990a). One of the first publications of an expressive description logic supporting cyclic axioms
with a descriptive semantics and a sound and complete calculus is [Buchheit et al., 1993a]. Cyclic axioms
are usually not considered as concept definitions.
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1986) was one first projects in which classifier and realizer inference services were
first exploited.

First investigations about defaults and exceptions were published in [Brach-
man, 1985]. Nowadays, the semantical theory of defaults in description logics is
much clearer, see [Baader and Hollunder, 1992; 1993; Baader and Schlechta, 1993;
Padgham and Zhang, 1993; Padgham and Nebel, 1993; Baader and Hollunder,
1995a; 1995b; Donini et al., 1997b].

At the first KL-ONE workshop [Schmolze and Brachman, 1982] it became clear
that the informal specification of the semantics of KL.-ONE concept and role con-
structors led to serious problems. The development of the classifier [Schmolze
and Lipkis, 1983] was based on the intuitive meaning of the KL-ONE formalism
[Nebel, 1990a, p. 46]. Attempts to logically reconstruct the representation con-
structs, e.g., [Schmolze and Israel, 1983; Israel and Brachman, 1984], resulted in a
deeper understanding of the formalism. Given the formal semantics, implemented
algorithms for classification and realization were shown to be incomplete. Later
investigations revealed that KL-ONE (with the formal semantics given in the logi-
cal reconstruction approaches) is undecidable (e.g., this holds for the combination
of conjunction, value restrictions and role-value-maps [Schmidt-Schauf}, 1989]). In
[Brachman and Levesque, 1984] the first thoughts about tractability of subsump-
tion for sublanguages are discussed. Terminological reasoning with concept defini-
tions even for sublanguages with low expressiveness were shown to be inherently
intractable in the worst case [Nebel, 1990b, p. 28, p. 71f.]. Proposals for a se-
mantics based on many-valued logics (e.g., [Patel-Schneider, 1986; 1987a; 1987b;
1989a]) ensure tractable algorithms concerning concept consistency reasoning but
also result in a weak expressiveness: many intuitive inferences are not sanctioned
by this semantics (see also [Nebel, 1990a)).

Another result of [Schmolze and Brachman, 1982 was that the semantics of indi-
vidual concepts was not quite clear (e.g., concerning coreference and unique name
assumption, see above). Thus, at the first KL-ONE workshop [Schmolze and Brach-
man, 1982], the notions of a hybrid reasoning system consisting of a TBox (a set of
concept definitions) and an ABox (a set of assertions concerning individuals) were
made more precise. The change of the view on KL-ONE spelled out in [Schmolze
and Brachman, 1982, pp. 8-17) (see also [Nebel, 1990a, p. 46]) can be summarized
as follows: It is not the names of representation structures that are important but
the functionality, i.e., the declaration and inference services which the system pro-
vided. It was first pointed out that inferences have to be formally defined based on
the semantics of the representation formalism. This view led to the development of
the functional view of knowledge representation as pursued with the development
of the system KRYPTON.
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KRYPTON

The knowledge representation system KRYPTON [Brachman et al., 1983b; 1983b;
1985] can be seen as the first approach to define a new language of the KL-ONE
family with a formal, Tarskian semantics. Furthermore, the goal was to overcome
the problems with individual concepts in KL-ONE [Nebel, 1990a, p. 63]. The hybrid
representation approach with a TBox and an ABox was first implemented in the
KRYPTON system (see also [MacGregor, 1991a, p. 391]). Similar to KL-ONE the
distinction between primitive and defined concepts and the computation of the
most-specific atomic concepts which instantiate individuals is one of the core ideas
of KRYPTON.

KRYPTON offered a concept language with low expressiveness. While the ini-
tial approach [Brachman et al., 1983b] was too expressive to be tractable (see also
[MacGregor, 1991a, p. 390]), in a revised version [Brachman et al., 1985] the con-
cept constructors of KRYPTON were defined as conjunction, value restrictions and
role chains. Thus, subsumption checking was polynomial [Patel-Schneider, 1987a,
p. 75]. For the ABox a full-fledged resolution-based FOPL theorem prover [Stickel,
1982] was proposed, i.e., the ABox reasoner of KRYPTON was incomplete. Another
perspective is that KRYPTON started with a first-order logic theorem prover and
augmented it with a special-purpose inference system for terminological reason-
ing to cut out some of the combinatorial search [Vilain, 1985]. KRYPTON can be
regarded as one of the first efforts in combining knowledge representation and theo-
rem proving techniques but was not used for industrial applications [Nebel, 1990a,
p. 63f.].

Rather than dealing with specific representation structures and operations on
them, KRYPTON offers a so-called “functional approach”. Using the interface func-
tions “tell” and “ask”, a knowledge base can be defined and queries can be answered
about it. In this sense, a “functional approach” means that a formal representation
system does not necessarily have to maintain, for instance, frame structures, the
subsumption hierarchy, or even an ABox as a graph structure. If, for the internal
implementation purposes, graph structures are indeed used, they are nevertheless
hidden from the user in order to avoid “procedural” operations to be carried out
with internal record structures. Arbitrary procedural operations are usually not
related to the semantics of the representation formalism such that, in this case, it is
hard to characterize what is actually represented and what is computed as solutions
to inference problems. Thus, the focus of KRYPTON was not on the structures to
be maintained by the system but was centered around the question about what
should the system do for the user, i.e., what services should be made available. In
other publications this idea was described as the “knowledge level” [Newell, 1982].
In KRYPTON, inference services for concept terms are checks for concept consis-
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tency, disjointness, and subsumption. For a TBox, the most-specific subsumers
(parent/children relation) can be computed, whereas for an ABox, consistency,
instance checking, realization (direct types) and instance retrieval are offered as
inference services. KRYPTON pioneered the idea that the user should only know,
at some level not dependent on implementation details, what questions the system
is capable of answering and what operations are permitted that allow new infor-
mation to be provided to it. For instance, it is not important how the association
between an individual and a certain role filler is actually represented in terms of
memory arrangements (called the symbol level). What counted for the underlying
implementation was what operations must be supported in order to answer queries
at the semantical level. This view about KL-ONE-based representation systems was
one of the major achievements of the KRYPTON project.

NIKL , PENNT , KL-TWO

At the same time as KRYPTON, the knowledge representation system NIKL was
developed as a successor of KL-ONE. NIKL was a New Implementation of KL-
ONE [Schmolze and Israel, 1983; Schmolze, 1985; Schmolze and Mark, 1991]. As
discussed in [Kaczmarek et al., 1986] in NIKL, roles are also ordered with respect
to subsumption (see also [Schmidt, 1991, p. 13]).

The assertional components of KL-ONE were initially discarded in the NIKL sys-
tem (see the NIKL user guide [Robins, 1986]). Compared to the initial KL-ONE
implementation, the algorithms in the NIKL classifier were faster in the average
case because “obvious” information was exploited to a larger degree (see [Mac-
Gregor, 1988, p. 405] or [MacGregor, 1991a, p. 392]). However, the subsumption
algorithm of NIKL was incomplete and it was hard to characterize which inferences
are omitted [Schmolze and Israel, 1983] (see also [Patel-Schneider, 1987a, p. 74]).

Later, an assertional reasoning component was added with the system PENNI
which is based on RUP [McAllester, 1982]. The resulting system was called KL-
Two [Vilain, 1985] (see also [Schmidt, 1991, p. 15]). In KL-Two a propositional
reasoner with equality (the PENNI subsystem) was augmented with a so-called quan-
tificational reasoning component (the NIKL subsystem). For the propositional part
in the PENNI component, incremental additions and retractions were supported due
to the facilities provided by RUP. However, as shown in [Patel-Schneider, 1989b] the
concept language of NIKL contained concept and role constructs that render the sat-
isfiability problem for NIKL concept terms undecidable (see also [Schmidt-Schaus,
1989)).

Concerning hybrid reasoning, i.e., the systematic integration of TBox and ABox
reasoning, there were shortcomings as well. Because in RUP different constants
do not necessarily denote different objects, the unique name assumption was not
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built into the assertional component PENNI. Thus, number restrictions imposed
by NIKL concepts often did not have the intended effects concerning hybrid rea-
soning. Other sources of incompleteness were pointed out (see also the analysis of
“inferential gaps” in [Nebel, 1990a, p. 63f.]). The research on the KL-TWO system
demonstrated that hybrid reasoning is not just a matter of integrating reasoning
subsystems at the software level. Hybrid reasoning requires a dedicated architecture
implementing a sound and complete calculus which, in turn, can be developed only
after a deep analysis of the semantics of the representation constructs. Neverthe-
less, the principle idea of exploiting subsumption information for resolution-based
first-order reasoning has been integrated in many theorem proving systems.

KANDOR

Research on KANDOR [Patel-Schneider, 1984] was influenced by the KRYPTON archi-
tecture and the performance problems of the NIKL approach. The goal of KANDOR
was to increase the expressive power of the terminological representation component
in such a way that an efficient subsumption algorithm could be developed. Basi-
cally, KANDOR supported conjunction, value restriction and number restrictions as
concept-forming operators. In minimum number restrictions, range-restricted roles
could be used (hence, qualified minimum number restrictions are allowed, see also
[Patel-Schneider, 1987a, p. 76]). In order to provide effective inference algorithms
(e.g., for information retrieval scenarios) in the KANDOR approach the expressive-
ness of the assertional component was cut down to a representation system compa-
rable to a database (without revision mechanisms). Subsumption in KANDOR was
shown to be coNP-complete (see [Nebel, 1988], and [Nebel, 1990a, p. 90] for details).
The initially proposed subsumption algorithm with polynomial runtime must have
been incomplete.

KANDOR was called a frame-based system (which might be reasonable because
of the expressiveness offered by the ABox language). A frame in KANDOR was
essentially a specification of conditions for describing how an individual can be
an instance of it (in terms of superframes and restrictions). KANDOR supported
defined frames and primitive frames in the spirit of KL-ONE. The system adopted
the “small interfaces” approach of KRYPTON, i.e., models were built using the
declaration interface (tell interface), and application services were realized with the
query interface (ask interface). Although called a frame system, frames were not
treated as record structures to be manipulated by procedural programs. The authors
of KANDOR argued for a small knowledge representation system that could be used
as part of larger systems with different subcomponents. The main achievement of
KANDOR was the introduction of a small-can-be-beautiful approach which, finally,
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led to the design of the system CLASSIC which will be discussed in detail in the next
section.

8.3 Second generation Description Logics systems

Whereas the prototypical implementations of first generation systems were used to
study knowledge representation problems, second generation DL systems have been
more extensively used in serious applications. The implementations discussed in
this section are not only prototypes but were much more stable. In addition, since
the beginning of the nineties, the systems have been called description logic systems.
We first discuss systems for (almost) tractable languages based on (almost) complete
algorithms and investigate systems for expressive description logics afterwards

CLASSIC

The basic CLASSIC system supported the logic ALN Fh~! with TBoxes and ABoxes
plus facilities for dealing with numbers [Borgida et al., 1989]. We use the lower-
case letter h to indicate that CLASSIC supports only role inclusion but no role
conjunction, i.e., CLASSIC supports “single-inheritance” role hierarchies. CLAS-
SIC is available for research purposes. Implementation languages for CLASSIC are
COMMONLISP [Steele, 1990] and C. The interfaces are described in [Resnick et al.,
1995]. Full CLASSIC also contained the concept constructors O and B for referring
to individuals in concept terms.

Subsumption in full CLASSIC was initially assumed to be polynomial [Borgida
et al., 1989]. Problems with individuals in full CLASSIC were recognized in [Patel-
Schneider et al., 1991]. At the same time, subsumption in CLASSIC was shown
to be coNP complete [Lenzerini and Schaerf, 1991]. In the modified semantics for
the concept constructors O and B (see [Borgida and Patel-Schneider, 1994]) the
interpretation function maps individuals in concept terms to disjoint sets of domain
objects. With this semantics concerning individuals the inference algorithms of the
CLASSIC system could be shown to be complete [Borgida and Patel-Schneider, 1994].
However, given the non-standard semantics for the concept constructors O and B,
the same effect can be achieved with existential quantifications and disjunctions
w.r.t. atomic concepts:! For each individual I a new atomic concept A; can be
introduced. Note that atomic concepts are also mapped to sets of individuals.
Additionally, since CLASSIC imposes the unique name assumption, a set of axioms
ensures that the new atomic concepts are disjoint. Now every term of the form
JdR.I can be replaced by 3R.A;. Terms of the form {Ii,...,I,} can be replaced by
Ap U.. .U A, In an ABox, for each individual I a concept assertion is added to

I Note that these concept constructors are not directly provided by CLASSIC.
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ensure that the individual is an instance of the associated atomic concept A;. Thus,
only in an ABox, a real coreference between roles can be enforced. On the one hand,
we can call the CLASSIC system “almost” complete. “Almost” refers to non-standard
semantics w.r.t. individuals being supported by current system implementations.
On the other hand, the transformation makes clear that in CLASSIC nevertheless a
limited kind of disjunction (with concept names for which no definitions exist) can
be expressed while retaining polynomial inference algorithms.

The recommended techniques for knowledge-based system development with
CLASSIC are outlined in [Brachman et al., 1991]. As Brachman [Brachman, 1992,
p. 256] points out, a tractable description logic does not guarantee that a system
is useful in practice. Therefore, the CLASSIC system was also carefully designed to
meet practical requirements and to guarantee predictable system behavior. The con-
text in which the system was expected to be used required that many queries were
given to knowledge bases which rarely change. The architectural design of CLASSIC
supported a precomputation of index structures such that queries can be answered
quickly (mostly by simple storage retrieval). The architecture is made possible by
a careful selection of the concept and role constructors for the description logic
language. Inference services for the description logic supported by CLASSIC can be
implemented by transforming concept expressions into a normal form (“structural
subsumption”). Once the normal form is computed, queries can be answered by
inspecting the data structures used to encode the normal form. It should be noted
that, in CLASSIC, retraction of told information is possible but not optimized.

Another facility offered by CLASSIC is a rule system. Rules are applied to indi-
viduals explicitly named in the ABox. Furthermore, rules are applied in a forward-
chaining way. Basically, a rule has a precondition (a concept) and a conclusion
(also a concept). If it can be shown that an individual mentioned in the ABox is an
instance of the precondition concept, a concept assertion for stating the member-
ship of the individual in the conclusion concept is added to the ABox. In order to
provide support for modeling, the rule base is statically checked for inconsistencies.
For instance, if there are two rules whose preconditions subsume each other, the
conclusions must not be disjoint.

Furthermore, CLASSIC provides simple support for closed-world reasoning
([Resnick et al., 1995], see also [Weida, 1996]). Closing a role for an individual means
adding an appropriate maximum number restriction for the role. The maximum
number of fillers is restricted to the largest integer such that the minimum number
restriction with this integer (and the corresponding role) is entailed by the knowl-
edge base. The problem with role closing is that in combination with rules, the exact
sequence of several closing operations determines what actually holds in the result-
ing ABox. These and other problems concerning different closing operations have to
be considered with default reasoning as theoretical background [Baader and Hollun-
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der, 1995a; 1995b; Donini et al., 1997b; Rosati, 1998]. For a specific approach con-
cerning the integration of defaults into the CLASSIC system see also [Wahlof, 1996;
Lambrix et al., 1998].

CLAssIC is one of the first systems that provided support for incorporating
inferences over other domains. Consistency and subsumption checking for ex-
pressions of another domain (e.g., the reals) can be integrated into the CLAS-
SIC system via an extension interface [Borgida et al., 1996]. CLASSIC was one
of the first description logic systems designed with respect to users which are
non-experts in description logic theory. An important lesson learned by the
CLassiC approach and its applications was the importance of explanation and
output pruning facilities [McGuinness and Borgida, 1995; McGuinness, 1996;
Borgida and McGuinness, 1996]. Moreover, CLASSIC was the first system capable
of supporting some reasonable form of error reporting [Brachman, 1992]. However,
at the current state of the art there is hardly an adequate measure for the quality
of these indispensable services [Brachman, 1992, p. 253].

Although CLASSIC was a very successful description logic modeling environment,
the low expressiveness of the CLASSIC description logic made it hard to use the
system in many kinds of applications. In many cases, users wanted more expres-
siveness [Patel-Schneider et al., 1990]. In the following sections we discuss systems
for (more) expressive description logics. As can be expected, increases in expres-
siveness came at a certain price. The predictability of the behavior of CLASSIC in
terms of performance could not be reached by systems implementing complete algo-
rithms for more expressive DLs. On the other hand, incomplete algorithms have the
problem that results computed by a system cannot be trusted in general. Thus, the
complete-incomplete debate for expressive description logic systems started at the
end of the eighties and the beginning of the nineties. First, we describe the systems
Loom and BACK, which are based on incomplete algorithms. Afterwards, initial
research on description logic systems based on complete algorithms is summarized
with a discussion of the systems KRrIs and CRACK.

LoomMm

The LooMm architecture [MacGregor and Bates, 1987; MacGregor, 1991b] offers
TBox and ABox reasoning facilities for a description logic that can be characterized
by the name ALCQRIFO plus additional constructs for dealing with real numbers
(see also [Brill, 1994] or [Horrocks, 1997a, p. 43]). LooM is based on KL-ONE, i.e.,
concept definitions with necessary or with necessary and sufficient conditions play an
important role in domain modeling with Loom. It should be emphasized that truth
maintenance facilities for revision were built into the LooM architecture right from
the beginning and have influenced the design of the whole system [MacGregor, 1988;
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MacGregor and Brill, 1992]. While first LooM versions were based on description
logics [MacGregor and Brill, 1992] in later versions an attempt was made to develop
a “description classifier for the Predicate Calculus” [MacGregor, 1994]. For instance,
facilities for dealing with definitions for relations were added. The current version
of LooM is implemented in COMMONLISP and is available for research purposes. A
new system (called POWERLOOM) for COMMONLISP as well as C and Java-based
platforms can be licensed as well.

A distinguishing design goal of LOOM was the incorporation of an expressive
query language for retrieving ABox individuals. Another design goal of Loowm
was to support rule-based programming [Yen et al., 1991b; 1991a; MacGregor and
Burstein, 1991]. Based on the rule system, it is possible to specify additional nec-
essary conditions for individuals which (i) are explicitly mentioned in the ABox
and (ii) are derived to be instances of a certain defined concept. The additional
necessary conditions are called “implications” in Loom [MacGregor, 1988]. The
additional necessary conditions specified by rules are not exploited, for instance, for
TBox reasoning. Note that an “implication” A — B stated by a LoOM rule does
not mean that =B — —A holds, i.e., rule-based “implications” are not to be con-
fused with true logical implications as provided by generalized concept inclusions
that are now standard in newer systems (see below).

In order to meet the performance requirements of the applications for which
LooM was developed (e.g., natural language and image interpretation), incomplete
algorithms for concept consistency and subsumption are implemented. Concerning
ABox reasoning, LOOM applications required specific strategies to avoid the compu-
tation of unused results. Rather than employing the usual forward-chaining strategy
of computing the most-specific atomic concepts of which the ABox individuals are
instances, LOOM uses a scheme that considers the queries being posed to the system.
Thus, backward-chaining strategies for query answering are used in the implemen-
tation [MacGregor and Brill, 1992]. However, for the rule system, it is important to
detect whether an individual is an instance of a concept that is used as a precondition
of a rule. In this case, forward-chaining techniques are exploited [MacGregor, 1991b;
MacGregor and Brill, 1992]. The combination of forward-chaining and backward-
chaining inferences can be specified for a certain application problem by “marking”
concepts accordingly. The user can control the inference process by these means
but is also responsible for estimating the effects of these declarations.

The arguments for the LooM approach can be summarized as follows: The in-
tractability of the representation language can hardly be avoided to fulfill the re-
quirements of users. Therefore, the idea is to support the features in one system
rather than as a set of application-specific ad hoc supplements (“Where resides the
scruffiness?” [MacGregor, 1991a, p. 396]). Obviously, incompleteness is no problem
as long as the answers of the inference system are interpreted in the right way (i.e.,
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“no” answers should not be trusted). Several researchers argued that there is al-
ways the inherent danger that non-expert users either do not know this or might not
recognize this as a potential danger (cf. the work on complete systems [Baader and
Hollunder, 1991a; 1991b] discussed below). However, if a combinatorial explosion
occurs in a complete algorithm, in practice, no result is available as well. Concern-
ing incomplete algorithms for decidable description logics, similar arguments as for
other modeling environments based on first-order logic can be mentioned: If, in a
certain application, concept terms are checked for consistency and a combinatorial
explosions occur in complete algorithms, incomplete algorithms at least might pro-
vide some support, e.g., for building a TBox. Just signalling a timeout during the
execution of a complete algorithm that runs into a combinatorial explosion might
result in less information. In this case, an incomplete algorithm might succeed in
finding at least some inconsistencies. Note however, that in modern inference sys-
tem technologies supporting complete reasoning, incomplete reasoners are used as
“preprocessors” in order to speed up inferences (see the next chapter).

LooM supports different kinds of individuals (classified instances, light instances,
CLOS instances). For different kinds of instances different levels of inference services
are supported, e.g., for classified instances, the set of most specific atomic concepts
of which the classified individual is an instance is computed once new assertions
are specified. Thus, for classified instances, the rule-based forward chaining engine
is triggered and possibly new assertions are automatically added to an ABox (for
details see [MacGregor and Brill, 1992}).

A problem with the LoOM approach is that from a user perspective it is hard
to characterize the source of the incompleteness of the LOOM reasoning algorithms
(see the discussion in [Horrocks, 1997a, p. 42]). Although the inference techniques
used in LoOM are characterized in [MacGregor, 1991b, p. 90], once a system is
incomplete, there is no adequate measure for the “quality of service” in terms of an
implementation-independent characterization. For instance, in CLASSIC the char-
acterization of the incompleteness of the inference system concerning individual
reasoning was given in terms of a weak semantics for the offered representation con-
structs (see above). It should be noted that specifying the incompleteness on the
semantical level is by no means a trivial task. Not only incompleteness issues are im-
portant in this context. For instance, the theoretical background for giving a seman-
tics for rule-based computations was only investigated recently [Donini et al., 1992b;
1994a; 1998a].

Incomplete reasoning facilities might lead to unexpected behavior. We demon-
strate with an example that incomplete inference algorithms can have effects in
situations a user might not be aware of. LooM also supports closed-world reason-
ing. The strategy for closing a role for an individual is to count the number of
known role fillers. However, in addition to the individuals explicitly mentioned in
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the ABox, existential quantifications and minimum number restrictions have to be
considered. Assuming too few of these individuals might result in an inconsistency.
This is demonstrated with a simple knowledge base example with the following
ABox {(FR.AN3R.BM3R.C)(i), R(i,5)}. Let us assume, in the TBox there exist
axioms such that A is implicitly declared as disjoint from both concepts, B and C.
In the LooM system, specific reasoning techniques (e.g., a technique called “condi-
tioning” [MacGregor, 1991b]) are implemented to compute the number of necessary
fillers. Closing the role R for i by adding (< 1 R)(¢) makes the ABox inconsistent.
However, since LOOM is incomplete, it might be the case that the disjointness of A
and B as well as A and C' is not detected and, therefore, too few fillers are assumed
to exist in the closing process. Thus, the added maximum number restriction might
be too restrictive, i.e., the system is unsound if closed-world reasoning is employed.
Note that the semantic basis of automatic closing of roles as offered by LooM is
hard to characterize for expressive representation languages. Obviously, closing the
role R for ¢ with (< 2 R)(i) might be a candidate. However, closing the role R for
i with (< 3 R)(7) might also be possible. In this case we have more individuals but
with less specific constraints.

BAck and FLEX

Research on BACK (Berlin Advanced Computational Knowledge representation sys-
tem) started in 1985, approximately at the same time as work on the LOOM sys-
tem was initiated. BACK was also called a knowledge representation environment
[Quantz and Kindermann, 1990; Peltason, 1991; Hoppe et al., 1993].

The description logic of the initial BACK system can be called ALQR™!. There
was also support for reasoning with numbers and attribute sets. Research on the
inference algorithms for the basic BACK language stimulated the development of
theoretical results on the complexity of concept consistency reasoning (e.g., [Nebel,
1988; 1990a]) as well as the semantics of cycles [Nebel, 1991]. Additionally, not
only terminological reasoning was considered but an investigation was made on the
development of a hybrid architecture consisting of a TBox and an ABox. Issues
of integration and balancing in hybrid knowledge representation systems, namely
balanced expressiveness and tight coupling in hybrid systems, were analyzed in
[Nebel and von Luck, 1987; 1988]. Research on the BACK system helped to shape
the current view on balanced representation schemes with TBox and ABox. In order
to provide an hybrid representation language, BACK was one of the first systems, in
which TBox concept terms could also be used in an ABox to assert, e.g., disjunctive
information about individuals. In addition, distinct individuals were assumed to
denote distinct objects. Hence, the number of role fillers could be counted and
compared against number restrictions (this was also done in KRYPTON as pointed
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out by [Woods and Schmolze, 1990, p. 165]). The algorithms used in BACK for
instance checking and instance retrieval are described in [Nebel and von Luck, 1987;
1988; Kindermann and Randi, 1990]. In general, the discussion of the problems of
incomplete algorithms that was sketched in the previous section also applies to the
BACK system because the inference algorithms used in BACK are also known to be
incomplete.

In order to provide a knowledge representation environment, the BACK architec-
ture was designed to support incremental additions to the ABox. BACK was one
of the first attempts to implement algorithms for reasoning about retractions of
ABox assertions. BACK supported retraction of told information, also called lit-
eral retraction [Nebel, 1990a; Kindermann, 1992]. This is also supported in the
LooMm system. ABox assertions can be retrieved from a database by automatically
computing SQL queries [Schmiedel, 1993]. For the applications considered in the
BACK project, reasoning about time was important. Therefore, an integration of
temporal reasoning and terminological reasoning was investigated by several project
members. Investigations about how to incorporate temporal reasoning into termino-
logical reasoning are reported in [Schmiedel, 1988; 1990; Schild, 1993; Fischer, 1992;
Neuwirth, 1993].

In the successor system FLEX [Quantz et al., 1995], incomplete algorithms were
implemented for the description logic ALCOQRZFO. Additionally, reasoning about
equations and inequations concerning integers was supported. Furthermore, the
FLEX system served as a testbed for investigating so-called weighted defaults
[Quantz and Royer, 1992]. The initial implementation of FLEX was developed
in Prolog. FLEX++ was a reimplementation in C+4. The implementation was
faster, but for application knowledge bases the performance was not sufficient. Ap-
propriate optimization techniques (see the next chapter) had not been investigated
in the context of description logics at the time of the development of the FLEX
implementation.

In general, it is quite difficult to compare different systems and knowledge rep-
resentation environments because the services being offered and the representation
languages are not standardized (see [Patel-Schneider and Swartout, 1993] for a
proposal on standardizing representation languages and inference services). Expe-
riences with system implementations indicated that either limited expressiveness or
incompleteness of reasoning could possibly lead to problems in applications. There-
fore, other researchers investigated the implementation of systems based on sound
and complete algorithms (published at the end of the eighties and beginning of
the nineties). One can consider [Schmidt-Schaufl and Smolka, 1991] as a starting
point of this development (see also [Donini et al., 1991a]). Based on tableaux cal-
culi, practical description logic implementations were developed. We discuss the
architectures of the systems Kris and CRACK.
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KRIs

The development of sound and complete reasoning systems for more expressive
description logics started at the end of the eighties. One of the main devel-
opments in this direction was the system KRiS. The approach of KRIS was
to implement sound and complete algorithms for an expressive description logic
and to develop optimization techniques for TBox reasoning so that, in prac-
tice, reasonable performance could be expected. The description logic of KRIs
is ACCN'F [Baader and Hollunder, 1991a; 1991b]. As an addition, KRIS pro-
vides enumerated types (O operator) and an experimental interface for rea-
soning about so-called concrete domains [Baader and Hanschke, 1991a; 1991b;
1992] (e.g., linear inequations over the reals). Role conjunctions were supported
with a prototype implementation. The focus of the work in the KRIS project was
on TBox-classification. Nevertheless, KRIS was one of the first systems also sup-
porting sound and complete ABox reasoning in expressive description logics. Even
multiple ABoxes could be handled. The implementation language of KRIS was
COMMONLISP (see [Hollunder et al., 1991] for a User’s Guide and [Achilles et al.,
1991] for a description of the graphical user interface).

The idea behind optimizing TBox classification was to exploit “obvious” infor-
mation concerning “told” superconcepts and primitive concepts. In many con-
cept definitions of application knowledge bases the right-hand side is a conjunc-
tion with concept names and concept terms. The conjuncts which are concept
names on the right-hand side are defined as the “told” subsumers. Another im-
portant point was to avoid recomputation of subsumption relations found in pre-
ceding computation steps. Thus, caching and propagation techniques were im-
plemented. The idea was that information can be propagated in the subsump-
tion lattice such that expensive subsumption tests can be avoided where possi-
ble. KRIS was the first system for which systematic empirical tests were car-
ried out. The algorithms evaluated in [Baader et al., 1992a; 1994] are still in
use in modern description logic systems (see below). Extensions such as de-
faults were investigated as well (see also [Baader and Hollunder, 1992; 1993;
Hollunder, 1994a]) but have not been implemented in KRIs.

Although the benchmarks considered in [Baader et al., 1994] revealed that the
performance of KRiIS for TBox reasoning was comparable to that of other systems
of that time, the more or less direct implementation of nondeterministic tableaux
algorithms that were developed for proving the decidability of problems in the field
of theoretical computer science with chronological backtracking as in KRis led to
performance problems for many applications. One of the main results of the KRis
project was that sound and complete inference algorithms are an important starting
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point for research on optimized sound and complete algorithms for practical system
development.

CRACK

One of the main research goals of the system CRACK was to implement sound
and complete algorithms for dealing with inferences about individuals in concept
terms. Rather than providing a non-standard semantics as in CLASSIC (individuals
are mapped onto sets of domain objects), in CRACK, individuals are mapped to
elements of the domain. Thus, coreferences also have to be considered in concept
terms. CRACK supports the description logic ALCRIFO [Bresciani et al., 1995).
The implementation of CRACK is based on COMMONLISP. CRACK provided a web
interface.

In a similar way as in KRIS, obvious information is exploited in the architecture
to some extent but, nevertheless, CRACK is a direct implementation of the tableaux
rules of the underlying calculus. In the middle of the nineties it became clear that
sound and complete reasoning is needed for many applications but the employed
inference techniques which had been developed for (manually) deriving decidability
results, e.g., with tableaux algorithms, were not suited for direct implementation.
Thus, at the beginning of the nineties it became clear that there is a long way to
go from a decidability proof to a working system, which has good performance in
the average case.

Other systems

The list of systems we have discussed in this chapter is certainly incomplete. The
large number of projects involved in the development of knowledge representation
systems shows the importance of this area. Usually description logic systems are
built around a core engine which is a consistency checker. However, there are other
services to be supplied which are also important to make the systems usable in
larger application projects. We present an overview of some additional systems
with interesting features developed at the beginning of the nineties.

Among other points, the graphical manipulation of representations was inves-
tigated in the SB-ONE project [Allgayer, 1990; Kobsa, 1991b; 1991a). The im-
plementation language was COMMONLISP. Techniques for graphical interfaces to
support knowledge base development with SB-ONE are described in [Kalmes, 1988;
1990] (see also [Abrett and Burstein, 1987] for a description of the KREME system).
Furthermore, in SB-ONE the use of contexts (also called partitions) was explored
for user modeling applications in natural language generation.

Another important point for DL inference systems is persistence and transaction
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management. We have already discussed the BACK approach [Schmiedel, 1993] (see
also [Borgida, 1995]). Additional investigations were also made with the K-REP
system [Mays et al., 1991a; 1991b).

Summary: standard inference services of Description Logics systems

Before discussing successors of the second generation systems presented in this sec-

tion it is appropriate to summarize the main inference problems that are now as-
sumed as standard for DL systems. The inference services provided by DL systems

for concept consistency and TBox reasoning can be summarized as follows.

Concept consistency (w.r.t. a TBox)

Concept subsumption (w.r.t. a TBox)

Another important inference service for practical knowledge representation is to
check whether a certain concept name is inconsistent w.r.t. a TBox. Usually,
inconsistent concept names are the consequence of modeling errors. Checking the
consistency of all concept names mentioned in a TBox without computing the
parents and children is called a TBox coherence check.

The problem of computing the most-specific concept names mentioned in a TBox
that subsume a certain concept is known as computing the parents of a concept.
The children are the most-general concept names mentioned in a TBox that are
subsumed by a certain concept. We use the name concept ancestors (concept
descendants) for the transitive closure of the parents (children) relation. The
computation of the parents and children of every concept name is also called
classification of the TBox. This inference is needed to build a hierarchy of concept
names w.r.t. specificity and is known as TBox classification.

If a system supports ABox reasoning, the following inference services are provided:

ABozx consistency (w.r.t. a TBox)

Instance test w.r.t. a TBox and an ABox

The most-specific concept names mentioned in a TBox 7 of which an individual
is an instance are called the direct types of the individual w.r.t. a TBox and an
ABox.

The retrieval inference problem is to find all individuals mentioned in an ABox
that are an instance of a given concept C w.r.t. a TBox.

The set of fillers of a role R for an individual ¢ w.r.t. a TBox 7 and an ABox A
is defined as {z|(7,A) = (i,z) : R} where (7, A) = ar means that all models
of 7 and A are also models of azx.

The set of roles between two individuals ¢ and j w.r.t. a knowledge base (7, .A)
is defined as {R| (7, A) = (i,x) : R}.
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In many DL systems, there are some auxiliary queries supported: retrieval of the
concept names or individuals mentioned in a knowledge base, retrieval of the set of
roles, retrieval of the role parents and children (defined analogously to the concept
parents and children, see above), retrieval of the set of individuals in the domain
and in the range of a role, etc. As we have discussed in this section, DL systems of
the second generation offer more or less all or these inference services. An exception
is a language for specifying retrieval queries that goes beyond the simple retrieval
inference problem mentioned above (see e.g., the discussion about Loowm).

8.4 The next generation: FacT , DLP and RACER

The declarative nature of description logic modeling is even more important when
problems are treated for which languages are required that are no longer tractable.
Inspired by theoretical advances, e.g., for handling number restrictions, role con-
junctions, generalized concept inclusions as well as cyclic axioms with descriptive se-
mantics (ALCN'R [Buchheit et al., 1993al), transitive roles (ALC z+ [Sattler, 1996]),
role hierarchies and features (ALCH frp+ [Horrocks, 1998b)), as well as inverse roles,
qualified number restrictions, and role hierarchies (SHZQ [Horrocks et al., 1999]
also called ALCQHT g+, pronounced ALC-choir), the development of another gen-
eration of sound and complete description logic systems was started at the end of
the nineties.

Facr

Initially, research on practical implementations of description logic systems for
expressive description logics started with a focus on concept and TBox reason-
ing. However, rather than directly implementing the tableaux calculus used for
the theoretical decidability proofs and complexity analyses, a rigorous investiga-
tion into methods for informed search was made for developing the next gener-
ation of description logic systems. In particular, average-case optimization tech-
niques have been investigated with the system FacT ([Horrocks, 1997a; 1998b;
Horrocks and Patel-Schneider, 1999] see also the subsequent chapter for details).
At the time of this writing, two versions of FacT are available. One version
supports TBox reasoning for the description logic ALCH fr+ [Horrocks, 1997a;
1998b].  Furthermore, a newer version of FaCT also supports TBox reason-
ing with inverse roles and qualified number restrictions (SHZQ [Horrocks, 1999;
Horrocks et al., 1999]). At the time of this writing, FacT does not support ABoxes.

It was the FacT system that first demonstrated the usefulness of expressive de-
scription logics for developing practical applications. It was shown that, although
runtime behavior can be exponential in the worst case, in practical contexts, op-
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timization techniques can be found that prevent a DL system from running into
combinatorial explosion. Nevertheless, the algorithms are still sound and complete.
Indeed, after several years of experiences with less expressive systems such as CLAS-
SIC, research on FacCT stimulated many research activities for developing optimized
DL system implementations for expressive description logics.

The system FacT is implemented in COMMONLISP and can be downloaded with
source code for research purposes. A CORBA interface guarantees seamless inte-
gration into network-aware applications. Various input formats are supported by
Fact (e.g., for XML-based notations of TBoxes). The graphical interface O1ILED
for developing TBoxes in the spirit of frame systems is described in [Bechhofer et
al., 2001b].

Drp

Based on similar techniques as FacT, the system DLP utilizes extended techniques
for optimizations [Horrocks and Patel-Schneider, 1998c; 1998d; Patel-Schneider,
1999]. DLP supports concept consistency reasoning for the description logic
ALCN reg. From a modal logic perspective, ALCN ¢ can also be called Propo-
sitional Dynamic Logic (PDL) with a restricted form of graded modalities, i.e.,
simple number restrictions.

DLP has succeeded in many performance competitions [Horrocks, 1998a; Horrocks
and Patel-Schneider, 1998c; Patel-Schneider, 1999]. It was shown that tableaux-
based approaches can be implemented such that the performance for satisfiability
testing for ALC or modal logic K,,, is comparable to traditional approaches used in
the community [Giunchiglia and Sebastiani, 1996b; Giunchiglia et al., 1999].

However, in the current version of DLP TBox classification is not provided as an
inference service. In particular, no generalized concept inclusions and no TBoxes
with forward references are supported (i.e., algorithms for dealing with generalized
concept inclusions are not implemented in DLP). ABoxes are not supported as well.
Drp is implemented in SML.

RACER

For many applications, besides concept consistency and TBox reasoning, ABox rea-
soning is also important. Calculi for ABox consistency have been presented for
the above-mentioned representation constructs: ALCNR [Buchheit et al., 1993b],
ALCNHp+ [Haarslev and Moller, 2000], ALCOHIp+ (SHIQ) [Horrocks et al.,
2000c]. Based on theoretical results, a practical implementation of ABox calculi was
developed with the full TBox and ABox description logic system RACER [Haarslev
and Moéller, 1999; 2001e]. RACER supports all optimization techniques that are
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incorporated into FaCT. Some new optimization techniques investigated with the
RACER system (e.g., for dealing with number restrictions and ABoxes) are men-
tioned in the next chapter. In RACER, the unique name assumption for ABox
individuals is imposed. In order to demonstrate the usefulness of DL systems for
practical applications, high performance reasoning for large TBoxes is discussed in
[Haarslev and Mbller, 2001c].

Initial versions of the RACER system supported the logic ACCNHp+. In later
versions reasoning was extended to ABox reasoning with the logic ALCOQHZ r+
(SHZQ). In addition, RACER supports concrete domains without so-called feature
chains (see [Baader and Hanschke, 1991a] and the discussion of the KRIS system).
In particular, predicates representing linear inequalities about the reals are handled
by RACER (see [Haarslev et al., 2001; Haarslev and Moller, 2001b] for details).

RACER dynamically selects appropriate optimization techniques due to a static
analysis of input TBoxes, ABoxes and queries. As a distinguishing feature, which is
important for many applications, it should also be mentioned that RACER supports
multiple TBoxes and ABoxes (see also the KRIS system). Assertions can be added
to ABoxes after queries have been answered. In addition, for instance, RACER also
provides support for retraction of assertions from ABoxes.

RACER can be downloaded for research purposes as a server program for standard
operating systems with no additional licenses. A socket-based network version with
Java interface is available. The implementation language of RACER is COMMON-
Lisp.

8.5 Lessons learned

Considering the evolving technology of description logic systems it becomes clear
that at the end of the nineties there is an enormous interest in description logic
reasoning systems. This is demonstrated by the quite large number of system im-
plementations. Currently, all modern DL systems are based on sound and complete
algorithms. Thus, system developers can really rely on all answers computed by a
DL system. This positive trend has been initiated by the development of optimiza-
tion techniques that ensure stable runtimes for average-case inputs for real-world
problems even if the worst-case complexity is exponential (see also below). The
trend has been initiated by the landmark system FacT.

The original idea of the tell and ask interface of KRYPTON is still realized in
modern systems. However, at the time of this writing, the systems support only
some kind of batch-oriented behavior. A knowledge base (TBox and ABox) is passed
to the systems (tell interface). Afterwards, queries can be answered (ask interface).
But, no incremental additions to the knowledge base are possible after the first
query is answered. The difficulty is that complex transformations on the knowledge
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bases are necessary in order to compute an internal representation that can be used
for relatively fast query answering (see the discussion on optimization techniques in
subsequent chapters). The price to pay is that algorithms for appropriately handling
incremental additions to a knowledge base are not yet known. Other features, e.g.,
explanation facilities, retraction, etc. still have to be developed for expressive DLs
as well.

As a second and quite important lesson one can see that description logics with
more expressiveness and sound and complete algorithms impose a different view in
modeling. Concept definitions as known from, for instance, CLASSIC are no longer
the central modeling device if generalized concept inclusions (representing cyclic
implications or equalities) are available.!

A third lesson we can learn from considering description logic systems and their
development is that the implementation language is hardly important for the mag-
nitude of speed (compared to the expressiveness of the description logic). What
really counts is the set of optimization strategies, the implementation of index data
structures and the selection of clever heuristics. There are first attempts to provide
a distributed implementation of a description logic system. However, performance
problems in network communication lead to server-based solutions, i.e., a knowledge
base is being processed at a single workstation computer (but may be accessed from
different clients). Benchmark generators and standardized application knowledge
bases are used for metering system performance. Thus, different system implemen-
tations can be compared.

With RACER we have discussed a state-of-the-art description logic system that
also supports ABoxes and concrete domains. However, only simple query languages
are currently available. For description logics without inverse roles and number
restrictions (i.e., ALCH fr+), [Tessaris, 2001] developed the theoretical basis for
supporting so-called conjunctive in DL systems. However, for DLs as expressive as
SHZQ much less is known.

Another lesson is that the development of techniques for practically incorporating
facilities for the representation of space and time into description logics is still an
open issue. The necessity of a semantics-based integration of temporal and termi-
nological reasoning has been emphasized in first investigations in the BACK project.
However, early approaches (e.g., [Schmiedel, 1990]) have been shown to be unde-
cidable [Halpern and Shoham, 1991; Schild, 1993]. In the context of planning, the
opportunities of an integrated environment combining temporal and terminologi-
cal reasoning were clearly demonstrated with the RHET system [Allen, 1991]. It
has been shown that spatial reasoning (e.g., about topological relations) induces
non-obvious subsumption relationships between concepts [Haarslev et al., 1998;

1 Nevertheless, description logics can still be called object-based representation formalisms, although there
are some approaches to deal with n-ary relations [Schmolze, 1989; Calvanese et al., 1998d] as well.
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1999]. The work presented in [Artale et al., 2001] demonstrates that the decidability
barrier is achieved if temporal operators are integrated into expressive description
logics. Nevertheless, [Artale et al., 2001] identify a fragment that allows for a lim-
ited kind of practical modeling. Initial experiments concerning an implementation
of a description logic that supports operator for linear time temporal reasoning are
discussed in [Giinsel and Wittmann, 2001].



9

Implementation and Optimisation Techniques

TIan Horrocks

Abstract

This chapter will discuss the implementation of the reasoning services which form
the core of Description Logic based Knowledge Representation Systems. To be
useful in realistic applications, such systems need both expressive logics and fast
reasoners. As expressive logics inevitably have high worst-case complexities, this
can only be achieved by employing highly optimised implementations of suitable
reasoning algorithms. Systems based on such implementations have demonstrated
that they can perform well with problems that occur in realistic applications, in-
cluding problems where unoptimised reasoning is hopelessly intractable.

9.1 Introduction

The usefulness of Description Logics (DLs) in applications has been hindered by the
basic conflict between expressiveness and tractability. Realistic applications typi-
cally require both expressive logics, with inevitably high worst case complexities for
their decision procedures, and acceptable performance from the reasoning services.
Although the definition of acceptable may vary widely from application to appli-
cation, early experiments with DLs indicated that, in practice, performance was a
serious problem, even for logics with relatively limited expressive powers [Heinsohn
et al., 1992].

On the other hand, theoretical work has continued to extend our understanding
of the boundaries of decidability in DLs, and has led to the development of sound
and complete reasoning algorithms for much more expressive logics. The expressive
power of these logics goes a long way towards addressing the criticisms levelled at
DLs in traditional applications such as ontological engineering [Doyle and Patil,
1991] and is sufficient to suggest that they could be useful in several exciting new
application domains, for example reasoning about DataBase schemata and queries
[Calvanese et al., 1998f; 1998a] and providing reasoning support for the so-called
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Semantic Web [Decker et al., 2000; Bechhofer et al., 2001b]. However, the worst
case complexity of their decision procedures is invariably (at least) exponential with
respect to problem size.

This high worst case complexity initially led to the conjecture that expressive
DLs might be of limited practical applicability [Buchheit et al., 1993c]. However,
although the theoretical complexity results are discouraging, empirical analyses
of real applications have shown that the kinds of construct which lead to worst
case intractability rarely occur in practice [Nebel, 1990b; Heinsohn et al., 1994;
Speel et al., 1995], and experiments with the KRIS system showed that apply-
ing some simple optimisation techniques could lead to a significant improvement
in the empirical performance of a DL system [Baader et al., 1992al. More re-
cently the FacT, DLP and RACER systems have demonstrated that, even with
very expressive logics, highly optimised implementations can provide accept-
able performance in realistic applications [Horrocks and Patel-Schneider, 1999;
Haarslev and Méller, 2001c].!

In this chapter we will study the implementation of DL systems, examining in
detail the wide range of optimisation techniques that can be used to improve perfor-
mance. Some of the techniques that will be discussed are completely independent
of the logical language supported by the DL and the kind of algorithm used for
reasoning; many others would be applicable to a wide range of languages and im-
plementation styles, particularly those using search based algorithms. However, the
detailed descriptions of implementation and optimisation techniques will assume,
for the most part, reasoning in an expressive DL based on a sound and complete
tableaux algorithm.

9.1.1 Performance analysis

Before designing and implementing a DL based Knowledge Representation System,
the implementor should be clear about the goals that they are trying to meet and
against which the performance of the system will ultimately be measured. In this
chapter it will be assumed that the primary goal is utility in realistic applications,
and that this will normally be assessed by empirical analysis.

Unfortunately, as DL systems with very expressive logics have only recently be-
come available [Horrocks, 1998a; Patel-Schneider, 1998; Haarslev and Moller, 2001¢],
there are very few applications that can be used as a source for test data.? One
application that has been able to provide such data is the European GALEN project,
part of which has involved the construction of a large DL Knowledge Base describing
1 Tt should be pointed out that experience in this area is still relatively limited.

2 This situation is changing rapidly, however, with the increasing use of DLs in DataBase and ontology
applications.
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medical terminology [Rector et al., 1993]. Reasoning performance with respect to
this knowledge base has been used for comparing DL systems [Horrocks and Patel-
Schneider, 1998b], and we will often refer to it when assessing the effectiveness of
optimisation techniques.

As few other suitable knowledge bases are available, the testing of DL systems
has often been supplemented with the use of randomly generated or hand crafted
test data [Giunchiglia and Sebastiani, 1996b; Heuerding and Schwendimann, 1996;
Horrocks and Patel-Schneider, 1998b; Massacci, 1999; Donini and Massacci, 2000].
In many cases the data was originally developed for testing propositional modal
logics, and has been adapted for use with DLs by taking advantage of the well know
correspondence between the two formalisms [Schild, 1991]. Tests using this kind
of data, in particular the test suites from the Tableaux’98 comparison of modal
logic theorem provers [Balsiger and Heuerding, 1998] and the DL’98 comparison
of DL systems [Horrocks and Patel-Schneider, 1998b], will also be referred to in
assessments of optimisation techniques.

9.2 Preliminaries

This section will introduce the syntax and semantics of DLs (full details of which
can be found in Chapter 2) and discuss the reasoning services which would form
the core of a Description Logic based Knowledge Representation System. It will
also discuss how, through the use of unfolding and internalisation, these reasoning
services can often be reduced to the problem of determining the satisfiability of a
single concept.

9.2.1 Syntax and semantics

DLs are formalisms that support the logical description of concepts and roles. Ar-
bitrary concept and role descriptions (from now on referred to simply as concepts
and roles) are constructed from atomic concept and role names using a variety of
concept and role forming operators, the range of which is dependent on the par-
ticular logic. In the following discussion we will use C' and D to denote arbitrary
concepts, R and S to denote arbitrary roles, A and P to denote atomic concept and
role names, and n to denote a nonnegative integer.

For concepts, the available operators usually include some or all of the standard
logical connectives, conjunction (denoted M), disjunction (denoted LI) and negation
(denoted —). In addition, the universal concept top (denoted T, and equivalent to
ALI-A) and the incoherent concept bottom (denoted L, and equivalent to AM—A) are
often predefined. Other commonly supported operators include restricted forms of
quantification called existential role restrictions (denoted 3R.C) and universal role
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restrictions (denoted VR.C'). Some DLs also support qualified number restrictions
(denoted < n.PC and >n.PC), operators that place cardinality restrictions on the
roles relating instances of a concept to instances of some other concept. Cardinality
restrictions are often limited to the forms <n.PT and >n.PT, when they are
called unqualified number restrictions, or simply number restrictions, and are often
abbreviated to <n P and > nP. The roles that can appear in cardinality restriction
concepts are usually restricted to being atomic, as allowing arbitrary roles in such
concepts is known no lead to undecidability [Baader and Sattler, 1996b).

Role forming operators may also be supported, and in some very expressive logics
roles can be regular expressions formed using union (denoted L), composition (de-
noted o), reflezive-transitive closure (denoted *) and identity operators (denoted id),
possibly augmented with the inverse (also known as converse) operator (denoted ™)
[De Giacomo and Lenzerini, 1996]. In most implemented systems, however, roles
are restricted to being atomic names.

Concepts and roles are given a standard Tarski style model theoretic semantics,
their meaning being given by an interpretation Z = (A7), where A is the domain
(a set) and 7 is an interpretation function. Full details of both syntax and semantics
can be found in Chapter 2.

In general, a DL knowledge base (KB) consists of a set 7 of terminological axioms,
and a set A of assertional arioms. The axioms in 7 state facts about concepts and
roles while those in A state facts about individual instances of concepts and roles.
As in this chapter we will mostly be concerned with terminological reasoning, that
is reasoning about concepts and roles, a KB will usually be taken to consist only of
the terminological component 7.

A terminological KB 7 usually consists of a set of axioms of the form C' C D and
C = D, where C' and D are concepts. An interpretation Z satisfies 7 if for every
axiom (C C D) € T, C* C D%, and for every axiom (C = D) € T, CT = D%; T is
satisfiable if there exists some non empty interpretation that satisfies it. Note that
T can, without loss of generality, be restricted to contain only inclusion axioms or
only equality axioms, as the two forms can be reduced one to the other using the
following equivalences:

CCD < T=Du-C
C=D << CCDandDLCC

A concept C'is subsumed by a concept D with respect to 7 (written 7 = C C D)
if T C D7 in every interpretation 7 that satisfies 7, a concept C is satisfiable with
respect to 7 (written 7 = C' Z 1) if CT # ) in some Z that satisfies 7, and a
concept C is unsatisfiable (not satisfiable) with respect to 7 (written 7 = —C) if
CT = () in every 7 that satisfies 7. Subsumption and (un)satisfiability are closely
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related. If 7 = C C D, then in all interpretations Z that satisfy 7, C* C D? and
so CT N (=D)* = (). Conversely, if C is not satisfiable with respect to 7, then in all
T that satisfy 7, C* = ) and so C* C L. Subsumption and (un)satisfiability can
thus be reduced one to the other using the following equivalences:

7T=CCD < TE-(CN-D)
TE-C < TECLCL

In some DLs 7 can also contain axioms that define a set of transitive roles R
and/or a subsumption partial ordering on roles [Horrocks and Sattler, 1999]. An
axiom R € R states that R is a transitive role while an axiom R C S states that
R is subsumed by S. An interpretation T satisfies the axiom R € R, if R? is
transitively closed (i.e, (RT)* = RT), and it satisfies the axiom R C S if RT C SZ.

9.2.2 Reasoning services

Terminological reasoning in a DL based Knowledge Representation System is based
on determining subsumption relationships with respect to the axioms in a KB. As
well as answering specific subsumption and satisfiability queries, it is often useful to
compute and store (usually in the form of a directed acyclic graph) the subsumption
partial ordering of all the concept names appearing in the KB, a procedure known
as classifying the KB [Patel-Schneider and Swartout, 1993]. Some systems may
also be capable of dealing with assertional axioms, those concerning instances of
concepts and roles, and performing reasoning tasks such as realisation (determining
the concepts instantiated by a given individual) and retrieval (determining the set
of individuals that instantiate a given concept) [Baader et al., 1991]. However,
we will mostly concentrate on terminological reasoning as it has been more widely
used in DL applications. Moreover, given a sufficiently expressive DL, assertional
reasoning can be reduced to terminological reasoning [De Giacomo and Lenzerini,
1996].

In practice, many systems use subsumption testing algorithms that are not ca-
pable of determining subsumption relationships with respect to an arbitrary KB.
Instead, they restrict the kinds of axiom that can appear in the KB so that de-
pendency eliminating substitutions (known as unfolding) can be performed prior to
evaluating subsumption relationships. These restrictions require that all axioms are
unique, acyclic definitions. An axiom is called a definition of A if it is of the form
ALC D or A= D, where A is an atomic name, it is unique if the KB contains no
other definition of A, and it is acyclic if D does not refer either directly or indirectly
(via other axioms) to A. A KB that satisfies these restrictions will be called an
unfoldable KB.

Definitions of the form A C D are sometimes called primitive or necessary, as
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D specifies a necessary condition for instances of A, while those of the form A =
D are sometimes called non-primitive or necessary and sufficient as D specifies
conditions that are both necessary and sufficient for instances of A. In order to
distinguish non-definitional axioms, they are often called general axioms [Buchheit
et al., 1993a). Restricting the KB to definition axioms makes reasoning much easier,
but significantly reduces the expressive power of the DL. However, even with an
unrestricted (or general) KB, definition axioms and unfolding are still useful ideas,
as they can be used to optimise the reasoning procedures (see Section 9.4.3).

9.2.3 Unfolding

Given an unfoldable KB 7, and a concept C' whose satisfiability is to be tested
with respect to 7, it is possible to eliminate from C all concept names occurring
in 7 using a recursive substitution procedure called unfolding. The satisfiability of
the resulting concept is independent of the axioms in 7 and can therefore be tested
using a decision procedure that is only capable of determining the satisfiability of
a single concept (or equivalently, the satisfiability of a concept with respect to an
empty KB).

For a non-primitive concept name A, defined in 7 by an axiom A = D, the
procedure is simply to substitute A with D wherever it occurs in C, and then to
recursively unfold D. For a primitive concept name A, defined in 7 by an axiom
A C D, the procedure is slightly more complex. Wherever A occurs in C' it is
substituted with the concept A’ D, where A’ is a new concept name not occurring
in 7 or C, and D is then recursively unfolded. The concept A’ represents the
“primitiveness” of A—the unspecified characteristics that differentiate it from D.
We will use Unfold(C,7) to denote the concept C' unfolded with respect to a KB
7.

A decision procedure that tries to find a satisfying interpretation Z for the un-
folded concept can now be used, as any such interpretation will also satisfy 7. This
can easily be shown by applying the unfolding procedure to all of the concepts form-
ing the right hand side of axioms in 7, so that they are constructed entirely from
concept names that are not defined in 7, and are thus independent of the other
axioms in 7. The interpretation of each defined concept in 7 can then be taken to
be the interpretation of the unfolded right hand side concept, as given by Z and the
semantics of the concept and role forming operators.

Subsumption reasoning can be made independent of 7 using the same technique.
Given two concepts C' and D, determining if C' is subsumed by D with respect to
7 is the same as determining if Unfold(C,7) is subsumed by Unfold(D,7) with
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respect to an empty KB:
TECCD <= {EUnfold(C,7) C Unfold(D,7T)

Unfolding would not be possible, in general, if the axioms in 7 were not unique
acyclic definitions. If 7 contained multiple definition axioms for some concept A,
for example {(A = C),(A = D)} C 7, then it would not be possible to make
a substitution for A that preserved the meaning of both axioms. If 7 contained
cyclical axioms, for example (A C JR.A) € 7, then trying to unfold A would lead
to non-termination. If 7 contained general axioms, for example dR.C' C D, then
it could not be guaranteed that an interpretation satisfying the unfolded concept
would also satisfy these axioms.

9.2.4 Internalisation

While it is possible to design an algorithm capable of reasoning with respect to a
general KB [Buchheit et al., 1993a], with more expressive logics, in particular those
allowing the definition of a universal role, a procedure called internalisation can
be used to reduce the problem to that of determining the satisfiability of a single
concept [Baader, 1991]. A truly universal role is one whose interpretation includes
every pair of elements in the domain of interpretation (i.e., AT x AT). However, a
role U is universal w.r.t. a terminology 7 if it is defined such that U is transitively
closed and P C U for all role names P occurring in 7. For a logic that supports the
union and transitive reflexive closure role forming operators, this can be achieved
simply by taking U to be

(PrU...UP,UPT U...UP,)Y,

where Py, ..., P, are all the roles names occurring in 7. For a logic that supports
transitively closed roles and role inclusion axioms, this can be achieved by adding
the axioms

(UeR.),(PLCU),...,(P,CU),(P{ CU),...,(P, CU)

to 7, where Pq,..., P, are all the roles names occurring in 7 and U is a new role
name not occurring in 7. Note that in either case, the inverse role components are
only required if the logic supports the inverse role operator.

The concept axioms in 7 can be reduced to axioms of the form T C C using the
equivalences:

A=B < TLC(AU-B)N(-AUB)
ACB < TL-AUB
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These axioms can then be conjoined to give a single axiom T C C, where

C= (Aﬁlgli)eT((Ai L =B;) M (=4, U B;)) M (Ajglg)eT(ﬁAj U B))

Because the interpretation of T is equal to the domain (TZ = AI), this axiom
states that every element in the domain must satisfy C'. When testing the satisfia-
bility of a concept D with respect to 7, this constraint on possible interpretations
can be imposed by testing the satisfiability of D M C MYU.C (or simply D NnvU.C
in the case where U is transitively reflexively closed). This relies on the fact that
satisfiable DL concepts always have an interpretation in which every element is

connected to every other element by some sequence of roles (the collapsed model
property) [Schild, 1991].

9.3 Subsumption testing algorithms

The use of unfolding and internalisation means that, in most cases, terminological
reasoning in a Description Logic based Knowledge Representation System can be
reduced to subsumption or satisfiability reasoning. There are several algorithmic
techniques for computing subsumption relationships, but they divide into two main
families: structural and logical.

9.3.1 Structural subsumption algorithms

Structural algorithms were used in early DL system such as KL-ONE [Brachman and
Schmolze, 1985], NIKL [Kaczmarek et al., 1986] and KRYPTON [Brachman et al.,
1983a), and are still used in systems such as CLASSIC [Patel-Schneider et al., 1991],
LooM [MacGregor, 1991b] and GRAIL [Rector et al., 1997]. To determine if one
concept subsumes another, structural algorithms simply compare the (normalised)
syntactic structure of the two concepts (see Chapter 2).

Although such algorithms can by quite efficient [Borgida and Patel-Schneider,
1994; Heinsohn et al., 1994], they have several disadvantages.

e Perhaps the most important disadvantage of this type of algorithm is that while
it is generally easy to demonstrate the soundness of the structural inference rules
(they will never infer an invalid subsumption relationship), they are usually in-
complete (they may fail to infer all valid subsumption relationships).

e [t is difficult to extend structural algorithms in order to to deal with more ex-
pressive logics, in particular those supporting general negation, or to reason with
respect to an arbitrary KB. This lack of expressive power makes the DL system
of limited value in traditional ontological engineering applications [Doyle and
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Patil, 1991], and completely useless in DataBase schema reasoning applications
[Calvanese et al., 1998f].

e Although accepting some degree of incompleteness is one way of improving the
performance of a DL reasoner, the performance of incomplete reasoners is highly
dependent on the degree of incompleteness, and this is notoriously difficult to
quantify [Borgida, 1992a).

9.3.2 Logical algorithms

These kinds of algorithm use a refutation style proof: C' is subsumed by D if it
can be shown that the existence of an individual x that is in the extension of C
(z € C7) but not in the extension of D (z ¢ D7) is logically inconsistent. As we
have seen in Section 9.2.2, this corresponds to testing the logical (un)satisfiability
of the concept C'M—D (i.e., C C D iff CM—D is not satisfiable). Note that forming
this concept obviously relies on having full negation in the logic.

Various techniques can be used to test the logical satisfiability of a concept.
One obvious possibility is to exploit an existing reasoner. For example, the LOG-
ICSWORKBENCH [Balsiger et al., 1996], a general purpouse proposition modal logic
reasoning system, could be used simply by exploiting the well known correspon-
dences between description and modal logics [Schild, 1991]. First order logic the-
orem provers can also be used via appropriate traslations of DLs into first or-
der logic. Examples of this approach can be seen in systems developed by Hus-
tadt and Schmidt [1997], using the SPASS theorem prover, and Paramasivam and
Plaisted [1998], using the CLIN-S theorem prover. An existing reasoner could also
be used as a component of a more powerful system, as in KSAT/*SAT [Giunchiglia
and Sebastiani, 1996a; Giunchiglia et al., 2001a], where a propositional satisfiability
(SAT) tester is used as the key component of a propositional modal satisfiability
reasoner.

There are advantages and disadvantages to the “re-use” approach. On the positive
side, it should be much easier to build a system based on an existing reasoner, and
performance can be maximised by using a state of the art implementation such
as SPASS (a highly optimised first order theorem prover) or the highly optimised
SAT testing algorithms used in KSAT and *SAT (the use of a specialised SAT tester
allows *SAT to outperform other systems on classes of problem that emphasise
propositional reasoning). The translation (into first order logic) approach has also
been shown to be able to deal with a wide range of expressive DLs, in particular
those with complex role forming operators such as negation or identity [Hustadt
and Schmidt, 2000].

On the negative side, it may be difficult to extend the reasoner to deal with more
expressive logics, or to add optimisations that take advantage of specific features
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of the DL, without reimplementing the reasoner (as has been done, for example, in
more recent versions of the *SAT system).

Most, if not all, implemented DL systems based on logical reasoning have used
custom designed tableaux decision procedures. These algorithms try to prove that
D subsumes C' by starting with a single individual satisfying C' T =D, and demon-
strating that any attempt to extend this into a complete interpretation (using a set
of tableauz expansion rules) will lead to a logical contradiction. If a complete and
non-contradictory interpretation is found, then this represents a counter example
(an interpretation in which some element of the domain is in CZ but not in D7)
that disproves the conjectured subsumption relationship.

This approach has many advantages and has dominated recent DL research:

e it has a sound theoretical basis in first order logic [Hollunder et al., 1990

e it can be relatively easily adapted to allow for a range of logical languages by
changing the set of tableaux expansion rules [Hollunder et al., 1990; Bresciani et
al., 1995];

e it can be adapted to deal with very expressive logics, and to reason with respect
to an arbitrary KB, by using more sophisticated control mechanisms to ensure
termination [Baader, 1991; Buchheit et al., 1993c; Sattler, 1996];

e it has been shown to be optimal for a number of DL languages, in the sense that
the worst case complexity of the algorithm is no worse than the known complexity
of the satisfiability problem for the logic [Hollunder et al., 1990).

In the remainder of this chapter, detailed descriptions of implementation and
optimisation techniques will assume the use of a tableaux decision procedure. How-
ever, many of the techniques are independent of the subsumption testing algorithm
or could easily be adapted to most logic based methods. The reverse is also true,
and several of the described techniques have been adapted from other logical de-
cision procedures, in particular those that try to optimise the search used to deal
with non-determinism.

9.3.2.1 Tableauz algorithms

Tableaux algorithms try to prove the satisfiability of a concept D by constructing
a model, an interpretation Z in which D7 is not empty. A tableau is a graph which
represents such a model, with nodes corresponding to individuals (elements of AT )
and edges corresponding to relationships between individuals (elements of AZ x AT).

A typical algorithm will start with a single individual satisfying D and try to
construct a tableau, or some structure from which a tableau can be constructed,
by inferring the existence of additional individuals or of additional constraints on
individuals. The inference mechanism consists of applying a set of expansion rules
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which correspond to the logical constructs of the language, and the algorithm ter-
minates either when the structure is complete (no further inferences are possible)
or obvious contradictions have been revealed. Non-determinism is dealt with by
searching different possible expansions: the concept is unsatisfiable if every expan-
sion leads to a contradiction and is satisfiable if any possible expansion leads to the
discovery of a complete non-contradictory structure.

Theoretical presentations of tableaux algorithms use a variety of notational styles
including constraints [Hollunder et al., 1990], prefixes [De Giacomo and Massacci,
1996] and labelled graphs [Sattler, 1996]. We will use the labelled graph notation as
it has an obvious correspondence with standard implementation techniques. In its
basic form, this notation describes the construction of a directed graph (usually a
tree) in which each node z is labelled with a set of concepts (L(z) = {C1,...,Cp}),
and each edge (x,y) is labelled with a role (£((z,y)) = R). When a concept C is
in the label of a node = (C' € L(x)), it represents a model in which the individual
corresponding with x is in the interpretation of C. When an edge (x, y) is labelled R
(L({x,y)) = R), it represents a model in which the tuple corresponding with (x,y)
is in the interpretation of R. A node y is called an R-successor of a node z if there
is an edge (z,y) labelled R, x is called the predecessor of y if y is an R-successor of
z, and z is called an ancestor of y if = is the predecessor of y or there exists some
node z such that z is the predecessor of y and x is an ancestor of z. A contradiction
or clash is detected when {C,—=C'} C L(x) for some concept C' and some node x.

To test the satisfiability of a concept D, a basic algorithm initialises a tree to
contain a single node z (called the root node) with £(z) = {D}, and then expands
the tree by applying rules that either extend node labels or add new leaf nodes. A
set of expansion rules for the ALC description logic is shown in Figure 9.1, where
C and D are concepts, and R is a role. Note that:

e Concepts are assumed to be in negation normal form, that is with negations only
applying to concept names. Arbitrary ALC concepts can be converted to negation
normal form by pushing negations inwards using a combination of DeMorgan’s
laws and the equivalences =(3R.C)) <= (VR.=C) and —(VR.C) <= (IR.-C).
This procedure can be extended to more expressive logics using additional equiv-
alences such as 7(<nR) <= (= (n+ 1)R).

e Disjunctive concepts (C'LI D) € L(x) give rise to non-deterministic expansion. In
practice this is usually dealt with by search: trying each possible expansion in turn
until a fully expanded and clash free tree is found, or all possibilities have been
shown to lead to contradictions. In more expressive logics other constructs, such
as maximum number restrictions (< nR), also lead to non-deterministic expan-
sion. Searching non-deterministic expansions is the main cause of intractability
in tableaux subsumption testing algorithms.
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M-rule if 1. (CND) e L(x)
2. {C,D} ¢ L(x)
then L(z) — L(z) U{C, D}

U-rule if 1. (CUD) e L(x)

2. {C,D}NnL(z) = @

then  either L(x

or L(x

Frule if 1. 3FJR.C € L(x)
2. thereisno y s.t. L({z,y)) = R and C € L(y)
then create a new node y and edge (x,y)
with £(y) = {C} and L({z,y)) = R

V-rule if 1. VR.C € L(z)
2. there is some y s.t. L({x,y)) = R and C ¢ L(y)
then L(y) — L(y)U{C}

Fig. 9.1. Tableaux expansion rules for ALC.

e Existential role restriction concepts IR.C' € L(x) cause the creation of new R-
successor nodes, and universal role restriction concepts VR.C' € L(x) extend the
labels of R-successor nodes.

The tree is fully expanded when none of the expansion rules can be applied.
If a fully expanded and clash-free tree can be found, then the algorithm returns
satisfiable; otherwise it returns unsatisfiable.

More expressive logics may require several extensions to this basic formalism.
For example, with logics that include both role inclusion axioms and some form of
cardinality restriction, it may be necessary to label edges with sets of role names
instead of a single role name [Horrocks, 1998b]. It may also be necessary to add
cycle detection (often called blocking) to the preconditions of some of the inference
rules in order to guarantee termination [Buchheit et al., 1993a; Baader et al., 1996),
the general idea being to stop the expansion of a branch whenever the same node
label recurs in the branch. Blocking can also lead to a more complex correspondence
between the structure created by the algorithm and a model of a satisfiable concept,
as the model may contain cycles or even be non-finite [Horrocks and Sattler, 1999).

9.4 Theory versus practice

So far, what we have seen is typical of theoretical presentations of tableaux based
decision procedures. Such a presentation is sufficient for soundness and complete-
ness proofs, and is an essential starting point for the implementation of a reliable
subsumption testing algorithm. However, there often remains a considerable gap
between the theoretical algorithm and an actual implementation. Additional points
which may need to be considered are:
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e the efficiency of the algorithm, in the theoretical (worst case) sense;
e the efficiency of the algorithm, in a practical (typical case) sense;
e how to use the algorithm for reasoning with unfoldable, general and cyclical KBs;

e optimising the (implementation of the) algorithm to improve the typical case
performance.

In the remainder of this Section we will consider the first three points, while in
the following section we will consider implementation and optimisation techniques
in detail.

9.4.1 Worst case complexity

When considering an implementation, it is sensible to start with an algorithm that is
known to be theoretically efficient, even if the implementation subsequently departs
from the theory to some extent. Theoretically efficient is taken to mean that the
complexity of the algorithm is equal to the complexity of the satisfiability problem
for the logic, where this is known, or at least that consideration has been given
to the worst case complexity of the algorithm. This is not always the case, as
the algorithm may have been designed to facilitate a soundness and completeness
proof, with little consideration having been given to worst case complexity, much
less implementation.

Apart from establishing an upper bound for the “hardness” of the problem, stud-
ies of theoretical complexity can suggest useful implementation techniques. For
example, a study of the complexity of the satisfiability problem for ALC concepts
with respect to a general KB has demonstrated that caching of intermediate results
is required in order to stay in EXPTIME [Donini et al., 1996a), while studying the
complexity of the satisfiability problem for SN concepts has shown that a more
sophisticated labelling and blocking strategy can be used in order to stay in PSPACE
[Horrocks et al., 1999].

One theoretically derived technique that is widely used in practice is the trace
technique. This is a method for minimising the amount of space used by the algo-
rithm to store the tableaux expansion tree. The idea is to impose an ordering on
the application of expansion rules so that local propositional reasoning (finding a
clash-free expansion of conjunctions and disjunctions using the M-rule and L-rule)
is completed before new nodes are created using the 3-rule. A successor created by
an application of the 3-rule, and any possible applications of the V-rule, can then
be treated as an independent sub-problem that returns either satisfiable or unsatis-
fiable, and the space used to solve it can be reused in solving the next sub-problem.
A node z returns satisfiable if there is a clash-free propositional solution for which
any and all sub-problems return satisfiable; otherwise it returns unsatisfiable. In
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I-rule if 1. 3R.C € L(x)
2. there is no y s.t. L({z,y)) = R and C € L(y)
3. neither the M-rule nor the U-rule is applicable to L£(x)

theﬁ create a new node y and edge (z,y)
with £(y) = {C}U{D |VR.D € L(x)} and L({x,y)) = R

Fig. 9.2. Combined 3V-rule for ALC.

algorithms where the trace technique can be used, the V-rule is often incorporated
in the 3-rule, giving a single rule as shown in Figure 9.2.

Apart from minimising space usage the trace technique is generally viewed as a
sensible way of organising the expansion and the flow of control within the algorithm.
Ordering the expansion in this way may also be required by some blocking strategies
[Buchheit et al., 1993a], although in some cases it is possible to use a more efficient
subset blocking technique that is independent of the ordering [Baader et al., 1996].

The trace technique relies on the fact that node labels are not affected by the
expansion of their successors. This is no longer true when the logic includes inverse
roles, because universal value restrictions in the label of a successor of a node = can
augment L£(z). This could invalidate the existing propositional solution for £(z), or
invalidate previously computed solutions to sub-problems in other successor nodes.
For example, if

L(z) = {3R.C,35.(VS™.(VYR.—C))},

then z is obviously unsatisfiable as expanding 35.(VS™.(VR.~C)) will add VR.-C
to L(x), meaning that z must have an R-successor whose label contains both C
and —C'. The contradiction would not be discovered if the R-successor required by
dR.C € L(x) were generated first, found to be satisfiable and then deleted from the
tree in order to save space.

The development of a PSPACE algorithm for the SZN logic has shown that a
modified version of the trace technique can still be used with logics that include
inverse roles [Horrocks et al., 1999]. However, the modification requires that the
propositional solution and all sub-problems are re-computed whenever the label of
a node is augmented by the expansion of a universal value restriction in the label
of one of its successors.

9.4.2 Typical case complexity

Although useful practical techniques can be derived from the study of theoretical
algorithms, it should be borne in mind that minimising worst case complexity may
require the use of techniques that clearly would not be sensible in typical cases.
This is because the kinds of pathological problem that would lead to worst case
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behaviour do not seem to occur in realistic applications. In particular, the amount
of space used by algorithms does not seem to be a practical problem, whereas the
time taken for the computation certainly is. For example, in experiments with
the FacT system using the DL’98 test suite, available memory (200Mb) was never
exhausted in spite of the fact that some single computations required hundreds of
seconds of CPU time [Horrocks and Patel-Schneider, 1998b]. In other experiments
using the GALEN KB, computations were run for tens of thousands of seconds of
CPU time without exhausting available memory.

In view of these considerations, techniques that save space by recomputing are
unlikely to be of practical value. The modified trace technique used in the PSPACE
SZN algorithm (see Section 9.4.1), for example, is probably not of practical value.
However, the more sophisticated labelling and blocking strategy, which allows the
establishment a polynomial bound on the length of branches, could be used not
only in an implementation of the SZN algorithm, but also in implementations of
more expressive logics where other considerations mean that the PSPACE result no
longer holds [Horrocks et al., 1999].

In practice, the poor performance of tableaux algorithms is due to non-
determinism in the expansion rules (for example the L-rule), and the resulting
search of different possible expansions. This is often treated in a very cursory man-
ner in theoretical presentations. For soundness and completeness it is enough to
prove that the search will always find a solution if one exists, and that it will always
terminate. For worst case complexity, an upper bound on the size of the search space
is all that is required. As this upper bound is invariably exponential with respect to
the size of the problem, exploring the whole search space would inevitably lead to
intractability for all but the smallest problems. When implementing an algorithm
it is therefore vital to give much more careful consideration to non-deterministic
expansion, in particular how to reduce the size of the search space and how to ex-
plore it in an efficient manner. Many of the optimisations discussed in subsequent
sections will be aimed at doing this, for example by using absorption to localise
non-determinism in the KB, dependency directed backtracking to prune the search
tree, heuristics to guide the search, and caching to avoid repetitive search.

9.4.3 Reasoning with a knowledge base

One area in which the theory and practice diverge significantly is that of reasoning
with respect to the axioms in a KB. This problem is rarely considered in detail:
with less expressive logics the KB is usually restricted to being unfoldable, while
with more expressive logics, all axioms can be treated as general axioms and dealt
with via internalisation. In either case it is sufficient to consider an algorithm that
tests the satisfiability of a single concept, usually in negation normal form.
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In practice, it is much more efficient to retain the structure of the KB for as long
as possible, and to take advantage of it during subsumption/satisfiability testing.
One way in which this can be done is to use lazy unfolding—only unfolding concepts
as required by the progress of the subsumption or satisfiability testing algorithm
[Baader et al., 1992a). With a tableaux algorithm, this means that a defined concept
A is only unfolded when it occurs in a node label. For example, if 7 contains
the non-primitive definition axiom A = (', and the M-rule is applied to a concept
(AM D) € L(z) so that A and D are added to L£(z), then at this point A can be
unfolded by substituting it with C.

Used in this way, lazy unfolding already has the advantage that it avoids unnec-
essary unfolding of irrelevant sub-concepts, either because a contradiction is dis-
covered without fully expanding the tree, or because a non-deterministic expansion
choice leads to a complete and clash free tree. However, a much greater increase in
efficiency can be achieved if, instead of substituting concept names with their def-
initions, names are retained when their definitions are added. This is because the
discovery of a clash between concept names can avoid expansion of their definitions
[Baader et al., 1992a].

In general, lazy unfolding can be described as additional tableaux expansion rules,
defined as follows.

Up-rule if 1. AeL(z)and(A=C)eT
2. Cé¢L(x)
then L(z) — L(z)U{C}
Ug-rule if 1. -Ae€L(z)and(A=C)eT
2. =C ¢ L(x)
then L(z) — L(z)U{-C}
Us-rule if 1. AeL(z)and(ACC)eT
2. Cé¢L(x)
then L(z) — L(z)U{C}

The Uj-rule and Us-rule reflect the symmetry of the equality relation in the non-
primitive definition A = C, which is equivalent to A C C and =A T —C. The
Us-rule on the other hand reflects the asymmetry of the subsumption relation in
the primitive definition A C C.

Treating all the axioms in the KB as general axioms, and dealing with them
via internalisation, is also highly inefficient. For example, if 7 contains an axiom
A C C, where A is a concept name not appearing on the left hand side of any other
axiom, then it is easy to deal with the axiom using the lazy unfolding technique,
simply adding C to the label of any node in which A appears. Treating all axioms
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as general axioms would be equivalent to applying the following additional tableaux
expansion rules:

Li-rule if 1. (C=
2. (DU-C) ¢ L(x)
then L(z) — L(z)U{(DU-C)}
Ir-rule if 1. (C=D)eT
2. (=DuCQC)¢ L(x)
then L(z) — L(z)U{(-DUC)}
Is-rule if 1. (C
2. (D
then L(z) — L(z)U{(DU-C)}

With (A C C) € 7, this would result in the disjunction (C'LI-A) being added to the
label of every node, leading to non-deterministic expansion and search, the main
cause of empirical intractability.

The solution to this problem is to divide the KB into two components, an un-
foldable part 7, and a general part 7, such that 7, = 7 \ 7,, and 7, contains
unique, acyclical, definition axioms. This is easily achieved, e.g., by initialising 7,
to (0 (which is obviously unfoldable), then for each axiom X in 7, adding X to 7,
if 7, U X is still unfoldable, and adding X to 7, otherwise.! It is then possible to
use lazy unfolding to deal with 7, and internalisation to deal with 7.

Given that the satisfiability testing algorithm includes some sort of cycle checking,
such as blocking, then it is even possible to be a little less conservative with respect
to the definition of 7, by allowing it to contain cyclical primitive definition axioms,
for example axioms of the form A C 3R.A. Lazy unfolding will ensure that AZ C
JR.AT by adding IR.A to every node containing A, while blocking will take care of
the non-termination problem that such an axiom would otherwise cause [Horrocks,
1997b]. Moreover, multiple primitive definitions for a single name can be added to
Ty, or equivalently merged into a single definition using the equivalence

(ACCy),....,(ACC,) < AC(CiN...NC)

However, if 7,, contains a non-primitive definition axiom A = C, then it cannot
contain any other definitions for A, because this would be equivalent to allowing
general axioms in 7,. For example, given a general axiom C T D, this could be
added to 7, as A C D and A = C, where A is a new name not appearing in 7.
Moreover, certain kinds of non-primitive cycles cannot be allowed as they can be
used to constrain possible models a way that would not be reflected by unfolding.
For example, if (A = —A) € T for some concept name A, then the domain of all

I Note that the result may depend on the order in which the axioms in 7 are processed.
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valid interpretations of 7 must be empty, and 7 = C C D for all concepts C' and
D [Horrocks and Tobies, 2000].

9.5 Optimisation techniques

The KRIS system demonstrated that by taking a well designed tableaux algorithm,
and applying some reasonable implementation and optimisation techniques (such as
lazy expansion), it is possible to obtain a tableaux based DL system that behaves
reasonably well in typical cases, and compares favourably with systems based on
structural algorithms [Baader et al., 1992a). However, this kind of system is still
much too slow to be usable in many realistic applications. Fortunately, it is possible
to achieve dramatic improvements in typical case performance by using a wider
range of optimisation techniques.

As DL systems are often used to classify a KB, a hierarchy of optimisation tech-
niques is naturally suggested based on the stage of the classification process at which
they can be applied.

(i) Preprocessing optimisations that try to modify the KB so that classification

and subsumption testing are easier.

(ii) Partial ordering optimisations that try to minimise the number of subsump-
tion tests required in order to classify the KB

(iii) Subsumption optimisations that try to avoid performing a potentially expen-
sive satisfiability test, usually by substituting a cheaper test.

(iv) Satisfiability optimisations that try to improve the typical case performance
of the underlying satisfiability tester.

9.5.1 Preprocessing optimisations

The axioms that constitute a DL, KB may have been generated by a human knowl-
edge engineer, as is typically the case in ontological engineering applications, or be
the result of some automated mapping from another formalism, as is typically the
case in DB schema and query reasoning applications. In either case it is unlikely
that a great deal of consideration was given to facilitating the subsequent reasoning
procedures; the KB may, for example, contain considerable redundancy and may
make unnecessary use of general axioms. As we have seen, general axioms are costly
to reason with due to the high degree of non-determinism that they introduce.

It is, therefore, useful to preprocess the KB, applying a range of syntactic simpli-
fications and manipulations. The first of these, normalisation, tries to simplify the
KB by identifying syntactic equivalences, contradictions and tautologies. The sec-
ond, absorption, tries to eliminate general axioms by augmenting definition axioms.
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9.5.1.1 Normalisation

In realistic KBs, at least those manually constructed, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named concepts
whose descriptions are less complex. The lazy unfolding technique described above
can use this structure to provide more rapid detection of contradictions.

The effectiveness of lazy unfolding is greatly increased if a contradiction between
two concepts can be detected whenever one is syntactically equivalent to the nega-
tion of the other; for example, we would like to discover a direct contradiction
between (C' M D) and (—D U —C). This can be achieved by transforming all con-
cepts into a syntactic normal form, and by directly detecting contradictions caused
by non-atomic concepts as well as those caused by concept names.

In DLs there is often redundancy in the set of concept forming operators. In
particular, logics with full negation often provide pairs of operators, either one of
which can be eliminated in favour of the other by using negation. Conjunction and
disjunction operators are an example of such a pair, and one can be eliminated in
favour of the other using DeMorgan’s laws. In syntactic normal form, all concepts
are transformed so that only one of each such pair appears in the KB (it does not
matter which of the two is chosen, the important thing is uniformity). In ALC, for
example, all concepts could be transformed into (possibly negated) value restric-
tions, conjunctions and atomic concept names, with (=D U —=C') being transformed
into =(D M C). An important refinement is to treat conjunctions as sets (written
M{C1,...,Cy}) so that reordering or repeating the conjuncts does not effect equiv-
alence; for example, (D M C) would be normalised as M{C, D}.! Normalisation can
also include a range of simplifications so that syntactically obvious contradictions
and tautologies are detected; for example, IR.L could be simplified to L.

Figure 9.3 describes normalisation and simplification functions Norm and Simp
for ALC. These can be extended to deal with more expressive logics by adding
appropriate normalisations (and possibly additional simplifications). For example,
number restrictions can be dealt with by adding the normalisations Norm(<nR) =
—> (n+ 1)R and Norm(= nR) = > nR, and the simplification Simp(> OR) = T.

Normalised and simplified concepts may not be in negation normal form, but they
can be dealt with by treating them exactly like their non-negated counterparts. For
example, =M{C, D} can be treated as (—C U —D) and —-VR.C can be treated as
JR.~C. In the remainder of this chapter we will use both forms interchangeably,
choosing whichever is most convenient.

Additional simplifications would clearly be possible. For example, VR.C TMVR.D
could be simplified to YR.Norm(C' M D). Which simplifications it is sensible to
perform is an implementation decision that may depend on a cost-benefit analysis

L Sorting the elements in conjuctions, and eliminating duplicates, achieves the same result.
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Norm(A) = A for atomic concept name A

)
Norm( C) = Simp(—=Norm(C))
Norm(Cy M Cp) = Simp(M{Norm(C1)}U...U{Norm(Cy,)})
Norm(Cy U Cpn) = Norm(—(=CyM...M=Cy))
Norm(VR C) = Simp(VR.Norm(C))
Norm(3R.C) = Norm(=VR.-C)
)

Simp(A) = A for atomic concept name A

L fC=T

T ifC =1

Simp(D) if C =-D

-C otherwise

1 itlesS

1 if {C,~C} C S

. T ifS=10

SImp(TS) =\ Simp(s\ {T}) it Tes
Simp(MP US\ {n{P}}) ifr{P}eS

nsS otherwise

{T ifc="T

Simp(=C) =

Simp(VR.C) = VR.C otherwise

Fig. 9.3. Normalisation and simplification functions for ALC.

with respect to some particular application. Empirically, simplification seems to
be more effective with mechanically generated KBs and satisfiability problems, in
particular those where there the number of different roles is very small. With this
kind of problem it is quite common for satisfiability tests to be greatly simplified,
or even completely avoided, by simplifying part or all of the concept to either T
or L. In the benchmark tests used for the Tableaux’98 comparison of modal logic
theorem provers, for example, some classes of problem can be completely solved
via this mechanism [Heuerding and Schwendimann, 1996; Balsiger and Heuerding,
1998].

If the subsumption testing algorithm is to derive maximum benefit from normal-
isation, it is important that it directly detect contradictions caused by non-atomic
concepts as well as those caused by concept names; for example the occurrence of
both M{C, D} and —M{C, D} in a node label should be detected as a contradiction
without the need for further expansion. This can be achieved by replacing all equiv-
alent (identically encoded) non-atomic concepts C' in the KB with a new atomic
concept name A, and adding the axiom A = C to the KB. For example, all occur-
rences of M{C, D} in a KB could be replaced with CD, and the axiom CD = n{C, D}
added to the KB.
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It is necessary to distinguish these newly introduced system names from user
names appearing in the original KB, as system names need not be classified (indeed,
it would be very confusing for the user if they were). In practice, it is often more
convenient to avoid this problem by using pointer or object identifiers to refer to
concepts, with the same identifier always being associated with equivalent concepts.
A contradiction is then detected whenever a pointer/identifier and its negation occur
in a node label.

The advantages of the normalisation and simplification procedure are:

e It is easy to implement and could be used with most logics and algorithms.

e Subsumption/satisfiability problems can often be simplified, and sometimes even
completely avoided, by detecting syntactically obvious satisfiability and unsatis-
fiability.

e It complements lazy unfolding and improves early clash detection.

e The elimination of redundancies and the sharing of syntactically equivalent struc-
tures may lead to the KB being more compactly stored.

The disadvantages are:

e The overhead involved in the procedure, although this is relatively small.

e For very unstructured KBs there may be no benefit, and it might even slightly
increase size of KB.

9.5.1.2 Absorption

As we have seen in Section 9.4.3, general axioms are costly to reason with due to the
high degree of non-determinism that they introduce. With a tableaux algorithm,
a disjunction is added to the label of each node for each general axiom in the KB.
This leads to an exponential increase in the search space as the number of nodes
and axioms increases. For example, with 10 nodes and a KB containing 10 general
axioms there are already 100 disjunctions, and they can be non-deterministically
expanded in 2'90 different ways. For a KB containing large numbers of general
axioms (there are 1,214 in the GALEN medical terminology KB) this can degrade
performance to the extent that subsumption testing is effectively non-terminating.

It therefore makes sense to eliminate general axioms from the KB whenever possi-
ble. Absorption is a technique that tries to do this by absorbing them into primitive
definition axioms. The basic idea is that a general axiom of the form C C D, where
C' may be a non-atomic concept, is manipulated (using the equivalences in Fig-
ure 9.4) so that it has the form of a primitive definition A C D', where A is an
atomic concept name. This axiom can then be merged into an existing primitive
definition A C C’ to give A C C'11D’. For example, an axiom stating that all three
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CinNCy,CD < C{CDU-Cy
CCDiMNMDy <— CLCDyandC C D,

Fig. 9.4. Axiom equivalences used in absorption.

sided geometric figures (i.e., triangles) also have three angles
geometric-figure M Jangles.three C dsides.three

could be transformed into an axiom stating that all geometric figures either have
three sides or do not have three angles

geometric-figure C Jsides.three LI =Jangles.three

and then absorbed into the primitive definition of geometric figure
(geometric-figure C figure) to give

geometric-figure C figure M (Isides.three LI —~Jangles.three).

Given a KB divided into an unfoldable part 7, and a general part 7, the following
procedure can be used to try to absorb the axioms from 7, into primitive definitions
in 7,. First a set Tg’ is initialised to be empty, and any axioms (C' = D) € 7, are
replaced with an equivalent pair of axioms C' C D and —C C —D. Then for each
axiom (C T D) € 1y

(i) Initialise a set G = {-D,C}, representing the axiom in the form T C
-M{=D,C} (i.e. TC DU-C).

(ii) If for some A € G there is a primitive definition axiom (A C C) € 7,
then absorb the general axiom into the primitive definition axiom so that it

becomes
A C O, -G\ {AD},
and exit.
(iii) If for some A € G there is an axiom (A = D) € 7, then substitute A € G
with D

G — {D}UG\ {A},

and return to step (ii).
(iv) If for some —A € G there is an axiom (A = D) € 7, then substitute -A € G
with =D

G — {-D}UG\ {-A},

and return to step (ii).
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(v) If there is some C' € G such that C is of the form MS, then use associativity
to simplify G

G — SUG\ {ns},

and return to step (ii).
(vi) If there is some C' € G such that C' is of the form —MS, then for every D € S
try to absorb (recursively)

{=D}uU G\ {-r8},

and exit.
(vii) Otherwise, the axiom could not be absorbed, so add -NG to 7,

! !
’Z; — Tg U NG,
and exit.

Note that this procedure allows parts of axioms to be absorbed. For example, given
axioms (A C Dp) € 7, and (AU3R.C T Ds) € Ty, then the general axiom would
be partly absorbed into the definition axiom to give (A C (Dq M Dy)) € 7, leaving
a smaller general axiom (-M{-Dy,3R.C}) € T,,.

When this procedure has been applied to all the axioms in 7, then ’1;’ represents
those (parts of) axioms that could not be absorbed. The axioms in ’Z'g’ are already
in the form T C C, so that I_I’]g is the concept that must be added to every node
in the tableaux expansion. This can be done using a universal role, as describe in
Section 9.2.4, although in practice it may be simpler just to add the concept to the
label of each newly created node.

The absorption process is clearly non-deterministic. In the first place, there may
be more than one way to divide 7 into unfoldable and general parts. For example, if
T contains multiple non-primitive definitions for some concept A, then one of them
must be selected as a definition in 7, while the rest are treated as general axioms in
7,. Moreover, the absorption procedure itself is non-deterministic as G may contain
more than one primitive concept name into which the axiom could be absorbed. For
example, in the case where {A;, A2} = G, and there are two primitive definition
axioms A; C C' and Ay C D in 7, then the axiom could be absorbed either into
the definition of A; to give A; C C' 1 -M{A2} (equivalent to A; C C' M —=Ay) or into
the definition of Ag to give Ay C C'T1-M{A1} (equivalent to Ay C C'T1-A}).

It would obviously be sensible to choose the “best” absorption (the one that max-
imised empirical tractability), but it is not clear how to do this—in fact it is not even
clear how to define “best” in this context [Horrocks and Tobies, 2000]. If 7 contains
more than one definition axiom for a given concept name, then empirical evidence
suggests that efficiency is improved by retaining as many non-primitive definition
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axioms in 7, as possible. Another intuitively obvious possibility is to preferentially
absorb into the definition axiom of the most specific primitive concept, although
this only helps in the case that Ay C As or Ao C A;. Other more sophisticated
schemes might be possible, but have yet to be investigated.

The advantages of absorption are:

e It can lead to a dramatic improvement in performance. For example, without
absorption, satisfiability of the GALEN KB (i.e., the satisfiability of T) could not
be proved by either FacT or DLP, even after several weeks of CPU time. After
absorption, the problem becomes so trivial that the CPU time required is hard
to measure.

e It is logic and algorithm independent.

The disadvantage is the overhead required for the pre-processing, although this is
generally small compared to classification times. However, the procedure described
is almost certainly sub-optimal, and trying to find an optimal absorption may be
much more costly.

9.5.2 Optimising classification

DL systems are often used to classify a KB, that is to compute a partial ordering
or hierarchy of named concepts in the KB based on the subsumption relationship.
As subsumption testing is always potentially costly, it is important to ensure that
the classification process uses the smallest possible number of tests. Minimising the
number of subsumption tests required to classify a concept in the concept hierarchy
can be treated as an abstract order-theoretic problem which is independent of the
ordering relation. However, some additional optimisation can be achieved by using
the structure of concepts to reveal obvious subsumption relationships and to control
the order in which concepts are added to the hierarchy (where this is possible).

The concept hierarchy is usually represented by a directed acyclic graph where
nodes are labelled with sets of concept names (because multiple concept names
may be logically equivalent), and edges correspond with subsumption relationships.
The subsumption relation is both transitive and reflexive, so a classified concept A
subsumes a classified concept B if either:

(i) both A and B are in the label of some node z, or
(ii) A is in the label of some node x, there is an edge (z,y) in the graph, and the
concept(s) in the label of node y subsume B.

It will be assumed that the hierarchy always contains a top node (a node whose
label includes T) and a bottom node (a node whose label includes L) such that the
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top node subsumes the bottom node. If the KB is unsatisfiable then the hierarchy
will consist of a single node whose label includes both T and L.

Algorithms based on traversal of the concept hierarchy can be used to minimise
the number of tests required in order to add a new concept [Baader et al., 1992a].
The idea is to compute a concept’s subsumers by searching down the hierarchy from
the top node (the top search phase) and its subsumees by searching up the hierarchy
from the bottom node (the bottom search phase).

When classifying a concept A, the top search takes advantage of the transitivity
of the subsumption relation by propagating failed results down the hierarchy. It
concludes, without performing a subsumption test, that if A is not subsumed by B,
then it cannot be subsumed by any other concept that is subsumed by B:

THEACBand7 =B CB implies 7 £FACB

To maximise the effect of this strategy, a modified breadth first search is used [Ellis,
1992] which ensures that a test to discover if B subsumes A is never performed until
it has been established that A is subsumed by all of the concepts known to subsume
B.

The bottom search uses a corresponding technique, testing if A subsumes B only
when A is already known to subsume all those concepts that are subsumed by B.
Information from the top search is also used by confining the bottom search to those
concepts which are subsumed by all of A’s subsumers.

This abstract partial ordering technique can be enhanced by taking advantage of
the structure of concepts and the axioms in the KB. If the KB contains an axiom
AL Cor A=C, then C is said to be a told subsumer of A. If C' is a conjunctive
concept (C1M...MCy), then from the structural subsumption relationship

DC(Cin---nC,) implies DC Ciand---and D C C,

it is possible to conclude that C', ..., C, are also told subsumers of A. Moreover, due
to the transitivity of the subsumption relation, any told subsumers of C', ..., C, are
also told subsumers of A. Before classifying A, all of its told subsumers which have
already been classified, and all their subsumers, can be marked as subsumers of A;
subsumption tests with respect to these concepts are therefore rendered unnecessary.
This idea can be extended in the obvious way to take advantage of a structural
subsumption relationship with respect to disjunctive concepts,

(CiU---UC,)ED implies C;C Dand---and C, C D.

If the KB contains an axiom A = C and C' is a disjunctive concept (C1 U...UCy),
then A is a told subsumer of C4,...,C,.

To maximise the effect of the told subsumer optimisation, concepts should be
classified in definition order. This means that a concept A is not classified until all
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of its told subsumers have been classified. When classifying an unfoldable KB, this
ordering can be exploited by omitting the bottom search phase for primitive con-
cept names and assuming that they only subsume (concepts equivalent to) L. This
is possible because, with an unfoldable KB, a primitive concept can only subsume
concepts for which it is a told subsumer. Therefore, as concepts are classified in
definition order, a primitive concept will always be classified before any of the con-
cepts that it subsumes. This additional optimisation cannot be used with a general
KB because, in the presence of general axioms, it can no longer be guaranteed that
a primitive concept will only subsume concepts for which it is a told subsumer. For
example, given a KB 7 such that

7 ={AC 3R.C, 3R.C C B},

then B is not a told subsumer of A, and A may be classified first. However, when
B is classified the bottom search phase will discover that it subsumes A due to the
axiom JR.C C B.

The advantages of the enhanced traversal classification method are:

e It can significantly reduce the number of subsumption tests required in order to
classify a KB [Baader et al., 1992a).

e It is logic and (subsumption) algorithm independent.

There appear to be few disadvantages to this method, and it is used (in some
form) in most implemented DL systems.

9.5.3 Optimising subsumption testing

The classification optimisations described in Section 9.5.2 help to reduce the num-
ber of subsumption tests that are performed when classifying a KB, and the com-
bination of normalisation, simplification and lazy unfolding facilitates the detection
of “obvious” subsumption relationships by allowing unsatisfiability to be rapidly
demonstrated. However, detecting “obvious” non-subsumption (satisfiability) is
more difficult for tableaux algorithms. This is unfortunate as concept hierarchies
from realistic applications are typically broad, shallow and tree-like. The top search
phase of classifying a new concept A in such a hierarchy will therefore result in sev-
eral subsumption tests being performed at each node, most of which are likely to
fail. These failed tests could be very costly (if, for example, proving the satisfiability
of A is a hard problem), and they could also be very repetitive.

This problem can be tackled by trying to use cached results from previous
tableaux tests to prove non-subsumption without performing a new satisfiability
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(A, C,3R,1.Ch, 3R.Cx} {-B, D,3R5.C5}
Ry & Rs
{C1} {C2} {Cs}

N

{A,-B,C, D,3R,.C1,3R2.C2,3R3.C3}

Rl R3 RQ

{C1} {Cs} {C2}

Fig. 9.5. Joining expansion trees for A and —B.

test. For example, given two concepts A and B defined by the axioms

A = CNdR.CiMdR,.Cy, and
B = —-DUVR3.-(Cjs,

then A is not subsumed by B if the concept A M —B is satisfiable. If tableaux
expansion trees for A and —B have already been cached, then the satisfiability of
the conjunction can be demonstrated by a tree consisting of the trees for A and —-B
joined at their root nodes, as shown in Figure 9.5 (note that =B = D M 3R3.C3).

Given two fully expanded and clash free tableaux expansion trees T; and To
representing models of (satisfiable) concepts A and —B respectively, the tree created
by joining T; and Ty at their root nodes is a fully expanded and clash free tree
representing a model of AT —B provided that the union of the root node labels does
not contain a clash and that no tableaux expansion rules are applicable to the new
tree. For most logics, this can be ascertained by examining the labels of the root
nodes and the labels of the edges connection them with their successors. With the
ALC logic for example, if x1 and xo are the two root nodes, then the new tree will
be fully expanded and clash free provided that

(i) the union of the root node labels does not contain an immediate contradic-
tion, i.e., there is no C' such that {C,~C} C L(z1) U L(z2), and

(ii) there is no interaction between value restrictions in the label of one root node
and edges connecting the other root node with its successors that might make
the V-rule applicable to the joined tree, i.e., there is no R such that VR.C €
L(z1) and T9 has an edge (z2,y) with L((x2,y)) = R, or VR.C' € L(x2) and
T, has an edge (z1,y) with £L((z1,y)) = R.
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With more expressive logics it may be necessary to consider other interactions that
could lead to the application of tableaux expansion rules. With a logic that included
number restrictions, for example, it would be necessary to check that these could
not be violated by the root node successors in the joined tree.

It would be possible to join trees in a wider range of cases by examining the
potential interactions in more detail. For example, a value restriction VR.C' € L(x1)
and an R labelled edge (z2, y) would not make the V-rule applicable to the joined tree
if C € L(x2). However, considering only root nodes and edges provides a relatively
fast test and reduces the storage required by the cache. Both the time required
by the test and the size of the cache can be reduced even further by only storing
relevant components of the root node labels and edges from the fully expanded and
clash free tree that demonstrates the satisfiability of a concept. In the case of ALC,
the relevant components from a tree demonstrating the satisfiability of a concept
A are the set of (possibly negated) atomic concept names in the root node label
(denoted L.(A)), the set of role names in value restrictions in the root node label
(denoted Ly(A)), and the set of role names labelling edges connecting the root node
with its successors (denoted £3(A)).! These components can be cached as a triple
(‘CC(A)7 £V(A)7 L3 (A)) :

When testing if A is subsumed by B, the algorithm can now proceed as follows.

(i) If any of (ﬁc(A)7£V(A)7£3(A)>7 (‘Cc(ﬂA%ﬁV(_‘A)aLS(_‘A))? (£C(B)7£V(B)7
L3(B)) or (L.(—B), Ly(—B), L3(—B)) are not in the cache, then perform the
appropriate satisfiability tests and update the cache accordingly. In the case
where a concept C' is unsatisfiable, £.(C) = {L} and L.(—-C) ={T}.

(ii) Conclude that A C B (A1 -B is not satisfiable) if £L.(A) = {L} or L.(B) =
{7}

(iii) Conclude that A [Z B (A1 —B is satisfiable) if
(a) Lc(A) ={T}and Lc(B) # {T}, or
(b) Lo(A) # {1} and £o(B) = {L}, or
(¢) Ly(A)ML3(B) =0, Ly(B)ML3(A) =0, L ¢ L.(A)UL.(B), and there
is no C such that {C,-C} C L.(A) U L.(B).
(iv) Otherwise perform a satisfiability test on A M =B, concluding that A C B if
it is not satisfiable and that A [Z B if it is satisfiable.

When a concept A is added to the hierarchy, this procedure will result in satisfia-
bility tests immediately being performed for both A and —A. During the subsequent
top search phase, at each node x in the hierarchy such that some C' € L(z) sub-
sumes A, it will be necessary to perform a subsumption test for each subsumee

1 Consideration can be limited to atomic concept names because expanded conjunction and disjunction
concepts are no longer relevant to the validity of the tree, and are only retained in order to facilitate
early clash detection.
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node y (unless some of them can be avoided by the classification optimisations dis-
cussed in Section 9.5.2). Typically only one of these subsumption tests will lead to
a full satisfiability test being performed, the rest being shown to be obvious non-
subsumptions using the cached partial trees. Moreover, the satisfiability test that is
performed will often be an “obvious” subsumption, and unsatisfiability will rapidly
be demonstrated.

The optimisation is less useful during the bottom search phase as nodes in the
concept hierarchy are typically connected to only one subsuming node. The ex-
ception to this is the bottom (L) node, which may be connected to a very large
number of subsuming nodes. Again, most of the subsumption tests that would be
required by these nodes can be avoided by demonstrating non-subsumption using
cached partial trees.

The caching technique can be extended in order to avoid the construction of
obviously satisfiable and unsatisfiable sub-trees during tableaux expansion. For
example, if some leaf node x is about to be expanded, and £(z) = {A}, unfolding and
expanding L(z) is clearly unnecessary if A is already known to be either satisfiable
(i.e., (Lc(A), Ly(A),L3(A)) is in the cache and L.(A) # {L}) or unsatisfiable (i.e.,
(L:(A), Ly(A), L3(A)) is in the cache and L.(A) = {L}).

This idea can be further extended by caching (when required) partial trees for
all the syntactically distinct concepts discovered by the normalisation and simplifi-
cation process, and trying to join cached partial trees for all the concepts in a leaf
node’s label before starting the expansion process. For example, with the logic ALC
and a node x such that

E(l’) = {01, . ,Cn},

x is unsatisfiable if for some 1 < i < n, L.(C;) = {L}, and z is satisfiable if for all
1<i<nand 1 <j<n,

(i) Ly(Cy) N L3(C)) = 0,
(ii) ﬁg(CZ) 1 Ev(C]) = @, and
(iii) there is no C such that {C,~C} C L.(C;) U L(C}).

As before, additional interactions may need to be considered with more expressive
logics. Moreover, with logics that support inverse roles, the effect that the sub-tree
might have on its predecessor must also be considered. For example, if x is an
R-successor of some node y, and R~ € Ly(C;) for one of the C; € L(z), then
the expanded L(x) represented by the cached partial trees would contain a value
restriction of the form VR™.D that could augment L(y).

The advantages of caching partial tableaux expansion trees are:

e When classifying a realistic KB, most satisfiability tests can be avoided. For
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example, the number of satisfiability tests performed by the FacT system when
classify the GALEN KB is reduced from 122,695 to 23,492, a factor of over 80%.

e Without caching, some of the most costly satisfiability tests are repeated (with
minor variations) many times. The time saving due to caching is therefore even
greater than the saving in satisfiability tests.

The disadvantages are:

e The overhead of performing satisfiability tests on individual concepts and their
negations in order to generate the partial trees that are cached.

e The overhead of storing the partial trees. This is not too serious a problem as the
number of trees cached is equal to the number of named concepts in the KB (or
the number of syntactically distinct concepts if caching is used in sub-problems).

e The overhead of determining if the cached partial trees can be merged, which is
wasted if they cannot be.

e Its main use is when classifying a KB, or otherwise performing many similar
satisfiability tests. It is of limited value when performing single tests.

9.5.4 Optimising satisfiability testing

In spite of the various techniques outlined in the preceding sections, at some point
the DL system will be forced to perform a “real” subsumption test, which for a
tableaux based system means testing the satisfiability of a concept. For expressive
logics, such tests can be very costly. However, a range of optimisations can be
applied that dramatically improve performance in typical cases. Most of these are
aimed at reducing the size of the search space explored by the algorithm as a result
of applying non-deterministic tableaux expansion rules.

9.5.4.1 Semantic branching search

Standard tableaux algorithms use a search technique based on syntactic branching.
When expanding the label of a node z, syntactic branching works by choosing an
unexpanded disjunction (C7 U...UCy,) in £L(x) and searching the different models
obtained by adding each of the disjuncts C1, ..., C, to £(z) [Giunchiglia and Sebas-
tiani, 1996b). As the alternative branches of the search tree are not disjoint, there is
nothing to prevent the recurrence of an unsatisfiable disjunct in different branches.
The resulting wasted expansion could be costly if discovering the unsatisfiability
requires the solution of a complex sub-problem. For example, tableaux expansion
of a node =, where {(AU B),(AUC)} C L(z) and A is an unsatisfiable concept,
could lead to the search pattern shown in Figure 9.6, in which the unsatisfiability
of £(x) U A must be demonstrated twice.

This problem can be dealt with by using a semantic branching technique adapted
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L(z) ={(AUB),(AUC)} @

]
L(z) U{A} = clash a

L(z) U{A} = clash @

Fig. 9.6. Syntactic branching search.

from the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used
to solve propositional satisfiability (SAT) problems [Davis and Putnam, 1960;
Davis et al., 1962; Freeman, 1996].! Instead of choosing an unexpanded disjunction
in L(z), a single disjunct D is chosen from one of the unexpanded disjunctions in
L(x). The two possible sub-trees obtained by adding either D or =D to L(z) are
then searched. Because the two sub-trees are strictly disjoint, there is no possibil-
ity of wasted search as in syntactic branching. Note that the order in which the
two branches are explored is irrelevant from a theoretical viewpoint, but may offer
further optimisation possibilities (see Section 9.5.4.4).

The advantages of semantic branching search are:

e A great deal is known about the implementation and optimisation of the DPLL
algorithm. In particular, both local simplification (see Section 9.5.4.2) and heuris-
tic guided search (see Section 9.5.4.4) can be used to try to minimise the size of
the search tree (although it should be noted that both these techniques can also
be adapted for use with syntactic branching search).

e It can be highly effective with some problems, particularly randomly generated
problems [Horrocks and Patel-Schneider, 1999].

The disadvantages are:

e It is possible that performance could be degraded by adding the negated disjunct
in the second branch of the search tree, for example if the disjunct is a very large or
complex concept. However this does not seem to be a serious problem in practice,
with semantic branching rarely exhibiting significantly worse performance than
syntactic branching.

o Its effectiveness is problem dependent. It is most effective with randomly gener-
ated problems, particularly those that are over-constrained (likely to be unsat-
isfiable). It is also effective with some of the hand crafted problems from the
Tableaux’98 benchmark suite. However, it appears to be of little benefit when
classifying realistic KBs [Horrocks and Patel-Schneider, 1998a).

An alternative solution is to enhance syntactic branching with “no-good” lists in order to avoid reselecting
a known unsatisfiable disjunct [Donini and Massacci, 2000].
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L(x)={(AUB),(AUC)}
(] (]
L(xz) U{A} = clash L(z)U{-A,B,C}

Fig. 9.7. Semantic branching search.

9.5.4.2 Local simplification

Local simplification is another technique used to reduce the size of the search space
resulting from the application of non-deterministic expansion rules. Before any
non-deterministic expansion of a node label £(x) is performed, disjunctions in £(x)
are examined, and if possible simplified. The simplification most commonly used
(although by no means the only one possible) is to deterministically expand dis-
junctions in £(z) that present only one expansion possibility and to detect a clash
when a disjunction in £(z) has no expansion possibilities. This simplification has
been called Boolean constraint propagation (BCP) [Freeman, 1995]. In effect, the

inference rules
-C1,...,mCp,C1U...1UC,UD C,...,Cp,mC1U...L=CrUUD
D

and 5

are being used to simplify the conjunctive concept represented by L£(x).
For example, given a node x such that

{(C LJ (Dl M Dg)), (—|D1 L =Dy L C), _|C} C E(x),

BCP deterministically expands the disjunction (C U (D; M Dy)), adding (D; M Da)
to L(z), because -C' € L(x). The deterministic expansion of (D M D3) adds both
Dy and D5 to L(x), allowing BCP to identify (—D; U—Dy U C) as a clash (without
any branching having occurred), because {D1, D2, -C} C L(z).

BCP simplification is usually described as an integral part of SAT based algo-
rithms [Giunchiglia and Sebastiani, 1996a], but it can also be used with syntactic
branching. However, it is more effective with semantic branching as the negated
concepts introduced by failed branches can result in additional simplifications. Tak-
ing the above example of {(AU B),(AUC)} C L(z), adding ~A to L(z) allows
BCP to deterministically expand both of the disjunctions using the simplifications
(AU B) and —A implies B and (A Ul C) and = A implies C. The reduced search
space resulting from the combination of semantic branching and BCP is shown in
Figure 9.7.

The advantages of local simplification are:

e It is applicable to a wide range of logics and algorithms.

e [t can never increase the size of the search space.
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Clash Clash Clash ... Clash

Fig. 9.8. Thrashing in backtracking search.

The disadvantages are:

e It may be costly to perform without using complex data structures [Freeman,
1995].

o Its effectiveness is relatively limited and problem dependant. It is most effective
with randomly generated problems, particularly those that are over-constrained
[Horrocks and Patel-Schneider, 1998al.

9.5.4.8 Dependency directed backtracking

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of
unproductive backtracking search, sometimes called thrashing. The problem is ex-
acerbated when blocking is used to guarantee termination, because blocking may
require that sub-problems only be explored after all other forms of expansion have
been performed. For example, expanding a node x (using semantic branching),
where

L(z) = {(CLUDy),...,(CplD,),3R.(AN B),YR.~A},

could lead to the fruitless exploration of 2" possible R-successors of = before the in-
herent unsatisfiability is discovered (note that if £(x) simply included IR.A instead
of 3R.(AM B), then the inherent unsatisfiability would have been detected immedi-
ately due to the normalisation of IR.A as =VR.—A). The search tree resulting from
the tableaux expansion is illustrated in Figure 9.8.

This problem can be addressed by identifying the causes of clashes, and using
this information to prune or restructure the search space—a technique known as
dependency directed backtracking. The form most commonly used in practice, called
backjumping, is adapted from a technique that has been used in solving constraint
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satisfiability problems [Baker, 1995] (a similar technique was also used in the HARP
theorem prover [Oppacher and Suen, 1988]). Backjumping works by labelling each
concept in a node label and each role in an edge label with a dependency set
indicating the branching points on which it depends. A concept C' € L(z) depends
on a branching point if C' was added to £(x) at the branching point or if C' depends
on another concept D (or role R), and D (or R) depends on the branching point.
A concept C' € L(z) depends on a concept D (or role R) when C was added to
L(z) by the application of a deterministic expansion rule that used D (or R); a role
R = L((z,y)) depends on a concept D when (x,y) was labelled R by the application
of a deterministic expansion rule that used D. For example, if A € L(y) was derived
from the expansion of VR.A € L(z), then A € L(y) depends on both VR.A € L(x)
and R = L((z,y)).

Labelling roles with dependency sets can be avoided in algorithms where a
combined dV-rule is used, as the dependency sets for concepts in the label of
the new node can be derived in a single step. On the other hand, more com-
plex algorithms and optimisation techniques may lead to more complex depen-
dencies. For example, if C,, € L(x) was derived from a BCP simplification of
{(Ciu...uCy),~Ci,...,mCh_1} C L(z), then it depends on the disjunction
(CiU...UuCy) and all of =C1, ..., ~Chp_1.

When a clash is discovered, the dependency sets of the clashing concepts can
be used to identify the most recent branching point where exploring the other
branch might alleviate the cause of the clash. It is then possible to jump back
over intervening branching points without exploring any alternative branches.
Again, more complex algorithms and optimisations may lead to more complex
dependencies. For example, if the clash results from a BCP simplification of
{(Chu...uCy),~Ch,...,mCp} C L(x), then it depends on the disjunction
(C1U...uCyp) and all of =C4,...,~C,.

When testing the satisfiability of a concept C', the dependency set of C' € L(x) is
initialised to () (the empty set) and a branching depth counter b is initialised to 1.
The search algorithm then proceeds as follows:

(i) Perform deterministic expansion, setting the dependency set of each concept
added to a node label and each role assigned to an edge label to the union
of the dependency sets of the concepts and roles on which they depend.

(a) If a clash is discovered, then return the union of the dependency sets
of the clashing concepts.

(b) If a clash free expansion is discovered, then return {0}.
(ii) Branch on a concept D € L(y), trying first £L(y)U{D} and then L(y)U{—-D}.
(a) Add D to L(y) with a dependency set {b}, and increment b.
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(b) Set Dy to the dependency set returned by a recursive call to the search
algorithm, and decrement b.

(c) If b ¢ Dy, then return D; without exploring the second branch.

(d) If b € Dy, then add =D to L(y) with a dependency set Dy \ {b} and
return to step (i).

If the search returns {0}, then a successful expansion was discovered and the al-
gorithm returns “satisfiable”, otherwise all possible expansions led to a clash and
“unsatisfiable” is returned.

Let us consider the earlier example and suppose that 3R.(AMB) has a dependency
set D;, VR.~A has a dependency set D; and b = k (meaning that there had already
been k — 1 branching points in the search tree). Note that the largest values in D;
and D; must be less than k, as neither concept can depend on a branching point
that has not yet been reached.

At the kth branching point, Cy is added to £(x) with a dependency set {k} and b is
incremented. The search continues in the same way until the (k4n—1)th branching
point, when C,, is added to £(z) with a dependency set {k+n—1}. Next, IR.(ANB)
is deterministically expanded, generating an R-successor y with R = (z,y) labelled
D; and (AN B) € L(y) labelled D;. Finally, VR.—A is deterministically expanded,
adding —A to L(y) with a label D;UD; (because it depends on both VR.—A € L(z)
and R = (z,y)).

The expansion now continues with L£(y), and (A M B) is deterministically ex-
panded, adding A and B to L(y), both labelled D;. This results in a clash as
{A,-A} C L(y), and the set D;UD; UD; = D; UDj (the union of the dependency
sets from the two clashing concepts) is returned. The algorithm will then backtrack
through each of the preceding n branching points without exploring the second
branches, because in each case b ¢ D; UD; (remember that the largest values in D
and D; are less than k), and will continue to backtrack until it reaches the branching
point equal to the maximum value in D; UDj; (if D; = D; = (), then the algorithm
will backtrack through all branching points and return “unsatisfiable”). Figure 9.9
illustrates the pruned search tree, with the number of R-successors explored being
reduced by 2™ — 1.

Backjumping can also be used with syntactic branching, but the procedure is
slightly more complex as there may be more than two possible choices at a given
branching point, and the dependency set of the disjunction being expanded must
also be taken into account. When expanding a disjunction of size n with a de-
pendency set Dy, the first n — 1 disjuncts are treated like the first branch in the
semantic branching algorithm, an immediate backtrack occurring if the recursive
search discovers a clash that does not depend on b. If each of these branches re-
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Backjump - Pruning

L(y) = {(ANB),~A, A, B} |
Clash

Fig. 9.9. Pruning the search using backjumping.

turns a dependency set D; such that b € D;, then the nth disjunct is added with a
dependency set (D; U...UD,_; UDy)\ b.

The advantages of backjumping are

e It can lead to a dramatic reduction in the size of the search tree and thus a
huge performance improvement. For example, when trying to classify the GALEN
model using either FacT or DLP with backjumping disabled, single satisfiability
tests were encountered that could not be solved even after several weeks of CPU
time.

e The size of the search space can never be increased.

The disadvantage is the overhead of propagating and storing the dependency sets.
The storage overhead can be alleviated to some extent by using a pointer based
implementation so that propagating a dependency set only requires the copying of
a pointer. A simpler scheme using single maximal dependency values instead of sets
would also be possible, but some dependency information would be lost and this
could lead to less efficient pruning of the search tree.

9.5.4.4 Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimise
the size of the search tree. A method that is widely used in DPLL SAT algorithms
is to branch on the disjunct that has the Maximum number of Occurrences in
disjunctions of Minimum Size—the well known MOMS heuristic [Freeman, 1995].
By choosing a disjunct that occurs frequently in small disjunctions, the MOMS
heuristic tries to maximise the effect of BCP. For example, if the label of a node
x contains the unexpanded disjunctions C' U Dy,...,C U D,, then branching on C'
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leads to their deterministic expansion in a single step: when C' is added to L(z),
all of the disjunctions are fully expanded and when —C' is added to £(x), BCP will
expand all of the disjunctions, causing D1, ..., D, to be added to £(x). Branching
first on any of D1, ..., Dy, on the other hand, would only cause a single disjunction
to be expanded.

The MOMS value for a candidate concept C' is computed simply by counting the
number of times C or its negation occur in minimally sized disjunctions. There
are several variants of this heuristic, including the heuristic from Jeroslow and
Wang [Jeroslow and Wang, 1990]. The Jeroslow and Wang heuristic considers all
occurrences of a disjunct, weighting them according to the size of the disjunction in
which they occur. The heuristic then selects the disjunct with the highest overall
weighting, again with the objective of maximising the effect of BCP and reducing
the size of the search tree.

When a disjunct C' has been selected from the disjunctions in £(z), a BCP max-
imising heuristic can also be used to determine the order in which the two possible
branches, £(x)U{C} and L(z)U{—C}, are explored. This is done by separating the
two components of the heuristic weighting contributed by occurrences of C and —C,
trying £(z)U{C} first if C made the smallest contribution, and trying £(z)U{-C'}
first otherwise. The intention is to prune the search tree by maximising BCP in the
first branch.

Unfortunately, MOMS-style heuristics can interact adversely with the backjump-
ing optimisation because they do not take dependency information into account.
This was first discovered in the FacCT system, when it was noticed that using
MOMS heuristic often led to much worse performance. The cause of this phe-
nomenon turned out to be the fact that, without the heuristic, the data structures
used in the implementation naturally led to “older” disjunctions (those dependent
on earlier branching points) being expanded before “newer” ones, and this led to
more effective pruning if a clash was discovered. Using the heuristic disturbed this
ordering and reduced the effectiveness of backjumping [Horrocks, 1997b].

Moreover, MOMS-style heuristics are of little value themselves in description logic
systems because they rely for their effectiveness on finding the same disjuncts re-
curring in multiple unexpanded disjunctions: this is likely in hard propositional
problems, where the disjuncts are propositional variables, and where the number of
different variables is usually small compared to the number of disjunctive clauses
(otherwise problems would, in general, be trivially satisfiable); it is unlikely in con-
cept satisfiability problems, where the disjuncts are (possibly non-atomic) concepts,
and where the number of different concepts is usually large compared to the num-
ber of disjunctive clauses. As a result, these heuristics will often discover that
all disjuncts have similar or equal priorities, and the guidance they provide is not
particularly useful.
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An alternative strategy is to employ an oldest-first heuristic that tries to maximise
the effectiveness of backjumping by using dependency sets to guide the expansion
[Horrocks and Patel-Schneider, 1999]. When choosing a disjunct on which to branch,
the heuristic first selects those disjunctions that depend on the least recent branch-
ing points (i.e., those with minimal maximum values in their dependency sets), and
then selects a disjunct from one of these disjunctions. This can be combined with
the use of a BCP maximising heuristic, such as the Jeroslow and Wang heuristic,
to select the disjunct from amongst the selected disjunctions.

Although the BCP and backjumping maximising heuristics described above have
been designed with semantic branching in mind they can also be used with syn-
tactic branching. The oldest first heuristic actually selects disjunctions rather than
disjuncts, and is thus a natural candidate for a syntactic branching heuristic. BCP
maximising heuristics could also be adapted for use with syntactic branching, for
example by first evaluating the weighting of each disjunct and then selecting the
disjunction whose disjuncts have the highest average, median or maximum weight-
ings.

The oldest first heuristic can also be used to advantage when selecting the order
in which existential role restrictions, and the labels of the R-successors which they
generate, are expanded. One possible technique is to use the heuristic to select an
unexpanded existential role restriction IR.C' from the label of a node x, apply the
J-rule and the V-rule as necessary, and expand the label of resulting R-successor. If
the expansion results in a clash, then the algorithm will backtrack; if it does not,
then continue selecting and expanding existential role restrictions from £(z) until
it is fully expanded. A better technique is to first apply the 3-rule and the V-rule
exhaustively, creating a set of successor nodes. The order in which to expand these
successors can then be based on the minimal maximum values in the dependency
sets of all the concepts in their label, some of which may be due to universal role
restrictions in £(x).

The advantages of using heuristics are

e They can be used to complement other optimisations. The MOMS and Jeroslow
and Wang heuristics, for example, are designed to increase the effectiveness of
BCP while the oldest first heuristic is designed to increase the effectiveness of
backjumping.

e They can be selected and tuned to take advantage of the kinds of problem that
are to be solved (if this is known). The BCP maximisation heuristics, for exam-
ple, are generally quite effective with large randomly generated and hand crafted
problems, whereas the oldest first heuristic seems to be more effective when clas-
sifying realistic KBs.
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The disadvantages are

e They can add a significant overhead as the heuristic function may be expensive
to evaluate and may need to be reevaluated at each branching point.

e They may not improve performance, and may significantly degrade it.

— Heuristics can interact adversely with other optimisations, as was the case with
the MOMS heuristic and backjumping in the FaCT system.

— When they work badly, heuristics can increase the frequency with which patho-
logical worst cases can be expected to occur. For example, with problems
that are highly disjunctive but relatively under-constrained, using a BCP max-
imising heuristic to select highly constraining disjuncts can force backtracking
search to be performed when most random branching choices would lead rapidly
to a clash free expansion.

— The cost of computing the heuristic function can outweigh the benefit (if any).

e Heuristics designed to work well with purely proposition reasoning, such as the
BCP maximising heuristics, may not be particularly effective with DLs, where
much of the reasoning is modal (it involves roles and sub-problems). There has
been little work on finding good heuristics for modal reasoning problems.

9.5.4.5 Caching satisfiability status

During a satisfiability check there may be many successor nodes created. Some of
these nodes can be very similar, particularly as the labels of the R-successors for a
node x each contain the same concepts derived from the universal role restrictions
in L(z). Considerable time can thus be spent re-computing the satisfiability of
nodes that have the same label. As the satisfiability algorithm only needs to know
whether a node is satisfiable or not, this time is wasted. Moreover, when classifying
a KB, similar satisfiability tests may be performed many times, and may provide
further opportunities for the re-use of satisfiability results for node labels if these
are retained across multiple concept satisfiability tests.

If the expansion of existential value restrictions in the label of a node x is de-
layed until all other expansion possibilities have been exhausted (as in the trace
technique), then as each existential role restriction IR.C' is expanded it is possi-
ble to generate the complete set of concepts that constitute the initial label of the
R-successor; this will consist of C plus all the concepts derived from universal role
restrictions in £(z).! If there exists another node with the same set of initial con-
cepts, then the two nodes will have the same satisfiability status. Work need be
done only on one of the two nodes, potentially saving a considerable amount of

1 This ordering is used in the trace technique to minimise space usage, and may by useful or even required
for effective blocking.
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processing, as not only is the work at one of the nodes saved, but also the work at
any of the successors of this node.

Care must be taken when using caching in conjunction with blocking as the
satisfiability status of blocked nodes is not completely determined but is simply
taken to be equal to that of the blocking node. Another problem with caching is
that the dependency information required for backjumping cannot be effectively
calculated for nodes that are found to be unsatisfiable as a result of a cache lookup.
Although the set of concepts in the initial label of such a node is the same as
that of the expanded node whose (un)satisfiability status has been cached, the
dependency sets attached to the concepts that made up the two labels may not be
the same. However, a weaker form of backjumping can still be performed by taking
the dependency set of the unsatisfiable node to be the union of the dependency sets
from the concepts in its label.

A general procedure for using caching when expanding a node x can be described
as follows.

(i) Exhaustively perform all local expansions, backtracking as required, until
only existential value restrictions (if any) remain to be expanded.

(ii) If there are no unexpanded existential value restrictions in £(x), then return
the satisfiability status satisfiable to the predecessor node.

(iii) Select (heuristically) an unexpanded existential role restriction from L(x),
expanding it and any applicable universal role restrictions to create a new
node y with an initial label L£(y) (or create all such nodes and heuristically
select the order in which they are to be examined).

(iv) If y is blocked, then its satisfiability status S is directly determined by the
algorithm (normally satisfiable, but may depend on the kind of cycle that
has been detected [Baader, 1991]).

(a) If S = satisfiable, then return to step (ii) without expanding L(y).

(b) If S = unsatisfiable, then backtrack without expanding L(y). The
dependency set will need to be determined by the blocking algorithm.

(v) If a set equal to L(y) is found in the cache, then retrieve the associated
satisfiability status S (this is called a cache “hit”).

(a) If S = satisfiable, then return to step (ii) without expanding L(y).

(b) If S = unsatisfiable, then backtrack without expanding L£(y), taking
the dependency set to be the union of the dependency sets attached
to the concepts in L(y).

(vi) If a set equal to L(y) is not found in the cache, then set L = £(y) and expand
L(y) in order to determine its satisfiability status S.
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(a) If S = satisfiable and there is no descendent z of y that is blocked by
an ancestor x’ of y, then add L to the cache with satisfiability status
S and return to step (ii).

(b) If S = satisfiable and there is a descendent z of y that is blocked by an
ancestor z’ of y, then return to step (ii) without updating the cache.

(c) If S = unsatisfiable, then add L to the cache with satisfiability status
S and backtrack, taking the dependency set to be the one returned
by the expansion of L(y).

The problem of combining caching and blocking can be dealt with in a more
sophisticated way by allowing the cached satisfiability status of a node to assume
values such as “unknown”. These values can be updated as the expansion progresses
and the satisfiability status of blocking nodes is determined. Such a strategy is
implemented in the DLP system.

A further refinement is to use subset and superset instead of equality when
retreiving satisfiability status from the cache: if L£(x) is satisfiable, then clearly
any L(y) C L(x) is also satisfiable, and if £(z) is unsatisfiable, then clearly any
L(y) 2 L(z) is also unsatisfiable [Hoffmann and Koehler, 1999; Giunchiglia and
Tacchella, 2000]. However, using sub and supersets significantly increases the com-
plexity of the cache, and it is not yet clear if the performance cost of this added
complexity will be justified by the possible increase in cache hits.

The advantages of caching the satisfiability status are:

e [t can be highly effective with some problems, particularly those with a repetitive
structure. For example, the DLP system has been used to demonstrate that
some of the problem sets from the Tableaux’98 benchmark suite are trivial when
caching is used (all problems were solved in less than 0.1s and there was little
evidence of increasing difficulty with increasing problem size). Without caching,
the same problems demonstrate a clearly exponential growth in solution time with
increasing problem size, and the system was unable to solve the larger problems
within the 100s time limit imposed in the test [Horrocks and Patel-Schneider,
1999).

e It can be effective with both single satisfiability tests and across multiple tests
(as in KB classification).

e [t can be effective with both satisfiable and unsatisfiable problems, unlike many
other optimisation techniques that are primarily aimed at speeding up the detec-
tion of unsatisfiability.

The disadvantages are:

e Retaining node labels and their satisfiability status throughout a satisfiability
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test (or longer, if the results are to be used in later satisfiability tests) involves a
storage overhead. As the maximum number of different possible node labels is ex-
ponential in the number of different concepts, this overhead could be prohibitive,
and it may be necessary to implement a mechanism for clearing some or all of the
cache. However, experiments with caching in the DLP system suggest that this is
unlikely to be a problem in realistic applications [Horrocks and Patel-Schneider,
1999).

e The adverse interaction with dependency directed backtracking can degrade per-
formance in some circumstances.

e Its effectiveness is problem dependent, and (as might be expected) is most evident
with artificial problems having a repetitive structure. It is highly effective with
some of the hand crafted problems from the Tableaux’98 benchmark suite, it is
less effective with realistic classification problems, and it is almost completely in-
effective with randomly generated problems [Horrocks and Patel-Schneider, 1999].

e The technique described depends on the logic having the property that the sat-
isfiability of a node is completely determined by its initial label set. Extend the
technique to logics that do not have this property, for example those which sup-
port inverse roles, may involve a considerable increase in both complexity and
storage requirements.

9.6 Discussion

To be useful in realistic applications, DL systems need both expressive logics and
fast reasoners. Procedures for deciding subsumption (or equivalently satisfiability)
in such logics have discouragingly high worst-case complexities, normally exponen-
tial with respect to problem size. In spite of this, implemented DL systems have
demonstrated that acceptable performance can be achieved with the kinds of prob-
lem that typically occur in realistic applications.

This performance has been achieved through the use of optimisation techniques,
a wide variety of which have been studied in this chapter. These techniques can
operate at every level of a DL system; they can simplify the KB, reduce the num-
ber of subsumption tests required to classify it, substitute tableaux subsumption
tests with less costly tests, and reduce the size of the search space resulting from
non-deterministic tableaux expansion. Amongst the most effective of these optimi-
sations are absorption and backjumping; both have the desirable properties that
they impose a very small additional overhead, can dramatically improve typical
case performance, and hardly ever degrade performance (to any significant extent).
Other widely applicable optimisations include enhanced traversal, normalisation,
lazy unfolding, semantic branching and local simplification; their effects are less
general and less dramatic, but they too impose low overheads and rarely degrade
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performance. Various forms of caching can also be highly effective, but they do
impose a significant additional overhead in terms of memory usage, and can some-
times degrade performance. Finally, heuristic techniques, at least those currently
available, are not particularly effective and can often degrade performance.

Several exciting new application areas are opening up for very expressive DLs,
in particular reasoning about DataBase schemata and queries, and providing rea-
soning support for the Semantic Web. These applications require logics even more
expressive than those implemented in existing systems, in particular logics that in-
clude both inverse roles and number restrictions, as well as reasoning with general
axioms. The challenge for DL implementors is to demonstrate that highly optimised
reasoners can provide acceptable performance even for these logics. This may re-
quire the extension and refinement of existing techniques, or even the development
of completely new ones.

One promising possibility is to use a more sophisticated form of dependency
directed backtracking, called dynamic backtracking [Ginsberg, 1993], that pre-
serves as much work as possible while backtracking to the source of a con-
tradiction. Another useful approach, indicative of the increasing maturity of
existing implementations, is to focus on problematical constructors and devise
methods for dealing with them more efficiently. Good examples of this can
be seen in the RACER system, where significant improvements in performance
have been achieved by using more sophisticated techniques to deal with domain
and range constraints on roles (see Chapter 2 for an explanation of these con-
structs) and qualified number restrictions [Haarslev and Méoller, 2001c; 2001d;
2001a).

Finally, it should be reemphasised that, given the immutability of theoretical com-
plexity, no (complete) implementation can guarantee to provide good performance
in all cases. The objective of optimised implementations is to provide acceptable
performance in typical applications and, as the definition of “acceptable” and “typ-
ical” will always be application dependent, their effectiveness can only be assessed
by empirical testing. Hopefully, the new generation of highly optimised DL systems
will demonstrate their effectiveness by finding more widespread use in applications
than did their predecessors.
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Conceptual Modeling with Description Logics
Alex Borgida

Ronald J. Brachman

Abstract

The purpose of the chapter is to help someone familiar with DLs to understand the
issues involved in developing an ontology for some universe of discourse, which is to
become a conceptual model or knowledge base represented and reasoned with using
Description Logics.

We briefly review the purposes and history of conceptual modeling, and then use
the domain of a university library to illustrate an approach to conceptual model-
ing that combines general ideas of object-centered modeling with a look at special
modeling/ontological problems, and DL-specific solutions to them.

Among the ontological issues considered are the nature of individuals, concept
specialization, non-binary relationships, materialization, aspects of part-whole rela-
tionships, and epistemic aspects of individual knowledge.

10.1 Background

Information modeling is concerned with the construction of computer-based sym-
bol structures that model some part of the real world. We refer to such symbol
structures as information bases, generalizing the term from related terms in Com-
puter Science, such as databases and knowledge bases. Moreover, we shall refer to
the part of a real world being modeled by an information base as its universe of
discourse (UofD). The information base is checked for consistency, and sometimes
queried and updated through special-purpose languages. As with all models, the
advantage of information models is that they abstract away irrelevant details, and
allow more efficient examination of both the current, as well as past and projected
future states of the UofD.

An information model is built up using some language, and this language influ-
ences (more or less subtly) the kinds of details that are considered. For example,
early information models (e.g., relational data model) were built on conventional
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programming notions such as records, and as a result focused on the implementa-
tion aspects of the information being captured, as opposed to the representational
aspects. Conceptual models offer more expressive facilities for modeling applications
directly and naturally [Hammer and McLeod, 1981], and for structuring information
bases. These languages provide semantic terms for modeling an application, such
as entity and relationship (or even activity, agent and goal), as well as means for
organizing information.

Conceptual models play an important part in a variety of areas. The following is
a brief summary of these areas, as reviewed in [Mylopoulos, 1998]:

e Artificial intelligence programs turned out to require the representation of a great
deal of human knowledge in order to act “intelligently.” As a result, they relied
on conceptual models built up using knowledge representation languages, such
as semantic networks—directed graphs labeled with natural language identifiers.
DLs are the historical descendants of attempts to formalize semantic networks.

e The design of database systems was seen to have as an important initial phase the
construction of a “conceptual level schema,” which determined the information
needs of the users, and which was eventually converted to a physical implementa-
tion schema. Chen’s Entity-Relationship model [Chen, 1976], and later semantic
data models [Hull and King, 1987] were the result of efforts in this direction.

e More generally, the development of all software has an initial requirements ac-
quisition stage, which nowadays is seen to consist of a requirements model that
describes the relationship of the proposed system and its environment. The en-
vironment in this case is likely to be a conceptual model.

e Independently, the object-oriented software community has also proposed view-
ing software components (classes/objects) as models of real-world entities. This
was evident in the features of Simula, the first object-oriented programming lan-
guage, and became a cornerstone of most object-oriented techniques, including
the current leader, UML [Rumbaugh et al., 1998].

One interesting aspect of conceptual modeling in the database context has been
the identification of a number of abstraction mechanisms that support the devel-
opment of large models by abstracting details initially, and then introducing them
in a step-wise and systematic manner. Among the important abstractions are the
following;:

e thinking of objects as wholes, not just a collection of their attributes/components
(“aggregation” );

e abstracting away the detailed differences between individuals, so that a class can
represent the commonalities (“classification”!);

This term is used in a completely different way than in DL terminology, where it refers to the DL-KBMS
service of finding the lowest subsumers of a concept or individual.
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e abstracting the commonalities of several classes into a superclass (“generaliza-
tion”).

An important claim regarding the benefits of abstraction in conceptual modeling
is that it results in a structured information model, which is easier to build and
maintain. Interestingly, DLs further this goal by supporting the automatic classi-
fication of concepts with respect to others, thereby revealing generalizations that
may not have been recognized by the modeler.

10.2 Elementary Description Logics modeling

Most conceptual models, including DLs, subscribe to an object-centered view of
the world. Thus, their ontology includes notions like individual objects, which are
associated with each other through (usually binary) relationships, and which are
grouped into classes. In this chapter we use freely the notation and concrete syntax
of Description Logics (see Appendix), and extend it with additional constructs that
make it more suitable for modeling.

In the domain of a university library, we might encounter a particular person,
GIANNI, or a particular book, BOOK23. Most of the information about the state of
the world is captured by the inter-relationships between individuals, such as GIANNI
having borrowed BOOK23. Binary relationships are modeled directly in DLs using
roles and attributes: either GIANNI is a filler of the lentTo role for BOOK23, or
BOOK23 is the filler of the hasBorrowed role for GIANNI. Note that lentTo and
hasBorrowed are converse relationships, and this should be captured in a model, since
frequently one wants to access information about associations in either direction.
In DLs, this is accomplished using the role constructor inverse:

hasBorrowed = (inverse lentTo)

Note that in order to avoid inadvertent errors during modeling due to confusion
between a role and its converse, or between a role and the kind of values filling
it, one heuristic is to use a natural language name that is asymmetric, and adopt
the convention that the relationship R(a,b) should be read as “a R b”; therefore in
the above case lentTo(BOOK23,GIANNI) reads “BOOK23 lentTo GIANNI,” while
lentTo(GIANNI,BOOK23) reads “GIANNI lentTo BOOK23,” which makes it clear
that the first but not the second is the proper way to use the role lentTo in the
model. On the other hand, loan would be a poor choice of a role identifier because
one could equally well imagine loan as a role of books or of persons, so that neither
loan(GIANNI,BOOK23) nor loan(BOOK23,GIANNI) “read” properly.

In addition, it is always important to distinguish functional relationships, like
lentTo (a book can be loaned to at most one borrower at any time) from non-
functional ones, like hasBorrowed. This is done most cleanly if the particular DL
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being used allows the declaration of functional relationships, sometimes called “at-
tributes” or “features.” Attributes themselves come in two flavors: total and partial.
Thus lentTo is a partial attribute because a book can only be loaned to one person,
but may not be on loan at some point of time; on the other hand, every book has
to have an ISBN-Nr. It is important to check which interpretation of attributes is
offered by the particular DL being used. In the rest of this chapter we assume that
attributes are total, and the concept constructor the will be used as an abbrevia-
tion, so that (the p C) is equivalent to the conjunction of (all p C), (at-most 1 p)
and (at-least 1 p).

Individuals are grouped into classes; for example, Book might be a natural class
in our domain. Classes usually abstract out common properties of their instances,
e.g., every book in the library has a call number. Classes are modeled by concepts
in DLs, and usually the common properties are expressed as subsumption axioms
about the concept. These conditions usually involve super-concepts, as well as the
kinds of values that can fill roles, and limits on the number of (various kinds of)
role fillers. By design, these are exactly the kinds of things that can be expressed
using DL constructors:

/* Books are materials, whose callNr is an integer */
Book LC (and Material
(the callNr Integer)

)

As mentioned in earlier chapters, one of the fundamental properties of DLs is
support for the distinction between primitive/atomic concepts—for which instances
can only be declared explicitly—and defined concepts—which offer necessary and
sufficient conditions for membership. So, for example, we can distinguish between
the notion of “borrower” as someone who can borrow a book (an approved customer
of the library)

/* Borrower is previously declared as a primitive concept.
Here it is indicated what restrictions on borrowing are in force for this concept */
Borrower C (all hasBorrowed Book)

from the notion of “borrower” as someone who has actually borrowed a book from
the library

/* Borrower is defined as someone who has borrowed books */
Borrower = (and (all hasBorrowed Book)
(at-least 1 hasBorrowed))

We now turn to considering a variety of more subtle issues that arise when model-
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ing a domain. Almost all of these issues arise independent of the modeling language
used; what we emphasize here is the range of possible solutions in the DL framework.

10.3 Individuals in the world

Some individuals are quite concrete, like a particular person, Gianni, or a particular
copy of a book. Some are more abstract, like the subject matter covered by a book.
The important property of most individuals is that they have an identity, which
allows them to be distinguished from one another and to be counted.

Modeling of individuals is therefore made easier if they have unique identifiers.
Unfortunately, this may not always be the case. For example, if one sees on a
bookshelf two brand new copies of a book, which may not be distinguishable by any
property known to us, one can still say that they are different copies of the book.
In information management systems, and sometimes in the real world, this leads
us to devise some kind of “extrinsic” identification scheme. For example, books on
the library shelf are assigned a copy number. In this paper, as in object-oriented
software systems, we will tend to assign arbitrary internal identifiers to objects,
such as GIANNI or BOOK23.

The following examples concerning books show that what constitutes a relevant
individual in a UofD depends very much on what we want to do with the infor-
mation. In a domain concerning literature courses, one might consider something
like Dickens’ HARD-TIMES as the kind of individual appearing on an assigned read-
ing list. For an Internet book-seller interface, it is necessary to consider a more
concrete level of modeling—that of book editions, since, these may have different
prices. Finally, in a library, we need to keep track of actual physical book copies.

In the last two cases, one must then decide whether to model books (as opposed
to editions or copies) as individuals, or as concepts that have the other kinds of
individuals as instances. A general heuristic is that if we expect certain notions to
be counted, then they must be modeled as individuals. Another heuristic is that
notions that do not have an inception time are usually modeled as concepts.

Modeling of the particular kind of relationship that exists, for example, between
a book and its editions is further examined in Section 10.7.2.

10.3.1 Values vs. objects

It is important to distinguish what we may call individual objects, such as GIANNI,
from wvalues, such as integers, strings, lists, tuples, etc. The former have an associ-
ated intrinsic and immutable identity, and need to be created in the knowledge base.
The later are “eternal” mathematical abstractions, whose identity is determined by
some procedure usually involving the structure of the individual. For example, the
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two strings “abc” and “abc” are the same individual value because they have the
same sequence of characters; similarly for dates, such as 1925/12/20, which can be
considered as 3-tuples.

Many DLs only support reasoning with objects, in which case composite values
such as dates need to be modeled as objects with attributes for day, month and
year. The danger here is that, for example, multiple date individuals can be cre-
ated with the same attribute values, in which case they are treated as distinct for
the purposes of counting and identity checking, resulting in reasoning anomalies.
Implemented DLs such as CLASSIC support values from the underlying program-
ming language (so-called “host values”), and relatively simple concept hierarchies
over them. Others, such as ALC(D) [Baader and Hanschke, 1991a] and SHOQ(D)
[Horrocks and Sattler, 2001] allow attributes to have values from so-called “concrete
domains,” which can contain entirely new kinds of values. These concrete domains
are required to have their own, independent reasoners, which are then coupled with
the DL reasoner.

Equally desirable would be mathematical types such as sets, bags, sequences, and
tuples, as supported by modern programming languages and certain semantic data
models.

Currently, only the highly expressive DLR languages support notions such as
n-tuples and recursive fixed-point structures, from which one can build lists, trees,
etc. Even here, one can only provide the description of concepts (“list of Persons”),
as opposed to the specification of individuals (“the list [GIANNLLANNA]”).

10.3.2 Individuals vs. references to them

It is important to distinguish an individual from various references to it: Gianni
vs. “the person whose first name is the 5 letter string “Gianni” vs. “the borrower
with library card number 32245” vs. “the chairman of the Psychology Department.”
This distinction becomes crucial when we express relationships: there is a difference
between relating two objects and relating their names, because we usually want
objects to remain related, even if names are changed. Thus “GIANNI hasBorrowed
BOOKZ25” is different from “card-holder number 32245 hasBorrowed BOOK25.”
because if Gianni gets a new card (after losing his old one, say), then the relationship
between Gianni and the book is lost. So, in general, one should always deal with
the individual objects, unless there is a bijection between a class of objects and
a class of referents to them, and this bijection is universal (it always exists) and
is unchanging!. Kent [Kent, 1979] has eloquently argued the importance of these
issues in record-based database systems, and shows that in the real world such
bijections are much rarer than assumed. For example, Neumann [Neumann, 1992]

L Such bijections are exactly the “keys” used in the database context.
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reports that the same US social security number (the prototypical identifier for
persons in the USA) has been issued to two people, who even have the same name
and birth-date!

Conversely, in some cases one wants to state relationships between intensional
references, rather than specific objects. For example, we might want to say that,
in general, the director of the library is the head of the book selection committee
(COMMITTEE3). If Gianni happens to be the current director of the NBU library,
then asserting headOf (GIANNI,COMMITTEES3) is improper because, among others,
if Gianni steps down as director, according to the above model he would still be com-
mittee chair. One needs the ability to use unnamed expressions as arguments of re-
lationships, along the lines of the predicate logic expression headOf (directorOf (NBU-
LIBRARY),COMMITTEES3).

In DLs, intensional referents can be expressed as roles that are applied to indi-
viduals. (The roles may often be complex chains, resulting from the composition of
atomic roles, as in “the zipCode of the address of the lentTo.”) Assuming that we
use the notation NBU-LIBRARY .director to refer to the filler of the director role for
the NBU-LIBRARY individual, the above relationship is actually stated as “NBU-
LIBRARY .director is identical to COMMITTEE3.head.” The concept constructor
same-as, indicating that two chains of roles have the same value, is used to express
exactly such relationships, so the above situation might be modeled, naively, using
the concept (same-as director head). The problem is that we need a single indi-
vidual of which to assert this property, yet it is libraries that have directors while
committees have heads. In such situations, in DLs one must find or create some
chain of attributes relating the two individuals NBU-LIBRARY and COMMITTEES3.
The natural relationship in this case is the attribute hasBookSelectionCommittee.
Therefore the appropriate way of modeling this situation is

/* NBU-LIBRARY has book selection committee COMMITTEE3 */
hasBookSelectionCommittee(NBU-LIBRARY, COMMITTEE3)

/* NBU-LIBRARY .director equals
NBU-LIBRARY .hasBookSelectionCommittee.head */
(same-as director (hasBookSelectionCommittee o head))(NBU-LIBRARY)

10.4 Concepts

For the university library, some obvious classes of individuals include people, insti-
tutions, the material that can be loaned by the library, the staff, dates, library cards,
and fines. These classes are normally modeled using atomic/primitive concepts in
DLs.
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It may be worth noting that in DLs the same individual may be an instance of
multiple classes, without one being necessarily a subclass of another: some book
might be an instance of both hard-cover and science books. This is in contrast
with many other object-oriented software systems, where one is forced to create a
special subclass for this notion, in order to guarantee a unique “minimal” class for
every individual. However, this is not a modeling principle—it is an implementation
obstacle.

10.4.1 Essential vs. incidental properties of concepts

As explained in the earlier example involving the two possible meanings for the

" an important feature of DLs is the ability to distinguish primitive

term “borrower,’
from defined concepts, where the latter have necessary and sufficient conditions for
concept membership.

For example, BookOnLoan might naturally be defined as

/* A book is on loan if it is borrowed by someone */

BookOnLoan = (and Book (at-least 1 lentTo))

Suppose that we also want to require that only hard-cover books can be loaned out.
There seem to be two options for modeling this:

/* Option 1 — being hardcover is part of the definition */
BookOnLoan = (and Book

(at-least 1 lentTo)

(fills binding >hardcover))

/* Option 2 — being hardcover is an additional necessary condition */

BookOnLoan = (and Book (at-least 1 lentTo))
BookOnLoan T (fills binding *hardcover)

The first approach is not quite right because being hardcover is an incidental
property of books on loan, albeit one universally shared by all such objects. Among
other things, this means that if the system is to recognize some individual book as
being on loan, it is enough to know that it has been lent to someone—one does not
also need to know it is hardcover. Hence the second modeling option is the right
one, since, one can actually deduce that a book on loan is hardcover, if this was not
known ahead of time.

The distinction between definitional and incidental properties is also important
if we consider the task of classifying concepts into a taxonomy, since it has been
argued that the taxonomy should not depend on contingent facts. This suggests that
incidental properties, even universal inclusion assertions like the one for hardcover
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books in Option 2 above, should appear in the ABox, not the TBox defining the
terminology.

Another subtle problem arises when there are multiple sufficient conditions for a
concept. For example, suppose we associated a due date with books on loan (in the
physical world, this might be recorded as a date stamped in the back of the book).
Then encountering a book with a due date in the future would rightly classify it as a
book on loan. If we model the due date as an attribute of books, which has a value
only as long as the date is in the future, then we would represent this situation as

(and Book (at-least 1 dueDate)) C BookOnLoan
and, of course, requiring books on loan to have a due date would lead to
BookOnLoan L (at-least 1 dueDate)

We thus have multiple sufficient conditions for being a book on loan, although one
of them appears to be the primary definition.

10.4.2 Reified concepts and meta-roles

In some cases it seems natural to associate information with an entire concept, rather
than with each of its individual instances. One situation where this arises is in cap-
turing aggregate information, such as the count of current individual instances of the
concept, or the average value of their attributes. In the library example, attributes
such as numberOfBooks and mostRequestedBooks would fall into this category.

In some object-oriented systems this can be modeled directly because classes
are themselves objects, and as such are instances of meta-classes and have meta-
properties. Currently, DLs do not have a facility to treat classes as objects. One
must therefore create a separate “meta-individual” that is related to the concept by
some naming convention, for example. In our example, we would create the individ-
ual BOOK-CLASS-OBJECT, and then attach the information regarding numberOf-
Books, mostRequestedBooks, etc., as roles of this individual. In the CLASSIC system,
given a named concept, this meta-individual can be retrieved using a special, new
knowledge base operation.

10.4.3 Concepts dependent on relationships

The following interesting modeling problem arises in many situations: some con-
cepts, such as Book, stand on their own. Others, such as Borrower, rely on the
implied ezistence of some relation/event (e.g., lending), which has a second argu-
ment, and from which their meaning is derived. It is important to discern this
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second category of concepts, and explicitly introduce the corresponding binary re-
lationship in the model. In the data modeling literature (e.g., [Albano et al., 1993])
categories of this second type, such as Borrower, are called “roles,” but to avoid
confusion with DL roles, we will call them “relationship-roles.” The modeling of
these will be considered further in Section 10.7.1.

10.5 Subconcepts

For many of the above concepts, there are specialized subconcepts representing
subsets of individuals that are also of interest. For example, the concept Material
(referring to the holdings of libraries) could be Book, Journal, Videotape, etc. In
turn, Book may have subconcepts Monograph, EditedCollection, Proceedings, etc.!
And Borrowers may be Institutions or Individuals, with the latter being divided into
Faculty, Student, Staff.

There are a number of special aspects of the subclass relationship that should be
modeled in order to properly capture the semantics of the UofD.

10.5.1 Disjointness of subconcepts

In many cases, subclasses are disjoint from each other. For example, Book and
Journal are disjoint subclasses of Material. In DLs that support negation, this is
modeled by adding the complement of one concept to the necessary properties of
the other concept:

Book LC not Journal

Often, entire collections of subclasses are disjoint?. For this purpose, some DLs
provide the ability to describe disjointness by naming a discriminator, and a special
declaration operation for primitive subclasses. For example, one might discriminate
between various kinds of material on the basis of the medium as follows:

Print T (disjointPrim Material in group medium with discriminant paper);
Video C (disjointPrim Material in group medium with discriminant light);
Audio L (disjointPrim Material in group medium with discriminant sound);

At the same time, one might discriminate between different kinds of material on
the basis of the format:

Book C (disjointPrim Material in group format with discriminant book);
Journal T (disjointPrim Material in group format with discriminant journal);

1 For this section, we will think of the material to be loaned as physical individuals that can be carried
out the door of the library, so to speak.
2 This is especially the case at the top of the subclass hierarchy: Person, Material, etc.
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Two points are worth making here: (i) the advantage of a syntax based on dis-
criminators is that it avoids the multiplicative effect of having to state disjointness
for every pair of disjoint concepts; (ii) as in the above example, it is important
to allow during modeling for multiple groups of disjoint subconcepts for the same
concept.

10.5.2 Covering by subconcepts

In addition to disjointness, it is natural to consider whether some set of subclasses
fully covers the superclass. For example, we might want to say that Circulating
material must be either short-term or long-term.

For DLs that support concept disjunction, this is easy:

Circulating C (or ShortTerm LongTerm)

Note that since ShortTerm, in turn, has Circulating as a superclass, the possibility
arises of modeling Circulating as a definition:

Circulating = (or ShortTerm LongTerm)

However, this approach is not available for languages like CLASSIC, which avoid
disjunction in order to gain tractable reasoning. We discuss in the next section an
approach to the problem based on subconcept definitions and enumerated values.

10.5.3 Defined vs. primitive subconcepts

In the case of material that is either circulating or non-circulating, the name of the
second class provides a hint: after introducing Material and Circulating as primitives,
NonCirculating should be defined:

Circulating C Material
NonCirculating = (and Material (not Circulating))

In this case, the DL can deduce both the disjointness of Circulating and NonCirculat-
ing, and the fact that Material is the union of Circulating and NonCirculating, without
having stated anything explicitly about either. This shows clearly the power of a
reasoning system that is capable of supporting definitions.

By joining covering and disjointness one gets the partitioning of a class by some
group of subclasses. In some DLs—those supporting the constructor one-of—it is
possible to simulate the effect of declaring concepts as partitioned into subconcepts
through the use of a special attribute. For example, we could add the attribute
format to Books, with an enumerated set of possible values:

Book LC (the format (one-of ’monograph ’journal ’editedCollection))
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and then define the corresponding subclasses:

Monograph = (and Book (fills format ’monograph))
Journal = (and Book (fills format ’journal))
EditedCollection = (and Book (fills format ’editedCollection))

These concepts will be disjoint because format can have at most one value, and they
cover the original class Book, because format must have (at least) one value from
among the set enumerated.

10.5.4 Dynamics of (sub)concept membership

When changes in the model are allowed, there is a distinction between concepts
that represent inherent properties of objects that do not change over time (called
“rigid” in [Guarino and Welty, 2000]) such as Book, and concepts that represent
more transient properties, such as MisplacedBook. Note that while it is possible for
a transient property to be a subconcept of rigid one, the converse does not make
sense.

Standard DLs have not developed modeling tools for issues involving the dynamics
of the world, and hence usually cannot represent such distinctions. DLs extended
with the notion of time, such as [Artale and Franconi, 1998], are of course well
suited to express them.

10.5.5 The structure of the subconcept hierarchy

Recent work by Guarino and Welty (e.g., [Guarino and Welty, 2000]) has presented
several interesting ontological dimensions along which a concept can be positioned.

The dimensions are related to many of the topics we discuss elsewhere in this
chapter, including the existence or absence of criteria for identifying individuals
(viz. Section 10.3), the rigid vs. non-rigid nature of concept membership (viz.
Section 10.5.4), the nature of the part-whole relationship (viz. Section 10.7.3), and
aspects resembling relationship-roles (viz. Section 10.7.1).

The significance of these dimensions is that they can be used to both clarify the
intended meaning of concepts in an ontology, and to better organize the taxonomy of
primitive concepts. The conditions for proper taxonomies are based on observations
such as “a concept some of whose current instances may cease to be instances at
some point in the future (e.g., Student) cannot subsume a concept whose membership
cannot change (e.g., Person).”

We refer the reader to the original paper for further details.
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10.6 Modeling relationships

As mentioned earlier, binary relationships are modeled in DLs using roles and at-
tributes. Just as with subclasses, there are a number of special constraints that are
frequently expressed about relationships: cardinality constraints state the minimum
and maximum number of objects that can be related via a role; domain constraints
state the kinds of objects that can be related via a role; and inverse relationships
between roles need to be recorded. For example, a book has exactly one title, which
is a string, and exactly one call number, which is some value that depends on the
cataloging technique used. On the other hand, there may be zero or more authors
for a book:

Book L (and (the title String)
(the callNr Materialldentifier)
(all author Person))

As mentioned in Section 10.2, we can use the attribute lentTo to model when some-
one borrows a book:

Book L (all lentTo Borrower)

Suppose we also want to record that the material in the library may be on loan,
available or missing. This can be modeled by adding appropriate roles to the library:

Library C (and (all hasOnLoan Material)
(all hasAvailable Material)
(all hasMissing Material))

In such a case we would like to say that these roles are non-overlapping. This could
be accomplished through the use of a concept constructor non-overlapping, syntac-
tically similar to same-as: (non-overlapping hasOnLoan hasAvailable). However, if
only one library is involved, it would be better to model the situation using an appro-
priate subclass of Material, such as MissingMaterial, because we already have tools
for modeling disjointness of subclasses, and reasoning with them is not inherently
hard as is the case of general constructors such as same-as and non-overlapping.

10.6.1 Reified relationships

It is sometimes useful to be able to give “properties of properties.” For example,
when some material is lent to a borrower, it is useful to record on what date the loan
took place and when the material is due back. In the Entity-Relationship approach
this would be modeled by the creation of a relationship class, called Loan, which
would have attributes onLoan, lentTo, as well as lentOn and dueOn, describing the
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loan. This can be thought of as the reification of the relationship, and results in
the following DL class specification:

Loan C (and (the lentTo Borrower)
(the onLoan Material)
(the lentOn Date)
(the dueOn Date)
(the NrOfRenewals (max 3)))

Unless the DL supports n-ary relations, reified relationships become essential
when modeling associations that involve more than two objects, as would be the
case, for example, if we had several libraries (or branches), and we wanted to record
from which library the loan was made.

Reified relationships have the disadvantage of requiring the modeler to distinguish
somehow the subset of attributes determining the relationship R(a,b,...), from
those qualifying it. In the above case, we may imagine that Loan represents a
binary relationship Loan(Borrower,Material) between lentTo and onLoan (in which
case lentOn is there just to qualify the relation); alternatively, we may interpret
Loan as a ternary relationship Loan(Borrower,Material,Date) between lentTo, onLoan
and lentOn. The former records loans (a borrower may have a book at most once)
while the latter records the history of loans. The notion of “keys/unique identifiers”
from databases, as adapted to DLs [Borgida and Weddell, 1997] can be used for this
task, by marking the collection of attributes that describe the relationship as a key.

We remark that the DLR description logic can express n-ary relationships di-
rectly, so it does not require reification for this purpose.

10.6.2 Role hierarchies

In many applications, two roles on the same concept may be related by the constraint
that every filler of the first role must be a filler of the second role. For example, in the
library domain, the fillers of the role hasOnShortTermLoan, recording a borrower’s
materials that need to be returned within a week, are also fillers of hasBorrowed,
recording all the materials borrowed (this would be true by definition). Similarly,
the editorInChief of a journal would be included in its editorialStaff.

One of the important features of frame knowledge representation schemes, and
DLs in particular, is that they encourage the modeler to think of roles as first class
citizens. This includes support for the notion of a role taxonomy (subroles). This
is all the more reasonable, since once we reify a relationship, we would be allowed
to create subconcepts of it at will.

As a result, the above kinds of constraints on the containment of role fillers can
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be modeled through the use of role hierarchies—a notion supported by most DLs,
at least for primitive roles:

hasOnShortTermLoan C hasBorrowed

10.7 Modeling ontological aspects of relationships

The material in this section deals with some special kinds of relationships and ap-
proaches to modeling them. The cognoscenti will recognize these as issues related
to the ontological aspects of a UofD (constructs relating to the essence of objects),
as opposed to epistemological aspects (constructs relating to the structure of ob-
jects), which are captured by notions such as InstanceOf and IS-A. The kinds of
relationships to be discussed below do however occur relatively frequently, and pose
difficulties to the uninitiated.

10.7.1 Relationship-roles

A subtle, but important distinction can be drawn between objects that may par-
ticipate in a relationship (the domain restri